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SUMMARY

-s Satellite orbits contracting under the influence of air drag experience

15th-order resonance when the track over the Earth repeats after 15 revolutions.
If the orbital decay rate is slow enough, an orbit passing through the resonance
is appreciably perturbed by the effects of 15th-order harmonics in the geo-
potential. We have used the observed perturbations in 23 resonant orbits, at
various inclinations to the equator, to determine the harmonic coefficients of
order 15 and degree 15, 16, 17, ... 35. Analysis of the changes iniorbital
inclination on the 23 orbits gives the harmonics of odd degree, while those of
even degree are found from the changes in, eccentricity on 16 of the orbits.
The values derived are given in tables 6 and 8. The coefficients of degrees 15,
16, 17, ... 23, should be more accurate than any previously obtained; their

average sd is ,.4 10-(!; equivalent to I cm in geoid height.

Comparisons with comprehensive Earth models showed the Goddard Earth Model
lOB to be the best, and a standard deviation of about 3 10- 9 in the GEM lOB
15th-order coefficients is indicated.
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I INTRODUCTION

The gravitational potential of the Earth is usually expressed as a double infinite

series of tesseral harmonics depending on latitude and longitude. The order m of the

harmonics expresses the variation with longitude, and a harmonic of order m has

m simusoidal oscillations over 360 0 of longitude. The degree X. of the harmonic

(where k > m) governs variations with latitude; these are more complex and do not

concern us here.

If the orbital period of a satellite is such that its successive ground tracks over

the Earth are 360 0/mn apart, so that the track repeats after m revolutions, the

satellite exhibits mth-order resonance and the perturbations due to harmonics of order m

will build up day after day to produce quite a large change in some of the orbital

elements. This change can be analysed to determine a lumped harmonic of order m , that

is a linear sum of individual harmonics of order m and degree too, Z 0+2, X 0+4, ..

where 2.0 = m or m + I (depending on the orbital element being analysed, and whether

m is odd or even). By obtaining values of lumped harmonics for many resonant satellites

at different inclinations to the equator, it is possible to solve for the individual

harmonics. That is the aim of this paper for harmonics of order m - 15 , and the values

determined here supersede those obtained in Refs I and 2.

A satellite experiencing 15th-order resonance has an average height between 470 km

(for near-equatorial orbits) and 600 km (for inclination 120 0), and at these heights the

effects of atmospheric drag are appreciable. So the contraction of the orbit under the

influence of air drag brings it to resonance and slowly draws it through resonance. The

lower the drag, the longer the resonance acts, and the better the orbit is for analysis.

We have analysed 23 orbits: the longest resonance lasts for 5 years; but at some inclina-

tions there are no good specimens and we have to utilise resonances that are effective

for only about 2 months.

The theory of the 15th-order resonance is given in section 2. The analyses of the

23 orbits are described in section 3. The results for odd-degree harmonics of order 15,

from analysis of inclination, are presented in section 4.3; and results for even-degree

harmonics, from analysis of eccentricity, or inclination and eccentricity combined,

for 16 of the 23 satellites, are recorded in section 4,4.

2 THEORY

2.1 General a:ct resonance

The longitude-dependent part of the geopotential. at an exterior point (r,e,A) can

be written in normalized form3 as

r . LrI2 Xco Em Cos mX im sin mA1  . I

2-2 m-1

where r is the distance from the Earth's centre, e is co-latitude, A is longitude

(positive to the east), w .3 the gravitational constant for the Earth (398600 3m/s2
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and R is the Earth's equatorial radius (6378.1 km). The Pm(cos 0) are the associated

Legendre functions of order m and degree Z , and C m and S m are the normalized

tesseral harmonic coefficients: only those of order m - 15 concern us here. The

normalizing factor Nm is given by
3

N2  2(29. + I)( - m)!m ( + m)! (2)

The rate of change of inclination i caused by a relevant pair of geopotential

coefficients, C and Sim , near B:a resonance may be written4,5

di n (RI9 F ZkF2-m+1, 3t 7 -- a E)Fmp G (pqk cos i - m).q [ ( - j 9  ) explj(yo - qw) , (3)

4where FIMP is Allan's normalized inclination function , GYpq is a function of
5Eccentricity e for which explicit forms have been derived by Gooding5 , . denotes

'real part of' and j = V . The resonance angle 0 is defined by the equation

4) = a(w + M) + 8(Q - V) , (4)

where w is the argument of petigee, M the mean anomaly, Q the right ascension of

the node and v the sidereal angle. The indices y, q, k and p in equation (3) are

ititegers, with y taking the values 1, 2, 3, ... and q the values 0, ±, ±2, ... ;

the equations linking Z, m, k and p are: m = y8 ; k = yc - q ; 2p f £ - k

At B:a resonance the m-suffix of a relevant (C 9 ,SmL) pair is given uniquely by

the choice of y . The values of k Lo be taken must be such that i . m and (Z - k)

is even. The successive coefficients which arise (for given y and q) may usefully be

gathered together in a lumped form and written as
5

_ q pkk C Sk _ q ~ k - q ~ k _ S m 9 5
C m  i Q9 CZm Sm k 9

where I increases in steps of 2 from its minimum permissible value 2. , and the Qq,k
ok

are functions of inclination that can be taken as constant for a particular satellite;
and Qq,k I when -k

a 0

The rate of change of eccentricity e caused by the (k,m) harmonic near 8:a

resonance can be written
5

d =e n(I -e2 )-i(E) G - (k + q ) e -m+I(E - jF2m) expj(-y4 - qw) (6)
dt \a] LMP pq Iq e m 1 '

with the same definitions as for equation (3).

0
0
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As the G functions are of order (iq ,, it is usually found that, for

orbits with eccentricity less than 0.1, the terms with (y,q) - (1,0) produce the most

important resonance effects on the inclination, though the terms with (y,q) = (],±1) also

have to be taken into account if e is greater than about 0.03. In the equation for

the eccentricity, the relative importance of the terms is largely decided by the value of

G£pq Iq - (k + 2 which is of order Jek for q = 0, of order it for q - ±1

and of order t2 e for q = ±2 . So, for the eccentricity, the strongest effects are

usually caused by the terms with (y,q) = (1,i) and (1,-1).

Terms of 30th order, with y = 2, may also sometimes need to be taken into account,

but their numerical values do not concern us here and will be the subject of a separate

paper.

2.2 The 15th-order resonance

For 15th-order resonance (8 = 15, a = 1), equation (4) for the resonance angle

becomes

= w + M + 15(0 - v) , (7)

and at exact resonance = 0

The theoretical equation (3) for variation of inclination may be written as

d sin 15 - i)F1 5 15,71c15  sil cos 5

170 1,0
+ 17e (15)( F) 6 15 S15  sin(O - W) + C1 5  cos(O - W)

13e ( R 1' 2  -1,2
+ (15 -2 cos i) ) 5 7 S sin(f + W) + C15  cos (+W)

2 a~)F1,!,7 1o5 15 }

+ terms in ( 2qJ Cos ( - qw) (8)

lJJI sin ~ Jj
where only the three main terms, with (y,q) = (1,0), (],1) and (1,-I), are given

explicitly.
_q,k _q,k

The three pairs of lumped coefficients C and Sm appearing in equation (8)mm

may be written in terms of the individual geopotential coefficients (CimSim) as

indicated in equation (5). Explicitly, with the Qq,k expressed in terms of the F
q,k

functions, the C arem

0,I = C, - F CI7,5 + F19,5 -2 (9)
5 17,15, F (9), 15, 9

CO F15,15,7 1F5,15,7
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1,0 19F 18,15,9 R2 21F20,15,10 4R 0,1

IS C61 + C E (-0)-17F 618,15 17F 16,15, 8  (a. (10)C5 = I61 1716,15,8165,

-1,2 15F 1, 15 ,8 (1R
2  17F20, (R)4

C15  = C16 ,15 - - C 18 ,15 
+  20,5,9 C20 ,1 5 - (11)

13F 16,15 ,7  13F16,15,7

and similarly for S , on replacing C by S throughout.

For the 15:1 resonance, the theoretical variation of eccentricity given by
_q,k _q,k

equation (6) may be written in terms of the same C and S asm m

dt e n 5 15 7 15  sin $ -S cos

a ~ ~ ~ ~ 1 15157Es5'(0]'

17 aF 16, 1 5  sin(D - w) + C cosO - W

+ 13(l)F 16 15 ,7 S 15  sin(o + W) + C15 cos(o + )

UP,) jqj ejqj-I 1 o

terms in (Il) -- q - J(k + q)e 2  
cs(rD - qu)] . (12)

Three terms are given explicitly in equation (12), those with (y,q) = (1,0), (1,]) and

(1,-I). The main terms are expected to be those with (y,q) = (1,1) and (I,-I), but the

term with (y,q) = (1,0) is also given, for consistency with equation (8).

3 THE ANALYSIS OF THE 23 RESONANT ORBITS

The methods of analysis have been explained in several previous papers, most

recently Refs 6 and 7, and the explanations will not be repeated here. Basically, the

observational values of inclination are cleared of irrelevant perturbations and fitted

using the computer program THROE 8 with an integrated form of the theoretical equation (8),

with extra terms when appropriate, to determine values of the lumped coefficients.

Similarly the observational values of eccentricity, cleared of perturbations, are fitted

with an integrated form of equation (12), with extra terms as necessary. With a few

satellites it is useful to make a simultaneous fitting of inclination and eccentricity

using the SIIES program. In making the fittings, we regard 20 values of inclination

(or eccentricity) as the minimum permissible, and we try to analyse orbits over a period

of time when i lies between -10 and +10 deg/day, though on some high-drag orbits

larger values of i have to be allowed. 0
c

In seeking resonant satellites for analysis, the aim has been to cover the widest C

possible range of inclination and to leave the smallest possible gaps in the coverage.
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No suitable orbits at inclinations less than 30 0 were found, but this is not so bad as it

seems, because such orbits are influenced primarily by harmonics of very high degree

(35-55, or even higher for orbits very near the equator) and our evaluations only extend

to degree 35. The analyses of the 23 orbits are described in sections 3.1 to 3.23 in

order of increasing inclination. The values of lumped harmonics given in sections 3.1 to

3.23 are used (in section 4) to evaluate individual harmonic coefficients. The values of

the lumped harmonics are used with their standard deviations unchanged, unless otherwise

specified. The values used in the solutions are listed in Tables I and 2.

In evaluating the fittings we often refer to the measure of fit, c , where E is

defined as the sum of squares of weighted residuals divided by the number of degrees of

freedom. The weighted residual is the residual of an individual value (of i or e) divided

by its assumed standard deviation. For the US Navy orbits used in many of the fittings,

the assumed standard deviation is 0.0030 in inclination and 0.00004 in eccentricity; for

the RAE orbits determined by PROP, the standard deviation given by PROP is used; for

other orbits the standard deviation is as specified in the appropriate section.

3.1 Pegasus 1, 1965-09A (i = 31.760, e = 0.007)

This satellite passed through exact 15th-order resonance on 8 December 1974 and the

inclination and eccentricity were analysed over the period September 1974 to May 1975.

During this time the rate of change of the resonance angle, ,increased from -5 to

+5 deg/day.

There were 37 US Navy orbits available over the period to be analysed. The values

of inclination, cleared of all perturbations except those due to resonance, were first

fitted with (y,q) = (1,0) only, the (I,±I) terms not being required as the eccentricity

was only 0.007. The (1,0) fit was very satisfactory, E = 0.351, and the values of the

lumped harmonics well determined. A second fit was tried with (y,q) = (1,0) and (2,0),

but this was not acceptable because the value of E increased and the C 30  and S 3

coefficients were indeterminate. The (y,q) = (1,0) solution gave the following values:

19E0Ol 30980 ± 1960 , 10 9 ' 13540 ± 960
15 1

The values of inclination and the fitting by THROE are shown in Fig 1.

The values of eccentricity were fitted with (-y,q) = (1,]) and (-Ias these

are the most likely terms to be required in fitting eccentricity alone. The result was

very disappointing and none of the terms was determined with sufficient accuracy to

be useful, the value of E being 4.9. A further run with a (0,1) term included was

tried. This had been required in previous analyses 6, in order to remove an oscillation

from the US Navy values of eccentricity, which arises because of a wrong interpretation

of the zonal harmonic oscillation removed by the US Navy from their values. However,

this technique was not successful here and the values of the lumped coefficients were

not acceptable.
0

0
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3.2 OSO 6 rocket, 1969-68B (i = 32.970, e = 0.004)

The new fitting of the inclination by THROE, with (y,q) = (1,0) shown in Fig 2, is
.2virtually identical to the previous fitting . The curve fits the points very well, with

0.28, and the values of the lumped harmonics are:

9_0,1 9_0,1
10 C = 20340 ± 750 10 S = 6280 + 910

A fitting with (y,q) = (1,0) and (2,0) was also tried, but the (2,0) terms were

indeterminate. The value of ; increased from -3.7 deg/day initially to 17.3 deg/day

at the end of the analysis.

In analysing the eccentricity, a (Y,q) = (0,1) term was added for the reason given

in section 3.1. The fitting, with (y,q) = (],I), (1,-I) and (0,I) terms, was poor, with

= 3.1. None of the values of lumped harmonics was more than twice its standard devia-

tion. So the attempt was abandoned.

3.3 San Marco I, 1964-84A (i = 37.800, e = 0.042)

This is the only 15th-order resonant orbit available at an inclination between 330

and 430, so it had to be utilized if possible. By an unfortunate chance, the values of

_0,1 0, I
both C15 and S15 are very small at an inclination of 38 , so the variation in

inclination is also very small. To compensate for this ill luck, however, 28 accurate

orbits at dates near resonance were available from the archives of the Smithsonian

Astrophysical Observatory, and these were analysed2 in 1974. The last of the 28 orbits

does not fit well, and better values for the lumped harmonics have now been obtained by

omitting the 28th orbit. The values of inclination, and the fitting by THROE, are shown

in Fig 3. The value of ; runs from -27 to +25 deg/day. Since the eccentricity is

appreciable (0.042), we have to use all three (y,q) terms - (1,0), (1,1) and (1,-I). The

assumed accuracy in the values of i was 0.0010 and the THROE fitting gave c = 0.50,

with the following values for the lumped coefficients:

9-0 '1 9-0,1
10 C15 560 + 580 10 S15 = - 2000 ± 1450

The eccentricity was also analysed, taking (y,q) = (I,1) and (I,-I). The assumed

accuracy was 0.00002 and the value of E was 2.9. Unfortunately in this fitting and in

a simultaneous fitting of i and e with the SIMRES program, the values of lumped

harmonics obtained were not accurate enough to be acceptable.

3.4 HEAO 3, 1979-82A (i = 43.600, e = 0.001)

The third high-energy astronomical observatory was launched on 20 September 1970

into an orbit very close to 15th-order resonance. Exact resonance was reached on

14 November 1979. NASA orbits are available at 2-day intervals and, although it was

feared that orbital manoeuvres might have disturbed the effects of the resonance, tile

analysis proved to be quite satisfactory. Fig 4 gives the values of inclination cleared

of perturbations, the fitting by THROE with (-f,q) = (1,0) being shown as a broken line.

With the accuracy of i taken as 0.0020, the value of r was 0.63. This fitting follows
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the main trends of the variation, but there is obviously an unmodelled oscillation with a

period about half that of the argument of perigee w . So THROE was run with ( ,q) = (1,0)

and (0,2), that is, with sin 2w and cos 2w terms added. The value of f decreased

to 0.49, the values of the lumped harmonics changed by less than I sd, and their standard

deviations were reduced by about 20%. This solution, shown by the unbroken line in Fig 4,

was preferred, and gives:

9-0)1 9_0,I

10 C = - 467 ± 34 10 S = - 767 ± 106
15 15

The values from the (y,q) = (1,0) fitting were -504 ± 41 and -666 ± 132 respectively.

These THROE runs used 53 values of i , with P increasing from -7.7 to +6.8 deg/day, and

gave better results than runs with 55 and 57 values.

The values of eccentricity from the same 53 orbits, cleared of air-drag perturba-

tions, were also successfully fitted with (y,q) = (1,I) and (1,-I), after a residual

oscillation correlated with w was removed by using a value of 0.586 for 10 b J3 The

assumed accuracy was 0.00004 and c was 0.39. Fig 5 shows the values cleared of

perturbations and the fitted curve. The values of the lumped harmonics are:

91'0 9 1,0

10 9C5 = - 860 ± 150 10 Sg = - 1930 ± 160
15 1

10 C = - 234 ± 34 10 S5 = 185 ± 67
15 is

Although the fitting of the curve in Fig 5 is not perfect, only the fourth value needed

its standard deviation increased, by a factor of 4, when the values were used in the

solutions for individual coefficients.

3.5 Tournesol I rocket, 1971-30B (i = 46.360, e = 0.011)

Tournesol I rocket passed through exact 15th-order resonance on 5 August 1978 and

over a period from May to October there were 24 US Navy orbits available for analysis.

During this time the value of $ changed from -9 to +10 deg/day.

The 24 values of inclination, cleared of perturbations except those due to

resonance were fitted by THROE with (y,q) = (1,0). This fitting gave E = 0.423 and

the values of the lumped harmonics were:

9_0,
I  

9_0,I

10 C = - 596 ± 77 10 5 = - 869 ± 47
15 I5

The values of inclination and the THROE fitting with (1,0) are plotted in Fig 6, and

although the fit looks good, both standard deviations had to be increased by a factor of 4

in the solutions. Two further runs, with (y,q) = (1,0) and (2,0), and with (y,q) =

(1,0), (1,1) and (I,-I), produced larger standard deviations and increased F

0

: : -- - ,L . III I i i
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The values of eccentricity were fitted by THROE using (y,q) = (1,I) and (1,-I), and

this fitting was accepted as the addition of a (0,I) term gave no advantage. The values

of the lumped harmonics were:

9l 10 91,0

10 C15  - 86 ± 350 10 9S - 2020 t 280

9_1,2 9-1,2

15 - 6 ±98 lO =l5 175 ± 74
15 15

1,0 1,0
The standard deviations of C15 and Sl, had to be increased by factors of 2 and 4

respectively. The values of eccentricity and the THROE fitting are plotted in Fig 7.

A SIMRES fitting was tried using (y,q) - (1,0), (],1) and (1,-I) for both inclina-

tion and eccentricity. This gave similar results for eccentricity, but doubled the

standard deviations and c in the fitting of inclination, so the separate fittings were

preferred.

3.6 Intercosmos 11, 1974-34A (i = 50.640, e = 0.002)

This satellite passed through exact 15th-order resonance on I October 1976 and was
7

analysed over a two-year period by Walker . The values for the lumped coefficients from

the fitting by THROE of inclination and eccentricity were taken from equations (ll) and

(16) of Ref 7. They are given in Tables I and 2.

3.7 Explorer 44 rocket, 1971-58B (i = 51.05° , e = 0.011)

The orbit of 1971-58B near 15th-order resonance was determined by Hiller9 from 700

observations using the RAE computer program PROP. The drag was rather high, so there

was no chance of results as good as those from 1974-34A. Mixed PROP and US Navy orbits

were used in fitting the inclination, and the analysis was improved by subtracting 0.0020

from all the US Navy values of inclination and increasing their standard deviation to

0.0050. Previously, we used the fitting with (y,q) = (1,0), (2,0), (1,1) and (I,-I), but

in the light of subsequent experience we regard the (2,0) terms as dubious, and we have

chosen the solution with (y,q) = (1,0), (1,]) and (3,-I). The fitting is shown in Fig 8

and the values of the lumped harmonics obtained are:

90O'1 9_0,1

10 C = - 354 ± 47 10 S1 = - 248 ± 45
I5 15

Since the fitting (c = 1.13) is not as good as might be hoped, and since accurate values

are available from 1974-34A at nearly the same inclination, some relaxation of the
_0,I

standard deviations is reasonable, and that of C15 was doubled in the final solutions.

Hiller also analysed the eccentricity of this satellite, and his fitting, with

(y,q) - (],I) and (1,-I), is shown in Fig 9. Again, the determination of four

coefficients by fitting 28 points is not likely to be reliable, but we decided to use the

values and to increase the standard deviation if the residuals in the solutions were poor.

The original values were: 0
0 0'
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9-1)0 91,0

10 CI5  = - 466 ± 58 10 S 15 0 253 60

9--12 -1,2

10 C15  = - 50 ± 23 10S = 45 141 5 14

1,0
In the final solutions, the standard deviation was quadrupled for CI5 and doubled for
1,0 -1,2

S15 and Ci5

3.8 Ariel 1, 1962-15A (i = 53.820, e = 0.022)

Ariel 1, the world's first international satellite, passed through exact 15th-order

resonance on 8 May 1973. The inclination and eccentricity were analysed by Walker I0 over

a period of six months centred on the exact resonance.

Mixed PROP and US Navy orbits were used in the fitting of the inclination and we

have used the solution with (y,q) = (1,0) and (1,I). This was the solution recommended
10

by Walker as best and the values of the lumped harmonics are:

9 0,1 9 0,1

10 C = - 370 ± 14 10 S1 = - 114 ± 31
15 15

The values of lumped harmonics obtained from the fitting of eccentricity by THROE

were not used in the previous determination of the even harmonic coefficients . Here we

use the values from a fitting with (y,q) = (1,1) and (1,-I) given in Run 9 of Table 5 by
10

Walker . The values are:

9_1, 1,0

10 C 15 = - 76 ± 18 10 S = 172 , 38

-1,2 91,2

109 C = 151 ± 15 10 9S1 = II ± 3415 15

(These values are obtained from the coefficients -B, A, -D and C respectively in Ref 10

after dividing by -0.7602 for the first pair and 1.581 for the second pair.) In the

solutions for the individual harmonics it was foud necessary to increase the standard
-1,2 1,0

deviations of C15 and 15 by factors of 4 and 2 respectively.

3.9 Cosmos 72, 1965-53B (i = 56.04°, e = 0.003)

This orbit passed slowly through resonance during 1972, with a change in inclina-

tion of 0.070. The previous analysis by THROE, using seven PROP orbits1 I and 45 Navy

orbits with (y,q) (1,0), gave the following values of the lumped harmonics:

9-0"1 9_0,1

10 9 = - 233.4 3.3 105 = - 103.4 t 8.4
15 15

The fit, which is excellent, with E = 0.7, is shown in Fig 6 of Ref 2. These values

fitted well in the previous solutions and the C value was the most accurate previously

obtained. However, we found that the S coefficient did not fit our new solutions,

which require a value near -60 rather than -103. So further fittings with THROE were

tried, including extra terms such as (2,0), (,) and (1,-I); omitting the last 6 and

then the last 12 values; and then adding 0.00050 to the US Navy values. The values of the
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lumped coefficients obtained did not differ significantly from those quoted above, and the

numerical value of the S coefficient never fell below 101. So the old values were

retained, but the standard deviation of the S coefficient had to be increased by a

factor of 4. The non-conforming S value is puzzling, and we plan to determine PROP

orbits throughout the resonance phase in the hope of resolving the problem.

In fitting the values of eccentricity, the mismatch between PROP and US Navy values

was removed by subtracting 0.0001 sin w from the PROP values. The fitting with (y,q) =

(1,1) and (1,-I) was fairly satisfactory, with c = 1.62, but as expected there was an

unmodelled variation with the same period as w . The addition of (y,q) - (0,I) terms

led to a much improved fit, with c = 0.80, shown in Fig 10. The values of the lumped

harmonics were as follows:

9 1)0 l,O

10 C = 18 ± 17 10 9g5 = 57 ± 23
15 15

10 9Z = 106.9 ± 8.7 10 S15 = 2.4 ± 8.1
15 15

3.10 Tiros 7 rocket, 1963-24B (i = 58.200, e = 0.002)

This satellite, like 1974-34A, was analysed by Walker 7 over a two-year period, exact

15th-ordtr resonance occurring on 3 March 1977. The lumped coefficients from the THROE

fittings of inclination and eccentricity are taken from equations (9) and (14) of Ref 7.

The values are given in Tables 1 and 2.

3.11 Cosmos 373, 1970-87A (i = 62.920, e = 0.007)

The orbit of Cosmos 373 was already past resonance when its initial manoeuvres

ceased; apart frcm this defect, it is a good satellite because its decay rate was slow.

Since there are no ideal resonant orbits at inclinations between 58.20 and 74.00, we have

to use four imperfect specimens, of which this is the first.

2In 1974 we analysed the variations in inclination using 24 US Navy orbits2 . The

work showed that only (y,q) = (1,0) could be used; the addition of (],1) and (1,-I) terms

was disastrous because of the correlations caused by the near-constancy of w . A new

fitting of the orbits with (y,q) - (1,0) has been made, using improved methods for

removing lunisolar and air drag perturbations. The worst-fitting point was the last,

so it was omitted. Fig 11 shows the curve fitted by THROE to the 23 orbits, with $

increasing from 0.7 to 4.6 deg/day. The fitting is very good, with E = 0.31, and gave

the following values for the lumped coefficients:

9-O 'l 9 0'I

10 C = - 5.3 t 3.2 10 95 = - 32.8 ± 2.5
15 15

The eccentricity was analysed in 1974 but the fitting of the curve was very poor

(see Fig 5 of Ref I), and we decided it was not now acceptable.

The orbit of 1970-87A has been determined by Brookes 12 at selected epochs between

1970 and 1975, and the first five of his epochs fall within the time interval of our 0

analysis. Unfortunately, it was not possible to mix these orbits with the US Navy orbits,



and further orbits are now being determined at the University of Aston in the hope of

defining the vari:-tions in inclination and eccentricity more precisely.

3.12 Tansei 3 rocket, 1977-12B (i = 65.490, e = 0.029)

When the Japanese Tansei 3 satellite was launched on 19 February 1977, a rocket,

1977-12B, was left in a lower orbit. The rocket passed through 15th-order resonance on

16 March 1978 and decayed on 21 March 1979. Because of its high drag, this orbit is far

from ideal for resonance analysis.

In the THROE fitting, 25 weekly US Navy orbits were used, covering a range of

so wide (-19 deg/day to +29 deg/day) that several oscillations in the 'tail' of the

resonance are inevitably included. Fig 12 shows the curve fitted by THROE. As

expected, the change at resonance was small, but the fitting was good (C = 0.54) and

the values of the lumped harmonics were:

9_0,1 9_0, I

10
9 C = - 34 - 7 10 S1 = - 18 14

In the solutions for the individual coefficients, the standard deviation of the first of

these values had to be doubled but the second fitted well.

Analysing the variation in eccentricity seemed sure to be fruitless and was not

attempted.

The orbit of 1977-12B is now being determined with PROP at the University of Astor

and, when this work is completed, more accurate results should be obtained.

3.13 Cosmos 462, 1971-106A (i = 65.70 ° , e = 0.045)

The inclination and eccentricity of this high-drag satellite were analysed by
13

Walker and the results from that analysis are used here. The inclination was fitted

THROE with (-,q) = (1,0) and the values obtained were:

90,1 90,1

10 C = - 36 + 21 10 S = 9 ± 17

The eccentricity values were also analysed and the SIMRES fitting, using (y,q)
13

(1,1) and (1,-I), was recommended by Walker as the best solution. The values were:

9-1,0 9-1,0

10 C = 51 24 10 s = - 55 , 7ISI

10C = - 67 - 10 109 = 19 24
15 15

-1,2 1,0
For the C and S15 values it was necessary to increase the standard deviatio~ii

by factors of 4 and 10 respectively.

3.14 China 2 rocket, 1971-18B (i = 69.840, e = 0.040)

1China 2 rocket was in orbit from 3 March 1971 until 16 February 1976. Its orbit
0 14

- has been determined by Hiller at 114 epochs from moie than 7000 observations, using

the PROP orbit refinement program. Hiller analysed the orbital changes at four resonanes,
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and his analysis of inclination at 15tb-order resonance with (y,q) - (1,0) gave the

following values of lumped harmonics:

9 -0 '1 9 01

I0 C - - 37 ± 6 0 s1 ' 10 ± 6
15 15

The fitting is shown in Fig 11 of Ref 14. Since this was a high-drag orbit, some relaxa-

tion of the standard deviations is likely to be necessary; in fact the second was doubled.

The values were still most useful, however, since this is our only satellite at inclina-

tions between 65.80 and 74.00.

Hiller also attempted to analyse the variations in eccentricity, but the resulting
14

values of lumped coefficients were indeterminate

3.15 Cosmos 387, 1970-IIIA (i f 74.00°, e = 0.001)

This low-drag satellite gave excellent results 15 from analysis of 19 PROP orbits

and 55 US Navy orbits between May 1971 and July 1972. Here we use the same values of the

lumped coefficients as before:

9_0, I  9_0,1

10 C = - 26.0 ± 1.0 10 S1 = - 5.2 ± 1.3
15 15

10 C15 = - 18.0 ± 3.3 10 S = - 44.1 ± 2.5
15 15

9-- 1,2 9_- 1,2
10 C15 = - 46.5 ± 2.7 10 S15 = - 40.5 4.0

The first two coefficients come from a fitting of inclination with (y,q) = (1,0) and

(2,0). The last four coefficients come from a fitting of eccentricity, with (y,q) = (1,I)

and (1,-I), being obtained from the coefficients -B, A, -D and C respectively in Ref 1,

after dividing by -0.6116 for the first pair and by 0.4001 for the second pair. The
1 ,0

standard deviation of S15 had to be increased by a factor of 10; the reason for this

discrepancy is not known, but may be connected with the very unusual variation of e

resulting from its very low value (see Fig 2 of Ref 15).

3.16 Cosmos 395 rocket, 1971-13B (i - 74.050, e = 0.002)

This satellite is almost a twin of 1970-IIA and the results, obtained 16 from

analysis of 21 PROP orbits and 67 US Navy orbits between September 1971 and October 1972,

were even better than for 1970-111A. We used the same values of the lumped coefficients
i as before:

9_0,1 9_0,1
10 CI5 = - 24.6 ± 1.3 10 S5 = - 6.1 ± 1.0

15 15
9 1,0 91,0

10 C = - 19.8 ± 1.8 10 95 = - 24.8 ± 0.7
15 15

9-1)2 91,2

10 C15 = - 45.5 ± 2.0 10 9S = - 35.2 ± 1.0

The first two coefficients come from a fitting of inclination with (y,q) = (1,0) and

(2,0). The last four are from a fitting of eccentricity with (y,q) - (1,]) and (],-I),
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and are obtained from the coefficients -B, A, -D and C respectively in Ref I, after

dividing by -0.6104 for the first pair and by 0.3976 for the second pair.

3.17 Cosmos 956 rocket, 1977-95B (i = 75.820, e = 0.029)

This is the most recent resonance to be analysed: exact 15th-order resonance

occurred on 19 May 1980. Both the inclination and eccentricity have been analysed over a

period froia mid March until the end of August 1980 using 24 US Navy orbits; during this

time $ changed from -II to +12 deg/day.

The values of inclination cleared of non-resonant perturbations are plotted in

Fig 13 and the curve shows the THROE fitting to the values with (y,q) - (1,0), (1,1) and

(1,-I), the (],I) and (1,-I) terms being included as the eccentricity is 0.029. The

lumped coefficients are as follows:

9-0 '  '

10 C = - 22.5 ± 5.1 10 S = - 3.0 ± 5.4
15 15

The values of eccentricity were fitted with THROE over the same period with (1,q) =

(],I) and (1,-I). Adding a (0,I) term was tried for the reason given in section 3.1 but

the values were indeterminate. Another fitting with the (1,0) term included was made

and used with the THROE fitting of inclination in a SIMRES fitting of inclination and

eccentricity together. This procedure proved successful, as the addition of the e-terms

from equation (8) helped to provide a better determination of the lumped coefficients,

the standard deviations being lower than those obtained from the eccentricity fit alone.

The values were:

9-1,0 9-1,0

10 9i5 = - 3 ± 13 10 9i5 = - 4 ± 11

9-1,2 9-1,2
10 C5 = - 63 ± 15 10 Si5 = - 46 ± 18

These values were used in the solutions for the individual coefficients, but it was found

1,0

necessary to double the standard deviations of the two smaller coefficients, C1 5  and
1,0

S 15 £he values of eccentricity are plotted in Fig 14 and the curve shows the SIMRES

fitting to the values.

9 0, I
The values of the (1,0) terms from the SIMRES fitting were 10 C 15 = -20.7 ± 9.2
9_0, I 1

and 10 9g = 3.2 ± 4.5 , with c - 0.960 as compared with 0.675 from the solution for

i alone. These values were not used because of the higher value of e and also because

they did not fit the solutions so well.

3.18 Ariel 3, 1967-42A (i = 80.170, e - 0.007)

Ariel 3 was the first satellite to be used for evaluating lumped 15th-order
8harmonics, when Gooding analysed the 281 orbits he had determined from Minitrack

observations. Subsequently the orbit has served as a standard for testing in Gooding's
5

development of the THROE and SIMRES programs. The best available values are from a0

0 SIMRES fitting of inclination and eccentricity with ten pairs of coefficients, which

gives the following values fo: the lumped harmonic coefficients:
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10 C15 = - 23.1 ± 1.6 10S = - 8.6 t 1.3
15 15

91,0 09 l,0

10 CE = - 54.7 ± 3.2 10 S = - 37.2 ± 2.6
15 15

9E-1,2 9 1,2
10 C15 = - 130.6 ± 10.7 10 S15 = - 96.8 ± 9.0

1,0 -1,2 -1,2
The C15 , C and S coefficients required their standard deviations increased

15 15 15
by a factor of 2 in the solutions for individual harmonics.

9 0 ,I 9 0,1
It is of interest to look back at the values of 10 C15 and 10 S15 originally

8
obtained by Gooding 10 years ago with (y,q) = (1,0) only; they were -19.9 ± 1.2 and

-7.7 ± 0.8. These are not far from the values required by our final solutions here,

namely -22.9 and -8.0.

3.19 Meteor 3. 1970-19A (i = 81.160, e = 0.005)

Meteor 3 passed through exact 15th-order resonance on 4 July 1979, and the changes in

both inclination and eccentricity have been analysed using 34 US Navy orbits over a period

from II March to 28 October 1979. During this time i changed from -7 to +8 deg/day.

The values of inclination, cleared of perturbations except those due to resonance,

were first fitted with THROE using just (y,q) = (1,0). This seemed a fairly satisfactory

fit, with c = 0.413. However, another THROE run with (y,q) = (1,0), (1,]) and (1,-])

was tried, and, although the value of eccentricity was only 0.005, the e-terms in

equation (8) were determinate, and c was reduced to 0.297. The (1,0) terms from this

second fit, with lumped coefficients

10 C15  = - 21.0 ± 1.6 09S1 = -1.1 ± 1.3
15

were accepted, as they gave better results in the solutions for the individual
_0,1

coefficients, although the standard deviation of the S15 value still had to be

increased by a factor of 4. The values of inclination are plotted in Fig 15 and the

curve shows the THROE fitting to the values.

The values of eccentricity were fitted with THROE over the same period with (y,q) =

(1,I) and (1,-l). The inclusion of (0,I) terms gave no advantage. A further fitting

with (y,q) - (1,0), (1,1) and (I,-I), was used with the corresponding THROE fitting of

inclination in a SIMRES fit. This yielded values of the lumped coefficients with

standard deviations less than those from the THROE fitting with (y,q) = (I,I) and (1,-I).

The values were:

9E 10 9 1,0
10 C15  = - 26.2 ± 4.1 10 S5 = - 15.0 + 5.0

9- - 2  0 1 '

10 C fiP - 128 ± 29 10 i - - 130 ± 37

CD
C,

A
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1,0
These values were used in the individual solutions but the standard deviations of Cis

I1,0
and S 5 had to be increased by factors of 10 and 4 respectively. The values of

eccentricity and the curve given by the SIMRES fit are shown in Fig 16.

0,1 0,1
The values of the C15 and S15 lumped coefficients from the SIMRES fitting

were not used because they had larger standard deviations than the values from the THROE

fitting of inclination alone and they did not fit the solutions so well.

3.20 OGO 4, 1967-73A (i = 85.980, e = 0.025)

The Orbiting Geophysical Observatory 4 passed through 15th-order resonance on
222 May 1970 and the values of inclination from 27 US Navy orbits were analysed in 1975

The values obtained then from a THROE fitting with (y,q) = (1,0) and (1,1), the (1,-I)

terms being indeterminate, has been accepted, the values being:

0 9E = -13.9 ± 2.3 0 9S = - 6.4 ± 3.3
15 15

2In the previous evaluation , the standard deviations had to be relaxed; but here they

were used unchanged.

The values of eccentricity were not analysed for the previous determination of even

harmonic coefficients I, but they have now been utilised. A fitting with THROE using

(y,q) = (1,I) and (1,-I) was first tried with little success, c being 3.57. However,

when a (0,1) term was included, for the reason given in section 3.1, C was reduced to

1.47. The values for the lumped coefficients are as follows:

091I '0 9-1,0

10 15  = - 87 ± 38 10 S15 = 84 ± 60

9-1,2 91-I2

10 C - - 122 ± 65 10 S5 = - 175 ± 86
15 I5

These values were used in the solutions for the individual harmonics but it was found
I,0

necessary to increase the standard deviation of S15 by a factor of 2. The values of

eccentricity and the fitting by THROE are shown in Fig 17.

3.21 SESP 1, 1971-54A (i = 90.21', e = 0.002)

This orbit passed very slowly through 15th-order resonance between 1972 and 1977,

and King-Hele6 analysed the variations in inclination and eccentricity from 269 weekly

US Navy orbits to give the following values of lumped coefficients:

* 9_0,I 9_0, 1

10 C15 = - 16.40 ± 0.24 10 S15 = - 5.37 t 0.15

91,0 91,0

10 9C = - 92 ± 48 10 95 = - 170 + 56
15 15

-1,2 9_-1,2

101 = - 62.9 ± 2.6 10 S1 = - 53.4 ± 1.6
0 i 15

00 The first two coefficients came from a fitting with (y,q) (1,0) and (2,0).
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The two eccentricity resonances were four years apart and were analysed separately.

The resonance associated with (y,q) = (1,1) was very weak because F16,15,8 = 0 at

i = 90 , and consequently the (C,S) 0  coefficients are of very poor accuracy: the
1,0 is

standard deviation of S15 had to be doubled in the solutions for individual coeffi-

cients. The last two values came from a fitting with (y,q) = (1,-I), (2,-]) and (1,0).

3.22 Nimbus I rocket, 1964-52B (i = 98.680, e = 0.023)

The orbit of Nimbus I rocket passed through 15th-order resonance on 5 June 1970,

and more than 2000 observations were used by Hiller 17 to determine the orbit with PROP

at 25 epochs between March and September 1970. The 25 values of inclination, together

with 16 from US Navy orbits,were fitted using THROE with (y,q) = (1,0), (2,0) and (I,])

to give: 9-0,1 90,!I

10 C 15 - 28.3 ± 2.0 10 S = 1.5 ± 2.0

The variation in inclination, shown in Fig 3 of Ref 17, was surprisingly small. The C

value fitted well in the solutions for individual coefficients, but the S value did not,

and its standard deviation had to be increased by a factor of 4.

Hiller also fitted the values of eccentricity and inclination together by SIMRES

with (y,q) = (1,0), (2,0), (,1) and (I,-I), and he obtained the following values of

lumped harmonics:

1,0 9 1,0
109C - 88 , 7 I0 S - 37 ± 8

9-1'2 9-1,2

10 C - 3 t 5 10S = - 34 ± 11
15 15

(These values are obtained from the coefficients -B, A, -D and C respectively derived in

Ref 17, after dividing by 0.5141 for the first pair and -0.4713 for the second pair.)

The standard deviations of the C values had to be increased by factors of 4 and 2

respectively when used in the solutions. The fitting of e is shown in Fig 5 of

Ref 17.

3.23 OVI-8, 1966-63A (i = 144.160, e = 0.003)

This satellite passed through exact 15th-order resonance on 19 December 1976. There

were 25 US Navy orbits available for analysis from 9 October 1976 to 27 March 1977 and

during this period $ changed from -I to +14 deg/day.

The 25 values of inclination, cleared of perturbations except those due to

resonance, were fitted by THROE using (y,q) = (1,0). This fitting gave E = 0.470 and the

values of the lumped harmonics were:

90,1 9_0,1

10 C 72000 ' 16800 10 SI 0 - 5960 ± 7630

_0,1

The standard deviation on the S15 value had to be increased by a factor of 4 in the

individual solutions. The values of inclination and the curve showing the THROE fit with G
C

('Y,q) =(1,0) are given in Fig 18.



An analysis of the eccentricity was not attempted as the values were not considered

to be accurate enough.

3.24 Orbits not used

Two of the orbits used in our previous deemnto , namely 1964-05A and 1970-65D,

have been discarded. The first, at inclination 31.5 0, is superseded by 1965-09A, a much

better specimen at virtually the same inclination. The second, 1970-65D at 51.2 0 inclina-

tion, was a high-drag orbit included previously only because of a dearth of orbits at

inclinations near 50 0. Now that )974-34A is available, there is no need for 1970-65D.

Two new orbits, 1973-99A and 1975-67A, both at inclination 71.00, were analysed in

the hope of improving the coverage at inclinations between 65.70 and 74.00, where we have

only one (high-drag) orbit.

The analysis of 1973-99A utilised 20 US Navy values of inclination between

11 February and 23 June 1974 (resonance was on 29 April); but no clear pattern of varia-

tion emerged, and the values of lumped coefficients were indeterminate.

The analysis of 1975-67A was based on 16 US Navy values between 21 September 1975

and 4 January 1976 (resonance being on 7 October 1975). The results were slightly better

than for 1973-99A, but the variation in inclination was very feeble and the values of the

two lumped harmonics in a (-y,q) =(1,0) fitting were:

1C 9E -'3±+ 0 10o 9 -'l 5 ±5
15 15

with c = 0.62. These values were not considered accurate enough to be worth using,

although in retrospect it is apparent that the S value would have fitted well.

We decided not to use the values obtained by Wagner and Klosko 18from 1971-83B

(included in our previous determination 2), partly because we had already had a good

satellite at a similar inclination (330Q) and partly because we wished to avoid any

direct link with the Goddard Earth Models. In assessing the accuracy of Earth models,

it is essential to try to make independent evaluations.

For the same reasons we decided not to use the values obtained from the analyses of

inclination at 15th-order resonance by Kloko~nfk 19-21. These are all at inclinations

close to those already represented in our analyses and are most useful as an independent

check on our procedures.

4 THE SOLUTIONS FOR INDIVIDUAL COEFFICIENTS

4.1 The equations to be solved

Each of the lumped coefficients derived in sections 3.1 to 3.23 can be expressed

as a linear sum of individual 15th-order coefficients, C , and SR., , by equations

(9) to (11), which, on reverting to the Q-notation of equation (5), may more compactly

be written:

CD
0
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0,1 0,1 0,1
C 15 =C 15,15 + Q17 C17,15 + Q19 C 19, 15  + ... (13)

_1,0 1,0_ 1,0_
c15 = 16,15 + Q1 8 C18,15 + Q20 c20,15 +

-1,2 - -1,2 -1,2_

c15 = 16,15 + Q1 8 C18 ,15 + Q2 0 C2 0 ,15 
+

with similar equations for the S coefficients. The Q constants have been evaluated

with the computer program PROF, and all the relevant values for the satellites used are

given in Tables 3 to 5 (pages 33 to 35). There are 23 satellites yielding values of the

form (13) for odd-degree harmonics, and 16 of them also give equations of the form (14),

leading to 32 equations for even-degree harmonics.

Following the procedure which proved successful previously, we add constraint

equations of the form

C,15 = 0 ± 10 /Z(
9.,115

SZ,15 = 0 ± 10-5/Z
2

where Z = 15, 17, 19 ... for the odd-degree harmonics, and k = 16, 18, 20 ... for
S3

those of even degree. These equations express the expectation that the order of

magnitude of the individual coefficients of degree Z is 10-5/p2 for 15 < k < 50

as is confirmed in a general way by the Goddard Earth Model IOC (Ref 22).

Thus, when solving for N harmonics, we have 23 + N pairs of equations for odd-

degree harmonics, and 32 + N pairs of equations for even-degree harmonics.

4.2 The method of solution - a modified least-squares

Our 23 satellites give results of immensely variable accuracy and reliability.

Some, in particular 1974-34A, 1963-24B, 1970-IIIA, 1971-13B and 1971-54A, are of low drag

and give accurate results. Some, such as 1964-84A, 1977-12B, 1971-i06A and i971-18B, are

of high drag and are included because they are the only satellites available to fill gaps

in the coverage of inclination. Other orbits fall between these extremes.

When the equations were first solved by least squares, it was found, as expected,

that some of the values from the less reliable satellites did not fit. Of the 64 values

of the coefficients with (q,k) = (1,0) and (-1,2), three appeared to be in error by

about 10 sd and another seven by nearly 5 sd.

To attempt a straightforward least-squares solution is an inadequate response to

such an abnormal distribution, because large spurious values have too much power in a

least-squares fit; or, to put it more ecologically, the normal distribution is the proper

habitat for least-squares procedures. One possibility would be to reject at an arbitrary

level; but this is a drastic and unsophisticated procedure, a blunt instrument which not

only produces discontinuities as the rejection level varies, but also could easily

nullify our efforts to provide some representation for unfashionable inclinations. So we o

rejected all-or-none rejection, and instead introduc-ed two quantum jumps, increasing the



standard deviations of ill-fitting values by factors of either 2 or 4. (We also allowed

an increase by a factor of I0, which is closely equivalent to complete rejection and

needs no further comment.) This process ensures that, while no ill-fitting value has too

much power, the constraint implied by its presence is still operative, though weaker.

Also the distribution is brought much closer to normality, thus giving the least-squaree

process a more natural habitat.

After we had computed and considered a large number of solutions of the equations,

it became clear that the optimum number of coefficients would be between 10 and 13 for

both odd- and even-degree C and S coefficients. In these circumstances an acceptably

distributed set of residuals (with one exception) was ItainId by applying the quantum

multipliers (2 or 4) so as to keep the weighted residuals from each lumped harmonic less

than 1.5. With this choice, the values of the measure of fit were all between 0.8

and 1.0, and all but one of the individual C and S coefficient; had weighted residual,:

less than 1.5. Of the 46 odd-degree lumped harmonics, three needed their sd multiplied

by a factor of 2, and six needed a factor of 4. Of the 04 even-degree lumped coefficient,

twelve needed a factor of 2, seven needed a factor of 4 and three had to be multiplied

by I0.

4.3 The solutions for individual coefficients of odd de'ree

When the 23 equations of type (13) and N equations of type (15) were solved by

least squares for N coefficients, the values of the measure of fit r for 7 ' N -- I

were:
N 7 8 9 10 II 12 13

C equations 3.91 2.27 1.15 0.99 0.93 0.92 0.92
S equations 1.21 1.16 1.09 0.84 0.83 0.82 0.82

2

As before, i 2 is the sum of squares of weighted residuals divided by the number of

degrees of freedom, and the weighted residual is the residual for each lumped coeffici(,

divided by the standard deviation for that coefficient as given in Table 1.

It is obviously advantageous, for both C and S , to solve for at least ten

coefficients: it is also necessary, because the Q factors in equation (13) remain quit,

large up to the 10th for the satellites of lowest inclination, as Table 3 shows. Th;

confirmed by the behaviour of the solution: in the 9-coefficient S solution the

weighted residuals for the first four satellites in Table I all numerically exceed 1.0.

but in the I(-coetficient sluitions thev are all less than 0.7.

The solutions for 13 coefficients offer no advantage over those for 12 coefficientn,
so the choice lies between the 10-, II- and 12-coefficient solutions. The l1-coefficient

solution seems preferable to the 10-coefficient, because of the 6% decrease in C for

the C equations; but the choice between the II- and 12-coefficient solutions is

difficult. The only point in favour of 12 coefficients is that, for one satellite,
0,1

1969-n8h, the value of the 12th term on the right hand side of (13), Q37 $37,15

exceeds the standard deviation allocated to this satellite, and might therefore seem to

be needed - hut fcr the fact that the I I-coefficient solution fits well. The arguments

or against 12 coefficients are that t decrease, very little and that the 12th coefficient
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is formally indeterminate for both C and S . Since only one val ne (that of C 7,15

changes by more than 0.2 sd on going from I1 to 12 coefficients, the choice is not

crucial, and, as it is not crucial, the lower number of coefficients is to be preferred.

The Il-coefficient solutions are given in Table 6.

Table 6

The values of odd-degree Ck,15 and Sk,15 given by the ]l-coefficient solutions

I,15z,15 Q,15

15 -22.7 ± 0.6 -7.4 0.6
17 11.3 t 1.0 6.7 1.2
19 -13.3 ± 0.8 -11.8 t 0.9
21 15.9 ± 0.7 8.7 ± 0.8
23 14.3 ± 1.6 -1.3 ± 1.9
25 -12.7 ± 2.0 0.6 2.4
27 -6.8 ± 1.4 12.7 4 2.0
29 -2.2 ± 1.8 0.3 - 1.9
31 27.9 ± 2.9 -2.0 ± 3.9

33 6.5 ± 2.9 -12.0 3.8
35 -6.8 ±4.1 3.3 ± 4.6

The weighted residuals in the 23 satellite equations (13) and the 1I constraint

equations (15) are given in Table 7. All the residuals of the lumped harmonics are less

than 1.5 as a result of applying the quantum multipliers, as explained in section 4.2.

Table 7

Weighted residuals in the 34 equations for odd-degree harmonics,
from the I -coefficient solutions

Satellite equations Constraint equations

Satellite Degree Z of S
15 15 coefficient ;,15 1,15

65-09A -0.15 0.06 15 0.51 0.17
69-68B 0.02 0.06 17 -0.33 -0.;9
64-84A -0.17 -0.78 19 0.48 0.42
79-82A 0.03 0.38 21 -0.70 -0.38
71-30B -0.92 -1.01 23 -0.75 0.07
74-34A 0.11 -0.14 25 0.79 -0.04
71-58B 0.85 0.85 27 0.49 -0.93
62-15A -0.40 0.18 29 0.19 -0.03
65-53B -0.05 -1.27 31 -2.68 0.19
63-24B -0.04 0.34 33 -0.70 1.31
70-87A 0.55 -0.33 35 0.83 -0.41
77-12B -1.17 -0.07
71-106A -0.81 1.45
71-18B -0.80 0.94
70-IIIA -0.12 0.24

71-138 0.91 -0.51
77-95B 0.31 0.92
67-42A -0.27 -0.48
70-19A 0.48 1.18

67-73A 0.32 -0.50 0
71-54A -0.07 0.03
64-52B -1.00 1.26
66-63A 1.38 -0.82



One notable feature of Table 7 is the excellent fitting of nearly all the accuratc

satellites. The weighted residuals on both the C an, S equations are less than 0.3V"

for 1965-09A, 1969-68B, 1974-34A, 1963-24B, 1970-I1IA and 1971-54A, and there are no

relaxations of the standard deviation on any of these.

The second outstanding feature is the very large value of C3 1 ,15 , which is also

apparent of course in Table 6. This large value caused us much concern, and we

arbitrarily altered the standard deviations of many of the lumped harmonics by a factor

of 10 to try to identify the 'culprit' responsible for this high value; but all the

satellites indicted had to be acquitted, and the high value seems to result from a

consensus. We also computed solutions with the constraints on CZ,15 relaxed to

2 X 10-5 /Z 2; inevitably the value of C31,15 increased (from 27.9 to 30.0 x 10- 9), the

value of E was reduced (from 0.93 to 0.70), and the standard deviations were also much

reduced. This solution was not accepted because it was not compatible with the S

solutions. Since making the constraint twice as stringent only reduces this large

coefficient from 30.0 to 27.9, we are forced to the conclusion that the value is realicrif

and is likely to be greater, not less, than 27.9.

The values of the lumped harmonics from 22 of the satellites are plotted against

inclination in Fig 19, after multiplication by F15 ,15 ,7 to keep the numerical value-

to a reasonable level. The satellite omitted is 1966-63A, because its inclination is
144 ° . The standard deviations in Table I are marked as bars. The curves in Fig 19 shot

the variations given by the Il-coefficient solutions. The fitting is quite satisfactor%

and it is evident that some of the less accurate values were in need of the increase ij

standard deviation.

4.4 The solutions for individual coefficients of even degree

When the 32 equations of type (14) and N equations of type (15) were solved by

least squares for N coefficients, the values of the measure of fit c were:

N 7 8 9 10 11 12 13

C equations 1.07 1.06 1.03 0.99 0.99 0.98 0.98
S equations 1.07 0.94 0.93 0.91 0.91 0.91 0.91

The 4% decrease in r between the 9- and 10-coefficient C solutions is

substantial; but there is not much to be said in favour of more than 10 coefficients.
-1,2

The value of the 11th 0-coefficient is most significant with C15 for 1971-54A, but
-1,25

the value of Q36 C36,15 in the lI-coefficieluL solution is only one-fifth of the

standard deviation. So the l1th coefficient should not be required. This is confirmed

by the fact that the values of the individual coefficients are not appreciably altered

by increasing N beyond 10. So we choose the 10-coefficient solutions, given in

Table 8.
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Table 8

The values of even-degree E and S given by the 10-coefficient solutionsC., 15S, 5

z10 9EZ,15 0 9gSk,15

16 -11.0 ± 2.7 -21.5 ± 1.7
18 -43.0 ± 1.8 -22.5 ± 1.2
20 -24.3 ± 2.3 -6.2 ± 1.6
22 24.1 ± 2.0 10.2 ± 1.6
24 1.4 ± 3.8 -21.8 ± 3.3
26 -13.3 ± 5.8 14.4 ± 5.5
28 -15.4 ± 6.4 -8.4 ± 6.3
30 -4.0 ± 6.8 -16.0 ± 6.2
32 7.8 ± 6.2 2.5 ± 5.1
34 9.6 ± 6.3 5.6 ± 5.2

The weighted residuals in the 32 satellite equations (14) and the 10 constraint

equations (15) are given in Table 9; all the 84 weighted residuals are less than 1.5.

Table 9

Weighted residuals in the 42 equations for even-degree harmonics,
from the 10-coefficient solutions

Satellite equations Constraint equations

i 1,0 _-1,2 1,0 .-1,2 Degree Z of - -

15 15 15 S15 coefficient k,15 SZ,15

79-82A -0.08 -0.13 -0.30 0.85 16 0.28 0.55
71-30B 0.80 1.07 -1.33 0.59 18 1.40 0.73
74-34A -0.26 -0.68 -0.23 0.01 20 0.97 0.25
71-58B -1.19 -1.38 0.94 -0.64 22 -1.16 -0.49
62-15A 0.80 1.24 0.91 -0.12 24 -0.08 1.25
65-538 1.33 0.45 0.26 -0.88 26 0.90 -0.97
63-24B -0.97 0.66 0.24 0.53 28 1.20 0.65
71-106A -0.80 -1.24 -0.95 0.12 30 0.36 1.44
70-111A 0.25 -0.23 -0.77 -1.27 32 -0.80 -0.26
71-13B -0.46 0.34 0.01 0.36 34 -1.10 0.65
77-95B 0.82 -0.26 1.01 -0.20

67-42A -1.21 -1.38 -0.40 -0.96
70-19A 0.67 -0.29 1.27 -0.82
67-73A -0.28 -0.85 1.23 -1.41
71-54A -0.23 0.60 -0.87 0.20;
64-52B -1.22 1.38 0.50 -1.14

1,0 -1,2
The values of F 16,15,8C15 and F 16,15,7C15 are plotted against inclination in

Fig 20, and Fig 21 is a similar diagram for the S coefficients. It should be

remembered that the two sets of values in Fig 20 are being fitted simultaneously: thus
_I,0

the rather perverse-looking course of the curve for C15 in Fig 20 near the i - 65.7
-1,2

point is caused by the need to fit one of the C15  values (i = 58.20 ) which has

similar coefficients. If we make allowance for this effect, the fitting in Figs 20 and 0L 01
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-1,2

21 is entirely satisfactory, S being particularly good. It is also apparent thatY 15
a few of the values thoroughly deserve their increased standard de;iation.

5 DISCUSSION

In comparing our new values for the 15th-order coefficients with previous values,

there is a problem in deciding which previous sets of coefficients should be considered.
.23Kloko'nik and Pospisilova have pointed out that the variation of lumped coefficients

with inclination provides a useful test of the accuracy of existing geopotential models,

because the values predicted by the models can be compared with each other and also with

the more accurate values derived independently by resonance analysis for particular

inclinations. Klokonfk and Posp1 ilovg present the variations of selected lumped
- - 0,1

coefficients, including F 15 ,15,7(CS) 15 , as given by 11 different geopotential models

derived in the past 10 years. Of these 11 models, four can be excluded because they do

not go beyond degree 18. Of the remaining seven, three are Goddard Earth Models, of which
24

the latest, GEM lOB , can be taken as superseding the earlier ones. (We do not reqilire
22

GEM IOC , which is the same as GEM lOB to degree 36, because we do not go beyond
23

degree 36 in our solutions.) We also exclude HARMOGRAV, which appears to be the lenst

accurate of the remaining models.

This process of elimination leaves us with four models, namely GEM JOB; the

Smithsonian Standard Earth IV.3 (Gaposchkin 2 5 , labelled as SE '5' by Kloko('nrk and

Pospfsilovg); GRIM 2 (the European model 26 ); and the purely terrestrial model 'R:vv

_0,1 0,1
(Ref 27). The variations of F 15,15,7C15 and F 15,15,7S15 for these four models,

as given by Kloko~nfk and Pospigilovg, are reproduced in Figs 22 and 23. Our values of

109 TC and 109FS from Table I are also plotted whenever their standard deviation is

less than 1.0, and are marked as black circles of diameter 1.0. Fig 23 shows that the

values of FS given by SSE IV.3 and Rapp 1977 cannot be regarded as realistic, because

they differ so greatly from those experienced by the resonant orbits for inclinations

between 700 and 900. At 900, for example, 1971-54A gives 10 9FS = -3.1 1 0.1 , while

SSE IV.3 gives +24 and Rapp 1977 gives +18.

So we are reduced to GEM JOB and GRIM 2 for our comparisons.. Since GRIM 2

utilized our previous values for 15th-order harmonics, almost unchanged, it does not

provide an independent test. But it does show approximately how a curve based on our

old values of CZ,15 and S),, 5  fits the new data. Looking first at Fig 23 (which is

the worse), we see that the first two points confom with the dot-dash curve, but the

three new points at inclinations of 43.60, 50.60 and 58.20 do not; there are smaller

differences for some of the 80o-90 0 points where we have used new values. In Fig 22 the

situation is similar, except that the 580 point fits well. All this is as expected and

merely confirms the truism that new data demand a new solution.

The only useful comparison therefore is with GEM lOB, which is believed to be

independent of our results. Figs 22 and 23 show that GEM lOB agrees quite well with the

values from the resonant orbits and can therefore be accepted as a fairly good representa-
0

- tion )f the Ilth-order harmonics of odd (h-gree. The individual odd degree values in

GEM lOB differ considerably from ours, however, for degree 25 and higher, and only time
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will tell which is the better set of individual coefficients; the average standard

deviation of our odd-degree coefficients for degrees 25 to 35 is 2.8 x 10-9, whilc the

standard deviation of the GEM lOB values is estimated 6'7 as 3 x 10-9. For the odd-degree

harmonics of degree 15 to 23, the values of the coefficients can be regarded as quite

well established, and Table 10 compares the values from GEM JOB with our solution.

Table 10

Comparison of odd-degree 15th-order harmonics up to degree 23,
given by GEM JOB and Table 6

£109 C,15 109 S, 15

GEM JOB Table 6 GEM lOB Table 6

15 -19.7 -22.7 ± 0.6 -6.4 -7.4 ± 0.6
17 2.5 11.3 ± 1.0 4.8 6.7 ± 1.2
19 -20.6 -13.3 ± 0.8 -15.3 -11.8 ± 0.9
21 15.2 15.9 ± 0.7 9.5 8.7 ± 0.8
23 15.4 14.3 ± 1.6 4.1 -1.3 ± 1.9

If the GEM lOB standard deviation is taken as 3 109 for all values, the difference

between GEM lOB and the corresponding value in our solution is, on average, 0.8 x (the

sum of the two standard deviations), the S coefficients being in better agreement than

the C coefficients. If the sets of values are independent, as we believe, the agree-

ment is very satisfactory.

The variations of the even-degree GEM lOB lumped harmonics (C,S),0 and
--- 21

(E,9)75' , multiplied by the appropriate F factors, are shown in Fig 24. Also plotted

are those values of lumped harmonics determined from the resonant orbits (Table 2) which

have standard deviations less than 2.5. The points are plotted as circles ol diameter

2.5. Again the impression is that GEM lOB provides quite a good approximation to the
I1,00

observed values, the worst discrepancy being for S 5 at 44 inclination.

The comparison of the first five individual coefficients, Table 11, shows excellent

agreement for the C but greater discrepancies for the S coefficients. If the

standard deviation of the GEM JOB values is taken as 3.0, the difference between GEM lOB

and the corresponding value in our solution is, on average, 1.2 x (the sum of the two

standard deviations) which is rather high but acceptable. In view of the good fitting of

the GEM lOB curve to out lumped S values in Fig 24, it may seem surprising that there

are such large differences between the GEM lOB S Z,5values and ours. But this is to

be expected because our fitted curves (Fig 21) differ considerably from the GEM lOB

curves.

0o



31

Table II

Comparison of even-degree 15th-order harmonics up to degree 24,
given by GEM 10B and Table 8

0 9 ,15  109 Z,15

GEM lOB Table 8 GEM IOB Table 8

16 -14.4 -11.0 ± 2.7 -27.8 -21.5 t 1.7
18 -48.3 -43.0 ± 1.8 -18.6 -22.5 ± 1.2
20 -23.9 -24.3 ± 2.3 4.8 -6.2 1.6

22 24.1 24.1 ± 2.0 -1.3 10.2 ± 1.6
24 3.1 1.4 ± 3.8 -5.1 -21.8 ± 3.3

Our new values of the individual coefficients are formally much more accurate than

our previous values '
2 (the standard deviation being halved, on average); the new values

should also be more reliable because the coverage of inclination is much better.

6 CONCLUSIONS

The aim of this paper has been to derive the best possible values of 15th-order

harmonic coefficients of odd and even degree, solely from analysis of orbits which have

passed through 15th-order resonance. We have tried to obtain as many reliable values as

possible of lumped 15th-order harmonics from orbits over a wide range of inclinations.

Useful values of lumped harmonics of odd degree were determined from analysis of the

changes in inclination of 22 orbits at inclinations between 300 and 1000, and one at 1440.

The distribution in inclination was far more satisfactory than has been achieved before,

but there are still some gaps that need filling. Useful values of lumped harmonics of

even degree were obtained by analysing the changes in orbital eccentricity of 16 of the

23 orbits, and this yielded 32 pairs of equations for coefficients of even degree.

These values of lumped harmonics have been used to solve for individual coefficients.

and the solutions chosen as the best, given in Tables 6 and 8, are the ll-coefficient

solution for odd degree and the 10-coefficient for even degree, so that the solution is

complete for degree 15-35. The coefficients of degree 15-23 should be more accurate than

any obtained previously, but the errors inevitably increase as the degree increases

beyond 24.

The values of lumped harmonics also provide an independent test of comprehensive

Earth models. Figs 22 and 23 suggest that only the Goddard Earth Model lOB is useful

for comparison. Tables 10 and II compare our values of 15th-order coefficients with those

of GEM IOB for degree up to 24. If it is assumed that the GEM IOB coefficients have

standard deviations of 3 x 10- 9 , the difference between the twenty GEM lOB values and the

corresponding values in our solution is, on average, 1.0 x (the sum of the two standard

deviations). If the sets of values are independent, as we believe, this agreement is

very satisfactory.

CThe average standard deviation of our coefficients of degree 15, 16, 17 .... 23 is
0 -9
01.4 x 10 , equivalent to I cm in geoid height.
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