
-AlOl 322 NAVAL POSTGRADUATE
SCHOOL MONTEREY CA

F/6 9/2
VALUES AND OBJECTS IN PROGRAMMING LANGUABES.(U)
APR 81 B J MACLENNAN

CLASSIFIEO NPSSZ-8-OO6 NL

, EEETICili Eiimflllllllni
/mIi

(,

NPS52-81-006/

NAVA1 POSTGRADUATE SCHOOL
Monterey, California

VALUES AND x6JECTS IN PROGRAMMING LANGUAGES,

r Bruce J. /MacLennan /

j

AprR 181

Approved for public release; distribution unlimited.

Prepared for:

Chief of Naval Research "
Arlington, Va. 22217 0 1' ."

81 7 13 047

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Rear Admiral J. J. Ekelund D. A. Schrady

Superintendent Acting Provost

The work reported herein was supported by the Foundation Research

Program of the Naval Postgraduate School with funds provided by the

Chief of Naval Research.

Reproduction of all or part of this report is authorized.

This report was prepared by:

/Assit vCProfssr of

Computer Science

Reviewed by: Released by:

WILLIAM M. TOLLES
Depa tm to o ter Dean of Research

--Science

'p
0

UNCLASSIFIED
SECURITY CLASSIFICATION O THIS PAGE rWIsn !)at& Entered)

READ INSTRUCTIONSREPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
I. REPORT NUMBER 2. OOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBERN52-81-006 L'zzz
4. TITLE (an~td Subtitle) S. TYPE Of REPORT I PERIOD COVERED

Technical

Values and Objects in Programming Languages 6. PERFORMING ORG. REPORT MUMMER

7. AUTHOR() S. CONTRACT OR GRANT NUMIER()

Bruce J. MacLennan
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

AREA A WORK UNIT NUMBIERS

Naval Postgraduate School
Monterey, CA 93940

II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
April 1981

Naval Postgraduate School p NUBER OF PAES

Monterey, CA 93940 25
14. MONITORING AGENCY NAME & ADDRESSI'/1 different from Controlling Ofice) IS. SECURITY CLASS. (of this report)

Unclassified
IS0. DECLASSI FICATION' DOWNGRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, II dillerent ros Report)

IS. SUJPPLEMENTARY NOTES

It. KEY WORDS (Continue on rever.e side it neceseay and Identify by block numiber)

Values, Objects, Value-oriented, Object-oriented, Applicative, Imperative,

Programming style, Pointer, Variable-free, Instances, Names
20. AISTRACT (Continue on reverse aide If necesea y aid Identity by block nimber)

-The terms value-oriented and object-oriented are used to describe both pro-
programming languages and programming styles. This paper will describe the
differences between values and objects and to show that their proper discrimina-
tion can be a valuable aid to conquering program complexity. The first section
will show that values amount to timeless abstractions for which the concepts of
updating, sharing and instantiation have no meaning. The second section will
show that objects exist in time and, hence, can be created, destroyed, copied,
shared and updated. The third section shows that proper discrimination of

DD I 0M3 1473 EDITION OF I NOV 65 IS OBSOLETE UNCLASSIFIED
S11t 0102-014* 6601

SECURITY CLASSIFICATION OF THIS PAGE (When Data -it0S)

h

UNCLASSIFIED
... |4ITy CLASSIFICATION OF THIS PAGE(When Dot Entered)

2Q.

>-these concepts in programming languages will clarify problems such as the role
of state in functional programming. The paper concludes by demonstrating the
use of-the value/object distinction as a tool for program organization.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGIL(W~ha Dota Rntemd)

' -

-1- ~ ~7c 5 ion For m

:T 13 &r.'I
EIC TAB

VALUES AND OBJECTS IN PROGRAMMING LANGUAGES* Uu:.roiuiced
Jiustif icatic

B. J. MacLennan
Di, t ri !-,at Icn/

Availability Codes81/04/13 ...
A ' i . ; ' "I'd/o r --

Spcol al

1. INTRODUCTION

The terms value-oriented and object-oriented are used to

describe both programming languages and programming styles. This

paper will describe the differences between values and objects

and to show that their proper discrimination can be a valuable

aid to conquering program complexity. The first section will

show that values amount to timeless abstractions for which the

concepts of updating, sharing and instantiation have no meaning.

The second section will show that objects exist in time and,

hence, can be created, destroyed, copied, shared and updated.

The third section shows that proper discrimination of these con-

cepts in programming languages will clarify problems such as the

role of state in functional programming. The paper concludes by

demonstrating the use of the value/object distinction as a tool

for program organization.

* The work reported herein was supported by the Foundation
Research Program of the Naval Postgraduate School with funds
provided by the Chief of Naval Research.

i

2-

2. V4LUES

Values are applicative. The ternm value-oriented is most

often used in conjunction with applicative programm~ing, that is,

with programming with pure expressions and without the use of

assignment or other imperative facilities. Ano'her way to put

this is that value-oriented programming is programming in the

absence of side-effects. This style of programming is important

because it has many of the advantages of simple algebraic expres-

sions, viz. that an expression can be understood by understand-

ing its constituents, that the meaning of the subexpressions is

independent of their context, and that there are simple inter-

faces between the parts of the expression that are obvious from

the syntax of the expression. For instance, in 1 + (x-y)Iz, the

meaning of the entire expression is only dependent on the mean-

ings of 1 and (x-y)/z, the meaning of (x-y) is independent of I +

.. /z, and the relation between (x-y) and the rest of the expres-

sion is obvious from the form of the expression.

Primitive values are the paradigms. The idea of values is

most familiar, as the above discussion indicates, in the realm of

numbers. Since numbers have no internal structure, they can only

be combined by the operations (such as +) to yield other numbers.

In programming languages the primitive, or atomic, data such as

integers, reals, Booleans and characters, are usually treated as

values. These are all operated on by side-effect-free operations

-3-

that yield other values. Expressions involving values satisfy

all of the desirable properties listed above (provided they con-

tain no side-effect producing procedures). These primitive data

values provide a model for all other values.

Compound values are also pcssible. It might seem that

values are necessarily restricted to primitive data values, since

a compound data value immediately admits the possibility of

updating a compone~nt of the data value. For instance, arrays

cannot be considered values because of the possibility of updat-

ing one component of the array. This is not essential to the

concept of arrays, however, as we can see by looking at APL. In

this language it is possible to perform extensive computations

with arrays without ever performing an assignment. This i s

because the array is treated as a whole and, instead of updating

4 a component of an array, an entire new array is ccinputed instead.

To put it another way, in APL expressions arrays are treated as

values. Of course, this is not true in APL if one uses the

assignment operation, whi ch does all1ow updat ing of array com-

ponents. A subset of APL without the assignment operator is a

value-oriented language.

Another example of a compound value is a complex number. As

used by mathematicians, these values are operated on by side-

effect-free operations that produce other complex numbers. Of

course, it is possible to extract the real and imaginary parts of

a comipl ex number, or to put two reals together to make a complex

- 4 -

number. What is not possible is the selective updating of one

part of a complex number analogous to the selective updating of

an array component.

Pure LISP is another example of a value-oriented language.

That is, if the PROG feature, EQ, and the RPLACA and RPLACD pro-

cedures are not used, then LISP lists can be treated as mathemat-

ical objects and LISP functions have all the desirable properties

of arithmetic operations. (PROG and the RPLACx functions allow

updating; EQ allows instances to be distinguished)

Hoare, in his Recursive Data Structures, has described how

these ideas can be extended to more general structures. In this

paper Hoare advocates eliminating the pointer from programming

languages in favor of recursive definitions of data types. We

will see later that recursive data types are a natural concommi-

tant of values and that pointers are closely connected with

objects. Hoare shows that if data structures are properly res-

tricted then all pointer manipulation can be performed automati-

cally. This is advantageous because pointers are a common source

of errors, a point elaborated below.

Values are more secure. Consider an expression such as (-

x)/(x+y). There is no chance that the operation (-x) on x will

effect the outcome of (x+y). This is because the thing denoted

by x is a value and the '-' operation has no side-effects. That

is, each part of an expression involving values is independent of

-5-

all the others. One reason for this is that values are read-

only, i.e., it is not possible to update their components. Since

they are unchangable, it is always safe to share values for effi-

ciency; there is never any danger of one expression altering

something which is used by another expression. Any sharing that

takes place is hidden from the programmer and is done by the sys-

tem for more efficienct storage utilization. For example, LISP

systems allow final portions of lists to be shared among any

number of lists. This can never lead to surprising results when

deal ing with values because updating is not allowed. Avoiding

updating eliminates dangling reference problems and simplifies

deallocation.

What are values? We have discussed d number of properties

of values and have presented several examples of them. What

exactly are they? The best examples of values are mathematical

entities, such as integers and real and complex numbers, hence we

may expect to understand values better by understanding these

better.

One characteristic of mathematical entities is that they are

eternal, in the literal sense of being out of time. To put it

another way, the concept of time or duration does not apply to

mathematical entities any more than the concept color applies to

them; they are neither created nor destroyed. When wie write 2+3

there is no implication that 5 has just come into existence and

that 2 and 3 have been consumed; mathematical entities are

-6-

timel ess. Similarly, nuiubers are immutabl e. When we perform the

operation (1+2i)+5 and get 6+2i , vie have not changed 1+2i in any

way. It is not as though wie had changed its real part from 1 to

6. What is it about numbers that give them these properties?

Values are abstractions. The fundamental fact that gives

mnathematical entities and other values these properties is that

they are abstractions, or universals, or concepts. Al though a

full explication of mathematical entities is beyond the scope of

this paper it should be fairly clear that the number 2 is an

abstraction that subsumes all instances of "two-ness." That is,

just as this tree or that tree or another tree are all subsumed

under the concept 'tree', so also this pair or that pair or this

other pair are all subsumed under the concept 2. Abstractions

are universal; the concept 2 subsumes all possible pairs, th-ose

existing, those in our imagination, those that have existed,

those that are yet to exist. This universal nature of abstrac-

tions makes them eternal , or out of time. The number 2 can nei-

ther be created nor destroyed because its existence is not tied

to the creation or destruction of particular pairs. Indeed, the

concept of existence, in its usual sense, is not applicable to

the number 2. It is the same with all values, because all values

correspond to abstractions; they can neither be created nor des-

troyed.

It is also the case that abstractions, and hence values, are

immutable. Suppose there is $2 in someone's bank account, we may

-7-

say there is a pair of dollars in his account. This pair of dol-

lars is subsumed by the abstraction (value) 2. Now suppose that

we increase the balance to $3. Have vie changed the value 2? 'No,

there is now a triple of dollars in his account that is subsumed

* by the value 3, but the value 2 is still unchanged; it still sub-

s ume s all1 the pairs, including that particular pair cf dollars

th at no longer exists. Thus, although values may be operated on,

in the sense of relating values to other values, they cannot beI altered. That is, 2+1=3 states a relation among values; it does

not alter them. Values are eternal and immutable.

There is a possible confusion that must be prevented. When

i n a programming language we assign x the value 2, x:=2, and

later add one to x, x:=x+1, haven't tie changed a number, which is

a value? No, vie haven't; the number 2 has remained the same.

'What we have changed is the number that the name x denotes. We

f can give names to values and we can change the names that we give

to values, but this doesn't change the values. The naming of

values and the changing of names is discussed in a later section.

Values cannot be counted. A corollary of the above is that

there is not such thing as "copies" of a value. This should be

clear from mathematics: it is not meaningful to speak of this 2

or that 2, there is just 2. We say that the number 2 is uniquely

determined by its value. This is because an abstraction is

un iquel y determined by the things which it subsumes, hence, any-

thing which subsumes all possible pairs is the abstraction 2.

-8-

Therefore, the concept 'number' is not even applicable to

abstractions; it makes no sense to ask how many 2's there are.

While it may be meaningful in a programming language to make

another copy of an array, it is pointless to make another copy of

a value; there is no such thing. There is also no reason to make

such a copy since values are immutable. (It is, of course, pos-

sible to make copies of a representation of a value; this is dis-

cussed later.)

It is also meaningless to talk about the sharing of values.

Since values are immutable, and can neither be counted nor

copied, it is irrelevent whether different program segments share

the same value or different "copies" of the value. Of course,

there may be implementation differences. If a long string value

is assigned to a variable it will make a big difference whether a

fresh copy must be made or whether a pointer to the original copy

can be stored. While this is an important implementation con-

cern, it is irrelevent to the semantics of values.

Values are used to model abstractions. We have discussed a

number of the characteristics of values but have not discussed

whether values should be included in programming languages, or,

if they are, what they should be used for. The answer to this

question lies in the relation we have shown between values and

abstractions: values are the programming language equivalent of

abstractions. Thus, values will be most effective when they are

used to model abstractions in the problem to be solved. This is

4 -9-

in fact their usual use, since integer and real data values are

used to model quantities represented by integer and real numbers.

Similarly, the abstraction 'color' may be modeled by values of a

Pascal or Ada enumeration type, (RED, BLUE, GREEN). On the other

hand, it is not common to treat compound data values, such as

complex numbers or sequences, as values. If done, this would

elimiinate one source of errors. Now, value-oriented languages,

such as the languages for data-flow machines and functional pro-

gramming, have only values. Is there any need for objects at

all? This is answered in the following sections.

3. 'OBJECTS

Computing can be viewed as simulation. It has been said

that computing can be viewied as simulation. This is certainly

obvious in the case of programs that explicitly simulate or iodel

some physical situation. The metaphor can be extended to many

other situations. Consider an employee data base; each record in

the data base corresponds to an employee. The data base can be

said to be a simulation, or model, of some aspects of the cor-

poration. Sfimilarly, the data structures in an operating system

*often reflect the status of some objects in the real world. For

* instance, they may reflect the fact that a tape drive is rewind-

ing or in a parity-error status. The data structures can also

reflect logical situations, such as the fact that a tape drive is

assigned to a particular job in the system.

- 10 -

A data structure is needed for each entity. It should be

clear that simulation is simplified if there is a data structure

corresponding to each entity to be simulated; this simplifies the

programming of the simulation by factoring and encapsulating

related information. This is exactly the approach that has been

taken in object-oriented programming languages, such as

Smalltalk. The usual way to structure a program in such a

language is to create an object for each entity in the system

being modeled. These may be real-world objects or objects that

are only real to the application, such as figures on a display

screen. The messages these objects respond to are just the

relevent manipulations that can be performed on the corresponding

real entities. Given this relationship between programming

language objects and real world objects, we will try to clarify

the notion of an object.

What is an object? In our programming environment we have

objects and in the real world we have objects. Just what is an

objct? When we attempt to answer this question we immediately

find ourselves immersed in age-old philosophical problems. In

particular, what makes one object different from another? We can

imagine another typewriter that looks exactly like the one before

us now, sharing every characteristic and attribute of this type-

writer, except being different. That is, it is easy to imagine

two instances of the same typewriter. What makes them different

typewriters? One philosophical answer to this question is to say

that while the two typewriters have the same form, they have

different substance. To put this is more concrete terms, we

coul d say that the two typewriters are al ike i n every way except

that they occupy different regions of space. Now, we find

exactly the same situation arising in programming languages. We

may have two arrays that contain exactly the same values, yet

they are two different arrays. What make them different? We

would say that they occupy different locations. So by analogy,

the form of the array is the order and value of its elements

while the substance of the array is the region of memory it occu-

p ie s.

This is a philosophical problem. There is also a less phi-

losophical way in which we distinguish real world objects: we

give them. proper names. For instance we can use Sam and Joe as

the names of identical twins. Even though each of these entities

is (we can presume) alike in all of its other attributes, they

can always be distinguished by their names. We find an exactly

analogous situation in programming languages. Prograinming

objects, such as the arrays already mentioned, generally have a

unique name: the reference to the object. Tdis is generally

closely related to the region of storage the object occupies.

This is not necessary, however, as we can see by consdering a

file system. It is easy to see that files are objects; it is

quite normal to have two different files with the same contents.

Of course, if the files are to be distinguished, then they must

have distinct names. Incidently, it will also be the case that

they occupy distinct areas of the storage system a fact that we

12

can test by updating one file and observing that the other

doesn't change. Now, for our purposes, we will not be too con-

cerned about what individuatinct element is used; whether it is

some form of unique identification (such as a capability), or

whether it is implicit in the region of storage occupied; we will

assume that each object is different from every other object even

if they contain the same data values. Thus there may be ary

number of instances of otherwise identical objects. This lei4ds

to a number of further consequences.

Objects can be changed. Now vie have said that the identity

of an object is independent of any of its internal properties or

attributes. For instance, even if all of the elements of an

array are changed, it is still the same array (because it occu-

pies the same region of storage). This is of course like real

world objects, for they too can change and retain their identity.

Values, on the other hand can never change. For instance, if we

add 5 to 1+2i, we don't change 1+2i, we produce a new value,

6+2i. This changability, this fact that an object may have one

set of properties at one time and a different set at another

time, is a distinctive feature of objects (and of programs).

Objects have state. This changability of objects leads to

the idea of the state of an object, the sum total of the internal

properties and attributes of an object at a given point in time.

Thus, we can say that the state of an object may be changed in

time. State is of course a central idea in computer science, so

OEM-

- 13-

it is not surprising to find that objects are at the heart of

co,;,iputer science. Since the state of an object can change in

time, it is certainly the case that objects exist "in time",

i.e., they are not eternal like values.

ObLects can be created and destroyed. The fact that objects

are not eternal leads to the conclusion that they can be both

created and destroyed. This is familiar in programming languages

where, for instance, an array may be created every time a certain

block is entered and destroyed every time it is exited. Many

languages also provide explicit means for creating and destroying

objects (e.g., Pascal's 'new' and 'dispose'). Since values are

eternal, it is meaningless to speak of them being either created

or destroyed.

Objects can be abandoned. In many computer systems and pro-

gramming languages it is possible for an object to be abandoned.

That is it may be possible for all possible paths so that object,

and all external relations with that object to be destroyed.

When this occurs it is irrelevent whether the object exists or

not and it can be destroyed automatically, i.e., it can be

reclaimed by garbage collection. This is only possible if it is

not possible to "search" for the object by computing and trying

out references, or by looking for it the way we might look for a

real object, by searching all possible locations. It is also

necessary to consider all external relations in deciding whether

the object has been abandoned. An object that has a correlate on

pI

- 1.4 -

a display screen has an external relation, namely its relation to

that shape on the screen. It is not possible to garbage collect

it even though there may be no references to the object within

the comiputer system. The object nay continue to act indepen-

dently on the display screen. (This would not usually arise in a

real computer system since a potentially active object would

almost always be related to some other object, e.g., a scheduler

tablIe)

Objects can be shared. Since there can be any number of

instances of otherwise identical objects and since objects can

change their properties in time, it is a crucial question whether

an object is shared or not. Suppose A and B are two names for

the same object: an array with the element values (5, 3, 8). If

one subprogram changes the second element of A to 4, then both A

and B will now name objects with the values (5, 4, 8). This is

because A and B are two names for the same object and the object

is still shared even if its properties have changed. Hence, if

subprogram P called the cbject A and subprogram Q cdled the

object 6, then any changes made to the object A by P would be

seen by Q as changes to B. The object is shared. Conversely, if

A and B were the names of two different objects that at some

point in time both happened to have the values (5, 3, 8), then a

change to A would have no effect on the object B; they are two

distinct objects. Such side-effects are common in programming

and are often used by programmers as a way of communicating.

People alIso frequently use shared obj ec ts a s means of

- 15-

communication. For instance, two persons may communicate by

altering the state of a blackboard.

Recall that in our discussion of values we found that the

issue of sharing didn't apply. Whether a particular implementa-

tion chooses to share copies of values or not is irrelevent to

the semantics of the program; it is strictly an issue of effi-

ciency. Sharing is a crucial issue where objects are concerned.

Computer science as objectified mathematics. We can see now

an important difference between the domain of mathematics and the

domain of computer science. lathematics deals with things such

as numbers, functions, vectors, groups, etc. These are all

abstractions, i.e., values. It has been said that the theorems

of mathematics are timeless, and this is literally true. Since

mathematics deals with the relations among values and since

values are eternal, the resulting relations (which are themselves

abstractions and values) are eternal. Conversely, much of com-

puter science deals with objects and with the way they change in

time. State is a central idea. It may not be unreasonable to

call computer science objectified mathematics, or object-oriented

mathematics.

It has frequently been observed that the advantage of appli-

cative programming is that it is more mathematical and eliminates

the idea of state from programming. We can see that this means

that applicative programming deals only with values (indeed,

i

S- 16 -;

several languages for applicative programming are called "value-

oriented" languages). Really, applicative programming is just

mathematics.

These ideas can be summarized in two observations:

Programming is object-oriented mathematics.

Mathematics is value-oriented programming.

These two principles show the unity between the two fields and

isolate their differences.

VALUES AND OBJECTS IN PROGRAMMING LANGUAGES

Most languages confuse them. It should be clear from the

examples that we have used in the previous sections that both

values and objects are accomodated in most programming languages.

This accomodation is usually very asymmetric and ad hoc, however.

For instance, a language such as FORTRAN supports values of

several types, including integers, reals, complex numbers and

logical values. These are all treated as mathematical Values;

for instance, it is not possible to "update" the real part of a

complex number separately from the imaginary part. Of course, it

is possible to store all of these values in variables, but that

is a different issue, as we will see later. On the other hand,

FORTRAN provides objects in the form of updatable, sharable

arrays. This pattern has been followed with few variations in

most other languages. All of these languages unnecessarily tie

- 17 -

the value or object nature of a thing to its type, usually by

treating the atomic data types as values and the compound data

types as objects. We will argue below, that this confusion com-

plicates programming.

Programming languages are most often de f ic ie nt i n thei r

treatment of compound values; in particular, they rarely provide

recursive data types as Hoare described them (Recursive Data

Structures). They tend to confuse the logical issue of whether a

thing should be an object (i.e., it is shared, updatable, des-

troyable, etc.) with the implementation issue of whether it

should be shared for efficiency. We will see how this can be

solved later.

Mathematics deals Poorly with obJects We have said that

mathematics is value-oriented; that is it deals with timeless

relations and operations on abstractions. Concepts that are cen-

tral to objects (and computer science), such as state, updating

and sharing, are alien to mathematics. This is not to say that

it is impossible to deal with objects in mathematics; it is done

every day, only awkwardly. For instance, it is common to deal in

physics with systems that change in time; they are represented

mathematically by functions of an independent variable represent-

ing time. The relationships between objects can be represented

as differential equations (or difference equations if state

changes are quantized). Similarly, mathematics can distinguish

instances of an object by attaching a unique name (generally a

18

natural nuinber) to each instance of a value. For instance, com-

plex objects can be represented by pairs (n, z) , where n is a

number, the object's "name", and z is a complex number. Then (n,

z) and (m, z) are two different instances of the complex number z

if n=m. Also, (n, z) and (n, z') represent two different states

of the same object n. These techniques work but are awkward. A

more fully developed attempt to apply the concepts of mathematics

to the description of objects can be seen in denotational semat-

ics. Here the state is explicitly passed from function to func-

tion to represent its alteration in time.

Fen theory deals poorl with values. In our fen theory

(MacLennan, 1973) we attempted to deal with these problems by

developing an axiomatic theory of objects. This was done in t:o

ways: (1) the axiom1 of set theory that forces two sets with the

same values to be identical was discarded. This permitted multi-

ple instances of the same set. (2) An axiom was inserted that

required there to be at least a countable infinity of instances

of each set. The result was an object-oriented theory of sets

and relations. This worked well for describing many of the pro-

perties of objects and for defining the semantics of those pro-

gramming language constructs that are object-oriented. Unfor-

tunately, it suffered from the dual problem of mathematics: it

was awkward to deal with values. For instance, the complex

number 1+2i would be represented by instances of the relation

(re:1, im:2). But this immediately led to problems. How many

instances should wie let correspond to 1+2i, just one prticular

K - 19-

one, or all of the ones with that structure? And what is 2? Is

it the name of some distinguished object that we have chosen to

represent 2 or does it denote any object with a certain struc-

ture? There are related problems with operations on values. For

instance, which 5 does 2+3 return? These are all problems of

attempting to deal wi th val ues in an object-oriented system.

Values are inherently extensional while fen theory is inherently

intensional (see A Dictionary of Philosophyr, p. 109). The solu-

tion adopted in fen theory was to treat values as equivalence

classes of objects in the supporting logic. This was possible

because that logic was extensional (i.e., value-oriented).

Computers use objects to represent values. These are

exactly the problems that must be faced in dealing with values on

a computer. Abstractions are not physical objects (except so far

as they exist in our brains), so to deal with then. they must be

represented or encoded into objects. We do this when we

represent the number 2 by the numeral '2' or the word 'two' on a

piece of paper. Once a value has been represented as an object

it acquires some of the attributes of objects. For instance,

this '2' is a different instance of the numeral '2' from that in

the previous sentence, and from the second one in this sentence.

Clearly, whenever a value is to be manipulated in a computer it

must be represented as the state of some physical object. Typi-

cally, there will be many such representing objects in a computer

at a time. For instance, 2 may be represented by a bit pattern

in a register and in several memory locations. Therefore,

4 - 20 -

everything "in" a computer is an object; there are no values in

computers. This does not imply, however, that values should be

discarded from programming languages.

Programmers need values. From the programmer's viewpoint

there are both values and objects. Of course, a purely object-

oriented programming language could be designed. This could be

done by storing everything in memory and then only dealing with

the addresses of these things. It would be like having a pointer

to every object. It would then be necessary for the programmer

to keep track of the different instances of what wiere intuhtively

the same value so that he wouldn't accidently update a shared

value or miss considering as equal two instances of the same

value. Some languages actually come close to this, such as LISP

(with EQ and the RPLACx procedures) and Smalitalk. Unless such a

language were carefully designed, it would be almost impossible

to deal with values such as numbers in the usual way.

Programmers need objects. Conversely, programmers need

objects in their programming languages. There have, for sure,

been completely value-oriented programming languages. These

include the FP and FFP systems of Backus (Backus, 1978). It is

interesting to note, however, that Backus went on to define the

AST system, which included the notion of state (and implicitly,

of objects). Applicative languages were originally developed in

reaction to what was surely an overuse of objects and imperative

features in programming. Yet, it seems clear that we cannot

- 21 -

eliminate them from programming without great inconvenience. It

is not uncoammon to see applicative programs pass large data

structures that represent the state of the computation from one

function to the next. The result in such a case is not greater

clarity, but less. We should not be surprised to have to deal

%4ith objects in programming; as we agued before, this is a

natural outgrowth of the fact that we are frequently modeling

real world objects. A better solution than banning objects is to

determine their proper application and discipline their use.

We should use appropriate modeling tools. Programmers

should be clear about what they are trying to model and then use

the appropriate constructs. If they are modeling an abstraction,

such as a number, then they should use values; if they are model-

ing an entity or thing that exists in time, then they should use

an object. This implies that languages should support both

values and objects and the means to use them in these ways. To

put it another way, we must develop an appropriate discipline for

using values and objects and linguistic neans for supporting that

discipline.

Names should be fixed. How can we arrive at such a discip-

line? How can we tame the state? One of the motivations for

value-oriented programming is the incredible complexity that can

result from a state composed of hundreds or thousands of indivi-

dual variables, all capable of being changed (the Von Newmann

bottleneck). We can see a possible solution to this problem by

i

4 - 22 -

locking at natural languages. Generally, a word has a fixed

meaning within a given context. This holds whether the word is a

coiiii-on noun or a proper name. For instance, the word 'tree'

invariably (with multiple meanings differentiated by context)

refers to a particular abstraction. Similarly, the name 'Aristo-

tle' refers to a particular object (one no longer in existence,

in this case). We do not use 'tree' to refer to one abstraction

one moment and another the next, or 'Aristotle' to refer to one

object one moment and another the next. Yet this is exactly what

vie do with variables in programming languages. To the extent

that we need temporary identifiers, natural languages pr ov id e

pronouns. These are automatically bound and have a very limited

scope (generally a sentence or two).

Can these ideas be applied to programming languages? it

would seem so; let's consider the consequences. Suppose that

names in programming languages were always bound to a fixed value

o r o bjec t within a context; effectively all names would be con-

stants. For instance, we could give a name, such as 'pi', to a

value, and we would be able to use built-in names for values,

such as '2'. Similarly, whenever an object was created it could

be given a name (e.g., 'Gibralter') that would refer to that

object until it was destroyed. There would be no "variables"

that can be rebound from moment to moment by an assignment state-

ment. Variables in the usual sense would only be allowed as com-I ponents of the state of an object and the only allowable assign-

ments would be to these components.

4 - 23

Woula it be possible to program in such a language, or would

it be too inconvenient? Without actually designing it, it is

difficult to tell. We can only point to the fact that a consid-

erable amount of good mathematics has been done without the aid

of variables, not to mention a considerable volume dealing with

real world objects. Such a language could provide, as does

mathematics, mechanisms for declaring constants of very local

scope. Some languages do provide these mechanisms already (e.g.,

let t = (a+b)/2 in ..., or sin(t)+cos(t) where t = ...). As sug-

gested by natural languages, it might be possible to provide sore

sort of pronoun facility. Hence, what we are describing is a

programming language that is variable-free, but does not do away

with objects, values, or names.

CONCLUSIONS

In this paper we have distinguished the two concepts 'value'

and 'object'. We have shown that values are abstractions, and

hence eternal, unchangable and non-instantiated. We have shown

that objects correspond to real world entities, and hence exist

in time, are changable, have state, are instantiated, and can be

created, destroyed, and shared. These concepts are implicit in

most programming languages, but are not well delimited.

We claim that programs can be made more managable by recog-

nizing explicitly the value/object distinction. This can be done

by incorporating facilities for handling values and objects in

- 24

programming languages.

REFERENCES

Backus, J., Can programming be liberated from the Von Neumann

style? A functional style and its algebra of programs, CACM 21,

8, August 1978, pp. 613-641.

Flew, A., A Dictionary of Philosophy, St. Martin's Press, New

York, 1979.

Hoare, C.A.R., Recursive Data Structures, Stanford University Com-

puter Science Dept. Technical Report.

MacLennan, B. J., Fen - an axiomatic basis for program semantics,

CACM 16, 8, August 1973, pp. 468-471.

Schoch, J., An overview of the language Smalltalk-72, Sigplan

Notices 14, 9, September 1979, pp. 64-73.

U - KI

a .. - -

-25-

INITIAL DISTRIBUTION LIST

Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22314

Dudley Knox Library 2
Code 0142
Naval Postgraduate School
Monterey, CA 93940

Office of Research Administration1
Code 012A
Naval Postgraduate School
Monterey, CA 93940

Chairman, Code 52Bz 40
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93940

Professor Bruce J. MacLennan, Code 52MI 12
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93940

