F/6 9/2

D=Al01 322 NAVAL POSTGRADUATE SCHOOL MONTEREY CA
VALUES AND OBJUECTS IN PROGRAMMING LANGUAGES.(U)

APR 81 B J MACLENNAN
NPS52-81=-006

NCLASSIFIED
’(m’ IIIIIIIIIIIIIIIIIII|IIII|||IIII||IIII||IIIIIIIIIIII||||||I||IIIII|III|||IIIIII

END 1
 7=8n
bric

NPSSZ 81 -006

% NAVNCPOSTERADUATE SCHOOL

Monterey, California

d

A\
N
™
g
- .
L
<
Q
<

- . ;

SN -
é; ‘ VALUES AND GﬁdECTS IN_PROGRAMMING LANGUAGES
N

o

-—

o / Bruce J./MacLennan /

"/Q ‘7"/ , -"', . 4
AR Iy A

-

Approved for public release; distribution unlimited.

Prepared for:

Chief of Naval Research - ()
Arlington, Va. 22217 <4 / //

81 7 13 047

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Rear Admiral J. J. Ekelund D. A. Schrady
Superintendent Acting Provost

The work reported herein was supported by the Foundation Research ¢
Program of the Naval Postgraduate School with funds provided by the
Chief of Naval Research.]
Reproduction of all or part of this report is authorized. ;
i
This report was prepared by: é
y
1
J
Computer Science
Reviewed by: Released by:
WILLIAM M. TOLLES
Dean of Research
4]
i
-

-
P e -
e N s e <

T Y R o e
PP 2

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE BEF‘},ﬁ’g’ggj}fgg&’g",ﬁom
T REPORT NUMBER 7. GOVT ACCESSION NOJ] 3. RECIPIENT'S CATALOG NUMBER
NPS52-81-006 ADA/01 B R~
4. TITLE (and Subtitle) S. TYPE OF REPORT & AERIOD COVERED
Technical
Values and Objects in Programming Languages 8. PERFORMING ORG. REPOAT NUMBER
T AUTHGR(E) % CONTRACT ORN GRANT NUMBER(S)

Bruce J. MaclLennan

. PERF A ATH N A| A ADDORESS 10. PROGRAM ELEMENT PROJECT, TASK
9 ERFORMING ORGANIZ ON ME AND R A s o I W UMBERS

Naval Postgraduate School
Monterey, CA 93940

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
April 1981

Naval Postgraduate School T UNBER ST PAGES

Monterey, CA 93940 25

. MONITORING AGENCY NAME & ADORESS(/! dilferent from Controlling Ottice) S. SECURITY CL ASS. (of thie report)

Unclassified
18¢. DECLASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Adproved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, it difterent from Report)

18. SUPPLEMENTARY NOTES

19. XEY WORDS (Continue on reverse side if necesaary and identify by block number)

Values, Objects, Value-oriented, Object-oriented, Applicative, Imperative,
Programming style, Pointer, Variable-free, Instances, Names

20. ABSTRACT (Continue on reverse side if necessary and identity by block number)

-The terms value-oriented and object-oriented are used to describe both prod
programming languages and programming styles. This paper will describe the
differences between values and objects and to show that their proper discrimina-
tion can be a valuable aid to conquering program complexity. The first section
will show that values amount to timeless abstractions for which the concepts of
updating, sharing and instantiation have no meaning. The second section will
show that objects exist in time and, hence, can be created, destroyed, copied,

shared and updated. The third section shows that proper discrimination of

DD "5%%: 1473 eoimion oF 1 nov 68 13 casoLETE UNCLASSIFIED

$/N 0102-014-6601 - S
SECURITY CLASSIFICATION OF THIS AAGE (When Data Bntered)

3
4

UNCLASSIFIED

w='URITY CLASSIFICATION OF THIS PAGE(When Deta Entered)

20,

these concepts in programming languages will clarify problems such as the role
| of state in functional programming. The paper concludes by demonstrating the
use of the value/object distinction as a tool for program organization.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Dets Entered)

—_—

1 r .A'r—'l.:.c,'z};Aiér'{ For
HTIS GRL&YL
I'ZIC TAB
VALUES AND OBJECTS IN PRCGRAMMING LAMGUAGES* Uniamounced]
Justification__ |
B. J. MacLennan By
Dictrituticn/
C availability Codes |
31/04/13 ﬁ_ﬁYui;ﬂgl;iLI podes_m-_
Aveii ana/or :
bLisA | Special i
I

1. INTRODUCTION

The terms value-oriented and object-oriented are used to

describe both programming languages and programming styles. This
paper will describe the differences between values and objects

and to show that their proper discrimination can be a valuable

z
§
%,
|
i
‘i

aid tc conquering program complexity. The first section will
show that values amount to timg]ess abstractions for which the
concepts of updating, sharing and instantiation have no meaning.
The second section will show that objects exist in time and,
hence, can be created, destroyed, copied, shared and updated.
The third section shows that proper discrimination of these con-
cepts in programming languages will clarify problems such as the
role of state in functional programming. The paper concludes by
demonstrating the use of the value/object distinction as a tool

for program organization.

* The work reported herein was supported by the Foundation
Research Program of the Naval Postgraduate School with funds
provided by the Chief of Maval Research.

| 2. VALUES

' Values are applicative. The term value-oriented 1is most

often wused in conjunction with applicative programming, that is,
with programming with pure expressions and without the wuse of
assignment or other imperative facilities. Anolher way to put
this is that value-oriented programming 1is programming 1in the

absence of side-effects. This style ¢f programming is important

because it has many of the advantages of simple algebraic expres-
sions, viz. that an expression can be understood by understand-
ing its constituents, that the meaning of the subexpressions s
independent of their <context, and that there are simple inter-
faces between the parts of the expression that are obvious from
the syntax of the expression. For instance, in 1 + (x-y)/z, the
meaning of the entire expression is only dependent on the nmean-
ings of 1 and (x-y)/z, the meaning of (x-y) is independent of 1 +
«eo/2, and the relation between (x-y) and the rest of the expres-

sion is obvious from the form of the expression.

Primitive values are the paradigms. The idea of values s

most familiar, as the above discussion indicates, in the realn of
nuribers. Since numbers have ro internal structure, they can only
be combined by the operations (such as +) to yield other numbers.
In programming languages the primitive, or atomic, data such as
integers, reals, Booleans and characters, are usually treated as

values. These are all operated on by side-effect-free operations

that yield other values. Expressions involving values satisfy
all of the desirable properties listed above (provided they con-
tain no side-effect producing procedures). These primitive data

values provide a model for all other values.

Compound values are also pcssible. It might seem that

values are necessarily restricted to primitive data values, since
a compound data value 1immediately admits the possibility of
updating a component of the data value. For instance, arrays
cannot be considered values because of the possibility of updat-
ing one component of the array. This is not essential to the
concept of arrays, however, as we can see by looking at APL. In
this language it 1is possible to perform extensive computations
with arrays without ever performing an assignment. This s
because the array is treated as a whole and, instead of updating
a component of an array, an entire new array is ccmputed instead.
To put it another way, in APL expressions arrays are treated as
values. Of course, this is not true 1in APL if one wuses the
assignment operation, which does allow updating of array com-
ponents. A subset of APL without the assignment operator is a

value-oriented language.

Another example of a compound value is a complex number. As
used by mathematicians, these values are operated on by side-
effect-free operations that produce other <complex numbers. Of
course, it is possible to extract the real and imaginary parts of

a complex number, or to put two reals together to make a complex

number. What s not possible is the selective updating of one
part of a complex number analogous to the selective wupdating of

an array component.

Pure LISP is another example of a value-criented 1language.
That 1is, if the PROG feature, EQ, and the RPLACA and RPLACD pro-
cedures are not used, then LISP lists can be treated as mathemat-
ical objects and LISP functions have all the desirable properties
of arithmetic operations. (PROG and the RPLACx functions allow

updating; EQ allows instances to be distinguished)

Hoare, in his Recursive Data Structures, has described how

these 1ideas can be extended to more general structures. In this
paper Hoare advccates eliminating the pointer from programming
languages 1in favor of recursive definitions of data types. We
will see later that recursive data types are a natural concommi-
tant of wvalues and that pointers are closely connected with
objects. Hoare shows that if data structures are properly res-
tricted then all pointer manipulation can be performed automati-
cally. This is advantageous because pointers are a common source

of errors, a point elaborated below.

Values are more secure. Consider an expression such as (-

x)/(x+y). There 1is no chance that the operation {(-x) on x will
effect the outcome of (x+y). This is because the thing denoted
by x is a value and the '-' operation has no side-effects. That

is, each part of an expression involving values is independent of

all the others. One reason for this is that values are read-

orly, i.e., it is not possible to update their components. Since
they are unchangable, it is always safe to share values for effi-
ciency; there is never any danger of one expression altering
something which is used by another expression. Any sharing that
takes place is hidden from the programmer and is done by the sys-
tem for more efficienct storage utilization. For example, LISP
systems allow final portions of lists to be shared among any
number of lists. This can never lead to surprising results when
dealing with values because updating is not allowed. Avoiding
updating eliminates dangling reference probliems and simplifies

deallocation.

What are values? We have discussed a4 number of properties

of values and have presented several examples of them. What
exactly are they? The best examples of values are mathematical
entities, such as integers and real and complex numbers, hence we
may expect to understand values better by understanding these

better.

One characteristic of mathematical entities is that they are
eternal, in the 1literal sense of being out of time. To put it
another way, the concept of time or duration does not apply to
mathematical entities any more than the concept color applies to
them; they are neither created nor destroyed. When we write 2+3
there 1is no implication that 5 has just come into existence and

that 2 and 3 have been consumed; mathematical entities are

tineless. Similarly, numbers are immutable. Whnen we perform the
operation (1+2i)+5 and get 6+2i, we have not changed 1+2i in any
vaye. It is not as though we had changed its real part from 1l to

6. What is it about numbers that give them these properties?

Values are abstractions. The fundamental fact that gives

mathematical entities and other values these properties is that

they are abstractions, or universals, or concepts. Although a

full explication of mathematical entities is beyond the scope of
this paper it should be fairly clear that the number 2 is an
abstraction that subsumes all instances of "two-ness." That is,
just as this tree or that tree or another tree are all subsumed
under the concept 'tree', so also this pair or that pair or this
other pair are all subsumed under the concept 2. Abstractions
are universal; the concept 2 subsumes all possible pairs, those
existing, those in our imagination, those that have wexisted,
those that are yet to exist. This universal nature of abstrac-
tions makes them eternal, or out of time. The number 2 can nei-
ther be <created nor destroyed because its existence is not tied
to the creation or destruction of particular pairs. Indeed, the
concept of existence, 1in its usual sense, is not applicable to
the number 2. It is the same with all values, because all values
correspond to abstractions; they can neither be created nor des-

troyed.

It is also the case that abstractions, and hence values, are

immutable. Suppose there is $2 in someone's bank account, we may

say there is a pair of dollars in his account. This pair of dol-
tars is subsumed by the abstraction (value) 2. Now suppose that

ve increase the balance to $3. Have we changed the value 27 No,

there is now a triple of dollars in his account that is subsumed
by the value 3, but the value 2 is still unchanged; it still sub-
sumes all the pairs, including that particular pair cf dollars

that no longer exists. Thus, although values may be operated on,

in the sense of relating values to other values, they cannot be
dltered. That is, 2+1=3 states a relation among values; it does

not alter them. Values are eternal and immutable.

e et S

vj There is a possible confusion that must be prevented. When
in a programming language we assign x the value 2, x:=2, and
later add one to x, x:=x+]1, haven't we changed a number, which is
a value? No, we haven't; the number 2 has remained the same.
What ve have changed is the number that the name x denctes. We)
can give names to values and we can change the names that we give

to values, but this doesn't change the values. The naming of

values and the changing of names is discussed in a later section.

Values cannot be counted. A corollary of the above is that

there is not such thing as "copies"” of a value. This should be

clear from mathematics: it is not meaningful to speak of this 2

or that 2, there is just 2. We say that the number 2 is uniquely
determined by its value. This is because an abstraction s
uniquely determined by the things which it subsumes, hence, any-

thing which subsumes all possible pairs 1is the abtstraction Z.

r' ,
+
o b M s - pen

Therefore, the <concept ‘number' is not even applicabtle to
abstractions; it makes no sense to ask how many <'s there are.
while it may be meaningful 1in a programming language to make
another copy of an array, it is pointless to make another copy of
a value; there is no such thing. There is also no reason to make
such a copy since values are immutable. (It is, of course, pOs-

sible to make copies of a representation of a value; this is dis-

cussed later.,)

It is also meaningless to talk about the sharing of values.
Since values are 1immutable, and can neither be counted nor
copied, it is irrelevent whether different program segments share
the same value or different "copies" of the value. Of course,
there may be implementation differences. If a long string value
is assigned to a variable it will make a big difference whether a
fresh copy must be made or whether a pointer to the original copy
can be stored. While this is an important implementation con-

cern, it is irrelevent to the semantics of values.

Values are used to model abstractions. We have discussed a

number of the <characteristics of values but have not discussed
whether values should be included in programming languages, or,
if they a&are, what they should be used for. The answer to this
gquestion lies in the relation we have shown between values and
abstractions: values are the programming language equivalent of
abstractions. Thus, values will be most effective when they are

used to model abstractions in the problem to be solved. This is

in fact their usual use, since integer and real data values are
used to model quantities represented by integer and real numbers.
Similarly, the abstraction 'color' may be modeled by values of a
Pascal or Ada enumeration type, (RED, BLUE, GREEN). Cn the other
hand, it is not common to treat compound data values, such as
complex numbers or sequences, as values. If done, this would
eliminate one source of errors. MNow, value-criented languages,
such as the languages for data-flow machines and functioral pro-
gramming, have only values. Is there any need for objects at

all? This is answered in the following sections.

3. 0OBJECTS

Computing can be viewed as simulaticn. It has been said

that computing can be viewed as simulation. This is certainly
obvious in the case of programs that explicitly simulate or model
some physical situation. The metaphor can be extencded to many
other situations. Consider an employee data base; each record in
the data base corresponds to an employee. The data base can be
said to be a simulation, or model, of some aspects of the cor-
poration. Similarly, the data structures in an operating systenm
often reflect the status of some objects in the real world. For
instance, they may reflect the fact that a tape drive is rewind-
ing or in a parity-error status. The data structures can also
reflect logical situations, such as the fact that a tape drive is

assigned to a particular job in the system.

- 10 -

A data structure is needed for each entity. It should be

clear that simulation is simplified if there is a data structure
corresponding to each entity to be simulated; this simplifies the
programming of the simulation by factoring and encapsulating
related information. This is exactly the approach that has been
taken in object-oriented programming languages, such as
Smalltalk. The usual way to structure a program 1in such a
language 1is to create an object for each entity in the system
being modeled. These may be real-world objects or objects that
are only real to the application, such as figures on a display
screen. The messages these objects respond to are just the
relevent manipulations that can be performed on the corresponding
real entities. Given this relationship between prcgramming
language objects and real world objects, we will try to clarify

the notion of an object.

What is an object? 1In our programming environment we have

objects and in the real world we have objects. Just what is an
objct? WKhen we attempt to answer this question we immediately
find ourselves immersed 1in age-old philosophical problems. In
particular, what makes one object different from another? We can
imagine another typewriter that looks exactly like the cne before
us now, sharing every characteristic and attribute of this type-
writer, except being different. That is, it is easy to imagine
two instances of the same typewriter. What makes them different
typeuriters? One philosophical answer to this question is to say

that while the two typewriters have the same form, they have

]
.
.
\{F

3w e . .

different substance. To put this 1is more concrete terms, wve

could say that the two typewriters are alike in every way except
that they occupy different regions of space. Now, we find
exactly the same situation arising in programming languages. We
may have two arrays that contain exactly the same values, yet
they are two different arrays. What make them different? Ke
would say that they occupy different locations. So by analogy,
the form of the array is the order and value of 1its elements
while the substance of the array is the region of memory it occu-
pies.

This is a philosophical problem. There is also a less phi-

L LLE -4

losophical way 1in which we distinguish real world objects: we
give them proper names. For instance we can use Sam and Joe as
the names of identical twins. Even though each of these entities
is (we can presume) alike in all of its other attributes, they
can always be distinguished by their names. We find an exactly
analogous situation in programming languages. Programming
objects, such as the arrays already mentioned, generally have a
unique narme: the reference to the object. Tdis is generally
closely related to the region of storage the object occupies.
This is not necessary, however, as we can see by <consdering a
file system. It 1is weasy to see that files are objects; it is
quite normal to have two different files with the same contents.
0f course, 1if the files are to be distinguished, then they must
have distinct names. Incidently, it will also be the <case that

they occupy distinct areas of the storage system a fact that we

- 12 -

can test by updating one file and observing that the other
doesn't change. Now, for our purposes, we will not be too con-

cerned about what individuating element is used; whether it s

some form of wunique identification (such as a capability), or
whether it is implicit in the region of storage occupied; we will
assune that each object is different from every other object even
if they contain the same data values. Thus there may be ary
nunber of instances of otherwise identical objects. This leads

to a number of further consequences.

Objects can be changed. Now we have said that the identity
of an object is independent of any of its internal properties or
attributes. For instance, even if all of the elements of an
array are changed, it is still the same array (because it occu-
pies the same region of storage). This is of course 1like real
world objects, for they too can change and retain their identity.
Values, on the other hand can never change. For instance, if we
add 5 to 1+2i, we don't change 1+2i, we produce a new value,
6+2i. This changability, this fact that an object may have one
set of properties at one time and a different set at another

time, is a distinctive feature of objects (and of programs).

Objects have state. This changability of objects leads to

the idea of the state of an object, the sum total of the internal

properties and attributes of an object at a given point in time.
Thus, we can say that the state of an object may be changed in
State

time. is of course a central idea in computer science, $sO

- 13 -

it is not surprising to find that objects are at the heart of
computer science. Since the state of an object can change in
time, it is certainly the case that objects exist "in time",

i.e., they are not eternal like values.

Qbjects can be created and cdestroyed. The fact that objects

are not eternal leads to the conclusion that they can be both
created and destroyed. This is familiar in programming languages
where, for instance, an array may be created every time a certain
block is entered and destroyed every time it is exited. Many
languages also provide explicit means for creating and destroying
objects (e.g., Pascal's ‘'new' and 'dispose'). Since values are
eternal, it is meaningless to speak of them being either created

or destroyed.

Objects can be abandoned. In many computer systems and pro-

gramming languages it is possible for an object to be abandoned.
That is it may be possible for all possible paths so that object,
and all external relations with that object to be destroyed.
When this occurs it is irrelevent whether the object exists or
not and it can be destroyed automatically, i.e., it can be
reclaimed by garbage collection. This is only possible if it is
not possible to "search" for the object by computing and trying
out references, or by looking for it the way we might look for a
real object, by searching all possible locations. It is also
necessary to consider all external relations in deciding whether

the object has been abandoned. An object that has a correlate on

14
1
5
H
z

I " *Fww--u-w--...!_._._______._.-.

- 14 .

a display screen has an external relation, namely its relation to
that shape on the screen. It is not possible to garbage collect
it even though there may be no references to the object within
the computer system. The object may continue to act indepen-
dently on the display screen. (This would not usually arise in a
real computer system since a potentially active object would
almost always be related to some other object, e.g., a scheduler

table).

Objects can be shared. Since there can be any number of

instances of otherwise identical objects and since objects can
change their properties in time, it is a crucial question whether
an object is shared or not. Suppose A and B are two names for
the same object: an array with the element values (5, 3, 8). If
one subprogram changes the second element of A to 4, then both A
and B will now name objects with the values (5, 4, 8). This s
because A and B are two names for the same object and the object
is still shared even if its properties have changed. Hance, 1i{f
subprogram P called the <cbject A and subprogram Q ca'led the
object B, then any changes made to the object A by F would be
seen by Q as changes to B. The object is shared. Conversely, if

A and B were the names of two different objects that at some

point in time both happened to have the values (5, 3, 8), then a
change to A would have no effect on the object B; they are two
distinct objects. Such side-effects are common in programming
and are often used by programmers as a way of communicating.

People also frequently use shared objects as means of

- 15 -

communication. For instance, two persons may <communicate by

altering the state of a blackboard.

Recall that in our discussion of values we found that the
issue of sharing didn'c apply. Whether a particular implementa-
tion chooses to share copies of values or not 1is irrelevent to
the semantics of the program; it is stricily an issue of effi-

ciency. Sharing is a crucial issue where objects are concerned.

Computer science as objectified mathematics. We can see now

an important difference between the domain of mathematics and the
domain of computer science. Mathematics deals with things such
as numbers, functions, vectors, groups, etc. These are all
abstractions, i.e., values. It has been said that the theorems
of mathematics are timeless, and this is literally true. Since
mathematics deals with the relations among values and since
values are eternal, the resulting relations (which are themselves
abstractions and values) are eternal. Conversely, much of com-
puter science deals with objects and with the way they change in
tiwe. State is a central idea. It may not be unreasonable to
call computer science gbjectified mathematics, or object-oriented

mathematics.

It has frequently been observed that the advantage of appli-
cative programming is that it is more mathematical and eliminates
the idea of state from programming. We can see that this means

that applicative programming deals only with values (indeed,

D R et

o

® TR Getoeetrs -

- 16 -

several languages for applicative programming are called ‘"value-
oriented" languages). Really, applicative programming is just

mathematics.

These ideas can be summarized in two observations:

Programming is object-oriented mathematics.

Mathematics is value-oriented programming.

These two principles show the unity between the two fields and

isolate their differences.

VALUES AND OBJECTS IN PROGRAMMING LANGUAGES

Most languages ccnfuse them. It should be clear from the

examples that we have wused in the previous sections that both
values and objects are accomodated in most programming languages.
This accomodation is usually very asymmetric and ad hoc, however.
For instance, a language such as FCRTRAN supports values of
several types, including integers, reals, complex numbers and
logical values. These are all treated as mathematical Values;
for instance, it is not possible to "update" the real part of a
complex number separately from the imaginary part. Of course, it
is possible to store all of these values in variables, but that
js a different issue, as we will see later. On the other hand,
FCRTRAN provides objects in the form of updatable, sharable
arrays. This pattern has been followed with few variations in

most other languages. Al1l of these languages unnecessarily tie

- [
ad m e i b P SN

- 17 -

the value or object nature of a thing to its type, wusually by

treating the atomic data types as values and the compound data

types as objects. We will argue below, that this confusion com-

plicates programming.

Programming languages are most often deficient in their
treatment of compound values; in particular, they rarely provide

recursive data types as Hoare described them (Recursive Data

Structures). They tend to confuse the logical issue of whether a
thing should be an object (i.e., it is shared, wupdatable, des-

troyable, etc.) with the implementation issue of whether it

should be shared for efficiency. We will see how this can be

solved later.

tathematics deals poorly with objects. We have said that

mathematics is value-oriented; that 1is it deals with timeless
relations and operations on abstractions. Concepts that are cen-
tral to objects (and computer science), such as state, updating
and sharing, are alien to mathematics. This is not to say that
it is impossible to deal with objects in mathematics; it is done
every day, only awkwardly. For instance, it is common to deal in
physics with systems that change in time; they are represented
mathematically by functions of an independent variable represent-
ing time. The relationships between objects can be represented
as differential equations (or difference equations if state

changes are quantized). Similarly, mathematics can distinguish

instances of an object by attaching a unique name (generally a

- 18 -

natural number) to each instance of a value. For instance, com-
plex objects can be represented by pairs {(n, z), where n 1is a
number, the object's "name", and z is a complex number. Then (n,
z) and (m, z) are two different instances of the complex number z
if n=m. Also, (n, z) and (n, z') represent two different states
of the same object n. These techniques work but are awkward. A
more fully developed attempt to apply the concepts of mathematics
to the description of objects can be seen in denotational semat-
ics. Here the state is explicitly passed from function to func-

tion to represent its alteration in time.

Fen theory deals poorly with values. In our fen theory

(MacLennan, 1973) we attempted to deal with these problems by
developing an axiomatic theory of objects. This was done in two
ways: (1) the axiom of set theory that forces two sets with the
same values to be identical was discarded. This permitted multi-
ple instances of the same set. (2) An axiom was inserted that
required there to be at least a countable infinity of instances
of each set. The result was an object-oriented theory of sets
and relations. This worked well for describing many of the pro-
perties of objects and for defining the semantics of those pro-
gramming language constructs that are object-oriented. Unfor-
tunately, it suffered from the dual problem of mathematics: it
was awkward to deal with values. For instance, the complex
number 1+2i would be represented by instances of the relation
(re:1, im:2). But this immediately led to problems. How many

instances should we let correspond to 1+2i, just one prticular

e

one, or all of the ones with that structure? And what is 27 Is
it the name of some distinguished object that we have chosen to
represent 2 or does it denote any object with a certain struc-
ture? There are related problems with operations on values. For
instance, which 5 does 2+3 return? These are all problems of
attempting to deal with wvalues 1in an object-oriented system.

Values are inherently extensional while fen theory is inherently

intensional (see A Dictionary of Philosophy, p. 109). The solu-

tion adopted in fen theory was to treat values as -equivalence
classes of objects in the supporting logic. This was passible

because that logic was extensional (i.e., value-oriented).

Computers wuse objects to represent values. These are

exactly the problems that must be faced in dealing with values on
a computer. Abstractions are not physical objects (except so far
as they exist in our brains), so to deal with them they must be
represented or encoded into objects. We do this when we
represent the number 2 by the numeral '2' or the word 'twe' on a
piece of paper. Once a value has been represented as an object
it acquires some of the attributes of objects. For instance,
this '2' is a different instance of the numeral '2' from that in
the oprevious sentence, and from the second one in this sentence.
Clearly, whenever a value is to be manipulated in a computer it
must be represented as the state of some physical object. Typi-
cally, there will be many such representing objects in a computer
at a time. For instance, 2 may be represented by a bit pattern

in a register and in several memory 1locations. Therefore,

T e S AN K I 1

- 20 -

everything in" a computer is an object; there are no values 1in
computers. This does nct imply, however, that values should be

discarded from programming languages.

Programmers need values. From the programmer's viewpoint

there are both values and objects. Of course, a purely object-
oriented programming language could be designed. This could be
done by storing everything in memory and then only dealing with
the addresses of these things. It would be like having a pointer
to every object. It would then be necessary for the programmer
to keep track of the different instances of what were intuhtively
the same value so that he wouldn't accidently update a shared
value or miss considering as equal two instances of the same
value. Some languages actually come close to this, such as LISP
(with EQ and the RPLACx procedures) and Smalltalk. Unless such a
language were carefully designed, it would be almost impossible

to deal with values such as numbers in the usual way.

Programmers need objects. Conversely, programmers need

objects in their programming languages. There have, for sure,
been completely value-oriented programming lanquages. These
include the FP and FFP systems of Backus (Backus, 1978). It is
interesting to note, however, that Backus went on to define the
AST system, which included the notion of state (and implicitly,
of objects). Applicative languages were originally developed in
reaction to what was surely an cveruse of objects and imperative

features in programming. VYet, it seems clear that we <cannot

eliminate them from programming without great inconvenience. It
is not uncommon to see applicative programs pass large data
structures that represent the state of the computation from one
function to the next. The result in such a case is not greater
clarity, but 1less. We should not be surprised to have to deal
with objects in programming; as we agued before, this 1is a

natural outgrowth of the fact that we are frequently modeling
real world objects. A better solution than banning objects is to

determine their proper application and discipline their use.

We should use appropriate modeling tocls. Programmers

should be clear about what they are trying to model and then use
the appropriate constructs. If they are modeling an abstraction,
such as a number, then they should use values; if they are model-
ing an entity or thing that exists in time, then they should wuse
an object. This 1implies that languages should support both
values and objects and the means to use them in these ways. To
put it another way, we must develop an appropriate discipline for
using values and objects and linguistic means for supporting that

discipline.

Names should be fixed. How can we arrive at such a discip-

line? How can we tame the state? One of the mctivaticns for
value-oriented programming is the incredible complexity that can
result from a state composed of hundreds or thousands of indivi-
dual variables, all capable of being changed (the Von MNewmann

bottleneck). We can see a possible solution to this problem by

- 22 -

locking at natural languages. Generally, a word has a fixed
meaning vwithin a given context. This holds whether the word is a
CORKLION nNnoun or 4 proper name. For instance, the word 'tree'
invariably (with multiple meanings differentiated by context)
refers to a particular abstraction. Similarly, the name ‘Aristo-
tle' refers to a particular object (one no longer in existence,
in this case). We do not use 'tree' to refer to one abstraction
one moment and another the next, or 'Aristotle' to refer to one
object one moment and another the next. Yet this is exactly what
we do with variables in programming languages. To the extent
that we need temporary identifiers, natural Tlanguages oprovide
pronouns. These are automatically bound and have a very limited

scope (generally a sentence or two).

Can these ideas be applied to programming languages? It
vwould seem so; Tlet's consider the consequences. Suppose that
names in programming languagdes were always bound to a fixed value
or object within a context; effectively all names would te con-
stants. For instance, we could give a name, such as 'pi', tc a
value, and we would be able to use built-in names for values,
such as '2'., Similarly, whenever an object was created it <could
be given a name (e.g., ‘'Gibralter') that would refer to that
object until it was destroyed. There would bte no "variables"
that can be rebound from moment to moment by an assignment state-
ment. Variables in the usual sense would cnly'be allowed as com-
ponents of the state of an object and the only allowable assign-

ments would be to these components.

- 23 - 4

Would it be possible to program in such a language, or would
it be too inconvenient? Without actually designing it, it 1is
difficult to tell. We can only point to the fact that a consid-

erable amount of good mathematics has been done without the aid

of variables, not to mention a considerable volume <dealing with ;
real world objects. Such a language <could provide, as does
mathematics, mechanisms for declaring constants of very loca!l
scope. Some languages do provide these mechanisms already (e.g.,

let t = (a+b)/2 in ..., or sin(t)+cos(t) where t = ...). As sug-

gested by natural languages, it might be possible to provide some
sort of pronoun facility. Hence, what we are describing 1is a
programming language that is variable-free, but does not do away

with objects, values, or names.

- CONCLUSIONS :

G A A A b =)

In this paper we have distinguished the two concepts 'value'

T

and 'object'. We have shown that values are abstractions, and
hence eternal, unchangable and non-instantiated. We have shown
that objects correspond to real world entities, and hence exist
in time, are changable, have state, are instantiated, and can te
created, destroyed, and shared. These concepts are implicit in

most programming languages, but are not well delimited.

3 We c¢laim that programs can be made more managable by recog-

nizing explicitly the value/object distinction. This can be done

by incorporating facilities for handling values and objects in

.
K

programming languages.

REFERENCES

Backus, J., Can programming be liberated from the Von MNeumann
style? A functional style and its algebra of programs, CACM 21,

8, August 1978, pp. 613-641.

Flew, A., A Dictionary of Philosophy, St. Martin's Press, New

York, 1979.

Hoare, C.A.R., Recursive Data Structures, Stanford University Com-

puter Science Dept. Technical Report.

MacLennan, B. J., Fen - an axiomatic basis for program semantics,

CACM 16, 8, August 1973, pp. 468-471.

Schoch, J., An overview of the Tlanguage Smalltalk-72, Sigplan
Notices 14, 9, September 1979, pp. 64-73.

- 25 -

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Cameron Station
Alexandria, VA 22314

Dudley Knox Library

Code 0142

Naval Postgraduate School
Monterey, CA 93940

Office of Research Administration
Code 012A

Naval Postgraduate School
Monterey, CA 93940

Chairman, Code 5282

Department of Computer Science
Naval Postgraduate School
Monterey, CA 93940

Professor Bruce J. MacLennan, Code 52M]
Department of Computer Science

Naval Postgraduate School

Monterey, CA 93940

40

12

