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1. Introduction

I This report describes research performed by L.N.K Corporation for

USAETL during the approximate period of 1 Sept 1978 through 1 Dec 1980. The

study was directed toward the use of knowledge in automatic image analysis

3 and toward map-guided image analysis in particular and represents a continua-

tion of studies for Wright Patterson Air Force Base by L.N.K. During the

period of this report L.N.K. converted algorithms to run on a Hewlett-Packard

real-time system at the Research Institute, USAETL, and experimented with these

algorithms on imagery of interest to USAETL. The procedures and results are

Idiscussed in Sections 2 to 6.

I
1.1 Problems addressed

Past research has indicated that a large amount of prior knowledge

must be brought to bear on the problem of interpreting imagery whether it is

Idone by man or machine. Image analysis by computer thus leads into studies

of knowledge representation and application, which is currently a very

active field in artificial intelligence (A.I.) The work reported here limits

the form of possible knowledge sources to those which relate to the 2-D or 3-D

spatial geometry of the real world. The resulting knowledge is "iconic" and

can be represented in a fashion similar to the geographic data base (GDB)

that contains encodings of the earth's features addressed by geographic coordinates.

By using iconic knowledge, the image interpretation paradigm

becomes a three step process. First, some primitive features of the

imagery must be recognized without any area-specific knowledge. Typically

I
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these features would be major lineals or boundaries of objects such as

ponds or buildings. Secondly, the imagery is aligned or registered with

the GDB by drawing correspondences between the image features

and their iconic analogues in the GDB. The matching is formalized by

derivation of a transformation which maps points (x,y) of the image to

points (u,v) in GDB coordinates. The third and final step in the paradigm

is to analyze the remaining parts of the image which were not successfully

interpreted in steps 1 and 2. This implies a top-down search for image

structures which correspond to features in the GDB.

The paradigm is not the most general. It assumes that a map or

GDB already exists. Also it does not provide for all forms of knowledge --

for instance, that roads tend to intersect or that water runs downhill.

However, there are important problems to study. For step 1 we need to

find feature extraction procedures that are reliable enough to detect

major features in a variety of imagery. For step 2 we need to have a

method of determining a global registration transform using the ambiguous

and errorful information from local feature correspondences. Finally,

for step 3 a method of verifying GDB features in the imagery is required

as well as a method for recording positive change which should be entered

into the GDB. These three problems are addressed in Sections 2,3, and 4

respectively. Section 2 treats primitive extraction. The emphasis is

currently on lineal, point and region features only. A method for automatically

inferring a rotation and translation transforming image to map is given

in Section 3. Classification of registered regions is discussed in Section

4. Verification of lineal CDB features in grey-scale imagery is introduced

in Section 5.
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1.2 L.N.K. related research and software developmentI
More than 2 years of related research by L.N.K. for Wright

Patterson Air Force Base has been reported in Stockman (19791. The techniques

and software developed in that study were carried forward into the current

research. Thus results reported here represent a second iteration of improve-

ment of techniques and testing on a wider variety of images. Prior work was

done on digitized images stored on disk files. This report describes image

processing performed using on-line analogue image storage sampled by a 32x32

pixel digital array sensor positioned under program control. The three soft-

ware subsystems implemented at USAETL are the feature detection subsystem dis-

cussed in Section 2, the registration subsystem discussed in Section 3, and

the verification subsystem documented in Section 5. These subsystems are

detailed in the Appendices.

1.3 Sample data sets

The experiments discussed in Sections 2 thru 5 used the images

shown in Figures 1.1 thru 1.3. Tables 1.1 and 1.2 give coordinates

of selected points labeled on the images. This data was chosen because of

rich straight line structure which the existing techniques had been

developed to handle. Terrain with less man-made structure will be

handled later when feature extraction techniques are further developed.

Li3
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Figure 1.1 Aerial photo over midwestern U.S. referred to
as "4621"



I

Table 1.1 Digitization of points on 4621 image using Talos digitizer,
(0.001 inch resolution) and scanning stage (0.0005 inch

resolution)

IMAGE PT # TALOS STAGE DESCRIPTION

x y x yI
1 2498 3641 5000 5000 X (origins)
2 4365 2747 8722 6803 T
3 5583 219] 11120 8052 X
4 3044 4744 3913 7203 T
5 3342 5357 3314 8405 T

6 3611 5908 2814 9511 T
7 1980 6678 - - T
8 3975 5750 3508 9946 T
9 5516 5073 6563 11448 T

10 7130 3514 10964 12108 T

11 7430 4091 10367 13304 L
12 7723 4700 9866 14600 L
13 8642 4258 - - X
14 6952 3223 11209 11461 A
15 6942 3613 10565 12000 L

16 7233 4181 10010 13101 T
17 4861 7575 1710 13600 X
18 5980 7667 - - Y
19 6444 7480 - - T
20 9471 6190 - - T

21 5013 7886 1399 14295 A
22 4480 7729 - - T

23 7346 9632 - - A
24 9282 5763 - - A
25 9700 6104 - - Y

26 5279 7999 1513 14804 A
27 4010 1991 9388 5480 A
28 5480 2552 - - L
29 4808 2527 - - A

5
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Figure 1.2 Aerial photo over Frapnc. referre.,! to, as
"DREUX 13". (See, Figure I. to lr
stereo mate.)
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Figure 1.3 Aerial photo over France referred to a--
"DRULX 12" (See Fi gure 1, . 2 for
stereo mate).



Table 1.2 Digitization of points on Dreux image (using Talos digitizer,
0.001 inch resolution.)

IMAGE PT # DREUX 13 DREUX 12 DESCRIPTION

X Y X Y

1 8141 3564 7004 2264 field corher (origin)
2 7199 3140 6271 1567 Y road intersect
3 7016 2615 6277 1014 Y road intersect
4 6514 3255 5573 1448 T road intersect
5 5954 4274 4723 2247 X intersect, road & RR

6 5858 4654 4504 2563 nose point on road
7 5073 4382 3846 2055 corner of dark field
8 7858 6572 5756 4985 corner of dark field
9 5070 2974 4307 733 corner of dark field

10 7493 2257 6835 823 T road intersect

Ii 8128 5648 6313 4207 X or T road intersect
12 7160 3723 6041 2103 T road intersect
13 7115 2473 6414 909 Y road intersect
14 7621 2390 6921 982 T road intersect
15 4680 5822 3007 3277 T road intersect

16 4676 9032 1973 6288 X intersect, road & RR
17 3981 7597 1788 4724 T road intersect
18 3719 7055 1726 4125 X road intersect
19 3559 6595 1705 3644 Y road intersect
20 2940 4797 - - Y road intersect

21 2417 3261 - - T road intersect
22 8052 6252 6055 4737 Y road intersect
23 7910 3819 6720 2432 T road intersect
24 8178 5769 6342 4313 on straight of road
25 5551 4671 4226 2475 on straight of road

26 5062 5221 3606 2802 on straight of road

8



1.4 Laboratory configuration, parameters, and definitions

The laboratory environment used for the experiments is described

here and is diagrammed in Figure 1.6. As Figure 1.6 shows, the ROSA system

allows a computer program to directly interact with an image stored on film.

A small window on the film (about 1/8") can be imaged onto -. 32 by 32 element

photo diode array which is then sampled and converted to 10-bit digital values

for consumption by the program. The end result is 1024 integer values in a

2-D FORTRAN array. Using executive calls a FORTRAN program can position the

stage to any point in the selected 5 inch x 5 inch area and on a CRT display

the user can view the current window.

Using a mirror as a switch, the laser beam passing through the

film could be sent to an electro-optical subsystem which computes the Fourier

Transform and makes it available to the program. The term "ROSA" originally

meant "Recording Optical Spectrum Analyzer" and is till used although not

descriptive of the current optical/digital sampling system which has evolved.

Table 1.3 contains a summary of the parameters and definitions used

in the image processing environment. Note the difference in resolution of the

different units of hardware. The stage used to move the film is driven in

units of one-half mil. The photo-diodes of the array are, however, on 4 mil

centers. The x-y-digitizer, on the other hand, has a resolution of 1 mil.

Thus there are many scale changes required by a program which measures objects

on the film and relates them to objects digitized by hand from a paper map.

19



x-y
DIGITIZER

DISK

INTERLCSIO

Figure .6 Diagam of TSrelteime
samplingSystem.

ARRAY IM1 G



Table 1.3

Parameters and definitions for ETL ROSA Lab environment

mil one thousandth of an inch

pixel a 10-bit integer measuring the intensity transmitted by

a 4 mil x 4 mil square portion of film.

array a 32 x 32 2-D array of light sensitive detectors used

to sample film and create a 32 x 32 element 2-D matrix of

pixels for computer processing.

stagel stage element or resolution of stage movement which is

0.5 mil. Each pixel is thus 8 stagels on a side.

window that portion of the film that can be sampled at

a given stage position; representing an area 0.128 x 0.128

inches square or 32 x 32 pixels each 4 mils on a side.

registration obtaining a transformation T(x,y) = (u,v) which transforms

an image point (x,y) into its correbponding map point (u,v).

J In this report T consists of a rotation 0 with 00<0<3600

and a translation no more than half the image diameter.

!I
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1.5 Image processing conventions and methodology.

Images placed on the stage were always addressed in stage coordi-

nates with the "center" pixel, x=16 and y=1 6 , denoting the window position.

An outstanding pass point was selected as a logical origin for each pic-

ture and computer processing was always begun with this point in the cen-

ter of the window. The results reported here were often obtained by making

several different runs with possible removal of the image from the stage

in the interim. For the image 4621 the point #1 was chosen as the logical

origin and was assigned coordinates x=5000, y=5000, as shown in Table 1.1.

Clearly, repeatability of the image addressing is dependent on the care

taken to mechanically set up the film and viewing equipment (stage, mount,

mirror, etc) and is probably no better than about 0.01 inch for the variety

of experiments reported.

12
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2. Feature Detection

Most L.N.K. studies have been concerned with lineal and point

features only; regional analysis is addressed somewhat later in the sec-

tion. By lineal features we mean continuous curves which define the

boundary between regions of tonal contrast. Usually these curves define

a feature of interest to the mapping community such as a stream, road, or

side of a building. Field boundaries can also yield prominent lineals

in an image and may or may not be of interest in the interpretation of

imagery.

The beginning parts of this section of the report are devoted to

edge detection. Here, the concept of lineal is almost synonomous with the

term "edge" used in the literature. The fine difference is that a true

lineal feature (i.e. a road or river) is 2-D and actually is characterized

by 2 edges, one on each side of the road for instance.

Point features are defined from certain lineal features. For

example, points of intersection or of high curvature can provide unique

features of the image for registration and/or interpretation. Point fea-

tures can also be defined as the centers of small identifiable regions

such as buildings or ponds.

By using only lineals and points a very efficient image abstrac-

tion is rendered which can be of immediate use in registering

images or in the partial interpretation of imagery. Some very successful

registration experiments using only edge or point data are reported in

Section 3. The rest of this section treats edge, point, and region extrac-

tion.

13



2.1 Gradient Operator and Masking

A point can be discovered to be an edge point by testing the

tonal values in halfplanes on either side of the point. Figure 2.1 shows

the 32 directions for edges that were used in the reported research. A

general purpose routine (RPSML) exists which can differentitate either

8, 16 or 32 directions around the circle. Three "masks" for computing

directional gradient values are shown in Figure 2.2. Direction d = I is

the vertical direction with higher tones at the right while direction d 7

is nearly horizontal with higher tones below. Given a pixel (x,v) in the

image, the gradient magnitude in each direction d = 1,2,...,32 can be

computed by adding and subtracting tonal values as indicated by the masks

in Figure 2.2. Division by a normalization factor is performed to take into

consideration the number of pixels used and to make the magnitude geometri-

cally isotropic. The magnitude and direction of the gradient at (x,v) is

taken to be the magnitude and direction where a maximum is achieved. Note

that for d = 17 the mask for d = 1 could be used with reversal of the sign

on the magnitude, so that only 16 masks are actually applied. Only 4

directions are tried at resolution 8. The points selected for the masks

sometimes differ from the ideal due to implementation considerations.

Points of weak gradient magnitude may be detected from a repre-

sentation of the image as shown in Figure 2.3 which shows the results of a

gradient computation on an image of an airplane wing. The arrows indicate

gradient direction and show that the background tones are of higher value

than the tones on the wing itself. The lower edge of the wing has orienta-

tion of about 13 while those on the top edge are roughly 30. Note that the

"USAF" symbols on the wing create much structured gradient activity but that

resolution is not fine enough for recognition.

14 i
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Figure 2.2 Three masks used for computing the gradient at
a point in directions 1,4, and 7. The directional
resolution is one 32nd of the circle; N is the
normalization factor. Edge directions of 1,4,
and 7 are indicated by the arrows.
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Figure 2.3 Gradient direction of high contrast

points of right airplane wing.
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Quite often, the presence of one edge will interfere with the detection

of a neighboring edge. This is particularly true if only a limited

fraction of the image points with high gradient magnitudes are selected

to represent the image. In order to search for edges in the neighborhood

of previously detected edges we could suppress the known edge points to

remove the interference with the detection of other edge points. Conversely,

to extend an existing edge segment we could suppress points of incompatible

gradient directions in order to enhance the detection of continuing edge

points.

Point masking can be done when the gradient image is computed by

applying either locational or directional constraints (masks) as shown

in Figure 2.4. A program EDGEY (see Appendix C) uses such masking -

first to extend existing edges by suppression of competing gradient

directions and then to suppress the existing edges in order to detect

intersecting edges. In fact, to detect road intersections, two direc-

tional masks must be set, one for each side of the known road.

18
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(AX,AY)

x Point (x,y) where

alx + bly + c < 0
X0

S and

a2 x +b 2 y + c2 > 0

x
0 can be masked off

(BX,BY)

id
Point (x,y) with gradient

direction d such that

d I 'dd 2  can be

masked off.
xd 2

Figure 2.4 (a) Points near a known edge (AX,AY) - (BX,BY)
can be masked off by their location with
respect to two halfplanes or

(b) points with gradient direction in a

certain range can be masked off.
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2L.2 Continulous Edge Linking

By examining the neighbors of edge pixels It Is sometimes possihle

to determine the two pixels which continue the edge in the forward and

backward direction. (Forward edge traversal by definition keeps higher

tonal values toward the right.) Continuation can be determined from the

spatial orientation of the neighbors and the gradient direction of the

neighbors, all relative to that of the original pixel.

When determining which neighbor is the best forward and backward

continuation a variable sized neighborhood is scanned in a spiral pattern

for the first satisfactory neighbor. See Appendix B (/RPSCH/ common) for

definition of the spiral pattern.

Stockman [1979] contains a detailed discussion of continuous edge

linking. Figure 2.5 shows best forward and backward linking done for

all pixels shown in Figure 2.3. (Done by program RPSWK.) A second global

process can extract long chains of points which mutually link to each

other and which have above threshold length. Figure 2.6 shows the long

chains derived from the data in Figure 2.5. (Program RPSLK extracts the

chains.)

Chains of 15 or more pixels were extracted from the imagery

sampled in the ETL ROSA lab. Often these chains formed a straight

edge which was usually also detected by the Hough detector (Section 2.3).

Since interesting curved edges were not being formed due to the sina l 32x32

window size, the results of curve extraction were not used for further

processing. In future experiments the effective window size could be en-

larged and more interesting curved edges should be obtained.

20
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Figure 2.6 Long curve segments extracted from
related points of Figure 2.5.
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2.3 Hough detection of straight edge elements

The Hough transform is a popular device for the detection of

linearity in a set of points. The mathematical development and practical

use of the Hough transform is discussed in Duda [1972] and Stockman [1977].

The Hough detector was used heavily to achieve the results reported

here and proved to be very reliable. The strategy used was to set

stringent thresholds so that the false alarm rate would be nearly zero.

In fact, no false alarms havebeen documented although not all of the

thousands of windows processe.' have been studied. There were some

"unwanted" detections on faint image structure such as field mowings and

buildings which were difficult to discern on the CRT.

The windows samrled were 32x32 pixels, of which only the center

24x24 pixels were useable to the resolution 32 gradient operator, so

detection thresholds were set at either 15 or 20 meaning that 15 or 20

pixels had to line up before a detection was signaled. Figure 2.7

documents the detection of a linear edge segment between a road and a

field. Gradient directions 21 to 25 have been masked out so that one

side of the road is nearly suppressed -- the side barely survives

due to jitter in the gradient directions.The gradient magnitude

histogram is shown which was used to select 38 points to represent the

image window. The 38 points are all visible in the grey shade plot of

the gradient image. The coarse accumulator array is defined for the 32

angular directions and radius values from -12 to +12: thus there are

32 x 25 = 800 accumulators. Each of the selected 38 points can indicate

5 an incrementing of those few Accumulators defined by an R and 9 compatible

with the gradient direction of the point. The entire set of resulting
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accumulators is pictured in Figure 2.8. One side of the road is detected

by peak detection in the accumulators at R = -3 and 0 = 292'. 0 = 292

3 because that is the true geometric direction of tonal increase across the

edge and R = -3 because the edge is actually located 3 unIts it the

direction 292 - 180 from the origin at pixel (16,16). The Hough detection

is focused by cintributing the 38 points to a refined accumulator array

I with only 5x7 accumulators. In this process the edge location is refined

to R = -3 and 0 = 2920. The peak response is diminished from 18 to 14

because the width of the edge "template" is now only I instead of 3 pixels.

The detected edge element is reported to lie between points (1,13) and

(32,28) in the image window and (6773,5897) and (7021,6017) in terms of

global stage coordinates.

The focused accumolator uses 20 angular resolution but this resolu-

tion is not really obtainable with 32x32 windows. The 20 unit was designed

for the predecessor system which used 64x64 windows where lines 20 apart

differed by several pixels along their extent. In the research reported

here, Hough detections were made in batch mode by sampling the imagery

with a raster scan of butting windows. (Program EDGEX is detailed in

Appemdix C.)

i2
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2.3.1. Experiments with Primitive Detection of Edge Elements

The Hough detector was applied to over a thousand windows on the images

4621 and DREUX 13 (see Figures 1.1 and 1.2). Straight edge elements detected

from 4621 are plotted in Figure 2.9 (a) while detections from DREUX 13 are

plotted in Figure 2.9 (b). Parameters used for the detectors are given in

Table 2.1. It should be noted that stringent thresholds were applied,

especially on the number of points on a straight line so that few false

alarms, if any, were reported. Only the straight edge elements are plotted;

the curves extracted by the edge linking routine were ignored.

Many detections are evident along the major roads in 4621. The

vertically appearing highway along the right edge of the image is well

covered while the other roads in the image have only spotty coverage.

Missed detections along the roads are attributed to one or more of the

following effects:

(1) unfavorable contrast due to sun angle and shadows,

(2) gradient direction falls in between two of the 32 coarse level

directions used by the Hough detector,

(3) road cuts across a corner of the sampling window and not

enough points exist to trigger detection,

(4) road cuts thro.gh center of window and the 5% of the strongest

gradient points are equally distributed on both sides of the

road such that neither edge passes threshold.

(5) in the neighborhood of other edges, such as other roads or

field boundaries, the effect of (4) is compounded further.
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Table 2.1 Details of primitive edge extraction experiments
using 4621 and Dreux 13 (Program EDGEX.)

window size 32x32 pixels

window spacing 250 stagels

# points selected 5%

min gradient threshold 8

#points on line (coarse) 20

# points on line (fine) 14

# points on curve 15

I30-
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Several isolated detections that appear to be noise were made on drainage

ditches or mowing lines in fields. 199 detections were made overall;

roughly half by the Hough detector.

While the primitive edges from 4621 produce a poor rendition of

4621 image structure, they nevertheless permit human recognition of

the region portrayed. This is not true of edge elements extracted

from the Dreux image and plotted in Figure 2.9(b). The boundaries between

a few fields are nicely covered but most of the detections are isolated

from others so that the human eye does not see global linearity; for

instance the roads are not apparent due to their change of direction and

spotty coverage. 262 detections were made overall, about half by the

Hough detector and half by the curve linking procedure. However, despite

the lack of structure evident to a human, there was ample structure for

the automatic registration procedure to align the image with a map

of the area. These registration results are presented in Section 3.

Also, the primitive edge elements were used as input by another procedure

which extended the edge segments and searched for intersections along

them as described later.
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2.4 Using ROSA Frequency Domain as Edi-, .Lt~L.Qx

An experiment was performed to see if the ROSA frequency domain detector

could find edges as well as the Hough edge detector. The Hough detector had

previously been applied to the image 4621 and the positions of the extracted

edges were recorded. Fifty of these detections were randomly selected for

sampling by the ROSA detector. Thirty control positions, where the Hough

detector found no edges, were also selected for sampling. The 32 wedge sign-

atures for each sample were examined in order to find a scheme for determin-

ing whether an edge existed in the sample.

The first, and as it turns out, the best classification scheme was to

use the ratio of the maximum wedge value to the minimum wedge value. If this

ratio was less than 2.5, then the sample was said to contain no edges; if the

ratio was greater than 2.5, then the sample was said to contain an edge.

Using the Hough detector as a standard, this technique erroneously classified

one non-edge sample as an edge sample. The histogram of the ratios of the

two groups is shown in Figure 2.1k'a).

More elaborate classification techniques were also tried, but none of these

worked as well. For example, Figure 2.10 also shows the histograms of the

ratios of the maximum wedge value divided by the median wedge value, the

upper octile wedge value divided by the median wedge value, and the upper

quartile wedge value divided by the median wedge value. None of these methods

separated the two groups as well as the first method did.

Other ratios such as dividing the upper quartile, upper octile, and the

median by the maximum were tried. In addition, comparing the percentage dif-

ference between these three ratios were also examined. These methods separated

the groups even more poorly.

Since computing the ratio between the maximum and minimum wedge value is

a 32
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very simple, and the position of the maximum wedge determines the orientation

of the edge, it is felt that the ROSA detector could efficiently be used as an

edge detector.
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group shown).
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2.5 Edge extension

Edges sometimes fade away and sometimes continue to meet other

edges. For instance, a road may end in a field but is perhaps more

likely to end by meeting another road. Once a straight edge segment is

detected, it is therefore wise to attempt to track its full extension.

A program was written to attempt to iteratively extend a detected

straight edge in both directions. (The program is EDGEY and is detailed

in Appendix C.) In attempting the extension, all competing gradient

directions are masked off so that the edge is not lost in a background

of competing edges. The image window is positioned so that the

predicted extension segment would pass through its center: thus any

detection should have R = 0.

Primitive detections in the 32x32 window represent only 1/8

inch on the actual film. In some cases documented in section 2.7 extensions

of up to an inch or more were made. It is possible to extend this technique

so that it could be applied to curved edges. While straight edges are

extended or are found to terminate, it is appropriate to check for inter-

secting edges as described in the next section.
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2.., Intersection detection

Edge intersection points are highly desirable as photo pass points

and are thus a target for automatic recognition effort. Moreover, we

would like to describe the intersection as much as possible so that it

can be differentiated from other intersections. Figure 2.11 shows

a catalog of possible intersection types which we might like to recognize

automatically. It was decided that first an algorithm should be

developed to detect arbitrary intersections, then further testing could

be used to classify the detected intersection. Toward this end a

simple routine was implemented to test for edge activity nearly per-

pendicular to an existing edge. In fact, intersections would be checked

for while extending existing edges. (Program "EDGEY again). Each

existing edge element is placed into one of 4 classes as shown in

Figure 2.12. Then the window can be positioned once on each side

of the edge so that the Hough detector can detect intersecting edges.

Of course the current edge direction as well as its 1800 supplement,

are masked off during detection. The two window placements are made

every 100 or so stagels along the existing edge so that no neighboring

region is ignored.
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2.6.1 Experiments with edge extension and intersection detection.

In the firbt experiment with intersection detection, the

gradient masking technique was tested to see if masking of a major

edge would allow detection of weaker intersecting edges. Certain lineal

features o 4621 are shown in Figure 2.13. Several search tracks along

certain o'. these lineals were selected for intersection detections.

Searches were conducted between the following pairs of points:

-- point I to point 6, point 6 to point 11, point 8 to point 21,

point I to point 29, point 3 to point 14, and point 15 to point 16.

Windows were sampled at intervals of 150 stagels along each lineal

segment and on both sides of the lineal as shown in Figure 2.12.

For all windows the two gradient directions normal to the track were

masked off to remove contention from the major edge points. If a

detection was made on one side only, then a "I" intersection was reported.

If a detection was made on both sides, an "X" intersection was reported.

Results of intersection detection are given in Table 2.2

Some of the desired connecting roads and driveways were detected

(i.e. at points 1,3,4,5,6,8,11 and 17) and some were missed (i.e. at

points 2 and 9). Many field boundaries wtre picked up as well as some

driveways not numbered in Figure 2.13.

The program was modified to extend edges and was run on the

DREUX 13 data. The results are plotted in Figure 2.14. Detected

intersections are indicated by the small circles. Extended edges are

also evident in the plot. Some edge elements were lengthened from 1/8

inch to an inch or so.

3
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Table 2.2

Results of Connecting Edge Experiment on Image 4621

Intersection Type of Description
in Stage Coord. Intersect.

tracking from point #1 to point # 6 steps of 150 stagels

(4999,5011) T point #1 (really an X)
(4937,5137) T road/field
(4850,5317) T road/field
(4828,5362) T road/field

(4691,5642) T road/field

(4499,6032) X road/drainage

(3997,7060) T road/field
(3913,7242) T point # 4 road/driveway
(8762,9010) T field boundary/road

(3612,7849) T field/road
(3325,8436) T point # 5

(3029,9041) T road/field
(2893,9320) T ? investigate
(2788,9533) T point # 6

tracking from point # 6 to point # 11
(3100,9654) T road/field
(2888,9548) T point # 6

(3569,9888) T point # 8

(4046,10127) T woods?
(4698,10453) T road/field
(6020,11113) T road/driveway

(6942,11575) T driveway to buildings
(7063,11635) T buildings
(6986,11596) T buildings
(8276,12241) T road/driveway (unnumbered point)
(8705,12456) T road/driveway (unnumbered point)

(10480,13344) T point # 11
tracking from point # 8 to point # 21
(3526,9900) T point # 8 again

(3240,10502) T road/field
(3103,10786) T road/field
(1756,13584) X point # 17

(1557,13997) T road/field
track from point # 1 to point # 29

(5008,5003) X point # I
(6765,5849) T noise, threshold set too low
(6706,5821) T noise, threshold set too low

(9100,6980) T road/field

I



Table 2.2 (continued)

Intersection Type of Description
in Stage Coord. [ntersect.

track from point # 3 to point # 14
(11120,8072) T point # 3 (really an X)
(11147,9416( T road/treeline
(11153,9716) T road/treelihe
(11158,9975) T road/field
(11170,10546) T road/treeline
(11179,10989' T road/field
(11190,11531) T ?
(11191,11589) T actually same road bending
track from point # 15 to point # 16
(10454,12220) T small driveway
(10415,12296) T road/trees
(10112,12892) T road/trees
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2.7 Intersection Classification

Apart from the work described in Section 2.6, an intensive investiga-

tion into the detection and classification of intersections given an initial

set of detected line segments was conducted. This work is easily integrated

into the feature detectors EDGEX and EDGEY.

The detection and classification of intersections given a set of detected

line segments was divided into three steps. The first step was to merge li,,-

segments with approximately the same orientation and position. The second

step was to pair line segments which were 1800 off in orientation, but very

close to each other. This step would associate the two sides of a road as

a single entity. The last step was to take the resulting paired line seg-

ments and leftover unpaired line segments and determine whether any of them

intersected and classify the intersections as shown in Figure 2.11. The

software for the classification is presented in Appendix F.

2.7.1 Merging Line Segments

The goal of the first step is take a set of detected line segments and

to merge line segments which have the same approximate position and orienta-

tion. The three possible types of situations where merging should be done

are shown in Figure 2.15. The first case is called linking, i.e. one line

segment can be extended and merged with the second. The second and third

cases are called domination, i.e. where one image edge was detected twice in

slightly different locations. This can happen when overlapping edge detec-

tion windows are used.

The merging algorithm steps are:

(1) for each line segment vi compare with each of the other line seg-
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must be less than a supplied tolerance.
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ment v in order of Increasing distance between v i and vj. This

ordering is determined by calculating the (R,()) form of the line

segment (see Duda and Hart, (1972) Hough edge detector] and com-

puting the differences between the polar radii, R, of each pair.

The comparison is done with closest line segments first, since

the result of combining three or more edge segments was dependent

upon the order of combination.

(2) For each pair (viv), it was determined if linking or domination

would be needed. For linking to be indicated (a) the angle

between vi and Vj had to be less than A tolerance, (b) the

distance between the endpoints and the other line had to be less

than As1 , and (c) the linking separation had to be less than 's2,

as shown in Figure 2.16 (a). If domination was indicated, then,

in order for the pair to be merged, the distance between the end-

points and the other line had to be less than As, as shown in

Figure 2.16 (b).

(3) Finally if the line segment pair satisfied the merging test, they

were merged and replaced with the new merged line segment.

Several methods of determining the endpoints of the new merged line seg-

ment, for the cases shown in Figure 2.15 (a) and (b), were tried. The final

method found the slope of the new line by averaging the slope of the two old

segments. A point on the new line was found by averaging the endpoints of the

two old line segments. The endpoints of the new line segment were calculated

using the extremes of the old line segments. Note that, in averaging two

almost vertical lines whose slopes are opposite in sign, the average slope

should tend towards infinity instead of zero. This was accomplished hy

averaging the inverse of the slopes and then taking the inverse of the re-
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sult. The extremes used to find the new endpoints were either the extreme

x-coordinate values, if the slope was less than 1.0, or the extreme v-

coordinate values, if the slope was greater than 1.0. This endpoint procedurL.

was used because small differences in x-values can lead to large differences

in y-values for nearly vertical lines and similarly for nearly horizontal

lines.

For the case of complete domination, shown in Figure 2.15 (c), the line

segment vj would be completely discarded in favor of vi. That is, the new

line segment would be the old vi.

2.7.2 Pairing Line Segments

The goal of the second step of intersection classification and detec-

tion is to pair all possible line segments. This step would associate the

two sides of a road, for example, as a single entity. The pairing was ac-

complished by comparing each pair of line segments (vi,v.) such that (see

Figure 2.17):

(1) The difference between the polar angles of the two line segments

had to be within 1800 + AO tolerance,

(2) the distance between the endpoints and the other line had to be

less than As3,

(3) the line segments had to overlap at least by Ao, and

(4) the line segments did not intersect.

After this process, it is possible to have the situation shown in

Figure 2.18, where vj and vjl were not merged because they were too far apart,

*but because of their pairing with vi, they should be merged. This last step

was introduced because the intersection of two roads would be represented by

the intersection of two pairs of line segments - making detection easier.

47
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Figure 2.18. A situation where v. and vv should be merged and
the result paired with vi .
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Referring to Figure 2.18, the conditions on merging V1 and vj, were:

(1) the difference in distances d2 and d3 had to be within Asl,

(2) the distance d, must be less than 2*max(d 2 ,d3)*Asl, and

(3) the line segments v and vii have to be on the same side of \i"

Pairs were typed as dark lines on a light background or light lines on a

dark background.

2.7.3 Detecting and Classifying Intersections

The last step is to detect and classify intersections according to

Figure 2.11. This step is accomplished by treating each pair of line segments

or an unpaired line segement as one unit and compairing all such units.

For each combination of units:

(1) determine if they intersect or would intersect if their lengths

were extended by As1 at each end, and the angle between the inter-

secting units is not within 00 + A®.

(2) if they pass (1), then the intersection is typed as 1,2, or 3

depending on where the intersection occurred. If the inter-

section occurred within As1 of the ends of both units, then the type

is 1; if it occurred within AsI of the end of one unit, the the type

is 2; else it is type 3. Types 1, 2, and 3 correspond to L, T,

and X intersections, respectively.

(3) Finally if they satisfied (1) and (2), the intersections are finally

classified as L1 , L2 , etc. depending on how many line segments are

in the units. For example if two pairs are involved in a type

I intersection then the intersection is classifies as L2.
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2.7.4 Experiments on Detection and Classification of Intersections

The three steps of detecting and classifying intersections were applied

to a series of sets of extracted line segments from images of hinges and

carburetor covers. These images were selected both because the edges were

already available, and they contained many straight edges. The images used

are shown in Figure 2.19. The sets of extracted edges are shown before and

after merging in Figures 2.20-2.24. The lists of paired line segments and

their types, and the detected intersections with their types are also shown.

The detected intersections are circled on the images. The values used for

the tolerances As,, As2, As3 , Ae, and Ao were 7 pixels, 7 pixels, 25

pixels, .75 radians, and 50% respectively. Figure 2.25 shows a test data

set demonstrating the capability of the algorithm.

The results shown indicate that intersections can be detected and clas-

sified automatically. This algorithm can easily be combined with EDGEY to

include exploration for missing line segments in the image. Automatic detec-

tion and classification of intersections are important steps in the LNK

registration procedure described in the next section.
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Figure 2.19 continued
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Edges Type
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12 13 Li
15 16 Li
17 22 Ti

- 13

(b)

Figure 2.20 (a) original edge segments extracted from image in

Figure 2.19(a). (b) Result of applying merging

algorithm, The detetted intersections are circled.
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Figure 2.21 (a) Original edge segments extracted from inage in
Figure 2.19(b). (b) Result of applying merging
algorithm. Detected Intersections are circled.
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I Figure 2.22 (a) Original edge segments extracted from image in Figure
2.19(c). (b) Result of applying merging algorithm. De-
tected Intersections are circled
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Figure 2.23 (a) Original edge segments extracted from image in Figure
2.19(d). (b) Result of applying merging algorithm. De-
tected intersections are circled.
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- i INTERSECTION LIST

Edges TL

4 1 3 Xi
1 8 T1
3 6 XI

3 7 TI
6 7 X 1

10 12 11 X3
10 12 53 X3
10 14 11 X3

- 0 14 53 X3
11 39 TI

- 13 15 X1

13 18 Xl
15 22 Xl

l z18 22 Ti
25 32 TI

26 32 X]
32 33 Xl
39 49 X1

I 46 53 X]

(b)

I
Figure 2.24 (a) Original edge segments extracted from image in

Figure 2.19(c). (b) Result of applying merging

algorithm. Detected intersections are circled.
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Figure 2.25 Test image showing some of the capabilities of the
algorithm. The original input set is shown in (a).
The result of the merging step is shown in (b).
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INTERSECTION LIS',

iiEd Pes
/4

2 57
* -2 8 812

8 12 9 13 L2
7 9 13 ii 14 L2

5 1i 14 16 17 T2
216 17 18 20T2

18 20 22 23 T2
o 22 23 25 35 T2

/22 23 40 41 L2Ii 4 22 23 40 43 L3
D 7 25 35 26 L3

N"25 35 34 L3
26 27 Li
27 28 Li
28 29 Li

S"- - 29 30 Li

(c) 30 31 32 L3
30 33 LI

31 32 33 L3
31 32 36 T3

PAIR LIST 33 34 Li

36 37 LI
40 41 42 X3

Edges Type 40 43 42 X3
42 44 Xi

1 4 Dark on Light 45 49 46 50 L2
2 5 Dark on Light 45 49 48 52 L2

58 59 Dark on Light 46 50 47 51 L2
3 7 Dark on Light 47 51 48 52 L2
4 39 Light on Dark 53 56 57 L3
8 12 Dark on Light 53 57 58 L3
9 13 Dark on Light 53 58 59 L3

ii 14 Dark on Light 55 56 57 T3
57 58 Light on Dark 57 58 61 T3
16 17 Dark on Light 58 59 61 T3
18 20 Dark on Light 60 61 TI
56 57 Dark on Light 61 62 Li
22 23 Dark on Light
50 52 Light on Dark
25 35 Dark on Light Figure 2.25 The result of the pairing
31 32 Dark on Light step in shown in (c). Note
38 45 Light on Dark that some edges were merged
40 41 Dark on Light that were not merged in (b).
40 43 Light on Dark The pair list and intersec-
45 47 Dark on Light tion list are also shown. The
45 49 Dark on Light intersection list was edited46 50 Dark on Light to remove duplicate detections.
47 51 Dark on Light
48 52 Dark on Light
49 51 Light on Dark
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2.8 Region Segmentation

A segmentation of an image is a partition of the image into disjoint

subsets whose union is the entire image. For surveys of segmentation see

[Riseman and Arbib 1977, Kanade 1980, Zucker 1976, Pavlidis 1977]. Many

segmentation procedures produce an initial segmentation and then apply an

iterative procedure such as merging or splitting to obtain an improved seg-

mentation. Two basic approaches to finding an initial segmentation are first

locating boundaries or first locating pixels with similar feature values.

Boundary detection generally consists of edge detection followed by

linking of edges into closed boundaries as discussed in Section 2.2. Edge

detection procedures which form closed edges such as the Marr detector [Marr

1979] and relaxation labelling [Zucker 1977] provide a segmentation d.cect-

ly. Edge detection in textured images is a difficult task which depends he--

ily on the relative scale of the texture and the regions' sizes.

Construction of regions based on similarity of pixels or pixel neighbor-

hoods requires feature extraction. Features commonly measured include average

gray level in a neighborhood, variance, average edge content per unit area,

average orientation of local edges and average spot size of uniform contiguous

areas. Texture measures, such as co-occurrence matrices and Fourier transform

ring data can be used as feature measures for larger areas. Threshold tech-

niques [Pavlidis 1977, Price 1976] can be used with these features to provide

an initial segmentation.

Milgram [1978] describes a procedure for region construction using evi-

dence from several sources such as edge information and pixel feature values.

The algorithm selects the contours at different thresholds according to the

support of the edge data along the contours. Zucker [ 1979 ] gives a relaxa-

tion technique for constructing regions from primitive edges. This scheme
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allows points to be considered as interior or boundary points of a region.

The relaxation process allows edge segments separating regions to prosper

as region points and edge points reinforce themselves.

Pavlidis describes a general class of split-merge algorithms using the

notion of region adjacency. Given a criterion for deciding if a single region

should be split and a criterion for deciding whether two adjacent regions

should be merged, the procedure is as follows:

1) Split each region which should be split according to the splitting

criterion. Continue this until no further regions satisfy the split-

ting criterion.

2) If step 3 has not been executed yet then keep going, else if no

merges occurred in the last execution of step 3, then stop.

3) Merge any two adjacent regions which should be merged according to

the merging criterion. Continue this step until no adjacent regions

satisfy the merging criterion.
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3.0 Registrltion , imijge data to a map.

The concept of registration is crucial to image Interpretation.

Very generally it applies to matching images from different sensors,

matching images taken at different times, or matching an image to a map

(GDB). Registration of images to maps is viewed here as an important step

in unlocking rich a priori knowledge stored in the data base for use in

image analysis. To succeed, registration clearly must be achievable with

only a partial primitive image analysis. Once registration is accomplished,

more complete image analysis can be performed under map guidance and hope-

fully will be much more reliable and efficient than image analysis without

a priori information.

Reasonable human and automatic registration procedures are based

on 'pass points". Pass points are uniquely identifiable points in the

image usually defined by special edge context, i.e. points where rivers or

roads intersect, corners of buildings, mountain peaks, etc. Humans will

uniquely identify pass points because ambiguity can be removed by their

large amount of global knowledge. Automatic procedures, on the other hand,

typically work with far less global knowledge and must be built to tolerate

ambiguities in matching single pass points from the image with those of the

map. The next section gives a brief survey of some registration work which

is used to set the stage for introducing the L.N.K. registration procedure

developed in Section 3.2.
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I
3.1 Survey of previous registration work

Mathematically, we formulate the registration problem as the

problem of determining a transformation Ta that maps a point PI = (x,y)

in the first image space to "corresponding" point P2 = (u,v) in the

second image space. A definition of "corresponding" can be subtle.

Points can correspond because of their obvious and unambiguous structure

and/or interpretation, such as the tip of the Washington Monument as

seen in two pictures. Points can also correspond by the relationship

which Tplaces on them; -- i.e. a point (x,y) on the Mall lawn, in

image one, corresponds to a point (u,v) in image two because, T"(x,y) =

(u,v). The first type of point will be called a pass point or control

point. Pass points can be used to construct T. which can then be used

to relate all other points in the image domain regardless of any obvious

structural correspondence between the points. In general, we are less

certain about the correspondence of points on the Mall lawn than we

are about the Monument tips.

A straightforward and common registration technique is to

use human selection of pass points, in the two images, resulting in

a set of corresponding points C = (PillP 21 ), (P1 2
'P2 2 ),

(P lk'2k) ~ .The desired transformation T may have from two to six

parameters depending on the narticular model of image formation. The best

transformation T. can be defined as that T. , such that

e(a) = i d2 (To (P)
i"i=l k (li~le2i)

is minimized, where d2 is the distance between the control point P2i
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in the second image, and the transform of the correspondlr point P from

the first image. Classical least squares procedures can be used

to determine Tc, [Van Wie 19 77]. To automate the registration procedure

a method of automatic selection of the points in SetC must be devised.

The least squareg fit of T will be sensitive to any errors in this set

of corresponding points.

Horn and Bachman [1977] have a procedure which uses all

points in the image overlap and hence requires no feature selectin to

get Set C. However, the computation of e( a) becomes involved and hill-

climbing from an approximate T. must be used. Sometimes such an

approximation is available from knowledge of the attitude of the sensing

platform.

Barrow et al [1977] proposed using only salient edge points for

set C and described a computationally fast method of computing e( a)

called "chamfer matching". Their procedure also used hill-climbing

from an approximate a to get a general 6-parameter transformation Ta,

valid for even the modeling of oblique imagery.

The heart of the registration problem is the selection of the

set of control points C. In map making this is usually a human operation.

Here we are exploring automatic techniques. If an approximate Ta is

available it is possible to search a limited area of an image to find

a point corresponding (in structure) to a point in a map (second image).

Block correlation can be used so long as Ta effectively removes rotation.

Van Wie and Stein '1977] report some success at this for repeat ERTS

coverage. However, even use of gradient images for block correlation was
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not always reliable. Deficiencies in block correlation have also been

pointed out by Crombie [1975]. L.N.K. believes in the following two

principles which have tempered the research work reported below.

(1) Correlation for control point matching should consider higher

level structure in the neighborhood defining the control point. For

instance, edges or lines should be detected and their points of

intersection typed as "T's" or "X's" before correspondences are

attempted.

(2) Correspondences drawn from local matching criteria must be

tempered via feedback from global registration knowledge. For

instance, many crossroads will individually look alike, but a

globally valid registration transformation can pair them unambigu-

ously, using the information contained in the spatial distribution

of the entire set.

L.N.K. has developed a registration procedure which integrates both

local and global matching criteria and has been quite successful in ac-

counting for rotations and translations on vertical photography. The

next section gives the formal development of the procedure and experi-

ments on real data are reported in Section 3.3.

I
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3.2 L.N.K. Registration Procedure

A technique has been developed by L.N.K. Corporation for auto-

matically registering vertical photography with maps or other vertical

photography. This technique has been successfully demonstrated at L.N.K.

and on the ROSA system at the Research Institute of USAETL. The current

assumptions (limitations) are that the registration transformation be

limited to an arbitrary rotation 0 and a translation (Ax,Ay) which is no

larger than half of the image diameter. Due to relief displacement and

distortion, the derived T. is only an approximate transformation. How-

ever, TU could be refined as will be shown. In addition, by first deriv-

ing a global approximation it is likely that a more robust and efficient

procedure is obtained. A method of introducing local adjustments to T,

for matching individual features is covered in Section 5.

3.2.1 The Geuieral Procedure

Registration is viewed as a three step procedure. Here the ter-

minology pertains to matching image structure to a map or model. However,

in fact, the map or model may be replaced by an image of the same or dif-

ferent type as has been done in several experiments.

(Step GI: feature extraction and local matching)

Obtain corresponding structures in the image and map. Struc-
tures correspond when they have the same shape, size, color, etc.
The correspondences are plausible from local evidence but may be
ambiguous or incorrect. In fact, each image structure may be paired
with one, none, or many map structures.

(Step G2: global interpretation via 7()

Determine transformation parimeters o = (al,a 2, . . . ,a)
such that Ta maps at least some image structures ( i.e. points,
lines, arcs, etc.) onto correspoiding map structures.
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j (Step G3: global match evaluation)

Determine the global goodness of match induced by T on the
image structures and map structures. (One way to do this is to
compute the mean squared distances between map structures and
image structures transformed by Ta.)
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3.2.2 Specific registration procedure.

The specific L.N.K. registration technique is a hybrid of temp!a

matching and structural analysis and combines the advantages of those tw,-

procedures. The specific interpretation of the general steps above are as

follows.

(Sl) Assume all structures of the same type correspond. For example,

assume each straight line segment in the image can correspond

to each straight line segment of the model, each convex curve

in the image can correspond to each convex curve of the model,

etc. For each pair of structures (sis m), where s iand sm are

structures from the image and map respectively, compute

transformation parameters a and place a unit of measure

in a- parameter space.

(S2) Possible transformations T between image and model are

detected as clusters in a-parameter space formed in step

Si because heavy measure at a in U- space means that
0

many correspondences are explained by T
a o

(S3) Evaluation of the match strength of each T. from step S2

is obtained by either computing an average distance between all

corresponding structures or by counting the number of image

structures explained by the model structures under T.

3.2.3 A Simple Example

A simple example of this process is illustrated in Figure

3.1. Assume that the image can be represented by the 4 directed edge

elements shown in (a) while the map contains the edge elements in (b).
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Figure 3.1 Example of global registration via clustering of

local evidence. Image edge elements in (a) need

to be rotated 450 and then translated (4.5, -2.)

to be transformed into corresponding map edge ele-

ments in (b). (c) 16 units of measure are amassed

in (O,xs,ys)-space forming a cluster at (e=0.79,

xs=4.5,ys--2.O).
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(C) . A B C D xs 1 ys

1 3.0,2.0 6.0,4.0 1.7,6.4 2.3,10.0 0.82 1.1 2.8

1 2 3.0.2.0 6.0,4.0 5.3,5.0 1.8,5.0 2.55 8.9 5.0

1 3 3.0,2.0 6.0,4.0 5.5,9.5 8.0,7.0 4.91 3.0 12.1

1 4 3.0,2.0 6.0,4.0 5.1,1.5 5.8,5.0 0.79 4.4 -2.0

2 1 9.0,7.5 9.0.4.0 1.7.6.4 2.3,10.0 2.98 11.8 12.3

2 2 9.0,7.5 9.0,4.0 5.3,5.0 1.8,5.0 4.71 -2.2 14.0

2 3 9.0,7.5 9.0,4.0 5.5,9.5 8.0,7.0 0.79 4.4 -2.2

2 4 9.0,7.5 9.0,4.0 5.1.1.5 5.8,5.0 2.94 15.4 7.1

3 1 4.0,8.0 7.0,10.0 1.7,6.4 2.3,10.0 0.82 4.8 -2.0

3 2 4.0,8.0 7.0,10.0 5.3,5.0 1.8,5.0 2.55 13.1 9.4

3 3 4.0,8.0 7.0,10.0 5.5,9.5 8.0,7.0 4.91 -3.1 11.9

3 4 4.0,8.0 7.0,10.0 5.1,1.5 5.8,5.0 0.79 7.9 -7.0

4 1 5.5,4.5 3.0,7.0 1.76.4 2.3,10.0 5.33 -5.2 8.3

4 2 5.5,4.5 3.0,7.0 5.3,5.0 1.8,5.0 0.79 4.6 -2.1

4 3 5.5,4.51 3.0,7.0 5.5,9.5 8.0,7.0 3.14 11.0 14.0

4 4 5.5, .51 3.0,7.0 5.1,1.5 5.8,5.0 5.30 -1.7 3.6

Figure 3.1 (continued)
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I
3 It is assumed that the length of the edge elements is accurately known.

There are 16 possible ways that an edge element from (a) can be paired with

an edge element in (b). Each pairing yields unique transformation para-

meters (Oxs,ys) as shown in (c). Four of the 16 possible pairings yield

a consistent interpretation -- rotate by 0 = 0.79 radians and translate

j by (4.5, -2.0). The parameters from the 4 correct pairings form a cluster

in a = (B,xs,ys) - space, while the parameters from incorrect pairings are

sparsely distributed in the space. In practical cases there will be many

more than 4 primitive structures and not all pairings will be possible

(i.e. due to size or shape differences) so the presence of a cluster in

the parameter space should be even more obvious.

3.2.4 A More Complex Example

The clustering phenomena observed above should alwayi occur,

as long as the vectors representing the image and model have many correct

jmatches In common. Imperfect automatic feature detection or imperfect

objects in the image would result in additional points in the cluster

space or fewer points in the cluster space, but the character of the

clusters should remain the same despite a fair amount of variation in

the image features. This has been confirmed in experiments registering

images to maps or other images.

Some features which - e extracted from images automatical-

ly include straight edge R- :.-tb, oners, points of high curvature,

and regularly shaped spots (i.e. circles or rectangles). Experiments

reported in Section 3.3 show that the probability of detecting
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individual features can be as low as 20% and recognition of the whole

can still be achieved using the proposed clustering technique. j
Consider the features of terrain observed from a high altitude

above Harrisburg, Pennsylvania (Figure 3.2 ). Five points of high

curvature and six points of intersection of lineal features are identified

in Figure 3.2b. For instance, point I is the junction between
13

Route 15 and the Pennsylvania Turnpike, while point C is a point on
12

Sherman Creek. The 30 vectors shown in Figure 3.2b are formed with a

tip on an intersection point and tail on a point of high curvature.

While the vectors of Figure 3.2b look nothing like the region they

represent, they are very useful for registration. Figure 3.2c shows

10 vectors formed by features detected in an image taken from a per-

spective 1450 off of the original perspective in Figure3.2a and

3.2b. The feature points were selected independently by two researchers

with the same instructions. There are 10x30 = 300 possible matches of

vectors from 3.2b with vectors from 3.2c, almost all of which are

ignored because of differences in length. The result of automatic clus-

tering in the transformation parameter space is shown in Figure 3.2d.

0
The correct transformation parameters ( 0 , Ax, Ay) = (145 ,38,115)

are obtained first from the strongest cluster and there is little com-

petition from other clusters. Under the best transformation all 10

image vectors are explained by the set of model vectors. Within the

tolerance allowed, 11 of the 30 model vectors are "seen in the image".

A root-mean-square match weight of 33.16% can be assigned to the

match based on an average over 30 individual matches.
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Flgurel.2(b) 5 points of curvature and 6 points of intersection detected

by researcher #1 forming 30 abstract edges representing the scene in (a).
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(oqt req.re 13
@add re.run2
INPUT 5,30,10,3,0,0,0,132,1
ANGTOL,STOL,DTOL,NUNLEV,PRT:BUK,SBK,NUN, PUIDIH,LENCHE

5 30 10 3 0 0 0 132 1
FOR IMAGE: LOX,LOY,HIX,HIY,XCENTER,YCENTER -300 -500 300 200 0 -150

I SCALET(I) SCALEX(H) SCALEY(I)
I 36.000 60.000 70.000
2 7.200 12.000 14.000
3 1.440 2.400 2.800

LOX,LOY,LOTBND(1) = -300 -350 0
FOR MAP : LOX,LOY,HIX,HIY,XCENTER,YCENTER: -320 -320 320 320 0 0
CLUSTR

THETA XSHIFT YSHIFT MTCHUT NCHROU/NIMAGE NMrHCLlNMAF
4p. 115. 3316 10/ 10 l1/ 30

145 43. 123. 1603 9/ 10 10/ 30
145 46. 123. 1366 7/ 10 7/ 30

THETA XSHIFT YSHIFT HTCHUT MCHROU/NIMAGE NNCHCL/NMAF
154 -58. 104. 310 1/ 10 1/ 30 *t#*t
154 -53. 101. 316 1/ 10 1/ 30
154 -50. 101. 320 1/ 10 1/ 30 **t

THETA XSHIFT YSHIFT NTCHUT MCHROU/NIMAGE NMCHCL/N'AP
154 -46. 98. 323 1/ 10 1/ 30
154 -43. 95. 323 1/ 10 1/ 30
154-- -41. 95. 326 1/ 10 1/ 30 *:f

THETA XSHIFT YSHIFT NTCHUT HCHROU'NIMAGE NMCHCL/NMAF'
265 67. -3. 856 3/ 10 3/ 30
265 70. -6. 853 3/ 10 3/ 30
265 72. -6. 886 3/ 10 3/ 30 ''#*

THETA XSHIFT YSHIFT MTCHUT MCHROU/NIMAGE NMCHCL/NMAP
273 26. -28. 293 1/ 10 1/ 30 N
273 29. -28. 280 1/ 10 1/ 30 stf**
273 31. -31. 290 1/ 10 1/ 30

THETA XSHIFT YSHIFT MTCHWT MCHROU/NIMAGE NMCHCL/NMAP
274 26. -28. 326 1/ 10 1/ 30
2 4 29. -28. 323 1/ 10 1/ 30

31. -31. 323 1/ 10 1/ 30 *,W"

i'H:FT YSHIFT MTCHUT MCHROU/NIMAGE NMCHCL/NMAF
3. 856 3/ 10 31 30 14*.

853 31 10 3/ 30 f #*4
'763/ 0O 3/ 30 N

- "PHRU. NIMAGE NMCHCI./NMAP

1/ 30 t#
' " 1' 3C tt l

' ' / .!0 tiff,

it ion -Wj,



3.2.5 Details of the L.N.K. registration procedure

Recall that the L.N.K. registration procedure consists of

3 conceptual steps. First, image structures and map structures must

be paired so that for each possible corresponding pair, transformation

parameters a (or a set of several transformation parameters) can be

computed which transform the image structure onto the map structure.

Handling all such pairs populates the a-space as discussed below.

Second, clusters in a-space must be detected so that those

which cause a large amount of image/map overlay are discovered.

Third , a quantitative measure of the amount of overlay is computed

so that a transformation Ta can be evaluated for acceptance, relative to

some threshold criteria or relative to another possible Ta

Before proceeding it is essential to emphasize that the

registration procedure is edge-based and can operate on either real or

abstract edges. Real edges correspond to the location of real contrast

changes as indicated in the gradient image. The direction of the edge

indicates in which direction tonal increases occur. The length of a real

edge in a map may be precise but it certainly is not precise in an edge

element automatically extracted from imagery. Usually image edge elements

represent some small segment of the map edge and in the experiments

reported here are usually only 1/8 inch long. Abstract edges are formed

by joining two arbitrary point features. Ihe direction is arbitrary but

fixed and length is fairly precise because the endpoints are detectable

pass points. As shown in the experiments, although both kinds of edges
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can be used, the abstract edges produce cleaner clustering and more precise

transfcCmations. The major reason is that pairs of corresponding abstract

structures can be restricted to only those that agree very closely in length

and exactly in end point type.

3.2.5.1 Pairing edge elements and populating a-space

We assume that a specifies a rotation and translation: a =

(6,Ax,Ay). If the orientation of the image edge element (EE) is 0 i and

the orientation of the map EE is 6
m then it is easy to compute the rota-

tional part of that a that will overlay the two: a =0 - 6.. Referring

to Figure 3.3 it is easily seen that Ax and Ay are then linearly

constrained by the following equation.

Ax cosom + Ay sinam + (ri -r) = 0

Actually the rotated EE A'B' is not free to lie anywhere along

the line determined by points C and D but must lie along the segment C'D'.

Thus the linear equation above can be replaced by two points between

which (Ax,Ay) must lie. The first point is easily determined by that

(Axl,AyI ) necessary to translate point A' onto point C. Similarly the

other extreme is determined by that (Ax2 ,Ay2 ) necessary to translate

point B' onto point D. In practice, we allow for some overshoot ( dtol )

of points C and D because the Hough detector may in fact overshoot the

real edge somewhat when EE AB is detected and because of error in *

Errors of 20 in 8 are quite common for the 32x32 window used.

Thus for each pair of corresponding EE's the potential regis-

tration transformations are triples a=(0,Ax,Ay) such that 0 =Or6- iterror
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r1Pap coorJinate M~tn

Image edge AB or (O1,r ) is rotated 6e - ae into A'B' or

(emir ) to be parallel to map edge GD or (eMr ). Unit vector from A'

to R is (-cose ,-sinb ). Projection of A'C onto A'R has constant length

f or all C on line yielding following relation between Ax and Ay.

A'C -(-cose m -sinO ) = r -r

(Ax'tAy) '(-Cosa ,--sinO) = r i r

A~x cosem + Ay sine + (ri r rm) 0

More simply, (6x,Ay) lies on a line segment between the two points (Ax.,Ay)

(Cx',Cy') - (Ax',Ay') and (Ax 2 9Ay 2) = (Dx',Dv') - (Bx',By') assuming that

map edge CD is at least as long as image edge AB.

Figure 3.3 Derivation of constraints on a (0,Ax,Ay)
for match of image edge element (0,9ri and
map edge element (emir)
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and (Ax,Ay) lies between (Ax,,Ayl)(Ax 2 ,AY2 ). The error in Ax,Ay induced by

Oerror is of the order rO error . By centering the origin for rotation in

the window, the effect of this error is minimized. Assuming that r=2000

stagels and that o <2 degrees, the error induced in (Ax,Ay) by oerror- erroi

is at most 2000 stagels x 2 degrees/360 degrees x 27T = 60 stagels. Due to

the threshold used for straight line detection, the Hough detector could

overshoot the end of an edge by half of the window size or 128 stagels.

By allowing another 60 stagels for error we get an approximation of 188

stagels for DTOL. Thus by theoretical considerations alone, we arrive at

clustering parameters ANGTOL=5 degrees, STOL=50 stagels, and DTOL=188

stagels. Most of the experiments reported below were performed, before

this theoretical analysis, with ANGTOL=5 degrees, STOL=50 stagels and

DTOL=200 stagels yielding good results.

With a so constrained there may be theoretically an infinite

number of points to contribute to a-space. However, the inherent error

on 0, Ax, and Ay allows a discretization on a-space which makes cluster-

ing by binning a good technique. For each pair of corresponding structures

we place the 5-tuple (O,Axl,AYlAX2,AY2) in our cluster space. We succes-

sively zoom in on clusters by redefining a grid of bins and for each level

of clustering the set of 5-tuples is examined for incrementing the bins.

Whenever points (Axl,Ay1 ) and (Ax2 ,Ay2) are in separate bins, more than

one bin count is incremented.

.i
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3.2.5.2 Clustering in a-space

In clustering by binning we work with a fixed number of bins. If

Liie 0,Ax, and Ay dimensions are quantized into 10 units then there must

be lOxlOxlO bins. (Actually there will be more as explained later.)

The "size" of each bin is determined by the range of the variable divided

by 10. The range of the variable depends on the level of clustering.

For instance, at the first level the range mf e is 3600 so each bin

represents360 along the e dimension. We always assume that Ax and Ay

can vary no more than half of the diameter of the image so for a 8000 x

8000 stagel image the range of Ax and Ay is 4000 and the size of each

bin is then 360 x 400 stagels x 400 stagels at level one. When a

level one bin is found to be "heavy" we can zoom in by resetting the

full ranges of e, Ax, and Ay to be those taken on for the heavy bin.

Thus at level two the size of a bin is 3.60 x 40 stagels x 40 stagles

and by level three it is 0.360 x 4 stagels x 4 stagels. Clearly three

levels of clustering will be too much for typical problems. Clusteri'n,'

should proceed only until the bin size is comparable to the error

inherent in determining 6,Ax and Ay. At any level, a detection is only

made when an acceptable number of points lie in the bin. The acceptance

threshold will be dependent upon the reliability of the edge or pass point

detectors. If we demand that half of the detected edge elements should

fall on edges existing in the map then our cluster detection threshold

should be 0.5N where N is the number of detected edge elements. Inue e

the experiments documented in Section 3.3 no absolute cluster threshold

was applied. Instead, up to 3 of the best clusters at up to 3 levels

I
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were pursued and the corresponding transformations T were evaluated

by a technique described in Section 3.2.5.3.

Clustering by binning can suffer severely from boundary

effects as illustrated in Figure 3.4. A cluster actually present

can be missed due to the quantization of the a-space. To avoid the

distribution of points from a cluster to several neighboring bins, 3

other overlapping or offset setsof bins can be used. The bins of

the other grids are displaced by 1/2 of the bin size relative to the

first grid of bins (See Figure 3.4). Suppose that a cluster oF N

points exists in a-space and has diameter d. With the above technique

there is guaranteed detection at threshold N so long as the bin size is

at least 2d. If bin size below2d is used, the cluster will be broken

up and detection of Ta will be jeopardized. d is determined from the

error inherent in the parameters of the space. As previously stated, the

error is not only due to measurement error but also contains approximation

error since we are using only a rotation and translation whereas the

true T may have nonlinear effects. In the case of registration ofa

stereo images differential displacements will occur which will be a

function of elevation off some base level. The component of error

due to elevation is bounded by considering the maximum relief to be

observed in the imagery.
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Figure 3,4 Clustering using '+ sets of overlapping bins.
No bin in first grid contains more than 4
points but 15 points enter bin A'B'C'D' in one

of fset grid.
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3.2.5.3 Evaluating the goodness of fit for Ta

For matching point patterns the root-mean-square (RMS) distance

between map points and transformed image points is a good measure of

the match. For abstract edges the RMS technique is also applicable

since two precise points determine each abstract edge. However, for real

edges the point concept is not useful since it is unlikely that the whole

of the image edge is present. A heuristic RMS distance computation is

described below which was used to evaluate each candidate T in thea

reported registration experiments.

Given a candidate T. determined by . = (6,Ax,Ay) we can

heuristically evaluate how good image edge (xlyl) - (x2,y2) overlays map

edge (ux,uy) - (vx,vy) under T. . Refer to Figure 3.5. A function is

constructed which measures how well T. aligns the edges in the map

space in terms of direction and proximity. Let (TXl,TYl) - (TX2,TY2)

be the image edge transformed under Ta • If this transformed edge

has direction which differs from the map edge (ux,uy) -(vx,vy) by more

than the angle tolerance ANGTOL then the match weight is 0 (EMATCH(T

(xl,yl)(x2,y2),(ux,uy)(vx,vy)) = 0). ANGTOL should be set according

to the e error in T. . Most of the possible pairings of image and map

edges will have EMATCH of 0 by failing this test. If the transformed

image edge has direction compatible with the map edge then the EMATCH

value is computed as the product of a length overlap and a proximity value.

To get the length overlap LiATCH, the transformed edge is projected onto the

map edge and any LEFT or RIGHT overshoots are measured and adversely

affect the LMATCH as shown in Figure 3.5. Note that the LMATCH can
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Figure 3.5 Computation of a match score between a map edge
and an image edge under transformation Ta.
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be 1.0 even if the image edge is much shorter than the map edge. A

proximity value or DMATCH is computed by comparing the average distance

between points on the edges and a distance tolerance DTOL. DTOL should

be set from the error inherent in Ax and Ay.

Edge pairs which have EMATCH = 0 are assumed not to correspond

to the same image structure while those pairs with EMATCH # 0 are assumed

to be corresponding. Theoretically each abstract or real image edge

should correspond with at most one map edge while each real map edge may

correspond to many real edges (short segments of the same edge). The

L.N.K. registration software records all correspondences made by using

the EMATCH function on all possible edge pairs. A "match matrix" may be

optionally output when T is evaluated. Not only does the match matrix

show the goodness of TI but it also shows where verification must be done

to locate missing image edges or where positive change might have been

detected due to image edges without matches in the map.
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3.3 Registration Experiments

This section describes some experiments on registering aerial imagery.

In each case the "true" transformation is provided, for comparison purpos(-;

This transformation was obtained by calculating the transformations that

aligned known corresponding abstract edges. Due to distortions present, such

as those caused by the relief of the terrain, this "true" transformation is

only approximate and ranges on the variability have been estimated and provided.

This fact should be taken into account when evaluating the registration results.

3.3.1 4621 Image

The first set of experiments used the image designated "4621" and shown in

Figure 1.1. In order to determine the "true" transformation, registration was

performed using abstract edges from the image and its map. The abstract edges

were formed by connecting intersection points in the following way:

(1) L-intersection points to Y- or T-intersection points,

(2) L-intersection points to X-intersection points,

(3) Y- or T-intersection points to X-intersection points.

The intersection points for the image were obtained using an interactive

s . ning program under human guidance. The abstract edges were then con-

structed by hand, and the result is shown in Figure 3.6.

A map of 4621 was created by using a Talos digitizer to extract a set

of pass points. Most of these pass points were intersection points and the

entire set is listed in Table 3.1. A set of abstract edges was constructed

using the same criteria used for the image abstract edges, and the result is

presented in Figure 3-7.

The registration procedure was performed on the two sets of abstract

edges and the result appears in Figure 3.8. 30 of the 43 image abstract edges
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Table 3-1 Digitization of points on image 4621 using Talos digitizer
(0.001 inch resolution) and scanning stage (0.0005 inch
resolution).

IMAGE PT # TALOS * STAGE * DESCRIPTION **
(see Fig. 1.1) (photo) (transparency)

x Y x Y

1 2498 3641 5000 5000 X
2 4365 2747 8722 6803 T
3 5583 2191 11120 8052 X
4 3044 4744 3913 7203 T
5 3342 5357 3314 8405 T

6 3611 5908 2814 9511 T
7 1980 6678 - - T

8 3975 5750 3508 9946 T
9 5516 5073 6563 11448 T

10 7130 3514 10964 12108 Y

11 7430 4091 10367 13304 L
12 7723 4700 9866 14600 L
13 8642 4258 - - x
14 6952 3223 11209 11461 A
15 6942 3613 10565 12000 L

16 7233 4181 10010 13101 T
17 4861 7575 1710 13600 X
18 5980 7667 - - Y
19 6444 7480 - - T
20 9471 6190 - - T

21 5013 7886 1399 14295 A
22 4480 7729 - - T
23 7346 9632 - - A
24 9282 5763 - - A
25 9700 6104 - - Y

26 5279 7999 1513 14804 A
27 4010 1991 9388 5480 A
28 5480 2552 - - L
29 4808 2527 - - A

* The photo in Figure 1.1 was rotated roughly 50 degrees clockwise when

mounted on the digitizer. The corresponding transparency was not
rotated when mounted on the stage.

** L,X,T, and Y indicate type of intersection, while A indicates an
arbitrary point on a straight road segment.
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tO0i.O,i3l.01i,5OO ,5OU, 6 4 0 2 ,100 3 0,8 7 22,6 8 03.
43,iOOO,3000,i4000 ~i6fOOV 1io0i3ioi ~ili2O i3O52 i096S~i2OOO,6OSO?8 O0A.'

tOc;S,1K2Ofl?3508,9946, tO964,AO,iO7iO~i3 60O0 , 6 402,iOD3O0iMiO,i3t":
IOS65,i2000)28i4,95il, 1O964,i2tO6,5OOO,';000, 64O2,i0O30,SOOO,5O()i
Wo;6,120OO,33t4,8405, 1O964, Mi120,O 9866,14600,6050,8061.,
iOS6S~i2OOO ,39i3,7203, 6S63)ii448i7O,i36O,~ 1O367,1330l4,6050,.
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t056S,I-2000,8722,6803, 65h3,ii448,VOOOOO S00 MOO,i3i~i ,6OSO?,868,

i1056SAi2000,i7104l3600, 6S63,ii4413,iii2D,80S2, i0964,A2iM08OSO ,8068,
1O565,ti200O,SOO,S0O, 3508,9946,S000,5,000, 3c;08,99468--32,12690
9866,i4600,i7i0,13600, 3508,9946,ii120,8052, 28i.4,95i,8532,i26981,
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9866,14600,11120,6805?., 2814.,9511, 1120, 0052, 3913,7203,8S32,J698,
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t0367,i3304,SO00,S000, 3913,7203,171O,1,5600,

10367,13304,11120 ,6052, 391-3,7203,ii2O,8SP,
i0010,13101,i710,13600, 8722,6803,1710,13600,

CD

IB 6 1 1

C(b

Fiue 36 ksin a nipI

C\J fo 42



A07AO 319 L N K CORP SILVER SPRING MO F/6 9/2KNOWLEDGE-BASED IMAGE ANALYSIStlU)
APR 81 G C STOCKMAN, a A LAMBIRD D LAVINE OAAK70-77-C-0110O

JNCLASSI ETL-0258 NL.lmhlhl/hEIE
Slflfllflfllllll

EEIIEEEEEEEEEE
IIIIIIIIIIIIII-
EIIIIIIEEIIII
IEIIIIIIIIEEEE
IEIIIIEIIIIIEE



35,3000,3000,16000,16000, 14466,9262,11166,4388,
M64,726,7S~pISOO,14260,7029,9722,15150,

13884,7226,7950,115006, 14260,7028,4996,7282t
1384,7226722211916, 14260,7028,11166,4388,
13884,7226,668940, 11032,10046,9722,15150,
£3884t7226,870,S94, 11032,10046,4996,7262,

1389417226,9722,1S1SO, 11032,10046,11166,4308,
£3984 ,7226,4996,7282, 79S0,11500,4996,7282,
15446,9400,9722,iSI50, 7950,11500,11166,4388,
15446,9400,4996,7262, 7222,1191.6,4996,7282,
15446,9400,11166, 4388, 7222? 1181611166,4396,
14860,Si829722,MS15, 6684,0714,11166,4368,
14860,8182t4996,7282, 6088,9488,9722,1515,
14860,8182,11166,4368, 6088,9488,11166,4398,
14466,8262,9722, iso, 8730,5494,9722,15150,
14466,9262, 4996,7282,

(a)
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.0 ...



INPUT SS5,200,3,O,0,0,132 1 20
ANGTOL.,STOLDTOiNUNLEVPTUIC,SSK,MI, PWIDTHLENCHKETHESH

S S0200 3 1 0 0 132 1 20
GOING TO RDCNTR, ZONTOONT. 1 6
FOR IMAGEe LOX,LOYHIXHIY,XCENTERYCENTER 100e 31001400016000 7500 9506

W A WKLLlICI DIALLAM5J CAULY%L )
36 ." 1310.5 1300.000

2 7.20 260.000 260.000

LOXLOY,LOT ND(1) - -6S00 -6S00 0
FOR HAP LOXLOY,141XIYXCENTERYCENTE~t 3000 3001600016000 9SO 9S0
LLUU I

O NIMAGENiAP. 43 30
$THETA XSHIFT YSHIFT HTCHWT MCHROW/NIMAGE NMCHCL/NMAP

.sgv Mv. -1'370. -001 30Y. .2f
309 624. -13S2. 0430 30/ 43 30/ 30 *so**
309 S72. -13S2. 8633 30/ 43 30/ 30 33333

NE9 -13 / 3Of 8303
3Z9 . -353. 0430 30/ 43 30/ 30 33033

OTHETA XSHIFT YSHIFT NTCHWT MCHROW/NIMAGE NHCHCL/NNAP
309 S96. -1379. 0610 30/ 43 30/ 30 830*3
*99 6,24. -tow . W449 40Y~ 40 all as **0**

309 S72. -1352. 6633 30/ 43 30/ 30 3303*
033 END OF CLUSTERING FOR THIS DATA SET 83

Figure 3.8 Results obtained from registration software

when run with set of abstract map edges and

the 100% reliable set of abstract image

edges from 4621
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were matched correctly with all 30 of the map abstract edges, giving the

"true" transformation (A0=309'4 0 ,Ax-598±60,Ay=-1378'40).

3.3.1.1 Registration using real edges.

The image edges were found using the lineal feature detection process

discussed in Section 2. A set of 104 real edges were found and are shown in

Figure 2.9a. The map edges were constructed by connecting intersection points

listed in Table 3-1 that were actually connected in the image. This set is

presented in Figure 3.9.

The results of registering the real edges appear in Figure 3.10. The

transformation with the highest weight was (307*,539,-1371) which matched 63

of the 104 image edges with 9 of the 18 map edges. The difference in the

transformation parameters from the "true" values would lead to a difference in

position of 77 stagels or .039 inches on the image for a Doint at (1000,1000).

3.3.1.2 Robustness of Registration Procedure

The experiment described above assumed a 100% reliable feature detector

since the features were chosen under human control. Since the likelihood of

obtaining this degree of reliability with a completely automatic feature de--

tector is low, experiments were performed on abstract edge sets with varying

degrees of reliability. The detection probabilities used were 80%, 60%, 40%,

and 20%. Thus, feature points were chosen with a probability of 80%, or 60%,

etc. and abstract edges were formed using the same criteria as before.

The 80%-reliable edge set was created by using a table of random numbers

to set up a selection process such that each feature point had an 80% probabi-

lity of detection. The selection process used was to look at a sequence of
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11960,15334,9722,1150o,
18,3000,3000,16000i6000, 14860,8iB2,i5446,9400p
4996,7282,9616,5054, 15446,9400,14860,8182,

I 9616,SOS4,4996,7282p 10960,5108,11166,4388,
4996,7282,7222,11816, 11166,4388,i0960,9108P
7222,ii8i6,4996,7282, 10960,I08,9616,5054,
3960,133S6,i4860,6182, 9616,S054,10960,sOs,3 14860,8182,3960,133S6, 8428,2330,13904,6446,
79S0,i15001O0026,15772, 13904,6446,8428,2330,
i0026,tS772,7950,IiS00,
9722,iS150S11960, 5334,

(a)

CD

I.o

00.00 80.00 160.00

MB4621 10 2

(b)

Figure 3.9 Listing (a) and plot (b) of real map edges
from 4621
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INPUT 5,50,200,3,0,0,0,132,0,0,
INPUT 550,200,3,0,0,0,132,0,0,
ANCTOLSTOLDTOLNUMLEyPRT:BUKSBKMWM, PWIDTHJLENCHKTHRESH =

S 50 200 3 0 0 0 132 0 0
FOR IMAGE: LOXLOYHIXHIY,XCENTER,YCENTER: t000 30001400016000 7500 9500
0 I SCAL.ET(I) SCALEX(I) SCALEY(I)

1 36.000 1300.000 1300.000
2 3.600 130.000 130,000
3 .360 13.000 13.000
LOXLOY,LOTBND(t) - -6500 -6500 0
FOR MAP : LOXLOYHIXHIYXCENTERYCENTER% 3000 30001600016000 9500 9500

CLUSTR
CLUSTR
0 NIMAGE,NMAP- 104 18
OTHETA XSHIFT YSHIFT MTCHWT MCHROW/NIMAGE NMCHCL/NMAP

307 832. -1248. 2172 45/ 104 6/ 18
307 832. -i235. 2105 44/ 104 6/ i8
307 767. -1287. 2966 SO/ 104 8/ 18

OTHETA XSHIFT YSHIFT MTCHWT MCHROW/NIMAGE NMCHCL/NMAP
307 767. -1287. 2966 SO/ 104 8/ 18
307 780. -1274. 2738 48/ 104 7/ 18
307 715. -1248. 3327 52/ 104 9/ 18

OTHETA XSHIFT YSHIFT MTCHWT MCHRO/NIMAGE NMCHCL/NNAP
307 858. -1300. 2044 46/ 104 7/ 18
307 916. -1241. ISOS 41/ 104 4/ 18
307 929. -1228. 1427 41/ 104 4/ 18

OTHETA XSHIFT YSHIFT MTCHWT MCHROW/NIMAGE NMCHCL/NMAP
30 S 46, -i3hS. 4822 J-'i 14" 9/ 18
307 S39. -174, 4827 63/ 104 9/ 18I
3v 539. -1358. 48f 82t- i04 YT 8 18a

OTHETA XSHIFT YSHIFT MTCHWT MCHROW/NIMAGE NMCHCL/NHAP
307 468. -1326. 4405 63/ 104 9/ 18
307 494. -1313. 4500 63/ 104 9/ 18
307 474. -1319. 4400 63/ 104 9/ 18

OTHETA XSHIFT YSHIFT MTCHWT MCHROW/NIMAGE NMCHCL/NMAP
307 338. -1404. 3505 59/ 104 7/ i8
307 35. -1391. 3555 58/ 104 7/ 18
307 377. -1378. 3738 60/ 104 8/ 18

OTHETA XSHIFT YSHIFT MTCHWT MCHROW/NIMAGE NMCHCL/NMAP
307 650. -1170. 3244 47/ 104 7/ 18
307 676. -iS7. 3094 47/ 104 7/ 18
307 702. -1144. 3027 46/ 104 6/ 18

OTHETA XSHIFT YSHIFT MTCHWT MCHROW/NIMAGE NMCHCL/NMAP
307 585. -1209. 3761 52/ 104 9/ 18
307 559. -1222. 3888 55/ 104 9/ 18
307 572. -1209. 3738 51/ 104 9/ 18

OTHETA XSHIFT YSHIFT MTCHWT MCHROW/NIMAGE NMCHCL/NMAP
307 611. -1261. 4311 59/ 104 9/ 18
307 585. -1287. 4544 62/ 104 9/ 18
307 598. -1274. 4444 61/ 104 9/ 18

0** END OF CLUSTERING FOR THIS DATA SET **

Figure 3.10 Results obtained from registration software when run
with set of real map edges and real image edges from 462,
EMATCH = MTCHWT / 10000 = .48.
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random numbers and eliminate those numbers ending in a "I" or a "2". The

remaining sequence numbers were then used to ielect the feature points from

the original set. The 60% and other sets were constructed similarly. Note

that no false point detections were added to any of the sets.

The resulting edge sets are shown in Figure 3-11. Two 40%-reliable sets

were created and three 20%-reliable sets were created. The registration re-

sults are presented in Table 3-2. For each experiment the best 2 transforma-

tions and their weights are reported. The second column shows the number of

points chosen by the random selection process. The last column lists a dif-

ference in position on the image caused by the difference in the transforma-

tion found. Except for the case where no corresponding abstract edges were

present, the transformations obtained were very consistent with the "true"

transformation and were within the estimated tolerances.

3.3.2 Registration of A Stereo Pair

The second set of registration tests used the stereo pair Dreux 12 and

Dreux 13, shown in Figures 1.2 and 1.3. Ks in the case for the image 4621,

maps of abstract edges of the two images were created using a Talos digitizer.

Registering the known corresponding abstract edges gave the "true" transforma-

tion (O=19±l°,Ax=-4221±30,Ay=-l159±80).

A set of real edges were created for each image using the Talos digitizer

and these sets were registered using the registration program. The edges sets

are shown in Figure 3.12 and the results of the registration are shown in

Figure 3.13. The best transformation was (19*,-4207,-1505) which is well with-

in the variability of the true transformation. For an image point of (1000,

1000) the difference in transformed positions would be 20 stagels or .010 inches

on the image.
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Figure 3.11. Plots of abstract image edges
obtained from 4621 under 80%-
20% reliability criteria. -
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Figure 3.11 continued
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Table 3.2

Results of Robustness Experiments

Matched Matched Error in
Number of * Transformation*** Image Map Transformation

Reliability Points Selected (0,AxAy) Weight Edges Edges (inches)t

80% 27 (309',572,-1352) .496 17/23 18/30 0.018(3090,598,-1378) .494 17/23 17/30 0.0

60% 19 (3090,598,-1378) .494 16/18 18/30 0.0

(3090,624,-1404) .492 16/18 18/30 0.019

40% 15 (309',572,-1404) .3183 11/11 11/30 0.019
(3090 598,-1378) .3176 11/11 11/30 0.0

40% 14 (308*,598,-1378) .060 2/4 2/30 0.0
(308',624,-1352) .059 2/4 2/30 0.019

20% 8 (3090,572,-1404) .059 2/4 2/30 0.019(309-,520,-1352) .057 2/4 2/30 0.041
(3090,598,-1378) .055 2/4 2/30 0.0

206** (331 ,6032,-2392) .033 1/2 1/30 - **
(331',6084,-2340) .033 1/2 1/30 - **

20% 13 (309-,598,-1378) .244 7/10 9/30 0.0
(309',572,-1404) .237 7/10 9/30 0.019

* Total Number of Points was 33.

•* Neither of the image abstract edges corresponded to any of the map abstract edges.

•* Variability on transformation parameters were estimated as: 0=±10, Ax=±60,Ly=±40.

For a point at (1000,1000) on the image.
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Figure 3.12 Real map edges from (a) Dreux 12 and
I (b) Dreux 13.
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INPUT 3,SO,201),3,0,0 0 , 13 0,,
INPUT 3,50,200,3,0,0,0 ,13?,0,0,
ANGTOI , STOL, I) '01 , NUML.Fu P 1 80K , SI- U , MIJM F P I) I , 1. ENrHI< , THRESH

3 50 200 3 0 0 0 13; 0 0
FOR IMA(;E I. lX ,J (Y , H f[X ,HI Y , XCF'.N'i ER ,YCN I'R : 0 (011000112(0O0 6000 6000
0 T .CAl. liET( I) S CAI liX ( ) S(,AI.. I'Y ( 1)

1 36. 000 1200 000 00,000
2 3.600 120,000) 120,000

.360 12,000 . 000
I.OXLO.(Y,LOTE'ND( ) -6000 -6000 0
FOR MAP : LOX, l.OY,HIX ,HIY,XCEN'TER ,YCENTEIR; 4000 40001.30001.900011000i1000

CI.tISTR
CI....STR

0 NIMAGE,NMAPI= 30 30
011 IETA XSHI I: T YSH IFT M T: lI " M R)l/NTM A (; E N C1CI. /NMAP

18 119 4, -4290. 3513 2-4/ 1.30 11./ 30 ** I*4
1.3 1104. --43001. 32 0 24/ 1.30 1. 1 / 30
S11. . , "--43 (, 332 , 4 .4/ 30 1 1 30 I: **

OIHETA XSH'IFT YSHIET MTCHWT H(CHR OW/NI MAGE; NMCH1I.-1./NM AI
18 t116, -4185. 3320 2,'-. /  1.30 11 / 30 4* ,
. 11 lit), -4176, "3 23 6 251 / 3( 1, I/0j 30 * *,119 116. --4176, 326 2/ J30 i / -40 **i**

OTHErA XSHI FT YSHI F:T MTCIWT MCHR )W/NI MAGE NMlCHI'[../NAP
20 996, -4284. 2446 20/ 1.30 10" 30 ** ':
20 i00(8 -4284, 24 96 20/ 130 10/ 30 **4
20 1 001, -427? 26 .S1. 13..

olI I TA XSII [11F T YS ...FT MTC.HT MCHR OW/N MA(. Eb NMCIl... iNMAP
74 -4060 . -4656 . 633 5/ J.30 :./ 30 **
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Figure 3.13 Results obtained from registration software when run
with set of real map edges from DREUX 13 and set of
real image edges from DREUX 13
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3.3.3 Conclusions on 2-D Registration

The previous sections presented details on only some of the total number

of experiments performed. Although all of these experiments had the same en-

couraging results, only a limited amount of automatic processing was done

and only a small number of images were used. Despite these limitations, the

demonstrated robustness of the registration procedure leads us to believe

that the automatic feature detection procedures discussed in the later sections

of Section 2 are good enough to supply the primitive features needed.

Specific conclusions from the 2-D registration experiments are as follows.

0 Registration of stereo images with limited relief can be achieved quite

effectively using a linear transformation consisting of only rotation

and translation. (Same scale has been assumed.)

0 Abstract edges, formed from pairs of accurately determined image points,

provide for a fast and accurate registration procedure.

0 Use of real edges was successful for registration even when the edge

structure barely revealed the image content. However, the registration

procedure was much less efficient and accurate than when abstract edges

were used.

The registration results are sufficiently good so that no modification

appears necessary in the immediate future: effort should be spent on verifica-

tion, region analysis, and feature detection. However, possible improvements

to the registration procedure are as follows.

* The mathematical details relating program tolerances to the amount of

local relief in the imagery and the error inherent in the detectors

should be worked out to the point of specifying operating procedures.

(Tolerances were obtained somewhat arbitrarity in the reported experi-

ments.)
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Thresholds used in clustering should be computed by a strict a

priori rule and should be stringently applied so that fewer clusters

are examined and less computing done. Similarly, the clustering

bin size should be regulated according to the theory of Section

3.2.2.

Very little has been said about the "match matrix" optionally

available from the registration program. The match matrix is a matrix

whose I,J-th element is the degree of match between image edge element

I and map edge element J (i.e. EMATCH(I,J)). Since the matrix indicates

which edges were in the map but without evidence in the image and vise-

versa, it is directly useable for change detection and verification.

Verification of features in the map but without edge evidence in the

image is reported in Section 5.
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3.4 Full RST Transformation

The position and orientation of primitive features such as intersections,

high curvature points, or lines can accurately be determined, but it is diffi-

cult to determine their sizes, such as length. The basic LNK registration

technique uses the position and orientation of the primitive features to find

the rotation and translation necessary to register two images or to register

an image to a map.

If the size could be included, then it would be possible to calculate

the four parameter transformation of rotation, translation and scaling. This

section presents a method for extending the procedure to account for scaling.

In order to accomplish this, abstract vectors or edges whose size can accurately

be determined are introduced.

To achieve scaling, abstract vectors or edges can be formed by spanning

pairs of point structures. For example, abstract edges can be formed by con-

necting pairs of high curvature points. Abstract vectors could be formed by

using an intersection point as the vector tail and a high curvature point as

the vector head. There are many ways of forming the abstract edges or vectors.

The registration procedure is similar to the basic one. Instead of the

triples (0, Ax, Ay), there are four parameters (0, Ax, Ay, As), where As is

the scaling parameter.

The three registration steps are now:

1) Primitive point features (intersections, high curvature points,
etc) are automatically extracted. The abstract vectors are
created by pairing the primitive point features. Not all pos-
sible pairs need be formed as that would result in a great deal
of computation.

2) Assume all features of one type can zorrespond to one another.
That is, a vector from an intersection of three lines to an
intersection of four lines in the first image can correspond
to any 3-intersection to 4-intersection vector extracted from
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the map (or second image). For each possible correspondence, find
the 4-parameter transformation (AL, Ax, Ay, ts) that maps one vector
to the other. Place a unit of weight in the bin in the four dimen-
sional histogram that represents the (A0, Ax, Ay, As) found.

3) Locate the best cluster in the histogram. The (A3, Lx, Ay, As) of
that cluster is the best global transformation as it provided the
largest number of local correspondences.

As an example of this method, suppose an image and map are represented in

terms of vectors vi connecting intersection points. The intersection points are

of four types; 'L', 'T', 'X', or 'Y'. The rules for pairing points to form

vectors may be arbitrary; for example, 'T' points are joined with 'L' points.

The purpose of such rules is to control the combinatorics. In Figure 3.14, five

vectors represent the map and four vectors represent the image.

Given any map vector vj all possible matching image vectors v. are can-

sidered. Each possible pairing (v.,vi) results in an RS&T transformation
31

mapping image vector vi onto map vector v.. The transformation is specified
J

by a quad of parameters (A0, Ax, Ay, As) where A. is the angle of rotation,

As is the scale factor, and Ax and Ay are the x and y translations respectively.

The pair (vj,Vi) is discarded without producing a quad if the tips or tails of

the vectors v. and vi disagree in type. In the example of Figure 3.14 there

are 5x4=20 pairs (vj,i) initially possible and of these only 10 agree in type

of tip and tail.

The mathematical development for forming a quad (ALC, Ax, "y, As) as a

function of v. and vi is given in Figure 3.15. Table 3.3 shows computer out-

put for the example shown in Figure 3.14. There are 10 quads produced and a

cluster of size 3 is cvident in the neighborhood of the best registration

transformation (AO-5.10, Ax--75, Ay-88, As-0.5). In real world cases there

would be hundreds of quads overall and a few dozen in a cluster.
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T L (L,170,220) -- (X,100,200)
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X

b) _____
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Figure 3.14. a) Example set of map vectors, and

b) set of vectors representing an image to be registered
to the map by RS&T transformation.
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S(DXsD Y)

(Bx, By) V.

Assuming that vector vi corresponds to vector vj transformation
parameters (AO,Ax,Ay,As) are gotten as

AO -j - E±

As - length of vj/length of

x - As A sinAG - As Ax cosLO + Cx

Ay - -As Ax sinS - As A cosAG + Cy

The resulting registration transformation in homogeneous coordinates
is

As cosAG As sinAG 0
lu,v,l] - [x,y,l] -As sinAO As cosA 01

1 Ax Ay 1]

where (x,y) is an image point and (u,v) is the corresponding map point.

Figure 3.15. Mathematical derivation of RS&T transformation parameters
from a pair of vectors vi and vj assumed to be correspond-
ing.
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3.4.1 Example with Scale

The following experiment demonstrates the utility of the proposed technique

for regions where cultural activity creates features such as straight edges

or networks of lineals. The results reported are typical of many similar ex-

periments.

Point features were identified by eye on an aerial image from the mid-

western U.S.A. using two different measuring devices and two different orien-

tations. Figure 1.1 shows sample imagery while Table 3.1 contains the coor-

dinates of the selected feature points. Points are labeled according to the

type of road intersection - 'L', 'T', 'X', or 'Y' - which they represent or

are labeled 'A' indicating an arbitrary point on the road.

50 vectors were chosen to model the map of Figure 1.1 while 64 vectors

represented the image. Tables 3.4 and 3.5 show some of the resulting

quads formed by matching vectors from the map with vectors from the

image. Note that stage coordinates have been divided by 10 for format con-

venience. Table 3.4 shows 10 vectors in stage coordinates which have the same

type of tip and tail as the vector (4365,2747) - (2498,3641) in the photo model.

Only the first of these matches is correct and hence only the first quad (5.39,

-1020,4040. 5.01) contributes to the ultimate cluster. Of the 50 x 64 = 3200

pairs (vj ,vi) possible only 790 nroduce quads in cluster space after the check

on tip and tail type. Table 3.5 shows that 32 of the ?90 quads form a cluster

near the parameter set (AG-5.38, Ax-f000., Ay-4000., As=5.0). Using Table 3.5

the reader can verify that 30 of these 32 quads represent correct vector matches.

For instance, the first quad represents the matching of vectors from point #2

to point #1 in the two different coordinate systems. The asterisks mark the

two incorrect matches which in fact are outliers in the set of 32 quads. A
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Table 3.4.

First 10 quads in set of 790 quads produced by
comparing 50 map vectors with 64 image vectors.
(Stage coordinates of Table 4-4 divided by 10
for format convenience).

MAP VECTOR IMAGE VECTOR TRANSFORMATION

VEC TAIL HEAD VEC TAIL HEAD
I TTP(X,Y) TYP(XY) # TYP(XY) TYP(XY) THETA SCALE DELX DELY

1 3(4365,2747) 4(2498,3641) 51 3( 972, 680) 4( 500, 500) .539+01 .501+01-.102+04 .404+04
I 3(4365,2747) 4(2498,3641) 52 3( 391, 720) 4( 500, 500) .391+01 .843+01 .322+04 .956+04
1 3(4365,2747) 4(2498,3641) 53 3( 331, 840) 4( 500, 500) .380+01 .545+01 .297+04 .747+04
1 3(4365,2747) 4(2498,3641) 54 3 281, 951) 4( 500, 500) .391+01 .413+01 .283+04 .A54+04
I 3(4365,2747) 4(2498,3641) 55 3( 350, 994) 4( 500, 500) .397+01 .401+01 .237+04 .647+04
1 3(4365,2747) 4(2498,3641) 56 3( 656,1144) 4( 500, 500) .450+01 .312401 .129+04 .549+04
1 3(4365,2747) 4(2498,3641) 61 3(1001,1310) 4( 500, 500) .482+01 .217+01 .130+04 .461+04
1 3(4365,2747) 4(2499,3641) 62 3( 872, 680) 4(1112, 805) .221+01 .765+01 .125+05 .536.03
I 3(4365,2747) 4(2498,3641) 67 3 872, 680) 4( 171,1360) .324+00 .212+01 .307+04 .793+03*
1 3(4365,2747) 4(2498,3641) 68 3( 391, 720) 4(1112, 805) .258+01 .285+01 .640+04 .389+04

1
I

ii*

, i, m ', , I I " i I I I III II I



Table 3.5

32 quads contained in the bin GE[5.0,5.7], Sc[4.8,5.2],
Ax C [-i100,-900], and Ly E[3000,5000].

MAP VECTOR IMAGE VECTOR TRANSFORMATION

VEC TAIL HEAD VEC TAIL HEAD
# TYP(X,Y) TYP(X,Y) # TYP(X,Y) TYP(X,Y) THETA SCALE DELX DELY

1 3(4365,2747) 4(2498,3641) 51 3( 872, 680) 4( 500, 500) .539+01 .501+01-.102+04 .404+04
2 3(3044,4744) 4(2498,3641) 52 3( 391, 720) 4( 500, 500) .536+01 .501+01-.101+04 .412+04
3 3(3342,5357) 4(2498,3641) 53 3( 331, 840) 4( 500, 500) .536+01 .504+01-.103+04 .411+04
4 3(3611,5908) 4(2498,3641 54 3( 281, 951) 4( 500, 500) .537+01 .504+01-.104+04 .408+04
4 3(3611,5908) 4(2498,3641) 55 3( 350, 994) 4( 500, 500) .553+01 .489+01-.959+03 .352+04
6 3(3975,5750) 4(2498,3641) 54 3( 281, 951) 4( 500, 500) .522+01 .514+01-.994+03 .464+04
6 3(3975,5750) 4(2498,3641) 55 3( 350, 994) 4( 500, 500) .538+01 .499+01-.100+04 .406+04
7 3(5516,5073) 4(2498,3641) 56 3( 656,1144) 4( 500, 500) .539+01 .504+01-.105+04 .401+04
8 4(2498,3641) 5(7130,3514) 57 4( 500, 500) 5(1096,1210) .538+01 .500+01-.101+04 .404+04
9 1(7430,4091) 4(2498,3641) 58 1(1036,1330) 4( 500, 500) .538+01 .501+01-.102+04 .407+04

10 1(7723,4700) 4(2498,3641) 59 1( 986,1460) 4( 500, 500) .538+01 .495+01-.982+03 .405+04
11 1(6942,3613) 4(2498,3641) 60 1(1056,1200) 4( 500, 500) .538+01 .497+01-.992+03 .406+04
12 3(7233,4181) 4(2498,3641) 61 3(1001,1310) 4( 500, 500) .538+01 .500+01-.102+04 .406+04
19 3(4365,2747) 4(5583,2191) 62 3( 872, 680) 4(1112, 805) .537+01 .495+01-.941+03 .408+04
20 3(4365,2747) 5(7130,3514) 63 3( 872, 680) 5(1096,1210) .538+01 .499+01-.994+03 .405+04
21 1(7430,4091) 3(4365,2747) 64 1(1036,1330) 3( 872, 680) .537+01 .499+01-.987+03 .410+04
22 1(7723,4700) 3(4365,2747) 65 1( 986,1460) 3( 872, 680) .538+01 .493+01-.933+03 .402+04
24 1(6942,3613) 3(4365,2747) 66 1(1056,1200) 3( 872, 680) .538+01 .493+01-.923+03 .406+04
25 3(4365,2747) 4(4861,7575) 67 3( 872, 680) 4( 171,1360) .538+01 .497+01-.972+03 .406+04
29 3(3044,4744) 4(5583,2191) 68 3( 391, 720) 4(1112, 805) .538+01 .496+01-.962+03 .407+04
30 3(3342,5357) 4(5583,2191) 69 3( 331, 840) 4(1112, 805) .537+01 .496+01-.956+03 .410+04
31 3(3611,5908) 4(5583,2191) 70 3( 281, 951) 4(1112, 805) .537+01 .499+01-.992+03 .410+04
33 3(3975,5750) 4(5583,2191) 71 3( 350, 994) 4(1112, 805) .538+01 .497+01-.986+03 .406+04
35 4(5583,2191) 5(7130,3514) 73 4(1112, 805) 5(1096,1210) .538+01 .502+01-.105+04 .407+04
36 1(7430,4091) 4(5583,2191) 74 1(1036,1330) 4(1112, 805) .537+01 .500+01-.991+03 .414+04
37 1(7723,4700) 4(5583,2191) 75 1( 986,1460) 4(1112, 805) .539+01 .494+01-.959+03 .400+04
38 1(6942,3613) 4(5583,2191) 76 1(1056,1200) 4(1112, 805) .538+01 .493+01-.927+03 .404+04
39 3(7233,4181) 4(5583,2191) 77 3(1001,1310) 4(1112, 805) .537+01 .500+01-.101+04 .410+04
46 3(3044,4744) 5(7130,3514) 78 3( 391, 720) 5(1096,1210) .538+01 .497+01-.967+03 .404+04
47 1(7430,4091) 3(3044,4744) 79 1(1036,1330) 3( 391, 720) .538+01 .499+01-.991+03 .406+04
48 1(7723,4700) 3(3044,4744) 80 1( 986,1460) 3( 391, 720) .538+01 .493+01-.935+03 .406+04
50 1(6942,3613) 3(3044,4744) 81 1(1056,1200) 3( 391, 720) .538+01 ,495+01-.955+03 .408+04
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4-D clustering routine would need to be implemented to find the significantj

clusters.



3.5 Extending LNK Registration to 3 Dimensions

So far the LNK registration procedures have ignored the 3D aspects of

the objects. This section presents a method to extend the 2D registration

to 3D under certain constraints. The 2D procedure found RS&T transforma-

tions mapping map structure onto image structure. Experiments showed that

the RS&T assumption was feasible in cases where variation in the 3rd dimen-

sion was relatively small. Good approximate RS&T registration transforma-

tions were obtained automatically for photo/map pairs even when there was

some relief in the terrain. There are many cases where RS&T transformations

are inadequate, such as in low altitude aerial imaging and in acquisition cf

solid objects by a robot vision system. In these cases projective transforma-

tions must be used.

In the general case 6 parameters are necessary to specify imaging in a

3D world [Duda and Hart 1973]. In this section, we consider a constrained

imaging system with only 3 free parameters as shown in Figure 3.16. A front

image plane is used with reference system origin (xffO,y=O,z=0) at the image

center. The camera has known focal length f and looks vertically down at a

scene with base distance yo from the image plane. There are only 3 unknown

parameters to discover; the angle e at which the object lies on the base

plane and the amount of translation (xozo) of the object origin from the

point where the camera axis pierces the plane.

There is some justification for this assumption in the aerial imaging

case. First, f is usually known. Second, it is possible to get a good ap-

proximation for altitude yo and to achieve a nearly vertical camera axis.

These approximations would perhaps be good enough to correctly detect an

approximate 3 parameter view which could be used as an initial approximation
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Figure 3.16. Three dimensional object viewed by camera with
known attitude. Knowns are f and Yo and a model
of the object. Unknowns are the object orienta-
tion parameters 0, X0, and Z0.
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to a full 6 parameter view.

We therefore proceed as follows. A 3D terrain model is specified in

local coordinates as in Figure 3.17. The model would contain the locationi

and description of all significant features such as edges, corners, inter-

sections, water bodies, etc.

The acquisition problem is defined as discovering (computing) the orien-

tation parameters (e,xo,z o ) from the image structure and the known camera

parameters f and yo. A few definitions are appropriate before proceeding.

camera parameters - parameters that fix the imaging system over the

base plane, i.e. f and yo, and define the global

coordinate system.

orientation parameters - parameters that fix the object (or object model)

in the global coordinate system which are 9, xo ,

Z O •

viewing parameters - the combined camera and orientation parameters f,yo,

,,Z o zwhich allow a specific image to be created

(from the terrain model).

Here we assume that we know the attitude of the camera f,yo and the ori-

entation e,xoz o of the object. We develop computational formulas for image

point (xlylpzI ) corresponding to point (xmYm, Zm) in the map.

Let (x,y,z) be the global coordinates of point (xm,ym,zm) under map

orientation (e,x0ozo). Then we have

(1) x - x m Cos e - zm sin 6 + xo (3D Map to

(2) y - yo -y IL1 SoJ Clobal)
(3) z - xm sin e + zm cos e + zo

The global coordinates (x,y,z) then produce image coordinates (xlvIZI)
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Figure 3,17. Object model defined by a set of vertices
and edges.
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via the direct perspective transformation.

(4) x fx f(xm cos 6 - zm sin 3 + xo) (3D GlobalI f + Y f + Yo - Ym

to
(5) YI - 0 2D Image)

fz = f(xM sin e + zm cos 6 + z%)
f+ y f + Yo - Ym

Here we assume that a given vector (Axm , Aym , Azm) - (Bxm, Bym, Bzm) in

the map corresponds to a given vector (Ax', Az') - (Bx', Bz') in the image.

We develop computational formulas for determining map orientation parameters

(e,xo ,yo ) from this correspondence.

Rearranging the imaging equations (4) and (6) from above we have the

following.

(7) xl(f - ym + y 0 ) - xm cos e - zm sin 9 + xo

f

(8) z.(f - Ym + yo) - xm sin 8 + zm cos 0 + zo

f

Since (7) must hold for both points A and B, we get two equations from

which xo can be eliminated, leaving only e unknown.

(9) Ax,(f - Aym + yo ) - Bxj(f - Bym + yo) = (Axm - Bxm)cos 6 +

f f

(Bzm - AZm)Sin e

Equation (9) is of the form

c - d cos 9 + e sin 0

where we make the substitutions w - sin 6 and / - cos 9.

Thus a standard quadratic equation in w

(10) (e2 + d2)w2 - (2ce)w + (c2 - d) - 0

is obtained where the coefficients are obtained as follows:

] l16
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I

c - (AX, (f - Aym + Yo) - BxI(f - BYm + yo) )/

e - Bzm - Am

*1 Solving the quadratic yields

(11) w ce + dVe 2  c2 +d2

e 2+d2

(12) e = sin- w.

Knowing 0, (7) and (8) can be used to solve for xo and yo using either A or

B point coordinates. For example,

X0 = Ax(f - Aym + yo)/f-Axm cos 0 + Azm sin 0.

Since there is mathematical ambiguity in 8 from (11) two parameter sets

(w1,x0 1,y01 ) and (w2,x02,Y0 2) can result. It is easy to check for correct

parameters using (4) and (6) and the 2 known pairs of corresponding points

(ABIA) and (BI,BM).

There are two significant cases to note where the computation breaks

down. First of all, the discriminant of the quadratic can be negative and

hence no 0 can be obtained. This will happen whenever the map edge cannot

possibly be imaged onto the image edge. Few pairings are actually possible

due to the fixed scale imposed by f and yo. Secondly, whenever the map edge

is vertical both d and e above are zero and equations (11) and (12) cannot

produce 6. Physically we can rotate the object in the map freely about that

vertical edge without altering its image and thus we should not expect to get

0 mathematically either.

Figure 3.18 shows a planar section containing the camera axis, the ver-

tical map vector, and hence the image vector as well. Clearly, free rotation

of the object about the axis AB will not change this picture. It is also

clear, however, that locational parameters x and z are completely specified

117



f

B'B

A(x,y, Z)

(oyo,o) (x,yo ,z)

Figure 3.18. Planar section of imaging environment containing both
the camera axis and a verticle model vector AB.
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by A'B' and AB provided that they correctly match via the viewing transforma-

tion. From the imaging equations (4) and (6) applied to both points A and B

we get

Ax (f+Y) f - x - Bx (f+y) / f or
1 01

(23) AxI (f+y0 ) = BxI (f +y)

and similarly for the z coordinate relations

(24) AzI(f+y o) = BzI(f+y).

Conditions (23) and (24) must hold if A'B' is to possibly match with AB.

We are already in trouble here if only real edge segments are available

because (23) and (24) are scaling equations. On the other hand, if abstract

vertical map edges which have accurate tips and tails are being used, it would

be easy to consider only nonvertical vectors as before. All that need be done

is to construct nonvertical vectors by mixing the tip and tail points of

several vectors. For this reason, special treatment of vertical vectors can

be ignored (justifiably) in the computer programs.

As an example, suppose the map contained the object shown in Figure 3.17.

Suppose the image was formed by viewing the object with aspect parameters

(f-l,yo-10) and orientation parameters (G-30 0,xo--2,zo=3). The resulting

image is shown in Figure 3.19, along with the coordinates of the points. Let

the object in the map and image be represented by the vectors listed in Table

3.6. Matching the 10xlO pairs of vectors (vi,vj) yields only 12 feasible para-

meter sets, 10 of which form a cluster about the correct parameters a - (0-0.525,

Xo0-2,zo-3).
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Z
0.6

0.5-

0.4

0.3

0.2

0.1 4--4I X
-0.4 -0.3 -0.2 -0.1 0.0 0.1

Pt New Coords: (X.Z)

0 (-.182, .273)
1 ( .054, .409)
2 (-.037, .567)
3 ( .273, .430)
4 (-.113, .350)
5 (-.060, .450)
6 (-.127, .573)
7 (-. 300, .473)
8 (-.250, .387)
9 ( .163, .437)

10 ( .182, .485)
11 (-.278, .430)
12 (-. 222, .333)
13 (-.126, .389)

Figure 3.19. Object model defined by set of vertices and edges.
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4. Region Identification

The interpretation of images frequently necessitates the extraction

and identification of significant regions. This requires finding the bound-

aries of the regions and assigning labels which identify the regions' con-

tents. The segmentation of images into regions was briefly presented in

Section 2.8. The identification of regions can be thought of as a partitioning

process.

Given a segmentation, the first step of region identification is to find

a set of features that would be used to provide an initial seL of feasible

labels for the regions. This discrimination could be done using statistical

or structural pattern recognition procedures. Since a region could be multi-

ply classified, the second part of region identification involves disambiguat-

ing the labels using either inter-region relationships and/or structural infor-

mation from a map.

In Section 4.1, we present statistical methods which use the feature

vector to provide an initial set of labels for the regions. Experimental

studies comparing several of the methods are described.

In Section 4.2, we present a brief overview of structural methods for re-

ducing the ambiguity of the region labelling. A graph theoretical method of

region matching between an image and a map is described. The technique uses

network flow analysis to perform the disambiguation. A second method which

uses an interative procedure based on similarity measures between neighboring

regions is sketched.
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4.1 Region Label Weights

5 This section provides an overview of the problem of assigning a set of

labels and associated likelihoods or weights to these labels given a feature

vector describing the region. The labels will be various classes such as

forest, field, etc. into which the region can be classified. Ideally the weights

should be the conditional probability of the region feature vector given each

of the classes. Unfortunately the estimation of these quantities is, in general,

very difficult without a large number of samples. The weights described in this

section can be obtained by using training samples to form a model for each

class and taking as weights some measure of fit of the region feature vector to

the model. The models discussed here fall into two categories. First we

describe models, called single models, which are defined using only training

samples from the class being modelled. Second we describe models, called

multi models, which are extracted from classification procedures using training

samples from two or more classes simultaneously.

A class model defined solely in terms of the samples from that class has

several advantages over a class model based on training samples from several

classes. First, the addition of new classes can be easily accomodated by using

samples from these new classes to form the new models. The models of the

previously existing classes would require no change, thus providing a significant

reduction in computation and data storage requirements over multi models. A

second advantage of single models over multi models is the improved quality of

class fitting. Multi models, since they are based on classification methods,

attempt to use variables which are best suited to class discrimination, and

use the same variables for all classes being modeled. These multi methods may

require the use of variables irrelevant to certain classes thus distorting the

123



estimation of separating surfaces. Single models, on the other hand, develop

class models using only those variables relevant to the description of the

class involved. A third advantage of single models over multi models is

their behavior in the presence of test samples from new classes for which no

training samples are available. In single models the sample from the new

class might not fit any model well in which case it could be easily isolated

for further examination. Multi methods use the partition of feature space

given by the classification procedure and some measure of distance of a sam-

ple from each set in the partition. In this case the partition is not adequate

to design separation measures which detect the presence of samples from a new

class since all samples fall within some set of the partition.

Multimethods can be advantageous in situations where variables good for

class separation are present but variables used in the single models contain

little information useful for discrimination. Unfortunately, the characteri-

zation of data for the purpose of determining the relevance of single versus

multi models is not all understood. In Section 4.1.1 to 4.1.5 we examine

specific models illustrating by example certain pitfalls with those methods.

Section 4.1,1 describes the disjoint principal components model which is a

single model. Section 4.1.2 details the pooled covariance discrimination

model which is a multi model. In Sections 4.1.3 thru 4.1.5, experiments

using these models are described.

1
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4.1.1 Disjoint Principal Components Model

The disjoint principal components model is formed by fitting separate

principal components to each class and using the distance from a test sample

to the subspace of feature space given by the principal components models as

the measure of membership in the class. Thus, smaller weights indicate greater

likelihood of class membership. In this section we review the theory of

principal components and describe the disjoint principal components methods

in detail, indicate some of its limitations and provide suggestions for im-

* provement of the procedure.

The goal of principal components [Kshirsagar 1972] is to give a simple

model for a continuous multivariate distribution which maximizes the explained

variance of the distribution. This goal has been stated in a very general form

since there are at least eight distinct natural optimization questions whose

solutions are the principal components. Before describing some of these char-

acterizations, we define principal components and give some basic properties.

Let x=(x. ..x ) be a sample from a p-dimensional continuous distribution with
1-p

mean 0 and covariance matrix E=(oi) where Z is a real positive semidefinite

matrix with eigenvalues 61, . . . ,6 p where 61>62> . >6 >0. There exists

a pxp orthogonal matrix r whose columns yl,...,y p are the eigenvectors of F such

that E=rAr' or F'EF=A and A=diag (61,...,6 p), is the matrix with entries

'1,..., p along the main diagonal and zero elsewhere and ""' denotes the trans-

pose of a matrix. For any xeRP, we define the principal components vl,...,v p

of x to be the components of the vector v=F'x. Intuitively we have merely

performed a change of basis to the basis in which the eigenvectors of E are

the new basis vectors given in terms of decreasing eigenvalues. Thus v I cor-

responds to the eigenvalue 61, v 2 corresponds to 62, etc. The principal com-

ponents are uncorrelated and their variances are 61,...,6 p respectively.
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We now describe several optimal properties of principal compoaents.

First, suppose we wish to find q (q<p) linear combinations of Xl,...,x p

which account for as much of the variation of xl,...,x p as possible. Thus

we seek a q by p matrix H whose rows hl,...,h p are orthonormal such that the

sum of the variances of h1 'x,...,hq 'x is maximized. It can be shown that

hi=vi for i=l,...,q. Thus the first q principal components are the linear

combinations of xl,...,x p explaining the maximum amount of the variance of

xI,.... , We give one other optimal property of principal components here.

Suppose that instead of attempting to explain as much of the variance of x as

possible we attempt to approximate the covariance matrix E by a matrix B of

the same order p and rank q (<p). We wish to find such a B minimizing

Norm(Z-B) = p pp 2=1/2

where B=(bij). To state the optimality principle here, we first recall that

E can be written as

= 6 l'1 + 6 2Y2Y2 ' + + 6 py'

according to the spectral decomposition theorem. It can be shown that the

optimal matrix B is given by

B = 6l YlY + + 6 qYqYq'.

This matrix has eigenvectors YI, ... Yq and eigenvalues 61, ... , 6 so tl,eq q

principal components computed with this approximate matrix are just the first

q principal components computed from E.

Various hypotheses can be tested to determine the number, k-l, of princi-

pal components to select. These tests assume a multivariate normal distribu-

tion for the random vector x. Two hypotheses which can be used are

1) 6 1is zero.

p p
2) E 6i / f 6i is zero.

i=p-k+l 1

Hypothesis (1) states that the sum of the variances of the last k principal
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components is small while hypothesis (2) states that the ratio of the sum of

the last k variances to the sum of all the variances is zero. Both hypotheses

have intuitive appeal as measures of the insignificance of the last k princi-

pal components. Details of these tests are given in [Kshirsagar 1972].

The principal component approach to distribution representation can be

adapted to the problems of classification and ranking of class labels [Wold

19761. We assume k classes Cl,...,Ck are present. Each class Ci, i=l,...,k

is represented by a collection of samples where a sample is a point in Rn.

First all variables in each class are modified to have zero mean and unit vari-

ance. This is done to eliminate the effect of magnitude difference between

variables due to inappropriate choices of scales for the various variables.

For each class, Ci, a principal component model is formed using the normalized

variables. The number of principal components may be manually or automatically

selected using any of a range of tests [Kshirsagar 1972]. Having formed these

models a sample can be tested for its fit to each of the models. Let mij and

sij denote the unnormalized mean and variance of the jth variable of the ith

class. Let x = (xI,... ,xn ) be a sample to be fitted. Define a class i nor-

malized vector x' = (xl ',...,x n ') of x by xj' = x .sij Let x" = (xI . .. ,.

x 'n") denote the projection of x' on the space spanned by the eigenvectors cor-

jresponding to the selected principal components for this class. Finally we

define the fit of x to class i to be the Euclidean distance between the vec-

ton x and x''. Thus we have a measure of the distance of a sample from each

class. In this model a class is represented by a linear subspace of Rn. The

advantages attributed to single models in section 4.1 apply to the disjoint

I principal components model. The selection of a linear subspace to represent

a class can be lead to problems in classifying a sample if the sample lies

j close to a representing subspace but far from the samples used to select this

subspace. Before suggesting a modification of the algorithm to overcome these
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difficulties, if they arise, we remark that the ranking of classes for a sam-

ple is defined by the distance from a class in the obvious way: class Cl is

more likely than class C if the normalized sample is closer to the model for

Ci than it is to the model for C .

A refinement of the principal components models may be obtained by

modification of the notion of the distance from a sample to a class. In the

subspace chosen by the disjoint principal components method to model a class

we may perform a parametric or non-parametric density estimation for the pro-

jections of the samples of the class onto the subspace. If the number of

principal components is small, this estimate may be quite reliable. The amendsU

notion of the distance from a sample to a class should be small if the sample

is near a point in the subspace which has a high probability according to the

density estimate. If we normalize the distance of a sample to each class by

dividing the ordinary principal components distance to a class by the sum of

the distances to all the classes, and we denote this normalized distance by d,

then we can define the new distance of a class by d+ 1 where p is the estimated
p

probability of the projection of the sample. If we wish to use inverse dis-
1

tances, so that smaller values represent better fits, we may use !+p. In the

case of equal prior probabilities for each class and all principal components

being used this is just Bayes rule.
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j4. 1.2 Pooled Covariane Discriminatilon

The posterior probabil ii Les of a sample he longiun to ach .;Iivvor:,

classes can be used to rank the likelihoods of membership ill eaich ,)f the

classes. If each class is assumed to have a multivariate normal distribu-

tion and all classes have a common covariance matrix, then the estimation of

the posterior probabilities is considerably simplified. Software for the

computation of these probabilities is available in the BMDP package [Dixon

1979]. We now describe the computation of these quantities. For furthe-

details, see [Dixon 1979]. Let p denote the number of variables, P: the num-

ber of classes used for design, t the total number of classes and xijr the

value of variable r of sample j of class i. Furthermore let n be the total

number of samples and let n i be the number of samples in class i. In the

experimental work, each class was equally divided into two classes, one for

designing and one for testing. Thus t=2g. First compute the group means
_ ni

x = x /n. /n
ir j-l ijr i i' t

r=l,...,p

and the pooled within group sums of cross-product deviations

g ni  _

Wrs= 2 2 (x ijr-xr )(xijs-x
i s ) r=l,. .. p

s= I , sumatrxp

A qxq submatrix, W of the matrix, W, whose ijth entry is w_* is defined

by a stepwise procedure. The stepwise inclusion of variables is guiLhed by

the F approximation to Wilk's A statistic. Let A=W I and let (A)
11 ij

The squarc.) Mahalanobis distance of sample j in class i from the mean of

group k is given by

ijk=(n-t) s F (xijr-Xkr rs ijs Xks

1=1,... ,

~~k=i .... ,1



Finally the posterior probability that sample j from class i comes from

class k is given by

p kP exp(-1/2 D2  exp(-1/2D 2
ijk k ijk r=l 1r

1=l,.. .,t

J=i, ... ni

The effectiveness of this approach is dependent on the assumptions of normality

and equivalence of the covariance matrices.
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4.1.2 Pooled Covariance Discrimination

The poskerior probabilities of a sample belonging to t'aclh 11 mvver.tl

classes can be used to rank the likelihoods of membership in each of the

classes. If each class is assumed to have a multivariate normal distribu-

tion and all classes have a common covariance matrix, then the estimation of

the posterior probabilities is considerably simplified. Software for the

computation of these probabilities is available in the BMDP package [Dixon

1979]. We now describe the computation of these quantities. For further

details, see [Dixon 1979]. Let p denote the number of variables, g the num-

ber of classes used for design, t the total number of classes and xijr the

value of variable r of sample j of class i. Furthermore let n be the total

number of samples and let n i be the number of samples in class i. In the

experimental work, each class was equally divided into two classes, one for

designing and one for testing. Thus t=2g. First co-nute the group means
_ ni

x EX /n i=l, ,tir j=l ijr i "'"
r=l,. . ..

and the pooled within group sums of cross-product deviations

g ni

wrs i=i j=l (Xijr-Xir)(Xij
s - xi s ) rl .... p

s~l,...,

A qxq submatrix, WII, of the matrix, W, whose ijth entry is w.. is defined

by a stepwise procedure. The stepwise inclusion of variables is guided by

the F approximation to Wilk's A statistic. Let A=W and let (A)

The squared Mahalanobis distance of sample j in class i from the mean of

group k is given by

2 q (x -x)ar(xi.s-k)
D ij'k= (n-t)r=1 s(ijr kr rsijs ks

j=l,... n i

k=l,... ,g
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4.1.3 Synthetic Data ExperimentsI

Simulation studies were done to compare the perforlm~inces of class labelling

using pooled covariance density estimation and disjoint principal components.

The purpose of these studies was to determine which of these algorithms is

more suitable for providing a ranking of class labels. While these experi-

ments shed some light on the characteristics of the methods involved, no

firm guidelines can be given for selecting a method except in extreme cases.

Fifteen simulations were performed. The data set for each simulation

consisted of four classes, of one-hundred 3-dimensional vectors each. The

means of the four classes are (0,0,0), (1,0,0), (0,1,0), and (0,0,1). The

fifteen simulations can be divided into five groups of three simulations each.

Within each group of three simulations the same group of four covariance

matrices was used for each of the three trials, but different sets of random

vectors were generated from these distributions. None of the covariance

matrices for these fifteen trials is a diagonal matrix.

For each simulation, fifty of the one-hundred samples from each class

were used for designing decision procedures and fifty were used for testing.

For each of the 200 test samples, twelve numbers were calculated. First the

true density function of each class was used to generate the probability of

the sample coming from each class. The probability of each sample belonging

to each of the classes was then estimated using the pooled sample covariance

matrix over all classes. Finally the distances of the same from the princi-

pal component model for each class was generated. The principal component

distances were converted into weights in the following way. Let dl, d2, d3,

d4 be the four distances for a sample. To each dl, i=l,... ,4, we correspond

the weight wi= I/d _ i=l,...,4. Before computing these
I/dl+ I/d2+ 1/d3+ i/d4,

weights, any di such that d1 <.0001 was replaced by .001. Using this nor-

malization procedure, all weights lie between zero and one and larger weights
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correspond to better class fits. For each sample, the three sets of four

numbers were converted to rankings. Thus for each sample and each of the

three methods of assigning weights we define a sequence al, a 2 , a3 , a4 of

four distinct integers chosen from the set {l,2,3,4} as follows. Let pl'

P2 9 P3 P4 be the weights or probabilities of the sample belonging to classes

1, 2, 3, 4 respectively. Then ai=j if pj is the ith largest of the numbers

pI, P2 ' P3 ' P4. For each simulation the confusion matrix for each method

was computed. These matrices are shown in Figure 4.1. The covariance

matrices are given in Figure 4.2. Since the class ordering given by the true

probabilities is, on the average, optimal, this ordering was compared with

the ordering given by the estimated probabilities and disjoint principal

components. In Figure 4.3, the number of times each of these two orderings

agreed with the ordering determined by the true probabilities for the top

choice, the top two choices, and all four choices is given. Finally in Figure

4.4, the number of times these two orderings have the first two classes correct

or reversed is given. The next section discusses the results.
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Simulation
No . .True .Probability Estimated Probability Principal Components
1 25 12 9 4 19 11 10 10 28 6 9 7

5 44 0 1 3 47 0 0 6 42 0 2

6 0 44 0 6 0 43 1 14 1 29 6
5 0 10 35 4 1 11 34 7 0 6 37

2 37 6 4 3 33 6 7 4 35 5 8 2
3 44 0 3 6 34 0 5 16 32 0 2
2 0 48 0 2 1 47 0 3 0 46 1
5 3 5 37 2 3 8 37 14 1 3 32

3 28 9 6 7 25 7 9 9 35 7 5 3
4 42 0 4 5 40 0 5 14 32 0 4
0 0 45 5 6 2 38 4 4 2 39 5
5 0 2 43 3 0 3 44 5 0 4 41

4 33 5 6 6 25 2 11 12 27 2 12 9
2 43 0 5 0 43 0 7 6 37 0 7
5 0 40 5 3 0 45 2 6 0 43 1
6 2 2 40 6 1 5 38 10 0 2 38

5 32 6 6 6 28 8 1 13 30 6 4 10
5 40 0 5 2 40 0 8 5 36 0 9
8 0 38 4 8 0 38 4 7 0 40 3
1 5 7 37 1 4 10 35 4 2 7 37

6 28 3 7 12 29 2 8 11 26 5 8 11
3 45 0 2 4 42 0 4 3 42 0 5
5 0 41 4 7 0 42 1 6 2 40 2
7 4 2 37 7 6 7 30 11 1 4 34

7 24 11 9 6 22 7 10 11 9 16 11 14
4 29 9 9 10 25 6 9 9 29 8 4
5 9 36 0 11 5 34 0 3 11 31 5
4 8 5 33 6 9 4 31 3 10 5 32

8 12 15 13 10 15 13 11 11 13 15 14 8
6 36 3 5 7 30 4 9 4 34 2 10
4 8 35 3 7 7 34 2 9 8 27 6
9 5 9 27 8 4 9 29 13 9 5 23

9 14 21 6 9 15 18 6 11 13 22 5 10
6 31 4 9 11 31 0 8 9 27 5 9
5 4 39 2 10 4 34 2 8 5 36 1

7 4 5 34 4 4 5 37 9 7 4 30

Figure 4.1 Confusion Matrices for fifteen simulations using true
probabilities, estimated probability and disjoint principal
components for classification. Rows correspond to true
classes and columns correspond to classification results.

I
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SimulationNo True Probability Estimated Probability Principal (bmponents

10 18 16 8 8 15 13 11 11 14 15 10 11
7 33 9 1 7 30 11 2 10 30 10 0
2 2 34 7 6 2 36 6 5 3 34 8
2 1 4 43 3 2 2 43 3 5 4 38

11 14 7 11 18 11 8 10 21 15 11 9 15
3 34 10 3 5 35 8 2 6 35 7 2
3 5 32 10 4 6 30 10 5 6 32 7
3 1 4 42 4 2 3 41 9 2 6 33

12 11 15 8 16 14 12 9 15 11 1] 13 15
5 38 6 1 4 40 5 1 6 36 8 0
6 2 33 9 7 4 29 10 6 3 31 10
7 2 6 35 13 3 2 32 7 5 8 30

13 24 14 6 6 21 12 8 9 12 13 14 11
8 36 4 2 9 36 1 4 6 34 5 5

11 6 25 8 6 8 24 12 8 5 24 13
4 9 3 34 3 7 3 37 4 10 4 32

14 24 16 8 2 14 16 10 10 7 15 13 15

8 3 3 3 2 6 30 4 10 4 31 4 11
10 4 27 6 7 3 30 i0 6 3 32 9
10 8 5 9 6 7 8 29 8 9 5 28

15 18 10 10 12 15 13 12 10 16 10 13 11
9 29 4 8 8 30 4 8 8 26 8 8

10 7 31 2 8 9 30 3 9 8 27 6
12 5 7 26 4 8 9 29 9 7 7 27

Figure 4.1 (cont)
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Denote the covariance matrix by A - 2 a3 a
( a4 a556 a 6

a1  a 2  a3  5  6

SETi Class i .8 .7 .9 .7 .6 .9
2 .9 .8 .9 .3 .5 .8
3 .9 .8 .9 .3 .5 .8
4 .9 .4 .7 .6 .1 .7

SET 2 1 .79 .7 .85 .7 .6 .9
2 .9 .8 .9 .3 .5 .8
3 .79 .7 .85 .7 .6 .9
4 .9 .4 .7 .6 .1 .7

"S-T - 1 .1 .6 .2 .3 .7

2 .8 .3 .7 .2 .4 .7
3 .8 .1 .9 .2 .7 .9
4 .9 .1 .9 .1 .1 .9

SET14 .7 .2 .9 .3 .2 .8
2 .9 .1 .7 .6 .3 .8
3 .7 .3 .9 .3 .2 .7
4 .9 .1 .7 .6 .3 .8

SET 5 1 .9 .2 .9 .1 .4 .7
2 .9 .3 .7 .3 .3 .9
3 1.2 .3 1.1 .3 .2 .95
4 1.2 .3 1.1 .3 .2 .95

Figure 4.2 Covariance matrices for classes used in c lssification
experiments. Each set consists of a set of four co-
variance matrices corresponding to four classes.
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Estimated Probabilities Disjoint Principal (bmponents
(0 of classes ranked correctly) (# of cases ranked correctly)

Simulation No. 1 2 4 1 2 4

1 172 105 87 155 87 35
2 176 115 84 158 93 24
3 171 109 91 166 101 37
4 173 102 79 163 98 42
5 168 102 95 167 94 53
6 177 110 94 164 97 41
7 167 119 92 142 73 56
8 175 123 81 152 71 41
9 168 120 94 149 93 54

10 174 137 110 168 143 84
11 182 161 130 166 121 73
12 171 128 103 164 124 72
13 163 98 88 157 99 69
14 170 113 87 151 106 82
15 174 121 86 146 88 62

MEAN 172.1 117.5 93.4 157.9 99.2 55
STANDARD DEVIATION 4.6 16.0 12.9 8.4 18.7 18.3

Note: Aiy sample with at least the first class correct is counted in
column one. toy sample with at least two classes correct is
counted in column 2.

Figure 4.3 Number of correct rankings (e.g. most likely class is correct, two
most likely classes are correctly predicted by the given method) for
each of the fifteen simulation experiments.
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Disjolit Principal
Estimated Probabilities ComDonent

Simulation No. (Count) (Count)

1 119 108
2 130 118

3 126 123

4 123 118
5 123 112
6 127 118
7 143 100
8 142 88
9 143 129

10 149 154
11 175 136
12 146 145
13 123 119
14 133 136
15 140 124

Mean 136.1 121.9
Standard Deviation 14.5 16.9

Figure 4.4 Number of times first two classes are correct or reversed for
each of the fifteen simulation experiments.
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4.1.4 Discussion of Region Weight Evaluation

The simulation experiments indicated no advantage of disjoint principal

components over density estimation. No theory exists for predicting the

relative performance of these methods. A greater variety of covariance

matrices should be examined to determine conditions under which each method

dominates. Once an adequate supply of examples in which each method dominates

is collected, an attempt should be made to relate properties of the distri-

butions to the success of the various methods. One possible distribution

property is the similarity of the individual class covariance matrices to

the pooled covariances matrix. A crude but simple measure of this distance
2

may be obtained by viewing an nxn covariance matrix as a point in Rn  The

similarity measure can be taken to be the sum of the distances from the in-

dividual class covariance matrices to the pooled covariance matrix. A second

measure of covariance matrix similarity may be obtained by comparing the

estimated posterior probability of each sample based on its class covariance

matrix and the estimated probability based on the pooled covariance matrix.

The sums of the differences of these quantities may be used as a measure of

similarity. Neither of the above measures directly takes into account di-

rectional differences in the structure of the distributions. A simple mea-

sure of this might be the expected angle (over all classes) between the first

principal directions for each pair of classes, where by principal direction

we mean the eigenvector corresponding to the first principal component.

Numerous other simple measures could be defined. Correlations between these

measures and the success of one method over another could then serve as guide-

lines in the selection of an appropriate data dependent procedure for real dato.
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4.1.5 Discussion of Region Label Rankings

The comparison of methods for ranking region labels is difficult to per-

form on image data since the only standard for evaluation is where the-true

class is located in the rankings. Definitions of class similarity could be

defined in terms of the confusion matrix of a classification procedure such

as a decision tree. Unfortunately, the evaluation of rankings in terms of

these similarity definitions is muddled by the somewhat arbitrary

choice of a standard for ranking. The disjoint principal components (DPC)

procedure was performed on a test set of one-hundred and twenty samples from

the aerial image, frame 4621, supplied by USAETL. These samples were divided

into two groups, sixty forest samples and sixty field samples. Each sample

consisted of the thirty-two rings representing ROSA spatial frequency data.

In all DPC tests, thirty samples from each class were used for the de-

sign set and thirty samples for the test set. Due to the small number of sam-

ples used, a subset of the thirty-two rings were selected for application of

the DPC procedure. For this subset of selected features, the resulting classifica-

tion are given in Fig. 4.5. Rings 1, 2, 3, 30, 31, 32 were useful as a start-

ing set of features for DPC. In addition, the density estimation procedure

described in Section 4.1.2 was applied to this data. For this work, samples

from each class were divided into two groups of approximately equal size using

a random procedure to places samples in design or test sets. Each sample had

a .5 probability of being placed in the design or the test set. The results

of this computation are given in Figure 4.6. The histogram of the first

principal component of the samples, using the pooled covariance matrix, is given

in Figure 4.7. From this Figure we see that these classes separate very well

using the first principal Lomponent to represent the data.
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Forest versus Field Discrimination

Confusion Matrix
Density Estimation Using a Pooled Covariance Matrix

Number of Cases Classified Into Percent Correct

Group Field Forest
Field 31 2 93.3

Forest 0 25 100

Figure 4.5 Forest versus Field Discrimination (Density Estimation).

Forest versus Field Discrimination

Confusion Matrix
Disjoint Principal Components (1 component)

Number of Cases Classified Into Percent Correct
Group Field Forest
Field 29 1
Forest 3 27

Figure 4.6 Forest versus Field Discriminatlon (Disloint Princlpafl Components).
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4.2 Overview of Region Match.nj

The classification of regions in an image is a difficult task which some-

times requires application of several levels of preprocessing. In this sec-

tion we describe two procedures for taking a tentative set of region labels

and using region features to obtained a less ambiguous labelling. In addi-

tion we describe some experiments indicating a framework for a detailed study

of one of these methods using real image data.
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3
4.2.1 Region Image Matching Using Similarity of Region Features

Region image matching can be done by finding a set of features which de-

scribe the regions and then pairing regions which have the best matching set

of features. It is desirable that the decisions take into account the adja-

cency information of the regions, so that adjacent regions in the image match

adjacent regions in the map.

One such method of region matching yields a measure of similarity between

pairs of regions, one from each of the two images to be matched [Price and

Reddy 1979]. This method makes no assumptions about the relative displace-

ment and orientation of the pictures. The steps of their algorithm are as

follows:

1) Segment the image.

2) To each region i assign a set Vii, ...., Vin where Vij denotes the

value of the jth feature for region i. These numbers may describe

features such as shape, size, position, spectral values, etc. To

each pair of regions, region i from image 1 and region j from image

2, define the region to region match rating, Rij, by:

n
RIj - k Vik - Vjk Wk Sk

where Wk is a normalization factor for the kth feature and Sk is a

measure of importance of the kth feature. Larger values of Rij

indicate good matches.

3) In this step we attempt to improve the accuracy of the rating Riu

by taking into account adjacency information. To each region Ri in

image 1, assign the region R in image 2 which maximizes Ri,. Let

Ni denote the set of regions in image 1 which are neighbors of region

Ri and have a match in image 2. We say two regions are neighbors if
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they have a common boundary point. Let N. denote those regions in

image 2 which match the regions in Ni . Let N, denote those resions

in N. which are neighbors of Rj. The neighbor teature value (NFV) of
J

Ri is defined to be the number of elements in Ni and the NFV for Rj

is the number of elements in Ni'. Recompute the Rij's using this

additional feature and assign to each region in image 1 the region

in image 2 which matches it best.

This matching algorithm is designed to be invariant under rotation and

translation of the images. By omission of size features, the algorithm can

be made invariant to scale change. Dissimilar image matching and image to map

matching can be handled by this method.
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4.2.2 Graph Theoretical Region Matching

This section deals with a method for finding corresponding regions in

an image and a map. The procedure [Pavlidis 19771 described takes two lists

of regions, one from the image and one from the map, together with a set of

possible matches between image and map regions, and computes a region cor-

respondence maximizing the number of regions matched. We now give a precise

formulation of the problem.

Assume the map consists of regions S1,...,S m and the image consists of

regions TI,... ,Tn . Assume to each map region Si we assign a set H(Si) of

image regions. Intuitively the image regions in H(Si) have been assigned to

Si because they may match it on the basis of properties such as site, shape,

texture, etc. Our goal is to find a subset RcS and a one-to-one function g:

R-T satisfying the following properties:

1) i#j*g(Si)#g(Sj) for Si, SjFR

2) VSieR g(Si)gH(Si)

3) Given any other pair (R',g') satisfying condition (1) and (2), JR'lzIRI,

where I I denotes the number of elements in the set.

The computation of an R and g in the above problem can be solved using a

method from network flow analysis. Before describing the procedure, we dis-

cuss the reasons for studying this method. The labelling of regions, in an

image based on region descriptors such as ring and wedge data together with

structural information, such as the types of regions which can share a common

boundary, can be a very time consuming and error prone task. The complexity

of labelling algorithms depends upon the number of regions to be labelled and

the extent of ambiguity present. The type of region matching presented here

can be viewed as a fast procedure for giving a rough match hetween imago and

map regions. Both individual region descriptions and inter-region relation-
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stvips can be included in the matching procedure. The matching obtained usinF

this algorithm can then serve as input to more costly algorithms for matchinp

additional regions and making corrections on existing matches.

We now describe [Bondy 1976] the matching problem in graph-theoretih

terms and give a standard method for solving it.

Def. A graph G is a pair (V,E) where V is a finite set {v1 , ... vn and the

vi are called nodes or vertices. E is a set of unordered pairs of

elements and its elements are called edges. If ei=(u,v), u,v C V then

we may say ei joins u and v, and u and v are endpoints of ei, and u and

v are called adjacent vertices.

Def. A subgraph G' of a graph G=(V,E) is a graph (V',E') such that V'CV,

E'C E.

Def. An edge with distinct ends is called a link.

Def. Two edges are called adjacent if they share a vertex.

Def. Let G=(V,E) be a graph. A subset M of E is called a matching if G if

its elements are links and no two elements are adjacent in G. M is

called a maximum matching if G has no matching M' with iM'J>IM1, where

denotes the number of edges.

graph maximal matching

Example 4.1 Maximal matching

Def. A bipartite graph G=(V,E) is a graph with the property that V can be
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partitioned into two sets X and Y such that each edge has one end in

X and one end in Y.

4
x={l,2,3} y={4,5}

Example 4.2 Bipartite Graph

We now use the above notation to reformulate our region matching prob-

lem. Assume Si, T, and H are defined as in the beginning of this section.

Define a graph G=(V,E) by V=S U T, E={(Si,TJ)ITjEH(Si)}. G is a bipartite graph

with V partitioned into S and T. The solutions, (R,g), to our original prob-

lem can be put into a one-to-one correspondence with the maximum matchings of

the bipartite graph G. To a solution (R,g) we correspond the edges given by

the graph (in the analysis sense) of g, i.e. (SiT) is an edge iff g(Si)=T j .

Conversely, given a maximum matching M of G, the correspotding solution (R,g)

is given by:

g-{(SIT j ) :(Si,Tj)EM} (viewing the function g as a set of

ordered pairs).

R= the domain of g.

We now describe a procedure for finding a maximum matching in a bipartite

graph which will have two additional nodes, c and b, called a source and a

sink respectively, and ISI + ITI additional edges. In addition each edge

will have a direction and a number associated with it. The graph G' will have

an edge joining c to each node in S. Each such edge will have weight one and

will be directed away from c. In addition, G' will have an edge from each

node in T to b. Each of these nodes will be directed toward b and will have

unit weight. In addition each edge in G' joining a node in S and a node in T
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wLII be directed from S to T and will have weight 1.

The maximal matching can now be posed as a network flow problem. A

physical analogy is to represent the graph by a set of pipes, one for -; ,

edge, where flow occurs only in the specified direction. The vertices in

and T represent connections between pipes. Flow can occur between any twC

connected pipes subject to the directionality restriction. The numbers as-

signed to the edges represent the maximum rate of flow through a pipe. Thus,

if a pipe, f, with a flow rate n is connected and flowing into a pipe, g,

with flow rate m, with n>m, and with no other pipes connected at this vertex,

then f cai only support a flow rate of m due to the limit imposed by g. The

source c is assumed capable of providing flow to the network at an arbitrarily

large rate.

It can be shown that the maximal matching of a bipartite graph can be

obtained by finding the flow in G' maximizing the rate of flow into b. This

can be seen intuitively be noting that the restriction to all flow rates being

zero or one in G' allows us to consider a flow of one in an edge joining S

and T as the inclusion of this edge in the maximal matching and a flow rate

of zero as excluding this edge from the matching. Thus two edges from S to

the same node in T would require a flow rate of two to this node, but the flow

rate out of such a node is restricted to be one. Hence this situation cannot

occur and our matching is one to one. To see that the matching is maximal,

note that the flow into h is equal tu the sum of the flow rates of the edges

going from S to T, which is in turn equal to the number of edges in the match-

ing. We now give a precise description of the network flow problem.

Def. A directed graph, G, on a set V={v1,.. .,vn} is a subset, E, of VxV such

that for each (vi, vj)cE, viovj. We call the elements of V, the vertices

of G and the elements of E the edges of G. We say the (vivj)CE is an
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edge from the vertex vi to the vertex v Thus a directed graph may

be thought of as an ordinary graph in which each edge is given a

direction.

Def. A network N is a directed graph G with two distinguished, disjoint, non-

empty, subsets X and Y of vertices of G and a non-negative integer valued

function d defined on the edges of G. The vertices of X and Y are called

the sources and sinks of N.

In the notation of our matching problem X{c} and Y={b}, i.e., iXI=IYI=l.

The set of vertices of G belonging to neither X nor Y are called intermediate

vertices of G, and is denoted by I. The function d is called the capacity

function of N and the value of this capacity function on an edge e is called

the capacity of e. Let V and E denote the vertex and edge sets of G. For

any integer-valued function f on E, and any vEl, define f-(v)=Ef(e) where the

sum is taken over all edges in E of the form (vjv). Similarly we define

f +(v)=zZf(e) where the sum is taken over all edges in E of the form (v,vi).

Thus f +(v) represents the flow out of v and f (v) represents the flow into v.

Def. A flow in a network N is an integer-valued function f defined on A such

that

0 < f(e) < c(e) for all ecE

and f-(v) = f+(v) for all vEl.

The function f may be thought of as the assignment of a feasible flow

rate through each edge, subject to the restrictions that the flow is limited

by the capacity of an edge and that the flows into and out of an intermediate

vertex must be equal. From this point onward we restrict ourselves to the

case X={c) and Y-{b}. We define
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Def. The value of a flow, f, on n is k(f)=f (c).

Def. A flow, f, in N is called a maximum flow if there is no flow g in N suI

that X(g) > X(f).

Various algorithms [Ford 1962, Nijenhuds 1975] for finding maximum :io..

in networks have appeared in print. We have used the algorithm given in

[Nijenhuis 1975] for our experimentation. For the flow problem arising in

maximal matching, with n regions, i.e. Isi + iTI = n, and m edges, the com-

plexity of the algorithm is 0((n+2) /2M).
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4.2.2.1 Region Matching Experiments

Several region matching experiments were performed to determine the use-

fulness of various features in performing region matching between two images

(or an image and a map) using maximal matching in a bipartite graph. These

experiments were performed on synthetic region data. Each artificial image

used consisted of a 20x20 grid subdivided into regions but no other information

such as gray levels were assumed. Three synthetic images A, B, and C shown in

Figure 4.8 were used. Experiments were performed comparing A with B and A with

C.

The first experiment was an attempt to determine the adequacy of crude

region locations information together with region structure information for

region matching. The regions were labelled as shown. Each region Ai in A

was initially matched with all regions in B which had a boundary point within

a distance of four from at least one boundary point of the region A. The list

of tentative matches is given in Table 4.1. For each region in each image, five

region features were computed: area, perimeter, area divided by perimeter,

maximum horizontal width of a region and maximum height of a region. The fea-

tures for the regions in A, B, and C are given in Table 4.2. Not all the fea-

tures had to be used. If a feature was to be used, the user specified a toler-

ance a. If f is the value of a feature for region Ai and f2 is the value of

the same feature for region B then the two regions fail to match to within

the tolerance a if ill-f21 > a. The results of the experiments performed are

given in Table 4.3. Of a possible ten correct matches the maximum achieved

was four and in this case four incorrect matches were also made. When all fea-

tures were used with a tolerance of .8, only three correct matches were made,

but no incorrect matchings were formed. All other cases had three or fewer

correct matches and at least one incorrect match. The graph matches are given

in Table 4.4.
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Figure 4.8 The artificial images used for region matching
experiments.
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Table 4.1 Feasible Matching of Inwaie B to Lmams_

Distance 4 square - The regions can match if their boundaries are no more

than 4 squares aparts (in the space of distances be-

tween curves)

t{ Region A Region B matches

1 1,2r 2 1,2,4,5,6
3 1,2,3,4,5,6,7,9,10
4 2,4,3,7,8,9,10
5 7,8,9,10
6 10,11
7 2,3,4,5,6,9,10

8 1,2,3,4,5,6,7,9,10
9 1,2,3,4,5,6,10
10 2,3,4,5,6,7,8,9,10,11

1.
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Table 4.2 I
Picture A Features

Area Perimeter Area/Perimeter Max Hor. Max Vert. Rectin -

1 6 10 .6 2 3 ( i
2 6 10 .6 2 3(i,10}
3 30 62 .5 11 20 (5, 0)
4 12 14 .8 4 3 (13,10)
5 18 18 1.0 3 6 (19,17)
6 24 20 1.2 4 6 (18, 3)
7 9 12 .7 3 3 9 8)
8 119 56 2.1 10 14 (9, 8)
9 50 30 1.7 10 5 5,13)

10 126 66 1.9 9 20 (15,10)

Picture B Features

Area Perimeter Area/Perimeter Max Hor. Max Vert. Rectangle Cente,-,
(1,12)

1 16 2) .8 2 8 ( 5,13)
2 112 52 2.1 10 14 (11,14)
3 11 24 .4 1 11 9, b)

4 15 16 .9 5 3 ( 5, 3)
5 16 34 .5 11 6 ( 5, 3)
6 50 30 1.7 10 5 (14,18)
7 30 22 1.4 6 5 (19,18)

8 15 16 .9 3 5 (14,14)
9 18 18 1.0 6 3 (16, 8)

10 102 48 2.1 9 15 (19, 3)
11 15 16 .9 3 5

Picture C Features

Area Perimeter Area/Perimeter Max Hor. Max Vert. Rectangle C(-.

1 15 16 .9 3 5 (19, 3)

2 125 66 1.9 9 20 (16,10)

3 16 16 1.0 4 4 (13,13)

4 24 20 1.2 4 6 (18,17)

5 30 62 .5 11 20 (5,10)

6 6 10 .6 3 2 (2, 1)

7 44 30 1.5 10 ) ( , )

8 12 14 .8 4 3 ( 8, s

9 108 58 1.9 10 14 ( S,1 )

10 12 14 .8 3 4 ( 2, 9)

11 8 12 .7 2 4 ( 1,15)
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Table 4.3 Experiments in Matching Image B to Image A using the vectors 4 squar,.
Feasible Matchings from Table 4.1.

FIature codes
I. kea of region
2. Perimeter of region
3. Area/Perimeter ratio
4. Maximum horizontal extent of region
5. Maximum vertical extent of region

Trial 1 Matched Regions
Features Used Tolerance Image A Image B Correctness of Match

4 .3 2 6 Wrong
5 .3 3 5 Right

6 11 Right
10 10 Right

Trial 2 Matched Regions
Features Used Tolerance Image A Image B (orrectness of Match

1 .8 3 6 Wrong
2 .8 4 4 Wrong
3 .8 6 11 Right
4 .8 8 7 Wrong
5 .8 10 10 Right

Trial 3 Matched Regions
Features Used Tolerance Image A Image B Correctness of Match

1 .5 3 5 Right
2 .5 6 11 Right
3 .5 10 10 Right
4 .5
5 .5

Trial 4 Matched Regions
Features Used Tolerance Image A Image B (brrectness of Mrtch

1 .5 3 5 Right
3 .5 4 4 Wrong

6 11 Right
10 10 Right

Trial 5 Matched Regions
Features Used Tolerance Image A Image B Correctness of Match

1 .5 3 7 Wrong
4 8 Wrong
5 9 Wrong
6 11 Right
7 3 Wrong
8 2 Right
9 6 R ight

10 10 Right



Table 4.4 True matches of image A Regions with Regions from Imag(e B
and C.

Image A Image B I ur, C

1 1 11

2 1 10
3 3,5 5
4 9 3
5 8 4
6 11 1
7 4 8
8 2 9
9 6 7,6

10 10,7 2
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Ili the second experiment, the original criterion for arriving at i tenta-

tive match was modified. For each region a center was computed. The center

was defined to be the point with coordinates (x,y) where x is the average OF

the leftmost and rightmost horizontal coordinates of the region (truncated to

an integer) and y is the average of the topmost and bottom most y coordinates

of the region (also truncated). Two regions are tentatively matched if their

centers are no more than four units apart. Of the ten regions in image B whifl

have at least one tentative match in region A, only eight correct matches can

be made. In matching C and A there are eleven possible correct matches but

only ten can be determined since we are seeking a one to one matching. In

matching A to B the maximal matching, using no features, is given in Figure 4.9.

This matching achieves seven matches out of the maximum of eight possible matches

under the distances between center restriction. The matching of A to C, using

no features, is given in Figure 4.10. In this matching eight of the ten pos-

sible correct matches were obtained.

i15
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Image B Possible Image A Maximal Matching (brrect
Regions Regions Image A Regions Matcht

1 1,2 1 N
2 8 8 x
3 none none
4 7 7 x
5 none none
6 9 9 x
7 none none
8 5 5 x
9 4 4 x

10 10 10 x
11 6 6 x

Figure 4.9 Matching of Image A to Image B where possible matches assume
the centers of corresponding regions are no more than tour
units apart.

Image C Possible Image A Maximal Matching Correct
Regions Regions Image A Regions Matches

1 6 6 x
2 10 10 x
3 4,10 4 x
4 5 5 x
5 2,3 2

9 9
7 9 none
8 7 7 x
9 8,3 8 x

10 2,3 3
11 1 1 x

Figure 4.10 Matching of Image A to Image C where possible matches
assume the centers of corresponding regions are no more
than four units apart.
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4.2.2.2 Graph Matching Discussion

The evaluation of graph matching algorithms for region labelling is a com-

plicated problem due to the large number of variables involved. Maximum mat-,

ing in bipartite graphs has serious limitations such as the inability to account

for both fragmentation and coalescing of regions. Since the matching is one t,

one, a region which becomes fragmented can be matched to at most one of its

fragments. One possible way to avoid this problem is to redefine the problem

by changing the weights on the network graph edges. Suppose we have two images,

A and B and that the flow is from the source to image A regions to image B regiio

to the sink. If each edge from an image A region, Ai to an image B region, bh.

is assigned the area of Ai as a capacity and the edge from B. to the sink is as-

signed the area of Bj as a capacity then the maximal flow algorithm allows for

multiple matchings of regions subject to the constraint that the total area of

all regions in A matching with B. is no greater than the area of B. This

change in the algorithm increases the complexity of the algorithm as well as

introducing other complexities in interpretation. An alternate approach to

eliminating the effects of region fragmentation is to perform region merging

as a preprocessing operation. Selecting adequate merging criteria can be ex-

pensive and offsets the advantages of graph matching.

The selection of criteria for the tentative region matches for creating

the bipartite graph should be based on extensive analysis of image data. The

reliability of region Ceatures such as shape, the approximate location of region

centers, ring and "4edge data, etc. must be determined for a large collection of

regions. Hand matching of regions in images taken at different times or match-

ing of images to maps or region data bases can provide information on the vari-

ability of these features. If the variation of features is not great then re-

quirements for matching can be made stringent, though this necessitates high

quality region feature extraction.
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'>.0 Verification of Lineal Features

In the process of verifying lineal features, it is assumed A

enough information has been extracted from an image so that hypotheses

about the remaining image content can be made. In the verification of the

existence of a particular lineal feature, the rough location and

orientation of the feature is known. That is, if the feature exists at

all, the model being used should predict approximately where the feature

is with respect to previously detected features, how long it is, what

its shape is, etc. For example, if features resembling the two wings

of an airplane have been detected, there are at most two places to

search for the tail. Finding the hypothesized feature greatly increases

the confidence in the model that generated the hypothesis, while failure

to detect the predicted feature has just the reverse effect.

Because verification is done with model prediction, focused

searches can be performed. Not only is the area of imagery to be searched

well-confined, but there are also tight constraints on shape and orientation.

Thus faint or hard to detect features can be found more reliably and more

efficiently in the top-down mode than in the bottom-up mode.

The technique that has been used views the feature as a set of

high gradient points that must be found in the image. The transformation

of the image to the model, obtained by running the registration software,

is instrumental in the verification process. The inverse of this trans-

formation is used to predict where the undetected feature should exist.

The verification software then proceeds to determine whether the

hypothesized feature actually exists.
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Technique Used in Verification Process

.l. I Profile Search

As an example of the verificationprocess consider the

verification of the existence of Sherman Creek in the imagery of

Harrisburg, Pennsylvania, as presented in Figure 3.2. It is easy to

store the path of the stream as an ordered set of points in some coor-

dinate system, as is done in cartographic data bases. Given a registration of

the imagery containing the creek to the cartographic coordinate system,

it is easy to transform the points of the mapped feature to the points

(pixels) of the image where the feature should be found. Due to noise,

distortion, approximation in the registration transformation, and actual

change in the stream, it is unlikely that the feature points will be

found exactly where they are predicted to be. In an effort to find

exactly where the feature point does lie, a technique of "profile searching"

is used.

In the profile search, a search for the feature point is made

along a "profile" that extends from the predicted point, perpendicular to

the direcfion of the feature, for a distance defined by the user specified

tolerance. The search along this profile begins at the predicted point,

and proceeds outward in both directions. The search continues in both

directions until a "peak point" is found. A peak point is defined as a

point that possesses the same gradient direction as the predicted point and

has a gradient magnitude that is above the user supplied threshold and is

greater than the next point along the profile. This technique will be

further clarified through the use of an example.
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In the example presented in Figure '1, the predicted feature

point was at location (7232,4045) in stage coordinates. The window

sampling the image is a 32 pixel x 32 pixel array, centered at (16,16).

The end points of the profile are dependent on the user supplied tolerance

value and the direction of the feature gradient at the predicted point.

For this point, the profile extends from (27,20) to (5,12) in pixels.

The gradient magnitude is calculated at each of these points using the

direction of the gradient at the predicted point. These values are

presented on the line with MAG at the left. The user supplied threshold

in this case was 4. The search begins at the point (16,16) and proceeds

outward in both the direction to the right and tb the left. The threshold

value is exceeded for the first time at point (13,15) where the gradient

magnitude is 27. At this point in the searching process, the left search

is at point (19,17) whose magnitude is below threshold. The search con-

tinues in both directions. At point (12,14) the gradient magnitude

increases to 38 and at point (20,17) the gradient magnitude is still

below threshold. At point (11,14) the value of the gradient magnitude

decreases, indicating that a peak point has been detected. Since the

left search values are still below threshold, the algorithm declares that

the actual feature point, in terms of pixel coordinates, lies at point

(12,14) instead of point (16,16).

5.1.2 Quality Evaluation

When the verification process has been completed for a specified

lineal feature, an evaluation must be made as to how far the detected

feature points deviated from their predicted position. A root-mean-
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square value is one measure of the match. Let P = PI,...,Pm,. "'Pn

be the feature point set in map coordinates and let T, be the transfort:,:

registering the imagery to the map coordinate system. Let qm be the best

detection of point Pm along the profile passing through Pm. Then

one measure of the verification of the point set P is

D~)~ n 2-1 1/2
D(p) = ((m E d2(T(,"(Pm),qm))/N)i/

where d2 (0,•) is the squared distance between two image points.

This measure is only taken over those points which have a point of

detection on their profile. So in actuality two measures of quality must

be used. The first is the D(P) above and the second is the percentage of

unmatched points that are present for that feature.

5. 1.3 Servoeing

As was stated earlier, due to several factors, it is unlikely

that the feature points will be exactly where they are predicted to be.

In the experiments run, this was found to be true. In several cases, the

points of the feature were consistently removed from the predicted

values by some fixed amount. In order to track the actual feature

better and to overcome the inaccurracies of the prediction a "servoeing"

mechanism was instituted. The servoeing mechanism uses information from

previous points to make adjustments to the predicted point. The method

used keeps track of the differences between the predicted point and the

detected maximum on the profile for as many as the last 5 points. THe

differences in the X-direction and the Y-direction are averaged and are

added to the predicted coordinates to produce a set of "adjusted"point

coordinates.
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This technique has been implemented and tested. With servoeing,

the tracking of the features has greatly improved. The adjusted predicted

points are consistently as close or closer to the actual peak points

than the original predicted points were. The servoeing also helps to

overcome the "warping" effect that ib present in most aerial photographs.

Because this warping is present, the registration transformation cannot

be accurate over the entire picture. Therefore, there are features

present in the photograph that may not be accurately verified if only

the inverse of the registration transformation is used. The servoeing

technique makes the minor adjustments that are needed to overcome

these inherent inaccuracies.
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5.2 Examples from 4621

The verification software was run on several different

photographs, the first of which was the photograph called "4621", in

Figure 1.1. As can be seen, most of the features of this photograph

are straight lines, some very prominent and others not very clear at

all.

The registration procedure had been run on a map and image

pair using this scene. The resulting transformation was (308',578, -1397).

Using this transformation as a basis, an inverse transformation was

developed for use in the verification process. The inverse transformation

was (520, -578, 1397). The verification process used this inverse trans-

formation to verify the existence of a set of lineal features in the

image. Some of the features verified were quite distinct, while others,

such as the feature from point 2 to point 27, were less prominent.

The results obtained from running the verification on this

image were extremely encouraging. As can be seen in Table 5.2.1, the

percentage of matched points for every one of the lines verified was

100%. The values of the distance function were also small for all of

the cases.

As examples of the verific )n , -,ss, output from a run

that verified two of the features in 4621 is shown in Figure 5-2. The

first feature verified is the one running from point #l to point #29.

This is a prominent road that, as can be seen from the presented re-

sults possesses strong gradient values. For each predicted point a pro-

file was constructed and a search was made along the profile for the peak

value. The location of this peak value was recorded by the servoeing
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I
Table 5.2.1

Results of Verificatio. of Features in 4621

I

Begin Point End Point Total # # of % of Distance
of Line of Line of Points Uimatched Matched D(P) in

Checked Points Points Stagels

1 29 41 0 100% 8.9

2 27 21 0 100% 19.1

1 29 41 0 100% 10.3

8 21 41 0 100% 4.7

3 14 41 0 100% 11.7

16 15 21 0 100% 21.4

12 11 21 0 100% 34.8

3 28 11 0 100% 16.2
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nh) IiN ) i A!
N , k9AU I 

U ! ,
PC )';t I I IN 1A ,[ I1) IN r I [,.d III P |Y II, ) ) AODI l NlPHf 1'td h i', T

1 I k WMi T I' XI' "l ' ) I ( IN T, f R,1 I

I~ll~ n ,il~ l

GIUV kUN[1 I AND GRAD I14'I 1)1 1) AL-0.F ( INr/RI I
9 1 'i .

(;IV[I P UG F [A; IVAL!U[ It 1W i I, )

;1VF RC-UTHF RI XS REk1Y1 IXEFNT .IYLA N I MXf YUN NI
;;I.-' ,711 .13';/. '!!(0 ,9 0 11,9"00 .V9 0OL)
D r01 .R E VTHE . RLV XS , REVYS 00 ' - L'/O . 13 ,

I X{':ENI , IYCENT .MXr.NT .MY I NT 7S,!0{b 91100 9.00 1)41 00

GIV( IRANSFORM INFO
30 . ,7; . . -1 397. .9700( .01 43 3 ! ! (1 30
MAT '14 QUAL ITY BEFORE VFRIFICAIION.
IHUI A XSHiFI YSHIFT MTIJT MCHRUW/N]MAGE NMCHGL/NMAP#

EDGE 570!. -1397. 9700 31/ 43 30/ 30 **t*
GIVE EDGE #

VERIFYING EDGE # I
15 THIS A STRAIGHT LINE? INPUr I FOR YFs, 0 FUR NO

GIVF X1AIL,YTAIL ( INI/FREF
4996. 7282,
GIVE DELTAX,DELTAY,GRAD. ANG. AND NUMPTS (REAL.RFAL,INT.1N1)

SS .6S. 1i3.3S5\4,1'S5. (65. 113. 35S\4,

INPUT POINT, XYANGLE- 4996 7282 ji4
TRANFORMED POINT X.Y.G(J) = 5018 499 31
Q REC IS-NODF,DELX,DELYLINK= 1 0 0 1
ADJUSTED XY= 5018 4990
STAGE FOCUSED Al SOL, 4990
J,AhGLE,SLOPE,K = 1 .393 .414 92
XTAIL,YTAIL,XHEADYHEAD - 27 20 12
XTAIt. 27 26 2S 24 ?3 22 21 20 19 11 17 16 1' 14 13 12 11 I0 9 0 7 6
YTAIL 20 19 19 I 18 18 161 17 17 17 16 16 iS 15 iS 14 14 14 13 13 13 12 1.
DIR 31 31 31 31 31 31 31 31 31 31 31 31 31 31 311 31 31 3A 31 31 31 31 -it
MAG 34 12 S 7 2 is 16 4 -12 -40 -61 -1i3 7'7 87SY/' 2Y 29 29 21, 2, 21 21 17
MAX. G;RAD FOR POINT # i WAS 87 AT 14, 1 --1
DTST. TOTPTS ,UMLHPT = 17.89 1 0

INPUT POINT, X,YANGL.E= S051 7395 134
TRANSFORMED POINT XY.G(.1) = 4963 5 tO-A

-R fC IS-NOOE, DELX, DELY ,LINO 2 -16 -8 1
Q REC IS-NODE,DEL.X,DELY,LINK= £ 0 0 2
.D, lJ T L D ._Y= 49SS ';!!99
STAGF FOCUS D AT 495SS, 5099

J,ANGLE,SLOPE,X - 1 .393 41-1 9
XTAIL.YTAIL,XHFAD,YHEAD - 27 20 '3 12
XTAIL 27 26 2S i14 ;23 22 2 1 .0 19 ill t/ 16b t'

,  
14 I 1 ' 11 1(1 9 14

YTAII 20 19 19 19 I II 4 1 I 
"  

"7 7 16 16 1', I' I', 14 t4 14 I 1 14 1;, 1 I ;

DIR 31 31 31 31 Si 31 31 71 3! i 31 31i 3 1 31 11 3! ! 31 3) 11 11 '49
MAt; -s 6 -2 7 -16 - i I ? 9 -- .$ -25 79 117 5/ 9'' 9 I' 9 4 19 -4 l
MAX IRAD Fil P !tIN t 2. WA,'1.17 Al 1" .

1) ; S I 10TPT2 .UNCIIT = 29. 2!1 0

A
MAX, GRAD FOR POINT eq. WASI03 AT is, IS
DIST,TOTPTSUMCNPT - 3S7.30 40 0
INPUT POINT, X,YANGLE- 7222 1181S 334
TRANSFORMED POINT XY,G(J) = 2817 953S 31
Q REC IS-NODE,DELX,DELY,LINK, I -a -a 2
Q REC IS-NODE,DELXDELY,LINK- 2 -8 -8 3
0 REC IS-NODE,DELX,DELY,LINK- 3 0 0 4
Q REC IS-NODE,DELX,DELYLINK- 4 -8 -8 S
Q REC IS-NODE,DELX,DELYLINK- S -9 -8 1
ADJUSTED X,Y- 2811 9529
STAGE FOCUSED AT 2811, 9529
IANGLE,SLOPEK - 1 .393 .414 92
XTAII.., YTAIL,XHEAD,YHEAD - 27 20 5 12
XTAIL 27 26 2S 24 23 22 21 20 19 18 17 16 IS 14 13 12 11 10 9 8 7 6 S
YTAIL 20 ;- 19 19 18 18 18 17 17 17 16 16 IS iS IS 14 14 14 13 13 13 I2 12
DIR 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31
MAG 0 -4 -11 -8 -3 -12 -47 -72 -P9 46 89 7 8 3 9 9 7 1 -5 -4 -3 3 0
MAX. GRAD FOR POINT * 41 WAS 89 AT 17', 16
DIST,TOTPTS,UMCHPT - 36S.30 41 0
DIST - 8.9 UMCNPT. 0 OUT OF 41 TOTAL POINTS
WEIGHT 9109

Figure 5.2 Verification results of feature from point #1 to
point #29 of 4621, with use of servoeing.
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I

mechanism to be used in adjusting the next predicted point.

In Figure 5 .2, it can be seen that the first predicted point was at

(5018,4990) of the image. The actual peak was not at the predicted

point, which is (16,16) in window coordinates, but at (14,15). In

terms of stage coordinates, this means a difference of -16 in the X-

direction and -8 in the Y-direction. This is taken into account in the

calculation of the next predicted point. As can be seen, the ncxt

transformed point in the image is at (4963,5103), but, when the servoeing

is done the adjusted point becomes (4955,5099). The result of the profile

search gives a peak value of 117 at window coordinates (15,15).

Again the actual peak is not at the adjusted predicted point but it

is getting closer. Forthe next 38 points predictedand adjusted for this feature,

the actual peak value lies either at (16,16), dead center, or (15,15)

just slightly removed. These are excellent results and much better

than those obtained without use of the servoeing mechanism.

Verification of the same feature, from point #1 to point

#29, without the use of servoeing is presented in Figure 5 .3. In this

case, for most of the points the actual peak value was found at either

window coordinates (13,15) or (14,15). These values are consistent

and close to the center, so it is known that the feature is present

but the process does not home in on it. In fact, it was this type of

result that led to the creation of the servoeing mechanism. Because

of transformation approximations, picture warping or other factors, the

predicted points in this case are consistently off by a small amount. The

servoeing mechanism adjusts the tracking by this small amount and

homes in on the detected feature.

169



VERIFYING EDGE 0 1
I THIS A STRAIGHT LINE? INPUT I FOR ES, 0 FOR NO

I

GIVE XTAIL,YTAIL (INT/FREE)
49Y,.7282,
GIVE DELTAX,DELTAY,GkAD. ANG. AND NUMPTS (REAL,REAL,INT,INT)

55,65,113.35,334,41,
INPUT POINT, X,Y,ANGLE- 4996 7282 334
TRANSFORMED POINT XYG(J) = SOIS 4990 31
STAGE FOCUSED AT 5018, 4990

J.ANGLE,SLOPE,K - £ .393 .414 92
XTAIL,YTAIL,XNEAD,YHEAD - 27 20 S 12
XTAIL 27 26 25 24 23 22 21 20 19 18 17 16 IS 14 13 12 Ii £0 9 8 7 6 s
YTAIL 20 19 19 19 I8 18 I8 17 17 17 16 £6 15 15 iS 14 14 14 13 13 13 12 12
DIR 31 31 31 31 31 31 31 31 3t 31 31 31 31 31 31 31 31 31 31 31 31 31 31
MAC 52 39 20 9 -1 S 18 i1 10 1 -59 -64 7 77 99 SS 31 29 29 28 24 25 23
MAX. GRAD FOR POINT 9 £ WAS 99 AT 13, is
DISr.TOTPTSUMCHPT - 3.16 1 0
INPUT POINT, X,Y,ANGLE- 5051 739S 334
TRANSFORMED POINT XYG(J) - 4963 6103 31
STAGE FOCUSED AT 4963, 5103
J,ANGLE,SLOPE,K - 1 .393 .414 92
XTAIL,YTAIL,XHEAD,YHEAD - 27 20 5 12
XTAIL 27 26 25 24 23 22 21 20 19 i8 17 16 i£ 14 13 12 i 10 9 8 7 6 5
YTAIL 20 19 19 19 18 10 18 17 17 17 16 16 is iS iS 14 14 £4 13 £3 13 12 12
DIR 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 3£ 31 31 31 31 31
MAG -5 -11 2 5 1 -1 -7 12 33 29 -75 $$$ 12 113 139 48 14 10 10 8 10 6
MAX. GRAD FOR POINT 0 1 WAS139 AT 13, is
DIST,TOTPTS,UMCHPT = 6.32 2 0
INPUT POINT, XYANGLE- 5107 7508 334
TRANSFORMED POINT X,Y,G(J) - 4908 5217 31
STAGE FOCUSLD AT 4908, 5217
JANCLE,SLOPE,K - 1 .393 .414 92
XTAIL,YTAILXHEADYHEAD = 27 20 5 12
XTAIL 27 26 2S 24 23 22 21 20 19 18 17 16 IS 14 13 12 i 10 9 6 7 6 5
YTAIL 20 19 19 19 18 18 111 17 17 17 £6 16 IS IS IS 14 14 14 13 13 13 12 1?
DIR 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31
MAG is 20 20 S 1 -4 2 24 43 32 -57 $$$ -1 91 129 SS tO -2 11 13 13 11 9
MAX. GRAD FOR POINT 0 3 WAS129 AT 13, is
DIST,TOTPTS,UMCHPT 9.49 3 a

XTAII 27 26 25 24 3 22 21 2 0 19 18 17 16 IS 14 1 1 12 i 10 y B 7 6
YTAII 20 19 19 19 18 18 18 17 17 17 16 16 15 15 115 14 14 14 13 1. 13 12 1;'
DIR 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31
MAG 0 0 -4 -6 -5 0 -3 14 34 29 -75 $$$ -2 100 114 40 4 -1 3 2 4 6

MAX. GRAD FOR POINT 0 4a WASII4 AT 13, Is
DISTTOTPTS,UMCHPT - 109.10 40 0
INPUT POINT, XY,ANGLE- 7222 11815 334
TRANSFORMED POINT X,Y,G(J) - 2817 9635 31
STAGE FOCUSED AT 2017, 9535
1,ANGLE,SLOPE,K - 1 .393 .414 92
XTAIL,YTAILXHEADYHEAD = 27 20 5 12
XTAIL 27 26 26 24 23 22 21 20 19 18 17 16 15 14 13 12 i1 £0 9 8 7 6 5
YTAIL 20 19 19 19 18 18 £8 17 17 17 16 16 iS iS IS 14 14 14 13 13 13 12 12
DIR 31 31 31 3t 31 31 31 31 31 31 31 31 31 31 31 31 31 31 3J 31 31 31 31
MAG 1 -1 -2 0 -9 -S -2 -10 -56 -70 -2 79 90 48 16 10 12 9 7 0 0 -£ 1
MAX. GRAD FOR POINT 0 41 WAS 90 AT 15, iS
DIST,TOTPTS,UMCHPT - £10.S1 41 0
DI T - 2.7 UMCHPT- 0 OUT OF 41 TOTAL POINTS

Figure 5.3 Verification results of feature from point #1 to
point #29 of 4621, without use of servoeing.

170



The feature tracked above represents a very prominent roadway.

In order to check out the verification process it was also necessary to

attempt the verification of features that were not as prominent.

One of these less prominent features is the driveway extending from

point #2 to point #27. The results of this verification are presented

in Figure 54. (Note the peak detection algorithm used in this

example is not the most recent scheme. The scheme used here chose

the maximum value on the profile regardless of where it was located.

It was found that this technique was not as good as the one explained

in Section 5.1.3.) Even though this feature is not nearly as prominent

as the one discussed above, the procedure was able to verify its

existence to a high degree of confidence. Refering to Table 5.2.1,

it can be seen that 21 out of 21 predicted points had a match on their

profiles.

The results of the experiment run on 4621 were most encouraging.

For every feature chosen, a 100% match was obtained with low distance

values. However, this experiment only dealt with relatively distinct

features that were all straight lines. So, though the results were very

itisfying a more difficult set of features was required to continue

the testing process. This more challenging set was obtained from the

T)reux, France images.

Examples from DREUX 13

in attempt to gain further confidence in the verification

• *' t ng was directed to the imagery of



,;IVL [IA)I ,Y IALL I[N1/I-kkL )
"7 ).5'494

(IVE )ELTAX PI AY .GRAD AN(; AMI NI PMT'S (REAL REAL, INT, IN )

INPUT POINT, X,Y.ANGLE= 87,50 ',494 IS4
TRANSFORMED POINT X,Y,G(J) - 8726 6831 15
Q REC IS-NUDE,DELX,DLYLINK= £ 0 0 I
ADJUSTED X,Y- 8726 6831
STAGE FOCUSED AT 8726, 6831
JANGLE,SLOPE,K - I 3.S34 .414 92
XTAIL,YTAIL,XHEAD,YHEAD - 27 20 5 12
XTAIL 27 26 2S 24 23 22 21 20 19 16 17 16 1 14 13 12 11 10 9 8 7 6 5
YTAIL 20 19 19 19 I '8 18 17 17 17 16 16 iS iS 15 14 14 14 13 13 13 I 1P
DIR is Is Is is is Is iS iS is Is 15 is Is Is is is 1S iS Is Is Is is 15
MAG -16 -9 -8 -14 -I3 -14 14 44 22 -29 -76 -62 -20 -20 -20 -29 -29 -18 -13 -6 -13 -27 -2S
MAX. GRAD FOR POINT * 1 WAS 44 AT 20, 17
DISTTOTPTS,UMCHPT - 32.98 1 0
INPUT POINT, X,Y,ANGLE- 8694 $418 1S4
TRANSFORMED POINT X,Y,G(J) - 8764 67S6 Is
Q REC IS-NODE,DELX,DELYLINK- 2 32 8 I
Q REC IS-NODE,DELX,DELY,LINK- 1 0 0 2
ADJUSTED XY- 8780 6760
STAGE FOCUSED AT 8780, 6760
J,ANGLE,SLOPE,K - i 3.534 .414 92
XTAIL,YTAILXHEAD,YHEAD - 27 20 S 12
XYAIt 27 26 2S 24 23 22 21 20 19 18 17 16 iS 14 13 12 i1 10 9 8 7 6 5
YTAIL 20 19 19 19 18 i8 18 17 17 17 16 16 IS 15 19 14 14 14 13 13 13 12 12
DIR is IS iS iS is IS is Is Is Is IS is Is Is 1s Is IS Is is is Is is Is
MAC 3 6 12 18 15 9 0 6 33 32 -14 -45 -17 9 15 -13 -28 -2S -13 3 5 -4 -8
MAX, GRAD FOR POINT * 1 WAS 33 AT 19, 17
DIST,TOTPTSUMCHPT = 58.28 2 0
INPUT POINT, XY,ANGLE- 8659 5342 154
TRANSFORMED POINT XYG(J) - 802 6682 is
Q REC IS-NODE,DELX,DELY,LINK- 3 24 8 I
Q REC IS-NODEDELX,DELYLINK- £ 0 0 2
Q REC IS-NODE,DELX,DELY,LINK- 2 32 8 3
ADJUSTED X,Y- 8820 6687
STAGE FOCUSED AT 8820, 6687
3,ANGLE,SLOPE,K - 1 3.534 .414 92
XTAILYTAIL,XHEAD,YHEAD - 27 20 5 12
XTAIL 27 26 2S 24 23 22 21 20 19 18 17 16 iS 14 13 I2 it 10 9 8 7 6 5
YTAIL 20 19 19 19 18 I8 18 17 17 17 16 16 iS 15 11 14 14 14 13 13 13 12 12
DIR is Is Is Is is is is is Is Is is is Is is iS Is Is Is Is Is Is is Is
MAC 13 12 12 11 1 -3 -S -3 27 37 5 -43 -SO -38 -10 -4 16 32 18 4 -12 -17 -14
MAX. GRAD FOR POINT * 3 WAS 37 AT 18, 17
DIST,TOTPTSUMCHPT - 76.17 3 0
INPUT POINT, XY,ANGLE- 8623 5267 154
TRANSFORMED POINT XYG(J) - 8839 6607 15
Q REC IS-NODE,DELX,DELY,LINK- 4 16 3 1
g REC IS-NODE,DELX,DELY,LINK- 1 0 0 2
G REC IS-NODE,DELX,DELY,LINK- 2 32 8 3
Q REC IS-NODEDELXDELY,LINK- 3 24 8 4
ADJUSTED X,Y- 8857 6613
STAGE FOCUSED AT 88S7, 6613
J,ANGLE,SLOPE,K - 1 3.534 .414 92
XTAIL,YTAIL,XHEAD,YHEAD - 27 20 s 12
XTAIL 27 26 2S 24 23 22 21 20 19 18 17 16 IS 14 13 12 11 10 9 8 7 6 5
YTAIL 20 19 19 19 18 18 18 07 17 17 16 16 IS iS iS 14 14 14 13 13 13 12 12
DIR IS IS 1S 15 15 i5 1s 15 1s 15 15 is 1s is 1s I,, is 15 15 is is is 15
MAG 7 12 9 4 8 8 S -12 6 26 12 -29 -46 -27 -10 -7 -14 -12 -16 -17 -9 6 1,
MAX. GRAD FOR POINT * 4 WAS 26 AT i8, 17
DISTTOTPTS,UMCHPT - 94.06 4 0
INPUT POINT, XYANGLE- 8588 5191 iS4
TRANSFORMED POINT X,YG(J) - 8877 6533 Is
Q REC IS-NODFDELX,DELY.LINK- 5 16 8 1
Q REC IS-NODE,DELX,DELY,LINK-= 1 0 0 2
Q REC IS-NfDF,I)F1XDELY,LINK- 2 32 (I 3
O RE : I9-Nf1rEDI I .iLf I' ' I ' '4 'I 4

Figure 5.4 Results of verification of driveway running
from point #2 to point #27 of 4621, with
servoeing (part 1 of 2).
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Q RLC P,-NODE DI LX DIELY ,LNK= 4 16 S
ADJUSIED X,Y . H694 6%39
STAGE F11CUSk'D AT 8094, 6%53
J,ANGLL,SLOPEK - 1 3.534 .4t4 92
XTAIL,YTAIL,XHEAD.YHEAD - 27 ;10 5 12
XTAIL 27 26 2S 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5
YTAIL 20 19 19 19 £8 18 18 17 17 17 16 16 15 IS IS 14 14 14 13 13 13 12 1?
DIR iS Is I5 Is 15 is Is Is is is i is 15 Is 1' 15 is 15 15 IS 15 15 15
MAG 14 1,. 8 4 6 12 6 -18 -I I1 13 -23 -53 -36 -4 IS 7 -4 -13 -11 -3 -2 -4
MAX. GRAD FOR P1INT * 6 WAS 16 AT 26, 19 44- d& fe pa. der toe ( ) W-o ..'c 3 t.)

DIST,TOTPTS,UCHFT - 177.58 S 0
INPUT POINT, X,Y,At4GLE- 8552 SI16 IS4
TRANSFORMED POINT X,Y,G(J) - 8914 64S8 Is
Q REC IS-NODE,DELX,DELY,LINK- 1 8o 24 2
Q REC IS-NODE,DELX,DELYLINK= 2 32 8 3
Q REC IS-NODE,DELX,DELY,LINK- 3 24 8 4
Q REC IS-NODE,DELX,DELY,LINK= 4 16 8 S
9 REC IS-NODE,DELX,DELY,LINK= S 16 8 1
ADJUSTED X,Y. 8947 6469
STAGE FOCUSED AT 8947, 6469
J,ANGLE,SLOPE,K - 1 3.534 .414 92
XTAIL,YTAIL,XHEAD,YNEAD - 27 20 5 12
XTAIL 27 26 2S 2

A 
23 22 21 20 19 18 17 16 iS 14 13 12 i 10 9 a 7 6 S

YTAIL 20 19 19 19 18 18 18 17 17 17 16 16 IS IS IS 14 14 14 13 13 13 t2 t2
DIR is Is is iS Is Is Is 15 Is is 15 IS is is Is is Is Is Is Is 15 Is Is
MAG 8 6 16 19 4 -3 0 16 10 -9 -6 14 9 -30 -60 -36 -12 2 -4 -3 -6 -5 -3
MAX. GRAD FOR POINT 0 6 WAS 19 AT 24, 19( 44o&e mew pae ze7dw /6,6) wokdd4af 6a s
DIST,TOTPTSUMCHPT - 245.93 6 0
INPUT POINT, X,Y,ANGLE- 8517 S040 IS4
TRANSFORMED POINT X,Y,G(J) - 8952 6384 Is
Q REC IS-NODE,DELX,DELY,LINK. 2 b4 24 3
Q REC IS-NODE,DELXDELY,LINK- 3 24 8 4
Q REC IS-NODEDELX,DELY,LINK- 4 16 8 S
Q REC IS-NODEDELX,DELY,LINK- S 16 8 I
Q REC IS-NODE,DELX,DELY,LINK. 1 80 24 2
ADJUSTED X,Y- 8992 6398
STAGE FOCUSED AT 8992, 6398
J,ANGLE,SLOPEK - I 3.534 .414 92
XTAILYTAIL,XHEAD,YHEAD - 27 20 S 12
XTAIL 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5
YTAIL 20 19 19 19 10 18 18 17 17 17 16 16 15 iS iS 14 14 14 13 13 13 12 12
DIR is Is Is Is is Is Is Is is is I5 Is is is Is Is is Is Is is Is 15 Is
MAG -2 8 13 15 S -1 -8 -19 -1i 1 9 19 48 3 -iS -72 -59 -26 -1 0 2 -3 -2
MAX. GRAD FOR POINT 0 7 WAS 48 AT 15, 15
DIST,TOTPTS,UMCHPT - 2S7.25 7 0

MAX. GRAD FOR POINT 0 2 WAS 39 AT 17, 16
DISTTOTPTS,UMCHPT = 384.21 20 0
INPUT POINT, X,Y,ANGLE- 8020 3982 IS4
TRANSFORMED POINT X,Y,G(J) - 9480 5341 is
Q REC IS-NODE,DELX,DELYLINK- 1 8 0 2
Q RE IS-NODEDELX,DELY,LINK- 2 B . 0 3
Q REC IS-NODE,DELX,DELY,LINK- 3 8 0 4
Q REC IS-NODE,DELXDELY,LINK- 4 8 0 5
0 REC IS-NODE,DELX,DELY,LINK- S 8 0 I
ADJUSTED X,Y- 9488 5341
STAGE FOCUSED AT 9488, S341

J,ANGLE,SLOPE,K - 1 3,534 .414 92
XTAIL,YTAIL,XHEAD,YMEAD - 27 20 5 12
xTAIL 27 26 25 24 23 22 21 20 19 18 17 16 IS 14 13 12 11 10 9 8 7 6 S
YTAIL 20 19 19 19 to 18 18 17 t7 17 16 16 IS 15 iS 14 14 14 13 13 13 ? 12
DIR is Is Is is 15 is Is is is is 15 is is is is Is Is is 15 15 Is is iS
MAG 8 15 9 -6 -24 -21 -S 19 37 St 19 -IS -67 -69 -34 26 12 -17 -43 -27 -2 IS 21
MAX. GRAD FOR POINT 0 21 WAS 51 AT 18i, 17
DIST,TOTPTS,UMCHPT - 402.10 2i 0
DIST - 19.1 UMCHPT- 0 OUT OF 21 TOTAL POINTS

Figure 5.4 Results of verification of driveway running from
point #2 to point #27 of 4621, with servoeing

(part 2 of 2).
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4 A (4672,5824)
B

(4484, 5718)
R. R.

D (5151,5114)
C

(4904,4994)
(8058,

27 6248)

K (5955,4290) Q (6976, (05,5666)
602)

S (7969,5379)
E (5807,

3780)

P (7159,3731

L

(6520,3260) R (7570,3512)H (8024,3654)
(7208, G (8150,3556)

(6227 M 3147) (7862 I 81

2877) 35355

N(13,2620) (7992,3399)

Figure 5.5 Schematic of features used in verification
experiments run on DREUX 13
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Table 5.3.1

Results of Verification of features in Dreux 13

Begin Point End Point Total # # of % of Distance
of Line of Line of Points Unmatched Matched D(P)

Checked Points Points

K D 59 0 100% 3.7

N Q 87 1 98.9% 7.7

U 0 97 1 98.9% 7.5

E F 31 5 86.1% 12.2'

P R 19 5 78.7% 26.0

M L 27 15 44.4% 9.7

Q T 25 7 72% 42.0

(non-existent lineal)

17.5



111-ENIA ME I-W"INPUT 'I* LL - t3A!/)
CTDNKD
INPUT POINT, XY.AN.iF- 111178 H'46 3/
fRANSI ORMED POINT X,Y,(;(.1) 6 ;"'/9 7768 31
tJ HEI Ib NIII)L ,DI I X,DI -LY,I INK- 1 0 0 1
AI)Ii.I ,I) DX. - fir/V Tl7,1
i~f~.I UCU.AI) Al h"/ . "7(lt

1,ANI;I 1,51OPF.K - 1 3y3 .414 V2
XI1 1I ,YJAII ,XIfLAI),YHIAD V 12 Z!7 I)l
XIAII 11 6 7 I Y 1 It 1.' 13 14 IS 16 21 111 t, .'I, t' ' .' .'4 . . . . "

YTAII 12 13 13 13 14 14 14 , 15 IS 16 16 17 17 1 1 111 111 I 1Y 1' IV .
PIN 31 31 3t St 313£ 31313131 31 31 31 31 3% 11 31 31 31 31 1I 31 I
NAG -2 0 0 0 0 -1 0 £ 2 7 17 15 -5 -16 -17 -5 -1 0 £ 0 -1 2 -1
MAX. GRAD FOR POINT 0 1 WAS 17 AT is, 16
DIST,TOTPTS,UMCHPT - 8.00 1 0
INPUT POINT, XY,ANGLE. 11852 8578 43
TRANSFORMED POINT XY,G(J) - 6264 7807 31
Q REC IS-NODE,DELX,DELYLINK- 2 -a 0 1
Q REC IS-NODEDELXDELY,LINK- 1 0 0 2
ADJUSTED X,Y- 6260 7807
STAGE FOCUSED AT 6260, 780?
J,ANGLESLOPEK = 1 .393 .414 92
XTAILYTAIL,XHEAD,YHEAD - S 12 27 20
XTAIL S 6 7 8 9 10 I 1? 13 14 iS 16 17 18 19 20 21 22 23 24 2S 26 27
YTAIL 12 13 13 13 14 14 14 iS IS IS 16 16 17 17 17 I I I8 19 19 19 20 20
DIR 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31
NAG -i 0 0 -1 -1 0 1 0 -2 5 26 28 -5 -23 -24 -5 2 3 1 -3 -5 -4 -2
MAX. GRAD FOR POINT # I WAS 28 AT £6, 16
DIST,TOTPTSUMCHPT - 8.00 2 0
INPUT POINT, X,YANGLE- 11828 8600 42
TRANSFORMED POINT XY,G(J) - 6248 7835 31
Q REC IS-NODE,DELXDELY,LINK- 3 0 0 i
Q REC IS-NODE,DELXDELY,LINK- £ 0 0 2
Q REC IS-NODE,DELX,DELY,LINK- 2 -8 0 3
ADJUSTED X,Y- 6246 7835
STAGE FOCUSED AT 6246, 7835
J,ANGLE,SLOPEK - 1 .393 .414 92
XTAIL,YTAIL,XHEAD,YHEAD - 5 12 27 20
XTAIL S 6 7 8 9 10 I 12 13 14 15 16 17 18 19 20 21 22 23 24 2% 2f 27
YTAIL 12 13 13 13 14 14 14 15 iS iS 16 16 17 17 17 18 18 18 19 19 19 20 20
DIR 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31
NAG -2 0 0 0 0 0 £ 0 -3 3 31 38 2 -28 -37 -is 1 4 3 2 1 0 -1
MAX, GRAD FOR POINT 0 3 WAS 38 AT 16, 16
DIST,TOTPTS,UMCHPT - 8.00 3 0
INPUT POINT, X,Y,ANGLE- 11798 8638 41
TRANSFORMED POINT XYG(3) - 6231 7880 31
Q REC IS-NODE,DELX,DELYLINK- 4 0 0 1
Q REC IS-NODE,DELX,DELY,LINK= 1 0 0 2
Q REC IS-NODE,DELX,DELYLINK- 2 -8 0 3
Q REC IS-NODE,DELX,DELYLINK- 3 0 0 4
ADJUSTED X,Y- 6229 7880
STAGE FOCUSED AT 6229, 7880
J,ANGLESLOPE,K - 1 .393 .414 92
XTAIL,YTAIL,XHEAD,YHEAD = S 12 27 20
XTAIL 5 6 7 8 9 10 it 1? 13 14 iS i6 17 I 19 20 21 22 23 24 25 26 27
YTAIL 12 13 13 13 14 14 14 15 IS iS 16 16 17 17 17 18 I 18 19 19 19 20 20
DIR 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31
NAG -1 0 1 1 0 0 1 -1 -1 14 53 51 -14 -49 -4V -it I 1 2 2 2 0 -1
MAX. GRAD FOR POINT # 4 WAS 53 Ai is, 16
DIST,TOTPTS,UMCHPT - 16.00 4 0
INPUT POINT, X.Y,ANGLE- 11768 8668 43
TRANSFORMED POINT XYG(J) - 6212 7918 31
Q REC IS-NODEoDEI.X,DELY,LINK- 5 -8 0 1
Q REC IS-NOE.DELX,DELY,LINK= 1 0 0 2
Q REC IS-NODE,DEI.X,DFLY,LINK= 2 -8 0 3
o l"i, Tg-Nnr nFI xnflV y.1 fIJN 0 0 4

Figure 5.6 Results of verification of feature from point
K to point D of DREUX 13, with servoeing.
(part 1 of 2).
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DIST IOTPTS,UMCHPT ? ?02.l SS 0
INPUT POINT, X.Y,ANGLE= 10420 10082 39
TRANSFORMED POINT XYG(J) = 5368 9680 31
Q REC IS-NODEDFLX,DrLY,1INK= 1 0 0 2
9 NEC IS-NODF,DF( X,DCLY,LINK= ? 1 0 3
Q REC IS-NODF,DIIX,DELY,LINKI 3 1 0 4
U NFC IS-NODEDELXDELY,LINK= 4 £ 0 5

Q RFC IS-NODE,DFLX,DFLY,LINK- s -7 0 1
ADJUSTED X,Y= 36H 9680
STAGE FOCUSED AT 5366, 9680
J.ANrLESLOPE,K - 1 .393 .414 92
XTAILYTAIL,XHEAD,YHEAD - 5 12 27 20
XTAIL 5 6 7 a 9 10 1I 12 13 14 15 16 17 18 19 ?0 21 2;' 23 '4 2S Ph ?7
YTAIL 12 13 13 13 14 14 £4 IS 15 S 16 £6 17 17 17 IF 11 18 19 19 19 20 20
DIR 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31
HAG 0 3 2 S S 2 3 -7 -10 4 31 28 -28 -45 -39 £ 5 4 3 0 -£ 0 0
MAX. GRAD FOR POINT *3S WAS 31 AT 1s, 16
DIST,TOTPTS,UMCHPT - 210,51 56 0
INPUT POINT, X,Y,ANGLE- 10378 10130 38
TRANSFORMED POINT X,Y,G(J) - $343 9739 31
Q REC IS-NODEDELXDELY,LINK= 2 -8 0 3
Q REC IS-NODEDEL.XDFLY,LfNK- 3 1 0 4
Q REC IS-NODE,DELXDELY,LINK= 4 1 0 S
9 REC IS-NODEDELX,DELYLINK- 5 -7 0 1
Q REC IS-NODEDELXDELY,LINK- 1 0 0 2
ADJUSTED XY- 5341 9739
STAGE FOCUSED AT 5341, 9739
J,ANGLESLOPEK = 1 .393 .414 92
XTAILYTAIL.XHEADYNEAD - S 12 27 20
XTAIL S 6 7 8 9 10 £1 12 13 £4 iS 16 17 18 19 20 2£ 22 23 24 2S 26 27
YTAIL 12 13 13 £3 14 14 14 iS iS IS £6 £6 17 17 17 I1 i8 £8 19 19 19 20 20
DIR 31 31 31 31 31 31 31 3£ 31 31 31 31 31 31 31 31 31 31 31 31 31 3£ 3t
HAG -2 -1 -4 -3 -4 - -3 -2 -12 -6 22 39 -7 -41 -43 -9 7 4 1 0 -1 -3-2
MAX. GRAD FOR POINT #5 WAS 39 AT lb, 16
DIST,TOTPTS,UMCNPT - 210,51 57 0
INPUT POINT, X,YANGLE- £0344 10178 41
TRANSFORMED POINT X,Y,G(J) - 532S 979S 31
Q REC IS-NODEDELXDELYLINK- 3 -2 0 4
Q REC IS-NODEoDELXDELY,LINK- 4 1 0 S
Q REC IS-NODE,DELXDELY,LINK- 5 -7 0 1
Q REC 1S-NODEDELX,DELY,LINk- 1 0 0 2
Q REC IS-NODEDFLX,DELYLINX( 2 -8 0 3
ADJUSTED XY- 5322 9795
STAGE FOCUSED AT 5322, 9795
J,ANGLE,SLOPE,K - 1 .393 .414 92
XTAIL,YTAIL,XHEAD,YHEAD - S 12 27 21
XTAIL S 6 7 8 9 £0 £1 12 13 14 £5 16 £7 18 19 20 21 22 23 24 29 26 27
YTAIL 12 13 13 13 14 14 14 IS IS 15 16 16 17 17 17 18 IH 1 19 19 19 20 20
DIR 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31
NAG -2 3 0 -4 -7 -S -S -12 -8 It 38 18 -38 -43 -21 5 3 -2 2 2 0 -3 -3
MAX. GRAD FOR POINT 0 S WAS 38 AT IS, t6
DIST,TOTPTSUMCHPT = 2£8.5£ 58 0
INPOIT POINT, X,Y,ANGLE= 10288 10232 46
TRANSFORMED POINT X,Y,G(J) = 5289 9863 31
O REC IS-NODE,DELX,DELY,LINK- 4 -it 0 S
Q REC IS-NODE,DELXDELY,LINK- 5 -7 0 £
Q REC TS-NODE,DELXDELYLINK= £ 0 0 2
Q REC IS-NODE,DFLX,DELY,LINK= 2 -8 0 3
Q RFC IS-NODE,DELX,DELY,L.INK- 3 -2 0 4
ADJUSTED X,Y- S284 9863
STAGE FOCUSED AT 5284, 9863
I,ANGLE,SLOPE,K = £ .393 .414 92
XTAIL-,YTAILXHEAD,YHEAD = S 12 27 20
XTAIL S 6 7 8 9 10 it 12 13 J4 IS 16 17 18 19 20 21 2? 23 24 2S 26 27

YTAI I 13 J3 13 14 14 14 1', 15 1S 16 16 17 17 17 I1) 11) J13 19 39 59 ;0 20
DIR 31 31 31 31 31 31 31 31 31 31 31 31 3t 1 1 31 3 313 31 31 31 3S 31
MAG -3 -7 -7 -7 -8 -10 -12 -7 -8 2 43 53 2 -40 -SO -i S 2 -3 -4 -3 0 1
MAX. GRAD FOR POINT * 59 WAS 53 AT 16, £h
DIST,TOTPTSUMCHPT - 218.5i 59 0
DIST = 3.7 UMCHPT- 0 OUT OF 59 TOTAL POINTS
WEIGHT - 28863
GIVE EDGE *

-I
GIVE REVTI4EREVXSREVYS,IXCENT,IYCENT,NXCENT,NYCENT

-1

I
Figure 5.6 Results of verification of feature from point K to

point D of DREUX 13, with servoeing. (part 2
of 2)
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are quite high. The two sides of the road are evident in the profile

by the high positive values adjacent to the low negative values. The

verifying of the line procedes quite accurately even around the sharp

curve in the road. The detected peak is always no further than 2

pixels off the center, thus resulting ii. the extremely low value for

DtP).

The results obtained were not always as good as in the

above case. The feature extending from point P to point R, is a very

faint road that runs into a group of buildings near point R. The

results of the verification of this road are presented in Figure 5.7.

The magnitude values for the gradient in the area of this line are low.

For many of the profiles the threshold value is never exceeded, therefore

resulting in unmatched points. However, on closer examination there

are definitive observable peaks in the profiles but, the peak values

are lower than the user supplied threshold of 4. Also when predicted

points close to point R are examined, large gradient values appear at

a significant distance from the predicted point. These large values

are the result of the profile passing through the area where the buildings

are. So though the results are not as good as with some of the other

features, a human examination of the area can explain some of the reasons

for this.

An experiment was also run to try to verify the existence of

a non-existent feature running from point Q to point T. To accomplish

this, a set of points was taken along a ficticious feature starting at

point Q and ending at point T. This set of points was then presented

to the verification procedure. Though the procedure was able to match
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IS THIS A STRAIGHT LINE? INPUT I FOR YES, 0 FOR NO
0

IS INPUT IN A FILE? (1 FOR YES, 0 FOR NO)

L.VE FILE NAME OF INPUT FILE - (3A2)
(IINPR

INPUT POINT, X,YANGLL- t4.'Y6 7422 pt'u
TNANSFORMED POINT XYIJ) - B240 5948 It
Q REC IS-NODEDILX,DELY,LINR- 1 0 0 1
ADJUSTED XY- 9240 5948
STAGE FOCUSED AT 8240, 5948
J,ANGLE,SLOPEK - 1 4.319 1.412 38
XTAIL,YTAIL,XHEAD,YHEAD - 20 27 12 S
XTAIL 20 19 19 19 19 18 18 17 17 17 16 16 15 15 IS 14 14 14 13 13 13 12 12
YTAIL 27 26 2S 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 s
DIR It 11 It 11 It It 11 It It 1t i t l 11 I 11 It It it It 11 It it 11 I1

NAG 1 1 2 4 3 2 2 1 1 1 -2 2 -1 -1 1 -1 -1 -1 -3 -2 0 -1 -3
MAX. GRAD FOR POINT * 1 WAS 4 AT 19, 24
DIST,TOTPTSUMCHPT - 68.3S 1 0

-T''P("-5r,-X;YTAN;LE=
" 

-(43H8 7402
TRANSFORMED POINT X,Y,G(J) = 8321 S901 11
g REC IS-NODF,DEIX,DELY,LINK- 2 24 64 1
Q REC IS-NODE,DFLXDELY,LINK- 1 0 0 2
ADJUSTFD X,Y- 8333 S933
STAGE FOCUSED AT 8333, 5933
J,ANGLE,SLOPE,K = 1 4.319 2.412 .38
XTAIL,YTAIL.,XHEAD,YHEAD - 20 27 12 S
XTAIL 20 19 19 19 18 18 18 17 17 17 16 16 IS 15 iS 14 14 14 13 13 13 12 12
YTAIL 27 26 25 24 23 22 21 20 19 18 17 16 1S 14 13 12 11 10 9 8 7 6 S
DIR It It It it it It t lit I i tl It it tt It It It Iti t 11 It it 11 11

MAG -1 0 0 0 1 1 0 0 0 2 3 3 0 0 -2 -1 2 S 3 -S -6 -4 1
MAX. GRAD FOR POINT 0 2 WAS S AT 14, 10
DIST,TOTPTSUMCHPT - 118.9S 2 0

-TRAPSFORMED 1,1JT X,Y,6(J) T '--- 3- -5 3 1,
Q REC IS-NODE,DF..X,DELY,LINK- 3 2S -5 4
9 REC IS-NODE,DEIXDELY,L.INK- 4 1 -8 S
Q REC IS-NODFDELXDFLY,LINK- S -13 -21 i
Q REC IS-NODEDFL.X,DELY,LINK- 1 -14 -22 2
Q REC IS-NODEDFIX,DFLY,LINK- 2 33 0 3
ADJUSTED X,Y- 8869 S3SO
STAGE FOCUSED AT 8869, S3SO
J,ANGLE,SLOPEK - I 3.534 .4t4 92
XTAIL,YTAILXHEAD,YNEAD = 27 20 s 12
XTAIL 27 26 25 24 23 22 ?1 20 19 1R 17 16 15 14 13 12 It 10 9 8 7 6 S
YTAIL 20 19 19 19 I 18 18 17 17 17 16 16 iS 15 15 14 14 14 13 13 13 12 12
DIR is Is is is Is Is Is is is iS is is Is Is is is iS iS Is is 15 Is Is
NAG 3 -4 -S -2 -7 -11 -I -3 4 10 13 2 -13 -13 -7 1 1 0 -2 -3 -2 -1 -1
MAX. GRAD FOR POINT 0 ISWAS 13 AT 17, 16
DISTTOTPTS,UMCHPT - 306.40 18 S
INPUT POINT, XYANGLE- 1SIt2 7010 222
TRANSFORMED POINT XYG(J) 8888 5304 1i
Q REC IS-NODE,DELX,DELYLINK- 4 14 -I S
Q REC IS-NODEDELXDELY,LINK- 5 -13 -21 1
Q REC IS-NODEDELX,DELY,LINK- 1 -14 -22 2
Q REC IS-NODE,DELXDELY,LINK- 2 33 0 3
Q REC IS-NODE,DELXDELY,LINK- 3 2S -S 4
ADIUSTED X,Y- 8897 5293
STAGE FOCUSED AT 8897, S293
J,ANGLE,SLOPEK - 1 3.S34 .414 92
XTAIL,YTAIL,XHEAD,YHEAD - 27 20 S 12
XTAIL 27 26 2S 24 23 22 21 20 19 18 17 16 IS 14 13 12 11 10 9 8 7 6 5
YTAIL 20 19 19 19 IS 18 18 17 17 17 16 16 iS iS 1S 14 14 14 13 13 13 12 12
DIR Is Is is is Is Is I s Is is is Is is is Is is is is Is is Is is is
NAG 45 30 14 11 3S 34 30 6 -1 -7 -4 3 -19 -44 -4S -12 -2 0 -1 0 -1 -1 0
MAX. GRAD FOR POINT 0 i9WAS 3S AT 23, 18
DIST,TOTPTS,UMCHPT - 364.64 19 S
DIST - 26.0 UMCHPT- S OUT OF 19 TOTAL POINTS

Figure 5.7 Results of verification of feature from point
P to point R of DREUX 13, with servoeing.
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72% of the points, the value for D(P) is much greater than those obtained

for any of the other features. Upon examining the output produced (see

Figure 5.8), it is noted that there is no recognizable pattern to the

location of the peaks. This leads to the high value of D(P) and decrease-

ones confidence that the features exists in the image, and in fact it does

not.

The results obtained in running the verification software on

the DREUX 13 image have buoyed our confidence in _ts ability to verify

features in an image. It demonstrated the ability to follow highly curved

lines, find both distinct and not so distinct features and indicate fail-

ure when an attempt is made to track a feature that is not present.
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I

GIVE FILE NAME OF INPUT FILE - (3A2)
CTDRGT
INPUT POINT, X.Y,ANGLE- 13896 9182 28
TRANSFORMED POINT X,YG(J) - 8404 774S 9
Q REC IS-NODE,DFLX,DELY.LINK 1 0 0 1
ADJUSTED X,Y- 8404 774S
STAGE FOCUSFD AT 8404, 7745

J,ANGLE,SLOPE,K - I 4.7122883.S61 0
XTAIL,YTAIL,XHEAD,YHEAD - 16 25 16 7

XTAIi 16 I6 16 £6 16 16 16 i6 16 16 £6 16 16 1f I6 16 16 16 16
YTAIL 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1i 10 9 8 7

DIR 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

NAG -t -1 -1 0 1 1 0 -1 -1 1 2 2 £ 0 -I 0 £ 2
MAX. GRAD FOR POJINT * 1 WAS I AT 16, 7
DIST,TOTPTSUMCHPT = .00 1 1

INIOT POINT, X,Y.ANI;LE- 5 11034 30Y

IRANSFORMED POINT X.Y,G(J) = 10934 88701 7
Q RFC IS-NODE,DELX,DELY,L1NK

=  
1 46 -93 2

Q REC IS-NODE,DEIXDFLY,LINK
=  

2 16 -60 3

Q REC IS-NODE,DFL.X,DELYjtNK= 3 -15 -32 4

Q REC IS-NODFDFLX,DELY,LINK= 4 58 -106 5

0 REC IS-NODEDFLX,DELYLINK- S 67 -118 I

ADJUSTFD X,Y- 10960 8789
STAGE FOcUSED AT 10968, 8709
3,ANGLE,SI.OPE,K - 1 .S05 -2.417 38

XTAtL,YTAILXHEAD,YHEAD - 12 27 20 5
XTAIL 12 13 13 13 14 14 14 IS IS IS 16 i6 17 17 17 18 18 IR 19 19 19 20 20

YTAIL. 27 26 25 24 23 22 21 20 19 18 17 £6 15 14 13 £2 it 10 9 8 7 6 S

DIR 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

NAG 1 £ 2 1 0 1 2 2 1 0 £ 2 2 1 0 0 1 2 21 45 56 12 -29

MAX. GRAD FOR POINT 0 Z3 WAS 56 AT 19, 7
DISTTOTPTS,UMCHPT = 676.02 23 7
INPUT POINT, XY,ANGLE= 16068 11124 311

TRANSFORMED POINT XY,G(J) - 11070 8920 7

Q REC IS-NODE,DELX,DELYLINK= 2 58 -IS3 3

9 REC IS-NODE,DELX,DELY,LINK- 3 -IS -32 4

Q REC IS-NODE,DELX,DELY,LINK- 4 58 -106 5
Q REC IS-NODE,DELX,DELY,LINKm S 67 -I18 I
Q RFC IS-NODE,DELXDELY,L.INK- 1 46 -93 2
ADJUSTED X,Y- 11112 8820
STAGE FOCUSED AT 11112, 8820

JANGLE,SLOPE,K - I S.i05 -2.417 38
XTAIL,YTAIL,XNEAD,YHEAD - 12 27 20 S
XTAIL 12 13 13 13 14 14 14 iS 15 iS 16 16 17 17 17 18 18 18 19 19 19 20 20

YTAIL 27 26 2S 24 23 22 21 20 19 18 17 i6 IS 14 13 12 11 10 9 8 7 6 S

DIR 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

NAG 3 1 1 0 0 0 2 S 4 2 6 2S 42 24 -12 -43 -28 -7 S 4 1 -1 0

MAX. GRAD FOR POINT 0 2-4 WAS 42 AT 17, 15
DIST,TOTPTS,UMCHPT - 607,34 24 7
INPUT POINT, X,Y,ANGLEm 16224 11270 313

TRANSFORMED POINT X,Y,G(i) - 11264 9011 7
Q REC I9-NODEDELX,DELY,LINK- 3 so -108 4
Q REC IS-NODE,DELX,DELY,LINKm 4 58 -106 5
Q REC IS-NODEDELX,DELY,LINK- S 67 -i18 I
Q REC IS-NODE,DELXDELY,LINK- 1 46 -93 2
Q REC IS-NODE,DELX,DELY,LINKm 2 Se -153 3
ADJUSTED X,Y- 11319 8896
STAGE FOCUSED AT 11319, 8896
J,ANGLE,SLOPE,K - I S.105 -2.417 38
XTAIL,YTAIL,XHEAD,YHEAD - 12 27 20 S
XTAIL 12 13 13 13 14 14 14 IS 15 IS 16 16 17 17 17 18 18 18 19 19 19 20 20

YTAIL 27 26 2S 24 23 22 21 20 19 18 17 16 IS 14 13 12 It £0 9 8 7 6 S

DIR 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
NAG 19 S -8 -17 -16 -i -2 2 0 -3 -S -1 2 2 1 -1 -1 1 2 4 2 -1 1
MAX. GRAD FOR POINT *2 WAS 4 AT 19, 8
DIST,TOTPTS,UMCHPT - 7SS.69 2S 7
DIST = 42.0 UMCHPT- 7 OUT OF 2S TOTAL POINTS
WEIGHT - 13196

Figure 5.8 Results of attempted verification of non-existent
lineal from point Q to point T.
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.4 Discussion and conclusions on verification

The work on verification should be regarded as pilot work and

too weak to support firm conclusions. The question of evaluation appearq

to be difficult at two distinct levels. First of all, how do we actually

score the degree of match between a stored lineal track and a set of

observed points from the image? How should the extracted score be

interpreted? Ultimately the answer to this question must come from an

actual purposed application. The current experiments reported only

the number of points matched and the popular RMS distance between

observed and predicted points. At the second level, how is the performance

of a verifier to be evaluated over a set of different lineals? Clearly

the answer is dependent on the scoring at the first level. How well

did the verifier perform on river I and how well did it perform on

the 7 images of France?

M research towards solving these questions needs to

be done. At present only subjective or qualitative statements can

be made about the past work. In general it can be said that the verifi-

cation procedure performed consistently well (i.e. produced good numbers

with little variance) on features which were distinct to the human

observer. These were major roads and clear field boundaries where

gradLent values were consistently above threshold and agreed in location

with the human digitization. Thus verification of a set of such known

features appears to be a viable means of confirming a hypothetical

registration transformation obtained from other evidence.

Some problems arose in verifying weak features -- features which

182



could be made out by a human using global tonal context and perhaps

semantics. These were driveways and rough field boundaries. Sometimes

there were competing edges nearby, such as caused by buildings along a

road. As a result, the gradient values of feature points selected

by a human were often as low or lower than either the noise threshold

or the gradient value on a competing edge. Lowering the threshold

cannot be done by itself because the large tolerance in predicted

location would provide many possible spurious gradient peaks along the

profiles. A probable remedy is to use 2-D trend (shape) from the stored

feature in order to better select the "correct" below threshold peak.

This should be tried in future experiments.

The philosophy and technique of semeing deserves further

consideration. Servoeing was installed because accurate location predic-

tions were impossible due to small errors in locating the image origin

and approximation error in the transform T a-1 The belief is that local

features can be used to achieve better matching than is possible using

only a global alignment. (This is comparable to getting accurate

targeting by combining inertial guidance with image correlation in the

target area.) However, servoeing can confuse real differences in the

feature with differences due to locational error.

The current servoeing scheme records the differences (AxiAyi)

between the locations (x p 1 Yp, i ) predicted by a-I applied to the stored

feature track and the locations (x o,Yo,i ) observed by doing the profile

peak detection previously discussed. A window of up to 5 of the most

recent differences is saved and used to adjust the next prediction as

follows.
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(1) The next prediction is made by transforming the next point

on the stored curve and then adjustiig it according to

the window of differences.
N

(x p,nYp) = T _I (u nv n) + 1/N i= (Ax iAY )

where N 4 5.

(2) The next observed curve point (x o,nY o,n ) is obtained

by performing peak detection on the gradient profile

perpendicular to the curve and through point (x p,nYp,n).

(3) The difference between the prediction and observation is

recorded as the most recent difference in the window

(queue) and the least recent difference is purged.

(AxnAYn (Xo,n, o,n (Xp,n, p,n)

Step 1 weights all differences in the window equally, a policy

which might be changed later. Step 2, however, presents the most opportunity

for improvement. Perhaps the peak detection scheme should also consider

the trend of the points in. the window. In this manner the tracking should

be less likely to go astray from the path with best global shape. This should

be tried in future experiments.

In the future more attention will have to be paid to the interpre-

tation of the differences between the predicted and observed curve points.

Accuracy analysis muit be done in order to get an error value to be used

in interpreting the RMS value gotten from the verifier. Also, the patterns

of missing points should be scrutinized to detect structured changes

between the current imagery and the mapped imagery.
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6. Summary of Conclusions

LNK's registration procedure appears very promising. The procedure will

provide the full RS&T transformation without an initial approximate transform-

ation. The procedure seems to be adaptable to 3-D imagery which can be model-

led. LNK's procedure can work with a wide range of features and is thus widely

applicable. In particular, abstract vectors formed between point features show

promise in being the most useful in rapidly providing an accurate transforma-

tion.

Since image to GDB registration did succeed in many cases with a very

weak representation of the image, feature extraction can be less reliable than

what is being attempted by most A.I. workers. Results reported here strongly

support the potential ior map-guided image analysis. Future testing is required

to diversify the imagery handled, particularly to try images with little or no

man-made structures. Accordingly other features will have to be detected and

extending the Hough detector to handle more complex shapes is recommended. It

is recommended that use of region features be added and pass points be identified

along arbitrary boundary curves, such as high curvature points.

The intersection classification procedure worked very well on a limited set

of non-aerial imagery. It is recommended the procedure be tested on a variety

of imagery in order to determine its reliability. In addition the routines

should be optimized to meet time and space requirements and should be extended

to include intersections of curved lines.

Models for cartographic classes orovide a means for disambiguating carto-

graphic overlays. The disjoint principal components model waq investigated as

a means for class modelling. This method was selected both because it provides

a natural measure of the strength of membership of a sample in each class model-

led, and because it has proven useful in other fields such as chemistry.
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Some simulation studies were performed on synthetic data to allow for

:omparison of the full ranking of class labels as provided by the disjoint

principal components model, the pooled covariance model and the true der-i-'

functions. This comparison would not have been possible with real data nllbsh

the underlying class distributions were known. While the disjoint principai

components model performed poorly in the simulations, the results may not oe

indicative of their usefulness when using cartographic data. In fact, the

classes were easily separated on the limited cartographic data available.

Therefore, we recommend extensive testing of this procedure on real data

to provide a basis for evaluation. In addition, although the disjoint princip.-,

components model may not be suitable for cartographic domains, the idea of model-

ling each class separately should be explored further. In particular, methods

such as clustering coupled with measures of the distance from a sample to a

cluster could be used to model classes.

Various disambiguation procedures may be applied to provide a unique label

for each region from a set of possible labels. A graph theoretical region

matching procedure, the region adjacency graph, and a symbolic region matching

method were investigated. Initial encouraging results on limited synthetic data

indicate that these procedures should be explored further on more realistic prob-

lems.

Using servoeing techniques, the verification of lineals was successfully

performed in a few images. However, much more diverse testing is recommended

to assess the true potential of the technique. Boundaries of regions such as

land/water and forest/field should be tried.

It is recommended that methods be devised for verifying region features in

the image and that knowledge of elevation be included in order to augment pure

grey-scale information. As much more needs to be learned about interpretation

of the verification results with respect to change detection. It is recommended
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4 I that individual problems be studied and perhaps feature specific decision rules

tried. Verification of image region labels is a complex problem involving the

weighing of evidence from several sources such as texture measures, intersection

type descriptions, region shape descriptions, location, and neighborhood con-

text. We recommend a study of the feasibility of a knowledge based interative

system for verification. This study would entail detailed analysis of con-

straints on image regions and methods for structuring these constraints for in-

ference.

I

1
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Appeidix A Softi are Overview

The basic software used to support the research documented in

this report was developed over a 3 year period on a Univac 1108 computer and

then converted to run on a Hewlett-Packard minicomputer. There were

substantial changes that had to be made due to word size differences,

memory size differences, compiler differences, and the exciting change from

access to pre-scanned digital pictures to on-line picture sampling. Nearly

all driver programs were entirely rewritten and some enhancements were

made to subroutines.

L.N.K. software currently in place at the E.T.L. ROSA Lab can

be subdivided irto 4 major subsystems which are detailed in appendices

B,C,D, and E. These subsystems are as follows.

A.1 Research Image Processing System (RIPS or RPS)

RIPS consists of routines which operate on grey scale imagery

or gradient imagery. Their main objective is to extract edge features

from gradient imagery. The most centrally used routine is the Hough

straight edge detector. There are also routines for visual display and

histogramming. RIPS data structures reside in a set of 6 named common

blocks.

/RPSAC/ contains the accumulator array and auxiliary information for

performing the Hough transform.

/RPSCCI contains definitions of codes for linking a point with another

point in its neighborhood thus forming generalized Freeman

chains.
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/RPSGC/ contains the gradient image and auxiliary information such as

the gradient histogram and mask definitions.

/RPSIC/ contains the last sampled 32x32 image and auxiliary information.

/RPSSC/ contains RIPS system parameters and other globally used information

such as intermediate I/0 flags, current sampling window definition,

and the DCB and buffer for I/0 with the edge element file EEFILE.

/RPSWC/ contains working space for a list of selected image points for

use by the feature detectors

These common blocks are added to program modulhs as macros which

are given in appendix B to document in detail the common block content and

the routines that operate on them.

A.2 Edge extraction routines EDGEX and EDGEY

EDGEX and EDGEY are two programs that extract lineal features

from on-line imagery. EDGEX extracts straight and curved edge elements

from single 32x32 windows. Window settings are gotten from a patterned

scan of the image -- usually a raster scan of butting windcws is used to

cover the image but more flexible scanning is possible. The smart

routines called are LHOUGH and LKTRKR which extract straight and curved

edges respectively. Records of detections are written out to file

EEFILE for plotting, registration, and/or input to EDGEY.

EDGEY takes the primitive detections made By EDGEX as input

from file EEDGEX and attempts to extend straight edge elements and detect

intersections along them. The gradient masking techniques are heavily

used by EDGEY to enhance dotetion of desired edges or to suppress

competition from known edges. Records of extended edges or detected
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intersections between edges are written out to file EEFILE. Both EDGEX

and EDGEY require about 15 seconds of processing time per window sampled

due to gradient computation time. More details appear in appendix C.

A.3 Registration software REG.

The registration software contains no image processing operators.

Input to REG consists of image and map abstractions which are currently

just a set of vectors. Output from REG consists of a listing of possible

registration transformations (rotation and translation) along with an

evaluation of their merit. At the heart of REG is a set of routines that

perform a clustering operation in 3-space. The clustering is done by

binning points into a set of lOxl0xl0 bins. 2,3, or 4 iterations of

binning are typically required to get the bin size down to the size

of error allowed in the final transformation parameters. Appendix D

has details.
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A.4 Verification software VERIFI

A fourth program and auxiliary routines exist for top-down

verification of lineals in an image. Lineals are known a priori from a

map or from previous image analysis and are to be referred to raw imagery

via the registration transform for verification. The software transforms

each point along the lineal using the registration transform and then

performs a search for a match to the point by examining gradient profiles

perpendicular to the directionof the curve. A match measure is built up

for the entire lineal by averaging the squared distance between the predicted

and observed locations of individual points. A special feature of

VERIFI is its ability to make local adjustments (servo) to the predicted

location of points based on past observations. This allows for

legitimate departure from strictly linear registration transformations due

to image deformations, relief displacement or actual movement of the feature

over time. Details of the verification software are in Appendix E.
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Appendix B: RIPS Software

The Research Image Processing System (RIPS or RPS) is composed

of routines that operate on digital images for the purpose of feature

extraction or display. While there are driver programs which organize

these routines for interactive exploration of imagery, the primary function

of RPS software is as a subroutine library for image processing programs

such as those documented in Appendices B,C, and E.

Routine Arguments Function

ARRAY (IDELX,IDELY, This routine moves the film stage
IGXLO,IGYLO) to (IDELX,IDELY) relative to the current

array position and then obtains the 32x32
sampling sample wirdow. (IGXLO,IGYLO) is

returned as the updated global stage
position. kRRAY also updates the image
common block with details about the
newly taken sample.

CNVTPR (THETA,R,NCOLS, CNVTPR converts a Hough detection from
NROWS,NPTS ,XI,Yl, polar form (THETA,R) to a directed edge

polar to X2,Y2) from point (Xl,Yl) to point(X2,Y2) which
rectangular lie on the boundary of the sampling
conversion window. The window is defined as NROWSx

NCOLS which is typically 32x32 for the
ROSA lab. The darker side of the edge
lies toward the right when traversing
from (Xl,Yl) to(X2,Y2). NPTS is returned
as 2 iff conversion is successful.

FILTR (AX,AY,BS,BY,CX,CY Used to filter or mask out an existing
TYPE) edge (AX,AY) to (BX,BY) from the current

edge window. (CX,CY) is the current array
masking center in global stage coordinates. TYPE

specifies what kind of mabking is to be
done by the next gradient operators to
be applied as follows.
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Routine Arguments Function

TYPE=l to mask out all points with
same gradient direction as edge

TYPE=2 to mask out all points with
same direction or 1800 +
same direction as gage

TYPE=3 all of the above + mask out all
points along the edge (AX,AY)
(BX,BY) regardless of gradient
direction.

Masks are actually set in gradient image
common by calling routine MASKS.

FIXANG (RESLTN) This routine sets up the accumulator
array in preparation for performing

accumulator the Hough transform. RESLTN= 8,16,-or
array 32 depending on what angular resolution
setting is being used for gradient direction

calculations. The RIPS accumulator
common block is intialized Tor use by
routine LHOUGH.

GRADDL (XLO,XHI,YLO,YHI, Computes a 32 directional gradient at
TYPE) each point within the subwindow

gradient X 6 (XLO,XHI) Y G (YLO,YHI). Iff TYPE=0
magnitude then thinning is also performed on the
and direction resulting gradient image. The resulting

gradient image is stored in gradient
image common.

HISTOG (TYPE) Computes histogram of image grey scales
(if TYPE="IM") or gradient image (if

image or TYPE="GR"). The histogram is stored in
gradient image common or gradient image common
histogram fo. use by SELECT or may be optionally

printed.

LFOCUS (NHITS,ITHRES,IRESL) Used to focus Hough detections made with
a coarse 110 angular resolution to a

focus 20 angular resolution. The list of
Hough NHITS45 coarse detections is passed to
detection LFOCUS from LSCAN through accumulator

common. ITHRES is the threshold for the
original detection. If the strength of
the fine detection falls below 2/3 of

ITHRES the detection is discarded. IRESL
is the gradient direction resolution which
is 8,16, or 32. Detections are written to
file EEFILE.
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Routine Arguments Function

LHOUGH (XCENTR,YCENTR) Computes the Hough transform for SLLidiA.
edge ddtection. Details of the detector

Hough line are assumed to be set up in accumulator
detector common by FIXANG. The input points are

taken from a list in work common. Output
is the accumulator array. (XCENTR,YCENTR)
define the origin of the coordinate sys-

tem to be used and is typically the
window center (16,16). Detection of
peaks in the accumulator array is left

for LSCAN.

LKTRKR (XLO,XHI,YLO,YHI, Detects sets of high gradient points
LTHRSH) organized into continuous curves. Point.

continuous have been linked by WRKLNK in the
curve gradient image. (XLO,XHI,YLO,YHI) define
detector the search window and LTHRSH defines

the minimum number of points which make

up a curve. Detected curves are chain-

encoded and written out to file EEFILE.

LSCAN (NTHRES,NDET) Detects local maxims in the accumulator
array which exceed threshold NTHRES. Up

accumulator to 5 detections are reported in accumulato;
array peak common and the number of detections is
detector returned in NDET.

MASKED (X,Y,D) Logical function returns true iff point

(X,Y) with gradient direction D is to
point be masked out of consideration due to
masking location (X,Y) or gradient direction D.

A previous call to FILTR or MASKS must
have been issued to define the masking.

MASKS (IOP,I,J,K,L) Used to build masks for location or

gradient direction masking as follows.
mask IOP=l clears all masking
setting IOP=2 mask off (X,Y) if to the right

of halfplane defined by (I,J)-
(K,L)

IOP=3 mask off direction D if D 6

(Il,J)
IOP=4 print out current mask

definitions.
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I
Routine Arguments Function

MLTDIR (X,Y,RES,MAG, Computes directional gradient at point
DIR,IERR) (X,Y) using directional resolution of

multiple RES-8,16, or 32. Magnitude MAG and

resolution direction DIR of the gradient are
gradient returned. IERR 0 if error encountered.

(X,Y) must be 2,4, or 5 pixels off
window boundary for computation of the
8,16, or 32 directional gradients

i respectively.

PRINTA (NUNIT) Prints out the contents of the accumulator

array on I/0 unit NUNIT. A utility
point accum- routine for human useable output only.
ulator array
PRINTI (XLO,XHI,YLO,YHI, Utility routine to print out human

CHAR) useable grey scale plots of the image
print (CHAR="IM") or gradient image (CHAR="GR")
grey of subwindow defined by X G (XLO,XHI),
scales Y 6 (YLO,YHI).

I SELECT (XLO,SHI,YLO,YHI, Routine for automatic selection of a
THRSHL) threshold THRSHL such that a fraction

a select FRACT of the gradient values exceedI heavy THRSHL. HISTOG is called to get
gradient a histogram and then THRSHL is set from
points the histogram and FRACT. Points that

exceed the threshold are then placed
in work common for the detection routines.

" IPoints are selected from subwindow

I defined by X G (XLO,XHI), Y G (YLO,YHI)

WRKLNK (NCIRCL,SRCANG, Finds best connecting point for each

t DRTHRS) point in work common in both the forward
link curve and backward direction. Connections
pointm to are tired later by 1LKTRKR to extract
netghbor long cont inuoutii 'l101H Ind i at Ing (.Urvetd

edg 'H. NCIRCh. dtl fIli' ,l j i . .f elgh -

borhod senrchd If r i'lonlne( I Ig po Iit.
Connecting point mtiP4L lie wI He

angular range defined by SRCANG and have
gradient direction within DRTHRS of
the first point. Thus SRCANG and DRTHRS
are used to contr61 allowed curvature.

I
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f*'(***RIP9 ACIAUMIII A IP) ARRAY H. P. VERS3ION ;?9DE'C71R*******

TNIA GFR 141.1) RHI R.1 IMF' ,IT1 NR ,NIHf.I..A,TW IIH
TN*YF GF*H r)GRFi.('. I OP IR .HTPTR ,FININO'.
R17AL CO I;NESIN.KTIiFTA
INTEGER RADIUSJANGLE W[IGHT,WGDUMY

C7
C(7 FOMM(.ON AREA .1', 1664 16 4411 WORDS I ON(;, OR 13 12ll WORD 1i4I. tw<~

+ HTPTR(3?),FINTNO(32),
+ COSINE(64),SINE(64),KTHETA(64),ACC(32,33)

C ACC Ar-CUM(JLArOR ARRAY FOR THETA--RADIUS SPACF
O1 KTHFTA VAL UES FOP POSSIBLE ANGI E-S IN DE-GREES
C7 FININO FOR TRANSLATION BF-,TWEEN ANGIEF: INDEX AND FINT DIRFC-TT
C DGRFLC INDICATES IF ANGI..ES IN DEGREES ( ) OR ETNIS(
C THETA VALUE OF ANGI.r- SET IN RFAL RADIANS
C RL.XRHI,RJUMP DO-LOOP DEFINITION OF RADIUS VALUES
C NR NUMBER Or RADIUS VALUES
C NTHETA NUMBER Or ANGI ES USED AND STORED IN KTHFTA ARRAY
C COSINE COSINES OF ANGLES IN KTHETA APRAY
C SINE SINES is to i

C TWIDTH WIDTH OF STRAIGHT I...NE TEMPLATE:
C 14GTHOI. . INDICATES WEIGHTED (=i) POINT OR WEIGHT I POINT (NOT'I
C LOPTR,HIPTR POINTERS TO I(THFTA ARRAY TO FIL.TFR TRANSFORM ACC. 10~
F* GRADIENT* DIRFCTION
C RADhIiSANPLE,WEIfHT PEAK RESPONSES FOUND 7N ACCUMI)LATOR ARRAY
C7 LSCNLJM NUMBER Or PEAK RESPONSES
C

C*****END ACCUM PROC HP. VERSION 29DEC78 R .I. P .5 .*

C
r IMAGF PROC H.P. VERSION *31 OCT 78 ***PIPS***
C
r7 STORAGE AND FORMAT FOR COMMON BL.OCK< CONTAINING IMAGE
C

INTECFR I.FNIMr' .TIMNAM ,NC*OTFS ,NROWS' ,NC-OI.S ,LIF.. MAG, NcOI Wo
LNFEH.SIMTIMGPADuV)XI..O)VXHIVYLO..IVYHI HIfTFGI

ICOMON /RPS-C/ i F.N1MC ,IMNAMC 3) ,NROWS ,NCOI..S )NCO('FS CI.W"

& I.EVFIS,VXI..OVXI VYI..DVYHI HSTIM(64),
& TMGPAD,IMAG(3?2:52

c
r IENIMC NUMBFR OF WORDS IN COMMON (0 IF NOT TINITTIAL IZFD)
C (ElSE LENIMC = 1iiO)
(7 IMNAM ASCII NAME OF IMAGE
C NR OWS , NCOI. S NIJMFNER OF7 ROWS AND) COlU!MNS OF~ IMAGE

C 1. F VFEI. S) NUMER OF GREY I. FVFJl..S USED ( 0 , 1, :QF. . -1 EE' .- )
C2 TMAG IMAGF ARRAY

N NCOLW14D ARRAY MAPPING CONSTANT OF OLD) UNIVAC RIPS
H' HIST F 1, HIS'TOGRAM VAI.IDITY FL-AG (NOT UJSED 30MAR79)

r ITqTlM ITTOGRAM ARRAY
C IMGPAD PADING FOR PROPER EXEC CALL TO SAMPLEF ARRAY
C 9 . SCREEN WINDOW DEFINITION
r U. URTIJAI WiJNDOW DFF1NTION (TN ATA)flIATF FIL-M COORJM5 3

r END IMAGE PROC* *RIS

1983



I

r- LINE CIASTNG ANT I,]NKING CODFS FOR GFNFRAI FRIT'F.MAN Cff';
C

INTFI(ER DXDY,("OMPMT
[COMMON /RPSCC/ JDX(68),DY(68),COMPMT(6.:)

C DX DX(LINK) IS X INCREMENT FOR FOll LOWING L...'rNK
C DY SIMILAR
C COMPMT tHO DEGREE COMPLIMENT OF LINK
C
C rHSDFS PROC H.P. VERSION 22 NOV 78 ***RIPS***
FTN41L ,T

BLOCK DATA RPSCH
C

INCLUDE RPSSYC
INCLUDE RPSIMC

INCLUDE RPSGRC
INCLUDE RPSWKC
INCLUDE RPSACC

INCLUDE RPSCH(:
C

DATA DX/i,i,0,-i,-i,-i,0,1,
+ 2,2,2, t ,0 ,-tI , -2, -2,-.?,-i ,1~

+ 2,3,3,3,2,,0 ,-i ,-2,-3,-3, 3,2-,-,- , ,i
+ 2,3,3,2,-2,-3,-3,-,?,-t, 0,1t,4,4,4, t ,(%,

+C

C 59 45 46 47 60
C 5844 34 35 36 37 61
C 57 43 33 1.8 1.9 20 2 1 38 62
C 56 32 17 6 7 8 9 2. 48
C F% 31 16 * i .10 23 49
C 734 30 iS 4 3 2 l.2 4 50
C 68 42 29 14 13 12 2t 39 63
C 67 41 28 27 26 40 64
C 66 S3 52 St 65
C

DATA DY /0,- 1 1-',-1 0,0 .,i,1.,
+ 1 ,0,-i, ,-2,-? ,-2,-1i , 0 , i ,2,2,,
+ 2, i, 0 ,-, ,-?,-3,-3,-3,-,-.. ,0,1i,2.3,3,3,
+ 3,2,-2 ,-3 ,-3,- 23444,i - '' -

DAIA COMPMT /5,6,7,8,1,2,3,4,i.,i6,i7.8,i,0.9,10,1ii?,13,4,~~~+29,30,31. ,3,?,33,34,35,36,2t ,22,23,24,?,'?,,6,27,,'.,

+ 41,42,43,44,37,30,39,40,5.',52,S3, 4,F;-,56,4.;,4t-,
+ 47,48],49,50,6.3,h4,65S,66,A7,6 8,57,5%.59,h(0,61 ,(,?/

C

C COMPMT((0) 19 UNDEFINFD
(] CHSDFS PROC H.P, VERSION 22NOV78 ***R I PF***

F ND
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c ;RADFc PROr:( 1, P VERSION 3i OCT 7 l I. TPS

C FORMAT AND STORA;I O1 COMMON S TORING GRADII.NI IMAGiFr
I,

I NTI. GER I .r'NGR , GRNAM, HISTGD, HSXHI , HqXl.0, HSYHI , YI (I HI ,l'
INTEGER MAG,DIR, S(PRESG(32,32) FLDIR(32,3; ,TI- D IR(32,3 ;-' )

INTEGER NTRPI S,NPAIRS,MKDIRiMKDIR2
REAL. MKLOCA,MKLOCRMKLOCC
INTEGER RESLTN ,WGTHOU
REAl.. HSMEANHSVAR

rCOMMON /RPSGC/ L.ENGRC,GRNAM(3) RESI.1N,WGTHO(I,HSMEAN,HSVAR,
& HSXL O,HSXI..I! HSYIO,HHSYHT, HTSTFI. ,HISTGD(64).
& MAXMAG,
& MAG (32,32), DIR (32,3?) '(IPRFS (32 32),
& NTRPLS,MKI.OCA(4),MKI..OCB(4) MKI..OCC(4) ,
& NPAIRS,MKDIRi(4)MKDTP2(4)

EQUIVALENCE (G,MAG),(FLDIR,DIR),(II. DI JSIPRrT,5)
C

C L.ENGRC NUMBER OF WORDS IN COM"ON (0 IF NOT INITIA1.I7FI)
C (ELSE I..FNGRC = 3i52 )
C GRNAM NAME OF IMAGE FROM WHICH GRADIENT EXTRACTED
C RESLTN RESOLUTION OF GRADIENT DIRECTION (8,i6,OR 30)
C WGTHOU PARAMETER FOR LHOLJGH TRANSFORMATION
C HSMEAN,HSVAR MEAN AND VAR OF NOISE TN GRADIENT
C HS, WINDOW ON GRADIENT IMAGE USED FOR HISTOGRAM
C HISTFL HISTOGRAM VALIDITY FLAG (NOT IUSFD 3PMAR79)
C HISTGD HISTGDRAM OF GRADIENT IMAGE
[1 MAG GRADIENT MAGNITUDE ARRAY
C MAXMAG MAXIMUM GRADIENT VA..+.I+i. = GRADIFNT LEVELS
1, DIR GRADIENT DIRECTION
C SUPRES SUPPRESSION FLAG USED TN THINNING
C NTRPLS NUMBER OF HALFPLANE-DFFINING TRIPLES
C MKLOCA/B/C A,B,C COEFTFCTENTS DEFINTNG HALFPI ANF MAc;K
C( NPAIRS NIIMBER OF' PAIRS DEFINING GRAD.F[NT DIRECITON MA(IK
C MKDIRi/2 DIRECTION RANGI: DEFINTNG GRADIENT DIRECTION MACiV
C" G AL [AS FOR GRADIENT MAG
F, FLDIRBI..DJP FORWARD AND BACKWARD EDGE DIRECTION
C
C END GRADIT PROC ***RIPS***

i
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C SYSTFM PROC H.P. VERSION 31OCT78 ***RIPS***
c
C MODES . PARAMF 14 j; T'F41I,1; Fl. AGR FOR R IP9

I NTF GF R I NlJNT 1 0 1 IN I T ,DFI4NT1 ,I MLINI
T'NTF'( F R I Dt'IFF" F 1_NAMF F F FilJF R
I N TE GFR RTPMO) ,DrF4tlG, JI.ENSYC ,PWIDTH SY INAM l;YN( 0l SYN (W
1 N T E f- R S XI1 0 ,9X H T , ,Y . 0 , 5Y H I, SY VX1.O, Y VY [I I , S Yv .V 0-( .SY VY I I T

fnMMO /AT5' .1 lENS3YC,INUJNITT,OTUNIT ,DLJNIT ,TMUjNIT,
& PW IDTH ,RITPMOD ,SYINAM3 ,SYNPOW .SYNC01.

& 9Xl..O 'I (1SXHI , SYLO, SYHI , SYVXI..O ,SYVXIHT7
*A SYVY.OSYVYHTDE4UG(2),F.NAMF(),IDCBE(i44),

& V ED(JFR (66)

E 1.FNSYC LENGTH TN WORDS OF COMMON (P ,4 NOT TNTTIALIZFP)
r ( IlRE I FNSYS = 87)
C SYINAM NAME OF CtJP.RFNT IMAGF
C SYNCOL. NUMBER OF COlUJMNS OF CURRENT WINDOW
C SYNROW NUJMBER OF ROWS OF CURRENT WINDOW
C INUNIT INPUT UNIT NUMBER ,TYPICAL.L.Y FOR UNIT S INPUT
C OT UN IT OUTPUJT UNIT,TYPICAl.I Y PRINT UNIT 6
c TMONIT INTERACTIVE' TFRMINAI. UNIT NUIMBER, I.F. 'i OR 4
C1 RIPMOI) RIPS MODE, I.E. PATCH=O OR TNTFRACTIVE;i.

*C DEBUG ARRAY OF DEB4UG, OR INTERMEDIATE- 1/O ELAGS_-; ONF OR
C' MORE F:OR EACH RIPS MODULE
C S... SCREEN WINDOW ON IMAGE IN L.OCAL. COORDINATES
C SYV. . ViRTUAI. WINDOW OF IMAGE IN AT4SOLUkTI.-. FILM COORDITNATES
C. PWIDTI- WIDTH Or PRINT I INF IN CHARACTERS, -?? OR i3;9
C FENAME. NAME (IF EDGF ELEMENT FlEt SHO(JL.D F 'FF1LE-
C IDCF4Er DATA CONTROL. IL.OCK FOR EEFTLE,OPENE1) AND CLO'SET) BY DRIVF R
C EEBUFR BUFFER FOR OUTPUT OF DETECTED EDGE F. I.FMFNTS TO EEFTI..F
C
r FND SYSTEM PROC * * *RI PS* **

r WCIRKCM PROC H.P. VFRSION 3iOCT78 ***RIPS***
C
r* DEFINES WORK COMMON BL.00K WHERE.. SETS OF SEL.ECTE-D POINT,' STORED

INTEGFR LENWKC-,IENWRK,(WX(i.?S3),WY(i?B),WGRDTR(128)
INTEGER WGR ( 128), WFLDIR (128),WKNAM (3)
FQjVAl.ENrCI_'(WFlDR,WCRDTpR)

ZEE~~~ 0 ,)=CtENWKC, LENWRK ,WKNAM, WX, WY, WR, W R IR

C L. FNWKC TOTAL. LENGTH IN WORDS OF COMMON 01i IF NOT TNTITA T7fl)
C (ELSE LENWKC =Si?7
C WKNAM ASCII NAME OF PICTIJRF FROM~ WHICH POINTFS rflECTlF.D

1.' I.R K NIIMFP' OF POINTS SFLCTFD
c: WX.WY X,Y COORDINATES OF SFL..FCTFD POINTS
C WFI.DIR,WT41-DIR FORWARD AND BACKWARD EDGE DIRFCTTON AT POINT
C WGRDIR fCPADIENT DIRECTION AT POTNI

C WGR GRADIENT MAGNITUDE AT POIN'T
C
C END WORKCM PROC * **R'1 PS** *
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Appendix C: Edge extraction routines EDGEX and EDGEY.

Two batch programs exist which extract lineal edge data from

on-line imagery. EDGEX performs a patterned scan of the image extracting

straight and curvwd edge elements from sampled windows. One record is

written to file EEFILE for each edge element extracted. The scan pattern

is defined by giving a window spacing in stagels, the beginning window

center in stagels, and the trajectory of subsequent window centers in

terms of a Freeman chain code. The following output gives a sample run

of EDGEX scanning around a road intersection. Typically EDGEX is used

by repeating a raster scan pattern across the entire image. EDGEX

allows checkpointing after each patterned scan is complete, or the user

can repeat the scan pattern over the next region of the image.

EDGEX requires about 15 seconds per sampled window; almost

all of that time being consumed by the gradient operator. LHOUGH and

LKTRKR are the smart routines called and extract straight or continuously

curved edge elements respeci:ively. Detections are written to EEFILE

which must be saved by copying if the checkpointing facility is being

used. The following output gives routines loaded with EDGEX and sample

output of the program.

EDGEY is a batbh program which takes the primitive detections

made by EDGEX as input and attempts to extend straight edge elements and

detect intersections along them.

For each primitive straight edge element input to EDGEY, the

processing logic is as follows.
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1) The stage is positioned so that the edge element should be centered

in the window. Competing edge directions are masked off and the Hough

detector is called to verify the edge. If the edge is missed

(happens infrequently) then go to step 5 . If the edge is detected

adjust (servo) the stage to center the ddge element in the window.

2) Search along the detected edge for nearly perpendicular intersecting

straight edges. When searching, the existing edge direction d and

d + 1800 are masked off to remove contention. Also the stage is

toggled so that almost an entire window is visible on either side

of the existing edge. (See Figure 2.10).

3) Attempt to extend the current edge in the forward direction. If

a forward extension exists go to step 2, else continue at step 4.

4) Attempt to extend the current edge in the backward direction. If

a backward extension exists perform step 2 search for intersecting

edges and repeat this step. When no further backward extension is

detected continue at step 5.

5) Negate any stage adjustment made in step 1. Write a record out to

EEFILE defining the full extent of the edge found. (Any detected

intersections were written out to EEFILE when detected.)

The chief defect in EDGEY as currently implemented is that the

routine does not remember the edges it has already worked on. Quite

often, EDGEX will detect deveral pieces of a long straight edge.

EDGEY is then condemned to extend and search from each piece, often

achieving multiple identical results. Theoretically the duplication is

easy to remove at a later stage, but a great deal of cime is currently

wasted working over the same edge.

203



C.1 Loader commands for creating EDGEX

Command Commen

RE,%EDGEX main routine

RE,%ARRAY window sampling routine

RE,%RPSFX routine initializes accumulator array

RE,%RPSGL computes 32-directional gradient

RE,%RPSHS histograms gradient

RE,%RPSSE selects strong gradient points

RE,%RPSHG computes Hough transform

RE,%RPSFO focuses Hough transform

RE,%RPSLS scans accumulators for peaks

RE,%RPSWR links edge points to best neighbors

RE,%RPSLK extracts continuous curves

RE,%RPSPR prints grey scales if required

RE,%RPSPA prints acc. array if required

RE,%RPSML computes gradient at single point

RE,%RPSVG converts polar vector to rectangular

RE,%STAGE positions stage

RE,%RPSMK sets gradient masks

RE,%RPSCH block data routine for chain code common

RE,%RPSVT converts vector to gradient direction

RE,%RPSAA worker subroutine for RPSLS
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*C. 2 SAMPLE RUN OF EDGEX

C RNEGE,,

GIEIAENMC32-ijca

4613PCr

GIVE IMAG0 FAG(2)- EE) L $o.plJ4'J0w

GIVE GLOACOOR PINTS TFORII SLT(REA/FREE)-

0 T NLINE & 0 PTS ON CH IN ? (2 INT/FREE)-

FI0 S WINDOW OFF ORIGIN-DELX,DELY (INT/FREE)-

6120,3072,
GIVE SAMPLING TRAJECTORY LSIZEN

( (LINK'S(I),I-1,N) (INT/6011)
*~200,8,

541177SSp
( IERR- 4 IN OPENING FILE EEFILE

_ IERR- 4 IN WRITING LAB-EL ON EEFILE
GRADDL ON IMAGE=462i-3 WINDOW-1100011248 7952 8200
G RADDL:NOW THIN MAXMAG,TYPE- 155 0
SELECT .THRESHOLD= 82
SELECT:LENWQK- 66

(OSIGNIFIGANT LOCAL MAXIMA WITH THRESHOLD = 20 WERE FOUND AT

ANGLE OR DIRECTION RADIUS WEIGHT

17 -3 2s
LFOCUS~t1159, 8267 11159, 7959 179., -3.0, WT- 15 20,32 20, 1
LKTRKR: 0 CHAINS OUTPUT OF MIN LENGTH- 20 - 0 LINKS TOTAL
***VIRTUAL**v 11000 11249 7952 8200*SCREEN* 1 32 1 32***

1234567B9Q123456789012345&78901234S479
32

29
U 28*

27X
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(LINKS(I),I-IN) (INT/60I)
200,8,
S41t77SS

IERR" 4 IN OPENING FILE EEFILE
iER 0 IN WRITING LABEL ON EEFL -

GRADDL ON IMAGE-4621-3 WINDOW-1100011248 7952 9200
GRADDL:NOW THIN MAXMAG,TYPE- ISS 0
SELECTtTHRESHOLD= 82 ... ...
SELECT:LENWRK- 66

OSIGNIFIGANT LOCAL MAXIMA WITH THRESHOLD - 20 WERE FOUND AT

ANGLE OR DIRECTION RADIUS WEIGHT
17 -3 25

' LFOCUStlitISg 8207 iits9, 79S9 t79., -3., WT- iS 20,32 28, 1

LKTRKR: 0 CHAINS OUTPUT OF MN LENGTH 20 - 0 LINKS TOTAL
**VIRTUAL*** 11000 11248 7952 9200SCREEN* 1 32 1 32 *0*0

12345678901234S678901234S678901234S67890
32 I
31
30
29

4 28
27 X
26 XX
2S XX
24 X $X
23 X $X
22 X $$
21 XX X 6$
20 ts S OX
19 05 X $X
o18 0 X
17 $ #$

( 16 $ $XX
15 0 $$s$X
14 9

( 13 1
12 $$X
it 0

9 $X
8 $

( 7 X $
4 X X
S x X

C 4
7' 3

2

GRADDL ON IMAGE-4621-3 WINDOWmiO8OO1iO48 7952 8200
GRADDL:NOW THIN MAXMAG,TYPE= 107 0

t SELECT:THRESHOLD- SO

SELECTILENWRK= 38
OLSCAN: NO LOCAL MAXIMA FOUND WITH THRESH - 20

( LKTRKR: 0 CHAINS OUTPUT OF MIN LENGTH 20 - 0 LINKS TOTAL
GRADDL ON IlAGE4621-3 WINDOWntO&0010848 7752 8000
GRADDL:NOW THIN MAXMAG,TYPE= 28 0

( SELECT:THRESHOLD- 18
' SELECT;LENWRK= 34

OLSCAN: NO LOCAL MAXIMA FOUND WITH THRESH - 20
( LKTRKR: 0 CHAINS OUTPUT OF MIN LENGTH 20 - 0 LINKS TOTAL

GRADDL ON IKAGE-4621-3 WINDOW-1080011048 7752 8000
GRADDL:NOW THIN MAXMAG,TYPE- 95 0

C SELECT:THRESHOLD- ii
4! SELECTsLENWdRK- 88

OSIGNIFIGANT LOCAL MAXIMA WITH THRESHOLD - 20 WERE FOUND AT(

ANGLE OR DIRECTION RADIUS WEIGHT
23 2 22

( LKTRKR: 0 CHAINS OUTPUT OF MIN LENGTH 20 - 0 LINKS TOTAL
GRADDL ON I1AGE=442t-3 WINDOWalICOOLI248 7752 8000
GRADDL:NOW THIN MAXMAG,TYPE- 141 0
SELECT:THRESHOLD- 74

SELECTsLENWRK- 42
OSIGNIFIGANT LOCAL MAXIMA WITH THRESHOLD - 20 WERE FOUND AT

" ANGLE OR DIRECTION RADIUS WEIGHT
17 -2 27

LFOCUS:iII59, 8007 111S9, 7759 179,0, -3,0, WT- 22 20,32 20, 1
LKTRIRt 0 CHAINS OUTPUT OF MIN LENGTH 20 - 0 LINKS TOTAL
***VIRTUAL*** 1iO00 11248 77S2 8000$SCREEN* 1 32 1 32 *0*0*

123456789O0234S6789012345679901234567890



UbiUNIP1.ANI LULAL MfAXIMA WIkH ItHkLbULI - -'U WNLK tUUNU MI

ANGLE OR DIRECTION- RASIUS WE IG4T-
17 -2 27

C LFOCUS:iII59, 8007 IIIS9, 7759 179.0, -3.0, WT- 22 20,32 20, 1
LKTRKRt 0 CHAINS OUTPUT OF N0 LENGTg 20- • LINKS TOTAL
*S*VIRTUAL**S 11000 11248 7752 8000*SCREENS 1 32 1 32 *0*0*

S 1234S67890 12345678901234567890 1234567890
"- 32 .. ....

31

( 30
29
28
27
26 X

(' 25 X $

24 X $
23 $ 0

S 22 $ ox

21 $ oX
* 20 * ex

19 SW
* 18 0

* t7 $ 0

14 $X 0 0
13 XX $ 0

9 12 oX $ #
It go 6 0
to 10 x 0

$ 9 L#X #$
8 x 0
7 0:
6 01
S $SX $$
4
3

242

I
GRADDL ON IMAGE=4621-3 WINDOW=ii00011248 7952 8200
GRADDL:NOW THIN MAXMAG,TYPE= 157 0

SELECT: THRESHOLD= BO
SELECT:LENWRK= 9

"o OSIGNIFIGANT LOCAL M1AXIMA WITH THRESHOLD = 20 WERE FOUND AT

ANGLE OR DIRECTION RADIUS WEIGHT
17 -3 24

LFOCUS:1i1S9, 8207 illS9, 7959 179.0, -3.0, WT= 14 20,32 20, £
LKTRKR: 0 CHAINS OUTPUT OF MIN LENGTH 20 - 0 LINKS TOTAL
***VIRTUAL*** 11000 11248 79S2 8200*SCREEN* 1 32 1 32 5*0*0

12345678901234567890i2345678901234S67890
32
31
30a

* 29
28 x
27a
26 XX
2S XX
24 X
23 X $X
22 X $
21 X SX
20 6$ $ $S
19 O$ X IX
18 00 IX

17 1 00 $X
L4 6 t $$X
15 0 Ostx

14 0
13 0
12 0
i1 XX

9O $ x9 S X

7 S
6 XX
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3
2

S GRADDL ON IMAGE-462t-3 WINDOW-tlO000iI248 81S2 8400
'A GRADDL:NOW THIN MAXMAG,TYPE- 129 0

* SELECT:THRESHOLD- 64
SELECT:LENWRK- 69

( OSIGNIFIGANT LOCAL MAXIMA WITH THRESHOLD = 20 WERE FOUND AT

ANGLE OR DIRECTION RADIUS WEIGHT
t 17 -4 45

1 2 24
LFOCUS:11167, 8407 11167, 9159 179.0, -4.0, WT- 24 21,32 21, 1

( LFOCUS:tiI43, 8159 11143, 8407 -1.0, 1.0, WT- 24 18, 1 18,32
LKTRKR;LINIDAXAY,GLOBAL AX,AY- - 1 17 S 11143 8199 23
77777777777777777777

S 7 7 7

LKTRKR: I CHAINS OUTPUT OF IN LENGTH 20 - a LINKS TOTAL
SS*VIRTUAL**$ 11000 11248 8152 8400*SCREEN* 1 32 1 32 S*$*

S 12345678901234S678901234S678901234567890

32
31
30

24 29
28 X X
27 X X
26 6 $
25 $ S+
24 $ $+
23 * *X
22 o *x

( 21 o X
20 $ oX
19 5 *X

( 18 • *X

17 $ #X
16 $ ox

14 0 oX
13 0 ox
12 0 @X
11 4 IX

10 @ X
( 9 $ eX

8 $ oX
7 o *X

6 o *x
'J S $' IX

4
IL 3

2
I

GRADDL ON IHAGE=4621-3 WINDOW-108001t048 8152 8400
GRADDLiNOV THIN KAXKA")TYPE= 114 0
SELECT:THRESHOLD- 10
SELECT:LENWRK- s0
#LOCANt NO LOCAL MAXIMA FOUND VIT4 THRESH = 20
LKTRKR: I CHAINS OUTPUT OF MIN LENGTH 20 - 0 LINKS TOTAL
GRADDL ON IMAGE=4621-3 WINDOW=IO600t0849 8152 8400
GRADDL:NOW THIN MAX G,TYPE= 1S4- a--
SELECTiTHRESHOLD- 73
SELECTtLENWRK- 35
OSIGNIFIGMT LOCAL MAXIMA WIT14 THRESHOLD - 29 WERE FOUND AT

ANGLE OR DIRECTION RADIUS WEIGHT
11 4 24
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GRADDL;NOW THIN MAXIAGTYPE- L54 0
SELECT :THRESHOLD- 73

S SELECT:LENWRK" 35
63 OSIGNIFIGANT LOCAL NKAXIM4A WIT9 THRESH4OLD " 20 WERE FOUND AT

* ANGLE OR DIRECTION RADIUS WEIGHT
11 4 24

LFOCUS:10607, 8303 108e5, 8199 247.0, 4.0, WT- 16 1,19 32, 6
'• LKTRKR:LINID,AX,AY,GLOBAL AX,AY- 2 s 17 10647 8295 23
S1 2 1 2 1 2 1 2 1 1 2 2 1 2 1 £ 1 2 2 1

121
6 LKTRKR: 2 CHAINS OUTPUT OF MIN LENGTH 20 - 0 LINKS TOTAL

***VIRTUAL*** 10600 10848 8152 8400*SCREEN* 1 32 1 32 **S*S
12345678901234567890 i234S678901234567890

£ 32
31
30

* 29
28
27

4 26
2S
24

a 23

21
4 20

19
18
17 *$
16 go
is st1 14 5*

t 13 9 oo$
12 s 0 S

I ii to$
,0 Re SXX+

9 * X
4 8 0 XX+

7 $ X+
6 X

| S X
4

3
E 2

PATTERN COMPLETED 9 WINDOWS SAMPLED
WANT TO CONTINUE SCAN PATTERN? (YES=I/NO=O)-

0,
IERR= 0 IN CLOSING EEFILE
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C.3 Loader commands for creating EDGEY

Command Comment

RE,%EDGEY main routine

RE,%RPSCH block data routine for chain dode common

RE,%ARRAY window sampling routine

RE,%RPSFX routine initializes accumulator array

RE,%RPSGL computes 32-direction gradient

RE,%RPSHG computes Hough transform

RE,%RPSFO focuses Hough transform

RE,%RPSLK extracts continuous curves

RE,%RPSLS scans accumulators for peaks

RE,%RPSPR prints grey scales if required

RE,%RPSPA prints accumulators if required

RE,%RPSSE selects strong gradient points

RE,%RPSWR links edge points to best neighbors

RE,%RPSVT converts vector to gradient direction

RE,%RPSHS histograms gradient

RE,%RPSML computes gradient at single point

RE,%RPSVG converts polar vector to rectangular

RE,%STAGE positions stage

RE,%RPSFR sets up masks for given edge

RE,%RPSMK maintains and applies gradient masks

RE,%INSPT inspects both sides of edge for other edges

RE,%VEREE verifies previously detected edge

RE,%INSEC computes intersection between 2 lines

RE,%RPSAA worker subroutine for RPSLS
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C.4 SAMPLE RUN OF EDGEY

DL F FE 1)14 U . 1I F% 0'.) ((F1

RUN ,I DI U1

SORI C L Fi It 7

/F FDFF X : 111
DF [Ux OR G=I QOO'1 ,OOO ' (0i . 0WG T;- 20 15

L K 8 111 , 2733 16, V. . 6. 6, 7, 6. 6, 6, 6. ?, 6. F.. ,., 6 h .

/-90
FO 6943, 485 . 7023. 46,37.

/+S5

10 9637, 5209, 9885, 52Ri,

LK 9677. S225, 23, 1, 8. 1. 1, A. , 1, S. 8 .1 , 1, v. t, 1, 1. t, 1. 1 1. 1
/-900

EOF
/1

S REtIX ORGc=ILO0r 50nOPERCNT= .0WGT 20 Is
/,L So

DREUX ORG=10000 SOOOPERCNT= ,OSWIz 20 i5

FO 6943, 4885, 7023, 4637,

FO 2201, 5135, 2281, 4887,
FO 3865. 5103, 3637, 4959,

LK10677, 4927, 17,20,?0, 8, 8,20, 8,20,20, 8, 8, 8,20, 8,20, 8, 8.10,

LK1 0677, 5ZtS , 21, 2, 2, Z, 1, 1, 2, 2, 2, 2, 2, 2, , 2, 2, 2. 2, 1,23, 6 20, E,
FO 9677, 5209, 9885, 5281,

.'OF
/ER
FNf 

O
0 ED0 T

:UN.EDf7 f./,

GIVE IMAGE NAMF(3A;')-
DRIEUX
GIVE FRACTION OF POINTS TO SELECT(REAL/FREE)-

0.05,
GIVE 10 1/0 FLAGS (INTIFREE)-

0 .0 .0 .0 .0 .0 .0 .0 .0 .0,

I'IVE GLOBAL ORIGIN AND STAGE POUNDS (6 INT/FREE)-
10000,5000.F100,2700,1200,9200,

# PTS ON LINE, ON CHAIN, & TRACKING SIZE (3 INT/FREE)=
IS. 1 4150,
IERR= 4 IN OPENING FILE EEFILE
IERR= 4 IN OPENING FILE EEDGEX

IERR,LEN= 0 23
ECFILE REC=
DREUX ORG-iO000 SOO0PERCNT

= 
OSWGT= 20 IS

IERR.LEN
=  

0 13
FEFILE REC=

4 FO 6943, 4885, 7023, 4637,

GRADDL: ON DREUX WINDOW= 6863 7111 4641 4889 MAXMAGTYPE= 1.2 0

SELECTtTHPSHL,LENWRK* 29 31
4 OSIGNIFIGANT LOCAl MAXIMA WITH THRESHOLD = 15 WFRE FOUND AT

ANGLE OR DIRECTION RADIUS WEIGHT
L O Is 2 31t

LFOCUS: 6934, 4896 7030, 4648 200 0, 2.0. 6IT- 20 9,3?1 21, 1

GRADDL: ON DREUX WINDOW- 6934 7182 4693 4941 MAXMAG.TYPE- 21 0

SELECT : THRSHL ,L ENWRK- 8 It
O SCAN: NO LOCAL MAXIMA FOND WITH THRESH - iS

FRADDL: ON DREUX WINDOW= 6750 6998 4693 4941 MAXMAGTYPF= 11 0

SELECT:THRSHL_,LENWRK- a 17
OLSCAN: NO LOCAL MAXIMA FOUND WITH THRESH - 15
GRADDL: ON DREUX WINDOW- 6980 7228 4550 4798 MAXMAG.TYPE- P.2

SELECT:THRSHLLENWRK- 8 9

OLSCAN: NO LOCAL MAXIMA FOUND WITH THRESH = 15

GRADDI: ON DREUX WINDOW= 6796 7044 45%0 4798 MAXMAG.TYPE= 10 0
S FLECT:THRSHLLENWRK- 9 34

OLSCAN: NO LOCAL. MAXIMA FOUND WITH THRESH - IS

GRADDI: ON DREUX WINDOW- 6943 7191 4393 4641 MAXMAG.TYPE= 41, 0
C SELECT:THRSHL.LENWRK- 25 32

rOSIGNIFIGANT LOCAL MAXIMA WITH THRESHOLD - is JFRE FOUND AT

ANGLE OR DIRCrCTTON RADIUS WEIGHT

is -1 32

LFOCIUS 7038, 4648 7142, 4400 22.0, -i.0. WT= 22 12,32 2S, I
C FORWARD VERVE :TAX TAY T8X ,TfY,KFLAG- 7023 4637 7103 4389 1

GRADDL: ON DrEUX WINDOW- 7014 7262 4445 4693 MAXMAG.TYPF- 17 0
rELECT:THRSHLLENWRK- 8 12

0LSCAN: NO LOCAL MAXIMA FOUND WI'7F THRESH - 1
GRADDL ON PPEUX WINDOW- 6830 7078 4445 4693 MAXMAG.TYPEz :6 0

SELECT THRSHLLFNWRK 8 22
OLSCAN NO LOCAL MAXIMA FOFIND WITH THRESH - 15
GRADDL ON DPE'JX WINDOW= 7060 7308 4302 4950 MAXMAG TYPF= P3 0
OEl_EC T"THRSHL.LFNWRK (0 13
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III 9CANT NEI I IICAi MAX IMA POfUND WITH THIIJ( 19
LIIAPPII ON I)Ntl I WI NIIIIW- hliIV, "1;14 410I.1 41-F.0 MAXMAI;. I flIt - .'I

Ill.-ICAN, Nil ( (if Al MAX IMA F 01iNt WL I tH 1l4RrqlI4 - I t
frRADDL! ON PRFUX W3NVflU- MI13 '127t 4t4S 4393 MAXPNAI;.TIYP- /-I q

SLECT~lHRSHL.LENWRK- 29 32
PISGNVIAINT LOCAL MAXIMA WITH THRESHOi.O - 1S WIVRE FOUND AT

ANGLE OR DIRECTION RADIUS WEIGHT

19-2 32
LFOCUS: 7134. 4400 7222, 4152 200.0, -2.0, WT- 21 14.3? 25. 1
FORWARD %VEREE:TAX.TAY,TIIX,T8JY,KFLAG- 7103 4389 7183 4141
GRADD. ON DREUX WINDOW- 7094 7342 4197 4445 MAXMAG.TYPE= 2-8 0
SELECT;THRSHL L.EN4RK- a is

0LSCAN: NO LOCAL ?MAXIMA FOUND WITH THRESH 15I
GRADDI,: ON DREUX WINDOW- 6910 71S8 4197 4445 MAXMAGTYPE- 36 0
SELECTNTRSHL,LENWRK- 8 30
01-SCAN: NO LOCAL MAXIMA FOUND WITH THRESH - IS
GRADDL: ON DREUX WINDOIJ 7t40 7388 40S4 4302 MAXMAG,TYPE- 10
SELECT:TNRSHL,LE.4WRK- 1 25

01-SCAN: NO LOCAL MAXIMA FOUND WITH THRESH - 5
GRADDL : ON DREUX WINDOW- 6956 7204 4054 4302 MAXMAG,TYPE= PR 0
;ELErT:THRSHL,LE!-IRK= 0 29

OLSCAN: NO LOCAL MAXIMA FOUND WITH THRESH - 15
GPADDI: ON DREUX WINDOW= 7103 71 3897 4145 MAXMArTYPE= 0'4
'ELECT:THRSHL,LENWRK- 15 42

OSIGNIFIGANT LOCAL MAXIMA WITH THRESHOLD - 15 WFRE FOUND AT

ANGLE OR DIRECTION RADIUS WEIGHT
i5 -4 37

LFOCUSi 7222, 41S2 7334, 3904 204.0, -4.0, WT- 18 15,3? 29, 1
FORWARD VEREE:TAX,TAY,TBX,TBY,KFLAG- 7183 4141 7263 3893
CRADDL: ON DREUX WINDOW-1 7174 7422 3949 4197 MAXMAG,TYPF= ?a 0
SELECT:THRSHL.LENWRK- Is 59
OSIGNIFIGANT LOCAL MAXIMA WITH THRESHOLD - 15 WERE FOUND AT

ANGLE OR DIRECTION RADIUS WEIGHT
20 -9 27

I-FOCUS: 7429, 4t24 7301. 39S6 143.0, -9.0, WT- 14 32.22 16, 1
***VIRTUAL*** 7174 7422 3949 4197*SCREEN* 1 32 1 3? **

12 234567890123456789012345678901234567890

31
30
29
28
27

£ 26

24
23

21 /
20 -
19
1IS
17 + -

t6 X +/

14 # $X+-
t3 II X
12 $+
it SX/

9 - - X/

7 -X+ -

6 X/

3

INSEC RETURNS AX,AY,BX,04Y,CX,CY,DXDY,IX, IVITYPE-
7183 4141 7229 3998 7429 4140 7293 3956 7258 3908
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Appendix D Registration Software

The registration software consists of one load module containing

one main program and several subroutines. The program structure is

illustrated below:

iNPU CLSTRE A-i Aq T CH

Dc~ D6AIT' SCR b T L CC Hq..7. 11LM-rCH

-5TRiAIT iyFI
BEST J

The registration program takes a set of image edges from the

file IMAGE and a set of map edges from the file MAP and computes the

possible transformations that will transform the image onto the map.

The technique used is to cluster the possible transformations in

3-dimensional space and select those with the strongest support.

The data structures used reside in the four common blocks,

presented in D.1 , and the match weight matrix, MATCHS(200,30) is

in the common block MATRX which resides in the RTE-IV, extended memory

facility.
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I
Routine
Name Arguments Function

REGDR Main Program Reads and analyzes commands and calls
appropriate subroutine. Sets up initial
values for variables contained in com-
mon blocks found in the procs: REGIST,
BUCKET, and PRTFLG.

RDCNTR (NUMLEV,SCALEX, Reads in the edge information for the
SCALEY,SCALET,LOXBND, image and then the map from DISK FILES.
LOYBND,LOTBND) Image edge information must reside

in the file IMAGE::18. Map edge infor-
mation must reside in MAP::18. Computes
centers of image and map windows and places
them in common block. Using NUMLEV,
computes the three scales at each level
and stores them in arrays SCALEX,SCALEY
and SCALET. Computes lower bounds at
first level and stores them in LOXBND(1),
LOYBND(I) and LOTBND(1). Image edge

information stored in arrays Xl,X2,Yl,Y2
of common block REGIS. Map edge infor-
mation into arrays UI,U2,Vl,V2 df same

common block.

CNVTRP (Xl,Yl,X2,Y2,RADIUS, Takes a directed straight line segment
THETA) beginning at (XI,Yl) and ending at

(X2,Y2) and converts it to polar coor-
dinates (RADIUS,THETA).

EDGMAP (Xl,Y1,X2,Y2,Ul,Vl, Given an image edge defined by (Xl,Yl)
U2,V2,STOL,THETAR, and (X2,Y2), a map edge defined by
STAILX,STAILY,SHEADX, (Ul,Vl) and (U2,V2), an angle of rota-
SHEADY) tion of image to map edge (THETAR) and

a tolerance (STOL); a line segment in
a-space which represents the constraints
of the x-shift and the y-shift in trans-
formations on these two edges is
calculated and is represented by (STAILX,

STAILY) and (SHEADX,SHEADY).

SCABKT (TAILX,TAILYHEADX, Creates the clustering matrices used to
HEADY,THETAI,THEIND, find the most relevant transformations.
SCALX,LOX,SCALY,LOY, Since two sets of clustering matrices
MATNUM,OUTUNT) are used by the approach (regular and

offset matrices) the routine is called
twice for each line segment it processes.
The line segment is defined by (TAILX,

TAILY),(HEADX,HEADY) and the angle of

I2

213



Routine
Name Arguments Function

the line is in THETAI. MATNUM indicates
whether incrementation is to be done in
the regular matrix (MATNUM=l) or the
offset matrix (MATNUM=2). The scale of
the matrix is defined by SCALX,LOX,SCALY
and LOY. The line is chased from tail
to head and each bucket of the matrix that
it passes through is incremented. Infor-

mation about each line is written to an
intermediate output file. Clustering
matrices BKTCNT & BKTOFF are in the
common block in proc BUCKET.

STRAIT (AX,AY,BX,BY, Given a line defined by (AX,AY) and
NNEIGB,STORAG,N,NLINKS, (BX,BY) and whether it is to use 8-
IFLAG) directional or 4-direction Freeman codes,

STRAIT computes the links along that
straight line. The links are stored in
the array STORAG(N). If the number of
links, NLINK, is greater than N, IFLAG
is set to indicate an error.

BEST (FX,FY,TX,TY,NNEIGC Given a line from (FX,FYY to (TX,TY);
Ll,L2,Nl,N2) computes the straightest path, returning

# of L1 links in NI and # of L2 links
in N2.

CHOSPK (PEAKS, MAXPKS,NUMPKS, Scans the two clustering matrices,
PRTFLGPWIDTH,THRESH) BKTCNT and BKTOFF, to find the MAXPKS

highest values. The indices of the high
valued buckets are stored in the array
PEAKS with the number of peaks actually
chosen being in NUMPKS. THRESH defines
the minimum value to be considered as a
possible peak. PRTFLG and PWIDTH provide
information to the print routines.

ALMTCH (THETA,XSHIFT,YSHIFT, Given a transformation defined by
ANGTOL,DTOL,PWIDTH, (THETA,XSHIFT,YSHIFT), an angle tolerance
LENCHK,MTCHWT, of ANGTOL and a distance tolerance of
NMCHRWNMCHCLCOLMCH) DTOL; an evaluation of how good the trans-

formation is made. This is done by
transforming any image edge that possess
approximately the correct gradient onto
a map edge. The function EMATCH is
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Routine
Name Arguments Function

called to actually evaluate how good

each match is. Taking the results 6f
EMATCH, ALMTCH creates the match weight
matrix matchs (in common block MATRX),

the average match weight, MTCHWT, the

number of matching rows, NMCHRW, the
number of matching columns, NMCHCL, and in
which columnsa match has been found.

If LENCHK=l, only edges of approximately

the same length are compared. PWIDTH

is used by available-output routine.

EMATCH (SEG1,SEG2,GRAD,THETA, Given the transformation (THETA,XSHIFT,

XSHIFT,YSHIFT,DTOL) YSHIFT), the edge in the image (stored
in array SEGi), the edge in the map
(stored in array SEG2), the gradient

direction of the map edge, GRAD, the
gradient direction of the image edge,

THETA, and the tolerance, DTL;

computes strength of match and returns

a value between 0 and 1.

Worker routines not shown in program structure.

STACK (CODE,PEAKS,I) Maintains a push down stack thda keeps

track of peaks to be evaluated. Each

entry contains 5 fields; THETA INDEX,

X-INDEX, Y-INDEX, WEIGHT and which matrix

peak appeared in.

PRTBKT (PWIDTH,CNTSUM) Prints either the original or offset

clustering matrix depending on the

value of CNTSUM. Matrices in common

block BUCKET

PRTMAT (RSIZE,CSIZE,NIMAGE, Prints the match weight matrix created

NMAP,PWIDTH) in ALMTCH.

RDWRTF (FILENO,OPCODE, Controls the input and output to the

BUFFER,IL,IERR, intermediate disk files. Possible

TYPE) operations are OPEN, READ,WRITE,REWIND,

and CLOSE. Can have up to 2 files open

at once.

SGN (IY Returns 1 if I>0, -1 if I<0 and 0 if

I=O.
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D.1 Procs containing common blocks used in registration

C REGIST PROC******HP. REGISTRATION COPE 9FERV9*****
c

INTEGER Xi(20D),X2,(200),Yi(200),Y2(200),Ui(30),
1( 12(30),VI(30),V2(30),NIMAGF,NMAP,IXCFNTr,IYCENT,MXCENT,
1( MYCENT,RSIZECSIZE
REAL THET(2,200) ,RAD(2,2OO)

C
(2
C Xi,X2,Yi,Y2 - ARRAYS FOR ENDPOINTS OF IMAGE LINES
C IJi.U2,Vi)V2 - ARRAYS FOR ENDPOINTS OF MAP LINES
C THET - ANGLES FOR IMAGE AND MAP
C RAD - RAD FOR IMAGE AND MAP
C NIMAGE - # OF LINES IN IMAGE (# OF ROWS IN MATRIX)
C NIIAP - # OF LINES IN MAP (# OF COLUMNS IN MATRIX)
C IXCENT,IYCENT - X AND Y OF IMAGE CENTER
C MXCENTMYCENT - X AND Y OF MAP CENTER
C R13IZE - 9 OF ROW4S IN MATCHS
C CSIZE - 9 OF COLUMNS IN MATCHS

C NAMED COMMON REGIS IS USED TO HOLD) INFO
C

COMMON /RIEGIS/ Xi,X22-,Yi,Y2,U1.,UI,ViV2?T'1i4ET,RAD,
NIMAGFNMAPIXCFNT,IYCENT,MXCENTMYCFNT)RSJ'ZECSTZE

C
C*** E:ND OF MACRO REGIST, H.P.VERSION 9FEE479*****
C
C
C*****PROC BUICKET H.P. VERSION 9FEE479*******
C
C DEFINFS CLUSTER MATRICF:S, CLUSTERING IN 3--D (THETA,X,Y)

C BKTCNT - CONTAINS COUNT OF # OF HITS IN EACH BUCKET
C F4KTOFF - CONTAINS COUNT OF' 4 OF HITS IN OFFSET MATRIX
C

INTEGER EKTCNT(iO~iO,iO),BEKTOFF(tO,iO,iO)
INTEGER NZEROT(1O) ,NUMTHE,NUMXNUMY,NZEROIO(1O)
COMMON /C.LSTR/BKTCNT,F4KTOFF,N7EROTNZEROO,NUMTHEKNIJMX,NUMY

C
C*** END OF PROC BUCKET**
C
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(*****PRTFLG MACRO H.P.VERSION 9FEB79*****
C

INTEGER PRTINPPRTMWM,PRTBUKPRTSBK
C
C PRTINP - PRINT INPUT F'I. Af (RECTANGULAR AND POLAR)
C PRTMWM - PRINT MATCH WEIGHT MATRIX FLAG
C PRTBLJK - PRINT 3-D CLUSTERING MATRIX FLAG (.LICKETS)

C PRTSBK - PRINT SMOOTHED CLUSTERING MATRIX
C
C NAMED COMMON PRTFL IS USED TO HOLD FLAGS

COMMON /PRTFI../ PRTINPPRTMWMPRTBUK,PRTSBK
C
C*** END OF PROC PRTFLG
C
C
C*****PROC CHSDF8 H.P, VERSION 9FEB79********
C

INTEGER DX(8),DY(8)
C
C DX,DY - CHANGES IN X AND Y FOR CHAIN CODES
C THE NAMED COMMON DELTS HOLDS THESE VALUES AND IS INITIALIZED IN THE-
C B1.OCK DATA PROGRAM
C

COMMON /DELTS/ DXDY
C
C*** END OF PROC CHSDF8
C
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D.2 Possible commands

The command needed to get things started is the INPUT command.

The format is as follows (starting in column 1):

INPUT ANGTOL>, /TOL>, <DTOL>, <UMLEV>, cFRTBUK>, <PRTOFF, 4'RTMWM>,

<PWIDTH>,<LENCHK, HRESH>

Where the input fields have the following significance:

ANGTOL - angular tolerance (in degrees) between model edge and a rotated
image edge. Used in the routine ALMTCH.

STOL - segment tolerance for generating the line segments in EDGMAP.

DTOL - distance tolerance used in computing strength of match between
a model edge and a transformed image edge. Calculation using
DTOL is in routine EMATCH.

NUMLEV - number of clustering levels desired. Maximum currently possible
is 5. Used as a controlling parameter in REGDR.

PRTBUK - flag for printing original clustering matrix. If value is I,
matrix is printed at each level.

PRTOFF - flag for printing offset clustering matrix. If value is 1,

matrix is printed at each level.

PRTMWM - flag for printing match weight matrix.

PWIDTH - number of columns available on output line. Can be either 72
or 132.

LENCHK - if set to 1, only edges whose lengths are approximately the
same will be compared.

THRESH - minimum number of line segments that must pass through a bucket,
at the highest clustering level, in order for that bucket to be
considered as a peak.

All above inputs are integer.
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The command to initiate the 3-dimensional clustering that does

the bulk of the registration work, starts in column one and is CLUSTR.

A command that can be presented independently of the CLUSTR

command, is the EMATCH command. This command allows the user to present

a possible transformation and have the software evaluate the strength of

the transformation given the edge information input as a result of the

INPUT command processing. This command can be given before, after or in

place of the CLUSTR command. The format is:

EMATCH <THETAI>, 5S , <YS>,<DTOL>

where

THETAI - rotational angle, in degrees, of the transformation
to be evaluated. (integer)

XS - X-shift of transformation to be evaluated (real)

YS - Y-shift of transformation to be evaluated (real)

DTOL - distance tolerance to be used in computing strength

of matchs for this transformation. (integer)

The command to terminate processing is simply FINISH.
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Appendix E Verification Software

The software to do the verification of lineal features has been

set up as an independent load module. The main program of this system

is the program VERIFI. The software has the ability to verify both

straight and curved lines. For curved lines, the input can either be

presented one point at a time or the information can be stored in a data

file which will be processed by the software.

The program structure is:

VERIF 1

JARRAYV STRA IT t1TI

The verification program, given an inverse transformation,

will check the image for the presence of known map features.
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Routine
Name Arguments Function

VERIFI main program Receives user input which defines the
inverse transformation and the features
to be verified. The user is prompted
for the needed information. (An example
execution is presented below) For each
point on the hypothesized feature, a
profile is created and the gradients
along the profile are checked to see

if the feature truly exists at this
point. Execution can continue for

several edges for the given transformation.

ARRAY (DELTAX,DELTAY, Given the change to be made in the
SYVXLO,SYVYLO) X-direction (DELTAX) and in the Y-

direction (DELTAY), the stage is moved
the desired amount and the coordinates
of the point where the stage is
focused is returned in SYVXLO and
SYVYLO.

STRAIT (AX,AY,BX,BY,NNEIGB, Given the tail (AX,AY), the head
STORAG,N,NLINKS, (BX,BY) and the number of directions to
IFLAG) use (4 or 8), the links of a straight

line between the tail and head are
placed into the array STORAG. If the

number of links (NLINKS) is greater
than the value of N, IFLAG is set to
indicate an error. In this case,

STRAIT is used to create the profiles.

BEST (FX,FY,TX,TY,NNEIGB, Calculates the straightest way to get
LI,L2,NI,N2) from (FX,FY) to (TX,TY) depending on

number of directions available for use
(4 or 8)..

MLTDIR (X,Y,RES,MAG, DIR, See Appendix B for description of
IERR) function.
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The following are examples of 3 executions of the verification

software. Computer prompts are identified by a CP in the left margin and

user responses by a UR in the left margin.

Example 1: Curved line with point information stored in disk file.

UR RUN VERII,6,6
CR POSITION STAGE TO INITIAL POINT (BY HAND) AND INPUT COORDINATES
CR FORMAT IS XPT,YPT (INT/FREE)
UR 10000,5000,
CR GIVE VALUE FOR DTOL (INT/FREE)
UR 100,
CR GIVE GRADIENT THRESHOLD VALUE (INT/FREE)
UR 4,
CR GIVE DEBUG FLAG (VALUE BETW 0 & 4)
UR 3
CR GIVE REVTHE,REVXS,REVYS, IXCENT, IYCENT,MXCENT,MYCENT
UR 342,-2433. ,1701. ,8000,8000,i1000,11000,
CR DTOL,REVTHE,REVXS,REVYX = 100 342 -2433. 1701.
CR IXCENT,IYCENT,MXCENT,MYCENT = 8000 8000 11000 11000
CR GIVE EDGE #
UR 1
CR VERIFYING EDGE # 1
CR IS THIS A STRAIGHT LINE? INPUT 1 FOR YES, 0 FOR NO
UR 0
CR IS INPUT IN A FILE? (I FOR YES, 0 FOR NO)
UR 1
CR GIVE FILE NAME OF INPUT FILE - (3A2)
UR CTDRUO
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When processing of edge is completed and statistics have been

printed, user will again be prompted for edge number. If there are no

more edges to be processed input a -1. User will then be prompted for

another reverse transformation, if none to be given, again input a -1.

Example 2: Curved line with~point information given by user.

First 17 lines are the same as example 1.

CR IS THIS A STRAIGHT LINE? IN2UT 1 for YES, 0 FOR NO
UR 0
CR IS INPUT IN A FILE? (I FOR YES, 0 FOR NO)
UR 0
CR GIVE X,Y AND GRAD ANGLE VALUES (-i,-l,-i, FOR ENDINC)
UR 11032,10046,154,

give one point at a time

CR. GIVE X,Y AND GRAD ANGLE VALUES (-i,-i,-i, FOR ENDING)
UR

Stopping same as in example 1.
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I

Example 3: Straight line with equally spaced sample points.

First 17 lines are the same as example 1.

CR IS THIS A STRAIGHT LINE? INPUT I FOR YES, 0 FOR NO
UR 1
CR GIVE XTAIL,YTAIL (INT/FREE)
UR 4996,7282,
CR GIVE DELTAX,DELTAY,GRAD,ANG AND NUMPTS (REAL,REAL,INT,INT)
UR 55.65,113.32,334,41,

Stopping is accomplished in the same manner as in example 1.
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