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Doreen M. C. Walker

. SUMMARY
— SUMMARY

— satellite orbits contracting under the influence of air drag experience
15th-order resonance when the track over the Earth repeats after 15 revolutions.
If the orbital decay rate is slow enough, an orhit passing through the resonance
is appreciably perturbed by the effects of 15th-order harmonics in the geo-
potential. We have used the observed perturbations in 23 resonant orbits, at
various inclinations to the equator, to determine the harmonic coefficients of
order 15 and degree 15, 16, 17, ... 35. Analysis of the changes inlorbital
inclination on the 23 orbits gives the harmonics of odd degree, while those of
even degree are found from the changes in|eccentricity on 16 of the orbits.

The values derived are given in Tables 6 and 8. The coefficients of degrees 15,

16, 17, ... 23, should be more accurate than any previously obtained; their
average sd is.l.4 ~ 10’9, equivalent to | cm in geoid height.

),L‘/, - e A
Comparisons with comprehensive Earth models showed the Goddard Earth Model
10B to be the best, and a standard deviation of about 3 x 1079 in the GEM 10B

I5th-order coefficients is indicated, .?,/,‘ R
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1 INTRODUCTION

The gravitational potential of the Earth is usually expressed as a double infinite
series of tesseral harmonics depending on latitude and longitude. The order m of the
harmonics expresses the variation with longitude, and a harmonic of order m has
m simusoidal oscillations over 360° of longitude. The degree £ of the harmonic
(where £ > m) governs variations with latitude; these are more complex and do not

concern us here.

If the orbital period of a satellite is such that its successive ground tracks over
the Earth are 360°/m apart, so that the track repeats after m revolutions, the
satellite exhibits mth-order resonance and the perturbations due to harmonics of order m
will build up day after day to produce quite a large change in some of the orbital
elements, This change can be analysed to determine a lumped harmonic of order m , that
is a linear sum of individual harmonics of order m and degree 10, 204-2, 10-04, sees
where 20 =m or m+ | (depending on the orbital element being analysed, and whether
m is odd or even). By obtaining values of lumped harmonics for many resonant satellites
at different inclinations to the equator, it is possible to solve for the individual
harmonics. That is the aim of this paper for harmonics of order m = 15 , and the values

determined here supersede those obtained in Refs | and 2.

A satellite experiencing I5th-order resonance has an average height between 470 km
(for near-equatorial orbits) and 600 km (for inclination 1200), and at these heights the
effects of atmospheric drag are appreciable. So the contraction of the orbit under the
influence of air drag brings it to resonance and slowly draws it through resonance. The
lower the drag, the longer the resonance acts, and the better the orbit is for analysis.
We have analysed 23 orbits: the longest resonance lasts for 5 years; but at some inclina-
tions there are no good specimens and we have to utilise resonances that are effective

for only about 2 months.

The theory of the 15th-order resonance is given in section 2. The analyses of the
23 orbits are described in section 3. The results for odd-degree harmonics of order 15,
from analysis of inclination, are presented in section 4.3; and results for even-degree
harmonics, from analysis of eccentricity, or inclination and eccentricity combined,

for 16 of the 23 satellites, are recorded in section 4.4.

2 THEORY
2.1 General B:a resonance

The longitude-dependent part of the geopotential at an exterior point (r,6,1) can

be written in normalized form3 as

u - - R . m = e
- Z (—) P (cos 9){C’Lm cos mh + Slm sin m)\}N
=2 m=1

’ )

m

where r 1is the distance from the Earth's centre, 6 1is co~latitude, X is longitude

(positive to the east), u '3 the gravitational constant for the Earth (398600 km3/82)




and R is the Earth's equatorial radius (6378.]1 km)., The Pz(cos 8) are the associated

Legendre functions of order m and degree 2 , and Elm and §Em are the normalized
tesseral harmonic coefficients: only those of order m = 15 concern us here. The

. . . 3
normalizing factor sz is given by

2 _ 2022+ DA - m)!

Nlm s o7 . (2)
The rate of change of inclination i caused by a relevant pair of geopotential
coefficients, Ezm and §lm , near B:a resonance may be written ’
di - n R)QF G (k i -mR .1~m+l((-: _ .'S' ) {.( - )} 3)
dt sin 1 \a; fmp 2pq cos 1 = m ] gm ~ I5gm! eXPUI(YE — Qv ’
where ﬁlmp is Allan's normalized inclination functiona, G]qu is a function of
eccentricity e for which explicit forms have been derived by Goodings, @ denotes
'real part of' and j = ¥=1 . The resonance angle ¢ 1is defined by the equation
¢ = a(w+ M +B(Q-v) , (4)

where w 1is the argument of perigee, M the mean anomaly, Q the right ascension of
the node and v the sidereal angle. The indices vy, q, k and p in equation (3) are
integers, with y taking the values 1, 2, 3, ,.. and q the values 0, *1, *2, ...;

the equations linking &, m, k and p are: m=y8 ; k=ya=-q; 2p=2-k.

At B:a resonance the m-suffix of a relevant (C §£m) pair is given uniquely by

fm’
the choice of y . The values of 2 0 be taken must be such that £ > m and (2 ~ k)
is even. The successive coefficients which arise (for given Y and q) may usefully be

gathered together in a lumped form and written as5

4k q,k_ 2k q,k_
cm = QJL Clm’ sm = ZQQ s!.m ’ )

L L

where £ increases in steps of 2 from its minimum permissible valu= lo , and the Qz’k

are functions of inclination that can be taken as constant for a particular satellite;
q,k

a = ] en £ =2

nd Q2 wh o

The rate of change of eccentricity e caused by the (&,m) harmonic near 8:a

. 5
resonance can be written

dt fmp 2pq e xid

2 2
d _ L0 -e2)-i(§) F oG {1;19‘_325_}9,&“""”(5 o= 38, ) expli(ye - qw)g:’ , (6)

with the same definitions as for equation (3),

90018
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As the Glpq functions are of order ( Te) , it is usually found that, for
al)!

orbits with eccentricity less than 0.l!, the terms with (v,q) = (1,0) produce the most

important resonance effects on the inclination, though the terms with (y,q) = (1,%1) also
have to be taken into account if e 1is greater than about 0.03., In the equation for

the eccentricity, the relative importance of the terms is largely decided by the value of

% {q - 4k + q)ez} , which is of order jek for q = 0, of order i% for gq = *| ,

G
ipq 5
and of order }%°e for q = *2 ., So, for the eccentricity, the strongest effects are

usually caused by the terms with (v,q) = (1,1) and (1,-1).

Terms of 30th order, with y = 2, may also sometimes need to be taken into account,
but their numerical values do not concern us here and will be the subject of a separate

paper.

2,2 The 15th-order resonance

For 15th-order resonance (B = 15, a = 1), equation (4) for the resonance angle ¢
becomes

¢ = w+ M+ 150 -v) , (7)

and at exact resonance ¢ =0 .

The theoretical equation (3) for variation of inclination may be written as

di n R 15 = 0,1 0,1
T ° T (;) (15 - cos 1)17]5’]5’7]C]5 sin ¢ - S15 cos Qf
1,0 1,0
17e R\= = ? . =
+ - (]5)(§)F16,15,83815 sin(d ~ w) + C]5 cos (% w)$
-1,2 -1,2

15

lal
+ terms in (%e) €8 (vo - qu) s (8)
1q| ' s1n

where only the three main terms, with (y,q) = (1,0), (1,1) and (1,-1), are given

13e ~{R\= = . =
+ —5—'(]5 2 cos 1)(3)F16,!5,7;SIS sin($ + w) + C cos(¢-+w)£

explicitly.
-9,k _Qk

The three pairs of lumped coefficients Cm and Sm appearing in equation (8)
may be written in terms of the individual geopotential coefficients (Enm’glm) as
indicated in equation (5). Explicitly, with the Qg’k expressed in terms of the F

_4,k
functions, the Cm are
0,1 - F 2_ F 4_
c . _ 17,15,8 (R = . 19,159 (RY'z - (%)
15 15,15 F a 17,15 7 a 19,15

15,15,7 15,15,7




_1,0 - 19F 2_ 21F 4_
c = C - —18,15,9 (R} 2 ¢ —20:13,10 5) C - .. (10)
15 16,15 = % a) 118,15~ g al “20,15
16,15,8 16,15,8
_=1,2 - 15F 2 _ 17F 4_
c - ¢ - —18,15,8 (5) ¢ ¢ —20,15,9 5) ¢ - )
15 16,15 ~ 5 al "18,15 © g aj "20,15
16,15,7 16,15,7

and similarly for S , on replacing C by S throughout.

For the 15:1 resonance, the theoretical variation of eccentricity given by

_q5k _9,k
equation (6) may be written in terms of the same Cm and Sm as

15 0,1 0,1
de n (R = =" . =’
It ?‘(:) eF15’15’7(C15 sin ¢ - S]S cos ¢)

R\= _],0 _]’0
- 17(;)FI6,15,8 S5 sin(¢ - w) + Cs cos{d - w)

R\= _-1,2 _-]’2
* |3(3)Fl6,15,7 Sy5 sin(@ + W) + Cj5  cos(® + w)

lal_lal-1
+ terms in ﬁiﬁl__.fi_____ {q - 3k + q)ez} zgz(y¢ - qw) . Q2)

(1al):

Three terms are given explicitly in equation (12), those with (y,q) = (1,0), (1,1) and
(1,-1), The main terms are expected to be those with (y,q) = (1,1) and (1,-1), but the

term with (y,q) = (1,0) is also given, for consistency with equation (8).

3 THE ANALYSIS OF THE 23 RESONANT ORBITS

The methods of analysis have been explained in several previous papers, most
recently Refs 6 and 7, and the explanations will not be repeated here. Basically, the
observational values of inclination are cleared of irrelevant perturbations and fitted
using the computer program THROE8 with an integrated form of the theoretical equation (8),
with extra terms when appropriate, to determine values of the lumped coefficients.
Similarly the observational values of eccentricity, cleared of perturbations, are fitted
with an integrated form of equation (12), with extra terms as necessary. With a few
satellites it is useful to make a simultaneous fitting of inclination and eccentricity
using the SIMRES program, In making the fittings, we regard 20 values of inclination
(or eccentricity) as the minimum permissible, and we try to analyse orbits over a period
of time when ¢ lies between -10 and +10 deg/day, though on some high-drag orbits

larger values of & have to be allowed.

In seeking resonant satellites for analysis, the aim has been to cover the widest

possible range of inclination and to leave the smallest possible gaps in the coverage.

onniQ

‘I , ‘ — ‘.‘il‘




No suitable orbits at inclinations less than 30° were found, but this is not so bad as it
seems, because such orbits are influenced primarily by harmonics of very high degree
(35-55, or even higher for orbits very near the equator) and our evaluations only extend
to degree 35. The analyses of the 23 orbits are described in sections 3,1 to 3.23 in
order of increasing inclination. The values of lumped harmonics given in sections 3.1 to
3.23 are used (in section 4) to evaluate individual harmonic coefficients. The values of
the lumped harmonics are used with their standard deviations unchanged, unless otherwise

specified. The values used in the solutions are listed in Tables ! and 2.

In evaluating the fittings we often refer to the measure of fit, ¢ , where 52 is
defined as the sum of squares of weighted residuals divided by the number of degrees of
freedom, The weighted residual is the residual of an individual value (of i or e) divided
by its assumed standard deviation. For the US Navy orbits used in many of the fittings,
the assumed standard deviation is 0.003° in inclination and 0,00004 in eccentricity; for
the RAE orbits determined by PROP, the standard deviation given by PROP is used; for

other orbits the standard deviation is as specified in the appropriate section,

3.1 Pegasus I, 1965-09A (i = 31.76°, e = 0.007)

This satellite passed through exact 15th-order resonance on 8 December 1974 and the
inclination and eccentricity were analysed over the period September 1974 to May 1975.
During this time the rate of change of the resonance angle, ) , increased from -5 to

+5 deg/day.

There were 37 US Navy orbits available over the period to be analysed. The values
of inclination, cleared of all perturbations except those due to resonance, were first

fitted with (vy,q) = (1,0) only, the (l,*1) terms not being required as the eccentricity

was only 0.007. The (1,0) fit was very satisfactory, € = 0.351, and the values of the
lumped harmonics well determined. A second fit was tried with (v,q) = (1,0) and (2,0),
but this was not acceptable because the value of ¢ increased and the 530 and §30

coefficients were indeterminate. The (y,q) = (1,0) solution gave the following values:

0,1

5051
55

10 C15 = 30980 + 1960 , 10

g = 13540 + 960 .

The values of inclination and the fitting by THROE are shown in Fig 1.

The values of eccentricity were fitted with (y,q) = (1,1) and (1,-1), as these
are the most likely terms to be required in fitting eccentricity alone. The result was
very disappointing and none of the terms was determined with sufficient accuracy to
be useful, the value of ¢ being 4.9, A further run with a (0,1) term included was
tried. This had been required in previous analysesﬁ’7 in order to remove an oscillation
from the US Navy values of eccentricity, which arises because of a wrong interpretation
of the zonal harmonic oscillation removed by the US Navy from their values, However,
this technique was not successful here and the values of the lumped coefficients were

not acceptable,

81006
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3.2 0SO 6 rocket, 1969-68B (i = 32.970, e = 0,004)

The new fitting of the inclination by THROE, with (y,q) = (1,0) shown in Fig 2, is
virtually identical to the previous fittingz. The curve fits the points very well, with

e = 0,28, and the values of the lumped harmonics are:

9051 90,1
10 C15 = 20340 * 750 10 S15 = 6280 « 910 .
A fitting with (vy,q) = (1,0) and (2,0) was also tried, but the (2,0) terms were
indeterminate. The value of ¢ increased from -3.7 deg/day initially to 17.3 deg/day

at the end of the analysis,

In analysing the eccentricity, a (y,q) = (0,1) term was added for the reason given
in section 3,1, The fitting, with (v,q) = (1,1), (1,-1) and (0,1) terms, was poor, with
€ = 3.1, None of the values of lumped harmonics was more than twice its standard devia-

tion, So the attempt was abandoned.

3.3  San Marco 1, 1964-84A (i = 37.80°, e = 0.042)

This is the only I5th-order resonant orbit available at an inclination between 33°

* and 430, so it had to be utilized if possible. By an unfortunate chance, the values of
both E?;l and g?;] are very small at an inclination of 380, so the variation in
inclination is also very small., To compensate for this ill luck, however, 28 accurate
orbits at dates near resonance were available from the archives of the Smithsonian
Astrophysical Observatory, and these were analysed2 in 1974, The last of the 28 orbits
does not fit well, and better values for the lumped harmonics have now been obtained by
omitting the 28th orbit, The values of inclination, and the fitting by THROE, are shown
in Fig 3. The value of % runs from -27 to +25 deg/day. Since the eccentricity is
appreciable (0.042), we have to use all three (v,q) terms - (1,0), (1,1) and (l,~1). The
assumed accuracy in the values of 1 was 0.001° and the THROE fitting gave £ = 0.50,

with the following values for the lumped coefficients:

9051 9051
10°C g = 560 * 580 108 - 2000 + 1450 .

The eccentricity was also analysed, taking (vy,q) = (1,1) and (1,-1). The assumed
accuracy was 0.00002 and the value of ¢ was 2.9. Unfortunately in this fitting and in
a simultaneous fitting of 1 and e with the SIMRES program, the values of lumped

harmonics obtained were not accurate enough to be acceptable.

3.4  HEAO 3, 1979-82A (i = 43.600, e = 0.00))

The third high-energy astronomical observatory was launched on 20 September 1979

into an orbit very close to I5th-order resonance. Exact resonance was reached on

14 November 1979. NASA orbits are available at 2-day intervals and, although it was
feared that orbital manoeuvres might have disturbed the effects of the rescnance, the
analysis proved to be quite satisfactory. Fig 4 gives the values of inclination cleared
of perturbations, the fitting by THROE with (v,q) = (1,0) being shown as a broken line.

With the accuracy of 1 taken as 0.002°, the value of ¢ was 0.63. This fitting follows
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the main trends of the variation, but there is obviously an unmodelled oscillation with a

period about half that of the argument of perigee w . So THROE was run with (v,q) = (1,92)

and (0,2), that is, with sin 2w and cos 2w terms added. The value of ¢ decreased

to 0.49, the values of the lumped harmonics changed by less than ! sd, and their standard

deviations were reduced by about 20%. This solution, shown by the unbroken line in Fig 4,

was preferred, and gives:

9051 90,1

10°C, o = = 467 * 34 10°S . = - 767 % 106 .

The values from the (y,q) = (1,0) fitting were -504 * 4] and -666 * 132 respectively.

These THROE runs used 53 values of i , with ) increasing from -7.7 to +6.8 deg/day, and

gave better results than runs with 55 and 57 values,

The values of eccentricity from the same 53 orbits, cleared of air-drag perturba-
tions, were also successfully fitted with (y,q) = (1,1) and (1,-1), after a residual

oscillation correlated with w was removed by using a value of 0.586 for 19°J The

3
assumed accuracy was 0.00004 and ¢ was 0.39, Fig 5 shows the values cleared of

perturbations and the fitted curve. The values of the lumped harmonics are:

098 L 860 + 150 0% - 1930 + 160
5 * 15 *
0% 7 < 234 s 3 10%. "2 < 185 £ 67
s * 15 :

Although the fitting of the curve in Fig 5 is not perfect, only the fourth value needed
its standard deviation increased, by a factor of 4, when the values were used in the

solutions for individual coefficients.

3.5 Tournesol | rocket, 1971-30B (i = 46.36°, e = 0.011)

Tournesol | rocket passed through exact 15th—order resonance on 5 August 1978 and
over a period from May to October there were 24 US Navy orbits available for analysis.

During this time the value of ¢ changed from -9 to +10 deg/day.

The 24 values of inclination, cleared of perturbations except those due to
resonance were fitted by THROE with (y,q) = (1,0). This fitting gave ¢ = 0,423 and
the values of the lumped harmonics were:

9_0,1 9_0’|

10°C = =59+ 77 10°S,s = - 869 : 47 .

The values of inclination and the THROE fitting with (1,0) are plotted in Fig 6, and

although the fit looks good, both standard deviations had to be increased by a factor of 4

in the solutions. Two further rums, with (v,q) = (1,0) and (2,0), and with (y,q) =

(1,0), (1,1) and (1,-1), produced larger standard deviations and increased ¢ .

900(8
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The values of eccentricity were fitted by THROE using (v,q) = (1,1) and (1,-1), and
this fitting was accepted as the addition of a (0,)) term gave no advantage. The values

of the lumped harmonics were:

9_1,0 9_]’0
10 Cl = 86 + 350 10°S = -~ 2020 *+ 280
5 15
9_-1,2 9_-),2
10 Cls = -6 * 98 10 SlS = 175 + 74 ,
1,0 1,0

The standard deviations of 6]5 and §l< had to be increased by factors of 2 and 4

respectively. The values of eccentricity and the THROE fitting are plotted in Fig 7.

A SIMRES fitting was tried using (y,q) = (1,0), (1,1) and (1,-1) for both inclina-
tion and eccentricity. This gave similar results for eccentricity, but doubled the
standard deviations and € 1in the fitting of inclination, so the separate fittings were

preferred.

3.6 Intercosmos 11, 1974-34A (i = 50.64°, e = 0.002)

This satellite passed through exact 15th-order resonance on | October 1976 and was
analysed over a two-year period by Walker7. The values for the lumped coefficients from
the fitting by THROE of inclination and eccentricity were taken from equations (11) and

(16) of Ref 7. They are given in Tables | and 2.

3.7 Explorer &4 rocket, 1971-58B (i = 51.05°, e = 0.011)

The orbit of 1971-58B near 15th-order resonance was determined by Hiller9 from 700
observations using the RAE computer program PROP. The drag was rather high, so there
was no chance of results as good as those from 1974-34A., Mixed PROP and US Navy orbits
were used in fitting the inclination, and the analysis was improved by subtracting 0.002°
from all the US Navy values of inclination and increasing their standard deviation to
0.005°. Previously, we used the fitting with (y,q) = (1,0), (2,0), (i,1) and (1,-1), but
in the light of subsequent experience we regard the (2,0) terms as dubious, and we have
chosen the solution with (y,q) = (1,0), (1,1) and (1,-1), The fitting is shown in Fig 8
and the values of the lumped harmonics obtained are:

9051 9051
10°C, = = 354 r 47 105, = - 248 45

15

Since the fitting (¢ = 1,13) is not as good as
are available from 1974-34A at nearly the same
standard deviations is reasonable, and that of

Hiller also analysed the eccentricity of

(v,q) = (1,1) and (1,-1), is shown in Fig 9.

15

might be hoped, and since accurate values

inclination, some relaxation of the
0,1

C|5 was doubled in the final solutions.

this satellite, and his fitting, with

Again, the determination of four

coefficients by fitting 28 points is not likely to be reliable, but we decided to use the

values and to increase the standard deviation if the residuals in the solutions were poor,

The original values were:

90018
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9150 9150
10°¢C = - 466 * 58 1078 = 253 + 60
15 15
9__1’2 9_-l,2
10 CIS = -50+ 23 10 S15 = 45 * 14 ,
1,0
In the final solutions, the standard deviation was quadrupled for Cis and doubled for
1,0 -1,2
S15 and CIS .

3.8  Ariel 1, 1962-15A (i = 53.82°, e = 0.022)

Ariel 1, the world's first international satellite, passed through exact 15th-order
resonance on 8 May 1973. The inclination and eccentricity were analysed by Walkerlo over

a period of six months centred on the exact resonance.

Mixed PROP and US Navy orbits were used in the fitting of the inclination and we
have used the solution with (y,q) = (1,0) and (1,1). This was the solution recommended
by Walkerlo as best and the values of the lumped harmonics are:

9051 9051
10°C = -370 14 10°S = - 114+ 31 .

15 15
The values of lumped harmonics obtained from the fitting of eccentricity by THROE
. . . . . . . 1
were not used in the previous determination of the even harmonic coefficients . Here we
use the values from a fitting with (y,q) = (1,]) and (1,-1) given in Run 9 of Table 5 by

Walkerlo. The values are:

1096]’0 = -76+ 18 10951’0 = 172 + 38
15 * 15 2
1096_"2 = 151 + 15 1095_,,2 = 11+ 34
5 * 15 * .

(These values are obtained from the coefficients ~-B, A, -D and C respectively in Ref 10
after dividing by -0.7602 for the first pair and 1.581 for the second pair.) In the

solutions for the individual harmonics it was fourd necessary to increase the standard
-1,2 1,0

and S by factors of 4 and 2 respectively.

deviations of ClS 15

3.9 Cosmos 72, 1965-53B (i = 56.04°, e = 0.003)

This orbit passed slowly through resonance during 1972, with a change in inclina-
tion of 0.07°. The previous analysis by THROE, using seven PROP orbits]l and 45 Navy
orbits with (v,q) = (1,0), gave the following values of the lumped harmonics:

0.1 9-0s!

15 - 233.4 + 3.3 10 Sl5 = - 103,4 + 8,4 ,

107¢

The fit, which is excellent, with € = 0.7, is shown in Fig 6 of Ref 2. These values
fitted well in the previous solutions and the C value was the most accurate previously
obtained. However, we found that the S coefficient did not fit our new solutions,
which require a value near -60 rather than -103, So further fittings with THROE were
tried, including extra terms such as (2,0), (1,1) and (1,~1); omitting the last 6 and

then the last 12 values: and then adding 0.0005° to the US Navy values. The values of the




16

lumped coefficients obtained did not differ significantly from those quoted above, and the
numerical value of the § coefficient never fell below 10l1. So the old values were
retained, but the standard deviation of the S coefficient had to be increased by a
factor of 4, The non-conforming S value is puzzling, and we plan to determine PROP

orbits throughout the resonance phase in the hope of resolving the problem,

In fitting the values of eccentricity, the mismatch between PROP and US Navy values
was removed by subtracting 0.0001 sin w from the PROP values. The fitting with (y,q) =
(1,1) and (l,-1) was fairly satisfactory, with € = 1,62, but as expected there was an
unmodelled variation with the same period as w . The addition of (y,q) = (0,1) terms
led to a much improved fit, with ¢ = 0.80, shown in Fig 10, The values of the lumped

harmonics were as follows:

9150 9150
10 CIS = 18+ 17 10 S]5 = 57 + 23
9152 g-=12
= + = +
10 (.‘.]5 106.9 + 8.7 10 S15 2.4 + 8.1 .

3.10 Tiros 7 rocket, 1963-24B (i = 58.20°, e = 0.002)

This satellite, like 1974-34A, was analysed by Walker7 over a two-year period, exact
15th-order resonance occurring on 3 March 1977. The lumped coefficients from the THROE
fittings of inclination and eccentricity are taken from equations (9) and (14) of Ref 7.

The values are given in Tables | and 2.

3.11 Cosmos 373, 1970-87A (i = 62.920, e = 0.007)

The orbit of Cosmos 373 was already past resonance when its initial manoeuvres
ceased; apart frcm this defect, it is a good satellite because its decay rate was slow,
. , . . . , o o
Since there are no ideal resonant orbits at inclinations between 58.2  and 74.0°, we have

to use four imperfect specimens, of which this is the first.

In 1974 we analysed the variations in inclination using 24 US Navy orbitsz. The
work showed that only (y,q) = (1,0) could be used; the addition of (1,1) and (1,~1) terms
was disastrous because of the correlations caused by the near-constancy of w . A new
fitting of the orbits with (y,q) = (1,0) has been made, using improved methods for
removing lunisolar and air drag perturbations, The worst-fitting point was the last,
so it was omitted. Fig 11 shows the curve fitted by THROE to the 23 orbits, with b
increasing from 0.7 to 4.6 deg/day. The fitting is very good, with € = 0,31, and gave
the following values for the lumped coefficients:

90! 9051

10 CIS = =53+ 3,2 10 SlS = ~-32.8+ 2.5 .

The eccentricity was analysed in 1974 but the fitting of the curve was very poor

(see Fig 5 of Ref 1), and we decided it was not now acceptable.

The orbit of 1970-87A has been determined by Brookes12 at selected epochs between

90018

1970 and 1975, and the first five of his epochs fall within the time interval of our

analysis, Unfortunately, it was not possible to mix these orbits with the US Navy orbits,
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and further orbits are now being determined at the University of Aston in the hope of

defining the variutions in inclination and eccentricity more precisely,

3,12 Tansei 3 rocket, 1977-12B (i = 65.49°, e = 0.029)

When the Japanese Tansei 3 satellite was launched on 19 February 1977, a rocket,

1977-12B, was left in a lower orbit.

The rocket passed through I5th-order resonance on

16 March 1978 and decayed on 21 March 1979, Because of its high drag, this orbit is far

from ideal for resonance analysis.

In the THROE fitting, 25 weekl

y US Navy orbits were used, covering a range of ¢

so wide (-19 deg/day to +29 deg/day) that several oscillations in the 'tail' of the

resonance are inevitably included,

Fig 12 shows the curve fitted by THROE. As

expected, the change at resonance was small, but the fitting was good (¢ = 0.54) and

the values of the lumped harmonics were:

901

10°¢C = =347 10

15

In the solutions for the individual

0,1
= ~ 18 = 14

9-
S15 .

coefficients, the standard deviation of the first of

these values had to be doubled but the second fitted well.

Analysing the variation in ecc

attempted.

The orbit of 1877-12B is now b

entricity seemed sure to be fruitless and was not

eing determined with PROP at the University of Astor

and, when this work is completed, more accurate results should be obtained.

3.13 Cosmos 462, 1971-106A (i = 65.

70°, e = 0.045)

The inclination and eccentrici

ty of this high-drag satellite were analysed by

1 . . . . .
Walker 3 and the results from that analysis are used here. The inclination was fitted

THROE with (v,q) = (1,0) and the val

The eccentricity values were a

(1,1) and (1,-1), was recommended by

1,0
9=’ .
10 C]5 = 51
-1,2
(s} ’
10 C]5 = - 67
1,2 _1,0
For the C . and § values it
15 15

by factors of 4 and 10 respectively.

3.14 China 2 rocket, 1971-18B (i =

ues obtained were:

9_0,1

2 =
6 + 21 10 Sls 9+ 17 .

l1so analysed and the SIMRES fitting, using (v,q)

Walker]3 as the best solution. The values were:

9150

2% 1078, = =557
9152

£ 10 1078 = - 1926 .

was necessary to increase the standard deviatione

69.84°, e = 0.040)

China 2 rocket was in orbit fr
. . 14
has been determined by Hiller at 1

the PROP orbit refinement program,

om 3 March 1971 until 16 February 1976. 1Its orbit
14 epochs from more than 7000 observations, using

Hiller analysed the orbital changes at four resonances,
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and his analysis of inclination at 15th-order resonance with (y,q) = (1,0) gave the
following values of lumped harmonics:

0,1 0,1
10, = -137+6 1075 - 10:6 .

15 15
The fitting is shown in Fig 11 of Ref 14, Since this was a high~drag orbit, some relaxa-
tion of the standard deviations is likely to be necessary; in fact the second was doubled,
The values were still most useful, however, since this is our only satellite at inclina-
tions between 65.8° and 74.0°.

Hiller also attempted to analyse the variations in eccentricity, but the resulting

. . . . 14
values of lumped coefficients were indeterminate .

3.15 Cosmos 387, 1970-111A (i = 74.00°, e = 0.001)

This low-drag satellite gave excellent resul!:s]5 from analysis of 19 PROP orbits
and 55 US Navy orbits between May 197] and July 1972, Here we use the same values of the

lumped coefficients as before:

lOQEO’l = ~-26.0+ 1.0 10950’] = =-5,2+1.3

15 R 15 ° *
10961’0 = - 18,0 + 3.3 109§l’0 = = 44,1 + 2,5

15 T 15 R
logc-l,z = =~ 46,5+ 2.7 |09§-l,2 = - 40.5 ¢ 4.0

15 s e 15 2t 4, .

The first two coefficients come from a fitting of inclination with (v,q) = (1,0) and
(2,0). The last four coefficients come from a fitting of eccentricity, with (y,q) = (1,1)
and (1,-1), being obtained from the coefficients -B, A, -D and C respectively in Ref 1,

after dividing by -0.6116 for the first pair and by 0.4001 for the second pair. The
_1,0

standard deviation of S]5 had to be increased by a factor of 10; the reason for this

discrepancy is not known, but may be connected with the very unusual variation of e

resulting from its very low value (see Fig 2 of Ref 15).

3.16 Cosmos 395 rocket, 1971-13B (i = 74.05°, e = 0.002)

This satellite is almost a twin of 1970-~111A and the results, obtained|6 from
analysis of 21 PROP orbits and 67 US Navy orbits between September 1971 and October 1972,

were even better than for 1970-111A, We used the same values of the lumped coefficients

as before:

9051 9051
= - + = = +
10 C15 24.6 + 1.3 10 SlS 6.1 £+ 1.0
9150 9140
= - = - +
10 C]5 19.8 + 1.8 10 SIS 24.8 £ 0.7
9152 g9~152
10 C]5 = =45.5 ¢+ 2.0 10 S]S = =~35.2+1.0 .

The first two coefficients come from a fitting of inclination with (y,q) = (1,0) and

(2,0). The last frur are from a fitting of eccentricity with (v,q) = (),]) and (1,-1),

90018
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and are obtained from the coefficients -B, A, -D and C respectively in Ref 1, after

dividing by -0.6104 for the first pair and by 0.3976 for the second pair.

3.17 Cosmos 956 rocket, 1977-95B (i = 75.820, e = 0,029)

This is the most recent resonance to be analysed: exact l5th-order resonance
occurred on 19 May 1980. Both the inclination and eccentricity have been analysed over a
period frow mid March until the end of August 1980 using 24 US Navy orbits; during this
time ¢ changed from -1l to +12 deg/day.

The values of inclination cleared of non-resonant perturbations are plotted in
Fig 13 and the curve shows the THROE fitting to the values with (y,q) = (1,0), (1,1) and
(1,-1), the (1,1) and (1,-1) terms being included as the eccentricity is 0.029. The
lumped coefficients are as follows:

109" = - 2205« 5.1 10957 = - 3.0+ 5.
15 S5+ 5. 15 .0 £ 5, .

The values of eccentricity were fitted with THROE over the same period with (v,q) =
(1,1) and (1,~1), Adding a (0,1) term was tried for the reason given in section 3.! but
the values were indeterminate. Another fitting with the (1,0) term included was made
and used with the THROE fitting of inclination in a SIMRES fitting of inclination and
eccentricity together. This procedure proved successful,as the addition of the e-terms
from equation (8) helped to provide a better determination of the lumped coefficients,
the standard deviations being lower than those obtained from the eccentricity fit alone,

The values were:

1096]’0 = -31 13 109§l’0 = -4 %11

5 * 5 *
1096-]’2 = -63+ 15 1095_1’2 = - 46+ 18

5 * 5 * .

These values were used in the solutions for the individual coefficients, but it was found
1,0

C15 and

necessary to double the standard deviations of the two smaller coefficients,
1,0

SIS . The values of eccentricity are plotted in Fig 14 and the curve shows the SIMRES
fitting to the values.
9_0,1
The values of the (1,0) terms from the SIMRES fitting were 10 C15 = =-20,7 + 9.2
_0,1
and 1095Is = 3,2 + 4,5, with ¢ = 0,960 as compared with 0,675 from the solution for

i alone. These values were not used because of the higher value of € and also because

they did not fit the solutions so well.

3.18 Ariel 3, 1967-42A (i = 80.17°, e = 0.007)

Ariel 3 was the first satellite to be used for evaluating lumped 15th-order
harmonics, when Gooding8 analysed the 281 orbits he had determined from Minitrack
observations. Subsequently the orbit has served as a standard for testing in Gooding's
development of the THROE and SIMRES programs. The best available values5 are from a
SIMRES fitting of inclination and eccentricity with ten pairs of coefficients, which

gives the following values foir the lumped harmonic coefficients:




9041 g0s1

10 ClS = =23.,1 t 1.6 10 S15 = =-8.6 1,3
9_1,0 9_],0
= - 4 = -
10 C15 54,7 + 3.2 10 S‘5 37.2 + 2.6
912 912
10°C = -130.6 + 10,7 10°S = ~-96.8 + 9.0 .
15 15
1,0 _-1,2 1,2
The C]5 s C]5 and S15 coefficients required their standard deviations increased
by a factor of 2 in the solutions for individual harmonics.
0,1 0,1
It is of interest to look back at the values of 109Cl5 and 10 315 originally

obtained by Gooding 10 years ago8 with (v,q) = (1,0) only; they were -19.9 * 1.2 and
-7.7 + 0.8. These are not far from the values required by our final solutions here,
namely -22.9 and -8.0.

3.19 Meteor 3, 1970-19A (i = 81.16%, e = 0.005)

Meteor 3 passed through exact I5th-order resonance on 4 July 1979, and the changes in
both inclination and eccentricity have been analysed using 34 US Navy orbits over a period

from 1! March to 28 October 1979, During this time ¢ changed from -7 to +8 deg/day.

The values of inclination, cleared of perturbations except those due to resonance,
were first fitted with THROE using just (y,q) = (1,0). This seemed a fairly satisfactory
fit, with € = 0.413, However, another THROE run with (y,q) = (1,0), (1,1) and (1,-1)
was tried, and, although the value of eccentricity was only 0.005, the e~terms in
equation (8) were determinate, and ¢ was reduced to 0.297. The (1,0) terms from this
second fit, with lumped coefficients

9_0,1 9_O,l

10 C15 = =-21.0+£ 1.6 10 515 = =-1l+13,

were accepted, as they gave better results in the solutions for the individual
0,1
515
increased by a factor of 4, The values of inclination are plotted in Fig 15 and the

coefficients, although the standard deviation of the value still had to be

curve shows the THROE fitting to the values.

The values of eccentricity were fitted with THROE over the same period with (y,q) =
(1,1) and (1,-1). The inclusion of (0,1) terms gave no advantage. A further fitting
with (v,q) = (1,0), (1,1) and (1,-1), was used with the corresponding THROE fitting of
inclination in a SIMRES fit. This yielded values of the lumped coefficients with
standard deviations less than those from the THROE fitting with (v,q) = (1,1) and (l,-1).

The values were:

o140 9150

10°C, = - 26.2 % 4.1 1075 . = - 15.0 * 5.0
g_~1s2 9152

10°C, = - 128 % 29 1078, = - 130237 .

90018
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These Yaéues were used in the individual solutions but the standard deviations of E:;O
and §l; had to be increased by factors of 10 and 4 respectively. The values of
eccentricity and the curve given by the SIMRES fit are shown in Fig 16.
_0,1 0,1
The values of the C15 and S15 lumped coefficients from the SIMRES fitting
were not used because they had larger standard deviations than the values from the THROE

fitting of inclination alone and they did not fit the solutions so well.

3,20 OGO &, 1967-73A (i = 85.98°%, e = 0.025)

The Orbiting Geophysical Observatory 4 passed through 15th-order resonance on
22 May 1970 and the values of inclination from 27 US Navy orbits were analysed in 1975 2
The values obtained then from a THROE fitting with (y,q) = (1,0) and (1,1), the (1,-1)
terms being indeterminate, has been accepted, the values being:

9051 90,1
10°C = - 13.9 + 2.3 1078 = -6.4 % 3.3 .

15 15
In the previous evaluationz, the standard deviations had to be relaxed; but here they

were used unchanged.

The values of eccentricity were not analysed for the previous determination of even
harmonic coefficientsl, but they have now been utilised., A fitting with THROE using
(v,q) = (1,1) and (1,-1) was first tried with little success, ¢ being 3.57. However,
when a (0,]) term was included, for the reason given in section 3.1, ¢ was reduced to

1.47. The values for the lumped coefficients are as follows:

10961’0 = -87 ¢+ 38 10951’0 = 84 + 60
15 * 15 *
1096—]’2 = - 122 + 65 1095—]’2 = - 175 + 86
15 * 5 * .

These values were used in the solutions for the individual harmonics but it was found
—l’o
necessary to increase the standard deviation of S]5

eccentricity and the fitting by THROE are shown in Fig 17.

by a factor of 2. The values of

3.21 SESP 1, 1971-54A (i = 90.21°, e = 0,002)

This orbit passed very slowly through 15th-order resonance between 1972 and 1977,
and King~He1e6 analysed the variations in inclination and eccentricity from 269 weekly

US Navy orbits to give the following values of lumped coefficients:

901 9-0s1
10°C = - 16.40 *+ 0.24 1075 = -5,37 + 0.15
15 15
9140 9150
= - = - +
10°C 92 + 48 1078 170 + 56
9112 9152
= - + = = +
10°C 62.9 + 2.6 1078 53.4 + 1.6 .

The first two coefficients came from a fitting with (v,q) = (1,0) and (2,0),




e

22
&L

The two eccentricity resonances were four years apart and were analysed separately,

The resonance associated with (y,q) = (1,1) was very weak because 0 at

E =
o 1.0 o 16,15,8
i = 907, and consequently the (C,S)lg coefficients are of very poor accuracy: the
1,0

standard deviation of S]5 had to be doubled in the solutions for individual coeffi-

cients, The last two values came from a fitting with (y,q) = (1,-1), (2,-1) and (1,0),.

3,22 Nimbus | rocket, 1964~52B (i = 98.68°%, e = 0.023)

The orbit of Nimbus 1 rocket passed through I5th-order resonance on 5 June 1970,
and more than 2000 observations were used by l-liller]7 to determine the orbit with PROP
at 25 epochs between March and September 1970, The 25 values of inclination, together
with 16 from US Navy orbits,were fitted using THROE with (y,q) = (1,0), (2,CG) and (1,1)
to give:

9051 9051
107C = - 28.3 % 2.0 10°8S = 1.5+ 2,0

15 15
The variation in inclination, shown in Fig 3 of Ref 17, was surprisingly small. The C
value fitted well in the solutions for individual coefficients, but the S value did not,

and its standard deviation had to be increased by a factor of 4.

Hiller also fitted the values of eccentricity and inclination together by SIMRES
with (v,q) = (1,0), (2,0), (1,1) and (1,-1), and he obtained the following values of

lumped harmonics:

9_I,O 9_l,O
10 C‘5 = =88 =7 10 515 = =37+ 8
-1,2 -1,2
9= ) G >
10 C15 = =-3+5 10 S15 34 + 11

(These values are obtained from the coefficients -B, A, ~D and C respectively derived in
Ref 17, after dividing by 0.5141 for the first pair and -0.4713 for the second pair.)
The standard deviations of the C values had to be increased by factors of 4 and 2
respectively when used in the solutions. The fitting of e 1is shown in Fig 5 of

Ref 17,

3.23 OVi-8, 1966-63A (i = 144.160, e = 0,003)

This satellite passed through exact I5th-order resonance on 19 December 1976, There
were 25 US Navy orbits available for analysis from 9 October 1976 to 27 March 1977 and
during this period ) changed from =11 to +14 deg/day.

| The 25 values of inclination, cleared of perturbations except those due to
l resonance, were fitted by THROE using (y,q) = (1,0). This fitting gave ¢ = 0.470 and the
values of the lumped harmonics were:
051 6051
10 C15 = 72000 ¢ 16800 10 SIS = - 5960 + 7630

0,1
The standard deviation on the S15 value had to be increased by a factor of 4 in the

individual solutions. The values of inclination and the curve showing the THROE fit with

90018

(v,q) = (1,0) are given in Fig 18.
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An analysis of the ecceutricity was not attempted as the values were not considered

to be accurate enough.

3.24 Orbits not used

Two of the orbits used in our previous determinationz, namely 1964-05A and 1970-65D,
have been discarded. The first, at inclination 31.50, is superseded by 1965-09A, a much
better specimen at virtually the same inclination. The second, 1970-65D at 51.2° inclina-
tion, was a high-drag orbit included previously only because of a dearth of orbits at

inclinations near 50°. Now that 1974-34A is available, there is no need for 1970-65D.

Two new orbits, 1973-99A and 1975-67A, both at inclination 71.00, were analysed in
the hope of improving the coverage at inclinations between 65.7° and 74.00, where we have

only one (high-drag) orbit.

The analysis of 1973-99A utilised 20 US Navy values of inclination between
11 February and 23 June 1974 (resonance was on 29 April); but no clear pattern of varia-

tion emerged, and the values of lumped coefficients were indeterminate,

The analysis of 1975-67A was based on 16 US Navy values between 21 September 1975
and 4 January 1976 (resonance being on 7 October 1975)., The results were slightly better
than for 1973-99A, but the variation in inclination was very feeble and the values of the
two lumped harmonics in a (v,q) = (1,0) fitting were:

901

0,1
(s = —3+10 10°8,, = -5:%5 ,

10°C

with ¢ = 0,62, These values were not considered accurate enocugh to be worth using,

although in retrospect it is apparent that the S value would have fitted well.

We decided not to use the values obtained by Wagner and Klosko18 from 1971-83B
(included in our previous determinationz), partly because we had already had a good
satellite at a similar inclination (330) and partly because we wished to avoid any
direct link with the Goddard Earth Models. 1In assessing the accuracy of Earth models,

it is essential to try to make independent evaluations.

For the same reasons we decided not to use the values obtained from the analyses of
. . . 19-21 . . .
inclination at 15th-order resonance by Kloko&nik 9 . These are all at inclinations
close to those already represented in our analyses and are most useful as an independent

check on our procedures.

4 THE SOLUTIONS FOR INDIVIDUAL COEFFICIENTS

4,1 The equations to be solved

Each of the lumped coefficients derived in sections 3.1 to 3.23 can be expressed
as a linear sum of individual i1S5th-order coefficients, Efm and §Qm , by equations
(9) to (i1), which, on reverting to the Q-notation of equation (5), may more compactly

be written:
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0,1 ) 0,1_ 0,1_

Cis = Cisis * Q787,05 * Qg Cig,y5 * -+ (13)
1,0 ) 1,0_ 1,0_

Cis = S5 * Qg Cig,is * Qo Co0,05 * e

1,2 -1,2_ -1,2_ (14)
Cis = Ci6,15 " Qg €805 * Qo Ca0,15 * -

with similar equations for the S coefficients. The Q constants have been evaluated
with the computer program PROF, and all the relevant values for the satellites used are
given in Tables 3 to 5 (pages 33 to 35)., There are 23 satellites yielding values of the
form (13) for odd-degree harmonics, and 16 of them also give equations of the form (14),

leading to 32 equations for even-degree harmonics.

Following the procedure which proved successful previously, we add comstraint

equations of the form

1072722

(@}
[}

o
1+

(15)
1072722

wi
i

o
+

where 2 = 15, 17, 19 ... for the odd-degree harmonics, and 2 = 16, 18, 20 ... for
those of even degree. These equations express the expectation3 that the order of
magnitude of the individual coefficients of degree & 1is 10’5/22 for 15 < & < 50

as is confirmed in a general way by the Goddard Earth Model 10C (Ref 22),

Thus, when solving for N harmonics, we have 23 + N pairs of equations for odd-

degree harmonics, and 32 + N pairs of equations for even-degree harmonics.

4.2 The method of solution - a modified least—squares

Our 23 satellites give results of immensely variable accuracy and reliability,
Some, in particular 1974-34A, 1963-24B, 1970-111A, 1971-13B and 1971-54A, are of low drag
and give accurate results. Some, such as 1964-84A, 1977-12B, 1971-106A and 1971-18B, are
of high drag and are included because they are the only satellites available to £ill gaps

in the coverage of inclination. OQOther orbits fall between these extremes.

When the equations were first solved by least squares, it was found, as expected,
that some of the values from the less reliable satellites did not fit. Of the 64 values
| of the coefficients with (q,k) = (1,0) and (-1,2), three appeared to be in error by

} about 10 sd and another seven by nearly 5 sd.

To attempt a straightforward least-squares solution is an inadequate response to
such an abnormal distribution, because large spurious values have too much power in a
least-squares fit; or, to put it more ecologically, the normal distribution is the proper
habitat for least-squares procedures. One possibility would be to reject at an arbitrary
level; but this is a drastic and unsophisticated procedure, a blunt instrument which not

only produces discontinuities as the rejection level varies, but also could easily

90018

nullify our efforts to provide some representation for unfashionable inclinations. So we

rejected all-or-none rejection, and instead introducad two quantum jumps, increasing the

S
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standard deviations of ill-fitting values by factors of either 2 or 4, (We also allowed

an increase by a factor of 10, which is closely equivalent to complete rejection and
needs no further comment.) This process ensures that, while no ill-fitting value has too
much power, the constraint implied by its presence is still operative, though weaker.
Also the distribution is brought much closer to normality, thus giving the least-squares

process a more natural habitat.

After we had computed and considered a large number of solutions of the equations,
it became clear that the optimum number of coefficients would be between 10 and 13 for
both odd- and even-degree C and S coefficients. In these circumstances an acceptably
distributed set of residuals (with one exception) was ubtainced by applying the quantum
multipliers (2 or 4) so as to keep the weighted residuals from each lumped harmonic less
than 1.5, With this choice, the values of the measure of fit + were all between 0.8
and 1.0, and all but one of the individual C and S coefficients had weighted residuale«
less than 1.5. Of the 46 odd-degree lumped harmonics, three needed their sd multiplied
by a factor of 2, and six needed a factor of 4. Of the 64 c¢ven-degree lumped coefficient,
twelve needed a factor of 2, seven needed a factor of 4 and three had to ke multiplied

by 10.

4.3 The solutions for individual coefficients of odd degree

When the 23 equations of type (13) and N equations of type (15) were solved by

least squares for N coefficients, the values of the measure of fit ¢ for 7 SN < |2
were:
N 7 8 9 10 11 12 13
C equations 3.91 2,27 1.15 0.99 0.93 0.92 0.92
S equations 1.217 1.16 1.09 0.84 0.83 0.82 0.82

2
As before, ¢~ 1is the sum of squares of weighted residuals divided by the number of
degrees of freedom, and the weighted residual is the residual for each lumped coefficicyr

divided by the standard deviation for that coefficient as given in Table 1,

It is obviously advantageous, for both C and S , to solve for at least ten
coefficients: it is also necessary, because the Q factors in equation (13) remain quite
large up to the 10th for the satellites of lowest inclination, as Table 3 shows, This i:
confirmed by the behaviour of the solution: in the 9-coefficient § solution the
weighted residuals for the first four satellites in Table ! all numerically exceed 1.0,

but in the 10-coefficient solutions they are all less than 0.7.

The solutions for 13 coefficients offer no advantage over those for 12 coefficients,
so the choice lies between the 10-, 1~ and 12-coefficient solutions. The lli-coefficient
solution seems preferable to the 10-coefficient, because of the 67 decrease in ¢ for
the C equations; but the choice between the il- and 12-coefficient solutions is

difficult, The only point in favour of 12 coefficients is that, for one satellite,

0,1

Q37 537,15

1u69-n81k, the value nf the 12th term on the right hand side of (13), S
exceeds the standard deviation allocated to this satellite, and might therefore seem to

be needed - but fer the fact that the ll-coefficient solution fits well, The arguments

against 12 coefficients are that + decreases very little and that the 12th coefficient
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i

i

i is formally indeterminate for both C and S . Since only one value (that of C,. 15)
i “f oy

| changes by more than 0.2 sd on going from 11 to 12 coefficients, the choice is not

crucial, and, as it is not crucial, the lower number of coefficients is to be preferred.

The 1l-coefficient solutions are given in Table 6.
Table 6
The values of odd-degree 62 15 and 52 15 given by the ll-coefficient solutions
2 3
r
E 9= 9
, ¢ 107, s 1075, s
15 -22.7 + 0.6 =7.4 + 0.6
; 17 11,3+ 1.0 6.7 + 1,2
{ 19 -13.3 + 0.8 -11.8 + 0.9
: 21 15.9 + 0.7 8.7 + 0.8
; 23 14,3 + 1.6 -1.3 + 1.9
' 25 -12.7 =+ 2.0 0.6 + 2.4
27 -6.8 + 1.4 12.7 + 2.0
29 ~2.2 + 1.8 0.3 - 1.9
31 27.9 + 2.9 -2.0 = 3.9
33 6.5 + 2.9 -12.0 + 3.8
35 -6.,8 + 4.1 3.3 + 4.6
The weighted residuals in the 23 satellite equations (13) and the 1l constraint

| equations (15) are given in Table 7. All the residuals of the lumped harmonics are less

than 1.5 as a result of applying the quantum multipliers, as explained in section 4.2.

Table 7
Weighted residuals in the 34 equations for odd-degree harmonics,
from the ll-coefficient solutions
Satellite equations Constraint equations
. 051 =051 Degree ¢ of = =
Satellite CIS S]S coefficient C‘9.,15 SQ,IS
65-09A -0.15 0.06 15 0.51 0.17
69-68B 0.02 0.06 17 -0.33 -0.19
64-84A -0.17 ~-0.78 19 0.48 0.42
79-82A 0.03 0.138 21 -0.70 -0.38
71-30B -0.92 ~1.01 23 -0.75 0.07
74=34A 0.1 -0.14 25 0.79 -0.04
71-58B 0.85 0.85 27 0.49 -0.93
62-15A -0.40 0.18 29 0.19 -0.03
| 65-53B -0.05 -1.27 31 -2.68 0.19
63-24B -0.04 0.34 33 -0.70 1.31
{ 70-87A 0.55 -0.33 35 0.83 -0.41
77-12B ~1.17 -0.07
71-106A | -0.81 1.45 ;
71-18B -0.80 0.94 ]
70-111A -0.12 0.24
71-13B 0.91 -0.51 :
77-958 0.31 0.92
67-42A -0.27 ~0.48
70-19A 0.48 1.18 o
67-73A 0.32 -0.50 S
71-54A -0.07 0.03 >
64-52B -1.00 1.26 i
66-63A 1.38 -0.82 i
i
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One notable feature of Table 7 is the excellent fitting of nearly all the accuratc
satellites, The weighted residuals on both the € anc S equations are less than 0,3
for 1965-09A, 1969-68B, 1974-34A, 1963-24B, 1970-111A and 1971-54A, and there are no

relaxations of the standard deviation on any of these,

The second outstanding feature is the very large value of 631’15 , which 1s alsce
apparent of course in Table 6. This large value caused us much concern, and we
arbitrarily altered the standard deviations of many of the lumped harmonics by a factor
of 10 to try to identify the 'culprit' responsible for this high value; but all the
satellites indicted had to be acquitted, and the high value seems to result from a
consensus, We also computed solutions with the constraints on 62’15 relaxed to

2 x 10-5/12; inevitably the value of C increased (from 27.9 to 30.0 x 10-9), the

31,15
value of ¢ was reduced (from 0.93 to O.;O), and the standard deviations were also much
reduced. This solution was not accepted because it was not compatible with the S
solutions. Since making the constraint twice as stringent only reduces this large
coefficient from 30.0 to 27.9, we are forced to the conclusion that the value is realictic

and is likely to be greater, not less, than 27.9.

The values of the lumped harmonics from 22 of the satellites are plotted against
inclination in Fig 19, after multiplication by 5‘5’15’7 to keep the numerical valuec
to a reasonable level. The satellite omitted is 1966-63A, because its inclination is
144°, The standard deviations in Table | are marked as bars. The curves in Fig 19 show
the variations given by the ll-coefficient solutions. The fitting is quite satisfactor

and it is evident that some of the less accurate values were in need of the increase in

standard deviation.

4.4 The solutions for individual coefficients of even degree

When the 32 equations of type (14) and N equations of type (15) were solved by

least squares for N coefficients, the values of the measure of fit € were:

N 7 8 9 10 11 12 13
C equations 1.07 1.06 1.03 0.99 0.99 0.98 0.98
S equations 1.07 0.94 0.93 0.91 0.91 0.91 0.91

The 47 decrease in ¢ between the 9- and 10-coefficient C solutions is

substantial; but there is not much to be said in favour of more than 10 coefficients,

_-1,2
The value of the Ilth O-coefficient is most significant with C]5 for 1971-54A, but
-1,2
the value of Q36 C36 5 in the tl-coefficieuni solution is only one~fifth of the

standard deviation. So the 1!th coefficient should not be required. This is confirmed
by the fact that the values of the individual coefficients are not appreciably altered
by increasing N beyond 10, So we choose the 10-coefficient solutions, given in

Table 8.
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Table 8
The values of even-degree c and S given by the 10~coefficient solutions
2,15 2,15
9= 9=

£ 10 CQ,IS 10 SE,IS

16 -11.0 + 2.7 =21.,5 + 1.7
18 -43.0 = 1.8 ~22.5 + 1,2
20 =24.3 £ 2.3 -6.2 + 1.6
22 24,1 + 2.0 10.2 + 1,6
24 1.4 + 3.8 -21.8 + 3.3
26 ~-13.3 + 5.8 14.4 * 5.5
28 ~15.4 * 6.4 ~-8.4 * 6.3
30 -4,0 + 6.8 ~16.0 + 6.2
32 7.8 £ 6,2 2.5 £ 5,1
34 9.6 + 6.3 5.6 £ 5,2

The weighted residuals in the 32 satellite equations (l14) and the 10 constraint

equations (15) are given in Table 9; all the 84 weighted residuals are less than 1.5.

Table 9

Weighted residuals in the 42 equations for even-degree harmonics,
from the 10-coefficient solutions

Satellite equations Constraint equations
. 1,0 1,2 =10 =2 Degree & of = =

Satellite | €5 | Cj5 515 Sis coefficient | r,15 | S¢,15
79-82A -0,.08 -0.13 -0.30 0.85 16 0.28 0.55
71-30B 0.80 1.07 -1.33 0.59 18 1,40 0.73
T4=-34A -0.26 ~-0.68 -0.23 0.01 20 0.97 0.25
71-58B -1.19 -1.,38 0.94 -0.64 22 -1.16 -0.49
62-15A 0.80 1.24 0.91 -0.12 24 -0.08 1.25
65-53B 1.33 0.45 0.26 -0.88 26 0.90 -0.97
63-24B -0.97 0.66 0.24 0.53 28 1.20 0.65
71-106A -0.80 -1.24 -0.95 0.12 30 0.36 1.44
70-111A 0.25 -0.23 -0.77 -1,27 32 ~-0.80 -0.26
71-138 -0.46 0.34 0.01 0.36 34 -1.10 0.65
77-95B 0.82 -0.26 1,01 -0.20

67-42A -1.21 -1.38 -0.40 -0.96

70-19A 0,67 -0.29 1,27 -0.82

67-73A -0,28 -0.85 1.23 ~1.41

71-54A -0.23 0.60 -0.87 0.20;

64-52B -1,22 1.38 0.50 -1,14

1,0 -1,2

The values of F

and F are plotted against inclination in

16,15,815 16,15,7°15
Fig 20, and Fig 2! is a similar diagram for the S coefficients. It should be

remembered that the two sets of values in Fig 20 are being fitted simultaneously: thus

1,0
the rather perverse-looking course of the curve for Cls in Fig 20 near the i = 65.7°
-1,2
point is caused by the need to fit one of the CIS values (i = 58.2%) which has

similar coefficients. If we make allowance for this effect, the fitting in Figs 20 and

90018
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1,2
S

15
a few of the values thoroughly deserve their increased standard deviation.

21 is entirely satisfactory, being particularly good. It is also apparent that

5 DISCUSSION

In comparing our new values for the 15th-order coefficients with previous values,
there is a problem in deciding which previous sets of coefficients should be considered.
Klokoénik and Pospi§i10v523 have pointed out that the variation of lumped coefficients
with inclination provides a useful test of the accuracy of existing geopotential models,
because the values predicted by the models can be compared with each other and also with
the more accurate values derived independently by resonance analysis for particular
inclinations. Klokoénfk and PospiSilovd present the variations of selected lumped

coefficients, including F (6,5)?;] , as given by 11 different geopotential models

derived in the past 10 yealzzlséz these 11 models, four can be excluded because they do
not go beyond degree 18. Of the remaining seven, three are Goddard Earth Models, of which
the latest, GEM 10B 24, can be taken as superseding the earlier ones. (We do not require
GEM 10C 22, which is the same as GEM 10B to degree 36, because we do not go beyond

degree 36 in our solutions.) We also exclude HARMOGRAV, which appears23 to be the least

accurate of the remaining models,

This process of elimination leaves us with four models, namely GEM 10B; the
Smithsonian Standard Earth IV.3 (Gaposchkinzs, labelled as SE '5' by Klokolnik and

PospiSilova); GRIM 2 (the European mode126); and the purely terrestrial model 'Rapn |/~

0,1 0,1
’ . . - = - = ,"
(Ref 27). The variations of F15’15’7C15 and F15’15’7515 for these four models,
as given by Kloko®nik and Pospifilovd, are reproduced in Figs 22 and 23. Our values of

xogié and 10955 from Table 1 are also plotted whenever their standard deviation is

less than '.0, and are marked as black circles of diameter 1.0. Fig 23 shows that the
values of FS given by SSE IV.3 and Rapp 1977 cannot be regarded as realistic, because
they differ so greatly from those experienced by the resonant orbits for inclinations
between 70° and 90°. At 90°, for example, 1971-S4A gives 10°FS = =3.1 + 0.1 , while
SSE 1IV,3 gives +24 and Rapp 1977 gives +18.

So we are reduced to GEM 10B and GRIM 2 for our comparisons.. Since GRIM 2
utilized our previous values for 15th-order harmonics, almost unchanged, it does not

provide an independent test. But it does show approximately how a curve based on our

EQ 15 and S, 15 fits the new data. Looking first at Fig 23 (which is
H] .

the worse), we see that the first two points conform with the dot-dash curve, but the

old values of

three new points at inclinations of 43.60, 50.6° and 58.2° do not; there are smaller
differences for some of the 80°-90° points where we have used new values. 1In Fig 22 the
situation is similar, except that the 58° point fits well. All this is as expected and

merely confirms the truism that new data demand a new solution.

The only useful comparison therefore is with GEM 10B, which is believed to be
independent of our results. Figs 22 and 23 show that GEM 10B agrees quite well with the
values from the resonant orbits and can therefore be accepted as a fairly good representa-
tion of the 15th-order harmenics ot odd degree. The individual odd degree values in

GEM 10B differ considerably from ours, however, for degrece 25 and higher, and only time
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will tell which is the better set of individual coefficients; the average standard
deviation of our odd-degree coefficients for degrees 25 to 35 is 2.8 x 10-9, while the
standard deviation of the GEM 10B values is estimated6’7 as 3 x 10_9. For the odd-degree
harmonics of degree 15 to 23, the values of the coefficients can be regarded as quite

well establighed, and Table 10 compares the values from GEM I0B with our solution,

Table 10

Comparison of odd-degree 15th~order harmonics up to degree 23,
given by GEM 10B and Table 6

9= 9z
2 10°¢, 15 1078, 15
GEM 10B Table 6 GEM 10B Table 6

15 -19.7 -22.7 + 0.6 -6.4 ~7.4 * 0.6
17 2.5 11.3 £ 1.0 4.8 6.7 + 1.2
19 -20.6 -13.3 + 0.8 -15.3 -11.8 + 0.9
21 15,2 15.9 + 0.7 9.5 8.7 + 0.8
23 15.4 14,3 + 1.6 4.1 -1.3 % 1.9

If the GEM 10B standard deviation is taken as 3 x 10“9 for all values, the difference
between GEM 10B and the corresponding value in our solution is, on average, 0.8 x (the
sum of the two standard deviations), the S coefficients being in better agreement than
the C coefficients. If the sets of values are independent, as we believe, the agree-

ment is very satisfactory.

The variations of the even~degree GEM 10B lumped harmonics (E,§)}§O and
(E,g)rg’z , multiplied by the appropriate F factors, are shown in Fig 24. Also plotted
are those values of lumped harmonics determined from the resonant orbits (Table 2) which
have standard deviations less than 2.5, The points are plotted as circles o diameter

2.5. Again the impression is that GEM 10B provides quite a good approximation tuv the
observed values, the worst discrepancy being for §]; at 44° inclination.

The comparison of the first five individual coefficients, Table 11, shows excellent
agreement for the C but greater discrepancies for the § coefficients. If the
standard deviation of the GEM 10B values is taken as 3.0, the difference between GEM 10B
and the corresponding value in our solution is, on average, 1.2 x (the sum of the two
standard deviations) which is rather high but acceptable. 1In view of the good fitting of
the GEM 10B curve to our lumped S values in Fig 24, it may seem surprising that there
are such large differences between the GEM 10B §Q’15 values and ours. But this is to
be expected because our fitted curves (Fig 21) differ considerably from the GEM 10B

curves,

90018
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Table |1

Comparison of even-degree |5th-order harmonics up to degree 24,
given by GEM 10B and Table 8

9= 9-
g 107°C, 45 1078, 15
GEM 10B Table 8 GEM 10B Table 8

16 ~14.4 -11.0 = 2.7 -27.8 —21.5 + 1.7
18 -48.3 -43.0 £ 1.8 | -18.6 ~22.5 + 1.2
20 -23.9 ~24.3 + 2.3 4.8 6.2 + 1.6
22 24,1 24,1 + 2.0 1.3 10.2 + 1.6
24 3.1 1.4 + 3.8 5.1 ~21.8 ¢ 3.3

Our new values of the individual coefficients are formally much more accurate than

1,2

our previous values (the standard deviation being halved, on average); the new values

should also be more reliable because the coverage of inclination is much better.

6 CONCLUSIONS

The aim of this paper has been to derive the best possible values of 15th-order
harmonic coefficients of odd and even degree, solely from analvsis of orbits which have
passed through 15th-order resonance. We have tried to obtain as many reliable values as
possible of lumped I5th-order harmonics from orbits over a wide range of inclinations.
Useful values of lumped harmonics of odd degree were determined from analysis of the
changes in inclination of 22 orbits at inclinations between 30° and IOOO, and one at 144°.
The distribution in inclination was far more satisfactory than has been achieved before,
but there are still some gaps that need filling. Useful values of lumped harmonics of
even degree were obtained by analysing the changes in orbital eccentricity of 16 of the

23 orbits, and this yielded 32 pairs of equations for coefficients of even degree.

These values of lumped harmonics have been used to solve for individual coefficients,
and the solutions chosen as the best, given in Tables 6 and 8, are the ll-coefficient
solution for odd degree and the 10-coefficient for even degree, so that the solution is
complete for degree 15-35. The coefficients of degree 15-23 should be more accurate than
any obtained previously, but the errors inevitably increase as the degree increases

beyond 24.

The values of lumped harmonics also provide an independent test of comprehensive
Earth models. Figs 22 and 23 suggest that only the Goddard Earth Model 10B is useful
for comparison, Tables 10 and 11 compare our values of 15th~order coefficients with those
of GEM !0B for degree up to 24, If it is assumed that the GEM 10B coefficients have
standard deviations of 3 x 10_9, the difference between the twenty GEM I0B values and the
corresponding values in our solution is, on average, 1.0 x (the sum of the two standard

deviations), If the sets of values are independent, as we believe, this agreement is

very satisfactory.

The average standard deviation of our coefficients of degree 15, 16, 17 ,... 23 is

1.4 x IO-g, equivalent to 1 cm in geoid height.
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Fig 20 Values of F16,1 5,8615 and F16'15'7C15 from Table 2 and the curves
given by the 10-coefficient solution
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Fig 21 Values of F16'15'8815 and F16'15'7S15 from Table 2, and the curves

given by the 10-coefficient solution
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