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I. INTRODUCTION

The simplest theory for nonlinear wave propagation in a straight,
uniform rod may be written as follows.

Sz = Pvt
(1)

vz t

The axial stress, S, depends only on the axial strain, e, the axial
particle velocity is v, and the reference density, p, is a constant. The
axial coordinate along the rod is Z, t is time, and subscripts denote
partial differentiation. In this version of rod theory, which is
formally the same as one dimensional, inviscid gas dynamics, the char-
acteristic speed of propagation, c, is given by pc2 = dS/dC, and dis-
continuities in sIress, strain, or velocity all travel at the shock
speed given by pc = [S]/[e], where [.] denotes the jump in a quantity
across the shock.

Equation (1) has been used to interpret wave propagation experiments
in which the strain-time profile is measured at several stations in the
rod. 1,2 If each level of strain propagates at a constant velocity,
c (ce), then both stress and particle velocity may be computed as a func-
ton of strain as follows.

e(Z,t)
v=vo c, dc

0
(2)

e(Zt) 2
S=S o +S C de

# 0

The initial values ahead of the wave are v0, S and c . Equation (2) is
a simple wave solution to (1), exhibiting amplitude dispersion, but not
geometric dispersion. 4

J. F. Bell, The Experimental Foundations of Solid Mechanics, Handbuch

der Physik, Vol. VIa/l, Springer-Verlag, New York, 1973.

G. E. Hauver, "Penetration with Instrumented Rods," Int. J. Eng. Sci,
16, 1978, pp. 871-877.

..............



A rod, no matter how slender, is actually a three-dimensional
object, of course. The dispersIve influence of a finite diameter is well
known in linear theories, eg.3 ,  It is less well known in nonlinear
theories5'6 where it may be expected to play a role as well, whenever
the length scale in a wave pulse is comparable in magnitude to the rod
diameter. In this paper the effects of finite lateral dimensions will
be considered by modeling a rod as a one-dimensional elastic structure
with one internal variable used to represent the transverse, axisymmetric
motion. Such a structure is a special case of an intrinsic rod theory
as described by Antman7 .

II. ONE-DIMENSIONAL EQUATIONS AND RELATIONSHIP TO
THREE-DIMENSIONAL ELASTICITY

A straight cylindrical rod of radius a is assumed to have an elastic
stored energy density per unit length

* w a2 W(w',u,u'). (3)

The axial displacement is w, u is a measure of radial strain, and the
dash represents differentiation with respect to the axial coordinate, Z.
The kinetic energy density per unit length is given by

K w w a2(hpl*2 + p 2i2), (4)

where P1 and P2 are the appropriate mass densities (made definite by
equation (13)) for the axial and radial motions respectively, and the dot
denotes differentiation with respect to time. The Euler-LaGrange equa-
tions corresponding to (3) and (4) are given by (5).

3R. Skalak, "Longitudinal Impact of a Semi-Infinite Circular Elastic Bar,"
J. Appl. Mech., 24, 1957, pp. 59-64.

4W. A. Green, "Dispersion Relations for Elastic Waves in Bars," in
Progress in Solid Mechanics, Vol. I, ed. I. N. Sneddon and R. Hill,
North-Holland, Amsterdam, 1960.

5J. H. Shea, "Propagation of Plastic Strain Pulses in Cylindrical Lead

Bars," J. Appl. Phys., 39, 1968, pp. 4004-4011.

6G. P. DeVault, "The Effect of Lateral Inertia on the Propagation of

Plastic Strain in a Cylindrical Rod," J. Mech. Phys. Sol., 13, 1965,
pp. 55-68.

7S. S. Atitman, The Theory of Rods, Hanbuch der Physik, Vol. VIa/2,
Springer-Verlag, New York, 1972.
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Q -P. p2i

The forces S, P, and Q are obtained from the stored energy as follows.

S W aW BW (6)

Equations (5) and (6) may be interpreted in terms of the three-
dimensional theory of nonlinear elasticity. For the axisymmetric motions
considered here, the deformation from an unstressed reference configura-
tion (R,O,Z) to the present configuration (r,e,z) may be written

r = r(RZ,t), e = 0, z = z(R,Z,t) , (7)

and the corresponding equations of motion are given by

aTrR +TrZ TrR - T80

RR r,
(8)

aTzR  Tz z  T zR

DR + 3 + R

The stress components used here are obtained from the unsymmetric Piola-
Kirchhoff tensor referred to unit basis vectors in the given cylindrical
coordinates (r,e,z) and (R,O,Z).

ic'
T T i a (9)

If (8) is multiplied by R, and if the resulting equation and (8)2 are
both averaged over the cross-section, equations (10) are obtained for the
case of stress-free lateral surfaces.

1 fTzZ dA =f dA
a2  3Z d

7ra ira f(10)

1 DzfRrZ dA 1 -/(TrR + T *O)dA P f R 't d

ira 2ra 2  7ra

Now if the following identifications are made

7

I L1



S a2 J zd

P 1-..(TrR + Te A (11)

Q*- 1-- RTrZ dA,

ira

and if a first approximation for the position functions r and z is
assumed to be

r = R[l + u(Z,t)]
(12)

z = Z + w(Z,t)

then equations (5) are obtained with

2
P1 = p # P2 = pa (13)

In all of the preceding discussion it has been tacitly assumed that
the Z-axis is an axis of material symmetry so that no angular motion will
occur anywhere in the cross-section. Furthermore, since the strain
energy must be invariant under reversal of the z-axis, and if it is
assumed to be invariant under reversal of the Z-axis as well, W must have
the property

W(w',u,u') = W(w',u,-u') (14)

It follows that Q is odd in u' and S and P are even in u'.

It should be remarked that equations (5) and (6) have been used to
describe one-dimensional waves in porous materials89,,10, and it has

80J. W. Nunziato and E. K. Walsh, "On the Influence of Void Compaction and
Material Non-uniformity on the Propagation of One-Dimensional Accelera-
tion Waves in Granular Materials," Arch. Rat. Mech. Anal., 64, 1977,
pp. 299-316 and Adendum, Arch. Rat. Mech. Anal., 67, 1977, pp. 395-397.

9J. W. Nunziato and E. K. Walsh, "One-Dimensional Shock Waves in Uni-
formly Distributed Granular Materials," Int. J. Solids and Structures,
14, 1978, pp. 681-689.

10D. F. Parker and B. R. Seymour, "Finite Amplitude One-Dimensional
Pulses in an Inhomogeneous Granular Material," Arch. Rat. Mech. Anal.,
72, 1980, pp. 265-284.
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also been suggested11 hat perhaps they could be used to describe waves in
a layered composite . There are undoubtedly other applications as well.

III. STATIC SOLUTIONS

It is convenient to distinguish two types of static solutions. In
the first type u' is identically zero, so equations (5) reduce to

S(w',u,O) 0 S
0

(15)
P(w',u,O) = 0

Since the reference configuration has been assumed to be unstressed, it
is required that when w' = u = 0, (15) is satisfied with S = 0. It will
be further assumed that the slope along the curve defined By (15)2 is
always negative and bounded.

du Pwr0 - d- = -- = V(w',u,0)> 0 (16)

where the subscripts u and w' denote partial differentiation with respect
to the arguments of P. This corresponds to the physically reasonable
assumption that the rod contracts (expands) laterally as it is stretched
(compressed). Finally, it will be assumed that S increases monotonically
as w' increases along the curve P(w',u,0) = 0. That is

Sw, - VSu = E(w',u,0) > 0. (17)

The bar modulus, E, and Poisson's ratio, v, will be considered as defined
by (17) and (16) with the inequalities holding as well for all values of
their arguments, not just along the curve of (15)2. Since W has a minimum
at the unstressed reference configuration (w' = u = u' = 0), Pu > 0
there, so by (16) P w > 0 and P > 0 everywhere. This also implies from

(17) that Www 1Wuu - Wu w1 > 0 so that necking instabilities have been

ruled out (see Antman [12], pp. 97).

In the second type of static solution u' is not identically zero.
There are two integrals of (5).

M. F. McCarthy, private communication.

12S. S. Antman, "Qualitative Theory of the Ordinary Differential Equa-

tions of Nonlinear Elasticity," in Mechanics Today, V. 1, ed. S. Nemat-
Nasser, .Pergamon, New York, 1972.
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S(w',u,u') = S0 (18)

w'Q(w',u,u') + W'S o-W(w',u,u') - B

If these may be solved for u' and w' as functions of u and the constants
So and B, then u may be found by quadrature, and the axial strain w' is
given parametrically through u. The study of equations (18) will not be
pursued further here except to remark that the version arising from
linear elasticity gives boundary layer solutions with Q decaying exponen-
tially from the ends. Phase plane analysis indicates that the behavior
of the fully nonlinear equations is similar.

IV. SOLUTIONS OF THE LINEARIZED EQUATIONS

Before considering the dynamic nonlinear equations, it will be use-
ful to examine some of the properties of solutions of the linearized
equations. The three-dimensional strain energy for an isotropic mater-
ial with displacement field given by (12), when averaged over the cross-
section, leads to (19) for the forces.

S = (X+2p)w' + 2Xu ,

P = 4(A+P)u + 2Xw' , (19)

where X and p are the usual Lame' constants. With nondimensional variables
= Z/a and T = ct/a, where c is a speed that is unspecified for now, and

with % - w/a, equations (5) become

X 2 u ,c 1  2 T( 2 0 )

2

c2

where subscripts again denote partial differentiation. Subscripts
indicate partial differentiation, and the overbar has been dro ped from
0. The longitudinal and shear wave speeds are c1 a (+2)/pand

c - . These eaations in dimensional form were first given by
Mindlin and Herrmann-.

13R. D. Mindlin and G. Herrmann, "A One-Dimensional Theory of Compres-

sional Waves in an Elastic Rod," Proceedings of the First U.S.

National Congress of Applied Mechanics, 1950, pp. 187-191.

10



Since all the coefficients are constants, either w or u may be
eliminated from (20) to obtain (21).

(21)2 2 2 2 2 2
C X~ a c c

- b 2 2' (w,u) = 0
1 c 2 Cb2 aT2

The one-dimensional bar speed is c = /E where E is Young's modulus,
E = p(3AX+ 2p)/(X+p). Equation (21 exhibits what Whitham has called a
hierarchy of wave speeds1 4 ,15 . Whereas discontinuities can only propagate
with the speeds c1/c or c2/c, it is well known that in a thin bar the
main disturbance in a pulse travels with speed cb/c. Whitham has
discussed extensively the hierarchical case where1 he orders of the
highest and lowest derivatives differ by one. Wu has pointed out that
the case where the orders differ by two, as here, also exhibits a stable
hierarchical wave structure, so long as c2<c<c 

, which is always the case
for linear elastic rods.

In Whitham's case the higher order waves decay exponentially, and
the lower order wave, which carries the main pulse, has a diffusing front.
In the present case, discontinuities in the higher order waves do not
decay with time, but the pulse decays rapidly behind the front. The main
pulse travels with the lower order speed, and it too has a diffusing
front.

To give substance to the preceding remarks, consider a boundary -
initial value problem for (20).

B.V.: u (0,T) = 0, w (0,T) = f(T) (22)

I.V.: u(C,o) w(C,o) = 0

A straightforward application of the LaPlace transform on T leads to the
following representations for u and w.

14G. B. Whitham, "Some Comments on Wave Propagation and Shock Wave Struc-

ture with Applications to Magnetohydrodynamics," Comm. on Pure and
Appl. Math, 12, 1959, pp. 113-158.

15G. B. Whitham, Linear and Nonlinear Waves, John Wiley, New York, 1974.

16T. T. Wu, "A Note on the Stability Condition for Certain Wave Propaga-
tion Problems," Comm. on Pure and Appl. Math., 14, 1961, pp. 745-747.

11
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1 - j"S C~p) • dp
W C Hi eT  2cdp2

1 f D (p) eP M d (23)

1 1 C(p) ( 1 2_2 S2i ePT + l dp

=K+1 u nii Br '1 \ C 12)

S V 222 c 
2 ) OpT 

r2 ( dp

C(p) and D(p) are given by (24)
2

C
2 2 2.m2  - p c 1

C (P) ' - P
p 2 2

2 (24)

2

D~) ml -p c1D(p) = - m 2 .2 2

?(p) is the transform of f(T), and ml(p) and m 2 (p) are the roots withnegative real parts (for outgoing waves) of

2

(m2.2 c~12) M -C72)-8- - (2 -p - .0. (25)

Mc 2 / c1

In each equation of (23) the first integral represents a wave whose front
travels at speed cI and the second integral represents a wave whose front
travels at speed c2.

To examine the behavior of the solution near the wavefronts, let p
be large. Expansions for m1 and m2 are

12



2 2

ClpA~l Cl2  " Cb 1 /'

c -c1l = -c1 " A +---p c C 2  " 22  p (36

1 2

c- € 2 %b2 = c2 2c 1-1
m2 - 2 P - 4 L 4 22  + 0

The leading terms in the integrals for w may be written asymptotically
as

W +,ri - c 1 (P + r dp
Br

(27)

PT ( +r 2)
+ f 12( ?e 2 rdp

In (27) the square root terms are equivalent to m or m within 0
when r 2 ad 2  1 2rP3
n and r2 are given by 1p2

2 2

r 1  = 8 
( 28

c (28)
2 2

2 Cb - c2r2  =8 2

The first integral in (27) vanishes for T < - and the second vanishesc1
for T < c- " Thus, near the leading wavefront only the first integral

is required, which may be written, after a little manipulation and use
of the convolution theorem, as follows.

13



I

CW f(-T) j2 c 2Iat
wT c f € o Cl2 CT -2

C1
(29)

f 11-) rli f f(T--') Jir1, 2 2]d-r'
r 2 c2  2C1  2

C1C c c12

Jo and J1 are Bessel functions. Suppose that f(r) = w 0 h(r) where h(T)

is the Heavisde step function and w T is a constant. The change of1r, 2 2 2

variable y = r -1 T2 and use of the identity (taken from Refer-

ence 17, pg. 64)

f 3
1 (y) dy n e (30)

now reduces (29) to

-rC
r 1 C S_3(y) dy1 2 1 (31

Cl

Equation (31) shows that at points removed from the boundary the velocity
becomes exponentially small shortly after passage of the wave front.
Equation (29) is plotted in Fig. 1 with f(T) = h(T).

Similar analysis may be applied to the other integrals in (23).
The second integral for w represents a wave whose front moves with
speed c2 : and is similar in form to (29), but smoothed by a double
integration in r. u has a contribution at each wavefront that is
similar to (29), but'smoothed by a single integration in T.

17F. Bowman, "Introduction to Bessel Functions," Dover, New York, 1958.
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To examine the main pulse in (23) it is convenient to follow

Whitham's approach to the problem (Reference 15, pg. 345). First, the

exponent in one of the integrals is written as T(p + ml(p)), and then

the saddle point method is used to find an asymptotic expansion valid
at large T. For a fixed value of C/T saddles occur at

d

- ( ml(P) = 1 mlP) - = 0. (32)

Solution of (32) gives p = (i ,and the exponent is maximized with

respect to C/T when ml[p( /T)] = 0 because of (32) and (33).

d( [ + m1 (P) *] = m(p) + [1 + ml ( ] d

2
2 X+j c2From (25) if m1 = 0, either p = 0 or p = -8 V 2 " By differentiating

(25) once with respect to p, it is clear that the correct choice is p = 0,
and by differentiating (25) a second time with respect to p, it is found
that

m (0) +b 
(34)

and so from (32)

4/ + (35)
cb

Equation (35) shows that the main disturbance travels with the bar
speed, cb. The correct asymptotic expansions will be obtained by expand-
ing the integrands in (23) about p = 0. The following discussion will
be simplified by taking c = cb .

It has been shown that m1 (0) = 0, but it does not follow that

m2(0) = 0. Therefor2 , let m
2 

=f a + bp2 + dp4 + ... in (25). By
equating powers of p it is found that

2~~ ~ 21~ 1 
2 ) (%2- 2  4..

1 p 8 (c1 2 _ c 
2) +

2 (2 2) (36)

2  2 2
c12 c 22 ".1

16



Choosing roots to correspond to outgoing waves or bounded functions at
infinity gives

m16 (cl2 
- %2) %2 - C2 

2  3
1 Cb c 62( 1

2-c 2  P

(37)

*~ l b2  2
m 2 1''P - 2  p+

Since the second integrals for u and w in (23) give no contribution

until T > E , near the head of the main pulse the velocity is given

asymptotically as follows

w - e P(T- ) hdip 3  + 0(p2 ) dp
(38)

where d -I .( c1  2) ( - c2
2)

1 8 Cb2 (c12 -c2 2)

By the convolution theorem, (38) may be written

W = (2 d1 T) f Ai [( l T dr'. 3)
22 d

where Ai(.) is the Airy function with integral representation given in
Abromowitz and Stegunl, formula 10.4.32. For a step function input,

f(T) = h (T), w is simply the integral of the Airy function and is
exponentially small for C > T and oscillates about an amplitude of 1 for
T > r. Fig. 2 shows the waveform for a step input. Fig. 3 shows the
composite waveform schematically for both the leading wave and the main
pulse. Note the progressive separation and decreasing importance of the
leading fast wave.

18M. Abromowitz and I. A. Stegun, Handbook of Mathematical Functions,

Dover, New York, 1965.
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The initial development of this separation was shown numerically by
Nunziato and walsh in their consideration of small amplitude waves in
porous soils 19 where the equations are formally the same as (20).

V. NONLINEAR WAVE EQUATIONS

The multiple wave structure, which the linearized equations show so
clearly, has an exact counterpart in the fully nonlinear theory. The
characteristic wave speeds of (5), which carry discontinuities in w"1
and i or u"' and ii, are given by

2
1 c 1 2= Sw,(w,,u,u')

2 (40)
P 2 C2 = Qu,(w',ulu)

On the other hand, the simplest one-dimensional theory for a rod, which
is given by (1), and which may be obtained from (5) by setting u' = 0,
P(w',u,O) = 0, has characteristic speeds given by

2
Pcb = E < S, , (41)

where E is defined in (17). In analogy with the linear theory it might
be expected that (41) represents a low order approximation for wave
speeds in the main pulse, but that dispersive effects due to the finite
diameter will modify the pulse shape. Since the full rod theory, (5),
is nonlinear, it is to be expected that wave speeds will be modified as
well.

Although transform methods cannot be used on the full equations, it
is possible, by suitable scaling and choice of independent variables, to
find asymptotic results for the various wave orders directly from the
equations themselves rather than from representations for exact solutions.
The method of relatively undistorted waves, introduced by Varley and
Cumberbatch20 has been used recently by Seymour and Parker1 0 to examine
the leading fast wave in (5). The same approach, also called the method
of modulated simple waves, may be used to investigate the structure of
the main pulse.

To simplify the analysis, it will be assumed that the stored energy
in (3) has the decomposition

20E. Varley and E. Cumberbatch, "Non-Linear High Frequency Sound Waves,"
J. Inst. Maths. Applics., 2, 1966, pp. 133-143.

20



W(w',u,u') W+W',u) W 2 (u') (42)

Let the dependent variables be u, v - v, and E a w'. Equations (5)
are rewritten as

- , * U"" (43)

vt W i .

First define a new set of independent variables

a h Z, T - 6h t, (44)

where 6 is a small parameter. This scaling implies that fixed values of
C, T will correspond to long times and large distances as 6 tends to zero.
Next define a second set of independent variables in terms of t, r.

a= c d;,'r
(45)

z=

In terms of these new variables, derivatives with respect to Z, t are
replaced as follows.

= 6 + 63/2 a

(46)

t 'r a

In (45) a is a "fast" and z a "slow" variable. The reason for the odd
combination of scaling in (44) and (45) will become apparent later. It

turns out that a has properties like a characteristic variable. Accord-
ingly, let w and K be defined as

W a T , K Q at  (47)

a is constant along curves with slope

d . - (48)

aT K
1

It is convenient, instead of w and K to use the slowness, s * , and
1the incremental arrival time X - . In terms of these variables, the

compatibility condition wW K becomes

21
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s 6t ,z (49)

and, taking (42) into account, equation (43) becomes

sSuua + Plva + sSla " at {Suuz + Sw,¢z.

(50)
Puua CL-s ~QaS P~ %UU( P2UTrTrr

SV + z a SIV 0

where derivatives in T and 4 are retained on the right hand side of (50)2
for compactness.

To lowest order the right hand sides of (50) may be set equal to
zero. This requires that the determinant of coefficients of u0, Va, eC
must vanish giving

1 2 =2 1 (Swj Pw' S)(1

s 21 -b T u

and ua., va, a must occur in the ratio

ua: va:cM = - v: - cb1 . (52)

With the energy partition of (42) neither S nor P depends on u'. Thus
(52) may be integrated to find two of u,v,c in terms of the third. For
example

v = v(u)

(53)
-* (~u)•

The right hand side of (50) must satisfy a compatibility condition. Thus
multiplication of (50) by the left proper vector

(-1, sv, SSw,) (S4)

gives the transport equation

- "~ a 2 -1 u (s
z vusvP 1c2 T T a(S

where P2c 2
. - ,*,. Since S,s,E and v all depend on u through (53), the

left hand side f (55) may be written as o(u)uz so that the dependent
variable is u alone. However, the mapping a( ,T) must be developed

22



I

simultaneously with the solution u(a,z) since the incremental arrival
time I is also unknown.

The properties of (55) will not be studied further here except for
the following two remarks. First, the linearized version of (55) can be
shown to have solutions like (39), and second, for small (but finite)
amplitude waves, the transport equation reduces to the Korteweg-de Vries
equation. This latter fact may also be deduced directly from (5) follow-
ing the prescription of Leibovich and Seebass2 1. Many other authors have
also noted that the Korteweg-de Vries equatiy describes longitudinal
waves in thin rods, eg., Nariboli and Sedov.

VI. STEADY WAVES

Equation (49) indicates that if I. = 0(1), then s, and hence cb, is
almost constant. Therefore, some solutions of (55) should be nearly
steady waves, perhaps approaching them asymptotically in time. Accord-
ingly, the properties of steady solutions to (5) will be examined.

A steady wave is one in which the solution to (5) may be written

w = w(Z - ct) ,
(56)

u - u(Z - ct) ,

where c is an unspecified, but constant, wave speed. The equations
become

S= P1c2 w' '

Q - P = P2c
2 U''

where the prime now denotes differentiation with respect to Z - ct.

215. Leibovich and A. R. Seebass, "Examples of Dissipative and Dispersive

Systems Leading to the Burgers and the Korteweg-de Vries Equations,"
in Nonlinear Waves, S. Leibovich and A. R. Seebass, eds., Cornell

University Press, Ithaca, N.Y., 1974.

22G. A. Nariboli and A. Sedov, "Burgers's-Korteweg-de Vries Equation for

Visscoelastic Rods and Plates," J. Math. Anal. and Appl., 32, 1970,

pp. 661-667.
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There are two integrals of the motion.

S - P c2 w' + A

Qu' + Aw' -w (58)

= C2 (P 2 u, 2  2)

where A and B are constants. ThE second integral is found by multiplying

(57) by w' and (52)2 by u', adding the two equations, and noting that
u, +W I -. W)' = w , 2 u 2 )

the result may be written as (aTu' +a w' +2 2

After integration (58)1 is substituted into this expression to give (58)2.

If (58) can be solved for w' and u', they may be expressed as
follows.

w' = F(u; A,B,c)
(59)

u 2  = G(u; A,B,c)

Equation (59)2 is written in terms of u2 rather than u' since both of
(58) are even in u'. Now (S9)2 may be solved by quadrature and then
(59) gives the distribution in longitudinal strain parametrically
throAgh u.

To examine the qualitative nature of solutions and the role of the
constants A, B, and c, first consider the case A = B = 0. For ease of
analysis the strain energy will be assumed to be partitioned as in (42).
For small but finite amplitude waves let W be expressed as a power series.
First note that

W 2 f2 dA 2 f R/ dR ,(60)
7ra a 0

where is the three-dimensional strain energy per unit volume. With
(12) used in (60), W may be expressed as

w 1,2 XUu2
2 (X+2 ) w' + 2Xuw' + 2+l2

S 1 a 2 Uu'2 + Cu 3 + C2u
2w' (61)

4 1 2

+ C3uw'2 + C4w3 +....
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where the C's are combinations of higher order elastic moduli.

Equation (58)1 with A = 0 gives

2 u + O(u) , (62)
X+2V - pc

and (58)2 with A = B = 0 and the use of (62) gives

u'2 = Cu2 + Du3 +... , (63)

where

C = 8(X+p) (E-pc 2  (64)
a (p-pc 2)(X+2u-pc 2)

and D may be either positive or negative, depending on the exact combina-
tion of higher order elastic moduli. C may be either positive or negative
as well.

C > 0 if Cb < c < c1

(65)

C < 0 if c2 < C < Cb

where c1 , c2, and cb are the linear elastic wave speeds in this context.

Figure 4 shows sketches of u'2 vs. u and u' vs. u for the various
combinations of signs of C and D. The closed loops in (4e) and (4f)
correspond to solitary waves that are symmetrical in Z about the point of
maximum amplitude and extend from Z = -- to Z = +- . The open curves in
(4e) - (4h) correspond to waves in which the amplitude grows without
limit. Clearly, to be useful, solutions of this kind must join onto
unsteady solutions before the amplitudes become too extreme.

Now consider the case where A = 0 but B 0. Instead of (63) the
following holds.

u'2 = + Cu2 + Du 3  (66)

The constant i is proportional to B, but has opposite sign. B merely
shifts the curves in (4a)-(4d) vertically. Figure S shows two of the
possibilities. The closed loops in (5c) and (5d) correspond to periodic
solutions.

Next consider the case when both A # 0 and B J 0. The integrals of
the motion may be rewritten as follows
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S - so - plc2 (w'-Wo)

QUO+ s o(w,-w o,) - (W - Wo) (67)

- {p 2u' 2  pl(w'-W) 2 + B

where W = W(w',u ,0), etc. These integrals are the same as before, but
now they are cnt~red on the point (w',u,0) and So plays the role of A.
The character of the solutions is exactly the same as in Figures 4 and 5,
but now the curves are shifted to the right (So0O) or left (S0>0).

Finally, suppose that the elastic constants are such that D = 0.
Instead of (66), equation (68) must be used.

u'2 = B + Cu2 + Hu4  (68)

This should occur when the expansion is centered at an inflexion point of
the static stress-strain curve. C is the same as before and H is deter-
mined by higher order elastic moduli. Some of the possibilities are
shown in Figure 6. Either positive or negative solitary waves are
possible according to (6c), and (6d) is a periodic solution of unusual
shape.

The dynamic trajectories, D, of the nonlinear steady waves may
deviate considerably from the static curve P(w',u,O) = 0 in the w'-u
plane. To see this, again suppose that the strain energy is partitioned
as in (42) and consider the case A = 0. Figure (7a) shows a contour
plot of W1 on the w'-u plane with the curve P = W1 = 0 and several lines

of u = const drawn in. In Figure (7b) several cur$es of S = W vs. w'

with u = constant are shown. Shown as a dashed curve on (7b) is the
static stress-strain curve, which has somewhat smaller slope than any of
the curves for u = const, according to (17). From reference to (58)1 it
can be observed that points of the nonlinear trajectories lie on the
intersection of the surfaces S1 = S(w',u) and S2 = P c2w'. In the
projectio of Figure (7b) S2 is a straight line through the origin with
slope pl c , for example the line Pl P2 (for c less than ch, the bar speed
at w' =-0). By comparing the line PlP2 with the curves or S at u - const
and the static stress/strain curve, it can be seen that between points
p, and P2 the dynamic trajectory deviates to values of u less than those
on P = o, and at points outside the segment PiP2 the trajectory deviates
to greater values of u than those on P = 0. Thus, the trajectory, D, is
qualitatively like the dashed curve in Figure (7c).

Maximum or minimum amplitudes of u will occur where ut = 0. With
u' = 0, equation (58)2 generates curves, C, in the w'-u plane that
correopond to the intersection of the surfaces W1 = Wl(w',u) and

2  7 P1 cwl2-B. The intersection of curves C and D mark the ends of
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Figure 7: Comparison of Steady Dynamic Trajectory with Static Trajectory.
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the dynamic trajectory. By differentiating (58)2 with respect to w', it
may be seen that the points on C satisfy

du 2
P du+ S . Plc w' (69)

At the intersection of C and D, (58) holds as well so that at those
points

du
P 0. (70)

That is, either P = 0 or the slope of C is horizontal.

Now consider further the intersection of surfaces W1 and W2 with
B < o (9 > o). Fig (7d) shows the projection parallel to the u axis of
the widest points of W1 = Wl(w',u). These points correspond to the
curve P = 0 in (7a), and, in fact, the projected potential well in (7d)

generates the static stress/strain curve. The surface W 2 2, c wt - B

is a parabolic cylinder with generators parallel to the u axis. An end
view of the cylinder is shown as the dashed parabola in (7d). Since the
level curves of Q1 are closed, as shown in (7a), and since the level
curves of W are straight lines parallel to the u-axis, the curves C are
qualitatively similar to those sketched in (7c). Thus, for the case
considered, which corresponds to Figure (Sd), the motion lies along D
and either oscillates between points p3 and P4 or begins at p, and moves
to the right until interrupted by an unsteady motion. In eit er case,
note the divergence of D from the curve P = 0.

Other cases for different shapes of the potential well Wl(w',u) may
be considered in a similar manner. However, from teh preceding qualita-
tive discussion it is clear that te cubic expansion in equation (63) leads
to the qualitatively correct curves in the phase plane as shown in
Figures (4) and (5), provided that the function

2 u,) _uu _ 1 2 2
K(u') Q(u')u' - W2(u') p2 c u

2
is monotonic and henci single valued in u' . If this is not the case,
then the curves of u' vs. u in Figures (4), (5), and (6) will have
bifurcation points. The analysis would then be somewhat more complicated
and will not be attempted here.

VII. REMARKS

This report has been motivated by the need to interpret wave propa-
gation experiments in rods and bars. These experiments are of two types.
In one, a cylindrical bar is fired from an air gun so as to impact an
identical bar, which is at rest in an evacuated chamber. The bar at rest
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is instrumented at several stations along its length with foil resistance
strain gages. In the other experiment, a long rod penetrator, whic 3 is
also instrumented with strain gages, is impacted by a target plate.
In either case a transient plastic wave propagates into the bar, strain-
time data are recorded for the instrumented stations of the bar, and
then the data are interpreted with the aid of equations (2). By compar-
ing with streak camera records Hauver bgs shown that (2)1 gives very
accurate results for particle velocity"', but (2)2 always gives higher
stresses than the quasi-static stress-strain curve even though the high
strength sliels and aluminums used are not rate sensitive in Hopkinson
bar tests. The only other source of excess stress that has been
suggested is the effect of finite transverse dimensions, hence the
present interest in a nonlinear theory that accounts for radial motion.

This report has dealt only with nonlinear elastic materials, not
elastic-plastic materials. Nevertheless, there are several results that
are at least suggestive of general features that should apply to the
elastic-plastic case. These are as follows.

a. The averaging in equation (10) and the identifications
made in equations (11) and (12) are independent of constitutive rela-
tions. Therefore, the equations of motion (5) hold for the elastic-
plastic case as well as the elastic case, but of course equations (6)
will not be appropriate then.

b. With v * and e - w' equations (1) are entirely consistent
with (5). As a consequence, if each level of strain propagates at a
constant velocity, experimental data may still be Interpreted through
the use of (2) for both particle velocity and stress. In this Integra-
tion no use is made of (5) so that radial strain u remains undetermined.
In particular, there is no requirement for u to have equilibrium values
corresponding to the strain e. Thus, the computed stress S should be as
accurate as the computed particle velocity * even though S cannot be
measured independently as can *. In a compressive wave the excess
stress may be accounted for by underexpansion in the radial direction
caused by inertial lag.

c. In impact experiments of the type described here it is
commonly observed that the plastic wave speed becomes nearly constant
at the higher values of strain. Thus, steady waves are of interest at

2 least as asymptotic solutions. Because of dissipation it is probably
unreasonable to expect that solitary waves or periodic waves will occur
in elastic-plastic materials, but pure loading waves should be similar

23G. E. Hauver and A. Melani, "Strain-Gage Techniques for Studies of
Projectile Behavior During Penetration," ARBRL-MR-03082., Ballistic

2Research Laboratory, February 1981.
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in either elastic or elastic-plastic materials. Thus, unbounded waves
of the type shown in Figures (4g), (4h), (5c), or (5d) could occur. In
an actual physical problem such a wave must be interrupted by an
unsteady wave or perhaps a free boundary (as in the penetration experi-
ment).

Future work will attempt to elaborate on some of these issues.
Initial-boundary value problems will be posed with an emphasis on
asymptotic solutions. The elastic-plastic case will also be formulated
and the characteristic features of those solutions examined and compared
with elastic solutions.
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