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SUMMARY

A guide to digital spectral analysis is presented. The emphasis is on a practical

engineering understanding of the techniques, based on experience gained in their applica-

tion to the analysis of flight measurements of aircraft vibration in buffet. Conse-

quently, particular attention is directed to the practical difficulties encountered when

the duration of the available data is severely limited, and to the use of the coherence

function as a tool in the interpretation of complicated responses. However, the presen-

tation of the fundamental principles, and especially the inherent limitations of the

techniques are relevant to any sphere of application.
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I INTRODUCT ION

In recent years there has been a substantial increase in the use of digital spectral

analysis techniques for an ever-widening range of engineering applications. The trend is

certain to continue. The expanding use of the techniques is primarily a result of the

development of the so-called fast Fourier transform algorithm, or FFT, which permits a

very significant reduction in the cost (in terms of computing requirements) compared to

earlier techniques. The ever-increasing speed, capacity, and availability of digital

computers, the widespread introduction of digital instrumentation systems, and the advent

of compact, purpose-built, FFT-based digital spectrum analysers have also contributed

substantially to the increasing use of the techniques. Finally the continuing advances

in the theoretical, and computational aspects of the method have both promoted, and been

promoted by, the growing importance of the subject.

This Report presents a guide to digital spectral analysis, based on first-hand

experience of the practical application of the technique to aircraft vibration data. The

presentation differs from the currently available textbooks (eg Refs 1-4) in two respects.

Firstly, the emphasis here is on a practical engineering understanding of the techniques,

and not on rigorous mathematical proofs, which are readily available elsewhere if

required. A sound understanding of the implications and particularly of the limitations

of the techniques is essential if the results of such analysis are to be seen in

perspective or if the techniques are to be applied successfully either on a general-

purpose computer, or on a purpose-built digital spectrum analyser. Secondly, particular

attention is devoted to the experience gained, and the refinements developed, in apply-

ing the techniques to the analysis of vibration measurements on a VC 10 transport aircraft

at buffet onset (the associated flight test investigation is reported in Ref 5). Although

some of the refinements which were developed have been mentioned briefly in some of the

most recent text books, the opportunity is taken here to supplement their advice and to

highlight features that were of practical significance in a concise way that is not

possible in the 'standard' texts.

In a number of respects, the present application was a severe test of the spectral

techniques. The excitation of the structural vibration (ie the pressure fluctuation in

the extensive separated flows) was complex, and the response of the airframe was

extremely complex. There were some shortcomings in the instrumentation (principally low

signal levels, and signal conditioning parameters which were a compromise between the

requirements of several independent flight test programmes). In addition, practical

difficulties in flying the test conditions accurately and steadily severely limited the

duration of the data records. Nevertheless, the techniques described herein were applied

successfully, and allowed the response of the aircraft to be understood in a qualitative

(and, within certain limits, quantitative) way. No other currently available techniques

could offer a more attractive approach to this problem than digital spectral analysis.

r4
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The material to be presented can be divided into three areas:

Data acquisition: Describing the implications and limitations of obtaining or

converting data to a form suitable for digital analysis.

Computation of power spectra: Describing the complete process, from preparation of

data into a suitable format, to applying the Fourier transform, and to computing the

required spectrum.

Cross spectral analysis: Introducing the cross spectrum and coherence function as

means of investigating the relationship between signals, presenting various additional

cross-spectral parameters, and describing a format for displaying cross-spectral results.

In each area, the basic concepts and procedures are explained, and the practical

experience of applying them is described where appropriate.

2 LIMITATIONS IMPLICIT IN PROCESSING DIGITAL DATA

The many significant advantages which can be realised by use of digital recording

or processing systems are achieved at the cost of two inherent disadvantages:

(a) The output represents a series of samples of the signal, and not a continuous
record.

(b) The digital output can only take one of a finite number of discrete values,
ie it is quantized.

Both these aspects are fundamentally different from the kind of limitations experienced

with analogue processing (eg frequency response and signal/noise ratio). The implications

(for both time and frequency domain analysis) of these two facets of the digital approach

are discussed below.

2.1 Data sampling

A digital recording system represents the recorded quantity by a series of samples.

Although each sample may be a good representation of the signal at the instant of

sampling, no information is recorded about the behaviour of the signal during the inter-

sample periods. Simple interpolation procedures, or even the human eye can readily

freconstruct' values, but, under some circumstances such reconstruction could be grossly

misleading. Fig I shows the process of sampling and reconstruction for a hypothetical

signal. In this case it can be seen that the reconstruction is a good representation of

the original signal. However, Fig 2 shows an example where the reconstruction is

entirely misleading. Clearly, the difference arises because of the higher frequency

content of the signal in the second example. In the first example, there was never more

than a small fraction of a cycle between adjacent samples; in the second case, there was

more than half a cycle, and thus one or more maxima or minima between samples, but the

interpolation procedure fitted the simplest possible curve between the data points, and

hence reduced the apparent frequency of the signal. This process of introducing

ambiguity into the frequency content of the signal is known as aliasing.

Strictly these limitations also apply whenever analogue data is transcribed into

digital form even, for example, when trace records are read. Thus, the limitations can

only be avoided by ailogue processing of analogue records. However, in practice it was

wi
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the advent of digital recording, or automatic analogue-to-digital conversion which brought

the problems to the fore.

Aliasing may be summed up in two statements:

i) The recorded samples are always valid reprezentations of the signal at the

instant of sampling.

(ii) The absence of intormation about the behaviour of the signal between samples

allows ambiguity in the interpretation of the samples. Hence any given set of samples

could have originated from an infinite variety of original signals (for example, the

samples shown in Fig Ic could have been generated by the signal shown in Fig la, or that

shown iii Fig 2a, or from suitable higher frequency signals, or from any linear combination

of such signals).

For a limited number of applications (for example, calculation of means or rms

levels of random signals) aliasing may not affect the integrity of the data, but if

time domain signal-reconstruction, or spectral analysis is the objective, ways must be

found to deduce the likely behaviour of the signal between samples.

The ambiguity can only be resolved if it is known a priori that the input signal

was restricted to a sufficiently narrow frequency band, such that of all the frequencies

which could have given rise to the observed samples only one could in fact have been

present in the input signal (see Fig 3). In practice, this is usually achieved by using

a low-pass pre-sampling filter to restrict the bandwidth of the signal before it is

sampled. The design of pre-sampling ('anti-aliasing') filters, and their relationship

with optimum sample rates and interpolation processes for time domain signal-
6reconstruction ot signals with flat, broadband spectra is covered by Gardenhire . In

this Report attention is focussed on frequency domain analysis of signals which may have

very 'peaky' spectra.

The effect of aiiasing on the spectral content of signals is as shown in Fig 4* **

Specifically, the spectrum of the sampled data consists of the sum of the spectra of

many 'images' of the spectrum of the original (continuous) data. The images appear at

equally spaced frequency intervals throughout the entire frequency axis (- to -). The

spacing of the images is equal to the sample rate which was used. As can be seen in Fig 4,

the true spectrum, and the first aliased image intersect at a frequency equal to half the

sample rate. This frequency is generally referred to as the Nyquist frequency. Thus any

significant signals at frequency above the Nyquist frequency will have aliased images

which contribute power into the frequency band from dc to the Nyquist frequency.

This result can be derived by means of the convolution theorem. This theorem is
described in Appendix A, and used to demonstrate the spectral consequences of sampling
in Appendix B.

** Fig 4 shows the spectra as two-sided, ie with components at both positive and negative
frequencies. Although negative frequencies are meaningless in the real world, and
actual measured spectra are always shown for vooi-tive frequencies only, the two-sided
representation used here is widely used for mathematical convenience when considering
manipulations of spectra. The equivalence between the two formats is discussed in the
standard text books; for the present Report, it is sufficient to accept their
equivalence. Note that the two-sided spectrum of a real signal will always be
symmetric.
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In principle there are three methods which can be used to combat aliasing. Firstly,

it may often be desirable to filter the signal before digitization, so that no significant

power remains at frequencies beyond the Nyquist frequency. The filtering may be achieved

within the signal conditioning stages, or by selecting transducers which effectively act

as low-pass filters by virtue of their limited frequency response. High-order filters

are commonly used in such applications, to ensure a positive cut-off of unwanted signals,

combined with minimum attenuation of signals within the frequency band of interest. It is

important, however, that the benefits of filtering are carefully balanced against the

disadvantages, both in terms of cost and complexity, and in terms of possible other

penalties. For example, if powerful high-frequency signals are present, they may saturate

the transducer, and hence corrupt its output at all frequencies. If such saturatiei were

masked by the anti-aliasing filters, very severe errors would arise. Furthermore, high

order filters will introduce large phase distortions even at low frequencies. Although

this is not usually a disadvantage in spectral analysis (because the distortion can be

corrected within the analysis if necessary), if the same data records are to be used for

time-domain analysis also, high order filters may be unacceptable unless care is taken to

use filters with linear phase/frequency characteristics. Indeed, the conflicting require-

ments of two experimental programmes led to low order filters being used both for

accelerometer and strain gauge signals during the larger part of the VC 10 buffet research
5programme

Secondly, the higher the sampling rate, the less likely it is that aliased signals

will cause significant interference, provided the spectrum of the (continuous) data does

not contain major peaks at very high frequencies. The beneficial effects of increasing

the separation between the spectral images (ie of increasing the sampling rate) is

demonstrated in Appendix B and Figs 4 and 5. There are, however, disadvantages in using

excessive sample rates. The most obvious is that higher sampling rates need increased

capacity within the recording system (and also, possibly, within the data handling and

analysis system). It will be shown later that increasing the sample rate can never

improve the resolution of the computed spectra. Indeed, if the capacity of the analysis

computer limits the number of samples which can be used to compute a spectrum (the block

size), then increasing the sample rate will degrade the spectral resolution. In some

applications, this disadvantage is compensated by the fact that less time is required to

acquire a given number of data values. These trade-offs are examined in greater detail

in section 3.3.

A third technique can be applied to prevent high frequency narrow band signals

aliasing into the frequency band of interest, provided that the frequency of any such

signals is constant, and is known in advance. A typical example might be the 400 Hz ac

power frequency used on aircraft. Since for a given sample rate, the frequency to which

a high frequency signal will alias is fixed, this can be used as a constraint on the

sample rate so that the aliased frequency is well separated from frequencies of interest.

This can usually be achieved by a very modest change of sample rate; however, with many

recording systems sample rates are limited to a number of fixed values (often in steps of

binary multiples of the lowest system sample rate), and are thus not amenable to this

approach.
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It is important to note that all three of the above techniques can only be used

effectively if there is some knowledge of what high frequency signals may be present, and

if the 'bandwidth of interest' is well established before the recording system is set up*.

The necessary information may be known from past experience, or theoretical considerations.

Otherwise it will be necessary to conduct pilot experiments (possibly using very high

sample rates, or even using analogue analysis), or to proceed on the basis of estimates,

and to monitor results closely to ensure that serious aliasing is not occurring. This

in turn can only be achieved if analysis software, and data handling utilities are

available and tested before actual data recording starts. Monitoring may take the form

of comparing results obtained using differing filters or slightly different sample rates.

In the latter case, any aliased peaks will be revealed by a change in apparent frequency,

which is equal to some integer (usually I, because the first image spectrum is the most

likely source of aliases) times the change in sample rate**.

The problems of aliasing are thus inherent in the idea of sampled data, and a

thorough understanding of the phenomena, and a conscious effort to detect and avoid

aliasing is essential if meaningful results are to be obtained from spectral analysis.

In the future, the continuing trend towards increased capacity in recording systems and

in the computers used for spectral analysis will doubtless mean that it will become

increasingly attractive to raise sampling rate as a primary method of combating aliasing.

Another alternative could be the development of recording and analysis systems based on

non-periodic data sampling. Some initial investigations into such an approach have

revealed some promise, but much further work will be required before it will be known if

the complexity of such an approach can be justified in any but the most extreme

circumstances.

2.2 Quantization and noise considerations

At any instant in time, analogue records can take on any one of an infinite number

of values in a continuous, but bounded range. The actual value retrieved will not, in

general, correspond exactly to the value of the parameter which was recorded because some

random noise will have been added to the true signal during transduction, transmission,

recording, storage, and replay (and also because of frequency response characteristics of

the whole system). Each possible noise source will have its own distinctive noise

spectrum, and in addition the noise signals injected in the earlier stages of the

sequence of operations from transduction to replay will be modified according to the

frequency response characteristics of the later stages.

When a signal is digitized, an additional, unique, type of noise is inflicted on it.

At any instant in time, a digital record can only take one of a finite number of possible

discrete values in a bounded range. Thus, if a digital record is hypothetically compared

* Indeed one of the major difficulties in the VC 10 buffet research prograne was that

the range of frequencies found to be important was substantially higher than had been
expected. As a result, margins from aliasing were considerably smaller than the ideal.

** This method cannot be applied to data systems where all possible sample rates are

binary multiples of a basic rate, because doubling the sample rate does not in general

change the apparent frequency of an aliased narrow band signal.
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with the exact value of the parameter which was recorded, an additional source of error is

revealed; the difference between the 'true' value, and the closest discrete digital

value. This phenomenon is illustrated in Fig 6.

Provided that the signal amplitude is large compared to the spacing of the discrete

digital signal levels, these so-called quantization errors will be random, and will not be

correlated from sample to sample. The quantization error for each sample will always be

within the range -J to +1 of the quantization interval, and any value within the range

has an equal probability of occurring. As a result the effect of quantization can be

shown to be equivalent to a pure white noise signal, with rms level equal to ]//-

times the quantization interval. As the quantization noise is inflicted during digitiza-

tion, it is completely unaltered by any analogue filters which may be used in signal

conditioning. However, it is worth noting that at present virtually all practical digital

acquisition systems are technically hybrid systems, since the transducers usually produce

an analogue output which is transmitted to the recording system before being digitized.

The analogue stages of such a system will, of course, be subject to analogue noise con-

sideration in the usual way. The advantage of digital recording is that once the signal

has been recorded, no further noise should normally be added during storage or replay,

although in practice, 'drop-out' on the data tape may sometimes occur. The majority of

drop-outs will be detected by the parity-checking features of the recording system.

Although some recent recording systems incorporate limited data redundancy, so that

corrupt samples can be reconstructed, in most cases the analysis software will be

required to ignore any corrupt samples or overwrite them with 'reasonable' values.

Occasionally there may be significant numbers of corrupt samples which are not detected

by the parity check system. Indeed, it is believed that on occasions transients within

the signal conditioning and analogue-to-digital conversion process gave rise to signifi-

cant data corruption during the VC 10 buffet research programme.

One method for detecting such data is to compare each data value with the mean data

value for the block, expressing the difference in terms of the standard deviation of the

data values within the block. If the value is greater than some threshold, the sample

should be rejected. For a steady pure-tone sinusoid, the maximum difference would be

42 (the ratio of peak value to rms for a sinusoid). For random vibration data, rather

larger values will be found. If the threshold is set too low, then some genuine data may

be rejected; or if it is too high, corrupt values will be accepted. For the VC 10 buffet

analysis, a value of 5 was chosen, with a block size of 256 samples. The probability of

a block of 256 samples containing a genuine value exceeding 5 standard deviations is

negligible, while accepting one 5-sigma corrupt value will only increase signal rms

levels by 5%, which will not obscure significant spectral peaks. If corrupt values are

detected, they should be eliminated, the standard deviation of the data recalculated,

and the data checked through again with the corrected value. If corrupt values are not

corrected, or are inadequately corrected, they will manifest themselves as spikes in the

recorded signal. A single such spike has a flat, broadband spectrum, which, like the

quantization noise, is unaffected by analogue signal conditioning because it occurs after

digitization. Multiple spikes can produce complex harmonic components in computed

spectra.

X



9

Although many alternative interpolation procedures are possible to compute values to

substitute for rejected data values, the very simple approach of repeating the preceding

value was found to be adequate for the present work.

For the majority of modern applications, the advantages of digital recording and

analysis greatly outweigh the difficulties outlined above, provided that the appropriate

measures are taken to control aliasing, and that the limitations implicit in the

techniques are understood.

3 THE POWER SPECTRUM, AND ITS COMPUTATION VIA THE FAST FOURIER TRANSFORM

The power spectrum, or power spectral density kPSD) function is basically a very

simple concept that is widely used and understood. Accordingly, only a brief resun of

its most significant features is appropriate here; a brief mathematical definition of the

power spectrum, and its relationship to the Fourier transform is given in Appendix C.

More detailed presentations can be found in Refs 1-4 and 7. The power spectrum describes

the way in which the power in a signal is distributed across a range of frequencies. It

contains no information about the phases of the various components of the signal; indeed

when one continuing signal is seen in isolation there is in general no genuine significant

reference against which phase can be defined or measured. Since the function defines the

power density as a function of frequency, the total power within a particular frequency

band can be obtained by integrating the PSD with respect to frequency between the

required frequency limits.

The currently preferred method of digital spectral analysis is to use the fast

Fourier transform to calculate the transform of the data, and the power spectrum can then

be calculated as the square of the modulus of the transform. Note that the Fourier

transform, and hence the PSD, of a non-periodic signal is a continuous function of

frequency, irrespective of whether the original signal is continuous or sampled.

However, the FFT treats a duration-limited record of a non-periodic signal as though it

is one whole cycle of a complex periodic waveform. Hence it evaluates a 'discrete'

transform (and thus defines the 'discrete' power-spectrum) at the specific frequencies

which are harmonics of the record duration. These values are then effectively seen as

samples, in the frequency domain, of the continuous spectrum which would correspond to

the original, non-periodic data.

There are in general up to five stages in the calculation of reliable power spectra

from digital data records:

(a) Elimination of very low frequency components.

(b) Windowing.

(c) Computation of Fourier transform, and hence power spectrum.

(d) Averaging to enhance statistical accuracy.

(e) Compensation of computed spectra for known system response

characteristics.

These stages are discussed in detail in the following sub-sections.

00



I0

3.1 Elimination of very low frequency components

Very low frequency signals may occur because of undesirable transducer drift

(particularly comnmon in strain gauges), or as an inevita-le consequence of the manner in

which an experiment has to be carried out (for example, during flight vibration testing,

vertical accelerometers will pick up not only vibration, but also rigid body accelera-

tions caused by variations of the aircraft flight path).

When the period of such components of whatever origin is greater than the block*

duration, it is important that steps are taken to eliminate them. Serious distortion of

the low-frequency end of the computed spectrum may otherwise occur, because the analysis

procedure implicitly represents the signal as being composcA entirely of components with

periods not longer than the block duration.

In some applications it may be possible to avoid or minimize such drifts by analogue

filtering, or by suitable selection of transducers, but in many applications, such 'drift'

must be eliminated during pre-processing. Although in principle if sufficient length of

data is available these low frequency components could be removed by means of a high-pass

digital filter, with a low cut-off frequency, in practice the very low frequencies

involved and the high sample rates make such an approach unattractive. Instead it is

usual to look at the blocks of the data individually, and to remove drift by subtracting

a 'drift line' from the data. The 'drift line' :an be calculated by a least squares

method (Fig 7). However, this method must be used with considerable care because in some

circumstances, genuine moderate frequency signals in the data can give rise to apparent

drifts. This is illustrated in Fig 8. Here data with a genuine moderate frequency

signal (but no drift) will give a calculated drift line indicating a spurious drift.

When this line is subtracted from the data, the spectrum will show spurious power at other

low frequencies, and a loss in power at the true signal frequency. Calibration signals

can be particularly prone to this effect. Thus drift elimination should only be used

when drift is known to be present.

One possible method to distinguish between the genuine very low frequency signals

(which will need to be eliminated), and phasing effects in moderate frequency signals

(which should not) could be based on the discontinuity of the drift lines from block to

block. The procedure is illustrated in Fig 9. Where the discontinuity from block to

block was small in comparison with the rms level of the signal after the drift is

removed, it would be taken as a genuine trend.

Such a technique would have the disadvantage of requiring the evaluation of drift

lines for several blocks of data before analysis could start. This could be an

undesirable complication for analysis procedures based on data from magnetic tape, and

would not be acceptable for real-time spectral analysis procedures. It was not employed

directly during analysis of VC 10 buffet data, although mean values and drifts for each

block were tabulated, so that checks could be made manually if circumstances demanded.

* A 'block' in this context contains the number of samples which will be used to compute

a spectrum whether via the FFT or otherwise. Selection of block size is discussed in
section 3.3.



3.2 Windowing

Any practical dynamics experiment can only produce a data stream of finite duration.

Statistical considerations generally dictate that the data is then sub-divided into a

series of 'blocks' prior to analysis. Effectively analysis techniques then treat each

block of data as though it represents one cycle of a complex waveform, which continues to

be repeated for all time, as shown in Fig 10a. If in fact the block contains only a

signal, or combination of signals, which are exactly periodic within the block duration,

no errors will occur (Fig 10b). However, any non-periodic components will be subject to

abrupt transients at the end of each block (Fig 1Oc), and thus will become distorted by

the analysis. Because the last samples of the block are treated as though they are

followed by (a repeat of) the first samples of the block, the process of analysis is

sometimes described as cyclic. A more precise understanding of the way non-puriodi(

frequencies are distorted can be developed by the application of the convolution theorem

(see Appendix A).

In effect the process of analysing a block of data of finite duration is equivalent

to analysing a signal which is the product of two signals; one of the two being a data

stream of infinite duration, and the other being a weighting or 'window' function, which

has the value I during the interval when data is actually available, and has the value 0

at all other times. This interpretation is illustrated in Fig 1I. This particular

rectangular window is known as the boxcar window. The boxcar window is simple to

apply, and at first sight its constant weighting appears the obvious way to segment the

data. However, if the convolution theorem mentioned above is used to investigate the

properties of the boxcar window, it becomes apparent that alternative windowing

procedures, involving non-constant weightings can be preferable. Fig 12 shows a compari-

son of several window functions, in both time and frequency domains. The ideal window

would appear to be one whose spectrum is as shown in Fig 12a - with one infinitely narrow

peak at zero frequency. If such a function were convolved with the data spectrum, the

resulting spectrum would be identical to the data spectrum, and no 'blurring' would have

occurred. However, when viewed in the time domain, it is immediately obvious that such

a window cannot be used in practice, because the corresponding time domain representation

is a continuous dc level. Obviously multiplying a signal by a steady dc level does not

affect the spectral content, but equally obviously such an approach does nct produce a

time history which is restricted to a finite duration. Thus such a 'perfect' window

cannot be reconciled with a finite data duration.

The box-car window is shown in Fig 12b. The spectrum of such a window of duration

T has the form IT sin ifT/fT 2 
. Clearly such a window differs significantly from

the ideal form shown in Fig 12a. When this window's spectrum is convolved with the 'true

data spectrum, the result will show considerable blurring of any narrow spectral peaks,

because of the width of the major lobe of the window spectrum. Furthermore, the side-

lobes have an amplitude which is a significant proportion of the major lobe amplitude over

a substantial frequency band. This means that any major peaks in the true data spectrum

will contribute apparent power over a wide range of frequencies in the computed spectrum.

This effect is called leakage. Leakage is discussed in detail in Ref 8.
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Numerous attempts have been made to design windows which have sidelobes which decay

more rapidly than those of the boxcar window. The simplest of these is the Hann, or

cosine bell window, shown in Fig 12c. In this case, a weight of J(1 + cos 2(t/T)) is

applied to the data values over the range - T/2 to T/2 . The transform of the window

has a major lobe which is twice as wide as that of the boxcar window, and thus is worse

from Lhe point of view of blurring; but the sidelobes decay much more rapidly (in fact
-3 -I

they decay as f , rather than as f in the case of the boxcar window), so that

mutual interference between well separated peaks is greatly reduced.

In an attempt to retain the narrow main lobe of the boxcar window, while achieving

the favourable sidelobe decay of the Hann window, Ref 9 advocates the data window shown

in Fig 12d. Here, the initial and final I0% of the boxcar window are replaced by half

cosine bells. Although the sidelobes of this window do decay more rapidly than those of

the boxcar, in practice this advantage becomes evident only at frequency offsets beyond

about 5/T . Notice that all these 'improved' window functions apply low weightings to

the beginning and end of each block, and hence smooth out the inter-block discontinuities

which were shown in Fig 10c.

Other window functions, and some criteria for assessing their performance, are

given in Refs 10-15. It is clear that there is no generally accepted best window but

rather that the different advantages and disadvantages of the various windows should be

considered in the light of the requirements of Lhe particular experiment. In the case

of the VC 10 buffet programme, the 10% cosine taper window was used in the initial power

spectrum calculations (at least in part in direct consequence of the successful use of

this window in the earlier analysis of wind tunnel tests); but the Hann window was applied

in the more recent cross-spectrum calculations.

Before leaving the subject of windowing, three further points should be made.

Firstly, the application of any window other than the boxcar has the effect of attenuat-

ing the data. Thus, it is important that suitable factors are applied to calculated

power spectra to compensate. The appropriate factor can be shown to be the inverse of

the mean squared value of the window function used1 '1 ! . Secondly, except in the case of

the boxcar window, the windowing process applies unequal weights to samples which are

actually of equal statistical validity. This has the effect of reducing the effective

number of degrees of freedom of the data, and thus has an adverse effect on the

statistical stability of the spectrum estimates. This point is considered briefly in

Ref ]I. Finally, any practical window has a finite duration, and thus may be imagined

as the product of a (periodic) shaping function, and a duration-limiting boxcar function.

Thus windowed data can be thought of as the product not of two functions (continuous

data and a shaped, duration-limited window), but of three (continuous data, duration-

limited boxcar window, and a periodic shaping function). Hence the transform of shaped,

duration-limited data may be calculated alternatively by convolving the transform of the

periodic shaping function with the transform of the duration-limited signal. If the

transform of the shaping function is complicated, this approach is not attractive.

However, the transform of the periodic cosine bell weighting function is very simple,

7m
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comprising only three coefficients of value i, and I at frequencies -l/T, 0 and + I/T

As these three frequencies are at the same spacing as the spectral lines produced by the

FFT (as described in the next section), the convolution process can be carried out simply

by replacing each transformed value by a suitable weighted combination of three adjacent

values:

X'(k) - JX(k- ) + JX(k) + JX(k+ 1)

The choice between using a shaped window directly, or of using a boxcar window and apply-

ing an effective shaping by processing the transformed data as shown above is thus purely

a matter of computational convenience for the (admittedly small) family of window shapes

which have a simple transform. It should be stressed that just as the shaped window is

applied to the data amplitudes, the spectral smoothing described here must be applied to

the (complex) Fourier transform and not directly to the power-spectrum. Refs 1, 9 and 10

discuss the approach in more detail. Refs 16 and 17 conclude that the implementation of

windows by weighting in the frequency domain is often the preferable method.

3.3 Computation of Fourier transform and power spectrum

Although it is possible to compute power spectra by analogue processing, or

digitally either by direct numerical application of the Fourier integral, or by means of

auto-correlation techniques, the Fast Fourier Transform (or FFT) has now won almost

universal acceptance as the preferred technique for most applications of spectral

analysis. As its name suggests, the FFT is used because it offers substantial advantages

in speed of computation compared to other digital techniques. The actual speed ratio

increases with the number of samples to be used to calculate the spectrum. Direct

Fourier analysis requires of the order of N2 operations (where an operation comprises

a complex multiplication and addition) for a block size of N samples. Using the auto-

correlation technique, this can be reduced to Nm operations if m lag values are used.

The FFT can require as few as 4N log 2N operations**. The FFT achieves this advantage by

calculating the results of many short transforms, and combining these to form the overall

transform. Although theoretically this short cut is available wherever the block size is

not prime (eg a block size of 26 could be analysed as two blocks of size 13, and 13 blocks

of size 2, and the results combined to generate the spectrum of the full block), in

practice the greatest saving in computational time occurs when N = 2P , where P is any

integer, and this is the basis used in speed comparison above. As a result, the name

'FFT' is generally taken to refer to this special case. The detailed derivation of the

means by which the many short spectra are calculated and combined is beyond the scope

of this Report. For these details and the resulting algorithms the reader is referred to

one of the standard textbooks, eg Ref I. Examples of implementation of the algorithm in

a high level language may be found in Refs 4, 18 and 19.

* As shown, the expression relates to a boxcar window from -r/2 to +T/2 If the
C window used is in fact 0 -T , the sign of the terms in k + 1 and k -I should be
0changed.

** Subject to the condition that log 2N is integer.

L -. _ II
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The speed advantage of the FFT is achieved at the cost of some loss of flexibility,

both in terms of block size (as already mentioned) and also ii, spectral resolution.

Using the following notation:

S sample rate (per second)

N block size (ie number of data points used to calculate one spectrum)
(must be a power of 2)

9. number of frequencies at which spectrum is evaluated

TB  duration of data to produce one spectrum

f min frequency of lowest-frequency spectral estimate

fmax frequency of highest-frequency spectral estimate

6f spacing of spectral estimates,

the following relationships are found for the basic FFT:

T N
B S

N
Z 2f

S
max 2

f . = 0
min

f -f.
max m . S I

k. N T.B

since the FFT always produces N/2 spectral estimates at equal frequency increments from

0 to S/2 Hz. Note in particular that the spacing of the spectral estimates, 6f , is

independent of the sample rate if the block time TB is fixed, or is proportional to

sample rate (ie higher sample rate produces estimates at wider spacing) if the block size,

N , is fixed. Hence increasing the sample rate can never contribute to better spectral

resolution. When circumstances demand, two techniques may be used to improve the spectral

resolution. If r zeros are added to the data string before analysis, then the effective

block length becomes N' = r + N (and now it is N', not N which is constrained to

be a power of 2), the relationships become:

T N (unaltered)
B S

r+N

2

S
f - (unaltered)
max 2

6f = 2
r+N

Thus the same band of frequencies is covered, but more estimates are produced, giving

better resolution. Note, however, that the larger block size increases the time required
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for analysis. Furthermore, with this method, N data values are being used to calculate

power and phase values at (N+r)/2 frequency points: thus the (N+r) numbers which

represent the phase and power information are not all independent. In other words, from

the point of view of information content, this process is only equivalent to computing

the basic (N/2) point spectrum, and then obtaining values at other intermediate

frequencies by means of a complicated (non-linear) interpolation procedure.

In some applications these weaknesses can be avoided by using instead the second

method of enhancing frequency resolution, which is commonly referred to as the zoom FFT.

In this method, the frequency band of interest is deliberately aliased into a low

frequency band, and then processed in the normal manner. The aliasing can be achieved

either during recording (by using analogue band-pass filters to reject all data outside

the required frequency band, and then by using a low sample rate), or during analysis by

recording 'normally', then using a digital band-pass filter to limit the bandwidth, and

then reducing the effective sample rate by systematically omitting samples (decimation).

While the first of these methods has the advantage of simplifying analysis, and reducing

'ita recording and storage requirements, it has the disadvantage that only the aliased

data is recorded, and there is no possibility to modify the analysis strategy in the

light of experience (except by re-running the experiment). The sample rate is chosen

so that when it is multiplied by some integer, the result is the lowest frequency of

interest. The relationships between the various processing parameters then become as

follows: (notation as on opposite page except where indicated):

Z integer factor relating f . to sample rate

Sf frequency increment of basic FFT on range 0 to fmax

f .
smmnS mi

Z

f . 2f

6f S fmn f max 6f
zoom N NZ (2Z + l)N 2Z + 1

N
2

f = ( 6f )+ f . fm I +2
max ( ZOOM) min min( 2

T N I
TB = N = __

zoom

Thus the zoom transform allows all of the available spectral lines to be used to describe

the spectrum in the narrow band f min - f Its advantages are thus clearly mostmln max

pronounced when f . > f - f . Note that like the basic FFT, the frequencynan max mnn

resolution is equal to the inverse of the block time, but the reduced sample rate means

a given block size corresponds to a longer block time.

-



16

3.4 Averaging

It was shown above that the FFT uses N samples of data to compute phase and

amplitude information of N/2 frequency points. Thus the number of independent parameters

calculated by the procedure is exactLv equal to the number of input variables. Furthermore

each of the inputs is equally valid, and each of the outputs depends on each of the

inputs to the same degree. As a result it will be appreciated that the statistical

variability of the calculated parameters will be as wide as the variability of the input

variables. Thus when the FFT is used to analyse random data, it will be necessary to take

average values over a number (m) of computed spectra in order to obtain statistically

stable results. It is shown in Ref I that (for the boxcar window) if results are

averaged over m independent spectra, the normalised standard error (ie the standard
deviation of the population of estimates of the power, normalized by the true power) at

each frequency is

Thus if no averaging is done (m= ), the calculated power at any given frequency will not

be the true power, but rather it will be one value from a population of values, and the

population will have a mean, and standard deviation equal to the true value.

Alternatively, it would be necessary to average 00 spectra if the averaged power is

required to be a member of a population whose mean is the true value, and whose standard

deviation is 10% of the true value.

It may at first appear that the above argument necessitates averaging in the case of

random data but that no averaging would be required with deterministic data. However it

is shown in Ref 30, that even in the case of deterministic data, averaging is required.

The requirement arises because in general there will be a number of complete cycles, plus

a part of a cycle within the duration of the data used to compute a spectrum. The energy

within the part-cycle will depenu on the phase of the signal. Thus spectra computed from

different blocks of data will have different power levels (because the data and the block

are not synchronized, so the phase difference is random), and the true power level is

the average of all possible phase relationships. However, this effect is only powerful

at low frequencies; for signals with more than about ten cycles within the block dura-

tion the fluctuation will be insignificant in practical terms.

In the real world, of course, spectral analysis is frequently applied to problems

which cannot be described as truly random, or as totally deterministic. In such cases

the degree of averaging required can only be determined on the basis of experience. For
example, when a lightly-damped structure is subjected to random excitation, the energy

stored in the vibrations will be far greeter than the work done by the excitation in one

cycle. The intensity of the response will tend to vary less than the intensity of the

random excitation varies, so less averaging may be required. The objective of the VC 10

buffet programme, was the identification of the active modes of vibration. For this it

was found that data (at constant flight condition) within a 20 second run were quite
consistent, and so the average of ten, 2-second blocks was the standard analysis
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procedure*. On some occasions, the pilot was unable to maintain steady conditions for

20 seconds, and it was thus necessary to average over fewer blocks. Although the

results obtained from shorter records were treated with less confidence than results from

longer runs, the general results were usually in acceptable agreement. On a few

occasions steady conditions were maintained for substantially longer than 20 seconds.

These runs provided auseful standard against which to view the stability of the 20 second

runs, and served to confirm that the average of just ten spectra was an acceptable

estimate. On the other hand, comparison of data from different flights, at nominally the

same flight conditions did reveal significant differences in response. Although such

differences could have been seen as the result of too low a number of averages, it was

felt that slight differences in test conditions (eg fuel weight and distribution) were a

more probable cause.

The requirement for averaging thus can cause a very considerable increase, in the

duration of data required, possibly by more than two orders of magnitude for true random

data. In many experiments, there are practical limitations on the possible duration of

recording. In the case of the VC 10 buffet programme, the aircrew found extreme

difficulty in maintaining steady condition for longer than 20 seconds, particularly at

certain Mach numbers. In other examples the duration of the actual phenomena may be

limited (eg spacecraft launch vibration). The question inevitably arises as to whether

there are any means of reducing the volume of data required. In fact, a few techniques

are available but which, if any, are suitable for a particular application depends on

the nature and requirements of the experiment.

Firstly we can consider the parameters relating to the volume of data required to

compute each spectrum. The relationships between these parameters were stated in the

previous section. If zero padding is not used, then the necessary data duration for

each spectrum is the inverse of the frequency spacing of the spectral estimateb 1Iether

or not the zoom transform is used) and is independent of sample rate and number of

samples per spectrum. Thus the duration of each 'block' can only be reduced either at

the expense of a coarser frequency scale, or by resorting to zero padding. In practice,

such tactics may permit some reduction in duration, though major reductions in duration

are unlikely.

An entirely different approach is to obtain more data, and hence more spectra,

by repeating the experiment several times. In some cases this may offer'a very cost

effective way of obtaining greater statistical reliability of spectra, but in other

cases, the cost of repeat experiments may be totally prohibitive. Furthermore in some

circumstances it may not be possible to do comparable repeat experiments. For example,

if vibration data for two nominally identical structures were compared, it might be

found that the frequencies of one of the dominant vibrations differed slightly, perhaps

because of minor manufacturing differences. In this case, the repeat experiment might

well be valuable because it demonstrated the variability; nevertheless it would be wrong

0* This is in reasonable agreement with the averaging procedures developed for a study of

vehicle vibrations2 4 .
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to attempt to average the two sets of spectra directly, because this would lead to the

vibration in question being represented as having two distinct frequencies (Fig 13)*.

Finally, the technique known as overlap processing can be applied in order to ensure

that the information contained within a data record is extracted as effectively as

possible. Depending on the degree of overlap employed, there are two possible methods by

which nverlap processing can improve the statistical stability of a spectrum. There is

also a fundamental limit to the degree to which statistical stability can be enhanced.

When a long data record is analysed as a series of blocks, using a boxcar window,

and no overlap, all the data is taken into consideration with an equal weighting (Fig 14a).

However, if the boxcar window is replaced by any other window (either directly, or

indirectly as discussed in section 3.2 above), the data do not receive equal weightings,

and indeed some samples at the very end of each block have such a low weighting as to be

virtually ignored (Fig 14b). Depending on the exact window shape, the various data

points can be accorded weightings which are equal, or almost equal, if the appropriate

degree of overlap is applied. Thus Fig 14c shows a 90% cosine taper window applied with

10% overlap, and Fig 15d shows the Hann window applied with 50% overlap. In both these

cases the result is that a weighting of unity is effectively applied to all but the very

first and last data points. Such an approach to overlap processing is investigated in

Ref 20. Not all data windows can be made to overlap exactly, as these cosine-based

windows can, but where necessary, an appropriate degree of overlap can be estimated, so

that the combined weighting remains close to unity.

An altcrnative approach might be to employ a very high percentage of overlap

(eg 90% as in Fig 14e). In a sense this approach makes the maximum use of the informa-

tion in the data, albeit at the expense of a very substantial decrease in processing

speed. For example, in Fig 15a (no overlap) the sample at X is analysed in the context

of the signal between points A and B only. With 50% overlap (Fig 15b), X is analysed

in the context of the signal between A and B, and between C and D. Thus it is in fact

compared to data between times A and D. In the limiting case of very high overlap, the

signal at X is seen in the context of signal between P and Q , where P occurs

one block dulation before X , and Q one duration after X . It is apparent that in

the limit, this procedure is analogous to auto-correlation analysis. Clearly overlap

processing allows the phase relationship between deterministic signals, and block

boundaries to be varied, and thus is an effective way to obtain averages for such data.

However, it was noted above that such a procedure was only necessary in the case of low

frequency signals.

The use of overlap processing allows the available data to be scrutinized more

closely than is possible without overlapping. Although this is beneficial, in one

important respect it is not really a substitute for longer data duration when analysing

random data. By definition, the instantaneous value of a random signal is a random value,

* Strictly, this occurs because this hypothetical experiment is not what is known as a
stationary, ergodic process, and only with such processes can the principle be subject
to classical spectral analysis. However, in practice no other alternative analysis
method is available. -
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j and has no specific significance. The properties which do have signific,!nce are para-

meters such as the mean, or mean-square value over all time and these by definition

cannot be estimated from a short data duration. For example, some random event may

perhaps occur on average, once in 1000 experiments, but if only 10, or even 100

experiments are observed, it will not be possible to estimate the occurrence rate

accurately, however closely the results of the 10 or 100 observations are scrutinised.

There is one alternative to block-averaging to increase the statistical stability

of computed spectra which is often advocated, and this is known as frequency smoothing.

Essentially, instead of computing K spectra, and averaging the results at each frequency,

the alternative is to average results at K adjacent frequency points. This approach

offers no advantage in the trade-off between total data duration, and frequency resolution;

if N x K samples are available, they can either be analysed as K blocks of size N

thus allowing a mean of K independent results, with a frequency spacing of S/N Hz

(S is sample rate), or as one spectrum, with a spacing of S/NK Hz , but with the need

to average K adjacent frequency points to obtain a similar stability. If frequency

smoothing is used, the freedom from the requirement to segment the data for block

averaging means that larger block sizes may possibly be used. This offers the advantage

that each data point is seen in the context of more of its neighbouring points, thus

'making the most' of the information in the data in a way similar to overlap processing.

On the other hand, because the computational time for the FFT of N points varies as

4N log 2N , the fewer, longer, blocks will take longer to analyse, and will also need

greater computer memory size.

3.5 Spectrum compensation

After adequate averaging, the computed spectrum is the best estimate of the signal

spectrum as seen by the recording system. However, in some applications (for example

when different designs or models of transducers are used for comparable data channels or

whCL low order filters have been used, so that signals are attenuated at frequencies far

below the Nyquist frequency) it may be desirable to modify the computed spectrum to

compensate for the response characteristics of the transducer or signal conditioning.

Provided the response characteristics are known, the compensation is basically straight-

forward, but the effect of compensation on quantization noise, and on aliased signals

does deserve further brief discussion.

The process of spectrum compensation, and its effect on quantization noise is

illustrated in Fig 16. A typical system response characteristic is shown in Fig 16a,

while Fig 16b shows the inverse characteristic, ie the required compensation factor.

As stated above, quantization noise (and also corrupt data noise) is white noise

introduced downstream of the analogue part of the recording system. Thus when Lhe com-

pensation factor is applied to the white quantization noise, the resulting spectrum

takes the form of the compensation factor, and the apparent spectrum of the quantization

noise is now biased strongly towards high frequencies. When signal and quantization

effects are combined, there will come some frequency beyond which the quantization

noise will dominate the spectrum. This of course is a direct result of the fact that

the response characteristics of the transducer, etc, progressively attenuate the signal
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at higher frequencies and eventually a frequency will be reached where the signal is

attenuated to below the level of the quantization noise. The only difference when

spectrum compensation is applied is that instead of the signal falling off, the quantiza-

tion noise grows stronger at the higher frequencies, and may appear to dominate the whole

spectrum. As there is no point in studying data beyond the frequency where the signal

has been attenuated below the quantization noise, it may be desirable to apply a band

limited compensation factor, as shown in Fig 16c. The computed, compensated spectrum

now resembles one obtained with the perfect low-pass filter shown in Fig 16d. However,

in many applications, this approach will not be possible, because the frequency at which

the quantization noise becomes dominant will depend on the strength of the recorded

response, and this may vary from test to test. An alternative approach would be to

calculate the expected quantization signal at each frequency, and to plot a
'quantization limit' on the computed spectrum. This simple expedient shows clearly when

quantization effects are likely to be present, and was found quite useful in the VC 10

buffet research programme. Another alternative might be to subtract the expected level

of quantization noise from the computed spectrum, but the random nature of the quantiza-

tion noise makes this approach unattractive, particularly if (as in the case of the VC 10

buffet research programme) the data records were not sufficiently long for good

statistical stability of truly random signals.

The effect of aliasing on spectrum compensation is shown in Fig 17. Because the

compensation factor is applied to the data after any aliasing may have occurred, it

applies the same compensation factor to all frequencies in the signal which alias to a

given frequency in the sampled data. Thus it is equivalent to the 'multiple image' com-

pensation factor, such as one of those shown in Fig 17a or 17b, applied to the unaliased

signal. The difference between the two compensation factors shown is simply that one

has been applied over the full frequency band up to the half sample rate, while the other

applies compensation over a limited band only. The net result of these compensation

factors and the basic system response characteristic, is shown in Fig 17c and 17d. It is

immediately apparent that the price paid for a flat response at frequencies below the half

sample rate is some amplification of signals above the half sample rate; ie of signals

which alias. However, at any frequency in the computed spectrum, both 'true' signals,

and signals which alias to the frequency are amplified by the same factor. Thus the

compensation does not change the ratio of true to aliased signal at any position in the

spectrum (indeed, it cannot, for by the time the stage of applying compensation is

reached, there is no way to distinguish between the two). What it does do is to prevent

the tendency to 'play down' the end of the spectrum where aliases will be least - well

suppressed. The desirability (or otherwise) of the approach depends on the objectives of

the analysis, and the nature of the data.

4 CROSS-SPECTRAL ANALYSIS

Cross-spectral analysis permits the relationship between two signals to be

investigated in the frequency domain. Although in the past, cross-correlation techniques

were favoured for such analysis, with the advent of the FFT, the direct computation of

cross-spectral functions is now preferable. The relatively minor extensions to the FFT
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algorithms which are required to compute the cross-spectral function will not be described

here, but are readily available from any of the standard textbooks, eg Ref I. Instead,

the emphasis here will be directed towards presenting the significance and limitations

of the cross-spectral functions.

Like the power spectrum described in the previous section, the cross-spectral

functions are all continuous functions of frequency, and, with the FFT, are computed at

equally spaced frequency intervals over the range from dc to the Nyquist frequency. In

general, all the remarks in the preceding sections on quantization, sampling, aliasing,

windows, block sizes, averaging and compensation etc, apply also to cross-spectral

analysis, although in some cases the balance between the various conflicting requirements

may be somewhat modified.

4.1 The cross spectrum

The basic 'building blocks' of cross-spectral analysis are the power spectra of

the two signals, and the cross spectrum of the two signals. From these three basic

functions, a number of further functions can be readily calculated. The power spectra

have been described in the preceding section, and it was noted that the power spectrum

describes the distribution of power within the frequency range, but it does not contain

phase information. The phase information contained in the Fourier transform of the

signal only relates the phases of the components of the signal to the instant at which

the block of data starts, and this is not generally of any real significance. Thus if

the Fourier transform of the signal is represented as a complex function of frequency

(ie having real and imaginary components), then the power spectrum is equal to the square

of the modulus of the transform at each frequency. By virtue of the properties of the

conjugate of a complex number, the power spectrum can alternatively be expressed as the

product of the transform, and its conjugate, at each frequency. In the standard notation

of spectral analysis, this is expressed as

G xx(f) = IX(f)I 2 = x(f)X*(f)

where GXX is the power spectrum of the signal X t

X(f) is the Fourier transform of the signal X

and * denotes the complex conjugate.

Similarly,

Si m y G _ Y (f) 12  
= Y (f)y * (f)

The cross spectrum between signal X and signal Y is now defined as:

G = X(f)Y*(f)

Thus the cross spectrum is directly analogous to the power spectrum, except that it is

ocomputed from the transforms of two data channels. Indeed in the special case where the

two signals are identical,

. .*
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ie if

X(f) Y(f)

then

Gy GXX = Gyy

The one special point about the cross spectrum is that in general it is a complex

function, ie it does contain information describing the phase relationship between the

two signals at each frequency. The power level at each frequency in the cross spectrum

is clearly equally dependent on the power levels of each of the input signals. The

importance of averaging for power spectra has been explained in the preceding section.

Because the cross-spectrum is a complex function, the effect of averaging is significantly

different from the case of power spectra. When for some particular system, or at some

particular frequency, the two signals are in some way directly related, the phase relation-

ship between them will be constant. For example, in the single input, single output

system shown in Fig 18a, the output signal Y occurs as a direct consequence of the

input X , and the output is related directly to the input by the system transfer

function, H . H may well be complex, but, at any given frequency, it is constant.

Thus, whether X is deterministic or random, the phase and amplitude relationship

between X and Y is constant. Thus the modulus of the averaged cross spectrum will

be equal to the square root of the product of the averaged moduli of the individual cross

spectra, and the phase angle of the averaged cross spectrum will be equal to the

(constant) system phase relationship at the particular frequency. However, if there is

not a direct relationship between the two channels at some frequency, and the output

signal at that frequency is thus effectively a noise signal, the phase relationship will

vary with time in a random manner. The analysis procedure will compute a phase angle

for each block, but when the average is taken, the random variation in phase angle will

make the complex power tend to zero, because effectively the real and imaginary components

are averaged separately, and either may be positive or negative at random. Thus at

frequencies where the two signals are strongly related, the averaged cross-spectrum shows

a power level whose square is proportional to the product of the power in the two signals,

and a phase angle which indicates the phase relationship between the signals. At

frequencies where the two signals are not related at all, the averaged cross-spectrum

will tend in the limit towards zero power, and a random phase angle. Of course, signals

in the real world are seldom either totally related, or, at the other extreme, completely

independent. Typical signals can be seen as a linear combination of the two extreme

cases. They produce power in the cross-spectrum that is somewhat less than would be

shown if the signals were totally directly related, and a phase angle that is an

estimate of the phase difference between the related components in the signals. The

cross spectrum is thus a very useful function, because it shows the phase relationship

between the two signals, and the distribution of that power which is common to both

signals, while, in the limit (ie with sufficient averaging) suppressing power which is

not common to both signals.

Three further aspects of the cross-spectrum deserve mention. Firstly, although the

phase information of the cross-spectrum describes the phase delay (or advance)
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characteristics of the mechanism linking the signal, the power information in the cross-

spectrum does not, by itself, relate to the power attenuation (or amplification)

characteristics of the mechanism. (Tecnniques to study such characteristics will be

described later.) Secondly, it is worth noting that it is quite possible for two signals

both to have a peak at almost identical frequencies, but for the two peaks to be

entirely unrelated. In such a case, the phase difference between the two signals would

vary slowly, and given sufficient averaging time, the power in the cross-spectrum could

be very low, despite the strong (but unrelated) peaks at the same frequency in both power

spectra. Thirdly, because the power at any frequency measured in the cross-spectrum

depends on three factors (the power in both power spectra, and the degree to which the

phase angle is constant), it is not possible from the cross-spectrum alone to establish

at which frequencies the phase angle is constant. High values of cross-spectral power

may be due to the combination of a moderately constant phase relationship, and very high

power levels in one or more signals.

4.2 The coherence function

This difficulty is overcome by use of the coherence function, which is obtained

(at each frequency) by dividing the square of the modulus of the cross-spectrum, by the

product of the two power spectra. This directly eliminates two of the three factors which

cause the cross-spectrum to vary, anA thus the coherence function is directly a measure

of the degree to which the relationship between the two signals remains constant from

block to block*. If at a particular frequency, the two channels are very strongly

related, the coherence function will tend to the value 1, while if at some other

frequency the two signals are entirely independent, the coherence function will have the

value zero. Note that the coherence function is independent of the actual mean phase

angle. The mathematical definition of the coherence function is

2 M IG- (f ) II
yx =f xy=f1

G (f)G Yy (f)

By careful scrutiny of the definition, it can be shown that two factors cause the

coherence level to reduce from unity. It has already been shown that any variation of

phase angle from block to block reduces the coherence, but it can also be shown that any

variation in the ratio of the amplitude of the two signals at a particular frequency

reduces the value of the coherence at that frequency. This second effect stems from the

fact that the denominator in the coherence function relates to the product of the means

of the two signals, whereas the numerator relates to the mean of a form of product

function. Note that when two signals are directly relate" by some mechanism, the ratio

of the amplitudes at any frequency (ie the gain) will be constant, thus again the

coherence will be unity.

o * Thus the coherence function can be interpreted as indicating the variability of the
phase relationship, and hence as a measure of the likely accuracy of the measured
phase angles. This idea is developed furtiher in Ref 21.
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Because the coherence function effectively is a measure of the variation in the

spectra from block to block, it must be remembered that no coherence information can be

obtained from a single block of data in isolation. If the coherence is calculated for

just one block, ie no averaging is implemented, a value of unity will be obtained at all

frequencies, irrespective of the true value:

2Gxy(f) 2  Gxy(f)G(f) X(f)Y*(f)Y(f)X*(f) 1

XY no averaging Gxx y( (f) GX (f)G yy(f) X(f)X1(f)Y(f)Y*(f) -

In fact it is known that the value of coherence will always be somewhat over-estimated

unless a very large number of blocks is used to compute the average values of Gxy, GXX

and G . The degree of bias depends on the true coherence level, and on the number of

blocks used for averaging. No exact formula to compensate for this bias is known but

Monte Carlo methods have been used by several authors to arrive at approximate correction

factors. For example, Ref 22 suggests a correction of the form

2 2 aw raw
cor awr m

where m is the number of (non-overlapping) blocks used for each channel. However, the

reference does not reveal which form of window function this result is appropriate to.

In the special case of input-output measurements on lightly-damped systems,

another source of bias error can cause a reduction in computed coherence values. When

the effects of finite data duration on power spectra were discussed in the previous

section, it was noted that each spectral estimate represented not the power density at

some particular frequency, but rather an average power density over some reasonably

narrow frequency band. This is equally true of the cross spectrum. For a lightly-

damped resonant system, the phase relationship between input and output changes very

rapidly by 180 degrees between frequencies just below, and just above resonance. Thus

an estimate of cross-spectral power at frequencies very close to resonance may contain

contributions from frequencies above and below resonances. Because, unlike the power

spectrum, the cross-spectrum is a complex quantity, the contributions differing in phase

by 180 degrees will tend to cancel, thus reducing the cross-spectrum (but not the power

spectra) at resonance. This can lead directly to a dip in input-output coherence at

resonance for such systems. If meaningful input-output information is required in such

circumstances, it is important that the effective resolution bandwidth is sufficiently

narrow, so that only 'small' phase changes occur over the band. Similarly, it was noted

earlier that the stored energy in this type of system causes the intensity of the

response to vary less than the random variations in the intensity of the excitation

(section 3.4). If such a system is analysed with a 'short' block duration (ie less than

the time the system would take to stabilise at a steady amplitude of response, after a

step change in the amplitude of a steady dynamic excitation), the ratio of the response

amplitude to excitation amplitude will vary from block to block (because the response

amplitude in one block will be significantly affected by the excitation amplitude of

, .. , , , ,, ,
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preceding blocks). As a result, the measured coherence will be reduced. Because the

frequency-spacing of the spectral estimates produced by the FFT is equal to the inverse

of the block duration, this need for long blocks (from amplitude ratio cunsiderations)

corresponds directly to the need for close frequency spacing (from phase considerations).

When the signals are related directly by some linear mechanism at a particular

frequency, the phase relationship, and the ratio of the amplitudes will stay constant.

If the output signal is contaminated by noise, the noise will cause variations in both

phase relationship and amplitude ratio, and will thus reduce the coherence. Hence for a

single input, single output system with noise, as shown in Fig 18b, the coherence function

can be taken as an indication of the signal-to-noise ratio at each frequency. Specific-

ally, the relationship is:
2

YXY
signal-to-noise = 2

I XY

Traditionally the coherence function has been used to study input-output relationships

for the kind of simple system representid in Fig 18b. For systems that can be represented

in that way, the coherence function will distinguish between the frequencies at which the

output and input are related, and those at which they are not, ie at which the noise in

the output measurements dominates any transmitted signal.

However, two cases can arise in practice which can cause the coherence function to

overestimate the extent to which the output signal is a direct consequence of the input

signal. The first case is illustrated in Fig 18c. Here, an unexpected feedback mechanism

is permitting the output signal to influence the measured input. Because the feedback

mechanism causes the input to be related to the output, the phase and amplitude ratios

will stay constant from block to block, and the coherence will be high, even if there is

no direct 'forward' path between input and output. The second case is shown in Fig 18d.

Here some extraneous external signal is corrupting both input and output measurements.

Again the amplitude and phase relationship between input and output remain constant

(because both signals are dominated by the interference), and thus the coherence is high

although there is no direct transmission path from input to output. It must be

remembered that, because the coherence function represents the coherence of the system

as a function of frequency, an actual coherence plot may be representative over part of

the frequency band, but may contain one or both of the above deficiencies at other parts

of the frequency band. A particularly common occurrence is for ac power supply

frequencies to be present in both signals, and thus to produce spurious high coherence

at those frequencies.

The author's experience of the use of the coherence function relates to its

application to interpreting the vibrational response of a complex structure. In such

applications, the coherence and phase relationships between accelerometers mounted

around the structure can be used to determine the frequency of the dominant vibrations,

and the corresponding mode shapes. This technique effectively exploits the fact that

coherence measurements can identify 'extraneous' inputs which are common to two channei.s,00
since the two sensors are in effect both 'outputs' to a common external stimulus, in

a
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contrast to the more usual application where transmission characteristics are investigated

by analysis of 'input' and 'output' signals. The identification of modal frequencies,

and the corresponding phase relationship for a pair of channels can be greatly facilitated

by presenting the results of the cross-spectral analysis in the graphical format described

in detail in section 5 below. To identify the overall response of a complex structure it

is then necessary to study the results of such analysis for many pairs of channels, to

build up a consolidated understanding. From this the phase relationships for the response

throughout the structure can be identified, so that the mode shapes can be determined.

In addition, the coherence measurements can distinguish between vibrations which are

localised at a limited number of measuring stations, and others (sometimes at similar
frequencies) which are significant throughout the structure. When describing the applica-

tion of cross-spectral techniques to the identification of road vehicle vibrations,

Refs 23 and 24 report that the significant frequencies could be identified automatically

within the analysis software, by constructing histograms showing the number of coherence

peaks occurring at each frequency within the band of interest. The close spacing of the

important frequencies observed by the present author in the case of aircraft vibrations

precluded such an automated procedure, but the technique does appear to have considerable

merit when the response frequencies are reasonably well separated. In two other respects,

the author's experiences of aircraft vibrations showed interesting parallels to the

vehicle responses reported in Refs 23 and 24. Firstly, in both cases, strongly

asymmetric xibrations were encountered, and secondly the phase relationships cbserved

for both type of structure showed significant quadrature components in some modes,

indicating a flow of power between distributed sources of excitation and damping.

Recently theoretical aspects of multiple-input, multiple-output systems have been

the subject of much attention. This has led to substantial developments in the under-

standing and application of what are known as multiple, and partial coherence functions.

When several, not necessarily independent, inputs drive a system, multiple- and

partial-coherence techniques can be used to investigate to what extent the observed

outputs are wholly due to a combination of the measured inputs, and also to what extent

the observed response can be attributed to any individual input. These techniques were

not applied to the VC 10 buffet experiment, partly because they relate directly to the

situation where the input forcing function is measured (the VC 10 buffet programme was

curtailed before measurements of any of the unsteady pressures which constitute the

forcing function were made), and partly because of the extreme complexity of the method.

The techniques will not be discussed further here, more details can be found in

Refs 2, 4 and 25-30.

4.3 Non-symmetric cross-spectral functions

The definitions of the cross-spectrum, and also the coherence function are both

'symmetric' in that they both depend equally on the characteristics of the two signals

that are being compared. It is this symmetry of dependence which permits the function

to be regarded as describing what is common to the two signals, rather than describing

what is transmitted from one channel to the other channel. However, when the physical

nature of the system being studied justifies the interpretation that one signal is an
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input, and the other signal is an output, several other, non-symmetric, spectral functions

can be extremely valuable. The first of these is the transfer function, defined as:

H(f) = Y_ _M

0~(f)

Since the denominator is always real, the phase of the transfer function at each frequency
is simply the same as that of the averaged cross-spectrum in the numerator. Note that

the above definition of the transfer function gives a better estimate of the amplitude

gain of the system than could be obtained by computing the square root of ratio of output

power spectrum to the input power spectrum. This is because as noted previously the

averaged cross-spectrum contains only signals that are common to both input and output

(ie that are coherent), and thus any noise contamination of the output signal is not

mis-interpreted as having been transmitted through the system. For example, if the two

channels are simply two independent noise sources, the coherence, and cross-spectrum,

and hence transfer function between them will be zero, which would correctly represent

the fact that there was no transmission mechanism between the two signals; nevertheless,

the ratio of the two power spectra would be non-zero. One further point of interest is

that, under the definition of transfer function given in the above equation, the product

of the transfer function which would be calculated from X to Y , and that which would

be calculated from Y to X , will in general be less than unity; because it will be

equal to the coherence between X and Y

GYXXY Y2 2 <
Hx~yHy x G Yy = X

Gxx yy

since

GXy YX

Again, applied to the very simple example of two independent noise signals, the averaged

cross spectrum would be zero, and thus so would the coherence, and both transfer

functions.

Two further 'non-symmetric' spectral functions are the coherent output power, and

the incoherent output power. These indicate the power at the output which is attributable

to the input, and the power at the output which is independent of the input. The

respective definitions are:

2
coherent output power: Yxy Gyy

2incoherent output power: (I - YXY)Gy .

An application of the coherent output power spectrum is described in Ref 31. These

three 'non-symmetric' spectral functions were not used within the VC 10 buffet analysis,

because they are essentially based on an input and output to a modelled system, and are

0thus inappropriate in the absence of data on the forcing function. However, where the

_ _ n i i . I i mU
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appropriate information is available, they can be very powerful. There is also the

possibility of extending the methods to multi-input systems.

4.4 Compensation of cross-spectral functions

The concept of filter compensation was discussed in the section on the power

spectrum. Similar techniques can be applied to the cross-spectrum, and thus to the non-

symmetric functions described above. Because the response characteristics of both signals

appear both in the numerator and the denominator of the coherence function, compensation

does not directly alter the spectral distribution of coherence at all

If the true phase relationship between the two signals is required accurately, it

is important that the phase angles computed from the cross-spectrum are compensated for

any difference in phase response of the sensors and signal conditioning used on the two

channels. Such compensation was widely and successfully used in the VC 10 buffet

programme. In addition, a further measure of phase compensation is required if the two

channels are not sampled simultaneously. Synchronised sampling is widely, and erroneously,

regarded as essential for the computation of cross-spectra and coherence functions. In

practice, sequential sampling has substantial advantages in terms of hardware recording

considerations. Simultaneous sampling can only be achieved by means of either one

analogue-to-digital converter, fed by numerous sample and hold circuits, or alternatively

by using numerous analogue-to-digital converters and, probably, digital stores to hold the

values so that they can be recorded sequentially. Either method involves extra com-

plexity, and may lead to degraded accuracy. Furthermore, many standard instrumentation

systems (including the Plessey PV1513 system used for the present study) simply do not

have the facility for simultaneous sampling. The most obvious result of non-simultaneous

sampling is the appearance of a spurious phase lag between the two channels. The change

of phase is proportional to the frequency, and also the interval between the samples of

the two channels. Thus, the compensation to the measured phase relationship is

straightforward. For example, if both channels have a common signal at frequency f Hz

and the signal is in fact in phase, but one channel is sampled 6t after the other,

then there will be spurious phase difference of 360 x f x 6t degrees between the

channels. It is, of course, important that the time delay between the channels is

constant; any jitter in the recording system will introduce random phase changes, and

reduce coherence. A less obvious effect of sequential sampling is that the two data

records will not in fact represent precisely the same time interval; one will start, and

finish slightly before the other. If the signals are deterministic, this will be of no

consequence, but if the signals are random, some specific event may occur while one

channel is 'running', but after the other channel has stopped being recorded. This will

lower the coherence. However, this effect is unlikely to be significant because of

three factors. Firstly, the percentage of the data duration which is not common to both

records will be very small; less than the time between two samples of one channel

* Indirectly, coherence measurements may be effected by the use of filters, because
signal components which are attenuated will have poorer signal/noise ratios. However
it is not possible to compensate for this effect unless the detailed spectral distribu-
tions of all noise sources (including phasing effects) is known.
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compared to the time for typically the several hundred samples which make up the block.

Secondly, as already stated, the coherence will only decrease if the data is random; the

more deterministic the data, the less the coherence will be reduced. Thirdly, if any

form of tapering data window is used, only a very small weighting will be applied to

data at the very beginning and end of the block. Thus in practice no compensation to

coherence will be required.

5 A CONVENIENT FORMAT FOR DISPLAYING PHASE AND COHERENCE INFORMATION

The cross-spectral analysis of VC 10 vibration data produced very many spectra,

cross-spectra, and coherence plots. It became highly desirable to develop a convenient

graphical means of displaying the information, so that the salient points could be

absorbed readily. Inevitably the development of such a display was a compromise between

suppressing irrelevant information, to avoid a cluttered format, and on the other hand,

retaining as much useful information as possible. Although the format finally adopted

was selected purely because it was found appropriate and useful for this particular

application, it is described fully below for the benefit of any reader who may wish to

apply it, or adapt it to suit the needs of similar cross-spectral analyses. In addition

to the graphs and diagram described below, tabulations of buth power spectra, cross-

spectra, phase and coherence were produced for each pair of channels analysed.

The graphical output comprised plots of power spectra, modulus of cross-spectrum,

and coherence function, and in addition a combined phase-coherence-power diagram. All

except this last mentioned diagram are completely conventional, and do not require

further explanation. The phase-coherence-power diagram combined these three key para-

meters describing the relationship between the two signals. An example of the diagram,

which is a perspective representation of a three-dimensional plot in cylindrical

coordinates, is shown in Fig 19. The locus of the value of coherence (plotted radially,

on a linear scale) and phase angle, as frequency is made to vary are plotted on a

'ground plane'. Each frequency point of the FFT is marked with a cross, and a process

of interpolation by equiangular spirals is used to joint adjacent frequency points. The

nature of the data causes the plotted locus to take the form of a series of 'lobes',

each related to a mode of vibration which is coherent between the two subject signals.

Simple software logic (described in detail below) recognises the existence of the lobes,

and causes the cross-spectral power at the dominant frequency to be represented as a

line in the axial direction. A logarithmic scale is used for the power axis, as is

usually the I.ractice in spectral analysis. In addition, the frequency of the mode is

annotated beside the power line. Thus by studying the phase-coherence locus on the

ground-plan, the presence of coherent vibrations could be seen, and the associated phase

angles identified. Then by means of the cross spectrum (axial) scale, the relative

strengths of the different modes of vibration could be assessed, and also the correspond-

ing frequencies could be read off.

The system finally adopted to distinguish between frequencies of importance (where

the cross-spectral power, and frequency are indicated), and unimportant frequencies is

0described below. It must be stressed that the system was adopted because it was simple,

and yet gave useful results.
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The system was as follows:

(a) Points were never flagged as being significant if the coherence was less than

50%.

(b) Points were only flagged if they corresponded to a peak (ie had a value

greater than either of the adjacent frequency points) in either of the power

spectra, or in both coherence and cross-spectrum pl ts.

Very occasionally this system caused a point to be ignored when an assessment of the

data by eye might indicate that it could be flagged; this was almost always due to the

point failing to reach the 50% coherence level because it was part of a data set with low

signal levels, and hence poor signal-to-noise ratio and low coherence values at all fre-

quencies. This could possibly have been improved by scheduling the coherence threshold

in relation to the overall coherence level of the data. More frequently, the system

allowed more than one point on each lobe to be identified. This could happen if the true

response frequency fell between two of the FFT frequency points. In this case, the power

at the points either side of the true frequency could be very similar, and small random

variations could cause one to be a peak in the power spectrum of the first channel, and

the other point to be a peak in the power spectrum of the second channel.

Because in almost all cases, the coherence tended to be low at hign frequencies, the

data was scanned to identify the frequency abov- which coherence never exceeded 50%. To

reduce clutter in the diagram, the phase/coherence locus was not plotted be-ond this

frequency.

6 CONCLUDING REMARKS

The methods and procedures outlined above have been condensed from information

reported in a wide range of sources, and have been refined through practical experiencc.

The power and usefulness of the techniques was well displayed in the successful interpre-

tation of the complex vibrations measured on an aircraft in buffet. Accordingly, a sub-

stantial amount of the material presented is of special relevance to such uses as the

identification of complex vibrations, based on limited data. However, the more general

topics of quantization, aliasing, windowing, practical application of the FFT, and the

averaging of spectra are discussed in full, as are the more specialised topics of cross-

spectral analysis and the coherence function. As a practical guide, the report is thus

intended to be of value to anyone about to embark on spectral or cross-spectral analysis

in whatever field of application.
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Appendix A

THE CONVOLUTION THEOREM

According to the convolution theorem, when two signaig are multiplied together to

generate a third signal, the Fourier transform of this third signal may be calculated by

performing the convolution operation between the Fourier transforms of the two original

signals. The convolution operation is denoted by the * sign, and is defined as follows:

X=+

A(f) * B(f) = C(f) = f A(x)B(f-x)dx

X-

The convolution operation can be visualised as follows.

To evaluate the result of the convolution, C(f) at some particular value of

f = f' imagine the two functions A(f) and B(f) plotted out, but with B(f) plotted

with the origin offset by f' and with the f-axis reversed (Fig A). Now construct

the graph of the product of the two functions. The value of the convolved function, at

the point f = f' is now equal to the integral of this product (limits - to +-).

Note that the functions A, B and C will in general be complex. To evaluate C(f)

for all f in this way is obviously a complicated procedure, and thus the method is

only of value as a practical procedure if either A(f) or B(f) are such as to make the

integration very straightforward. Fortunately this is in fact the case for several

important facets of spectral analysis.

00
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A(f)

A(txB (fi.

-0

cC t1) =fA( f X B f tf) d f

Fig Al The convolution pr oes
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Appendix B

DEMONSTRATION OF THE SPECTRAL CONSEQUENCES OF SAMPLING

Sampling may be regarded as multiplying a continuous signal by a sampling function

which consists of a regular train of sample pulses. Ideally each pulse has unit energy

and infinitesimal duration. Such idealised pulses are generally referred to as delta

functions*. (The effects of non-idealised sampling pulses will be discussed later.) To

find the Fourier transform, and hence the spectrum of the sampled signal, the transform

of the continuous signal can be convolved with the transform of the sampling function.

The process is illustrated in Fig BI. The transform of the sampling function is in fact

a series of real delta functions at 0 Hz and at all harmonics of the sample rate. When

cariying out the integration in the convolution process, the transform of the sampling

function may be treated as the sum of a series of delta functions, each to be convolved

and integrated separately, and then the results summed to produce the final answer.

The application of the convolution process may conveniently be illustrated by

considering firstly the component of the transform of the sampling function which is a

delta function at 0 Hz. In this case, application of the procedure of convolution as

described in Appendix A produces a transform which is identical to that of the original

(continuous) data. Viewed in the time domain, the delta function at 0 Hz represents a

steady 'dc' level, which, when multiplied with some signal, will not change the transform

of that signal (Fig B2). When the convolution process is performed with each of the other

delta functions in the transform of the sampling function, the result is similar, except

that the resulting transform is shifted in frequency by an amount equal to the frequency of

the particular delta function. The resulting power spectrum, when the contributions of

all the delta functions are added together, is a series of regularly-spaced images of the

original spectrum, as shown in Fig BI(f). In the example shown, the sample rate is

sufficiently high, so that adjacent images of the signal spectrum do not overlap when the

data is sampled. However, it can readily be seen that a lower sample rate would cause

the peaks of the sampling function spectrum to move closer together, and the spectrum

of the sampled signal could become impossible to interpret (Fig 5).

If the peaks in the sampling function are of finite width, the effect on the

spectrum of the function is merely to reduce the amplitude of the higher frequency peaks.

However, as it is in general the lower-frequency peaks which cause the most severe

Strictly, the sampled data is a function which is ' finod except at the sample
instants, whereas the product of a continuous signal, and a train of delta functions,
is a function which is zero except at the sample instants. It is nevertheless valid to
calculate the spectrum of such a function, and to use it as a description of the
effective spectrum of the sampled data, because any analysis procedure applied to the
sampled data represents continuous integrals over time by summations at the sample
instants. This representation would only be exact in the case of a signal which was
zero except at the sample instants. Thus the procedure used to calculate the spectrum
corresponds exactly to the way in which the sampled data is actually interpreted by any
form of analysis. This is true even if the analysis procedure actually represents the

-data by some scheme of interpolation between the sample values, because this interpola-
- tion is in itself a procedure which represents continuous input data by a sequence of

samples. The only difference in this case is that the interpolation process is ,
effectively a filter, whose characteristics should be superimposed on the spectrum of
the sampled data.

Jr4
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aliasing problems, the effect of sampling function pulse shape (ie how good the analogue-

to-digital conversion is at taking an instantaneous value of the signal, rather than an

average over a short time interval) on aliasing is usually negligible.
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a Continuous signal

t

C Sampled values =product of continuous signal and sample pulIses

0 f
d Spectrum of continuous data (symmetric about f =0 since signal

is real

I _ _ _I_---------_ _

-So Sf
e Spectrum of sample pulses( delta functions at f =0, ±S, ±2S,etc)

-S -S/2 0 S/2 5 f

f Spectrum of sampled data - atiased image spectra arise from
convolution of transform of signal with transform of sample pulses

Fig Bla-f Derivation of the spectrum of sampled data
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Appendix C

MATHEMATICAL DEFINITION OF FOURIER TRANSFORM AND POWER SPECTRUM

If x(t) is a function of time ('the signal') then its Fourier transform, X(f) is

defined as

X(f) = x(t)e-J2 ftdt (C-)

alternatively, x(t) may be expressed as the inverse Fourier transform of X(f)

x(t) = f X(f)eJ2 fftdf (C-2)
f-o

The power spectral density function G xx(f) is defined as

2 c-*
C f)=IX(f)12 = X(f)X*(f) .(-3)

Note that equation (C-I), and hence (C-3), require that the function x(t) be known for

all time. However, in the practical case, a spectrum computed from data restricted to a

finite duration can be taken as an estimate of the true spectrum. The estimate will be

representative of the spectrum over all time provided that the spectral composition of

the signal does not vary systematically with time. A more accurate estimate can be

obtained by averaging the power spectrum computed from numerous independent data records,

as explained in section 3.4.

0
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LIST OF SYMBOLS

Gxx f),Gyy(f) power spectra oi signals x(t), y(t)

Gy(f) cross-spectrum of signal x(t) and y(t)

f frequency (Hz)

H(f) transfer function

9 number of frequency points in discrete spectrum

m number of spectra to be averaged

N number of samples in each 'block'

r number cf zeros used in zero padding

s sample rate (second-

t time (seconjs)

TB block duration (seconds)

x(t),y(t) functions of time ('signals')

X(f),Y(f) Fourier transform of x(t) and y(t)

X. ith point of discrete Fourier transform

Z factor relating minimum frequency to sample rate in zoom transform (Hz)

2 Mfcoherence function of signals x(t) and y(t)

Sf frequency spacing of spectral ebLimates in discrete Fourier transform

6t sampling delay between two signals (seconds)

C normalised standard error

period or duration (seconds)

mean of many independent spectra

modulus

* complex conjugate o2' convolution operator

Note that for convenience, the dependence of many of the above parameters on frequency

is dropped in places in the text, eg H(f) may be written simply as H
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Fig 3a&b & Fig 4a.c
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a Any linear combination of signals at frequencies
fI,f2 ...... could give rise to the same observed samples
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b But if it is known that the input signal was restricted
to the band 0- fa, the actual signal can only have been at f1

Fig 3@&b

a Spectrum of continuous data
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b Spectrum of sampling function
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C Spectrum of sampled data

F
U Fig 4e-c Adequate sample rate ensures separation of images
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Fig 15-d

0

a Spectrum of continuous signal
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Spectrum of sampling function (sample rate lower

than shown in Fig 4)
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Spectrum of sampled data - shown as overlapping images

I I I I I
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Spectrum of sampled data when contributions from overlapping
images are combined

Fig 5a-d Inadequate sample rate causes images to merge



Fig 6@-.
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Fig 7

When a block of data contaminated
by drift is analysed, the drift is
misrepresented as the sum of a series
of components which are low-order
harmonies of the block rate:-

These spurious components can be
eliminated by fitting a straight
line to the data within the block
(using a last-squares fit),and then
analysing the residual values
after this drift-line has been subtracted

Drift line fitted from the data

Residual values

Fig 7 Elimination of drift



Fig 8a&b & Fig 9a&b

a Simple signal with b Subtraction of
no drift, and drift apparent drift
line calculated by actually introduces
least-squares fit a drift, and distorts

true signal

Fig 8a&b When no drift is present, drift elimination may distort signal

a When drift is genuine, the discontinuity of the drift lines at the
block boundaries tends to be small

Apparent drift caused by phasing effects can show quite large
discontinuities at the block boundaries

F
0 - = Fig 9a&b Identification of genuine drifts
K-L :



Fig 10@-c & Fig I11.-c
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Fig 12a&b

dB 1w (f)l2 i w(t)
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-30 w (t) 1 for all t

-40

-50

a Perfect ( non- blurring) window - impossible to realize

Iw( 12

dB Iw (o ( wit)
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-20 jw-- w ( ) = t sin Ttft
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-40 w(t) 0 otherwise

-50

b Box car window

Fig 12s&b Window functions in the frequency and time domains
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Fig 12c&d

Iw(t)l 2
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-20 -TT-3012 0 t/
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-40 w(t)= 0 otherwise

-50

C Hann of cosine bell window
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w (t 0 otherwise
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d 90. cosine taper window

Fig 12a&d Window functions in the frequency and time domains



Fig 13& Fig 14*.
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Fig 15a-c& Fig 1 6a-d
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Fig 17a-c
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a Effective compensation factor - full -band compensation

dB

b Effective compensation factor - band limited compensation

dB \S 3S5/2
d iCompensated rol-off

-2n dB/octave for
Response roll-off \ frequencies just above S/2

-n dB/octave

\N
\N

c Comparison of raw and compensated response characteristics
-full band compensation

F

: Fig 17a-c Effect of spectral images on effective compensation
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Fig 17d Effect of spectral Images on effective compensation



Fig 18sa-d

H
x y

a Single input, single output
linear system

Noise

H +
xy

b Single input, single output linear

system with noise on output

Noise

H+

xyConcealed feedback path

C Feedback can cause 'output' and
'input' to be related, whether or not
there is a direct forward
transmission path

+H 

+

Noise

d Noise which is common to both
input' and 'output' will cause them

to be related, whether or not there
is a direct forward transmission path

Fig 18-d Simple system models
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Fig 19
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