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Preface

The work presented in this report was performed by L.N.K. Corporation
scientists George C. Stockman, Barbara A, Lambird, David Lavine, and Laveen
N. Kanal under contract DAAK70-77-C-0110 for the U.S. Army Engineer Topo-
graphic Laboratories, Fort Belvoir, Virginia 22060. Dr. Robert D. Leighty,
Research Institute, USAETL served as contract technical monitor. The authors
are indebted to Dr. Leighty and Mr. George Lukes, Research Institute, USAETL

for helpful interaction and technical reviews during the performance of this

work.




1. Introduction

This report describes research performed by L.N.K Corporation for
USAETL during the approximate period of 1 Sept 1978 through 1 Dec 1980. The
study was directed toward the use of knowledge in automatic image analysis
and toward map-guided image analysis in particular and represents a continua-
tion of studies for Wright Patterson Air Force Base by L.N.K. During the
period of this report L.N.K. converted algorithms to run on a Hewlett-Packard
real-time system at the Research Institute, USAETL, and experimented with these
algorithms on imagery of interest to USAETL. The procedures and results are

discussed in Sections 2 to 6.

1.1 Problems addressed
Past research has indicated that a large amount of prior knowledge
must be brought to bear on the problem of interpreting imagery whether it is
done by man or machine. Image analysis by computer thus leads into studies
of knowledge representation and application, which is currently a very
active field in artificial intelligence (A.I.) The work reported here limits
the form of possible knowledge sources to those which relate to the 2-D or 3-D
spatial geometry of the real world. The resulting knowledge is "iconic" and
can be represented in a fashion similar to the geographic data base (GDB)
that contains encodings of the earth's features addressed by geographic coordinates.
By using iconic knowledge, the image interpretation paradigm
becomes a three step process. First, some primitive features of the

imagery must be recognized without any area-specific knowledge. Typically




these features would be major lineals or boundaries of objects such as
ponds or buildings. Secondly, the imagery 1s aligned or registered with
the GDB by drawing correspondences between the image features
and their iconic analogues in the GDB. The matching is formalized by
derivation of a transformation which maps points (x,y) of the image to
points (u,v) in GDB coordinates. The third and final step in the paradigm
is to analyze the remaining parts of the image which were not successfully
interpreted in steps 1 and 2. This implies a top-down search for image
structures which correspond to features in the GDB.

The paradigm is not the most general. It assumes that a map or
GDB already exists. Also it does not provide for all forms of knowledge --
for instance, that roads tend to intersect or that water runs downhill.
However, there are important problems to study. For step 1 we need to
find feature extraction procedures that are reliable enough to detect
major features in a variety of imagery. For step 2 we need to have a
method of determining a global registration transform using the ambiguous
and errorful information from local feature correspondences. Finally,
for step 3 a method of verifying GDB features in the imagery is required
as well as a method for recording positive change which should be entered
into the GDB. These three problems are addressed in Sections 2,3, and 4

respectively. Section 2 treats primitive extraction. The emphasis is

currently on lineal, point and region features only. A method for automatically

inferring a rotation and translation transforming image to map is given
in Section 3. Classification of registered regions is discussed in Section

4. Verification of lineal GDB features in grey-sbale imagery is introduced

in Section 5.




1.2 L.N.K. related research and software development

More than 2 years of related research by L.N.K. for Wright

Patterson Air Force Base has been reported in Stockman [1979]. The techniques
and software developed in that study were carried forward into the current
research. Thus results reported here represent a second iteration of improve-
ment of techniques and tésting on a wider variety of images. Prior work was
done on digitized images stored on disk files. This report describes image
processing performed using on-line analogue image storage sampled by a 32x32
pixel digital array sensor positioned under program control. The three soft-
ware subsystems implemented at USAETL are the feature detection subsystem dis-
cussed in Section 2, the registration subsystem discussed in Section 3, and
the verification subsystem documented in Section 5. These subsystems are

detailed in the Appendices.

1.3 Sample data sets

The experiments discussed in Sections 2 thru 5 used the images
shown in Figures 1.1 thru 1.3. Tables 1.1 and 1.2 give coordinates
of selected points labeled on the images. This data was chosen because of
rich straight line structure which the existing techniques had been

developed to handle. Terrain with less man-made structure will be

handled later when feature extraction techniques are further developed.




Figure 1.1

Aerial photo over midwestern U.S.
as "4621"

referred to




Table 1.1 Digitization of points on 4621 image using Talos digitizer,
(0.001 inch resolution) and scanning stage (0.0005 inch
resolution)
4

|

IMAGE PT # TALOS STAGE DESCRIPTION 1

X Y X Y ‘ <‘

i

%

1 2498 3641 5000 5000 X (origins) ;

2 4365 2747 8722 6803 T 1

3 5583 219} 11120 8052 X ]

4 3044 4744 3913 7203 T i

5 3342 5357 3314 8405 T 3
6 3611 5908 2814 9511 T
7 1980 6678 - - T
8 3975 5750 3508 9946 T

9 5516 5073 6563 11448 T ]
10 7130 3514 10964 12108 T

k

11 7430 4091 10367 13304 L ;
12 7723 4700 9866 14600 L
13 8642 4258 - - X
14 6952 3223 11209 11461 A
15 6942 3613 10565 12000 L
16 7233 4181 16010 13101 T
17 4861 7575 1710 13600 X
18 5980 7667 - - Y
19 6444 7480 - - T
20 9471 6190 - - T
21 5013 7886 1399 14295 A
22 4480 7729 - - T
23 7346 9632 - - A
24 9282 5763 - - A
25 9700 6104 - - Y
26 5279 7999 1513 14804 A
7 4010 1991 9388 5480 A
28 5480 2552 - - L
29 4808 2527 - - A




Figure 1.2 Aerial photo over Frarco referred to as
"DREUX 13", (See Fipure 1.3 for
stereo mate. )




Figure 1.3 Aerial photo over France referred to as
"DREUX 12" (See Figure 1.2 for
stereo mate).
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Table 1.2 Digitization of points on Dreux image (using Talos digitizer,
0.001 inch resolution.)
IMAGE PT # DREUX 13 DREUX 12 DESCRIPTION
X Y X Y
1 8l41 3564 7004 2264 field corher (origin)
2 7199 3140 6271 1567 Y road intersect
3 7016 2615 6277 1014 Y road intersect
4 6514 3255 5573 1448 T road intersect
5 5954 4274 4723 2247 X intersect, road & RR
6 5858 4654 4504 2563 nose point on road
7 5073 4382 3846 2055 corner of dark field
8 7858 6572 5756 4985 corner of dark field
9 5070 2974 4307 733 corner of dark field
10 7493 2257 6835 823 T road intersect
11 8128 5648 6313 4207 X or T road intersect
12 7160 3723 6041 2103 T road intersect
13 7115 2473 6414 909 Y road intersect
14 7621 2390 6921 982 T road intersect
15 4680 5822 3007 3277 T road intersect
16 4676 9032 1973 6288 X intersect, road & RR
17 3981 7597 1788 4724 T road intersect
18 3719 7055 1726 4125 X road intersect
19 3559 6595 1705 3644 Y road intersect
20 2940 4797 - - Y road intersect
21 2417 3261 - - T road intersect
22 8052 6252 6055 4737 Y road intersect
23 7910 3819 6720 2432 T road intersect
24 8178 5769 6342 4313 on straight of road
25 5551 4671 4226 2475 on straight of road
26 5062 5221 3606 2802 on straight of road
T SN -~ .




1.4 Laboratory configuration, parameters, and definitions

The laboratory environment used for the experiments is described
here and is diagrammed in Figure 1.6. As Figure 1.6 shows, the ROSA system
allows a computer program to directly interact with an image stored on film.
A small window on the film (about 1/8") can be imaged onto a 32 by 32 element
photo diode array which is then sampled and converted to 10-bit digital values
for consumption by the program. The end result is 1024 integer values in a
2-D FORTRAN array. Using executive calls a FORTRAN program can position the
stage to any point in the selected 5 inch x 5 inch area and on a CRT display
the user can view the current window.

Using a mirror as a switch, the laser beam passing through the
film could be sent to an electro-optical subsystem which computes the Fourier
Transform and makes it available to the program. The term "ROSA" originally
meant "Recording Optical Spectrum Analyzer" and is till used although not

descriptive of the current optical/digital sampling system which has evolved.

Table 1.3 contains a summary of the parameters and definitions used
in the image processing environment. Note the difference in resolution of the
different units of hardware. The stage used to move the film is driven in
units of one-half mil. The photo-diodes of the array are, however, on 4 mil
centers. The x-y-digitizer, on the other hand, has a resolution of 1 mil.

Thus there are many scale changes required by a program which measures objects

on the film and relates them to objects digitized by hand from a paper map.




CRT FOR
USER

X-Y
DIGITIZER,

DIGITAL
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Figure 1.6

PRINTER

Diagram of ETL ROSA real time image
sampling system.




Table 1.3

Parameters and definitions for ETL ROSA Lab environment

mil

pixel

array

stagel

window

registration

one thousandth of an inch
a 10-bit integer measuring the intensity transmitted by

a 4 mil x 4 mil square portion of film.

a 32 x 32 2-D array of light sensitive detectors used

to sample film and create a 32 x 32 element 2-D matrix of
pixels for computer processing.

stage element or resolution of stage movement which is

0.5 mil. Each pixel is thus 8 stagels on a side.

that portion of the film that can be sampled at

a given stage pos;tion; representing an area 0.128 x 0.128
inches square or 32 x 32 pixels each 4 mils on a side.
obtaining a transformation T(x,y) = (u,v) which transforms
an image point (x,y) into its corresponding map point (u,v).
In this report T consists of a rotation 6 with 0°<8<360°

and a translation no more than half the image diameter.

e




1.5 Image processing conventions and methodology.

Images placed on the stage were always addressed in stage coordi-
nates with the "center" pixel, x=16 and y=16, denoting the window position.
An outstanding pass point was selected as a logical origin for each pic-
ture and computer processing was always begun with this point in the cen-
ter of the window. The results reported here were often obtained by making
several different runs with possible removal of the image from the stage
in the interim. For the image 4621 the point #1 was chosen as the logical
origin and was assigned coordinates x=5000, y=5000, as shown in Table 1.1.
Clearly, repeatability of the image addressing is dependent on the care
taken to mechanically set up the film and viewing equipment (stage, mount,

mirror, etc) and is probably no better than about 0.01 inch for the variety

of experiments reported.
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2. Feature Detection

Most L.N.K. studies have been concerned with lineal and point
features only; regional analysis is addressed somewhat later in the sec-
tion. By lineal features we mean continuous curves which define the
boundary between regions of tonal contrast. Usually these curves define
a feature of interest to the mapping community such as a stream, road, or
side of a building. Field boundaries_can also yield prominent lineals
in an image and may or may not be of interest in the interpretation of

imagery.

The beginning parts of this section of the report are devoted to
edge detection. Here, the concept of lineal is almost synonomous with the
term "edge" used in the literature. The fine difference is that a true
lineal feature (i.e. a road or river) is 2-D and actually is characterized
by 2 edges, one on each side of the road for instance.

Point features are defined from certain lineal features. For
example, points of intersection or of high curvature can provide unique
features of the image for registration and/or interpretation. Point fea-
tures can also be defined as the centers of small identifiable regions
such as buildings or ponds.

By using only lineals and points a very efficient image abstrac-
tion 1s rendered which can be of immediate use in registering
images or in the partial interpretation of imagery. Some very successful
registration experiments using only edge or point data are reported in
Section 3. The rest of this section treats edge, point, and region extrac~

tion.




2.1 Gradient Operator and Masking

A point can be discovered to be an edge point by testing the
tonal values in halfplanes on either side of the point. Figure 2.1 shows
the 32 directions for edges that were used in the reported research. A
general purpose routine (RPSML) exists which can differentitate either

8, 16 or 32 directions around the circle. Three "masks'" for computing

>

directional gradient values are shown in Figure 2.2. Direction d = 1 is
the vertical direction with higher tones at the right while direction d = 7
is nearly horizontal with higher tones below. Given a pixel (x,y) in the
image, the gradient magnitude in each direction d = 1,2,...,32 can be
computed by adding and subtracting tonal values as indicated by the masks
in Figure 2.2. Division by a normalization factor is performed to take into
consideration the number of pixels used and to make the magnitude geometri-
cally isotropic. The magnitude and direction of the gradient at (x,v) 1is
taken to be the magnitude and direction where a maximum is achievsd. Note
that for d = 17 the mask for d = 1 could be used with reversal of the sign
on the magnitude, so that only 16 masks are actually applied. Only 4
directions are tried at resolution 8. The points selected for the masks
sometimes differ from the ideal due to implementation considerations.

Points of weak gradient magnitude may be detected from a repre-
sentation of the image as shown in Figure 2.3 which shows the results of a
gradient computation on an image of an airplane wing. The arrows indicate
gradient direction and show that the background tones are of higher value
than the tones on the wing itself. The lower edge of the wing has orienta-
tion of about 13 while those on the top edge are roughly 30. Note that the
"USAF" symbols on the wing create much structured gradient activity but that

resolution is not fine enough for recognition.




Figure 2.1

32~directional codes and associated angular heading
in degrees.




d=7
N=43.82§ N=43.826

2.2 Three masks used for computing the gradient at

a point in directions 1,4, and 7. The directional
resolution is one 32nd of the circle; N is the
normalization factor. Edge directions of 1,4,

and 7 are indicated by the arrows.
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Figure 2.3
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Gradient direction of high contrast

points of right airplane wing.




M

Quite often, the presence of one edge will interfere with the detection
of a neighboring edge. This is particularly true if only a limited
fraction of the image points with high gradient magnitudes are selected
to represent the image. In order to search for edges in the neighborhood
of previously detected edges we could suppress the known edge points to
remove the interference with the detection of other edge points. Conversely,
to extend an existing edge segment we could suppress points of incompatible
gradient directions in order to enhance the detection of continuing edge
points.

Point masking can be done when the gradient image is computed by
applying either locational or directional constraints (masks) as shown
in Figure 2.4. A program EDGEY (see Appendix C) uses such masking -
first to extend existing edges by suppression of competing gradient
directions and then to suppress the existing edges in order to detect
intersecting edges. In fact, to detect road intersections, two direc-

tional masks must be set, one for each side of the known road.




a)

b) d

(x:y ~—~

Figure 2.4

(a)

(b)

Point (x,y) where

ax + bly + ¢y < 0
and

a,x + byy + ¢, >0

can be masked off

N\
\\\\\ (BX,BY)

Point (x,y) with gradient

direction d such that

A £
dl_ d ._d2 can be

masked off.

Points near a known edge (AX,AY) - (BX,BY)
can be masked off by their location with
respect to two halfplanes or

points with gradient direction in a
certain range can be masked off.
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Continuous Edge Linking

By examining the neighbors of edge pixels it is sometimes possible
to determine the two pixels which continue the edge in the forward and
backward direction. (Forward edge traversal by definition keeps higher
tonal values toward the right.) Continuation can be determined from the
spatial orientation of the neighbors and the gradient direction of the
neighbors, all relative to that of the original pixel.

When determining which neighbor is the best forward and backward
continuation a variable sized neighborhood is scanned in a spiral pattern
for the first satisfactory neighbor. See Appendix B (/RPSCH/ common) for
definition of the spiral pattern.

Stockman ([1979] contains a detailed discussion of continuous cdge
linking. Figure 2.5 shows best forward and backward linking done for
all pixels shown in Figure 2.3. (Done by program RPSWK.) A second global
process can extract long chains of points which mutually link to each
other and which have above threshold length. Figure 2.6 shows the long
chains derived from the data in Figure 2.5. (Program RPSLK extracts the
chains.)

Chains of 15 or more pixels were extracted from the imagery
sampled in the ETL ROSA 1lab. Often these chains formed a straight
edge which was usually also detected by the Hough detector (Section 2.3).
Since interesting curved edges were not being formed duc to the small 32x32
window size, the results of curve extraction were not used for further
processing. In future experiments the effective window size could be en-

larged and more interesting curved edges should be obtained.

-———
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Figure 2.5 Plot of all forward and backward linking
relationships among high contrast points
of Figure 2.3.
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related points of Figure 2.5.




2.3 Hough detection of straight edge elements

The Hough transform is a popular device for the detection of
linearity in a set of points. The mathematical development and practical
use of the Hough transform is discussed in Duda [1972] and Stockman [1977].
The Hough detector was used heavily to achieve the results reported
here and proved to be very reliable. The strategy used was to set
stringent thresholds so that the false alarm rate would be nearly zero.
In fact, no false alarms havebeen documented although not all of the
thousands of windows processe’ have been studied. There were some
"unwanted" detections on faint image structure such as field mowings and
buildings which were difficult to discern on the CRT.

The windows samrled were 32x32 pixels, of which only the center
24x24 pixels were useable to the resolution 32 gradient operator, so
detection thresholds were set at either 15 or 20 meaning that 15 or 20
pixels had to line up before a detection was signaled. Figure 2.7
documents the detection of a linear edge segment between a road and a
field. Gradient directions 21 to 25 have been masked out so that one
side of the road is nearly suppressed —-— the side barely survives
due to jitter in the gradient directions.ThHe gradient magnitude
histogram is shown which was used to select 38 points to represent the
image window. The 38 points are all visible in the grey shade plot of
the gradient image. The coarse accumulator array is defined for the 32
angular directions and radius values from -12 to +12: thus there are
32 x 25 = 800 accumulators. Each of the selected 38 points can indicate
an incrementing of those few dccumulators defined by an R and 6 compatible

with the gradient direction of the point. The entire set of resulting
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Figure 2.7 Point selection and Hough detection
of straight edge along road.
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accumulators is pictured in Figure 2.8. One side of the road is detected
by peak detection in the accumulators at R = -3 and O = 292°, 0O = 292°
becausce that is the true geometric direction of tonal! increasc across the
edge and R = -3 because the edge 1s actually located 3 unlts in the
direction 292 - 180 from the origin at pixel (16,16). The Hough detection
is focused by contributing the 38 points to a refined accumulator array
with only 5x7 accumulators. In this process the edge location is refined
to R = -3 and O = 292°. The peak response is diminished from 18 to 14
because the width of the edge "template"” is now only 1 instead of 3 pixels. .
The detected edge element is reported to lie between points (1,13) and
(32,28) in the image window and (6773,5897) and (7021,6017) in terms of 1
global stage coordinates.

The focused accumvlator uses 2° angular resolution but this resolu-
tion is not really obtainable with 32x32 windows. The 2° unit was designed
for the predecessor system which used 64x64 windows where lines 2° apart 1
differed by several pixels along their extent. In the research reported
here, Hough detections were made in batch mode by sampling the imagery

with a raster scan of butting windows. (Program EDGEX is detailed in

Appemdix C.)
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2.3.1. Experiments with Primitive Detection of Edge Elements

The Hough detector was applied to over a thousand windows on the images
4621 and DREUX 13 (see Figures 1.1 and 1.2). Straight edge elements detected
from 4621 are plotted in Figure 2.9 (a) while detections from DREUX 13 are
plotted in Figure 2.9 (b). Parameters used for the detectors are given in
Table 2.1. It should be noted that stringent thresholds were applied,
especially on the number of points on a straight line so that few false
alarms, if any, were reported. Only the straight edge elements are plotted;
the curves extracted by the edge linking routine were ignored.

Many detections are evident along the major roads in 4621. The
vertically appearing highway along the right edge of the image is well
covered while the other roads in the image have only spotty coverage.

Missed detections along the roads are attributed to one or more of the
following effects:

(1) unfavorable contrast due to sun angle and shadows,

(2) gradient direction falls in between two of the 32 coarse level

directions used by the Hough detector,
(3) road cuts across a corner of the sampling window and not
enough points exist to trigger detection,

(4) road cuts through center of window and the 5% of the strongest
gradient points are equally distributed on both sides of the
road such that neither edge passes threshold.

(5) in the neighborhood of other edges, such as other roads or

field boundaries, the effect of (4) is compounded further.
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window size
window spacing

# points selected

min gradient threshold

# points on line (coarse)

# points on curve

# points on line (fine) .

Table 2.1 Details of primitive edge extraction experiments
using 4621 and Dreux 13 (Program EDGEX.)

32x32 pixels
250 stagels
5%

8

20

14

15




Several isolated detections that appear to be noise were made on drainage
ditches or mowing lines in fields. 199 detections were made overall;
roughly half by the Hough detector.

While the primitive edges from 4621 produce a poor rendition of
4621 image structure, they nevertheless permit human recognition of
the region portrayed. This is not true of edge elements extracted
from the Dreux image and plotted in Figure 2.9(b). The boundaries between
a few fields are nicely covered but most of the detections are isolated
from others so that the human eye does not see global linearity; for
instance the roads are notapparent due to their change of direction and
spotty coverage. 262 detections were made overall, about half by the
Hough detector and half by the curve linking procedure. However, despite
the lack of structure evident to a human, there was ample structure for
the automatic registration procedure to align the image with a map
of the area. These registration results are presented in Section 3.

Also, the primitive edge elements were used as input by another procedure

which extended the edge segments and searched for intersections along P

them as described later.




2.4 sing ROSA Frequency Domain as Ed; : Detector

An experiment was performed to see if the ROSA frequency domain detector
could find edges as well as the Hough edge detector. The Hough detector had
previously been applied to the image 4621 and the positions of the extracted
edges were recorded. Fifty of these detections were randomly selected for
sampling by the ROSA detector. Thirty control positions, where the Houugh
detector found no edges, were also selected for sampling. The 32 wedge sign-
atures for each sample were examined in order to find a scheme for determin-
ing whether an edge existed in the sample.

The first, and as it turns out, the best classification scheme was to
use the ratio of the maximum wedge value to the minimum wedge value. If this
ratio was less than 2.5, then the sample was said to contain no edges; if the
ratio was greater than 2.5, then the sample was said to contain an edge.

Using the Hough detector as a standard, this technique erroneocusly classified
one non-edge sample as an edge sample. The histogram of the ratios of the
two groups 1is shown in Figure 2.10a).

More elaborate classification techniques were also tried, but none of these
worked as well. For example, Figure 2,10 also shows the histograms of the
ratios of the maximum wedge value divided by the median wedge value, the
upper octile wedge value divided by the median wedge value, and the upper
quartile wedge value divided by the median wedge value. None of these methods
separated the two groups as well as the first method did.

Other ratios such as dividing the upper quartile, upper octile, and the
median by the maximum were tried. In addition, comparing the percentage dif-
ference between these three ratios were also examined. These methods separated
the groups even more poorly.

Since computing the ratio between the maximum and minimum wedge value is

Jorve




very simple, and the position of the maximum wedge determines the orientation

of the edge, it is felt that the ROSA detector could efficiently be used as an

edge detector.
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2.5 Edge extension

Edges sometimes fade away and sometimes continue to meet other
edges. For instance, a road may end in a field but is perhaps more
likely to end by meeting another road. Once a straight edge segment is
detected, it is therefore wise to attempt to track its full extension.
A program was written to attempt to iteratively extend a detected

straight edge in both directions. (The program is EDGEY and is detailed
in Appendix C.) In attempting the extension, all competing gradient

directions are masked off so that the edge is not lost in a background
of competing edges. The image window is positioned so that the
predicted extension segment would pass through its center: thus any
detection should have R = 0.

Primitive detections in the 32x32 window represent only 1/8

’
’

inch on the actual film. In some cases documentéd in section 2.7 extensions
of up to an inch or more were made. 1Tt is possible to extend this technique
so that it could be applied to curved edges. While straight edges are
extended or are found to terminate, it is appropriate to check for inter-

secting edges as described in the next section.
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2.0 Intersection detection

Edge intersection points are highly desirable as photo pass points

and are thus a target for automatic recognition effort. Moreover, we
would like to describe the intersection as much as possible so that it
can be differentiated from other intersections. Figure 2.11 shows
a catalog of possible intersection types which we might like to recognize
automatically. It was decided that first an algorithm should be
developed to detect arbitrary intersections, then further testing could
be used to classify the detected intersection. Toward this end a
simple routine was implemented to test for edge activity nearly per-
pendicular to an existing edge. In fact, intersections would be checked
! for while extending existing edges. (Program ~EDGEY again). Each
existing edge element is placed into one of 4 classes as shown in
Figure 2.12. Then the window can be positioned once on  each side
of the edge so that the Hough detector can detect intersecting edges. .
Of course the current edge direction as well as its 180° supplement | '
are masked off during detection. The two window placements are made
every 100 or so stagels along the existing edge so that no neighboring

[y

region is ignored.
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Figure 2.11 Catalogue of possible local elementary
features for recognition & registration.
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Figure 2.12 Window positions used to search for intersecting
edges. Existing edge elements are placed
in one of 4 classes and the search window

positioned accordingly.
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2.6.1 Experiments with edge extension and intersection detection,
In the first experiment with intersection detection, the
gradient masking technique was tested to see if masking of a major
edge would allow detection of weaker intersecting edges. Certain lineal
features oY 4621 are shown in Figure 2.13. Several search tracks along
certain of these lineals were selected for intersection detectionms.
Searches were conducted between the following pairs of points:
-- point 1 to point 6, point 6 to point 11, point 8 to point 2],
point 1 to point 29, point 3 to point 14, and point 15 to point 16.
Windows were sampled at intervals of 150 stagels along each lineal
segment and on both sides of the lineal as shown in Figure 2.12,
For all windows the two gradient directions normal to the track were
masked off to remove contention from the major edge points. If a
detection was made on one side only, then a "1" intersection was reported.
If a detection was made on both sides, an "X" intersection was reported.
Results of intersection detection are given in Table 2.2
Some of the desired connecting roads and driveways were detected
(i.e. at points 1,3,4,5,6,8,11 and 17) and some were missed (i.e. at
points 2 and 9). Many field boundaries were picked up as well as some
driveways not numbered in Figure 2.13.
The pregram was modified to extend edges and was run on the
DREUX 13 data. The results are plotted in Figure 2.14. Detected
intersections are indicated by the small circles. Extended edges are
also evident in the plot. Some edge elements were lengthened from 1/8

inch to an inch or so. !
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Table 2.2

Results of Connecting Edge Experiment on lmage 462)

Type of
Intersect.

Intersection Description

in Stage Coord.

tracking from point #1 to point # 6 steps of 150 stagels

(4999,5011)
(4937,5137)
(4850,5317)
(4828,5362)
(4691,5642)
(4499,6032)
(3997,7060)
(3913,7242)
(8762,9010)
(3612,7849)
(3325,8436)
(3029,9041)
(2893,9320)
(2788,9533)

tracking from point # 6

(3100,9654)

(2888,9548)

(3569,9888)

(4046,10127)
(4698,10453)
(6020,11113)
(6942,11575)
(7063,11635)
(6986,11596)
(8276,12241)
(8705,12456)

(10480,13344)
tracking from point # 8

(3526,9900)

(3240,10502)
(3103,10786)
(1756,13584)
(1557,13997)

track from point # 1 to

(5008,5003)
(6765,5849)
(6706,5821)
(9100,6980)

e B B N W I B

o point

o point

e B B B e B I B B B B B B I B B B B B B

Lc B N B o

point #1 (really an X)
road/field

road/field

road/field

road/field
road/drainage
road/field

point # 4 road/driveway
field boundary/road
field/road

point # 5

road/field

? investigate

point # 6

# 11

road/field

point # 6

point # 8

woods?

road/field
road/driveway
driveway to buildings
buildings

buildings
road/driveway (unnumbered point)
road/driveway (unnumbered point)
point # 11

# 21

point # 8 again
road/field

road/field

point # 17

road/field

oint # 29

point # 1
noise, threshold set too low
noise, threshold set too low
road/field




Table 2.2 (continued)

Intersection Type of Description
in Stage Coord. [ntersect.

track from point # 3 to point # 14

(11120,8072) T point # 3 (really an X)
(11147,9416( T road/treeline
(11153,9716) T road/treelihe
(11158,9975) T road/field
(11170,10546) T road/treeline
(11179,10989’ T road/field
(11190,11531) T ?

(11191,11589) T actually same road bending
track from point # 15 to point # 16

(10454,12220) T small driveway
(10415,12296) T road/trees
(10112,12892) T . road/trees
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Figure 2.14 Plot of results of edge extension and
intersection detection on Dreux 13, Circles
indicate automatically detected intersections.




2.7 Intersection Classification

Apart from the work described in Section 2.6, an intensive investiga-
tion into the detection and classification of intersections given an initial
set of detected line segments was conducted. This work is easily integrated
into the feature detectors EDGEX and EDGEY.

The detection and classification of intersections given a set of detected
line segments was divided into three steps. The first step was to merge liu.
segments with approximately the same orientation and position. The second

step was to pair line segments which were 180° off in orientation, but very

close to each other. This step would associate the two sides of a road as
a single entity. The last step was to take the resulting paired line seg-
ments and leftover unpaired line segments and determine whether any of them
intersected and classify the intersections as shown in Figure 2.11. The

software for the classification is presented in Appendix F.

2.7.1 Merging Line Segments

The goal of the first step is take a set of detected line segments and

to merge line segments which have the same approximate position and orienta-

tion. The three possible types of situations where merging should be done
are shown in Figure 2.15. The first case is called linking, i.e. one line

segment can be extended and merged with the second. The second and third

cases are called domination, i.e. where one image edge was detected twice in l
slightly different locations. This can happen when overlapping edge detec-
tion windows are used.

The merging algorithm steps are:

(1) for each line segment v, compare with each of the other line seg-




(a)

Figure 2.15.

(a) Linking

Figure 2.16.

(b) (c)

The three cases where merging of line segments should
be done.

51
(b) Dominance

In order for merging to occur, the indicated distances
must be less than a supplied tolerance.

45




ment v, in order of increasing distance between vy and Vy- This

]
ordering 13 determined by calculating the (R,0) form of the line
segment [see Duda and Hart, (1972) Hough edge detector] and com-
puting the differences between the polar radii, R, of each pair.
The comparison is done with closest line segments first, since
the result of combining three or more edge segments was dependent
upon the order of combination.

(2) For each pair (Vi,vj), it was determined if linking or domination
would be needed. For linking to be indicated (a) the angle
between v; and Vj had to be less than AO tolerance, (b) the
distance between the endpoints and the other line had to be less
than Asl, and (¢) the linking separation had to be less than \32,
as shown in Figure 2.16 (a). If domination was indicated, then,
in order for the pair to be merged, the distance between the end-
points and the other line had to be less than Asl, as shown in
Figure 2.16 (b).

(3) Finally if the line segment pair satisfied the merging test, they
were merged and replaced with the new merged line segment.

Several methods of determining the endpoints of the new merged line seg-
ment, for the cases shown in Figure 2.15 (a) and (b), were tried. The final
method found the slope of the new line by averaging the slope of the two old
segments. A point on the new line was found by averaging the endpoints of the
two old line segments. The endpoints of the new line segment were calculated
using the extremes of the old line segments. Note that, in averaging two
almost vertical lines whose slopes are opposite in sign, the average slope

should tend towards infinity instead of zero. This was accomplished bv

averaging the inverse of the slopes and then taking the inverse of the re-
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sult. The extremes used to find the new endpoints were either the extreme
x-coordinate values, if the slope was less than 1.0, or the extreme v-
coordinate values, if the slope was greater than 1.0. This endpoint procedurc
was used because small differences in x-values can lead to large differences
in y-values for nearly vertical lines and similarly for nearly horizontal
lines.

For the case of complete domination, shown in Figure 2.15 (c), the line
segment Vj would be completely discarded in favor of vy That is, the new

line segment would be the old vj.

2.7.2 Pairing Line Segments

The goal of the second step of intersection classification and detec-
tion is to pair all possible line segments. This step would associate the
two sides of a road, for example, as a single entity. Thg pairing was ac-
complished by comparing each pair of line segments (vi,vj) such that (see
Figure 2.17):

(1) The difference between the polar angles of the two line segments

had to be within 180° + AO tolerance,

(2) the distance between the endpoints and the other line had to be

less than As3,

(3) the line segments had to overlap at least by Ao, and

(4) the line segments did not intersect.

After this process, it is possible to have the situation shown in
Figure 2.18, where Vj and vjv were not merged because they were too far apart,
but because of their pairing with Vi they should be merged. This last step

was introduced because the intersection of two roads would be represented by

the intersection of two pairs of line segments - making detection easier.




Figure 2.17.

Figure 2.18.

In order for v; and v; to be paired, the distance
a, b, ¢, and d must be less than the supplied

tolerance Asj.

A situation where v: and v-

the result paired with Vi

48
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v should be merged and




Referring to Figure 2.18, the conditions on merging v1 and Vyr were:
(1) the difference in distances d, and dq had to be within Asl,
(2) the distance d; must be less than 2*max(d2,d3)*As1, and

3) the line segments v, and Vi have to be on the same side of vj.

]
Pairs were typed as dark lines on a light background or light lines on a

dark background.

2.7.3 Detecting and Classifying Intersections

The last step is to detect and classify intersections according to
Figure 2.11. This step is accomplished by treating each pair of line segments
or an unpaired line segement as one unit and compairing all such units.

For each combination of units:

(1) determine if they intersect or would intersect if their lengths
were extended by Asj at each end, and the angle between the inter-
secting units is not within 0° + AO.

(2) if they pass (1), then the intersection is typed as 1,2, or 3
depending on where the intersection occurred. If the inter-
section occurred within As; of the ends of both units, then the type
is 1; if it occurred within Asl of the end of one unit, the the type
is 2; else it is type 3. Types 1, 2, and 3 correspond to L, T,
and X intersections, respectively.

(3) Finally if they satisfied (1) and (2), the intersections are finally
classified as Ll’ L2, etc. depending on how many line segments are
in the units. For example if two pairs are involved in a type

1 intersection then the intersection is classifies as L2.
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2.7.4 Experiments on Detection and Classification of Intersections

The three steps of detecting and classifying intersections were applied
to a series of sets of extracted line segments from images of hinges and
carburetor covers. These images were selected both because the edges were
already available, and they contained many straight edges. The images used
are shown in Figure 2.19. The sets of extracted edges are shown before and
after merging in Figures 2.20-2.24, The lists of paired line segments and
their types, and the detected intersections with their types are also shown.
The detected intersections are circled on the images. The values used for
the tolerances Asl, As,, As3, AB, and Ao were 7 pixels, 7 pixels, 25
pixels, .75 radians, and 50% respectively. Figure 2.25 shows a test data
set demonstrating the capability of the algorithm.

The results shown indicate that intersections can be detected and clas-
sified automatically. This algorithm can easily be combined with EDGEY to
include exploration for missing line segments in the image. Automatic detec-
tion and classification of intersections are important steps in the LNK

registration procedure described in the next section.

50




C e .

(a) (b)

() (d)

Ficure 2,19 Imaves used to test detection and classification
of intersection aleorithm.




Figure 2.19 continued
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« Figure 2.20 (a) Original edge segments extracted from image in
1 Figure 2.19(a). (b) Result of applying merging

algorithm, The detected intersections are circled.
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Figure 2.21 (a) Original edge segments extracted from image in

Figure 2.19(b). (b) Result of applying merging
algorithm. Detected Intersections are circled.
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(a) Original edge segments extracted from image in Figure
2.19(c). (b) Result of applying merging algorithm. De-

tected Intersections are circled
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Figure 2.24 (a) Original edge segments extracted from image in
Figure 2.19(c). (b} Result of applying merging
algorithm. Detected intersections are circled.
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Figure 2.25 Test image showing some of the capabilities of the
algorithm. The original input set is shown in (a).
The result of the merging step is shown in (b).
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31 32 Dark on Light step in shown in (c). Note
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40 43 Light on Dark The pair list and intersec-
45 47 Dark on Light tion list are also shown. The
45 49 Dark on Light intersection list was edited
46 50 Dark on Light to remove duplicate detections.
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2.8 Region Segmentation

A segmentation of an image is a partition of the image into disjoint
subsets whose union is the entire image. For surveys of segmentation see
[Riseman and Arbib 1977, Kanade 1980, Zucker 1976, Pavlidis 1977]. Many
segmentation procedures produce an initial segmentation and then apply an
iterative procedure such as merging or splitting to obtain an improved seg-
mentation. Two basic approaches to finding an initial segmentation are first
locating boundaries or first locating pixels with similar feature values.

Boundary detection generally consists of edge detection followed by
linking of edges into closed boundaries as discussed in Section 2.2. Edge
detection procedures which form closed edges such as the Marr detector [Marr
1979] and relaxation labelling [Zucker 1977] provide a segmentation d.rect-
ly. Edge detection in textured images is a difficult task which depends he-=-
11y on the relative scale of the texture and the regions' sizes.

Construction of regions based on similarity of pixels or pixel neighbor-
hoods requires feature extraction. Features commonly measured include average
gray level in a neighborhood, variance, average edge content per unit area,
average orientation of local edges and average spot size of uniform contiguous
areas. Texture measures, such as co-occurrence matrices and Fourier transform
ring data can be used as feature measures for larger areas. Threshold tech-
niques (Pavlidis 1977, Price 1976] can be used with these features to provide
an initial segmentationm.

Milgram [1978) describes a procedure for region construction using evi-
dence from several sources such as edge information and pixel feature values.
The algorithm selects the contours at different thresholds according to the
support of the edge data along the contours. Zucker [ 1979 ] gives a relaxa-

tion technique for constructing regions from primitive edges. This scheme




allows points to be considered as interior or boundary points of a region.
The relaxation process allows edge segments separating regions to prosper
as region points and edge points reinforce themselves.

Pavlidis describes a general class of split-merge algorithms using the
notion of region adjacency. Given a criterion for deciding if a single region
should be split and a criterion for deciding whether two adjacent regions
should be merged, the procedure 1is as follows:

1) Split each region which should be split according to the splitting
criterion. Continue this until no further regions satisfy the split-
ting criterion.

2) 1If step 3 has not been executed yet then keep going, else if no
merges occurred in the last execution of step 3, then stop.

3) Merge any two adjacent regions which should be merged according to

the merging criterion. Continue this step until no adjacent regions

satisfy the merging criterion.




3.0 Reglistration of imape data to a map.

The concept of registration is crucial to image interpretation.
Very generally it applies to matching images from different sensors,
matching images taken at different times, or matching an image to a map
(GDB). Registration of images to maps is viewed here as an important step
in unlocking rich a priori knowledge stored in the data base for use in
image analysis. To succeed, registration clearly must be achievable with
only a partial primitive image analysis. Once registration is accomplished,
more complete image analysis can be performed under map guidance and hope-
ful}y will be much more reliable and efficient than image analysis without
a priori information.

Reasonable human and automatic registration procedures are based
on "pass points". Pass points are uniquely identifiable points in the
image usually defined by special edge context, i.e. points where rivers or
roads intersect, corners of buildings, mountain peaks, etc. Humans will
uniquely identify pass points because ambiguity can be removed by their
large amount of global knowledge. Automatic procedures, on the other hand,
typically work with far less global knowledge and must be built to tolerate
ambiguities in matching single pass points from the image with those of the
map. The next section gives a brief survey of some registration work which

is used to set the stage for introducing the L.N.K. registration procedure

developed in Section 3.2.




3.1 Survey of previous registration work

Mathematically, we formulate the registration problem as the
problem of determining a transformation Ta that maps a point Pl = (x,y)
in the first image space to "corresponding" point P2 = (u,v) in the

second iwmage space. A definition of "

corresponding" can be subtle.
Points can correspond because of their obvious and unambiguous structure
and/or interpretation, such as the tip of the Washington Monument as
seen in two pictures. Points can also correspond by the relationship
which T, places on them; -- i.e. a point (x,y) on the Mall lawn, in i
image one, corresponds to a point (u,v) in image two because, T, (x,y) =

(u,v). The first type of point will be called a pass point or control g

point. Pass points can be used to construct T, which can then be used

to relate all other points in the image domain regardless of any obvious

structural correspondence b=atween the points. In general, we are less

certain about the correspondence of points on the Mall lawn than we
are about the Monument tips.

A straightforward and common registration technique is to
use human selection of pass points, in the two images, resulting in
a set of corresponding points C = {(Pll,P21), G)IZ’PZZ)’ e,

(Plk’PZk) } . The desired transformation Ta may have from two to six

parameters depending on the particular model of image formation. The best

transformation T, can be defined as that T, , such that

)

e(a) = 0 da, @pp,)

is minimized, where d2 is the distance between the control point P

21




in the second image, and the transform of the correspondir , point P11 from

the first image. Classical least squares procedures can be used

to determine T, [ Van Wie 1977]. To automate the registration procedure
a method of automatic selection of the points in SetC must be devised.

The least squares fit of T& will be sensitive to any errors in this set

of corresponding points.

Horn and Bachman [1977] have a procedure which uses all
points in the image overlap and hence requires no feature selection to
get Set C. However, the computation of e( o) becomes involved and hill-
climbing from an approximate T, must be used. Sometimes such an
approximation 1s available from knowledge of the attitude of the sensing
platform.

Barrow et al [1977] proposed using only salient edge points for
set C and described a computationally fast method of computing e( @)
called "chamfer matching". Their procedure alsoc used hill-climbing
from an approximate o to get a general 6-parameter transformation T .,
valid for even the modeling of oblique imagery.

The heart of the registration problem is the selection of the
set of control points C. In map making this is usually a human operation.
Here we areexploring automatic techniques. If an approximate T, is
available it is possible to search a limited area of an image to find
a point corresponding (in structure) to a point in a map (second image).
Block correlation can be used so long as @3 effectively removes rotation.
Van Wie and Stein [1977] report some success at this for repeat ERTS

coverage. However, even use of gradient images for block correlation was
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not always reliable. Deficiencies in block correlation have also been
pointed out by Crombie [1975]. L.N.K. believes in the following two
principles which have tempered the research work reported below.

(1) Correlation for control point matching should consider higher

level structure in the neighborhood defining the control point. For

instance, edges or lines should be detected and their points of
intersection typed as "T's" or "X's" before correspondences are
attempted.

(2) Correspondences drawn from local matching criteria must be

tempered via feedback from global registration knowledge. For

instance, many crossroads will individually look alike, but a

globally valid registration transformation can pair them unambigu-

ously, using the information contained in the spatial distribution
of the entire set.

L.N.K. has developed a registration procedure which integrates both
local and global matching criteria and has been quite successful in ac-
counting for rotations and translations on vertical photography. The
next section gives the formal development of the procedure and experi-

ments on real data are reported in Section 3.3.
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3.2 L.N.K. Registration Procedure

A technique has been developed by L.N.K. Corporation for auto-
matically registering vertical photography with maps or other vertical
photography. This technique has been successfully demonstrated at L.N.K.
and on the ROSA system at the Research Institute of USAETL. The current
assumptions (limitations) are that the registration transformation be
limited to an arbitrary rotation 6 and a tramnslation (Ax,Ay) which is no
larger than half of the image diameter. Due to relief displacement and
distortion, the derived Ta is only an approximate transformation. How-
ever, T, could be refined as will be shown. In addition, by first deriv-
ing a global approximation it is likely that a more robust and efficient

procedure is obtained. A method of introducing local adjustments to T,

for matching individual features is covered in Section 5.

3.2.1 The General Procedure

Registration is viewed as a three step procedure. Here the ter-
minology pertains to matching image structure to a map or model. However,
in fact, the map or model may be replaced by an image of the same or dif-

ferent type as has been done in several experiments.

(Step Gl: feature extraction and local matching)

Obtain corresponding structures in the image and map. Struc-
tures correspond when they have the same shape, size, color, etc.
The correspondences are plausible from local evidence but may be
ambiguous or incorrect. In fact, each image structure may be paired
with one, none, or many map structures.

(Step G2: global interpretation via Pa)

Determine transformation parimeters o = (al,a s s e . 4a )
such that T, maps at least some image structures (“i.e. points,
lines, arcs, etc.) onto correspoading map structures.

—rw.




(Step G3: global match evaluation)

Determine the global goodness of match induced by Ta on the :
image structures and map structures. (One way to do this is to
compute the mean squared distances between map structures and
image structures transformed by Ta‘)

<citdrnl

]
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3.2.2

follows.

(s1)

4 (s2)

(s3)

3.2.3

Specific registration procedure.

The specific L.N.K. registration technique is a hybrid of templa:

matching and structural analysis and combines the advantages of those twc

procedures. The specific interpretation of the general steps above are as

Assume all structures of the same type correspond. For example,
assume each straight line segment in the image can correspond
to each straight line segment of the model, each convex curve
in the image can correspond to each convex curve of the model,

etc. For each pair of structures (si,sm), where s, and sm are

i

structures from the image and map respectively, compute

transformation parameters «a and place a unit of measure
in a- parameter space.

Possible transformations Ta between image and model are
detected as clusters in o- parameter space formed in step

S1 because heavy measure at ao in 0~ space means that

many correspondences are explained by ?a

Evaluation of the match strength of eacho T, from step S2

is obtained by either computing an average distance between all

corresponding structures or by counting the number of image

structures explained by the model structures under T, .

A Simple Example

A simple example of this process is 1llustrated in Figure

3.1. Assume that the image can be represented by the 4 directed edge

elements shown in (a) while the map contains the edge elements in (b).
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Figure 3.1

Example of global registration via clustering of
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evidence. Image edge elements in (a) need
rotated 45° and then translated (4.5, -2.)
transformed into corresponding map edge ele-
in (b). (c) 16 units of measure are amassed
xs,ys)-space forming a cluster at (6=0.79,

xs=4,5,y8=-2.0),
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A B [of D ] X8 ys
3.0,2.0| 6.0,4.0 1.7,6.4 §2.3,10.0 0.82 1.1 2.
3.0.2.0] 6.0,46.0 5.3,5.0 1.8,5.0 2.55 8.9 5.
3.0,2.0] 6.0,4.0 5.5,9.5 8.0,7.0 4.91 3.0 12.
3.0,2.0| 6.0,4.0 5.1,1.5 5.8,5.0 0.79 4.4 -2.
9.0,7.5{ 9.0,4.0 1.7,6.412.3,10.0 2.98 11.8 12.
9.0,7.5] 9.0,4.0 5.3,5.0 1.8,5.0 4.71 -2.2 14.
9.0,7.5| 9.0,4.0 5.5,9.5 8.0,7.0 0.79 4.4 -2.
9.0,7.5] 9.0,4.0 5.1,1.5 5.8,5.0 2.94 15.4 7.
4.0,8.0{7.0,10.0 1.7,6.4 ] 2.3,10.0 0.82 4.8 -2.
4.0,8.0}7.0,10.0 5.3,5.0 1.8,5.0 2.55 13.1 9.
4.0,8.0(7.0,10.0 5.5,9.5 8.0,7.0 4.91 -3.1 11.
4.0,8.0/7.0,10.0 5.1,1.5 5.8,5.0 0.79 7.9 -7.
5.5,4.5y 3.0,7.0 1.7,6.41 2.3,10.0 5.33 -5.2 8.
5.5,4.5] 3.0,7.0 5.3,5.0 1.8,5.0 0.79 4.6 -2.
5.5,4.5] 3.0,7.0: 5.5,9.5 8.0,7.0 3.14 11.0 14,
5.5,5.5; 3.0,7.0 5.1,1.5 5.8,5.0 5.30 -1.7 3.

Figure 3.1 (continued)




It is assumed that the length of the edge elements is accurately known.
There are 16 possible ways that an edge element from (a) can be paired with
an edge element in (b). Each pairing yields unique transformation para-
meters (0,xs,ys) as shown in (c¢). Four of the 16 possible pairings yield

a consistent interpretation -- rotate by 8 = 0.79 radians and translate

by (4.5, ~2.0). The parameters from the 4 correct pairings form a cluster
in o = (8,xs,ys) - space, while the parameters from incorrect pairings are
sparsely distributed in the space. 1In practical cases there will be many
more than 4 primitive structures and not all pairings will be possible
(i.e. due to size or shape differences) so the presence of a cluster in

the parameter space should be even more obvious.

3.2.4 A More Complex Example

The clustering phenomena observed above should always occur,
as long as the vectors representing the image and model have many correct
matches in common. Imperfect automatic feature detection or imperfect
objects in the image would result in additional points in the cluster
space or fewer points in the cluster space, but the character of the
clusters should remain the same despite a fair amount of variation in
the image features. This has been confirmed in experiments registering
images to maps or other images.

Some features which - * ‘e extracted from images automatical-
ly include straight edge s- . .ats . oraers, points of high curvature,
and regularly shaped spots (i.e. circles or rectangles). Experiments

reported in Section 3.3 show that the probability of detecting




individual features can be as low as 20% and recognition of the whole
can still be achieved using the proposed clustering technique.

Consider the features of terrain observed from a high altitude
above Harrisburg, Pennsylvania (Figure 3.2 ). Five points of high
curvature and six points of intersection of lineal features are identified

in Figure 3.2b. For instance, point I is the junction between

13

Route 15 and the Pennsylvania Turnpike, while point C is a point on

12
Sherman Creek. The 30 vectors shown in Figure 3.2b are formed with a

tip on an intersection point and tail on a point of high curvature.

While the vectors of Figure 3.2b look nothing like the region they
represent, they are very useful for registration. Figure 3.2¢ shows

10 vectors formed by features detected in an image taken from a per-
spective 1450 off of the original perspective in Figure3.2a and

3.2b. The feature points were selected independently by two researchers
with the same instructions. There are 10x30 = 300 possible matches of
vectors from 3.2b with vectors from 3.2¢, almost all of which are

ignored because of differences in length. The result of automatic clus-
tering in the transformation parameter space is shown in Figure 3.2d.

The correct transformation parameters ( 6, Ax, Ay) = (1450,38,115)

are obtained first from the strongest cluster and there is little com-—
petition from other clusters. Under the best transformation all 10

image vectors are explained by the set of model vectors. Within the
tolerance allowed, 11 of the 30 model vectors are ''seen in the image".

A root-mean-square match weight of 33.167 can be assigned to the

match based on an average over 30 individual matches.
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Figure32 (a) Features of Harrisburg, Pennsylvania region
which should be easily detectable in aerial imagery.




.

.15

Figure32(b) 5 points of curvature and 6 points of intersection detected
by researcher #1 forming 30 abstract edges representing the scene in (a).




23

Penna. Tornpike

& Rt 15
'Itl
I
L
t:lj
Juniata
L
Susqpehannd
c
28
Figurc32(c) 2 points of curvature and 5 points of intersection detected
10 abstract edges representing the scene in {a)-
hat in (b).

her #2 forming
the perspective is q

uite different from t

by researc
Note that




@a3t reg.req
?add veq.run

INFUT 5,30,10,3,0,0,0,132,1
KNGTOL,STOL,DTOL,NUKLEV,PRT:BUK,SEK,NUN, PUIBTH,LENCHK -

5 30 3 0 0 132 1
fOR IMAGE: LOX,LOY,HIX,HIY,XCENTER,YCENTER: -300 -500 300 200 0 -150
1 SCALET(I) SCALEX(D) SCALEY(])
1 34.000 60.000 70.000
2 7.200 12.000 14.000
3 t.440 2.400 2.800
LOX,LOY,LOTBRD(Y) = -300 -350 0
FOR MAP = LOX,LOY,HIX,HIY,XCENTER,YCENTER: -320 -320 320 320 0 0
CLUSTR
THETA XSHIFT YSHIFT MYCHUY MCHROW/NIMAGE NMCHCL /NMAF
[TQS 1R, 115, 3316 10/ 10 11/ 30 #*“**]
145 43, 123. 14603 9/ 10 10/ 30 ke ek
145 45, 123. 1366 2/ 10 ;7 30 L1 E34
THETA XSHIFT YSHIFT KTCHUT MNCHROU/NIMAGE  NMCHCL /NMAF
154 -38. 104. 310 1/ 10 1/ 30 il s
154 -53. 101, 314 1/ 10 1730 ek
154 -50. 101. 3120 17 10 1/ 30 rfar
THETA XSHIFT YSHIFT  MICHUT NCHROW/NIMAGE NMCHCL / NMAF
154 ~44, 98. 3123 1/ 190 1/ 30 LET R 30
154 -43, 95. 323 1/ 10 1/ 30 *rf ek
154-- -41, 95, 326 t/7 10 1/ 30 LES K3
THETA XSHIFT YSHIFT MTCHUT HCHROW/NIMAGE NMCHCL /NKAF
245 é7. -3, 854 3/ 10 3/ 30 124 K24
269 70. -6, 853 3/ 10 37 30 LRE X
269 72. -6, 884 3/ 10 3/ 30 LES B2
THETA XSHIFT YSHIFT HTCHUT MCHROW/NINAGE NMCHCL/NHKAP
27 26, -28. 293 1/ 10 1/ 30 L3 E 3
273 29. -28. 280 1/ 10 1/ 30 LET K24
273 3, -31, 290 1/ 10 1/ 30 s
THETA XSHIFT YSHIFT NTCHUT NCHROW/NIMAGE NMCHCL/NKAF
274 26. -28. 324 i/ 10 1/ 30 228 3 30
274 29. -28. 323 1/ 10 1/ 30 stfiee
27 3. -3, 323 17 10 17 30 rEfre
- LSHIFT YSHIFT KTCHUT MCHROM/NIMAGE NMCHCL/NKAF
s 3. 856 3/ 10 3/ 30 sk
.. 853 3/ 190 3r 30 rrf s
) 3/ 0 3/ 30 RES | 2
- - “ MRIU. NIMAGE NMCHCL /NMAP
' 1e 1/ 30 L2 R34
‘ 1/ 10 trhe
s 1) 211X

[ Coroatation

.
K

'
i

Ae




3.2.5 Details of the L.N.K. registration procedure

Recall that the L.N.K. registration procedure consists of
3 conceptual steps. First, image structures and map structures must
be paired so that for each possible corresponding pair, transformation
parameters a (or a set of several transformation parameters) can be
computed which transform the image structure onto the map structure.
Handling all such pairs populates the a-space as discussed below.
Second , clusters in o-space must be detected so that those
which cause a large amount of image/map overlay are discovered,
Third, a quantitative measure of the amount of overlay is computed
so that a transformation Ta can be evaluated for acceptance, relative to
some threshold criteria or relative to another possible T, .

Before proceeding it is essential to emphasize that the
registration procedure is edge-based and can operate on either real or
abstract edges. Real edges correspond to the location of real contrast
changes as indicated in the gradient image. The direction of the edge
indicates in which direction tonal increases occur. The length of a real
edge in a map may be precise but it certainly is not precise in an edge
element automatically extracted from imagery. Usually image edge elements
represent some small segment of the map edge and in the experiments
reported here are usually only 1/8 inch long. Abstract edges are formed
by joining two arbitrary point features. The direction is arbitrary but
fixed and length is fairly precise because the endpoints are drtectable

pass points. As shown in the experiments, although both kinds of edges

ol gt A +5. s *




can be used, the abstract edges produce cleaner clustering and more precise

transfcemations. The major reason is that pairs of corresponding abstract
structures can be restricted to only those that agree very closely in length

and exactly in end point type.

3.2.5.1 Pairing edge elements and populating a-space

We assume that o specifies a rotation and tramslation: a =
(0,4x,4y). 1If the orientation of the image edge element (EE) is ei and
the orientation of the map EE is 0, then it is easy to compute the rota-
tional part of that a that will overlay the two: o =6n - Bi. Referring

to Figure 3.3 it is easily seen that Ax and Ay are then linearly

constrained by the following equation.
Ax cosby + Ay sinB + (ri - Em) =0

Actually the rotated EE A'B' is not free to lie anywhere alorg
the line determined by points C and D but must lie along the segment (C'D’.
Thus the linear equation above can be replaced by two points between
which (Ax,Ay) must lie. The first point is easily determined by that
(Axl,Ayl) necessary to translate point A' onto point C. Similarly the
other extreme is determined by that (sz,AyZ) necessary to translate
point B' onto point D. In practice, we allow for some overshoot ( dtol )
of points C and D because the Hough detector may in fact overshoot the
real edge somewhat when EE AB is detected and because of error in 61.
Errors of 2° in 81 are quite common for the 32x32 window used.

Thus for each pair of corresponding EE's the potential regis-

tration transformations are triples a=(8,Ax,Ay) such that 6 = ed'eito

error
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Image edge AB or (Gi,ri) is rotated em - 81 into A'B' or

(Bm,ri) to be parallel to map edge CD or (Bm,rm). Unit vector from A'
to R is (-cosem,—sinbm). Projection of A'C onto A'R has constant length
for all C on line yielding following relation between Ax and Ay.

A'C - (—cosem,-sinem) =r

i-rm

(4x,Ay) (—cosem,-sinem) =r, -r

Ox cosfp + Ay sinem + (ri - rm) =0
More s3imply, (Ax,Ay) lies on a line segment between the two points (Axl,Ayl)=
(cx',Cy') - (Ax',Ay') and (sz,AyZ) = (Dx',Dy') - (Bx',By') assuming that
map edge CD is at least as long as image edge AB.

Figure 3.3 Derivation of constraints on a = (8,Ax,Ay)

for match of image edge element (6_,r,) and
i1
map edge element (em,rm).
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and (Ax,Ay) lies between (Axl,Ayl)(sz,Ayz). The error in Ax,Ay induced by

eerror is of the order rf By centering the origin for rotation in

error’

the window, the effect of this error is minimized. Assuming that r=2000

stagels and that ee r§2 degrees, the error induced in (Ax,Ay) by ©

rro errol

is at most 2000 stagels x 2 degrees/360 degrees x 2m = 60 stagels. Due to
the threshold used for straight line detection, the Hough detector could
overshoot the end of an edge by half of the window size or 128 stagels.
By allowing another 60 stagels for error we get an approximation of 188
stagels for DTOL. Thus by theoretical considerations alone, we arrive at
clustering parameters ANGTOL=5 degrees, STOL=50 stagels, and DTOL=188
stagels. Most of the experiments reported below were performed, before
this theoretical analysis, with ANGTOL=5 degrees, STOL=50 stagels and
DTOL=200 stagels yielding good results.

With o so constrained there may be theoretically an infinite
number of points to contribute to a-space. However, the inherent error
on 8, Ax, and Ay allows a discretization on a-space which makes cluster-
ing by binning a good technique. For each pair of corresponding structures
we place the 5-tuple (G,Axl,Ayl,sz,Ayz) in our cluster space. We succes-
sively zoom in on clusters by redefining a grid of bins and for each level
of clustering the set of 5-tuples is examined for incrementing the bins.
Whenever points (Axl,Ayl) and (sz,Ayz) are in separate bins, more than

one bin count is incremented.

s
Camreay




3.2.5.2 Clustering in o-space

In clustering by binning we work with a fixed number of bins. If
1 the 6,Ax, and Ay dimensions are quantized into 10 units then there must

| be 10x10x10 bins. (Actually there will be more as explained later.)

The "size" of each bin is determined by the range of the variable divided
by 10. The range of the variable depends on the level of clustering.

For instance, at the first level the range af ¢ is 360o so each bin
represents36° along the 6 dimension. We always assume that Ax and Ay

can vary no more than half of the diameter of the image so for a 8000 x
8000 stagel image the range of Ax and Ay is 4000 and the size of each |
bin is then 36° x 400 stagels % 400 stagels at level one. When a

! level one bin is found to be "heavy" we can zoom in by resetting the

full ranges of 9, Ax, and 4y to be those taken on for the heavy bin.

Thus at level two the size of a bin is 3.6° x 40 stagels x 40 stagles
and by level three it is 0.36° x 4 stagels x 4 stagels., Clearly three
levels of clustering will be too much for typical problems. Clusteriny
should proceed only until the bin size is comparable to the error
inherent in determining 8 ,Ax and Ay. At any level, a detection is only
made when an acceptable number of points lie in the bin. The acceptance
thregnhold will be dependent upon the reliability of the edge or pass point

detectors. If we demand that half of the detected edge elements should

S

fall on edges existing in the map then our cluster detection threshold

should be O.SNe where Ne is the number of detected edge elements. 1In

l the experiments documented in Section 3.3 no absolute cluster threshold

was applied. Instead, up to 3 of the best clusters at up to 3 levels




were pursued and the corresponding transformations Tu were evaluated

by a technique described in Section 3.2.5.3.

Clustering by binning can suffer severely from boundary
effects as 1illustrated in Figure 3.4. A cluster actually present
can be missed due to the quantization.of the a-space. To avoid the
distribution of points from a cluster to several neighboring bins, 3
other overlapping or offset setsof bins can be used. The bins of
the other grids are displaced by 1/2 of the bin size relative to the

first grid of bins (See Figure 3.4). Suppose that a cluster of N

points exists in o-space and has diameter d. With the above technique

there is guaranteed detection at threshold N so long as the bin size is

at least 2d4. If bin size below2d is used, the cluster will be broken

up and detection of Ta will be jeopardized. d is determined from the
error inherent in the parameters of the space. As previously stated, the

error is not only due to measurement error but also contains approximation

error since we are using only a rotation and translation whereas the
true Ta may have nonlinear effects. In the case of registration of
stereo images differential displacements will occur which will be a
function of elevation off some base level. The component of error

due to elevation is bounded by considering the maximum relief to be

observed in the imagery.
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Figure 3.4 Clustering using 4 sets of overlapping bins.
No bin in first grid contains more than 4
points but 15 points enter bin ABCD' in omne
offset grid.
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3.2.5.3 Evaluating the goodness of fit for T,

For matching point patterns the root-mean-square (RMS) distance
between map points and traﬁsformed image points is a good measure of
the match. For abstract edges the RMS technique is also applicable
since two precise points determine each abstract edge. However, for real
edges the point concept 1s not useful since it 1is unlikely that the whole
of the image edge is present. A heuristic RMS distance computation is
described below which was used to evaluate each candidate Ta in the
reported registration experiments.

Given a candidate T, determined by @ = ( 8,8x,0y) we can
heuristically evaluate how good image edge (x1l,yl) - (x2,y2) overlays map
edge (ux,uy) - (vx,vy) under T, . Refer to Figure 3.5. A function is
constructed which measures how well T, aligns the edges in the map
space 1in terms of direction and proximity. Let (TX1,TYl) - (TX2,TY2)
be the image edge transformed under Ty - If this transformed edge
has direction which differs from the map edge (ux,uy) -(vx,vy) by more
than the angle tolerance ANGTOL then the match weight is 0 (EMATCH(T& .
(x1,y1) (x2,y2),(ux,uy) (vx,vy)) = 0). ANGTOL should be set according
to the 6 error in T, « Most of the possible pairings of image and map
edges will have EMATCH of O by failing this test. If the transformed
image edge has direétion compatible with the map edge then the EMATCH
value is computed as the product of a length overlap and a proximity value.
To get the length overlap LMATCH, the transformed edge is projected onto the
map edge and any LEFT or RIGHT overshoots are measured and adversely

affect the LMATCH as shown in Figure 3.5. Note that the LMATCH can




LMATCH = /maov{o, LENGTH—-LEFT-R/GHT}

LENGTH

DMATCH = m‘WX/{O; 7 - D1%+ Dzzj
2 * DToL 2

EMATCH = LMATCH % DMATCH

Figure 3.5 Computation of a match score between a map edge
and an image edge under transformation T;.
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be 1.0 even {f the image edge is much shorter than the map edge. A
proximity value or DMATCH is computed by comparing the average distance
between points on the edges and a distance tolerance DTOL. DTOL should
be set from the error inherent in Ax and Ay.

Edge pairs which have EMATCH = 0 are assumed not to correspond
to the same image structure while those pairs with EMATCH # 0 are assumed
to be corresponding. Theoretically each abstract or real image edge
should correspond with at most one map edge while each real map edge may
correspond to many real edges (short segments of the same edge). The
L.N.K. registration software records all correspondences made by using
the EMATCH function on all possible edge pairs. A "match matrix'" may be
optionally output when Ta is evaluated. Not only does the match matrix
show the goodness of Ta but it also shows where verification must be done

to locate missing image edges or where positive change might have been

detected due to image edges without matches in the map.




3.3 Registration Experiments

This section describes some experiments on registering aerial imagery.
In each case the "true" transformation is provided, for comparison purposes
This transformation was obtained by calculating the transformations that
aligned known corresponding abstract edges. Due to distortions present, such
as those caused by the relief of the terrain, this "true" transformation is
only approximate and ranges on the variability have been estimated and provided.

This fact should be taken into account when evaluating the registration results.

3.3.1 4621 Image

The first set of experiments used the image designated "4621" and shown in
Figure 1.1. In order to determine the “true" transformation, registration was
performed using abstract edges from the image and its map. The abstract edges
were formed by connecting intersection points in the following way:

(1) L-intersection points to Y- or T-intersection points,

(2) L-intersection points to X-intersection points,

(3) Y~ or T-intersection points to X-intersection points.

The intersection points for the image were obtained using an interactive
s - ning program under human guidance. The abstract edges were then con-
structed by hand, and the result is shown in Figure 3.6.

A map of 4621 was created by using a Talos digitizer to extract a set
of pass points. Most of these pass points were intersection points and the
entire set is listed in Table 3.1. A set of abstract edges was constructed
using the same criteria used for the image abstract edges, and the result is
presented in Figure 3-7.

The registration procedure was performed on the two sets of abstract

edges and the result appears in Figure 3.8. 30 of the 43 image abstract edges
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f Table 3-1 Digitization of points on image 4621 using Talos digitizer
(0.001 inch resolution) and scanning stage (0.0005 inch
resolution).

IMAGE PT # TALOS * STAGE * DESCRIPTION **

F (see Fig. 1.1) (photo) (transparency)

X Y X Y
1 2498 3641 5000 5000 X
2 4365 2747 8722 6803 T
3 5583 2191 11120 8052 X
4 3044 4744 3913 7203 T
5 3342 5357 3314 8405 T
6 3611 5708 2814 9511 T
7 1980 6678 - - T
8 3975 5750 3508 9946 T
9 5516 5073 6563 11448 T
3 10 7130 3514 10964 12108 Y
11 7430 4091 10367 13304 L
] 12 7723 4700 9866 14600 L
f 13 8642 4258 - -~ X
14 6952 3223 11209 11461 A
' 15 6942 3613 10565 12000 L
16 7233 4181 10010 13101 T
17 4861 7575 1710 13600 X
18 5980 7667 - - Y
19 6444 7480 - - T
20 9471 6190 - - T
21 5013 7886 1399 14295 A
22 4480 7729 - - T
23 7346 9632 - - A
24 9282 5763 - - A
25 9700 6104 - - Y
26 5279 7999 1513 14804 A
3 27 4010 1991 9388 5480 A
28 5480 2552 - - L
29 4808 2527 - - A

* The photo in Figure 1.1 was rotated roughly 50 degrees clockwise when
mounted on the digitizer. The corresponding transparency was not
rotated when mounted on the stage.

** L,X,T, and Y indicate type of intersection, while A indicates an
arbitrary point on a straight road segment.
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43,4000,3000,14000,16000,

10565 ,12000,3508,9946,
10565,12000,26814,9511,
10565,12000,3314,8405,
10565,12000,3913,7203,
10565,12000,8722,6803,

10565,12000,1710,13600,

10565, 12000,5000,5000,
9866,14600,1710, 13600,
9866,14600,5000,5000,

9866,14600,11120,8052,

10367 ,13304,4710,13400,

10367,13304,5000,5000,

10367,13304,11120,80572,
10040,13404,1740,13600,

160.00

10040,13404,%000,%000,

10040,131041,11120,8052,
10964,172108,1740,13600,

10964,12408,5000,%000,

10964,12108,11120,8052,

6563,11448,1710,13600,
6563,11448,5000,5000,
6563,11448,11120,80%2,
3508,9946,5000,5000,
3508,9946,1 1120 ,8052,
2814,95141,5000,5000,
2814 ,9541,11120,8052,
3314,8405,11120,8057,
3913,7203,1710,13600,
3913 ,720%,11120,8052,
8722 ,6803,1710,13600,

(a)

x10°

80.00

6402,10030,8722,6803,
10565 ,12000,6050,8047
6402,10030,4710,13¢ 50
6402,10030,5600,500"
9866,14600,6050,806t.,
10367 ,13304,6050,8068
$0010,13104,6050,8068,
10964,12108,6050,8068,
3508 ,9946 ,8537,12698
2814,9511,8532,12698,
3314,840%,8532, 12694,
3913,7203,8532,17698,
87722 ,6803,8532,12698,

0.00

0.00

Fiyure 3.6

80.00
184621

x10°

(b)

lListing (a) and plot (b)) of
cdges from 4621

160.00

abore
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30,3000,3000,146000,16000, 14466 ,0262,11166,43088,

138684 ,7226,7950,11500, 14260,7028,9722,15150,
13884 ,7226,7222,11816, 14260,7028,4996,7282,
13884 ,7226,6684,10714, 14260,7028,11166,4388,
136884 ,7226,6088,7488, 11032,10046,9722,15150,
13884,7226,8730,5494, 11032,10046,4996,7282,
13804,7226,9722,15150, 14032,10046,11166,4388,
138684 ,7226,4996,7282, 7950,11500,4996,7282,
15446 ,9400,9722,15150, 7950,11500,11166,4388,
15446 ,9400,4996,7282, 7222,11816,4996,7282,
15446,9400,11166, 4388, 7222,11846,11166,4388,
14860,8182,9722,15150, 6684,40714,11166,4388,
14860,8182,4996,7282, 6088,9488,9722,15150,
14860,81682,11166,4388, 6088,9488,11166, 4398,
14466 ,8262,9722,15150, 8730 ,5494,9722,15150,
14466 ,8262,4996,7282,
(a)
o
o
()
0
. Lo
-
N 2
O
: i
a x* Q
o
= ©
¥
o
o
B D. i) 1
i 0.00 80.00 160 .00 |
‘ i

MB4621 x10°2

(b)

Figure 3.7 Listing (a) and plot (b) of abstract map :
edges from 4621 I
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* INPUT 5,50,200,3,0,0,0,132,1,20,
ANGTOL ,8TOL , DTOL ,NUMLEY, PRT 1 BUK | SBKX , NWM, PWIDTH,LENCHK , THRESH =
s  se 200 3 ¢ o o 132 1 20
GOING TO RDCNTR, IONT,00NT= 1 &
FOR IMAGE: LOX,LOY,HIX,HIY,XCENTER,YCENTER: 1000 30801400016000 7500 9500
—§ T BCALETCI) — SBCALEXCI)—8C

NLETYLLY
1 35.000 1300.008 1300.000
. 2 7.200 268,080 260.000
3 0 0 42-000 -
LOX,LOY,LOTBND(1) = -4500 -6508 [

FOR MAP 1 LOX,LOY,HIX,HIY,XCENTER,YCENTER: 3008 30001600016000 9500 9500

~—crusTR
9 NIMAGE,NWAP= 43 30
OTHETA  XSHIFT  YSHIFT  NTCHWT  MCHROW/NIMAGE  NMCHCL/NWAP
[ 309 SYE. =1376. 6810307 A3 307 30— ¥ReAN—

309 624, -13%2. 8430 30/ A3 30/ 30 bR 2]
309 $72. -13%2. 8633 307 A3 307 30 28022
(eI XNIrY  YSMIrT MY NLMRON7 NIAG NG HCT - T
‘ 78, -1378, B4 07 43 3 Ll
2, 0430 30/ A3 30/ 30 b L2t
T30y S72. ——=1352, 68833 30743 30730 L2242
QTHETA XOMIFT YSHIFT HTCHWT MCHROW/NIMAGE NMCHCL /NNAP
309 s96. -1378. 0010 30/ 43 30/ 30 L i) ¢
309 s72. ~1352. 0633 307 A3 307 30 8028
088 END OF CLUBSTERING FOR THIS DATA SET %
3.8 Results obtained from registration software

when run with set of abstract map edges and
the 100%Z reliable set of abstract image

edges from 4621




were matched correctly with all 30 of the map abstract edges, giving the

"true" transformation (A0=309°+1°,Ax=598+60,Ay=-1378140).

3.3.1.1 Registration using real edges. {

The image edges were found using the lineal feature detection process
discussed in Section 2. A set of 104 real edges were found and are shown in ;
Figure 2.9a. The map edges were constructed by connecting intersection points
listed in Table 3-1 that were actually connected in the image. This set is
presented in Figure 3.9.

The results of registering the real edges appear in Figure 3.10. The
transformation with the highest weight was (307°,539,-1371) which matched 63

of the 104 image edges with 9 of the 18 map edges. The difference in the

transformation parameters from the "true" values would lead to a difference in

position of 77 stagels or .039 inches on the image for a vpoint at (1000,1000).

3.3.1.2 Robustness of Registration Procedure

The experiment described above assumed a 100% reliable feature detector

since the features were chosen under human control. Since the likelihood of !
obtaining this degree of reliability with a completely automatic feature de-
tector is low, experiments were performed on abstract edge sets with varying
degrees of reliability. The detection probabilities used were 80%, 60%, 40%,
and 207%. Thus, feature points were chosen with a probability of 80%, or 60%, !
etc. and abstract edges were formed using the same criteria as before.

The 80%-reliable edge set was created by using a table of random numbers ]

to set up a selection process such that each feature point had an 80% probabi-

lity of detection. The selection process used was to lock at a sequence of




18,3000,3000,16000,46000,

4996,7282,9616,5054,
9616,5054,4996,7282,
4996 ,7282,7222,11816,
7222,11816,4996,7282,
3960,13356,14860,6182,
14860,8182,3960, 13356,
7950,11500,10026,15772,
10026,15772,7950,14500,
9722,15150,11960,15334,

11960,15334,9722,15450,
14860,8182,15446,9400,
15446,9400,14860,8182,
10960,5108,11466,4388,
11166,4388,10960,5108,
10960,5108,9616,5054,
9616,5054,10960,5108,
8428,2330,13904,6446,
13904,6446,8428,2330,

MB4621

Figure 3.9

Listing (a) and plot (b) of real map edges

from 4621
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INPUT 5,50,200,3,0,0,0,132,0,0,
INPUT S5,50,200,3,0,0,0,132,0,0,
ANGTOL ,STOL ,DTOL ,NUMLEV ,PRT : BUK ,SEK ,MWM, PWIDTH,LENCHK ,THRESH =
5 S0 200 3 0 0 0 132 0 0
FOR IMAGE: LOX,LOY,HIX,HIY,XCENTER,YCENTER: 1000 30001400046000 7500 9500

01 SCALET(I) SCALEX(I) SCALEY(I)
| 36.000 1300,000 1300.000
2 3.600 130,000 130.000
3 .360 13.000 13.000
LOX,LOY,LOTBND(1) = -56500 -6500 0
FOR MAP : LOX,LOY,HIX,HIY,XCENTER,YCENTER: 3000 30001600016000 9500 9500
CLUSTR
CLUSTR
0 NIMAGE ,NMAP= 104 18
OTHETA  XSHIFT  YSHIFT  MTCHWT MCHROW/NIMAGE  NMCHCL/NMAP
307 832, -1248. 23172 45/ 104 6/ 18 XK BNk
307 832, -123%, 2405 44/ 104 6/ 18 KK $xK
307 767, -1287. 2966 S0/ 104 8/ 18 KK SKK
: OTHETA  XSHIFT YSHIFT  MTCHWT MCHROW/NIMAGE  NMCHCL/NMAP
- 307 767. -1287. 2966 S0/ 104 8/ 18 KK$RK
- 307 780, -1274, 2738 48/ 104 7/ 48 KK $XK
307 715, ~1248, 3327 52/ 104 9/ 18 KX $KK
‘ OTHETA  XSHIFT  YSHIFT MTCHWT MCHROW/NIMAGE  NMCHCL/NMAP
! 307 858. -1300, 2044 46/ 104 7/ 18 KKK
307 916, -124% ., 1505 41/ 104 4/ 18 KK XK
- 307 929. -1228, 1427 41/ 104 4/ 18 KK $XK
O0THETA  XSHIFT  YSHIFT MTCHWT MCHROW/NIMAGE  NMCHCL/NMAP
& - 4822 b3/ 104 9/ 48 XK BRK
307 - 4827 63/ 104 9/ 18] KK BNk
307 539, -1358, 4 37 10 97 18 XX AK
OTHETA  XSHIFT  YSHIFT  MTCHWT MCHROW/NIMAGE  NMCHCL/NNAP
307 A68, -1326., 4405 63/ 104 9/ 18 KK Sk
307 494, -4343, 4500 63/ 104 9/ 18 KK $KK
307 474, -1349, 4400 63/ 104 9/ 48 KK $KK
0THETA  XSHIFT  YSHIFT  MTCHWT MCHROW/NIMAGE  NMCHCL/NMAP
307 338, -1404, 3505 59/ 104 7/ 48 XX $KK
307 351, -1394, 3555 58/ 104 7/ 18 KKKk
307 377. -1378. 3738 60/ 104 8/ 18 KEEKK
OTHETA  XSHIFY  YSHIFT  MTCHWT MCHROW/NIMAGE  NMCHCL/NMAP
307 650, -1470. 3244 47/ 104 7/ 18 KK XK
307 676, -§157, 3094 47/ 104 7/ 18 KK XK
307 702, -1144, 3027 46/ 104 6/ 18 KKK K
OTHETA  XSHIFT  YSHIFT  MTCHWT MCHROW/NIMAGE  NMCHCL/NMAP
307 585, -1209. 3761 S22/ 104 9/ 48 KKK
307 859, -i222. 3888 85/ 104 9/ 48 XX $A0K
307 572, -1209. 3738 51/ 404 9/ 18 KKPKK
3 OTHETA  XSHIFT  YSHIFT  MTCHWT MCHROW/NIMAGE  NMCHCL/NMAP
E 307 6114, -12614 ., 4314 59/ 104 9/ 18 KK XK
307 585, -1287. 4544 62/ 104 9/ 18 XK KK
307 598, -1274, 4444 61/ 104 9/ 48 KKE XX

0%Xx END OF CLUSTERING FOR THIS DATA SET xx

Figure 3.10 Results obtained from registration software when run

with set of real map edges and real image edges from 462],

EMATCH = MTCHWT / 10000 = .48,




random numbers and eliminate those numbers ending in a "I1" or a "2". The
remaining sequence numbers were then used to select the feature points from
the original set. The 60% and other sets were constructed similarly. Note
that no false point detections were added to any of the sets.

The resulting edge sets are shown in Figure 3-11. Two 40%-reliable sets
were created and three 20%-reliable sets were created. The registration re-
sults are presented in Table 3-2. For each experiment the best 2 transforma-
tions and their weights are reported. The second column shows the number of
points chosen by the random selection process. The last column lists a dif-
ference in position on the image caused by the difference in the transforma-
tion found. Except for the case where no corresponding abstract edges were

present, the transformations obtained were very consistent with the "true"

transformation and were within the estimated tolerances.

3.3.2 Registration of A Stereo Pair

The second set of registration tests used the stereo pair Dreux 12 and
Dreux 13, shown in Figures 1.2 and 1.3. as in the case for the image 4621,
maps of abstract edges of the two images were created using a Talos digitizer.
Registering the known corresponding abstract edges gave the 'true" transforma-

tion (0=19#1°, Ax=-4221+30,Ay=-1519+80).

A set of real edges were created for each image using the Talos digitizer

and these sets were registered using the registration pregram. The edges sets

ik are shown in Figure 3.12 and the results of the registration are shown in

Figure 3.13. The best transformation was (19°,-4207,-1505) which is well with- i
EE l in the variability of the true transformation. For an image point of (1000,
i l 1000) the difference in transformed positinons would be 20 stagels or .010 inches

on the image.
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Figure 3.11.

Plots of abstract image edges
obtained from 4621 under 80%-
20% reliability criteria.
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Table 3.2

Results of Robustness Experiments

Matched | Matched Error in
Number of * Transformation¥**#* Image Map Transformation
Reliability | Points Selected (6, A%, Ay) Weight Edges Edges (inches)*t
80% 27 (309°,572,-1352) . 496 17/23 18/30 0.018
(309°,598,-1378) A TA 17/23 17/30 0.0
60% 19 (309°,598,-1378) .494 16/18 18/30 0.0
(309°,624,-1404) .492 16/18 18/30 0.019%
407 15 (309°,572,-1404) .3183 11/11 11/30 0.019
(309°,598,-1378) .3176 11/11 11/30 0.0
407% 14 (308°,598,-1378) .060 2/4 2/30 0.0
(308°,624,-1352) .059 2/4 2/30 0.019
| 20% 8 (309°,572,-1404) .059 2/4 2/30 0.019
(309°,520,-1352) .057 2/4 2/30 0.041
(309°,598,~1378) .055 2/4 2/30 0.0
3 207 %% 6 (331°,6032,-2392) .033 1/2 1/30 - k%
- (331°,6084,-2340) .033 1/2 1/30 - k%
207 13 (309°,598,-1378) 244 7/10 9/30 0.0
(309°,572,-1404) .237 7/10 9/30 0.019

£

* Total Number of Points was 33.

* For a point at (1000,1000) on the image.
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*** Variability on transformation parameters were estimated as:

** Neither of the image abstract edges corresponded to any of the map abstract edges.

8=+1°, Ax=%60,Ay=%40.
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3.3.3 Conclusions on 2-D Registration

The previous sections presented details on only some of the total number
of experiments performed. Although all of these experiments had the same en-
couraging results, only a limited amount of automatic processing was done
and only a small number of images were used. Despite these limitations, the
demonstrated robustness of the registration procedure leads us to believe
that the automatic feature detection procedures discussed in the later sections
of Section 2 are good enough to supply the primitive features needed.

Specific conclusions from the 2-D registration experiments are as follows.
. Registration of stereo images with limited relief can be achieved quite

effectively using a linear transformation consisting of only rotation

and translation. (Same scale has been assumed.)

. Abstract edges, formed from pairs of accurately determined image points,
provide for a fast and accurate registration procedure.

Y Use of real edges was successful for registration even when the edge
structure barely revealed the image content. However, the registration
procedure was much less efficient and accurate than when abstract edges
were used.

The registration results are sufficiently good so that no modification
appears necessary in the immediate future: effort should be spent on verifica-
tion, region analysis, and feature detection. However, possible improvements
to the registration procedure are as follows.

. The mathematical details relating program tolerances to the amount of
local relief in the imagery and the error inherent in the detectors
should be worked out to the point of specifying operating procedures.
(Tolerances were obtained somewhat arbitrarity in the reported experi-

ments.)

g s 4



Thresholds used in clustering should be computed by a strict a
priori rule and should be stringently applied so that fewer clusters
are examined and less computing done. Similarly, the clustering

bin size should be regulated according to the theory of Section

3.2.2.

Very little has been said about the "match matrix" optionally
available from the registration program. The match matrix is a matrix
whose I,J-th element is the degree of match between image edge element
I and map edge element J (i.e. EMATCH(I,J)). Since the matrix indicates
which edges were in the map but without evidence in the image and vise—~
versa, it is directly useable for change detection and verification.

Verification of features in the map but without edge evidence in the

image 1s reported in Section 5.

j02




3.4 Full RST Transformation

The position and orientation of primitive features such as intersections,

high curvature points, or lines can accurately be determined, but it is diffi-
cult to determine their sizes, such as length. The basic LNK registration
technique uses the position and orientation of the primitive features to find

the rotation and translation necessary to register two images or to register

e e e s ki

an image to a map. {
If the size could be included, then it would be possible to calculate ’

the four parameter transformation of rotation, translation and scaling. This

section presents a method for extending the procedure to account for scaling.

In order to accomplish this, abstract vectors or edges whose size can accurately

be determined are introduced.
To achieve scaling, abstract vectors or edges can be formed by spanning

pairs of point structures. For example, abstract edges can be formed by con-

necting pairs of high curvature points. Abstract vectors could be formed by

using an intersection point as the vector tail and a high curvature point as

the vector head. There are many ways of forming the abstract edges or vectors.

The registration procedure is similar to the basic one. Instead of the

triples (@, Ax, Ay), there are four parameters (0, Ax, Ay, As), where Ag is

the scaling parameter.

The three registration steps are now:

1) Primitive point features (intersections, high curvature points,
etc) are automatically extracted. The abstract vectors are
created by pairing the primitive point features. Not all pos-
sible pairs need be formed as that would result in a great deal
of computation.

2) Assume all features of one type can orrespond to one another,
That is, a vector from an intersection of three lines to an
intersection of four lines in the first image can correspond .
to any 3~-intersection to 4-intersection vector extracted from {




AT

the map (or second image). For each possible correspondence, find
the 4~parameter transformation (A4S, Ax, By, Ls) that maps one vector
to the other. Place a unit of weight in the bin in the four dimen-
sional histogram that represents the (40, 4Ax, Ay, 4s) found.

3) Locate the best cluster in the histogram. The (49, Ax, 4y, As) of
that cluster is the best global transformation as it provided the
largest number of local correspondences.

As an example of this method, suppose an image and map are represented in
terms of vectors vi connecting intersection points. The intersection points are
of four types; 'L', 'T', 'X', or 'Y'. The rules for pairing points to form
vectors may be arbitrary; for example, 'T' points are joined with 'L' points.
The purpose of such rules is to control the combinatorics. In Figure 3.14, five
vectors represent the map and four vectors represent the image.

Given any map vector vy all possible matching image vectors vy are con-
sidered. Each possible pairing (vj,vi) results in an RS&T transformation
mapping image vector vy onto map vector vj. The transformation is specified
by a quad of parameters (AOQ, A x, Ay, As) where AD is the angle of rotation,

As is the scale factor, and Ax and Ay are the x and y translations respectively.
The pair (vj,vi) is discarded without producing a quad if the tips or tails of
the vectors vj and vy disagree in type. In the example of Figure 3.14 there
are 5x4=20 pairs (vj,vi) initially possible and of these ounly 10 agree in type
of tip and tail.

The mathematical development for forming a quad (A%, &x, Ay, 2s) as a
function of vj and v; 1is given in Figure 3.15. Table 3.3 shows computer out-
put for the example shown in Figure 3.14. There are 10 quads produced and a
cluster of size 3 is cvident in the neighborhood of the best registration

transformation (A0=5.10, Ax=~75, Ay=88, 4s=0.5). In real world cases there

would be hundreds of quads overall and a few dozen in a cluster.



Type Code
L 1
T 2
X 3
Y 4
Map Vectors
(L,170,220) - (¥%,100,200)
(T,100,100) - (Vv,40,150)
(L,200,100) - (X,220,170)
(L,260,70) - (X,40,70)

(1,150,125) - (Y,150,50)

Image Vectors
(L,545,400) - (X,200,120)
(T,260,240) - (Y,100,245)
(T,140,380) - (Y, 300,380)

(L,420,370) - (X,360,500)

Figure 3.14, a) Example set of map vectors, and

b) set of vectors representing an image to be registered
to the map by RS&T transformation.




(Bx, By) ! - Y5

o e e - —  ——— =
~

L ()

Assuming that vector v, corresponds to vector Vy transformation
parameters (AG,Ax,Ay,A8) are gotten as

{ A0 =9, -0

k| i

As = length of vj/length of vy

AX = As Ay sind® = As Ay cosA® + Cy

Ay = -4s Ax sind@ - As Ay cosA® + Cy

The resulting registration transformation in homogeneous coordinates
is

As cosA®  As sinA® 0

{u,v,1] = [x,y,1] -As 8inA®@ As cosA® O
Ax Ay 1

where (x,y) is an image point and (u,v) is the corresponding map point.

Figure 3.15. Mathematical derivation of RS&T transformation parameters

from a pair of vectors vy and Vj assumed to be correspond-
ing.
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3.4.1 Example with Scale

The following experiment demonstrates the utility of the proposed technique

for regions where cultural activity creates features such as straight edges ;
or networks of lineals. The results reported are typical of many similar ex-
periments.

Point features were identified by eye on an aerial image from the mid-
western U.S.A. using two different measuring devices and two different orien-
tations. Figure 1.1 shows sample imagery while Table 3.1 contains the coor-
dinates of the selected feature points. Points are labeled according to the
type of road intersection - 'L', 'T', 'X', or 'Y' - which they represent or
are labeled 'A' indicating an arbitrary point on the road.

50 vectors were chosen to model the map of Figure 1.1 while 64 vectors

represented the image. Tables 3.4 and 3.5 show some of the resulting
quads formed by matching vectors from the map with vectors from the

image. Note that stage coordinates have been divided by 10 for format con-
venience. Table 3.4 shows 10 vectors in stage coordinates which have the same
type of tip and tail as the vector (4365,2747) - (2498,3641) in the photo model.
Only the first of these matches is correct and hence only the first quad (5.39,
-1020,4040. 5.01) contributes to the ultimate cluster. Of the 50 x 64 = 3200
pairs (vj,vi) possible only 790 nroduce quads in cluster space after the check
on tip and tail type. Table 3.5 shows that 32 of the 790 quads form a cluster
near the parameter set (AO=5,38, Ax=-1000., Ay=4000., 4s=5.0). Using Table 3.5
the reader can verify that 30 of these 32 quads represent correct vector matches.
For instance, the first quad represents the matching of vectors from point #2

to point #1 in the two different coordinate systems. The asterisks mark the

two incorrect matches which in fact are outliers in the set of 32 quads. A
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Table 3.4.

First 10 quads in set of 790 quads produced by
comparing 50 map vectors with 64 image vectors.
(Stage coordinates of Table 4-4 divided by 10

for format convenience).

MAP VECTOR

TAIL
TYP(X,Y)

3(4345,2747)
3(4365,2747)
3(4345,2747)
3(4365,2747)
3(4365,2747)
3(4365,2747)
3(4345,2747)
304345,2747)
3(4345,2747)
3(43635,2747)

HEAD
TYP(X,Y)

4(2498,3841)
402498,3641)
4(2498,3641)
402498,3641)
4(2498,3641)
402498,3641)
402498,3641)
402499,3641)
4(2498,3641)
4(2498,3641)

VEC
]

S
52
33
34
33
56
&1
62
87
68

IMAGE VECTOR

TAIL
TYP(X,Y)

HEAD
TYP(X,Y)

3( 872, 480) A( 300, $500)
30 391, 720) 4¢ 500, 500)
3¢ 331, 840) 4( 500, 500)
3¢ 281, 951) 4t 500, 500)
3C 350, 994) 4¢ 500, 500)
3 656,1144) 4( 500, 500)
3(1001,1310) 4( 500, 500)
3¢ 872, 480) 4(1112, 805)

TRANSFORMATION

THETA  SCALE  DELX
.339+01
.381+01
«380+01
.381+01
+397401
450401
482401
«221+01

«301401-.102404
+B43+01 ,322404
343401 ,297+04
413401 ,283+04
«401+401 237404
«312401 129404
«217401 130404
2765401 125403

3¢ 872, 480)
3¢ 391, 720)

40 171,13480)
401112, 80%)

+324400 ,212+01
.258+01 .285+01

«307+04
640404

DELY

«404+04
« 936404
747404
634404
847+04
549404
461404
536403
7934037
389404




VEC

(=

W OONNO SN

32 quads contained in the bin 0€{5.0,5.7], Sc[4.8,5.2],

Table 3.5

Ax € [-1100,-900], and Ly € (3000,50001].

MAP VECTOR

TAIL
TYP(X,Y)

3(4365,2747)
3(3044,4744)
3(3342,5357)
3(3611, 5908)
3(3611,5908)
3(3975,5750)
3(3975, 5750)
3(5516,5073)
4(2498,3641)
1(7430,4091)
1(7723,4700)
1(6942,3613)
3(7233,4181)
3(4365,2747)
3(4365,2747)
1(7430,4091)
1(7723,4700)
1(5942,3613)
3(4365,2747)
3(3044,4744)
3(3342,5357)
3(3611,5908)
3(3975,5750)
4(5583,2191)
1(7430,4091)
1(7723,4700)
1(6942,3613)
3(7233,4181)
3(3044,4744)
1(7430,4091)
1(7723,4700)
1(5942,3613)

HEAD
TYP(X,Y)

4(2498,3641)
4(2498,3641)
4(2498,3641)
4(2498, 3641
4(2498,3641)
4(2498,3641)
4(2498,3641)
4(2498,3641)
5(7130,3514)
4(2498,3641)
4(2498,3641)
4(2498,36641)
4(2498,3641)
4(5583,2191)
5(7130,3514)
3(4365,2747)
3(4365,2747)
3(4365,2747)
4(4861,7575)
4(5583,2191)
4(5583,2191)
4(5583,2191)
4(5583,2191)
5(7130,3514)
4(5583,2191)
4(5583,2191)
4(5583,2191)
4(5583,2191)
5(7130,3514)
3(3044, 4744)
3(3044,4744)
3(3044,4744)

VEC

IMAGE VECTOR

TAIL
TYP (X, Y)

3( 872,
3( 391,
3( 331,
3( 281,
3( 350,
3( 281, 951)
3( 350, 994)
3( 656,1144)
4( 500, 500)
1(1036,1330)
1( 986,1460)
1(1056,1200)
3(1001,1310)
3( 872, 680)
3( 872, 680)
1(1036,1330)
1( 986,1460)
1(1056,1200)
3( 872, 680)
3( 391, 720)
3( 331, 840)
3( 281, 951)
3( 350, 994)
4(1112, 805)
1(1026,1330)
1( 986,1460)
1(1056,1200)
3(1001,1310)
3( 391, 720)
1(1036,1330)
1( 986,1460)
1(1056,1200)

680)
720)
840)
951)
994)

HEAD
TYP(X,Y)

4( 500, 500)
4( 500, 500)
4( 500, 500)
4( 500, 500)
4( 500, 500)
4( 500, 500)
4( 500, 500)
4( 500, 500)
5(1096,1210)
4( 500, 500)
4( 500, 500)
4( 500, 500)
4( 500, 500)
4(1112, 805)
5(1096,1210)
3( 872, 680)
3( 872, 630)
3( 872, 680)
4( 171,1360)
4(1112, 805)
4(1112, 805)
4(1112, 805)
4(1112, 805)
5(1096,1210)
4(1112, 805)
4(1112, 805)
4(1112, 805)
4(1112, 805)
5(1096,1210)
3( 391, 720)
3( 391, 720)
3( 391, 720)

THETA

.539+01
.536+01
.5364+01
.5374+01
.553401
.522+01
.538+01
.539+01
.538+01
.538+01
.538+01
.538+01
.538+0L
.537+01
.538+01
.537401
.538+01
.538+01
.538+01
.538+01
.537401
.537+01
.538+01
.538+01
.537+01
.539+01
.538+01
.537+01
.538+01
.538401
.538+01
.538+01

TRANSFORMATION

SCALE

.501+01~.
.501+01~-.
.504401-.

.504+01~.
.489+01-.
.514401-,
.499+01-.
.504+01-~.
.500+01-.
.501+01-.
.495401~.
.497401~.
.500+01-.
.495+01-.
.499+01-~.
.499+01-.
.493+01-.
.493+01-.
.497+01-.
.496+01-~.

.496+01-.

.499+01-,
.986+03

.497+01~
.502+01-.

.500+01-.

.494401-.
.493401-.
.500+01-.
.497+01-.
.499+01-.
.493+01-.
<495+01-.

DELX

102404
101+04
103+04
104+04
959+03
994+03
100+04
105+04
101+04
102+04
982+03
992+03
102+04
941+03
994+03
987403
933403
923403
972403
962403
956+03
992+03

105+04
991+03
959403
927403
101+04
967403
991403
935+03
955403

DELY

.404+04
.412404
.411+04
.408+04
.3524+04
. 464+04
. 406+04
. 401404
. 404404
. 407+04
. 405404
. 406404
.406+04
. 408+04
.405+04
.410+04
.402+04
.406+04
. 406+04
. 407404
.410+04
.410+04
. 406+04
. 407404
4146404
. 400+04
. 404404
. 410404
. 404+04
. 406+04
.406+04
. 408404
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4-D clustering routine would need to be implemented to find the significant

clusters. 1




3.5 Extending LNK Registration to 3 Dimensions

So far the LNK registration procedures have ignored the 3D aspects of
the objects. This section presents a method to extend the 2D registrction
to 3D under certain constraints. The 2D procedure found RS&T transforma-
tions mapping map structure onto image structure. Experiments showed that
the RS&T assumption was feasible in cases where variation in the 3rd dimen-
sion was relatively small. Good approximate RS&T registration transforma-
tions were obtained automatically for photo/map pairs even when there was
some relief in the terrain. There are many cases where RS&T transformations
are inadequate, such as in low altitude aerial imaging and in acquisition cf
solid objects by a robot vision system. In these cases projective transforma-
tions must be used.

In the general case 6 parameters are necessary to specify imaging in a
3D world [Duda and Hart 1973]. In this section, we consider a constrained
imaging system with only 3 free parameters as shown in Figure 3.16. A front
image plane is used with reference system origin (x=0,y=0,z=0) at the image
center. The camera has known focal length f and looks vertically down at a
scene with base distance y, from the image plane. There are only 3 unknown
parameters to discover; the angle 6 at which the object lies on the base
plane and the amount of translation (xo,zo) of the object origin from the
point where the camera axis pierces the plane.

There is some justification for this assumptior in the aerial imaging
case. First, f 1s usually known. Second, it is possible to get a good ap-
proximation for altitude y, and to achieve a nearly vertical camera axis.
These approximations would perhaps be good enough to correctly detect an

approximate 3 parameter view which could be used as an initial approximation
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Figure 3.16.

/7N

Three dimensional object viewed by camera with
known attitude. Knowns are f and Y, and a model
of the object. Unknowns are the object orienta-
tion parameters @, Xy, and Z,.




to a full 6 parameter view.

We therefore proceed as follows. A 3D terrain model is specified in
local coordinates as in Figure 3.17. The model would contain the location
and description of all significant features such as edges, corners, inter-
sections, water bodies, etc.

The acquisition problem is defined as discovering (computing) the orien-
tation parameters (8,x,,z,) from the image structure and the known camera
parameters f and y, . A few definitions are appropriate before proceeding.

camera parameters ~ parameters that fix the 1lmaging system over the

base plane, i.e. f and y,, and define the global
coordinate system.

orientation parameters - parameters that fix the object (or object model)

in the global coordinate system which are 35, xg,
2q.

viewing parameters - the combined camera and orientation parameters f,y,,

6,xo,zo which allow a specific image to be created
(from the terrain model).

Here we assume that we know the attitude of the camera f,y, and the ori-
entation e,xo,z° of the object. We develop computational formulas for image
point (xI,yI,zI) corresponding to point (xm,ym,zm) in the map.

Let (x,y,z) be the global coordinates of point (xm,ym,zm) under map
oriencation (e,xo,zo). Then we have

(1) x =%y cos 8-z sin g+ x,

(3D Map to

(2) y=y_ -y
°c m 30 Clabal)

(3) z = Xy sin 6 + z, cos 9+ 2z,

The global coordinates (x,y,z) then produce image coordinates (xI,yI,zI)




a)
PT  COORDS PT  COORDS
0 (0,0,0) 7 (0,1,2)
1 (3,0,0) 8 (0,1,1)
2 (3,0,2) 9 (1,1,1)
3 (0,0,2) 10 (1,2.1)
4 (1,1,0) 11 (0,2,1)
5 (3,1,0) 12 (0,2,0)
6 (2,1,2) 13 (1,2,0)
b)

4 Figure 3.17. Object model defined by a set of vertices
- and edges.




via the direct perspective transformation.

fx . f(;micos 8 = zp sin 9 + x,)

(&) x; = (3D Global
£E+y f+y0"')'m
to
3) yp=o
2D Image)
6) 2y = fz _  _f(xy sin 6 + 2p cos 6 + zj)
f+y f+y°—ym

Here we assume that a given vector (Axp, Ayn, Azy) - (Bxp, Byg, Bzg) in
the map corresponds to a given vector (Ax', Az') - (Bx', Bz') in the image.
We develop computational formulas for determining map orientation parameters
(3,%x,,y,) from this correspondence.

Rearranging the imaging equations (4 and (6) from above we have the
following.

(7)) %7(f = yq + yg) = Xp cos & -z sin 9 + x4
f
(8) zp(f =y +y,) = xp 8in & + 2y cos B + z,
f

Since (7) must hold for both points A and B, we get two equations from
which x, can be eliminated, leaving only € unknown.

(€)) Agl(f - Ayg + y,) - Bxy(f - Byp + y,) = (Axy - Bxp)cos & + !
f £ {
(Bzp ~ Az_)sin © 1

Equation (9) is of the form
¢c =dcos 6 +e sin 8
where we make the substitutions w = sin 8 and VE:ZI = cos 0.
Thus a standard quadratic equation in w
(10)  (e? + a%)w? - (2cedw + (c? - d%) = 0

is obtained where the coefficients are obtained as follows:
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c = (AJ‘I (f - Aym + yo) - BxI(f - Bytn + YO))/
d = Ax, - Bxy
e = Bzy - Az,

Solving the quadratic yilelds

e

(11) w=ce +d Vez -2 + d2

e2 + d2

R0 Y et -
—— “—— — g On

l (12) 6 = sin~! w.

Knowing 6, (7) and (8) can be used to solve for x_, and Yo using either A or

o
i B point coordinates. For example,
x = AxI(f - Ayp + yo)/f--Axm cos § + Azp sin 9.
Since there is mathematical ambiguity in 6 from (11) two parameter sets
(wl,xOI,y01) and (w2’x02’y02) can result. It is easy to check for correct
i‘ parameters using (4) and (6) and the 2 known pairs of corresponding points
(AI,Am) and (BI’Bm)‘
ko There are two significant cases to note where the computation breaks
' down. First of all, the discriminant of the quadratic can be negative and
hence no 6 can be obtained. This will happen whenever the map edge cannot

possibly be imaged onto the image edge. Few pairings are actually possible

due to the fixed scale imposed by f and Yo+ Secondly, whenever the map edge

s ST

is vertical both d and e above are zero and equations (11) and (12) cannot
produce 8. Physically we can rotate the object in the map freely about that
vertical edge without altering its image and thus we should not expect to get
9 mathematically either.

Figure 3.18 shows a planar section containing the camera axis, the ver-~
[ | tical map vector, and hence the image vector as well. Clearly, free rotation
| ‘ of the object about the axis AB will not change this picture. It is also

clear, however, that locational parameters x and z are completely specified

————
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Figure 3.18. Planar section of imaging environment containing both
the camera axis and a verticle model vector AB.
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by A'B' and AB provided that they correctly match via the viewing transforma-
tion. From the imaging equations (4) and (6) applied to both points A and B
we get

AxI(f+y°) / £ = x = Bx;(f+y) / f or

(23) AxI(f+7°) = BxI(f+7)
and similarly for the z coordinate relatiomns

(24) Az (f+y ) = BzI(f+y).

Conditions (23) and (24) must hold if A'B' is to possibly match with AB.

We are already in trouble here if only real edge segments are available
because (23) and (24) are scaling equations. On the other hand, if abstract
vertical map edges which have accurate tips and tails are being used, 1t would
be easy to consider only nonvertical vectors as before. All that need be done
is to construct nonvertical vectors by mixing the tip and tail points of
several vectors. For this reason, special treatment of vertical vectors can
be ignored (justifiably) in the computer programs.

As an example, suppose the map contained the object shown in Figure 3.17.
Suppose the image was formed by viewing the object with aspect parameters
(f-l,yo-IO) and orientation parameters (@-30°,x°--2,zo-3). The resulting
image is shown in Figure 3.19, along with the coordinates of the points. Let
the object in the map and image be represented by the vectors listed in Table

3.6. Matching the 10x10 pairs of vectors (vi,vj) yields only 12 feasible para-

meter sets, 10 of which form a cluster about the correct parameters a = (G=0.525,

Xo==2,2,%3).
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-0.4 -0.3 -0.2 -0.1

Pt New Coords: (X,Z)

(-.182,
( .054,
(-.037,
( .273,
(-.113,
(-.060,
(-.127,
(-. 300,
(-. 250,
( .163,
10 ( .182,
11 (-.278,
12 (-.222,
13 (-.126,

VoM WNEO

Figure 3.19. Object model defined by
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set of vertices and edges.
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4. Region Identification

The interpretation of images frequently necessitates the extraction
and identification of significant regions. This requires finding the bound-
aries of the regions and assigning labels which identify the regions' con-
tents. The segmentation of images into regions was briefly presented in
Section 2.8. The identification of regions can be thought of as a partitioning
process.

Given a segmentation, the first step of region identification is to find
a set of features that would be used to provide an initial sel of feasible
labels for the regions. This discrimination could be done using statistical
or structural pattern recognition procedures. Since a region could be multi-
Ply classified, the second part of region identification involves disambiguat-
ing the labels using either inter-region relationships and/or structural infor-
mation from a map.

In Section 4.1, we present statistical methods which use the feature
vector to provide an initial set of labels for the regions. Experimental
studies comparing several of the methods are described.

In Section 4.2, we present a brief overview of structural methods for re-
ducing the ambiguity of the region labelling. A graph theoretical method of
region matching between an image and a map is described. The technique uses
network flow analysis to perform the disambiguation. A second method which
uses an interative procedure based on similarity measures between neighboring

regions is sketched.
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4.1 Region Label Weights

This section provides an overview of the problem of assigning a set of
labels and associated likelihoods or weights to these labels given a feature
vector describing the region. The labels will be various classes such as
forest, field, etc. into which the region can be classified. 1Ideally the weights
should be the conditional probability of the region feature vector given each
of the classes. Unfortunately the estimation of these quantities is, in general,
very difficult without a large number of samples. The weights described in this
section can be obtained by using training samples to form a model for each
class and taking as weights some measure of fit of the region feature vector to
the model. The models discussed here fall into two categories. First we
describe models, called single models, which are defined using only training
samples from the class being modelled. Second we describe models, called
multi models, which are extracted from classification procedures using training
samples from two or more classes simultaneously.

A class model defined solely in terms of the samples from that class has
several advantages over a class model based on training samples from several
classes. First, the addition of new classes can be easily accomodated by using
samples from these new classes to form the new models. The models of the
previously existing classes would require no change, thus providing a significant
reduction in computation and data storage requirements over multi models. A
second advantage of single models over multi models is the improved quality of
class fitting. Multi models, since they are based on classification methods,
attempt to use variables which are best suited to class discrimination, and
use the same variables for all classes being modeled. These multi methods may

require the use of variables irrelevant to certain classes thus distorting the




&

estimation of separating surfaces. Single models, on the other hand, develop
class models using only those variables relevant to the description of the
class involved. A third advantage of single models over multi models is
their behavior in the presence of test samples from new classes for which no
training samples are available. 1In single models the sample from the new
class might not fit any model well in which case it could be easily isolated
for further examination. Multi methods use the partition of feature space

given by the classification procedure and some measure of distance of a sam-

ple from each set in the partition. In this case the partition is not adequate

to design separation measures which detect the presence of samples from a new
class since all samples fall within some set of the partition.

Multimethods can be advantageous in situations where variables good for
class separation are present but variables used in the single models contain
little information useful for discrimination. Unfortunately, the characteri-
zation of data for the purpose of determining the relevance of single versus
multi models is not all understood. In Section 4.1.1 to 4.1.5 we examine
specific models illustrating by example certain pitfalls with those methods.
Section 4.1.1 describes the disjoint principal components model which is a
single model. Section 4.1.2 details the pooled covariance discrimination
model which is a multi model. In Sections 4.1.3 thru 4.1.5, experiments

using these models are described.
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4.1.1 Disjoint Principal Components Model

The disjoint principal components model 1is formed by fitting separate
principal components to each class and using the distance from a test sample
to the subspace of feature space given by the principal components models as
the measure of membership in the class. Thus, smaller weights indicate greater
likelihood of class membership. In this section we review the theory of
principal components and describe the disjoint principal components methods
in detail, indicate some of its limitations and provide suggestions for im-
provement of the procedure.

The goal of principal components [Kshirsagar 1972] is to give a simple
model for a continuous multivariate distribution which maximizes the explained
variance of the distribution. This goal has been stated in a very general form
since there are at least eight distinct natural optimization questions whose
solutions are the principal components. Before describing some of these char-
acterizations, we define principal components and give some basic properties.
Let x=(x1...xp) be a sample from a p~dimensional continuous distribution with
mean 0 and covariance matrix E=(Oij) where I is a real positive semidefinite
matrix with eigenvalues §;, . . . , 6p where §;>8,> . . . 36p30. There exists
a pxp orthogonal matrix [ whose columns Yl"“’Yp are the eigenvectors of I such
that IZ=TAT' or I''Il=A and A=diag (61,...,6p), is the matrix with entries
61,...,6p along the main diagonal and zero elsewhere and "'" denotes the trans-
pose of a matrix. For any xeRP, we define the principal components Vl”"’vp
of x to be the components of the vector v=['X. Intuitively we have merely
performed a change of basis to the basis in which the eigenvectors of I are
the new basis vectors given in terms of decreasing eigenvalues. Thus vy cor=

responds to the eigeavalue ¢, vy corresponds to 62, etc. The principal com-

ponents are uncorrelated and their variances are 61,...,6p respectively.




We now describe several optimal properties of principal compoaents.

First, suppose we wish to find q (q<p) linear combinations of xl,...,xp
which account for as much of the variation of xl,...,xp as possible. Thus
we seek a q by p matrix H whose rows hl,...,hp are orthonormal such that the
sum of the variances of hl'x,...,hq'x is maximized. It can be shown that
hi=vi for i=1,...,q. Thus the first q principal components are the linear
combinations of xl,...,xp explaining the maximum amount of the variance of

KyseeesX We give one other optimal property of principal components here.

P
Suppose that instead of attempting to explain as much of the variance of x as
possible we attempt to approximate the covariance matrix I by a matrix B of
the same order p and rank q (<p). We wish to find such a B minimizing
P P 2.1/2
Norm(Z-B) = {,Z; 2.1(0457byy) }
where B=(bij)' To state the optimality principle here, we first recall that

L can be written as

I=34 "+8 ' 8 '
1171 2Y2Y2" + L.+ OpY Y
according to the spectral decomposition theorem. It can be shown that the
optimal matrix B is given by
B = (Sl'Yl‘Yl' + .. .+ 6quYq'.
This matrix has eigenvectors Yis oees Yq and eigenvalues 61, ceey 6q so tle
principal components computed with this approximate matrix are just the first
q principal components computed from I.
Various hypotheses can be tested to determine the number, k-1, of princi-

pal components to select. These tests assume a multivariate normal distribu-

tion for the random vector x. Two hypotheses which can be used are

) i=p—k+161 is zero.
p P
2) I di / I 61 is zero.
1=p-k+1 1

Hypothesis (1) states that the sum of the variances of the last k principal
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components is small while hypothesis (2) states that the ratio of the sum of
the last k variances to the sum of all the variances is zero. Both hypotheses
have intuitive appeal as measures of the insignificance of the last k princi-
pal components. Details of these tests are given in [Kshirsagar 1972].

The principal component approach to distribution representation can be
adapted to the problems of classification and ranking of class labels [Wold
1976 ]. We assume k classes Cl,...,Ck are present. Each class Ci’ i=1l,...,k
is represented by a collection of samples where a sample is a point in R".
First all variables in each class are modified to have zero mean and unit vari-
ance. This is done to eliminate the effect of magnitude difference between
variables due to inappropriate choices of scales for the various variables.

For each class, Ci’ a principal component model is formed using the normalized
variables. The number of principal components may be manually or automatically
selected using any of a range of tests [Kshirsagar 1972]. Having formed these
models a sample can be tested for its fit to each of the models. Let mg and
s1j denote the unnormalized mean and variance of the jth variable of the ith
class., Let x = (xl,...,xn) be a sample to be fitted. Define a class i nor-

malf{zed vector x' = (xl',...,xn') of x by x,' = X1"™ij, Let x'' = (xl",...,

J Sij
x_'') denote the projection of x' on the space spanned by the eigenvectors cor-

n
responding to the selected principal components for this class. Finally we
define the fit of x to class i to be the Euclidean distance between the vec-
tor x and x''. Thus we have a measure of the distance of a sample from each
class. In this model a class is represented by a linear subspace of R". The
advantages attributed to single models in section 4.1 apply to the disjoint
principal components model. The selection of a linear subspace to represent
a class can be lead to problems in classifying a sample if the sample lies

close to a representing subspace but far from the samples used to select this

subspace. Before suggesting a modification of the algorithm to overcome these




difficulties, 1f they arise, we remark that the ranking of classes fcr a sam-
ple is defined by the distance from a class in the obvious way: class C; is

more likely than class C, if the normalized sample is closer to the model for

]
C, than it is to the model for C,.

i 3

A refinement of the principal components models may be obtained by
modification of the notion of the distance from a sample to a class. In the
subspace chosen by the disjoint principal components method to model a class
we may perform a parametric or non-parametric density estimation for the pro-
jections of the samples of the class onto the subspace. If the number of
principal components is small, this estimate may be quite reliable. The amend.?
notion of the distance from a sample to a class should be small if the sample
is near a point in the subspace which has a high probébility according to the
density estimate. If we normalize the distance of a sample to each class by
dividing the ordinary principal components distance to a class by the sum of
the distances to all the classes, and we denote this normalized distance by d,
then we can define the new distance of a class by d+% where p is the estimated
probability of the projection of the sample. If we wish to use inverse dis-
tances, so that smaller values represent better fits, we may use é+p. In the
case of equal prior probabilities for each class and all principal components

being used this is just Bayes rule.
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4.1.2 Pooled Covartance Discrimination

The posterior probabilities of a sample belouping to ecach ot several
classes can be used to rank the likelihoods of membership in ecach of the
classes. If each class is assumed to have a multivariate normal distribu-
tion and all classes have a common covariance matrix, then the estimation of
the posterior probabilities is considerably simplified. Software for the
computation of these probabilities is available in the BMDP package {Dixon
1979]. We now describe the computation of these quantities. For further
details, see [Dixon 1979]. Let p denote the number of variables, ¢ the num-
ber of classes used for design, t the total number of classes and Xijr the
vatue of variable r of sample j of class 1. Furthermore let n be the total
number of samples and let n; be the number of samples in class i. In the
experimental work, each class was equally divided into two classes, one for
designing and one for testing. Thus t=2g. First compute the group means

— nj
Ix
j=1

/n, i=1,...,t

Xir * ijr' Vi

and the pooled within group sums of cross~product deviations

;g x, )( X, ) 1 P
w__= 7 L (x,.._~x, Xi:57%ig r=l,.e,l
IS j-1 j=1 ijr ir ]

A gqxq submatrix, wll, of the matrix, W, whose ijth entry is W is defined
3

by a stepwise procedure. The stepwise inclusion of variables is guided bv
the F approximation to Wilk's ! statistic. Let A=wll-l and let (A)ii=ai..
) . 1

The squarc. Mahalanobis distance of sample j in class i from the mean of

group k is given by

q q - -
(“'t)ril SZl(xijr-xkr)ars(xijs Xy

2 =
D i3k




Finally the posterior probability that sample j from class i comes from

class k is given by

. 2 & 2
Pijk-pkexp(-l/2 Dijk )iilprexp(-l/ZDijr)
i=1,...,t
j=i,...,ni
k=1,...,g

The effectiveness of this approach is dependent on the assumptions of normalitv

and equivalence of the covariance matrices.




4.1.2 Pooled Covariance Discrimination

The posierior probabilities of a sample belonging to each ol several
classes can be used to rank the likelihoods of membership in each of the
classes. [If each class is assumed to have a multivariate normal distribu-
tion and all classes have a common covariance matrix, then the estimation of
the posterior probabilities is considerably simplified. Software for the
computation of these probabilities is available in the BMDP package [Dixon
1979). We now describe the computation of these quantities. For further
details, see [Dixon 1979]. Let p denote the number of variables, g the num-
ber of classes used for design, t the total number of classes and xijr the
value of variable r of sample j of class i. Furthermore let n be the total
number of samples and let n, be the number of samples in class i. In the

experimental work, each class was equally divided into two classes, one for

designing and one for testing. Thus t=2g. First cornute the group means

A qxq submatrix, wll’ of the matrix, W, whose ijth entry is wij is defined

by a stepwise procedure. The stepwise inclusion of variables is guided by

the F approximation to Wilk's ) statistic. Let A=w“_l and let (A)ii=aii.

The squared Mahalanobis distance of sample j in class i from the mean of
group k is given by

2 9 - -x
D ijk=(n—t) ) % (xijr‘xkr)ars(xijs *ks

r=1 s=1
i=l,...,t
j=1, ny
k=1,...,8
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4.1.3 Synthetic Data Experiments

Simulation studies were done to compare the performances of class labelling
using pooled covariance density estimation and disjoint principal components.
The purpose of these studies was to determine which of these algorithms is
more suitable for providing a ranking of class labels. While these experi-
ments shed some light on the characteristics of the methods involved, no
firm guidelines can be given for selecting a method except in extreme cases.

Fifteen simulations were performed. The data set for each simulation
consisted of four classes, of one~hundred 3-dimensional vectors each. The
means of the four classes are (0,0,0), (1,0,0), (0,1,0), and (0,0,1). The
fif-zen simulations can be divided into five groups of three simulations each.
Within each group of three simulations the same group of four covariance
matrices was used for each of the three trials, but different sets of random
vectors were generated from these distributions. None of the covariance
matrices for these fifteen trials is a diagonal matrix.

For each simulation, fifty of the one-hundred samples from each class
were used for designing decision procedures and fifty were used for testing.
For each of the 200 test samples, twelve numbers were calculated. First the
true density function of each class was used to generate the probability of
the sample coming from each class. The probability of each sample belonging
to each of the classes was then estimated using the pooled sample covariance
matrix over all classes. Finally the distances of the same from the princi-

pal component model for each class was generated. The principal component

distances were converted into weights in the following way. Let dl’ d,, d3,
d, be the four distances for a sample. To each dy, i=1,...,4, we correspond
the weight w,= 1/d4 i=1,...,4. Before computing these

Vo1/dyp+ 1/dy+ 1/d 4+ 1/4,,
weights, any d; such that di<'0001 was replaced by .001. Using this nor-

malization procedure, all weights lie between zero and one and larger welghts




correspond to better class fits. For each sample, the three sets of four
numbers were converted to rankings. Thus for each sample and each of the
three methods of assigning weights we define a sequence ajy, a,, aq, ay of ;
four distinct integers chosen from the set {1,2,3,4} as follows. Let Pi»

P2s Pys 2, be the weights or probabilities of the sample belonging to classes

1, 2, 3, 4 respectively. Then aj=j if P; is the ith largest of the numbers

P1> Pys P3s Py For each simulation the confusion matrix for each method

was computed. These matrices are shown in Figure 4.1. The covariance

matrices are given in Figure 4.2. Since the class ordering given by the true

probabilities is, on the average, optimal, this ordering was compared with

the ordering given by the estimated probabilities and disjoint principal

components. In Figure 4.3, the number of times each ¢f these two orderings

agreed with the ordering determined by the true probabilities for the top

choice, the top two choices, and all four choices is given. Finally in Figure

4.4, the number of times these two orderings have the first two classes correct

or reversed is given. The next section discusses the results.



‘ Simulation
—  No _True probability Estimated Probability Principal Components
1 25 12 9 4 19 11 10 10 28 6 9 7
S 44 0 1 3 47 0 o 6 42 0 2
6 0 44 0 6 0 43 1 14 29 6
5 0 10 35 4 1 11 34 7 0 6 37
2 37 6 4 3 33 6 7 4 35 5 8 2
3 4 0 3 6 34 O 5 16 32 0 2
- 2 0 48 0 2 1 47 0 3 0 46 1
f 5 3 5 37 2 3 8 37 4 1 3 32
! 3 28 9 6 7 25 7 9 9 35 7 5 3
4 42 0 4 5 40 O 5 14 32 0 4
0 0 45 5 6 2 38 4 4 2 39 5
| 5 0 2 43 3 0 3 44 5 0 4 41
b 4 33 5 6 6 25 2 11 12 27 2 12 9
2 43 0 5 0 43 0o 7 6 37 0 7
~ 5 0 40 5 3 0 45 2 6 0 43 1 .
; 6 2 2 40 6 1 5 138 10 0 2 38
5 32 6 6 6 28 8 1 13 30 6 4 10
S 40 0 5 2 40 0 8 5 36 0 9
8 0 38 4 8 0 38 4 7 0 40 3
1 5 7 37 1 4 10 35 4 2 7 37
6 28 3 7 12 29 2 8 11 26 5 8 11
3 45 0 2 4 42 0 4 3 42 0 5
5 0 41 4 7 0 42 1 6 2 40 2
7 4 2 37 7 6 7 30 11 1 4 34
7 24 11 9 6 22 7 10 11 9 16 11 14
& 29 9 9 10 25 6 9 9 29 8 4
5 9 36 0 11 5 34 0 3 11 1 5
4 8 5 33 6 9 4 31 3 10 5 32
8 12 15 13 10 15 13 11 11 13 15 14 8
6 36 3 5 7 30 4 9 4 34 2 10
4 8 35 3 7 7 34 2 9 8 27 6
9 5 9 27 8 4 9 29 13 9 5 23
9 14 21 6 9 15 18 6 11 13 22 5 10
6 31 4 9 11 31 0 8 9 27 5 9
5 4 39 2 10 4 34 2 8 5 36 1
7 4 5 34 & 4 5 37 9 7 4 30

Figure 4.1 Confusion Matrices for fifteen simulations using true
probabilities, estimated probability and disjoint principal
components for classification. Rows correspond to true
classes and columns correspond to classification results.
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Figure 4.2 Covariance matrices for classes used in classification
Each set consists of a set of four co-
variance matrices corresponding to four classes.
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Estimated Probabilities Disjoint Principal Obmponents
(# of classes ranked correctly) (# of cases ranked correctly)

Simulation No. 1 2 4 1 2 4

1 172 105 87 155 87 35

2 176 115 84 158 93 24

3 171 109 91 166 101 37

4 173 102 79 163 98 42

5 168 102 95 167 94 53

6 177 110 94 164 97 41

7 167 119 92 142 73 56

8 175 123 81 152 71 41

9 168 120 94 149 93 54

10 174 137 110 168 143 84

11 182 161 130 166 121 73

12 171 128 103 164 124 72

13 163 98 88 157 99 69

14 170 113 87 151 106 82

15 174 121 86 146 88 62

MEAN 172.1 117.5 93.4 157.9 99.2 55

STANDARD DEVIATION 4.6 16.0 12.9 8.4 18.7 18.3
Note: Ay sample with at least the first class correct is counted in

column one. Any sample with at least two classes correct is
counted in column 2.

Figure 4.3 Number of correct rankings (e.g. most likely class is correct, two
most likely classes are correctly predicted by the given method) for
each of the fifteen simulation experiments.
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l Disjoint Principal
Estimated Probabilities Component
Simulation No. (Count) (Count)
1 119 108
2 130 118
3 126 123
4 123 118
3 5 123 112
F 6 127 118
7 143 100
8 142 88
9 143 129
| 10 149 154
p 11 175 136
- 12 146 145
5 13 123 119
= 14 133 136
15 140 124 !
| Mean 136.1 121.9
1 Standard Deviation 14.5 16.9 ¥
X

Figure 4.4 Number of times fiist two classes are correct or reversed for
each of the fifteen simulation experiments.
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4,1.4 Discussion of Reglon Weight Evaluation

The simulation experiments indicated no advantage of disjoint principal
components over density estimation. No theory exists for predicting the
relative performance of these methods. A greater variety of covariance
matrices should be examined to determine conditions under which each method
dominates. Once an adequate supply of examples in which each method dominates
is collected, an attempt should be made to relate properties of the distri-
butions to the success of the various methods. One possible distribution
property is the similarity of the individual class covariance matrices to
the pooled covariances matrix. A crude but simple measure of this distance
may be obtained by viewing an nxn covariance matrix as a point in an. The
similarity measure can be taken to be the sum of the distances from the in-
dividual class covariance matrices to the pooled covariance matrix. A second
measure of covariance matrix similarity may be obtained by comparing the
estimated posterior probability of each sample based on its class covariance
matrix and the estimated probability based on the pooled covariance matrix.
The sums of the differences of these quantities may be used as a measure of
similarity. Neither of the above measures directly takes into account di-
rectional differences in the structure of the distributions. A simple mea-
sure of this might be the expected angle (over all classes) between the first
principal directions for each pair of classes, where by principal direction
we mean the eigenvector corresponding to the first principal component.
Numerous other simple measures could be defined. Correlations between these
measures and the success of one method over another could then serve as guide-

lines in the selection of an appropriate data dependent procedure for real data.
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4.1.5 Discussion of Region Label Rankings

The comparison of methods for ranking region labels is difficult to per-
form on image data since the only standard for evaluation is where the ~true
class is located in the rankings. Definitions of class similarity could be
defined in terms of the confusion matrix of a classification procedure such
as a decision tree. Unfortunately, the evaluation of rankings in terms of
these similarity definitions is muddled by the somewhat arbitrary
choice of a standard for ranking. The disjoint principal components (DPC)
procedure was performed on a test set of one-hundred and twenty samples from
the aerial image, frame 4621, supplied by USAETL. These samples were divided
into two groups, sixty forest samples and sixty field samples. Each sample
consisted of the thirty-two rings representing ROSA spatial frequency data.

In all DPC tests, thirty samples from each class were used for the de-
sign set and thirty samples for the test set., Due to the small number of sam-
ples used, a subset of the thirty-two rings were selected for application of
the DPC procedure. For this subset of selected features, the resulting classifica-
tion are given in Fig. 4.5. Rings 1, 2, 3, 30, 31, 32 were useful as a start-
ing set of features for DPC. In addition, the density estimation procedure
described in Section 4.1.2 was applied to this data. For this work, samples
from each class were divided into two groups of approximately equal size using
a random procedure to places samples in design or test sets. Each sample had
a .5 probability of bzing placed in the design or the test set. The results
of this computation are given in Figure 4.6. The histogram of the first
principal component of the samples, using the pooled covariance matrix, is given
in Figure 4.7. From this Figure we see that these classes separate very well

using the first principal component to represent the data.
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Forest versus Field Discrimination

Confusion Matrix
Density Estimation Using a Pooled Covariance Matrix

Number of Cases Classified Into Percent Correct
Group Field Forest
Field 31 2 93.3
Forest 0 25 100

Figure 4.5 Forest versus Field Discrimination (Density Estimation).

Forest versus Field Discrimination

Confusion Matrix
Disjoint Principal Components (1 component)

Number of Cases Classified Into Percent Correct
Group Field Forest
Field 29 1
Forest 3 27

Figure 4.6 Forest versus Fleld Discrimination (Disjoint Principal Components).
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4.2 Overview of Region Matching

The classification of regions in an image is a difficult task which some-
times requires application of several levels of preprocessing. In this sec-
tion we describe two procedures for taking a tentative set of region labels
and using region features to obtained a less ambiguous labelling. In addi-
tion we describe some experiments indicating a framework for a detailed study

of one of these methods using real image data.




4.2,1 Region Image Matching Using Similarity of Region Features

Region image matching can be done by finding a set of features which de-
scribe the regions and then pairing regions which have the best matching set
of features. It 1is desirable that the decisions take into account the adja-
cency information of the regions, so that adjacent regions in the image match
adjacent regions in the map.

One such method of region matching yields a measure of similarity between
pairs of regions, one from each of the two images to be matched [Price and
Reddy 1979}. This method mékes no assumptions about the relative displace-
ment and orientation of the pictures. The steps of their algorithm are as
follows:

1) Segment the image.

2) To each region i assign a set vil‘ ceny Vin where Vij denotes the
value of the jth feature for region i. These numbers may describe
features such as shape, size, position, spectral values, etc. To
each pair of regions, region i from image 1 and region j from image
2, define the region to region match rating, Rij’ by:

n

Ryy == 2

k=1

ik < Vi l W, S,

where W, 1s a normalization factor for the kth feature and S; is a
measure of importance of the kth feature. Larger values of Rij
indicate good matches.

3) In this step we attempt to improve the accuracy of the rating Rij
by taking into account adjacency information. To each region Ry in
image 1, assign the region Rj in image 2 which maximizes Rij' Let
Ny denote the set of regions in image 1 which are neighbors of region

Ry and have a match in image 2. We say two reglons are neighbors if
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they have a common boundary point. Let Nj denote those regions in

image 2 which match the regions in Ny. Let NI' denote those revions

in Nj which are neighbors of Rj. The neighbor teature value (NFV) of

Ry is defined to be the number of elements in N; and the NFV for Ry
4
is the number of elements in Nj‘. Recompute the Rij's using this

additional feature and assign to each region in image 1 the region

in image 2 which matches it best.

1 This matching algorithm is designed to be invariant under rotation and

translation of the images. By omission of size features, the algorithm can

be made invariant to scale change. Dissimilar image matching and image to map

matching can be handled by this method.

{
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4.2.2 Graph Theoretical Region Matching

This section deals with a method for finding corresponding regions in
an image and a map. The procedure [Pavlidis 1977] described takes two lists
of regions, one from the image and one from the map, together with a set of
possible matches between image and map regions, and computes a region cor-
respondence maximizing the number of regions matched. We now give a precise
formulation of the problem.

Assume the map consists of regions Sl,...,Sm and the image consists of
regions Tl""‘Tn' Assume to each map region S; we assign a set H(Si) of
image regions. Intuitively the image regions in H(Si) have been assigned to
Si because they may match it on the basis of properties such as site, shape,
texture, etc. Our goal is to find a subset ReS and a one-to-one function g:
R+T satisfying the following properties:

1) 1#1:3(31)#3(5_1) for 81» SjeR

2) VsjeR  g(8;)eH(Sy)

3) Given any other pair (R',g') satisfying condition (1) and (2), |R'|<|R],
where | | denotes the number of elements in the set.

The computation of an R and g in the above problem can be solved using a
method from network flow analysis. Before describing the procedure, we dis-
cuss the reasons for studying this method. The labelling of regions, in an
image based on region descriptors such as ring and wedge data together with
structural information, such as the types of regions which can share a common
boundary, can be a very time consuming and error prone task. The complexity
of labelling algorithms depends upon the number of regions to be labelled and
the extent of ambiguity present. The type of region matching presented here
can be viewed as a fast procedure for giving a rough match between image and

map regions. Both individual region descriptions and inter-region relation-




ships can be included in the matching procedure. The matching obtained using

this algorithm can then serve as input to more costly algorithms for matching

additional regions and making corrections on existing matches.

We now describe [Bondy 1976] the matching problem in graph-theoreti:

terms and give a standard method for solving it.

I

Def .

A graph G is a pair (V,E) where V is a finite set {vl,...,vn} and the
vy are called nodes or vertices. E is a set of unordered pairs of
elements and its elements are called edges. If ei=(u,v), u,v € V then
we may say e; joins u and v, and u and v are endpoints of ey, and u and
v are called adjacent vertices.

A subgraph G' of a graph G=(V,E) is a graph (V',E') such that V'cV,
E'¢E,

An edge with distinct ends is called a link.

Two edges are called adjacent if they share a vertex.

Let G=(V,E) be a graph. A subset M of E is called a matching if G if
its elements are links and no two elements are adjacent in G. M is

called a maximum matching if G has no matching M' with |M'|>|M|, where

| , denotes the number of edges.
graph maximal matching
Example 4,1 Maximal matching

A bipartite graph G=(V,E) is a graph with the property that V can be
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partitioned into two sets X and Y such that each edge has one end in

X and one end in Y.

x={1,2,3} y={4,5}
Example 4.2 Bipartite Graph

We now use the above notation to reformulate our region matching prob+
lem. Assume Si’ Ti’ and H are defined as in the beginning of this sectio;.
Define a graph G=(V,E) by V=S U T, E={(Si,Tj)|Tj€H(Si)L G is a bipartite graph
with V partitioned into S and T. The solutions, (R,g), to our original prob-
lem can be put into a one-to-one correspondence with the maximum matchings of
the bipartite graph G. To a solution (R,g) we correspond the edges given by
the graph (in the analysis sense) of g, i.e. (si’Tj) is an edge iff g(Si)=Tj.
Conversely, given a maximum matching M of G, the correspording solution (R,g)
is given by:

gs{(Si,Tj) : (Si,Tj)eM} (viewing the function g as a set of
ordered pairs).
= the domain of g.

We now describe a procedure for finding a maximum matching in a bipartite
graph which will have two additional nodes, ¢ and b, called a source and a
sink respectively, and ,Sl + [TI additional edges. In addition each edge
will have a direction and a number associated with it. The graph G' will have
an edge joining c to each node in S. Each such edge will have weight one and
will be directed away from c. In addition, G' will have an edge from each
node in T to b. Each of these nodes will be directed toward b and will have

A
unit weight. In addition each edge in G' joining a node in S and a node in T
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will be directed from S to T and will have weight 1.

The maximal matching can now be posed as a network flow problem. A
physical analogy is to represent the graph by a set of pipes, one for -4 .
edge, where flow occurs only in the specified direction. The vertices in '
and T represent connections between pipes. Flow can occur between any twc
connected pipes subject to the directionality restriction. The numbers as-
signed to the edges represent the maximum rate of flow through a pipe. Thus,
if a pipe, f, with a flow rate n is connected and flowing into a pipe, g,
with flow rate m, with n>m, and with no other pipes connected at this vertex,
then f cat only support a flow rate of m due to the limit imposed by g. The
source ¢ is assumed capable of providing flow to the network at an arbitrarily
large rate.

It can be shown that the maximal matching of a bipartite graph can be
obtained by finding the flow in G' maximizing the rate of flow into b. This
can be seen intuitively be noting that the restriction to all flow rates being
zero or one in G' allows us to consider a flow of one in an edge joining §
and T as the inclusion of this edge in the maximal matching and a flow rate
of zero as excluding this edge from the matching. Thus two edges from S to
the same node in T would require a flow rate of two to this node, but the flow
rate out of such a node is restricted to be one. Hence this situation cannot
occur and our matching is one to one. To see that the matching is maximal,
note that the flow into b 1s equal tu the sum of the flow rates of the edges
going from S to T, which is in turn equal to the number of edges in the match-

ing. We now give a precise description of the network flow problem.

Def. A directed graph, G, on a set V={vl,...,vn} is a subset, E, of VxV such

that for each (Vi’ vj)eE, vi#vj. We call the elements of V, the vertices

of G and the elements of E the edges of G. We say the (vi,vj)EE is an
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edge from the vertex \ to the vertex vj. Thus a directed graph may
be thought of as an ordinary graph in which each edge is given a
direction.

Def. A network N is a directed graph G with two distinguished, disjoint, non-
empty, subsets X and Y of vertices of G and a non-negative integer valued
function d defined on the edges of G. The vertices of X and Y are called
the sources and sinks of N.

In the notation of our matching problem X={c} and Y={b}, i.e., [X[=[Y[=1.

The set of vertices of G belonging to neither X nor Y are called intermediate

vertices of G, and is denoted by I. The function d is called the capacity

function of N and the value of this capacity function on an edge e is called
the capacity of e. Let V and E denote the vertex and edge sets of G. For

any integer-valued function f on E, and any vel, define f (v)=If(e) where the

sum is taken over all edges in E of the form (vj,v). Similarly we define

f+(v)=2f(e) where the sum is taken over all edges in E of the form (v,v;).

Thus f+(v) represents the flow out of v and f (v) represents the flow into v.

Def. A flow in a network N is an integer-valued function f defined on A such

that
0 < f(e) < c(e) for all eeE

and £ (v) = f+(v) for all vel.

The function f may be thought of as the assignment of a feasible flow
rate through each edge, subject to the restrictions that the flow is limited
by the capacity of an edge and that the flows into and out of an intermediate
vertex must be equal. From this point onward we restrict ourselves to the

case X={c} and Y={b}. We define




The value of a flow, f, on n is l(f)=f+(c).
Def. A flow, f, in N is called a maximum flow if there is no flow g in N su’

that 2(g) > L(f).

Various algorithms [Ford 1962, Nijenhuis 1975] for finding maximum i 1o
in networks have appeared in print. We have used the algorithm given in
[Nijenhuis 1975] for our experimentation. For the flow problem arising in
maximal matching, with n regions, i.e. [SI + |T| = n, and m edges, the com-

/2
m

plexity of the algorithm is 0((n+2)l ).




4.2.2.1 Reglon Matching Experiments

Several region matching experiments were performed to determine the use-
fulness of various features in performing regilon matching between two images
(or an image and a map) using maximal matching in a bipartite graph. These
experiments were performed on synthetic region data. Each artificial image
used consisted of a 20x20 grid subdivided into regions but no other information
such as gray levels were assumed. Three synthetic images A, B, and C shown in
Figure 4.8 were used. Experiments were performed comparing A with B and A with
C.

The first experiment was an attempt to determine the adequacy of crude
region locations information together with reglon structure information for
region matching. The regions were labelled as shown. Each region A; in A
was initially matched with all regions in B which had a boundary point within
a distance of four from at least one boundary point of the region Ai' The list
of tentative matches is given in Table 4.1. For each region in each image, five
region features were computed: area, perimeter, area divided by perimeter,
maximum horizontal width of a region and maximum height of a region. The fea-
tures for the regions in A, B, and C are given in Table 4.2. Not all the fea-~
tures had to be used. If a feature was to be used, the user specified a toler-
ance a. If fl is the value of a feature for region A; and f, is the value of
the same feature for region Bj then the two regions fail to match to within
the tolerance o if Ifl-le > a. The results of the experiments performed are
glven in Table 4.3. Ofla possible ten correct matches the maximum achieved
was four and in this case four incorrect matches were also made. When all fea-
tures were used with a tolerance of .8, only three correct matches were made,
but no incorrect matchings were formed. All other cases had three or fewer

correct matches and at least one incorrect match. The graph matches are given

in Table 4.4.
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Figure 4.8 The artificial images used for region matching
experiments.
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Table 4.1 Feasible Matching of lmage B to Image A

Distance 4 square ~ The regions can match if theilr boundaries are no more
than & squares aparts (in the space of distances be-

™ wm v

Pra—

JR———

tween curves)

Region A Region B matches
1 1,2 .
2 1,2,4,5,6 |
3 1,2,3,4,5,6,7,9,10
4 2,4,3,7,8,9,10
5 7,8,9,10
6 10,11
7 2,3,4,5,6,9,10
8 1,2,3,4,5,6,7,9,10
9 1,2,3,4,5,6,10
10 2,3,4,5,6,7,8,9,10,11
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Table 4.2

Picture A Features

Area/Perimeter

Picture B Features

Area/Perimeter

Picture C Features

Area/Perimeter
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Table 4.3 Experiments in Matching Image B to Image A using the vectors 4 squar.:
Feasible Matchings from Table 4.1.

Feature codes
1 Aea of reglon
- 2. Perimeter of region
é 3. Area/Perimeter ratio
4. Maximum horizontal extent of region
5 Maximum vertical extent of region
Trial 1 Matched Regions
, Features Used Tolerance Image A Image B ®rrectness of Match
; 4 .3 2 6 Wrong
5 .3 3 5 Right
6 11 Right
10 10 Right
Trial 2 Matched Regions
Features Used Tolerance Image A Image B ®rrectness of Match
1 .8 3 6 Wrong i
2 .8 4 4 Wrong ;
3 .8 6 11 Right ]
| 4 .8 8 7 Wrong il
5 .8 10 10 Right ii
Trial 3 Matched Regions
Features Used Tolerance Image A Image B (orrectness of Match
1 .5 3 5 Right
2 5 6 11 Right
3 5 10 10 Right
4 5
5 5
Trial 4 Matched Regions
Features Used Tolerance Image A Image B ®rrectness of Mctch
1 .5 3 5 Right
3 .5 4 4 Wrong
6 11 Right
10 10 Right
Trial 5 Matched Regions ;
Features Used Tolerance Image A Image B Grrectness of Match
1 .5 3 7 Wrong l
4 8 Wrong
5 9 Wrong
6 11 Right
7 3 Wrong
8 2 Right
9 6 Right
10 10 Right
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Table 4.4 True matches of lmage A Regions with Regions from Image B

and C.
fmape A Image B Imape C
1 1 11
2 1 10
3 3,5 5 -
4 9 3
5 8 4
6 11 1
7 4 8
8 2 9
9 6 7,6
10 10,7 2
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In the second experiment, the original criterion for arriving at a tenta-
tive match was modified. For each region a center was computed. The center
was defined to be the point with coordinates (x,y) where x is the average of
the leftmost and rightmost horizontal coordinates of the region (truncated to
an integer) and y is the average of the topmost and bottom most y coordinates
of the region (also truncated). Two regions are tentatively matched if their
centers are no more than four units apart. Of the ten regions in image B whic!
have at least one tentative match in region A, only eight correct matches can
be made. In matching C and A there are eleven possible correct matches but
only ten can be determined since we are seeking a one to one matching. In
matching A to B the maximal matching, using no features, is given in Figure 4.9.
This matching achieves seven matches out of the maximum of eight possible matches
under the distances between center restriction. The matching of A to C, using

no features, is given in Figure 4.10. In this matching eight of the ten pos-

sible correct matches were obtained.
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4.2.2.2 Graph Matching Discussion

The evaluation of graph matching algorithms for region labelling is a com-
plicated problem due to the large number of variables involved. Maximum mat.’
ing in bipartite graphs has serious limitations such as the inability to account
for both fragmentation and coalescing of regions. Since the matching is one t
one, a region which becomes fragmented can be matched to at most one of its
fragments. One possible way to avoid this problem is to redefine the problem
by changing the weights on the network graph edges. Suppose we have two images,
A and B and that the flow is from the source to image A regions to image B regi-i .
to the sink. If each edge from an image A regiom, A; to an image B region, bj,
is assigned the area of A; as a capacity and the edge from Bj to the sink is as-
signed the area of B; as a capacity then the maximal flow algorithm allows for

J

multiple matchings of regions subject to the constraint that the total area of

J

change in the algorithm increases the complexity of the algorithm as well as

all regions in A matching with B; is no greater than the area of Bj’ This

introducing other complexities in interpretation. An alternate approach to
eliminating the effects of region fragmentation is to perform region merging
as a preprocessing operation. Selecting adequate merging criteria can be ex-

pensive and offsets the advantages of graph matching.

The selection of criteria for the tentative region matches for creating
the bipartite graph should be based on extensive analysis of image data. The
reliability of region leatures such as shape, the approximate location of region
centers, ring and ‘vedge data, etc. must be determined for a large collection of
reglons. Hand matching of regions in images taken at different times or match-
ing of images to maps or region data bases can provide information on the vari-
ability of these features. If the variation of features 1s not great then re-
quirements for matching can be made stringent, though <t(his necessitates high

quality region feature extraction.
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7.0 Verification of Lineal Features

In the process of verifying lineal features, it is assumed '
enough information has been extracted from an image so that hypotheses
about the remaining image content can be made. In the verification of the
existence of a particular lineal feature, the rough location and
orientationof the feature is known. That is, if the feature exists at
all, the model being used should predict approximately where the feature
is with respect to previously detected features, how long it is, what
its shape is, etc. For example, if features resembling the two wings
of an airplane have been detected, there are at most two places to
search for the tail. Finding the hypothesized feature greatly increases
the confidence in the model that generated the hypothesis, while failure
to detect the predicted feature has just the reverse effect.

Because verification is done with model prediction, focused

searches can be performed. Not only is the area of imagery to be searched

well-confined, but there are also tight constraints on shape and orientation.

Thus faint or hard to detect features can be found more reliably and more
efficiently in the top-down mode than in the bottom—up mode.

The technique that has been used views the feature as a set of
high gradient points that must be found in the image. The transformation
of the image to the model, obtained by running the registration software,
is instrumental in the verification process. The inverse of this trans-
formation is used to predict where the undetected feature should exist.
The verification software then proceeds to determine whether the

hypothesized feature actually exists.
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5.1 Technique Used in Verification Process

.01 Profile Search

As an example of the verificationprocess consider the
verification of the existence of Sherman Creek in the imagery of
Harrisburg, Pennsylvania, as presented in Figure 3.2, It is easy to
store the path of the stream as an ordered set of points in some coor-
dinate system, as is done in cartographic data bases. Given a registration of
the imagery containing the creek to the cartographic coordinate system,
it is easy to transform the points of the mapped feature to the points
(pixels) of the image where the feature should be found. Due to noise,
distortion, approximation in the registration transformation, and actual
change in the stream, it is unlikely that the feature points will be
found exactly where they are predicted to be. In an effort to find
exactly where the feature point dces lie, a technique of "profile searching'
is used.

In the profile search, a search for the feature point is made
along a "profile" that extends from the predicted point, perpendicular to
the direction of the feature, for a distance defined by the user specified
tolerance. The search along this profile begins at the predicted point,
and proceeds outward in both directions. The sea:ch continues in both
directions until a "peak point" is found. A peak point is defined as a
point that pogsesses the same gradient direction as the predicted point and
has a gradient magnitude that is above the user supplied threshold and is
greater than the next point along the profile. This technique will be

further clarified through the use of an example.




In the example presented in Figure “1, the predicted feature
point was at location (7232,4045) in stage coordinates. The window
sampling the image is a 32 pixel x 32 pixel array, centered at (16,16).
The end points of the profile are dependent on the user supplied tolerance
value and the direction of the feature gradient at the predicted point.
For this point, the profile extends from (27,20) to (5,12) in pixels.

The gradient magnitude is calculated at each of these points using the
direction of the gradient at the predicted point. These values are
presented on the line with MAG at the left. The user supplied threshold
in this case was 4. The search begins at the point (16,16) and proceeds
outward in both the direction to the right and to the left. The threshold
value is exceeded for the first time at point (13,15) where the gradient
magnitude is 27. At this point in the searching process, the left search
is at point (19,17) whose magnitude is below threshold. The search con-
tinves in both directions. At point (12,14) the gradient magnitude
increases to 38 and at point (20,17) the gradient magnitude is still
below threshold. At point (11,14) the value of the gradient magnitude
decreases, indicating that a peak point has been detected. Since the
left search values are still below threshold, the algorithm declares that
the actual feature point, in terms of pixel coordinates, lies at point

(12,14) instead of point (16,16).

51.2 Quality Evaluation
When the verification process has been completed for a specified
lineal feature, an evaluation must be made as to how far the detected

feature points deviated from their predicted position. A root-mean-
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square value is one measure of the match. Let P = P ., P

Lre .,P

m’""’ n

be the feature point set in map coordinates and let T, be the transformut
registering the imagery to the map coordinate system. Let q, be the best
detection of point P, along the profile passing through Pp. Then

one measure of the verification of the point set P is

n .
D(p) = (( L AT e ,qp) /Mt

where d2 (¢,+) is the squared distance between two image points.

This measure is only taken over those points which have a point of
detection on their profile. So in actuality two measures of quality must

be used. The first is the D(P) above and the second is the percentage of

unmatched points that are present for that feature.

5.1.3 Servoeing

As was stated earlier, due to several factors, it is unlikely
that the feature points will be exactly where they are predicted to be.
In the experiments run, this was found to be true. In several cases, the
points of the feature were consistently removed from the predicted
values by some fixed amount. In order to track the actual feature
better and to overcome the inaccurracies of the prediction a "servoeing"
mechanism was instituted. The servoeing mechanism uses information from
previous points to make adjustments to the predicted point. The method
used keeps track of the differences between the predicted point and the
detected maximum on the profile for as many as the last 5 points. THe
differences in the X-direction and the Y-direction are averaged and are

added to the predicted coordinates to produce a set of "adjusted"point

coordinates.
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This technique has been implemented and tested. With servoeing,
the tracking of the features has greatly improved. The adjusted predicted
points are consistently as close or closer to the actual peak points
than the original predicted points were. The servoeing also helps to
overcome the "warping" effect that 1s present in most aerial photographs.
Because this warping is present, the registration transformation cannot
be accurate over the entire picture. Therefore, there are features
present in the photograph that may not be accurately verified if only
the inverse of the registration transformation is used. The servoeing
technique makes the minor adjustments that are needed to overcome

these inherent inaccuracies.
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5.2 Examples from 4621

The verification software was run on several different
photographs, the first of which was the photograph called "4621", in
Figure 1.1. As can be seen, most of the features of this photograph
are straight lines, some very prominent and others not very clear at
all.

The registration procedure had been run on a map and image
pair using this scene. The resulting transformation was (308°,578, -1397).
Using this transformation as a basis, an inverse transformation was
developed for use in the verification process. The inverse transformation
was (52°, -578, 1397). The verification process used this inverse trans-
formation to verify the existence of a set of lineal features in the
image. Some of the features verified were quite distinct, while others,
such as the feature from point 2 to point 27, were less prominent.

The results obtained from running the verification on this
image were extremely encouraging. As can be seen in Table 5.2.1, the
percentage of matched points for every one of the lines verified was
100%. The values of the distance function were also small for all of
the cases.

As examples of the verifics ' »m _, > ass, output from a run
that verified two of the features in 4621 is shown in Figure 5-2. The
first feature verified is the one running from point #1 to point #29.
This is a prominent road that, as can be seen from the presented re-

sults possesses strong gradient values. For each predicted point a pro-

file was constructed and a search was made along the profile for the peak

value. The location of this peak value was recorded by the servoeing




Results of Verification of Features in 4621

Table 5.2.1

Begin Point End Point  Total # % of Distance
of Line of Line of Points Unmatched Matched D(P) in

Checked Points Stagels

1 29 41 100% 8.9

2 27 21 100% 19.1

1 29 41 1007 10.3

8 21 41 100% 4.7

3 14 41 1007% 11.7

16 15 21 100% 21.4

12 11 21 1007% 34.8

3 28 11 100% 16.2
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GIVE DEBUG fLAL (VALUL KETW 0 4 &)

3

GIVE ROVUTHE REUXS REVYS, TXCFNT  LYCENT  MXCENT , RYLE N

BLSSTH 43770 7500 ,9500,.9500 9500,

DIOL .REVTHE ,REVXS ,REVYS = 100 w2 ~L78. 1397

IXCENY , TYCENT  MXUONT MYCENT = 7500 ?L00 9500 YL00
GIVE TRANSFORM INFO

308,579 ., -1397.,9700, 31,44, 350,30,

OMATCH QUAL ITY EFFORE VERLFICATION.

THE TA XSHIFT YSHIFT MTCHWT MUHRUW/N]1MAGE NMCHCL /NMAP #

J08 S78. -1397. 9700 31/ 43 307 30 AEE XK
GIVE EDGE #

1

VERIFYING EDGE # 1

15 THIS A STRAIGHY LINE? INPUT 4 FOR YFS, 0 FUR NO

1

GIVE XTAIL,YTAIL C(INT/FREF)

4996 .7282,

GIVE DELTAX,DELTAY,GRAD. ANG. AND NUMPTS (REAL.RFAL,INT,INT)
S5.65.113.358\
5%5.65.113.35,334,41,

INPUT POINT, X,Y,ANGLE-= 4996 7282 334
TRANGFORMED POLNT X, Y,6¢J) = $0418 4990, 31
Q@ REC 1S-NODF,DELX,DELY,LINK= 1 0 0 i

ADJUSTED X,Y= S018 4990

STAGE FOCUSED AT S01B, 4990

J ,ANGLE ,SLOPE X = b . 393 .414 ?2

XTAIL,YTAIL ,XHEAD, YHEAD = a7 20 R 12

XTAIL 27 26 25 24 23 22 2¢ 20 19 18 17 {6 1% 14 13 12 41 q0 9 8 7
YTAIL 20 19 19 i¥ 18 48 48 17 17 47 16 16 15 1S 1S 4 14 14 13 4% 13

DIR 31 31 31 31 31 31 31 314 31 3t 31 31 34 34 34 34 31 34 34 31 34
MAG 34 12 5 7 2 15 16 4 -12 -A0 -61 -3 77 87 5y 2Yy 29 29 26 2 2
MAX. GRAD FOR POINT & § WAS B7 AT 14, 19

DIST TOTPTS ,UMCHPT =  17.89 1 0

INPUT POINT, X,Y,ANGLE= 5051 7395 334

TRANSFORMED POINT X Y. G(J) =_ 4963  S103 5t

8 RECTTS-NODE , DELX. DELY,LTNK= 2 -1k -8 1

Q REC 1S-NODE,DELX,DELY,LINK= 1 0 ] 2

SD.TUSTED X, Y= 4955 499

TAGF FOCUSED AT 4955, 5099

J,ANGLE,SLOPE K = 1 . 393 419 9P

XTATL,YTAIL,XHFAD, YHEAD = 27 20 5 1o

XTAIL 27 26 25 24 23 22 2% 0 19 18 17 16 1% 44 4 40 40 40 % ow
YTAIL 20 19 19 4% {8 1B 18 7 47 17 46 16 15 4% 15 14 14 14 10 41 41
DIR 310 31 31 3t % 31 34 T 31 4 3 31 3 31 X4 3 3 3y 31 & &
HAG =S 6 R 7 -1b -41 AT 9 -GD s DS 76 417 SV v 9 4 9 a4 g -4
BAX _CRAD EOV PUINT & Z WAC1A7 AT 45 3%y

DIST TOTPTS UMCHPT = 29,24 2 0

T/'L

MAX. GRAD FOR POINT ¢ 4Q WAS103 AT 15, 15

DIST,TOTPYS ,UMCHPT » 357.30 40 0

INPUT POINT, X,Y,ANGLE= 7222 11815 334
TRANSFORMED POINT X,Y,6(J) = 2817 9535 31
Q REC T1S-NODE,DELX,DELY,LINK= 1 -8 -8 2
Q REC IS-NODE,DELX,DELY,LINK= 2 -8 -8 3
Q REC IS-NODE,DELX,DELY,LINK= 3 0 0 4
Q REC IS-NODE,DELX,DELY,LINK= 4 -8 -8 S
@ REC IS-NODE,DELX,DELY,LINK= s -8 -8 1
ADJUSTED X,¥Y= 2811 9529

STAGE FOCUSED AT 2811, 9529

J,ANGLE ,SLOPE K = 1 .393 LA44 92

XTATIL ,YTAIL ,XHEAD , YHEAD = 27 20 S 12

XTAIL 27 26 25 24 D23 22 21 20 19 18 17 16 45 14 13 12 11 10 9 e 7

YTAIL 20 17 19 49 18 18 18 17 47 17 16 16 1S 15 15 {4 44 14 13 13 13
DIR 31 031 31 31 31 34 31 34 31 31 34 31 31 34 31 34 31 31 31 31 3¢
MAG 0 -4 -11 -8 -3 -{2 -47 -72 -P9 4& 09 S7 8 3 ? Y 7 1t -5 -4 -3
MAX. GRAD FOR POINT ® 41 WAS 89 AT 17, 16

DIST , TOTPTS,UMCHPT = 365,30 L3}

DIST = 8.9 UMCHP Te 8 OUT OF 41 TOTAL PUINTS

WEICHT = 9109

Figure 352 Verification results of feature from point #1 to
point #29 of 4621, with use of servoeing.




{ mechanism to be used in adjusting the next predicted point, .

In Figure 5.2, it can be seen that the first predicted point was at
(5018,4990) of the image. The actual peak was not at the predicted
point, which is (16,16) in window coordinates, but at (14,i5). In
terms of stage coordinates, this means a difference of -16 in the X-
direction and -8 in the Y -direction. This is taken into account in the
calculation of the next predicted point. As can be seen, the ncxt
transformed point in the image is at (4963,5103), but, when the servoeing
is done the adjusted point becomes (4955,5099). The result of the profile
gearch gives a peak value of 117 at window coordinates (15,15).

Again the actual peak is not at the adjusted predicted point but it

is getting closer. Forthe next 38 points predictedand adjusted for this feature,

the actual peak value lies either at (16,16), dead center, or (15,15)

just slightly removed. These are excellent results and much better

than those obtained without use of the servoeing mechanism.
Verification of the same feature, from point #1 to point

#29, without the use of servoeing is presented in Figure 5.3. 1In this

case, for most of the points the actual peak value was found at either

window coordinates (13,15) or (14,15). These values are consistent

and close to the center, so it 1s known that the feature is present

but the process does not home in on it. In fact, it was this type of

result that led to the creation of the servoeing mechanism. Because

of transformation approximations, picture warping or other factors, the

predicted points in this case are consistently off by a small amount. The

servoeing mechanism adjusts the tracking by this small amount and

homes in on the detected feature.
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VERIFYING EDGE ¢ 1
IS THIS A STRALGHT LINE? INPUT { FOR €S, 0 FOR NO

1
GIVE XTAIL,YTAIL C(INT/FREE)
4996 ,7282,

GIVE DELTAX,DELTAY,GRAD. ANG. AND NUMPTS (REAL ,REAL,INT,INT)

S5.65,113.35,334,44,
INPUT POINT, X,Y,ANGLE= 4996 7282 334

15
15
3t

15
iS5

-1

1%
19
31

-2

1S
is
3t
90

TRANSFORMED POINT X,Y,G6()) = s048 4990 34
STAGE FOCUSED AT S018, 4990

J ,ANGLE,SLOPE K = 1 .393 . 414 92

XTAIL ,YTAIL ,XHEAD,YHEAD = 27 20 S 12
XTAIL 27 26 25 24 23 22 23 20 19 8 17 6
YTAIL 20 19 19 19 18 48 18 17 17 17 6 &
DIR 31 31 31 31 34 34 34 3% 31 31 3 34
MAG s2 39 20 9 -1 S 18 11 10 1 -59 -64
MAX. GRAD FOR POINT & 4 WAS 99 AT 13, 15
DIST,YOTPTS ,UMCHPT = 3.16 1 1]

INPUT POINT, X,Y,ANGLE= 5051 739S 334
TRANSFORMED POINT X,Y,G¢J) = 4963 5403 34
STAGE FOCUSED AT 4963, 5103

J ,ANGLE ,SLOPE ,K = 1 .393 .41 4 92
XTAIL,YTARIL, XHEAD , YHEAD = _27 29 S 12
XTAIL 27 26 25 24 23 22 21 20 19 18 17 16
YTAIL 20 19 19 19 18 18 18 1?7 17 {7 16 146
DIR 31 31 31 31 31 31 31 3L 34 31 31 3%
HAG -5 -14 2 5 1 -1 -7 42 33 29 -75 sss
MAX. GRAD FOR POINT & 2 WASL39 AT 13, 15
DIST,TOTPTS,UMCHPT = 6.32 2 0

INPUT POINT, X,Y,ANGLE= S40? 7508 334
TRANSFORMED POINT X,Y,6¢)) = 4908 5217 31
STAGE FOCUSED AT 4908, 5217

J,ANGLE,SLOPE K = 1 393 . 414 g2

XTAIL,YTAIL ,XHEAD,YHEAD = a7 20 S 12
XTAIL 27 26 25 24 23 22 21 20 19 18 17 46
YTAIL 20 19 19 19 18 18 14 17 47 17 6 {6
DIR 314 31 31 31 31 31 3 34 31 34 31 34
MAG 1S 20 29 S 1 -4 2 24 42 32 -57 sss
MAX. GRAD FOR POINT & 3 WAS129 AT 13, is

DISYT ,TOTPTS,UMCHPT = ?.49 3 c

XTATI 27 26 25 w4 3 22 21 20 19 18 17 6
Yvan 20 19 19 t? 8 18 8 17 47 47 16 16
DIR 31 31 31 34 3¢ 31 3¢ 3% 31 39 34 3%
MAG 4 0 -4 -6 -S 0 -3 14 34 29 -75 sss
MAX. GRAD FOR POINT # 48 WASi14 AT 13, is

DIST ,TOTPTS ,UMCHPT = {0%.10 40 a

INPUT POINT, X,Y,ANGLE= 7222 11815 - 334
TRANSFORMED POINT X,Y,6(J) = 2817 9535 31
STAGE FOCUSED AT 2817, 9535

J,ANGLE ,SLOPE ,K = 1 .393 . 414 92

XTAIL,YTAIL ,XHEAD,YHEAD = 27 20 s i2
XTAIL 27 26 25 24 23 22 21 20 19 118 17 16
YTAIL 20 19 19 19 18 18 18 17 17 {7 46 {6
DIR 34 3t 31 31 31 34 31 3t 31 31 3t 3t
MAG t -1 -2 0 -9 -5 -2 -10 -S56 -70 -2 79
MAX. GRAD FOR POINT ¢ 41 WAS 90 AT 1S, is
DIST,TOTPTS,UMCHPY = §10.51 41 0

DIST = 2.7 UNMCHPT= 0 OuT OF 41 TOTAL POINTS

Figure 5.3
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The feature tracked above represents a very prominent roadway.

In order to check out the verification process it was also necessary to
attempt the verification of features that were not as prominent.

One of these less prominent features is the driveway extending from
point #2 to point #27. The results of this verification are presented
in Figure 24. (Note the peak detection algorithm used in this

example is not the most recent scheme. The scheme used here chose

the maximum value on the profile regardless of where it was located.

It was found that this technique was not as good as the one explained
in Section 5.1.3.) Even though this feature is not nearly as prominent
as the one discussed above, the procedure was able to verify its

existence to a high degree of confidence. Refering to Table 5.2.1,

it can be seen that 21 out of 21 predicted points had a match on their

-

profiles.
The results of the experiment run on 4621 were most encouraging.
For every feature chosen, a 100% match was obtained with low distance
values. However, this experiment only dealt with relatively distinct
features that were all straight lines. So, though the results were very
itisfying a more difficult set of features was required to continue
&l the testing process. This more challenging set was obtained from the

"reux, France images.

Examples from DREUX 13

“noan attempt to gain further confidence in the verification

*eqt ing was directed ro the imagery of




R
GIVE ALALE Y TATL CINT/ZFREL)

730,494

G1Ve DELTAX,DELTAY, GRAD. ANG. ANl NUMPTS (REAL ,REAL,INT,INT)
S35.6,-75% &6, 15,21,

INPUT POINT, X,Y ANGLE= 8730 $494 154
TRANGFORMED POINT X,Y,6¢)) = 8726 68314 1S
Q@ REC IS-NODE,DELX,DELY,LINK= 1 0 0 1

ADJUSTED X,Y= 8726 6831
: STAGE FOCUSED AT 8726, 6831

J.ANGLE,SLOPE,K = 1  3.534  .414 92
XTAIL,YTAIL ,XHEAD, YHEAD = 27 20 5 12
XTAIL 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 14 40 9 8 7 & 5 © 4
YTAIL 20 19 19 1% 1B ‘B 18 17 17 17 16 16 15 {5 15 14 14 14 13 $3 13 33 1>
DIR 15 15 15 45 15 1S 1S 15 45 45 45 45 45 45 45 45 15 15 45 15 15 15 1§
PAG  -16 -9 -8B -14 -13 -14 14 44 22 -2 -76 -62 -20 -20 -20 -29 -29 -18 -13 -p -13 -27 -25
MAX. GRAD FOR POINT & 1 WAS 44 AT 20, 17
DIST,TOTPTS,UNCHPT =  32.98 t 0
INPUT POINT, X,Y,ANGLE=  B694 5418 154
TRANSFORMED POINT  X,Y,G(J) = 8764 6756 15
@ REC IS-NODE,DELX,DELY,LINK= 2 3 ] 1
Q REC 1S-NODE,DELX,DELY,LINK= t 0 0 2
ADJUSTED X,Y= 8780 6760 ]
STAGE FOCUSED AT 8780, 676D '
J,ANGLE,SLOPE,K = 1  3.534  .414 92
XTAIL,YTAIL,XHEAD, YHEAD = 27 20 s 12 ]
XTATL 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 41 10 9 8 7 6 S
YTAIL 20 (9 19 19 18 18 1B 17 17 17 16 16 15 15 15 14 14 14 13 43 13 12 12
DIR 15 45 15 15 15 15 15 15 15 15 15 15 45 1S 15 15 15 15 15 45 45 4S5 15
HAG 3 5 12 4B 45 9 0 6 33 32 -44 -45 -47 9 15 -43 -28 -26 -43 3 S5 -4 -8
MAX, GRAD FOR POINT ¢ A WAS 33 4T 19, 17
DIST,TOTPTS,UNCHPT =  58.28 2 0
INPUT POINT, X,Y,ANGLE= 8659 5342 154
TRANSFORMED POINT  X,V,G(J) = 8802 6482 1s
@ REC IS-NODE,DELX,DELY,LINK= 3 24 8 1
@ REC I5-NODE,DELX,DELY,LINK= 1 0 0 2
Q REC IS-NODE,DELX,DELY,LINK= 2 32 8 3
ADJUSTED X,Y= 8820 6687

: STAGE FOCUSED AT 8820, 6687
J,ANGLE,BLOPE,K = 1  3.534  .414 92
XTAIL,YTATL, XHEAD , YHEAD = 27 20 5 12

XTAIL 27 26 25 24 23 22 21 20 19 18 17 16 15 f4 13 12 g1 10 9 8 7 [ S
. YTAIL 20 19 49 19 18 18 18 47 17 7 16 16 1S5 15 1S 14 44 14 13 13 43 42 12

DIR 1S 15 15 1S 45 4S5 15 45 45 15 45 45 45 45 4S5 45 45 4S5 15 45 45 4S5 1S

By, HAG 13 42 12 41 _ 1 -3 -5 -3 27 37 5 -43 -S0 -38 -48 -4 46 32 18 4 -12 -17 -14

" HAX. GRAD FOR POINT & 3 WAS 37 AT 18, 17

i DIST,TOTPTS,UNCHPT =  76.47 3 0
INPUT POINT, X,Y,ANGLE= 8623 s267 154
TRANSFORMED POINT X,Y,G(J) = 8839 6607 15
Q REC IS~NODE,DELX,DELY,LINK= 4 16 o 1
@ REC IS~NODE,DELX,DELY,LINK= 1 0 0 2
@ REC IS-NODE,DELX,DELY,LINK= 2 32 8 3
[ Q REC IS~NODE,DELX,DELY,LINK= 3 24 8 L]

ADJUSTED X,Y= 8857 6613
STAGE FOCUSED AT 8857, 6613
J,ANGLE,SLOPE,K = { 3.534 .44 92
XTAIL,YTAIL ,XHEAD, YHEAD = 27 20 5 12
XTAIL 27 26 25 24 23 22 21 20 19 18 17 16 1S 14 43 42 11 10 9 B8 7 & s
YTAIL 20 19 19 19 18 18 18 17 {7 17 6 16 15 45 15 414 14 14 43 3 13 412 42
DIR 15 1S 1S {5 15 1S 1S 15 {5 4S5 1S 15 4S5 1S 15 1% 15 1S 45 1S 1S 1S 1S
MAG 7 42 9 4 8 8 S -42 & 26 12 -29 -46 -27 -0 -7 ~14 -12 -16 -47 -9 & 1%
MAX. GRAD FOR POINT ¢ 4 WAS 26 AT 18, 17
DIST,TOTPTS,UMCHPT = 94,06 4 0

: INPUT POINT, X,Y,ANGLE= ases 5191 154

\ TRANSFORMED POINT X,Y,6¢(J) = 8877 6533 15
@ REC IS-NODF,DELX,DELY,LINK= 1 16 8 3
Q REC IS-NODE,DELX,DELY,LINK= 1 0 0 2
@ REC IS-NODF,DFLX,DELY,L INK-~ 2 32 1] 3
G REC IS-NODE DT XY DY Ly | INK= ‘ 24 it a

|
!
Figure 5.4 Results of verification of driveway running

from point #2 to point #27 of 4621, with
servoeing (part 1 of 2).




Q REL 1S-NODE ,DHLX,DELY , LLINK= 4 16 ]

ADJUSTED X,Y= #HB94 6539
STAGE FOCUSED AT 8894, 6549
J,ANGLE ,SLOPE K = 1  3.534 .4ta 92
XTAIL,YTAIL, XHEAD ,YHEAD = 27 20 s 12
XTAIL 27 26 25 24 23 22 21 20 19 tB 47 46 1S 14 13 42 41 10 9 B 7?7 & S
YTAIL 20 319 19 19 18 18 18 17 (7 17 16 16 15 15 15 14 14 14 33 43 43 (3 1»
DIR 15 15 15 :5 1S 15 15 15 15 15 1S 4S5 15 15 1S 45 45 15 1S5 45 35S 5 3§
MAG 14 1z 8 & 12 6 -18B -11 11 43 -23 -S3 -36 -4 1S 7 -4 -13 -13 -3 -2 -4
MAX. GRAD FOR PIINT ¢ 5 WAS 16 AT 26, 19 (wnder wfw plax e rcnos (17,66) wessd vt 36te casits)
DIST,TOTPYS,UNCHFT = 177.58 S 0
INPUT POINT, X.Y,ANGLE= 8552 S116 154
TRANSFORMED POINT X,Y,6(5) = 914 6458 15
Q@ REC IS-NODE,DELX,DELY,LINK= t 80 24 2
Q@ REC IS-NODE,DELX,DELY,LINK= 2 32 8 3
Q REC IS-NODE,DELX,DELY,LINK= 3 24 8 4
Q REC IS-NODE,DELX,DELY,LINK= 4 16 8 s
@ REC IS5-NODE,DELX,DELY,LINK= s 16 8 1
ADJUSTED X,Y=s @947 6469
STAGE FOCUSED AT 08947, 6469
J,ANGLE,SLOPE,K = 1 3,534 .414 92
XTAIL,YTAIL,XHEAD, YHEAD = 27 20 s 12
XTAIL 27 26 25 24 23 22 21 20 19 4B 17 46 45 44 43 42 44 10 9 B 7 & S
YTAIL 20 19 19 19 18 18 4B 17 17 17 16 16 45 45 4S 14 14 14 43 3 13 12 {2
DIR 15 15 15 1S 15 15 15 15 15 4S5 15 {5 45 1§ 45 15 45 as 15 15 :5 15 15
HAG 8 6 16 19 _ 4 -3 0 16 10 -9 -~5 14 9 -30 -60 -36 -12 -5 -3
MAX. GRAD FOR POINT & @ Was 19 AT 24, 19 (wobe wEw PEax DErpemon (16,06) wau/‘/AM 6:’5,., LhosEn)
DIST,TOTPTS,UNCHPT = 245.93 6
INPUT POINT, X,Y,ANGLE= 8517 S040 154
TRANSFORMED POINT X,Y,6(J) = 8952 6304 15
Q REC IS-NODE,DELX,DELY,LINK= 2 b4 24 3
Q REC IS-NODE,DELX,DELY,LINK= 3 24 8 a
Q REC IS-NODE,DELX,DELY,LINK= 4 16 8 5
@ REC IS-NODE,DELX,DELY,LINK= 5 16 8 4
Q REC I1S-NODE,DELX,DELY,LINK= 1 80 24 2
ADJUSTED X,Y= 8992 6398
STAGE FOCUSED AT @992, 6396
J,ANGLE,SLOPE,K = { 3.534 414 92
XTAIL,YTAIL , XHEAD,YHEAD = 27 20 s 12
XTAIL 27 26 25 24 23 22 21 20 19 48 17 16 45 44 13 12 41 10 9 8 7 & S
YTAIL 20 49 19 19 18 18 18 17 17 17 16 46 45 45 45 44 14 14 13 13 13 12 42
DIR 15 15 15 45 45 15 45 45 15 45 15 45 45 45 45 45 45 S 45 45 4S5 15 g
HAG -2 8 13 45 5 -4 -8 -19 =11 {4 9 49 4B 3§ -45 72 ~59 -2 -§ 0 2 -3 -2
MAX. GRAD FOR POINT & 7 WAS 48 AT 15, 4S
DIST.TOTPYS,UMCHPT = 257.2% 7 )
MAX. GRAD FOR POINT # 2@ WAS 39 AT 17, 16
DIST,TOTPTS,UMCHPT = 384,21 20 (]
INPUT POINT, X,Y,ANGLE= 8020 3982 154
TRANSFORMED POINT X,Y,6¢J) = 9480 5344 15
@ REC 1S-NODE,DELX,DELY,L INK= { 8 ] 2
Q@ RES IS-NODE,DELX,DELY,L INK= 2 8 ] 3
Q REC IS-NODE,DELX,DELY,LINK= 3 8 ) a
@ REC IS-NODE,DELX,DELY,LINK= 4 8 0 s
Q REC IS-NODE,DELX,DELY,LINK= 5 8 ] 1
ADJUSTED X,Y= 9488 5341
STAGE FOCUSED AT 9488, $34f
J,ANGLE,SLOPE,K = 1 3,534 414 92
XTAIL,YTAIL, XHEAD , YHEAD = 27 20 5 12
XTAIL 27 26 25 24 23 22 21 20 19 18 {7 16 15 14 43 42 41 10 9 8 7 & S
YTAIL 20 319 49 19 4B 18 18 47 17 47 46 16 15 16 15 14 14 14 13 43 43 4P 4P
DIR 1S 15 15 1S 15 {5 15 45 15 45 45 15 45 {5 45 45 15 15 45 15 §5 {5 (S
nAG 8 1S 9 -6 -24 -24 -5 19 3?7 S1 49 -1S -67 -49 -34 26 42 -17 -43 -27 -2 15 2
MAX. GRAD FDR POINT & 21 WAS Si AT 18, 17
DIST,TOTPTS,UMCHPT = 402,40 21
DIST = 19.14 UMCHPT= 0 OUT OF 21 TOTAL POINTS
Figure 5.4 Results of verification of driveway running from

point #2 to point #27 of 4621, with servoeing
(part 2 of 2).
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Table 5.3.1

Results of Verification of features in Dreux 13

F Begin Point End Point Total # # of % of Distance
< of Line of Line of Points Unmatched Matched D(P)
] Checked Points Points
K D 59 0 100% 3.7
N Q 87 1 98.9% 7.7
U 0 97 1 98.9% 7.5
E F 31 5 86.1% 12.2°
P R 19 5 78.7% 26.0 1
M L 27 15 44.4% 9.7
Q T 25 7 72% 42.0

(non-existent lineal)




- aaiiiatamnc-d Shaniid and <] »;F B s AT TS Al O B B I . B L TTIEY Y it . .
E?ﬁ‘ FLLE NAME OF INPUT rLLE - (3A2)

CTDRKD

INPUT POINT, X,Y,ANGLE= 11478 HGA6 kY4
TRANSGI ORMED POINT X,Y,6¢)) = [ 4 7768 31
4 REU 1% -NODL, DI L X, DELY, 1 INK« 1 0 0 1

ADJULTED X, Y= H27Y 7768
STALL L OCULLD AL Aoy, Y0l

J,ANGLE SLOPE K = 3vs L4184 92

XTALL , YTALL , XHEAD, YHEAD = Y 12 27 20

XTATlt S 6 7 #0910 11 12 13 34 1S 16 174U v RS e ey e e e

YTALl 12 13 13 13 14 14 14 15 4S5 15 16 46 17 17 47 0 g 40 v 4 v e e

DIR 31031 31 31 31 31 31 31 3t 3L 31035 31 31 3t 31 31 31 31 3 5 3 S

MAG -2 0 0 0 0 - 0 t 2 7 47 15 -S -16 -17 -S -1 0 4 O -1 2 -1 ]

MAX. GGRAD FOR POINT @ 1 WAS 17 AT 15, 16 .
DIST,TOTPTS ,UMCHPT = 8.00 1 0 i
INPUT PDINT, X,Y,ANGLE® 11852 BS78 43 !
TRANSFORMED POINT X,Y,G(J) = 6264 7807 31

Q REC IS~NODE,DELX,DELY,LINK= 2 -8 0 1

Q REC IS-NODE,DELX,DELY,L INK= 1 0 ¢ 2

ADJUSTED X,Y= 4260 7807 ;
STAGE FOCUSED AT 6260, 7807

J ,ANGLE ,SL.OPE K = 1 .393 L4414 92

XTAIL,YTAIL,XHEAD, YHEAD = S 12 27 20 :
XTAIL S [} 7 8 9 10 41 1?2 43 14 1S 16 17 4B 19 20 21 22 23 24 2S5 26 27

YTAIL 12 13 13 13 14 14 14 15 1S5 45 416 16 17 17 17 48 18 48 19 19 419 20 20

DIR 34 33 34 34 3t 31 31 34 31 34 31 34 34 31 31 31 31 31 I1 3y 31 31 3
MAG -1 0 0 -1 -3 0 i 0 -2 S 26 28 -5 -23 -24 -5 2 3 1 -3 -5 -4 -2
MAX. GRAD FOR POINT # 2 WAS 28 AT 16, 16

DISY ,TOTPTS ,UNCHPT = 8.0¢ 2 0

INPUT POINT, X,Y,ANGLE= 11828 8600 42

TRANSFORMED POINT X,Y,6(J) = 6248 7835 31

@ REC IS-NODE,DELX,DELY,LINK= 0 1

Q REC I5-NODE,DELX,DELY,LINK= 1 0 0 2

Q REC IS-NODE,DELX,DELY,LINKs 2 -8 0 3

ADJUSTED X,Y= 6246 7835

STAGE FOCUSED AT 6246, 7835

J,ANGLE ,BLOPE ,K = i . 393 414 92

XTAIL,YTAIL ,XHEAD , YHEAD = S i2 27 20

XTAIL S & 7 8 9 10 11 12 43 44 45 46 17 18 19 20 2% 22 23 24 25 26 27
YTAIL 12 13 43 43 14 14 14 15 4S5 1S 16 16 17 17 17 18 1B 18 49 19 49 20 20
DIR 31 34 31 31 31 3t 31 34 It 31 31 3¢+ 34 34 31 34 31 31 31 31 31 Iy 3t
MAG -2 ¢ ¢ ¢ ¢ o6 ¢ ¢ -3 3 34 I8 2-28-37-145 1 A& 3 2 0 -1
MAX., GRAD FOR POINT & 3 waS 38 AT 15, 16
DIST,TOTPTS,UNCHPT = 8.00 3 0

INPUT POINT, X,Y,ANGLE= 11798 8638 a1
TRANSFORMED POINT X,Y,6(J) = 6234 7860 3
Q REC IS-NODE,DELX,DELY,LINK=
Q REC IS-NODE,DELX,DELY,LINK=
Q@ REC IS~NODE,DELX,DELY,LINK= *
Q REC IS-NODE,DELX,DELY,LINK=
ADJUSTED X,Y= 5229 7880
STAGE FOCUSED AT 6229, 7880
J,ANGLE ,8LOPE Kk = ¢ .393 .414 92

XTAIL,YTAIL,XHEAD,YHEAD = S 12 27 20

XTalL S 6 7 8 9 18 11 42 43 44 45 $6 17 18 419 20 21 22 23 24 25 26 27
YTAIL 42 13 43 43 14 14 14 (5 15 15 46 16 (7 47 {7 18 18 (8 19 19 {9 20 20

(200 N

)

-] (=]
Dooc o
B G -

DIR 34 314 31 31 3% 31 31 34 34 3 34 34 33 34 34 31 314 31 34 31 31 31 31
HAG -1 0 1 1 0 0 1 -t -1 14 93 Si ~{4 -4% -47 -{1i i i 2 2 2 0 -1
MAX. GRAD FOR POINT & 4 WAS S3 AT 15, 16
DIST,TOTPTS ,UMCHPT =  16.00 4 ¢
INPUT POINT, X,Y,ANGLE= 11768 8668 a3
TRANSFORMED POINT  X,Y,G(J) = 4212 7948 31
Q REC IS-NODE,DELX,DELY,LINK= 3 -8 0 1
Q REC IS-NODE,DELX,DELY,LINK= 1 0 o 2
Q REC IS-NODE,DELX,DFLY,L TNK= 2 -8 o 3
0 RE{T TSE-NNDE DFLY DEL Y.l INK= 3 ] ] 4
Figure 5.6 Results of verification of feature from point

K to point D of DREUX 13, with servoeing.
(part 1 of 2).
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DIST ,1OTPTS ,UMCHPT =  202.951% 59 0

INPUT POINT, X.Y,ANGLE= 10420 10082 39
TRANSFORMED POINT X,Y,G(J)y = 5368 76840 3t
Q REC JIS-NODE,DFELX,DVLY,L INK= 1 0 o 2
Q REC TIS-NODF ,DFLX,DELY,LINK= 2 “ 1 0 3
Q REC IS-NODE ,DFV X, DELY,L TNK= 3 1 Q L]
@ REC JIS-NNDE,DELX,DELY,LINK= 4 1 0 S
Q REC IS-NODE,DEL X, DELY ,L INK= S -7 0 1
ADJUSTED X,Ya= S36R 9480

STAGE FOCUSED AT S368, 9680

J . ANGLE ,SLOPE K = 1 393 LAL4 92

XTAIL ,YTAIL ,XHEAD,YHEAD = S 12 27 20

XTAIL S é 7 8 ® 10 tt 12 3 14 1S t6 47 1B v
YTAIL 12 13 13 313 14 14 L4 1S5 1S 1S 16 A6 17 17 47
DIR 314 3t 3¢ 31 31 31 31 31 31 31 3t 3f It 31 31
MAG 0 3 2 S S 2 3 -7 -10 4 31 28 -28 -45 -35
HMAX. GRAD FOR POINT # S& WAS 31 AT 15, 16
DIST,TOTPTS ,UMCHPT = 210.5¢ S6 0

INPUT POINT, X,Y,ANGLE= 10378 10130 38
TRANSFORMED POINT X,Y,6(J) = 5343 9739 3
Q REC IS-NODE,DELX,DELY,LINK=
Q@ REC [S-NODE,DELX,DELY,LINK=
Q REC IS-NODE,DELX,DELY,LINK=
@ REC IS-NODE,DELX,DELY,LINK=
Q@ REC IS-NODE,DELX,DELY,LINK=
ADJUSTED X,y= 5341 9739
STAGE FOCUSED AT 5341, 9739
J,ANGLE,SLOPE ,K = 1 393 414 92

XTAIL,YTAIL,XHEAD, YHEAD = S 12 27 20

XTAIL S & 7 -] 9 10 44 12 13 44 1S 46 17 1B 19
YTATIL 12 43 43 413 14 14 14 4S5 S S 16 16 17 47 17

SN, AR Y
-

- E-B- N1

W Vb -

DIR 31 031 34 31 31 31 34 31 34 31 34 34 34 31 3
MAG -2 -1 -4 -3 -4 -5 -3 -2 -42 -6 22 39 -7 -Ai -43
MAX. GRAD FOR POINT ¢ 5 WAS 39 AT 156, 16

DIST,TOTPTS,UMCHPT = 210,51 57 0

INPUT POINT, X,Y,ANGLE= 10344 10178 a1

TRANSFORMED POINT X,Y,6(1) = 5325 9795 34

@ REC IS-NODE,DELX,DELY,LINK= 3 -2 0 4

B REC IS-NODE,DELX,DELY,LINK= 4 1 0 3

Q REC IS-NODE,DELX,DELY,LINK= 5 -7 0 1

Q REC TS-NODE,DELX,DELY,LINK= 1 0 0 2

@ REC IS-NODE,DFLX,DELY,LINK= 2 -8 0 3

ADJUBTED X,y= $322 9795

STAGE FOCUBED AT 5322, 9795

J,ANGLE,BLOPE K = ,393 414 92

XTAIL,YTAIL ,XHEAD, YHEAD = 5 12 27 20

XTALL S & 7 B 9 40 11 12 13 14 45 46 17 18 19
YTAIL 42 13 13 43 14 14 14 15 35 15 16 16 47 17 17
DIR 34 31 31 31 31 31 34 34 31 34 31 31 31 34 3
MAG -2 3 0 -4 -7 ~5 -§ -42 -B 41 38 18 -38 -43 -2%
MAX. GRAD FOR POINT ¢ S8 WAS 38 AT 15, 16

DIST,TOTPTS ,UMCHPT = 218.51 58 0

INPUT POINT, X,Y,ANGLE= 10288 10232 a6

TRANSFORMED POINT X,Y,6(I) = 5289 9863 31

@ REC IS-NODE,DELX,DELY,LINK= a -1 ] <

Q REC IS-NODE,DELX,DELY,LINK= 5 -7 0 1

Q@ REC TS-NODE,DELX,DELY,LINK= 1 ] o 2

G REC TS-NGDE,DELX,DELY,LINK= 2 -8 0 3

Q RFC IS-NODE,DELX,DELY,L.INK= 3 -2 0 4

ADJUSTED X,Y= 5284 9863

STAGE FOCUSED AT 5284, 9863

J,ANGLE,SLOPE,K = 1§ .393 414 92

XTAIL, YTAIL , XHEAD , YHEAD = 5 12 27 20

XTAILL S 6 7 B 9 10 41 12 43 14 {5 16 17 418 19
YTATL 12 i3 i3 13 14 14 14 1 15 15 16 16 7 17 37
DIR 31031 34 31 31 31 31 3L 34 AL 34 39 34 3§ 34
MAG -3 -7 -7 -7 -8 -10 -12 -7 -8 ? 43 S3 2 -40 -G
MAX. GRAD FOR POINT # 59 WAS 53 AT 16, 16

DIST,TOTPTS,UMCHPT = 218.5¢ 59 0

PIST = 3.7 UMCHPT= € OUY OF S9 TOTAL POINTS

WEIGHT = 28863

GIVE EDGE #

-1

GIVE REVTHE ,REVXS,REVYS, IXCENT, IYCENT ,MXCENT,MYCENT

-1

Figure 5.6 Results of verification of feat

point D of DREUX 13, with servo
of 2)
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are quite high. The two sides of the road are evident in the profile

by the high positive values adjacent to the low negative values. The
verifying of the line procedes quite accurately even around the shagp
curve in the road. The detected peak 1s always no further than 2
pixels off the center, thus resulting ii. the extremely low value for
DTP).

The results obtained were not always as good as in the
above case. The feature extending frompoint P to point R, is a very
faint road that runs into a group of buildings near point R. The
results of the verificatiorn of this road are presented in Figure 5.7.

The magnitude values for the gradient in the area of this line are low.
For many of the profiles the threshold value is never exceeded, therefore
resulting in unmatched points. However, on closer examination there
are definitive observable peaks in the profiles but, the peak values

are lower than the user supplied threshold of 4. Also when predicted
points close tobpoint R are examined, large gradient values appear at

a significant distance from the predicted point. These large values

are the result of the profile passing through the area where the buildings
are. So though the results are not as good as with some of the other
features, a human examination of the area can explain some of the reasons
for this.

An experiment was also run to try to verify the existence of
a non-existent feature running from point Q to point T. To accomplish
this, a set of points was taken along a ficticious feature starting at
point Q and ending at point T. This set of points was then presented

to the verification procedure. Though the procedure was able to match
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IS THIS A STRAIGHT LINE? INPUT { FOR YES, 0 FOR NO
0

, IS INPUT IN A FILE? (1 FOR YES, 0 FOR NQ)
1

CiVE FILE NAME OF INPUT FILE - (3A2)
LCIDRPR

INPUT POLINT, X,Y,ANGCLE~ 14094 7422 48

TRANBFORMED POINT X,Y,6¢)) = 8240 S9A0 i1

Q REC IS~NODE,DELX,DELY,LINK= 1 ° ) 1

ADJUSTED X,Y= 6240 5948

STAGE FOCUSED AT 8240, 5%48

J,ANGLE,SLOPE,K = 1 4.319 2,412 38

XTAIL,YTAIL , XHEAD ,YHEAD = 20 27 12 g

XTAIL 20 19 19 419 B 18 18 (7 17 47 16 16 45 1S 1% 14 (4 14 13 13 43 12 12
YTAIL 27 26 25 24 23 22 21 20 19 18 17 16 1S5 14 13 42 41 0 9 e 7 6 S
DIR 11 11 11 {1 41 1t 41 44 11 14 41 £1 44 11 44 41 41 41 11 14 1t 13 44
HAG 1 1 2 4 3 2 2 1 i i -2 2 -3 -3 s -4 -1 -4 -3 -2 0 -1 -3
MAX. GRAD FOR POINT & 1 WAS 4 AT 19, 24

BIST,TOTPTS,UNCHPY =  48.35 1

TTYRPUYTPOINT, TRCYTANGLE="T {4388 7803 T xSy

TRANSFORMED POINT X,Y,G(J) = 8321 5901 11

Q REL IS-NODDF,DE)LX,DELY,LINK= 2 24 64 i

@ REC IS~NODE ,DELX,DELY,LINK= 1 0 0 2

ADJUSTFD X,vy= 0333 S933

STAGE FOCUSED AT 8333, 5933

J ,ANGLE ,S1_0OPE ,K = 1 4.319 2.442 -38

XTAIL ,YTAIL ,XHEAD ,YHEAD = 20 27 i2 S

XTAIL 20 (9 19 19 18 18 18 (7 (7 17 416 46 45 15 5 14 f4 14 13 13 13 {7 12
YTAIL 27 26 25 24 23 22 21 20 1% 18 17 16 15 14 13 12 {1 {0 9 8 7 [} S
DIR 11 14 11 $1 14 41 £1 f4 44 £f f4 4 t4 $4 44 44 41§31 1% 41 1% 19 11
MAG ~1 [] L] 0 ] 1 0 0 0 2 3 3 0 0 -2 - 2 -1 3 -5 -6 -a 1
MAX. GRAD FOR POINT & 2 WAS S AT 14, 10

DIST,TOTPTS,UNMCHPT = 118.95 2 ]

TTRANSFORFED PUINT X, Y,GTTT = " BAGS — 6363 "~ 1%

Q REC IS-NODFK ,DEI.X,DFELY,LINK= 3 25 -5 4

@ REC JS~NODE,DFELX,DELY,LINK= 4 1 -8 S

@ REC IS-NODFE ,DELX,DFLY,LINK= ) -13 -2 b3

Q REC IS-NODE,DFLX,DFLY,L INK= 1 -14 -22 2

Q@ REC IS-NODE,DF! X,DFLY,LINK= 2 33 ] 3

ADJUSTED X,Y= B89 53S0 R

STAGE FOCUSED AT 8869, S350

J ,ANGLE ,SLOPE K = i 3.%34 414 ?2

XTAIL,YTAIL,XHEAD,YHEAD = 27 20 s 12

XTAIL 27 26 2S 24 23 22 21 20 19 48 47 46 45 14 43 12 4t 10 9 8 7 [ S
YTAIL 20 19 19 19 18 18 18 17 47 17 46 46 1S 15 15 14 14 14 {3 13 43 12 11?
DIR 16 §S 45 15 1S 45 1S5 15 (5 45 15 49 4SS 4S5 4% 15 4S5 {5 4S5 4S 1S iS5 S
MAG 3 -4 -5 -2 -7 -4% -41 -3 4 10 13 2 -13 -13 -7 1 1 0 -2 -3 -2 -t -4
MAX. GRAD FOR POINT ¢ 18WAS 13 AT 17, 16

DIST,TOTPTS,UMCHPT = 3046.40 18 S

INPUT POINT, X,Y,ANGLE= 15412 7010 ag2

TRANSFORMED POINT  X,Y,G(J) =  8ABB 5304 15

Q REC IS-NODE,DELX,DELY,LINK= 4 14 -11 S

@ REC IS-NODE,DELX,DELY,LINK= s  -13 -2 !

Q REC 15-NODE,DELX,DELY,LINKs 1 -14 -2 2

Q REC IS-NODE,DELX,DELY,LINK= 2 33 0 3

Q REC IS-NODE,DELX,DELY,LINK= 3 25 -5 4

ADJUSTED X,Ys 8897 5293

STAGE FOCUSED AT 8897, 5293

J,ANGLE,SLOPE,K = { 3.534 414 92

XTAIL,YTAIL ,XHEAD ,YHEAD = 27 20 s 12

XTAIL 27 26 25 24 23 22 24 20 19 18 417 16 1S 14 13 12 (1 {0 9 a ? [ S
YTAIL 20 19 19 19 18 48 4B 17 47 17 16 16 15 15 15 14 44 $4 13 13 13 12 47
BIR 15 1S 15 15 45 15 {5 45 45 35 45 1% 15 15 15 45 15 15 {5 15 45 15 15
NAG 45 30 14 (1 35 34 30 & -4 -7 -4 3 -i9 -44 -45 ~42 -2 0 ~t 0 -1 -4 0
MAX. GRAD FOR POINT @ 19WAS 35 AT 23, 18

DIST,TOTPTS ,UNCHPT = 3464.44 19 5

DIST = 26.9 UMCHPT=  § QUT OF 19 TOTAL POINTS

Figure 5.7 Results of verification of feature from point

P to point R of DREUX 13, with servoeing.




72% of the points, the value for D(P) is much greater than those obtained
for any of the other features. Upon examining the output produced (see
Figure 5.8), it is noted that there is no recognizable pattern to the
location of the peaks. This leads to the high value of D(P) and decrease<
ones confidence that the features exists in the image, and in fact it does
not.

The results obtained in running the verification software on
the DREUX 13 image have buoyed our confidence in its ability to verify
features in an image. It demonstrated the ability to follow highly curved
lines, find both distinct and not so distinct features and indicate fail-

ure when an attempt is made to track a feature that is not present.
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GIVE FILE NAME OF INPUT FILE - (3A2)

CTDRQT

INPUT POINTY, X,Y,ANGLE= 13896 9182 28e
TRANGFORMED POINT X,Y,G(J) = 8404 7745 9
Q@ REC IS-NODE,DFLX,DELY.LINK= 1 ] ] 1

ADJUSTED X,Y= 8404 7745
STAGE FOCUSED AT 8404, 7745

J,ANGLE ,SLOPE ,K = i 4.7122883.564 0
XTAIL ,YTAIL ,XHEAD ,YHEAD = 16 25 16 7
XTAIL 16 46 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16
YTAIL 25 24 23 22 21 20 19 18 417 16 315 34 13 42 4t 40 9 8 7
DIR 14 9 9 9? 9 9 9 9 9 9 9 ? 9 9 9 9 14 9 9
MAG -1 -1 - 0 1 1 [ T 1 2 2 1 0 -1 0 S 2 1
MAX. GRAD FOR PUINT & 1 WAS 1 AT 16, 7
DIST,TOTPTS ,UNCHPT = .08 i 1
~ TRPTPUTRY, X, V. ANGLE= 15754 11034 30y : h
TRANSFORMED POINT X,Y,G¢)) = 10934 8870 7
Q@ RFC IS-NODE,DELX,DELY,LINK= 1 46 -93 2 j
@ REC IS-NODE,DE! X,DFLY,L INK= 2 i6 -60 3
Q@ REC IS-NODE,DFLX,DELY,L TNK= 3 -15 -32 4
@ REC IS-NODF ,DELX,DELY,LINK= 4 S8 -i06 S
Q REC IS-NODE,DFLX,DELY,LINK= S 67 -8 1
ADJUSTFD X,Y= 10968 8789

STAGE FOCUSED AT 10968, 8789
J ,ANGLE ,S51.0PE K = 1 S.105 -2.417 38
XTALL,YTAIL ,XHEAD,YHEAD = 12 27 20 S

XTAIL 12 13 13 13 14 t4 14 15 15 45 46 44 17 17 47 18 18 18 19 19 19 20 20
YTAILL 27 26 25 24 23 22 21 20 49 418 47 46 1S5 14 13 42 43 10 9 a8 7 ] S
DIR 7 7 7 7 7 7 7 7 7 ? 7 7 ? 7 7 7 7 7 7 7 7 7 7
MAG 1 i 2 1 0 1 2 2 1 0 1 2 2 S 0 0 3 2 24 A% S6 12 -29
MAX. GRAD FOR POINT #23 WAS S6 AT 19, 7

DIST,TOTPTS,UMCHPT = 676.02 23 7

INPUT POINT, X,Y,ANGLE= 16068 11124 311

TRANSFORMED POINT X,Y,6(J) = 11070 8920 7

Q@ REC IS-NODE,DELX,DELY,LTINK= 2 $8 -4S3 3

Q@ REC 1S-NODE,DELX,DELY,LINK= 3 -15 -32? 4

@ REC IS-NODE,DELX,DELY,LINK= 4 S8 -106 S

Q REC IS-NODE,DELX,DELY,LINK= S 67 -418 1

@ REC IS-NODE,DELX,DELY,LINK= 4 46 -93 2

ADJUSTED X,Y= 11112 8820

STAGE FOCUSED AT 11412, 6820

J,ANGLE ,SLOPE ,K = 1 S.105 -2.447 38

XTAIL ,YTAIL ,XHEAD ,YHEAD = 12 27 20 S

RTATL 12 13 13 43 14 14 44 1S £S5 1S 46 46 17 17 417 18 18 18 19 19 49 20 20
YTAIL 27 26 25 24 23 22 21 20 19 18 17 16 §5 44 13 4?2 11 10 9 e 7 [ S
DIR 7 ? 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 ? ? 7 ? 7
MAG 3 1 1 0 0 0 2 S 4 2 6 25 42 24 -12 -43 -28 -7 S 4 1 -1 0
MAX. GRAD FOR POINT ¢ 24 was 42 AT 17, is

DIST,TOTPTS,UMCHPT = 6B7.34 24 7

INPUT POINT, X,Y,ANGLE= 16224 11270 313

TRANSFORMED POINT X,Y,G(J) = 11264 9044 7

Q@ REC I8-NODE,DELX,DELY,LINK= 3 S0 -108 4

Q REC IS-NODE,DELX,DELY,LINK= 4 S8 -106 S

Q REC IS~-NODE,DELX,DELY,LINK= S 67 -118 b

Q REC IS-NODE,DELX,DELY,LINK= i 46 -93 2

Q@ REC JS5-NODE,DELX,DELY,LINK= 2 58 -i53 3

ADJUSTED X,Y= 11319 8896

STAGE FOCUSED AT 11319, 8896

J,ANGLE,SLOPE ,K = 1 5.409 -2.417 38

XTAIL,YTAIL,XHEAD, YHEAD = i2 27 a0 S

XTAIL 12 13 13 13 14 44 14 15 35 S 46 46 17 17 17 18 1B 18 19 19 19 2a 20
YTAIL 27 26 25 24 23 22 21 20 19 18 17 16 15 {4 13 (2 {1 {0 14 8 7 [ s
DIR 7 ? 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 K
MAG 19 S -8 -17 -16 -0 -2 2 0 -3 -5 -i 2 2 1 -1 -4 1 2 4 2 -t i
MAX. GRAD FOR POINT ¢ 24 wAas 4 AT 19, 8

DISY,TOTPTS,UMCHPT = 755,69 as 7

DIST = 42.0 UMCHP Y= 7 OUT OF 25 TOTAL POINTS

NEIGHT = 13196

Figure 5.8 Results of attempted verification
lineal from point Q to point T.

of non-existent




A Discussion_and conclusions on verification

The work on verification should be regarded as pilot work and

E too weak to support firm conclusions. The question of evaluation appears
to be difficult at two distinct levels. First of all, how do we actually
score the degree of match between a stored lineal track and a set of
observed points from the image? How should the extracted score be
interpreted? Ultimately the answer to this question must come from an
actual purposed application. The current experiments reported only

the number of points matched and the popular RMS distance between

observed and predicted points. At the second level, how is the performance
of a verifier to be evaluated over a set of different lineals? Clearly
the answer is dependent on the scoring at the first level. How well

did the verifier perform on river I and how well did it perform on

the 7 images of France?

M research towards solving these questions needs to
be done. At present only subjective or qualitative statements can
be made about the past work. In general it can be said that the verifi-
cation procedure performed consistently well (i.e. produced good numbers
with little variance) on features which were distinct to the human
observer. These were major roads and clear field boundaries where
gradient values were consistently above threshold and agreed in location
with the human digitization. Thus verification of a set of such known
features appears to be a viable means of confirming a hypothetical
registration transformation obtained from other evidence.

Some problems arose in verifying weak features -- features which
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could be made out by a human using global tonal context and perhaps
semantics. These were driveways and rough field boundaries. Sometimes
there were competing edges nearby, such as caused by buildings along a
road. As a result, the gradient values of feature points selected

by a human were often as low or lower than either the noise threshold
or the gradient value on a competing edge. Lowering the threshold
cannot be done by itself because the large tolerance in predicted
location would provide many possible spurious gradient peaks along the
profiles. A probable remedy is to use 2-D trend (shape) from the stored
feature in order to better select the "correct'" below threshold peak.
This should be tried in future experiments.

The philosophy and technique of semoeing deserves further
consideration. Servoeing was installed because accurate location predic-
tions were impossible due to small errors in locating the image origin
and approximation error in the transform Ta-l. The belief is that local
features can be used to achieve better matching than is possible using
only a global alignment. (This is comparable to getting accurate
targeting by combining inertial guidance with image correlation in the
target area.) However, servoeing can confuse real differences in the
feature with differences due to locational error.

The current servoeing scheme records the differences (Axi,Ayi)

between the locations (x ) predicted by ﬂm_l applied to the stored

p,17p,i

feature track and the locations (xo ,yo i) observed by doing the profile
1] b

i
peak detection previously discussed. A window of up to 5 of the most
recent differences is saved and used to adjust the next prediction as

follows.
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(1) The next prediction is made by transforming the next point

on the stored curve and then adjusting it according to

the window of differences.
N

x_ ,y J)=1 (u ,v.) +1/N 1 (&%, ,0y.)
‘ p,0n p,n a1 n n i=1 i i

where N £ 5.

(2) The next observed curve point (x y n) is obtained

s
o,n o,

by performing peak detection on the gradient profile

y ).

perpendicular to the curve and through point (xp 2’Yp,n
’ bl

(3)_ The difference between the prediction and observation is
recorded as the most recent difference in the window
(queue) and the least recent difference is purged.

(Axn,Ayn) = (x_ _,¥ ,n) - (x )

o,n’’ o p,n’yp,n

Step 1 weights all differences in the window equally, a policy
which might be changed later. Step 2, however, presents the most opportunity
for improvement. Perhaps the peak detection scheme should also consider
the trend of the points in the window. In this manner the tracking should
be less likely to go astray from the path with best global shape. This should
be tried in future experiments.

In the future more attention will have to be paid to the interpre-
tation of the differences between the predicted and observed curve points.
Accuracy analysis must be done in order to get an error value to be used
in interpreting the RMS value gotten from the verifier. Also, the patterns

of missing points should be scrutinized to detect structured changes

between the current imagery and the mapped imagery.
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6. Summary of Conclusions

LNK's registration procedure appears very promising. The procedure will
provide the full RS&T transformation without an initial approximate transform—
ation. The procedure seems to be adaptable to 3-D imagery which can be model-
led. LNK's procedure can work with a wide range of features and is thus widely
applicable. In particular, abstract vectors formed between point features show
promise in being the most useful in rapidly providing an accurate transforma~
tion.

Since image to GDB registration did succeed in many cases with a very
weak representation of the image, feature extraction can be less reliab_e than
what is being attempted by most A.I. workers. Results reported here strongly
support the potential for map-guided image analysis. Future testing is required
to diversify the imagery handled, particularly to try images with little or no
man-made structures. Accordingly other features will have to be detected and
extending the Hough detector to handle more complex shapes is recommended. It
is recommended that use of region features be added and pass points be identified
along arSitrary boundary curves, such as high curvature points.

The intersection classification procedure worked very well on a limited set
of non-aerial imagery. It is recommended the procedure be tested on a variety
of imagery in order to determine its reliability. In addition the routines
should be optimized to meet time and space requirements and should be extended
to include intersections of curved lines.

Models for cartographic classes provide a means for disambiguating carto-
graphic overlays. The disjoint principal components model was investigated as
a means for class modelling. This method was selected both because it provides
a natural measure of the strength of membership of a sample in each class model-

led, and because it has proven useful in other fields such as chemistry.
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Some simulation studies were performed on synthetic data to allow for

comparison of the full ranking of class labels as provided by the disjoint

orincipal components model, the pooled covariance model and the true den:ir~

functions. This comparison would not have been possible with real data unless

the underlying class distributions were known. While the disjoint principai
components model performed poorly in the simulations, the results may not oe
indicative of their usefulness when using cartographic data. In fact, the
classes were easily separated on the limited cartographic data available.

Therefore, we recommend extensive testing of this procedure on real data
to provide a basis for evaluation. In addition, although the disjoint princip:.
components model may not be suitable for cartographic domains, the idea of mode!-
ling each class separately should be explored further. In particular, methods
such as clustering coupled with measures of the distance from a sample to a
cluster could be used to model classes.

Various disambiguation procedures may be applied to provide a unique label
for each region from a set of possible labels. A graph theoretical region
matching procedure, the region adjacency graph, and a symbolic region matching
method were investigated. Initial encouraging results on limited synthetic datu
indicate that these procedures should be explored further on more realistic prob-
lems.

Using servoeing techniques, the verification of lineals was successfully
performed in a few images. However, much more diverse testing is recommended
to assess the true potential of the technique. Boundaries of regions such as
land/water and forest/field should be tried.

It is recommended that methods be devised for verifying region features in
the image and that knowledge of elevation be included in order to augment pure

grey-scale information. As much more needs to be learned about interpretation

of the verification results with respect to change detection. It is recommended




that individual problems be studied and perhaps feature specific decision rules

tried. Verification of image region labels is a complex problem involving the

weighing of evidence from several sources such as texture measures, intersection {
type descriptions, region shape descriptions, location, and neighborhood con-

text. We recommend a study of the feasibility of a knowledge based interative

system for verification. This study would entail detailed analysis of con-

straints on image regions and methods for structuring these constraints for in-

ference.
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Appeiidix A Software Qverview

The basic software used to support the research documented in
this report was developed over a 3 year period on a Univac 1108 computer and
then converted to run on a Hewlett-Packard minicomputer. There were
substantial changes that had to be made due to word size differences,
memory size differences, compiler differences, and the exciting change from
access to pre-scanned digitzl pictures to on-~line picture sampling. Nearly
’all driver programs were entirely rewritten and some enhancements were
made to subroutines.

L.N.K. software currently in place at the E.T.L. ROSA Lab can
be subdivided irko 4 major subsystems which are detailed in appendices

B,C,D, and E. These subsystems are as follows.

A.l Research Image Processing System (RIPS or RPS)

RIPS conaists of routines which operate on grey scale imagery
or gradient imagery. Their main objective is to extract edge features
from gradient imagery. The most centrally used routine is the Hough
straight edge detector. There are also routines for visual display and
histogramming. RIPS data structures reside in a set of 6 named common
blocks.

/RPSAC/ contains the accumulator array and auxiliary information for
performing the Hough transform.

/RPSCC/  contains definitions of codes for linking a point with another
point in its neighborhood thus forming generalized Freeman

chains.




JRPSGC/ contains the gradient image and auxiliary information such as

the gradient histogram and mask definitioms.
/RPSIC/ contains the last sampled 32x32 image and auxiliary information.
/RPSSC/ contains RIPS system parameters and other globally used information

such as intermediate I/0 flags, current sampling window definition,

and the DCB and buffer for I/0 with the edge element file EEFILE.
/RPSWC/ contains working space for a list of selected image points for

use by the feature detectors

These common blocks are added to program modulés as macros which
are given in appendix B to document in detail the common block content and

the routines that operate on them.

A.2 Edge extraction routines EDGEX and EDGEY

EDGEX and EDGEY are two programs that extract lineal features
from on-line imagery. EDGEX extracts straight and curved edge elements
from single 32x32 windows. Window settings are gotten from a patterned
scan of the image -- usually a raster scan of butting windcws is used to
cover the image but more flexible scanning is possible. The smart
routines called are LHOUGH and LKTRKR which extract straight and curved
edges respectively. Records of detections are written out to file
EEFILE for plotting, registration, and/or input to EDGEY.

EDGEY takes the primitive detections made by EDGEX as input
from file EEDGEX and attempts to extend straight edge elements and detect
intersections along them. The gradient masking techniques are heavily

used by EDGEY to enhancedatection of desired edges or to suppress

competition from known edges. Records of extended edges or detected




intersections between edges are written out to file EEFILE. Both EDGEX
and EDGEY require about 15 seconds of processing time per window sampled

due to gradient computation time. More details appear in appendix C.

A.3 Registration software REG.

The registration software contains no image processing operators.
Input to REG consists of image and map abstractions which are currently
just a set of vectors. Output from REG consists of a listing of possible
registration transformations (rotation and translation) along with an
evaluation of their merit. At the heart of REG is a set of routines that
perform a clustering operation in 3-space. The clustering is done by
binning points into a set of 10x10x10 bins. 2,3, or A'iterations of
binning are typically required to get the bin size down to the size
of error allowed in the final transformation parameters. Appendix D

has details.




A4 Verification software VERIFI

A fourth program and auxiliary routines exist for top-down
verification of lineals in an image. Lineals are known a priori from a
map or from previous image analysis and are to be referred to raw imagery
via the registration transform for verification. The software transforms
each point along the lineal using the registration transform and then
performs a search for a match to the point by examining gradient profiles
perpendicular to the directionof the curve. A match measure is built up
for the entire lineal by averaging the squared distance between the predicted
and observed locations of individual points. A special feature of
VERIFI is its ability to make local adjustments (servo) to the predicted
location of points based on past observations. This allows for
legitimate departure from strictly linear registration transformations due
to image deformations, relief displacement or actual movement of the feature

over time. Details of the verification software are in Appendix E.




Appendix B: RIPS Software

The Research Image Processing System (RIPS or RPS) is composed
of routines that operate on digital images for the purpose af feature
extraction or display. While there are driver programs which organize
these routines for interactive exploration of imagery, the primary function
of RPS software is as a subroutine library for image processing programs

such as those documented in Appendices B,C, and E.

Routine Arguments Function

ARRAY (IDELX,IDELY, This routine moves the film stage
IGXLO,IGYLO) to (IDELX,IDELY) relative to the current

array position and then obtains the 32x32

sampling sample wirdow. (IGXLO,IGYLO) is

returned as the updated global stage
position. ARRAY also updates the image
common block with details about the
newly taken sample.

CNVTPR (THETA,R,NCOLS, CNVTPR converts a Hough detection from
NROWS ,NPTS ,X1,Y1, polar form (THETA,R) to a directed edge
polar to X2,Y2) from poinc (X1,Yl) to point (X2,Y2) which
rectangular lie on the boundary of the sampling
conversion window. The window is defined as NROWSx

NCOLS which is typically 32x32 for the
ROSA lab. The darker side of the edge
lies toward the right when traversing
from (X1,Yl) to(X2,Y2). NPTS is returned
as 2 iff conversion is successful.

FILTR (AX,AY,BS,BY,CX,CY Used to filter or mask out an existing
TYPE) edge (AX,AY) to (BX,BY) from the current

edge window. (CX,CY) is the current array

masking center in global stage coordinates. TYPE

specifies what kind of masking is to be
done by the next gradient operators to
be applied as follows.




Routine Arguments

e

Function

FIXANG (RESLTN)

accumulator
array
setting

GRADDL (XLO,XHI1,YLO,YHI,
TYPE)

gradient

magnitude

and direction

HISTOG (TYPE)

image or
gradient
histogram

LFOCUS (NHITS,ITHRES,IRESL)
focus

Hough
detection

TYPE=1 to mask out all points with
same gradient direction as edge

TYPE=2 to mask out all points with
same direction or 180° +
same direction as @dge .

TYPE=3 all of the above + mask out al
points along the edge (AX,AY)
(BX,BY) regardless of gradient
direction.

Masks are actually set in gradient image

common by calling routine MASKS.

This routine sets up the accumulator
array in preparation for performing

the Hough transform. RESLTN= 8,16, or
32 depending on what angular resolution
is being used for gradient direction
calculations. The RIPS accumulator
common block is intialized Tor use by
routine LHOUGH.

Computes a 32 directional gradient at
each point within the subwindow

X 6 (XLO,XHI) Y 6 (YLO,YHI). Iff TYPE=O
then thinning is also performed on the
resulting gradient image. The resulting
gradient image is stored in gradient
image common.

Computes histogram of image grey scales
(if TYPE="IM") or gradient image (if
TYPE=""GR"). The histogram is stored in
image common or gradient image common
forr use by SELECT or may be optionally
printed.

Used to focus Hough detections made with
a coarse 11° angular resolution to a

209 angular resolution. The list of
NHITS £5 coarse detections is passed to
LFOCUS from LSCAN through accumulator
common. ITHRES is the threshold for the
original detection. If the strength of
the fine detection falls below 2/3 of
ITHRES the detection is discarded. TIRESL

is the gradient direction resolution which

is 8,16, or 32. Detections are written to
file EEFILE.
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Routine Arguments

Function

LHOUGH (XCENTR,YCENTR)

Hough line
detector

LKTRKR (XEO ,XHI,YLO,YHI,
LTHRSH)

continuous

curve

detector

‘ LSCAN (NTHRES, NDET)

accumulator
array peak
detector

MASKED (X,Y,D)

point
masking

MASKS (rop,1,J,K,L)

mask
setting

196

Computes the Hough transform for sciaig..
edge détection. Details of the detector
are assumed to be set up in accumulator
common by FIXANG. The input points are
taken from a list in work common. CQutput
is the accumulator array. (XCENTR,YCENTR)
define the origin of the coordinate sys-
tem to be used and is typically the
window center (16,16). Detection of
peaks in the accumulator array is left
for LSCAN.

Detects sets of high gradient points
organized into continuous curves. Points
have been linked by WRKLNK in the
gradient image. (XLO,XHI,YLO,YHI) define
the search window and LTHRSH defines

the minimum number of points which make
up a curve. Detected curves are chain-
encoded and written out to file EEFILE.

Detects local maxims in the accumulator
array which exceed threshold NTHRES. Up
to 5 detections are reported in accumulatu:
common and the number of detections is
returned in NDET.

Logical function returns true iff point
(X,Y) with gradient direction D is to
be masked out of consideration due to
location (X,Y) or gradient direction D.
A previous call to FILTR or MASKS must
have been issued to define the masking.

Used to bulld masks for location or

gradient direction masking as follows.

10P=1 clears all masking

I0P=2 mask off (X,Y) if to the right
of halfplane defined by (1,J)-

(X,L)

10P=3 mask off direction D 1if D 6
(L,D)

I0P=4 print out current mask
definitions.




Rout ine

Arguments

Function

MLTDIR (X,Y,RES,MAG,
DIR,IERR)

multiple

resolution

gradient

PRINTA (NUNIT)

point accum-
ulator array

PRINTI (XLO,XHI,YLO,YHI,
CHAR)

print

grey

scales

SELECT (XL0,SHI1,YLO,YHI,
THRSHL)

select

heavy

gradient

points

WRKLNK (NCIRCL,SRCANG,
DRTHRS)

link curve
points to
nefghbors

Computes directional gradient at point
(X,Y) using directional resolution of
RES=8,16, or 32. Magnitude MAG and
direction DIR of the gradient are
returned. IERR#¥ 0 if error encountered.
(X,Y) must be 2,4, or 5 pixels off
window boundary for computation of the
8,16, or 32 directional gradients
respectively.

Prints out the contents of the accumulator
array on 1/0 unit NUNIT. A utility
routine for human useable output only.

Utility routine to print out human
useable grey scale plots of the image
(CHAR="IM") or gradient image {(CHAR="GR")
of subwindow defined by X € (XLO,XHI),

Y € (YLO,YHI).

Routine for automatic selection of a
threshold THRSHL such that a fraction
FRACT of the gradient values exceed
THRSHL. HISTOG 1is called to get

a histogram and then THRSHL is set from
the histogram and FRACT. Points that
exceed the threshold are then placed

in work common for the detection routines.

Points are selected from subwindow
defined by X 6 (XLO,XHI), Y 6 (YLO,YHI)

Finds best connecting point for each
point in work common in both the forward
and backward direction. Connections

are used later by LKTRKR to extract

long, continuous chalns {ndlcat ing curved
cdpen.  NCIRCL defined nlae of nefgh-
borhood searched for connect Ing polnt.,
Connecting point must lle within the

angular range defined by SRCANG and have
gradient direction within DRTHRS of

the first point. Thus SRCANG and DRTHRS
are used to contrdl allowed curvature.




. CHOOOKRIPS ACCUMIN ATOR ARRAY H.P. VERSION 29DECT7HXKKKKKXK
i l"

1 TNTEGEFR RUO RHT  RIUMP ACC NR NTHETA, TWIDIH

. FNTFGFR DGRFLG . LOPTR HIPTR,FININO

REAL COSINE,SINE ,KTHFTA

INTEGER RADIUS ,ANGLE,WEIGHT, WGDUMY

P v igho

£ COMMON AREA 15 1664 16-RIT WORDS LONG,OR A3 178 WORD WLOCKS
COMMON /RPSAC/[LENACC,UGDUMY,RLO,RHI,RJUMP,TNIDTH,NR,NTHETA, i

+ DGRFLG,LSCNUM,RADTUS(S) , ANGLE(S) ,WETGHT(S) ,LOPTR (3R) ,
+ HIPTR(32) ,FININO(32),
+ COSTINE (64) ,SINE (64) ,KTHETA(64) ,ACC (32, 33) i
C
’ C  Aace ACCUMULATOR ARRAY FOR THETA-RADIUS SPACF
' T KTHFTA VALUFES FOR POSSIRLE ANGLES IN DEGREES ‘
£ FININD FOR TRANSLATION EETWEEN ANGLE TNDEX AND FINT DIRFCTT " '
(L DGRFLG INDICATES IF ANGLES IN DEGREES ( ) OR FINIS ( ‘
C THETA VALUE OF ANGLIT SET IN RFAL RADTIANS
C  RLO,RHI,RJUMP DO-I.00P DEFINITION OF RADIUS VALUES ‘
C NR NUMRER OF RADIUS VALUES
. NTHETA NUMKER OF ANGL.ES USED AND STORED IN KTHFETA ARRAY
[ COSINE COSINES OF ANGLES IN KTHETA ARRAY
C SINE SINES " " " f
rf TWIDTH WIDTH OF STRAIGHT LLINE TEMPLATE
C WGTHOU . INDICATES WEIGHTED (=1) POINT OR WEIGHT & POINT (NOT i1
¢ LOPTR,HIPTR POINTERS TO KTHETA ARRAY TO FILTER TRANSFORM ACC. 10 |
; r : GRADIENT DIRECTION
C RADIUS,ANGLE ,WEIGHT PEAK RESPONSES FOUND IN ACCUMULATOR ARRAY
C LSCNUM NUMEER OF PEAK RESPONSES
§ C
< CXXKKKEND ACCUM PROC H.P. VERSION 29DECY8 R.TI.P.S.%KKKX

r TMAGF PROC H.P. VERSION 3Jt 0CT 78 KRR TP S¥Kk
!

C
C STORAGE AND FORMAT FOR COMMON RLOCK CONTAINING TMAGE
C

INTEGFR LENIMC IMNAM,NCODES,NROWS ,NCOLS ,LFVELS , TMAG ,NCOI WD
TEGER HISTIM, IMGPAD,UXLO ,UXHI ,VUYLO,VYHT ,HISTFG
COMMON /RPSIC/ [LENIMC, IMNAMC3) ,NRQOWS ,NCOLS ,NCODES  NCOI. WD,

2 & LEVELS,UXLO,UXHI VYLD ,VYHI ,HISTIM(464),
' & IMGPAD , IMAG (372, 372)
C
r fENIMC NUMEFR OF WORDS IN COMMON (0 II" NOT INITIALIZED)
r (FI.SE LENIMC = 1100)
r IMNAM ASCIT NAME 0OF IMAGE
C NROWS ,NCOLS NUMEBNER OF ROWS AND COLUMNS 0OF IMAGE
£ | EVELS NUMEFR OF GREY LEVELS USED (0,1,2...,,LEUR.S-1)
( THAG IMAGF. ARRAY
f NCOL WD ARRAY MAPPING CONSTANT 0OF OLD UNIVAL RIPS
( HISTFG HIGTOGRAM VALIDITY FLAG (NOT USED J0MAR79)
f ITETTM HT5TOGRAM ARRAY
C IMGPAD PARDING FOR PROPER EXEC CALL TO SAMPLE ARRAY

C S... SCREEN WINDOW DEFINITION
£ v, VIRTUAL WINDOW DFFINITION (IN ARSOLUTE FILM COORDS)

¢ END TIMAGE PROC WKKR TP SRk

34
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BN TS

r CHAEDF S PRrROC H.oP. VERGION P2 NOUV 7H E R EIRNNERES ¥ 3
e
r LTNE CHASTNG AND 1L TNKING CODES FOR GENFRAI FRIFEMAN CODES
C
INTEGER DX DY, COMPMT
COMMON /RPSCC/UDX(68) ,DY(68) ,COMPMT (£83)
C .
[ DX DXC(LINK) TS X INCREMENT FOR FOLLOWING L TNK
C DY SIMILAR
c COMPMT 180 DEGREE COMPLIMENT OF LINK
C
C CHSDF & PROC H.P. VERSTION 22 NOV 78 KKKRTIPSKRKXK
FTN4.,L.,T
BLOCK DATA RPSCH
C
INCLUDE RPSSYC
INCLUDE RPSIMC
INCILUDE RPSGRC
INCLUDE RPSWKE
INCILUDE RPSACC
INCLUDE RPSCHC
C
DATA DX /5.,1,0,-4,-%,-4,0,14,
+ 2.2,2,4,0,~-4,-2,-2,-2.-1,0,%,
+ 2,3,3,3,2,4,0,-¢,-2,-3,~3,-3,-2,-4,0.,1%,
+ 2,3,3,2,-2,-3,-3,~ P,~1,0,1,4,4,4,1,0,
+ ~4,~4,~4,-4,-4,-3,-2.,2.,3,4,4,3,2,-7,~-3,~-4/

S9 45 46 47 60
%8 44 34 35 36 37 61
K7 43 33 48 19 20 24 38 62
6 32 17 6 7 8 9 22 48
5% 31 46 % X 1 10 23 49
B4 30 4S5 4 3 2 ({4 24 50
68 42 29 14 13 12 2% 39 63
&7 44 28 27 26 40 64
66 53 SR K1 65

kv izizie v EeEe AR R

DATA DY /0,-1,-4,-1,0,4,1,14

+ 1.,0,-1,*2,—2,"2."1,0,1,«’;2»2;

+ 2.1,0,-4{,~-2,~-3,~-3,~-3,-2,-4,0,41,2.3,3,3,

+ 3,2,-7,-3,-3,-2,2,%,4,4,4,1,0,-1,-4,-4,

+ -4 .-4,0,1,2,3,4,4,3,2,~-2,~-3,~-4,-4,-3,-2/

DATA COMPHT /5,6.,7.,8,4,2,3,4,15,16,47.48.,19.,20.9,10,1
+ 29,30,34,32,33,34,35,36,21,P22,23,24,725,26,27,28,
+ 44 ,42,43,44,37,38,39,40,54,%2,53,54.,55,5%6, 4R 46,
+ 47\48.49,50,63,64,h5,66,67,68,57,59.39,60, bR/

C
. COMPMT(0) TS UNDEFINFED
C CHSDF S PROC H. P, VERSION P22NOV78 AOKKR TP Sk X

END

199
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GRADFS PROC

H.P. VERSION 3% 0CT 78 HOIOKE TP G 0Kk

FORMAT AND STORAGE OF COMMON STORING GRADIENT IMAGKE

INTEGER LENGREC ,GENAM,HISTED ,HEXHT ,HAXLO L HEYHT , HOYL O, HTGT
. INTEGER MAG,DIR,SUPRES,G(32,32) ,FLDIR(IE2,32) ,RILDIR(3I2, A
b INTEGER NTRPLS,NPAIRS,MKDIRY ,MKDIRR

i REAL. MKLOCA,MKLOCR,MKLOCC

- INTEGER RESLTN,WGTHOU

REAL. HSMEAN,HSYAR

J C
! - LCOMMON_/RPSGC/] LENGRC ,GRNAM(3) ,RESL TN WGTHOU , HSMEAN ,HSVAR |
2 A S HSXLO,HSXHT (HEYLO ,HSYHT ,HTISTFL ,HISTGD(64) .
& MAXMAG ,
& MAG(32,32) ,DIR(32,32) . SUPRES (32 ,32),
A NTRPLS ,MKIL.OCA(4) ,MKI.OCR(4) ,MKILLOCC(4) ,
A NPATRS,MKDIR1(4) ,MKDTR2(4)
; EQUIVALENCE (G,MAG), (FLDIR,DIR), (RLDIR,SUPRES)
' C
C LENGRC NUMRER OF WORDS IN COMCON (0 IF NOT INITIALIZED)
c (ELSE I.LENGRC = 34i%2 )
C GRNAM NAME OF IMAGE FROM WHICH GRADIENT EXTRACTED
C RESLTN RESOLUTION OF GRADIENT DIRECTION (8,16,0R 32)
C WGTHOU PARAMETER FOR LLHOUGH TRANSFORMATION
£ HSMEAN , HEVAR MEAN AND VAR OF NOISE IN GRADIENT
C HS. . . WINDOW ON GRADIENT IMAGE WUSED FOR HISTOGRAM
C HISTFL HISTOGRAM VALIDITY FLAG (NOT USFDN I0MAR79)
C HISTGD HISTGDRAM OF GRADIENT TMAGE
C MAG GRADIENT MAGNITUDE ARRAY
C MAXMAG MAXTMUM GRADIENT VALUE+L = &#GRADIENT LFVFELS
M DIR GRADIENT DIRECTION
C SUPRES SUPPRESSION FLAG USED TN THINNING
C NTRPL S NUMEER OF HALFPLANE-DEFINING TRIPLES
C MKLOCA/R/C ALE,C COEFFTICIENTS DFEFINING HALFPI ANE MASK
e NPAIRS NUMEER OF PATRS DEFINING GRADTENT DIRECTTON MAGK
C MKDIRS /2 DIRECTION RANGE DEFINTING GRADIENT DIRECTION MASK
C G ALLTAS FOR GRADIENT MAG
C FLDIR,RBLDIR FNORWARD AND BACKWARD EDGE DIRFCTION
C
C END  GRADIT  PROC HKKR TP SxKN
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SYSTEM PROC H.P. VERSIDON 310CT78 KXKRIPSKRX
MODES . PARAMF TERS DFRUG FILAGS FOR RIPS

INTFGFR OINUNTYT OTUNTT DRUNTY , TMUNIY

TNTEGER 1DUHEF FENAMF EFEBRUFR

INTEGER RIPMOD ,DURUG ,LENSYC,PUIDTH SYINAM,SYNCOHT [ SYNROW

TNTEGER SXL0OL,SXHT SYLO,SYHT,SYUXLO, SYUXHY , SYUYLO GYVYHT
- [COMMON /RPSSG/] LENSYC , INUNTT,OTUNIT . DEUNIT, TMUNTT,

& PUIDTH,RIPMOD . SYINAM(Z) ,SYNROW . SYNCOL,

A GX1.0,SXHI ,8YLO,SYHY ,SYVUXL.O, SYUXHT

& SYVUYLO,SYVYHT ,DERUG(20) ,EENAME (Z) ,IDCREE (144)

& FERUFR (66)

LENSYC LENGTH IN WORDS 0OF COMMON (0 IF NOT INTTIALIZED)
{ FLSE | FNSYS = 187 )

SYINAM NAME (OF CURRENT IMAGFE

SYNCOL NUMRER OF COLUMNS DOF CURRENT WINDOW

SYNROW NUMRER OF RNOWS (OF CURRENT WINDOW

INUNIT INPUT UNIT NUMBER,TYPICALLY FOR UNIT S INPUT

DTUNIT QUTPUT UNIT,TYPICALLY PRINT UNIT 6

TMUNIT INTERACTIVE TERMINAL UNIT NUMRER, Y.E. 4 OR 4

RIPMOD RIPS MODE, YI.E. BATCH=0 OR INTFRACTIVE=i

DERUG ARRAY OF DEBUG, OR INTERMEDIATE 1/0 FLAGS, ONF OR
MORE FOR EACH RIPS MODULE

S... SCREEN WINDOW ON IMAGE IN 1.0CAL COORDINATES

sYV, .. VIRTUAI. WINDOW OF TMAGE IN ARSOLUTE FILM COORDINATES

PWIDTH WIDTH OF PRINT LINF IN CHARACTERS, =72 OR {13»

FENAME NAME OF EDGE ELEMENT FII.E, SHOULD RF "EEFILE"

IDCREE DATA CONTROL. KLOCK FOR EEFILE,OPENED AND CLOSFED BY DRIVER

EERUFR RUFFER FOR OUTPUT OF DETECTED EDGE FLEMENTS TO EEFTILE

END  SYSTEM  PROC XKOKR TP SxkK

WORKCM PROC H.P. UERSION 310CT78 KKKR IPSkxxk
DEFINES WORK COMMON RIL.LOCK WHERE SETS OF SELECTED POINTS STORED
INTEGER LENWKC,LENWRK ,WX(428) ,WY(428) ,WGRDIR (1P8)

INTEGER WGR (428) ,WFLDIR(128) ,WKNAM(3)
EQUIVALENCE (WFLDIR,WGRDIR)

7 FDQMON /RP LENWKC, LENWRK , WKNAM, WX, WY ,WGR , WGRDIR

L ENWKC TOTAL LENGTH IN WORDS OF COMMON (0 IF NOT INTITIAI T71D)
( ELSE LENWKC = $417 )

WKNAM ASCITI NAME OF PICTURE FROM WHICH POINTS SELECTED

LENWRK NUMBER QOF POINTS SELECTED

WX . WY X,Y COORDINATES OF SELFCTED POINTS

WFI.DIR ,WRLDIR FORWARD AND EACKWARD EDGE DIRFCTION AT POINT

WGRDIR GRADIENT DIRECTION AT POTINT

WGR GRADIENT MAGNITUDE AT POINT

END WORKCM PROC KHOKR TP SHOKK
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Appendix C: Edge extraction routines EDGEX and EDGEY.

Two batch programs exist which extract lineal edge data from
on-line imagery. EDGEX performs a patterned scan of the image extracting
straight and curved edge elements from sampled windows. One record is
written to file EEFILE for each edge element extracted. The scan pattern
is defined by giving a window spacing in stagels, the beginning window
center in stagels, and the trajectory of subsequent window centers in
terms of a Freeman chain code. The following output gives a sample runm
of EDGEX scanning around a road intersection. Typically EDGEX is used
by repeating a raster scan pattern across the entire image. EDGEX
allows checkpointing after each patterned scan is complete, or the user
can repeat the scan pattern over the next region of the image.

EDGEX requires about 15 seconds per sampled window; almost
all of that time being consumed by the gradient operator. LHOUGH and
LKTRKR are the smart routines called and extract straight or continuously
curved edge elements respectively. Detections are written to EEFILE
which must be saved by copying if the checkpointing facility is being
used. The following output gives routines loaded with EDGEX and sample
output of the program.

EDGEY is a batch program which takes the primitive detections
made by EDGEX'as input and attempts to extend straight edge elements and
detect intersections along them.

For each primitive straight edge element input to EDGEY, the

processing logic is as follows.




1) The stage 1s positioned so that the edge element should be centered
in the window. Competing edge directions are masked off and the Hough

u detector is called to verify the edge. 1If the edge is missed

1 (happens infrequently) then go to step 5 . If the edge 1s detected
adjust (servo) the stage to center the édge element in the window.

2) Search along the detected edge for nearly perpendicular intersecting
straight edges. When searching, the existing edge direction d and
d + 180° are masked off to remove contention. Also the stage is
toggled so that almost an entire window is visible on either side
of the existing edge. (See Figure 2.10).

3) Attempt to extend the current edge in the forward direction. 1If

a forward extension exists go to step 2, else continue at step 4.

4) Attempt to extend the current edge in the backward direction. If
a backward extension exists perform step 2 search for intersecting
edges and repeat this step. When no further backward extension is
detected continue at step 5.

5) Negate any stage adjustment made in step 1. Write a record out to
EEFILE defining the full extent of the edge found. (Any detected
intersections were written out to EEFILE when detected.)

The chief defect in EDGEY as currently implemented is that the

routine does not remember the edges it has already worked on. Quite

] often, EDGEX will detect deveral pieces of a long straight edge.

EDGEY is then condemned to extend and search from each piece, often
achieving multiple identical results. Theoretically the duplication is
easy to remove at a later stage, but a great deal of ctime 1s currently

wasted working over the same edge.




routine initializes accumulator array

links edge points to best neighbors

computes gradient at single point

converts polar vector to rectangular

block data routine for chain code common

c.1 Loader commands for creating EDGEX

Command Comment

RE, ZEDGEX main routine

RE,ZARRAY window sampling routine

RE, ZRPSFX

RE, ZRPSGL computes 32-directional gradient
RE, ZRPSHS histograms gradient

RE,ZRPSSE selects strong gradient points
RE,ZRPSHG computes Hough transform
RE,7ZRPSFO focuses Hough transform
RE,ZRPSLS scans accumulators for peaks
RE,ZRPSWR

RE,%RPSLK extracts continuous curves

RE, ZRPSPR prints grey scales if required
RE,ZRPSPA prints acc. array 1if required
RE,ZRPSML

RE,ZRPSVG

RE,%STAGE positions stage

RE,ZRPSMK sets gradient masks

RE, ZRPSCH

RE, ZRPSVT

RE, ZRPSAA

converts vector to gradient direction

worker subroutine for RPSLS




i
1
_l
) C.2 SAMPLE RUN OF EDGEX
s€
&
C
A
4
’ [ ¢
e
| €
[ ¢
3 L]
C
n
C
{ »
[ §
v
' ¢
» :RUN,EDGEX , 6,6
, GIVE IMAGE NAME(3A2)-
F € as21-3
; ‘ o GIVE FRACTION OF POINTS TO SELECT(REAL/FREE)-
| 0.0%,
C GIVE 10 1/0 FLAGS (INT/FREE)-
» ¢,0,0,0,0,0,0,0,0,0,
GIVE GLOBAL COORDINATES OF ORIGIN (INT/FREE)-
C  5000,5000, mMuS? Aeve STage posSitioned
» $ PTS ON LINE & # PTS ON CHAIN ? (2 INT/FREE)-
20,20,
( FIRST WINDOW DFF ORIGIN-DELX,DELY C(INT/FREE)-
L 6120,3072, o
GIVE SAMPLING TRAJECTORY : LSIZE,N
( (LINKS(I),I=4,N) C(INT/6011)
" 200.8,
¢ IERR= 4 IN DPENING FILE EEFILE
L IERR= 0 IN WRITING LAREL ON EEFILE
CRADDL ON IMACE=4621-3 WINDOW=1100011248 7952
( GRADDL :NOW THIN MAXMAG,TYPE= 155 0
¥ SELECT 1 THRESHOLD= 82
SELECT :LENWRK= 66
(  O0SIGNIFIGANT LOCAL MAXIMA WITH THRESHOLD = 20
]
ANGLE OR DIRECTION RADIUS WEIGHT
L 17 -3 25

LFOCUS:11459, 8267 11159, 7959 179.0,
LKTRXR : 0 CHAINS OUTPUT OF MIN LENGTH - 20
SERVIRTUALXXY 11000 11248 7952 B200%SCREENS
123456789012345678904123456789012345467890

32 )
34
30
29
' 28"
27

1) $a~P|c5 'anicn.+ca
\»\ scan Pm‘H‘crr\.
lst= Gth and 9 +h
windows Shown.

&_{if
Lo

8200

WERE FOUND AT

-3.6, Wi= ¢S 20,32 20, ¢
0 LINKS TOTAL

1 32 xxkXxX

1 32




¢

(LINKS(I),I=ng ,N) (INT/60I1) 4 —r
200,898, -
IERR= 4 IN OPENING FILE EEFILE
IERR= 0 IN WRITING LABEL ON EEFILE - -
GRADDL ON IMAGE=4621-3 WINDOW=1£00011248 7952 8200
GRADDL : NOW THIN MAXMAG,TYPE= 1SS 0
BELECT : THRESHOLD= 82 - .= -
SELECT :LENWRK= 66
O0SIGNIFIGANT LOCAL MAXIMA WITH THRESHOLD = 20 WERE FOUND AT
ANGLE OR DIRECTION RADIUS WEIGHT
17 -3 2s
LFOCUS:1115%, 8207 14159, 7959 - 17¢.0, =3.0, Wis {S 20,32 20, & -
LKTRKR : 0 CHAINS OUTPUT OF MIN LENGTH 20 - 0 LINKS TOTAL
XEAVIRTUALKXR 151000 $1248 7952 B200XSCREENX 4§ 32 {1 32 xXxX%
12345678901 23456787012345678904234567890
32 [}
34
30
a9
28
27 X .
26 XX
2S5 XX
24 X X
23 X X
22 X s9
21 XX X $3
20 (2] $ X
19 L 2] X sX
18 *9 X
17 s (2]
16 L $XX
15 [ $388X
14 @
13 @
12 soX
11 [ ]
10 L ] s
9 $ sX
8 L 2 )
7 X s
& X X
S X X
4
3
2
1
GRADDL ON IMAGE=44621-3 WINDOW=1080011048 7952 8200
GRADDL :NOW THIN MAXMAG,TYPE= {07 0
SELECT : THRESHOLD= S0
SELECT 1 LENWRK= 30
OLSCAN: NO LOCAL MAXIMA FOUND WITH THRESH = 20
LKTRKR: 0 CHAINS QUTPUT OF MIN LENGTH 20 - 0 LINKS TOTAL
GRADDL ON IMAGE=4621-3 WINDOW=40460010848 7752 8000
GRADDL :NOW THIN MAXMAG,TYPE= 28 0
SELECT: THRESHOLD= 18
SELECT :LENWRK= 34
OLSCAN: NO LOCAL MAXIMA FOUND WITH THRESH = 20
LKTRKR : 0 CHAINS OUTPUT OF MIN LENGTH 20 - 0 LINKS TOTAL
GRADDL ON IMAGCE=44621-3 WINDOW=1080041048 7752 8000
GRADDL : NOW THIN MAXMAG ,TYPE= 285 0
SELECT: THRESHOLD= {t
SELECT LENWRK= g8
0SIGNIFIGANT LOCAL MAXIMA WITH THRESHOLD = 20 WERE FOUND AT
ANGLE OR DIRECTIONM RADIUS WEIGHT
23 2 22
LKTRKR: 0 CHAINS OUTPUT OF MIN LENGTH 20 ~ 0 LINKS TOTAL
CRADDL ON IMAGCE=4621-3 WINDOW=1100011248 7752 8000 —— - =
GRADDL :NOW THIN MAXMAG,TYPE= {44 0
SELECT : THRESHOLD= 74
SELECT :LENWRK=  §2 _
0SIGNIFIGANT LOCAL MAXIMA WITH THRESHOLD = 20 WERE FOUND AT
ANGLE OR DIRECTION RADIUS  WEIGHTY -
17 -2 2?7
LFOCYS: 11159, 8007 11159, 7759 179.0, -3.0, Wr= 22 20,32 20, 1§

LKTRKR 8 CHAINS OUTPUT OF MIN LENGTH 20 -
SERVIRTUALXRE £4000 11248 7752 BO000XSCREENS® { 32
1234567890123456789012345678901234567890

0 LINKS TOTAL
1 32 ¥xgxx




USLIUNLIFLILANT LULAL MAXIMA WliHN INMKESHULYD = oV WEKE FUUNUY HI

L
" ANGLE OR DIRECTION- RADIUS WEIGHT - - -
17 -2 27
€ Lrocus:t11159, 8007 11159, 7759 179.0,
k4 LKTRKR ¢+ 8 CHAINSG CUTRUY OF WIN LENGTH 20 -=- 0 LINKS TOTAL
SERVIRTUALXXE 11000 11248 7752 B000KSCREENS
‘.C 1234567890123456789012345678901234567890
] 32 - - -
34
q 30
u a9
28
 § 27
26 X
Ly 25 X $
: @ 24 X s
.3 23 [ ®
s 22 $ #X
2 | 21 s X
. 20 s @x
19 s @
[ § 18 ]
' 17 s @
16 s &
€ 15 s s
" 14 X * I |
13 XX )
€ 12 o )
) 11 @ s 2
10 e X #
¢ 9 X s
g 8 X s
7 s
( 5 e
Bl 3 seX 3 )
'
¢ 3
b 2
1

. GRADDL ON IMAGE=4621-3 WINDOW=1100041248 7952
L CRADDL : NOW THIN MAXMAG ,TYPE= 157 0
SELECT: THRESHOLD= BO
SELECT:LENWRK= S9
» OSICNIFIGANT LOCAL MAXIMA WITH THRESHOLD = 20

ANGLE OR DIRECTION RADIUS WEIGHT

n 17 -3 24
, LFOCUS:11159, 8207 11159, 7959 179.0,
LKTRKR: 0 CHAINS OUTPUT OF MIN LENGTH 20
» EXXVIRTUALKXR 11000 11248 7952 B200XSCREENKX
. 1234567890423456789012345678901234567890
12
10 31
30
N 29
“ 28 X
27
. 26 XX
" 25 XX
. 24 X
. 23 X $X
o 22 X $3
” 24 X X
; 20 s s
" 19 e X #X -
, 18 *” X
; 17 ) ” X
B 16 s s8x
, 15 ) #99X
; 14 »
Y 13 [ ]
12 )
! 14
L 10
9

XXeoe
XX oo

-3.0, WT= 22 20,32 20, %
1 32 4 32 FRExX

8200

WERE FOUND AT

-3.0, WT= 14 20,32 20, i
- 0 LINKS TOTAL
132 1 32 KKkXx




|

Al
1
3
‘
s
.

]

(

3
2

1
GRADDL ON IMAGE=4621-3 WINDOW=41100011248 8152 8400
GRADDL : NOW THIN MAXMAG,TYPE= 129 0
SELECT: THRESHOLD= 64 ———
SELECT:LENWRK= .34
0SIGNIFIGANT LOCAL MAXIMA WITH THRESHOLD = 20 WERE FOUND AT

ANGLE OR DIRECTION RADIUS  WEIGHT

17 -4 A4S

Y 2 - 24
LFOCUS: 11167, 8407 11167, 8159 179.¢, -4.0, W= 24 21,32
LFOCUS: 11143, 8159 11143, 8407 -1.0, 1.0, WT= 24 48, 1
LKTRKR:LINID,AX,AY,GLOBAL AX,AYm i 17 S 11143 8199

7 7 7 7 7 7 7 7 7 7 7 7 7 7 72 7 7 7 7 7
7?2 7 7
LKTRKR : 1 CHAINS OUTPUT OF MIN LENGTH 20 - 0 LINKS TOTAL
EEXVIRTUALERXX 11000 11248 8152 OBAQ0RSCREENS® 1 32 1 32 XXEkxX
1234567890123456789012345678901234567890

32
31
30
29
28 X X
27 X X
26 [ S
2s . 8+
24 s S+
23 s 88X
22 s X
21 $ X
20 s X
19 s X
18 s X
17 s X
16 s X
15 + @x
14 & OX
13 *  @x
12 & 88X
11 & @Xx
10 s ex
9 s ex
8 [ I )1
7 $ X
6 s X
S s @€Xx
4
3
2
1

GRADDL ON IMAGE=4621-3 WINDOW=1080011048 8152 8400

GRADDL 1NOW THIN MAXMAG,TYPE= 114 [

SELECT : THRESHOLD= 40

SELECT: LENWRK= 80
QLSCAN: NO LOCAL MAXIMA FOUND WITH THRESH = 208

LKTRKR : 1 CHAINS OUTPUT OF MIN LENGTH 20 - 0 LINKS TOTAL
GRADDL ON IMAGE=4621-3 WINDOW=1060010848 8152 8400
CRADDL : NOW THIN MAXMAG,TYPE= 1S6- -

SELECT : THRESHOLD= 73

SELECT:LENWRK= 35
OSICNIFIGANT LOCAL MAXIMA WITH THRESHOLD = 20 WERE FOUND AT

ANGLE OR DIRECTION RADIUS  WEIGHT
11 4 24

21, ¢
18,32
23




CRADDL : NOW THIN MAXMAG,TYPE= {56 e
SELECY : THRESHOLD= 73

® SELECT:LENWRKs 35
a OSIGNIFICANT LOCAL MAXIMA WITH THRESWOLD = 20 WERE FOUND AT
/ ®  ANGLE OR DIRECTION RADIUS  WEIGHT
‘ 11 4 24
‘ ! LFOCUS:10607, 8303 10855, 8199 247.0, 4.0, WT= 16 1,19
'@  LKTRKR:LINID,AX,AY,GLOBAL AX,AY= 2 S 17 10647 8295
J 1 2 ¢ 2 1 2 1 2 ¢ ¢+ 2 2 ¢ 2 ¢ 11 2 2 1
F ‘ 1 2
i ¥ | LKTRKR : 2 CHAINS OUTPUT OF MIN LENGTH 20 - 0 LINKS TOTAL
I . LEXVIRTUALXXE 10600 10848 8152 B400XSCREENX 1 32 { 32 Sk8k%
v 1234567890123456789012345678901234567890
' L | 32
: . 31
i 30
[ | 29
1 28
27
{ 26
iy 25
24
i 23
. az
24
, ¢ 20
: n 19
‘ 18
, { 17 1)
| ” 16 (TY
‘ ts (Y
¢ 14 es
» 13 e FYYY
12 s @ s
: { 1 e ”»”
] N 10 ee XX+
9 ’ X
{ 8 * XX+
» 7 s X+
b X
{ 5 X
by 'y
3
{ 2
i i

PATTERN COMPLETED 9 WINDOWS SAMPLED
WANT TO CONTINUE SCAN PATTERN? (YES=1/NO=0)-
0

IERR= 0 IN CLOSING EEFILE

208

32, &

2

3



C.3 Loader commands for creating EDGEY

Command Comment

RE,ZEDGEY main routine

RE, ZRPSCH block data routine for chain code common
RE, ZARRAY window sampling routine

RE,ZRPSFX routine initializes accumulator array
RE,%RPSGL computes 32-direction gradient

RE, ZRPSHG computes Hough transform

RE,%ZRPSFO focuses Hough transform

RE,%ZRPSLK extracts continuous curves

RE,%RPSLS scans accumulators for peaks
RE,ZRPSPR prints grey scales if required
RE,ZRPSPA prints accumulators if required
RE,%ZRPSSE selects strong gradient points

RE, ZRPSWR links edge points to best neighbors
RE,%ZRPSYT converts vector to gradient direction
RE, ZRPSHS histograms gradient

RE, ZRPSML computes gradient at single point
RE,4ZRPSVG converts polar vector to rectangilar
RE,%STAGE positions stage

RE,ZRPSFR sets up masks for given edge
RE,ZRPSMK maintains and applies gradient masks

RE,ZINSPT
RE,%ZVEREE
RE,%ZINSEC

RE, ZRPSAA

inspects both sides of edge for other edges
verifies previously detected edge
computes intersection between 2 lines

worker subroutine for RPSLS




-

SR S ST tér L biot h
SDULFEDREU. R LD e
CRUNLITDT DG

SOURTE FILE?

JFEDCEX: : {R

DREUX ORG=30000 S000P{RCHNTI= . QSWGET- 20 15
/4
tk B111, 2733 t6, 7. 7.6, 6, 7, b, 6, b, b6, 7, 6. h, b, b,
/=90
FO 6943, 4BBS. 7023, 4417,
/+5
FD 9637, S209, 9885, S2AY,
2l
LK 9677, S22%, 23,59, 8.3, 1, 8,1, 1,8, 1,14, y, B, 1,3,
/=900
EOF
/1
PREUX ORG=10006 SOOOPERCNT= . QSWET= 20 15
/LS0
PREUX (ORG=10000 SOO0O0PERCNT= ,0SWGT= 20 1S

FO 6943, 4885, 7023, 4637,
FO 2281, S135, 2281, 4887,
FO 3885, 5103, 3637, 4°%9,

LK10677, 4927, 17,20,20, 8, B,20, 8,20,20, 8, 8, 8,20, 8.20,
1LK10677, S201, 21, 2, 2,2, ¢, 1, 2,2,2,2, 2,2,1,2,2,
FO 9637, S209, °88S, 5284,

EOF

/ER

ENT OF EDIT

(RUNEDGEY .4 . &

GIVE IMAGE NAMF (3AP)-

DRIZUX

GIVE FRACTION OF POINTS TO SELECT(REAL/FREE)-

0.05,

GIVE 10 1/0 FLAGS (INT/FREE)-

0,0.0,0,6.0,0.,0.0.0,

GIVE GLOMAL ORIGIN AND STAGE KOUNDS (6 INT/FREE)-
10000,5000,8%0,2700,11200,9200,

¢ PTS ON LINE, ON CHAIN, & TRACKING SJZE (3 INT/FREE)=
15.1%,150,

IERR= 4 IN DPENING FILE EEFILE
IERR= 4 IN OPENING FILE EEDGEX
1ERR ,LEN= 0 23

EEFILE REC=

DREUX ORG=30000 SO0O0PERCNT= .0SWGT= 20 is

TERR ,LEN= 0 13

FEFILE REC=

FO 6943, 48RS, 7023, 4637,

GRADDL: ON DREUX WINDOW= 6863 7111 4645 48879 MAXMAG,TYPE=
SELECT: THRSHL ,LENWRK= 29 31

0SIGNIFIGANT LOCAL MAXIMA WITH THRESHOLD = S WFRE FOUND AT
ANGLE DR DIRECTION RADIUS WEIGKT

1S 2 31
LFOCUS: 6934, 4R%96 7030, 4648 200 0, 2.6, wT= 20

GRADDL: ON DREUX WINDOWa 6934 7182 4693 4941 MAXMAG,TYPE=
SELECT : THRSHL ,LENWRK= 8 i1

0LSCAN: NO LDOCAL MAXIMA FOUND WITH THRESH e {5

CRADDL: ON DREUX WINLOW= 56750 6998 4693 4941 MAXMAG,TYPF=
SELECT : THRSHL ,LENWRK= 8 17

OLSCAN: NO LOCAL MAXIMA FOUND WITH THRESH = 1S

GRADDL : ON DREUX WINDOW= 6980 722 4550 4798 MAXMAG.TYPE=
SELECT : THRSHL ,LENWRK = 8 9

GLSCAN: NO LOCAL MAXIMA FOUND WITH THRESH = {S

GRADDI : ON DREUX WINDOW= 6796 7044 4S50 4798 MAXMAG . TYPE=
SELECT : THRSHL ,LENWRK = ? 34

OLSCAN: NO LOCAI. MAXIMA FOUND WITH THRESH = 1S

GRADDI : ON DREUX WINDOW= 6943 7191 4393 4641 MAXMAG TYPE=
SELECT: THRSHL , LENWRK= 25 32

NSIGNTFIGANT LOCAL MAXIMA WITH THRESHOLD = 1S WFRE FOUND AT

ANGLE OR DIRFCTION RADIUS WEIGHT
15 -1 32
LFOCIS: 7038, 4A4a8 7142, 4400 20z2.0, -{.0, wlr= 22 1
FORWARD VERFE:TAX TAY,THX,THY KFLAG= 7023 4437 7103 4389
GRADDL : ON DREUX WINDDM= 7014 7262 4445 AH93 MAXMAG.TYPE =
GELECT : THRSHL ,LENWRK= 8 12
0LSCAN: NO LOCAL MAXIMA FOUND WIT{ THRESH =« {5
GRADDL: ON DREUX WINDNWs AB30 7078 4445 4693 MAXMAG . TYPE -
GELECT : THRSHL  LENWRK= a 22
GLSCAN: NO LOCAL MAXIMA FOUND WITH THRESH = S
GRANDL: ON DRE'X WINDOW= 7060 7308 4302 ASS0 MAXMAG TYPE=
SELECT  THRSHL ,LFNWRK = n 13

&2

9.37
o4

14

a0

20

a5

2,32
1
17

-}

o3

2
W

[

it b




0 SCAN: NO ) DCAL MAXTMA FOUND WITH THRESIE « 18

) CNADDI o« N DNEUN WINDUW=  BH76 21504 4400 4860 MAXMAL . IYFE- 4 "
L AFLEC T TN 1) NURK - TR .
! HELRCANT N L OCSL MAXTMA FOUND WLTH THRESH - 15
L GRADDL: ON DREUX WINDOW= 7023 7271 414% 4393 MAXMAG.TYPF= /. n

’ SELEUT : THRGHL  LENWRK= 29 a2
OSIGNTIFIGANT LOCAL MAXIMA WITH THRESHOI.D = 1S WFRE FOUND AV

ANGLE OR DIRECTION RADIUS WEIGHT

. 1S -2 32
LFOCUS: 7134, 4400 7222, 41%2 200.0, -2.0, WT= 21 14,32 23S, {
. FORWARD VEREE:TAX,TAY,TBX,TBY ,KFLAG= 7103 4389 7183 4144 1
! GRADDL : ON DREUX WINDOW= 7094 7342 4197 4445 MAXMAG,TYPE= o8 0

SELECT : THRSHL L ENWRK= a 15

OLSCAN: NO LOCAL MAXIMA FOUND WITH THRESH = 15
! GRADDL: ON DREUX WINDOW= 6910 7158 4197 4445 MAXMAG,TYPE= 36 0
SELECT : THRSHL ,LENWRK= e 30
NI.SCAN: NO LOCAL MAXIMA FOUND WITH THRESH = 1S
GRADDL: ON DREUX WINDOW= 7140 7388 4054 4302 MAXMAG,TYPE= 30 ]
SELECT : THRSHL ,LENWRK= 8 29

0LSCAN: NO LOCAL MAXIMA FOUND WITH THRESH = 45
GRADDL: ON DREUX WINDOW= 6956 7204 4054 4302 MAXMAG,TYPE= PR 0
SELECT: THRSHL ,LENVRK= 8 29
BLSCAN: NO LOCAIL MAXIMA FOUND WITH THRESH = S
GRADDI : ON DREUX WINDOW= 7103 7351 3897 4145 MAXMAG,TYPE= €4 n
SELECT : THRSHL ,LENWRK= 15 42
0SIGNIFIGANT LOCAL MAXIMA WITH THRESHOLD = 15 WFRE FOUND AT
ANGLE OR DIRECTION RADIUS WEIGHT
1S -
( LFOCUS: 7222, 41S2 7334, 3904 204.0, -4.0, WT= 18 (5,37 29, 1§
FORWARD VEREE:TAX,TAY,TEX,TRY ,KFLAG= 7183 414% 7263 3893 1
t GRADDL : ON DREUX WINDQW= 74{74 7422 3949 4197 MAXMAG,TYPE= 78 0
SELECT : THRSHL ,LENWRK= is
OSIGNIFIGANT LOCAL MAXIMA WITH THRESHOLD = 15 WERE FOUND aft
{ ANGLE OR DIRECTION RADIUS WEIGHT
290 -9 27
LFOCUS: 7429, 4124 7301, 3956 143.0, -9.0, WT= 14 32,22 116, §
! EXEVIRTUALRRE 7174 7422 3949 4497%SCREENR & 32 4 37 aakxx
1234567890123456789012345678901234567890
32
L3%
30
29
28
2z
2, i
¢« '
24 i
23 !
<
24 /7= ;
20 -~/
19 -
i8 /
17 + -
16 X +/ !
15 X+/
14 3 SXe- :
! t3 ] X '
12 | B '
11 s sx/ .
' 10 - s x/- .
9 - - X/ {
8 X + 3
' ? - X+ - I
H X/ -
. S / VAR TZA |
y 4
3
jd
' 1

INSEC RETURNS AX,AY,BX,BY,CX,CY,DX,DY,IX,IY, ITYPE=
. 7183 4141 7229 3998 7429 4140 7293 39%6 7258 3908 1

(R

Pt
38
[
[y




Appendix D Registration Software

The registration software consists of one load module containing
one main program and several subroutines. The program structure is

illustrated below:

REGDR

COMMANDS

INPUT CLUSTR EmMmA-T
| N T~ o

RDQNT'R’ EDBMAP SCABKT CHOPS K| |1ALM TCH ALMTCH
| ] | |

& cNYTRP STRAIT EMATCH |EMATCH

|
BEST

The registration program takes a set of image edges from the
file IMAGE and a set of map edges from the file MAP and computes the
possible transformations that will transform the image onto the map.
The technique used is to cluster the possible transformations in
Vj 3-dimensional space and select those with the strongest support.

4 The data structures used reside in the four common blocks,
presented in D.l , and the match weight matrix, MATCHS(200,30) is

in the common block MATRX which resides in the RTE-IV, extended memory

facility.




Routine
Name

Arguments

Function

REGDR

RDCNTR

CNVTRP

EDGMAP

SCABKT

Main Program

(NUMLEV, SCALEX,
SCALEY,SCALET,LOXBND,
LOYBND, LOTBND)

(X1,Y1,X2,Y2,RADIUS,
THETA)

(x1,v1,x2,Y2,U1,V1,
U2,v2,STOL,THETAR,
STAILX,STAILY,SHEADX,
SHEADY)

(TAILX,TAILY,HEADX,
HEADY, THETAI,THEIND,
SCALX,LOX,SCALY,LOY,
MATNUM, OUTUNT)

Reads and analyzes commands and calls
appropriate subroutine. Sets up initial
values for variables contained in com-
mon blocks found in the procs: REGIST,
BUCKET, and PRTFLG.

Reads in the edge information for the
image and then the map from DISK FILES.
Image edge information must reside

in the file IMAGE::18. Map edge infor-
mation must reside in MAP::18. Computes
centers of image and map windows and places
them in common block. Using NUMLEV,
computes the three scales at each level
and stores them in arrays SCALEX,SCALEY
and SCALET. Computes lower bounds at
first level and stores them in LOXBND(1),
LOYBND(1) and LOTBND(1). Image edge
iaformation stored in arrays X1,X2,Y1,Y2
of common block REGIS. Map edge infor-
mation into arrays Ul,U2,V1,V2 of same
common block.

Takes a directed straight line segment
beginning at (X1,Yl) and ending at
(X2,Y2) and converts it to polar coor-
dinates (RADIUS,THETA).

Given an image edge defined by (X1,Y1)
and (X2,Y2), a map edge defined by
(U1,v1) and (U2,V2), an angle of rota-
tion of image to map edge (THETAR) and

a tolerance (STOL); a line segment in
a-space which represents the constraints
of the x-shift and the y-shift in trans-
formations on these two edges is
calculated and is represented by (STAILX,
STAILY) and (SHEADX,SHEADY).

Creates the clustering matrices used to
find the most relevant transformations.
Since two sets of clustering matrices
are used by the approach (regular and
offset matrices) the routine is called
twice for each line segment it processes.
The line segment is defined by (TAILX,
TAILY), (HEADX,HEADY) and the angle of

213




Routine
Name

Arguments

Function

STRAIT

BEST

CHOSPK

ALMTCH

(AX,AY,BX,BY,

NNEIGB,STORAG,N,NLINKS,

IFLAG)

(FX,FY,TX,TY,NNEIGK
L1i,L2,N1,N2)

(PEAKS, MAXPKS,NUMPKS,
PRTFLG,PWID TH, THRESH)

(THETA,XSHIFT,YSHIFT,
ANGTOL,DTOL ,PWIDTH,
LENCHK , MTCHWT,
NMCHRW, NMCHCL , COLMCH)

214

the line 1is in THETAI. MATNUM indicates
whether incrementation is to be done in
the regular matrix (MATNUM=1) or the
offset matrix (MATNUM=2). The scale of
the matrix is defined by SCALX,LOX,SCALY

and LOY.

The line is chased from tail
to head and each bucket of the matrix that

it passes through is incremented. Infor-
mation about each line is written to an
intermediate output file. Clustering
matrices BKTCNT & BKTOFF are in the
common block in proc BUCKET.

Given a line defined by (AX,AY) and
(BX,BY) and whether it is to use 8-
directional or 4-direction Freeman codes,
STRAIT computes the links along that
straight line. The links are stored in
the array STURAG(N). If the number of
links, NLINK, is greater than N, IFLAG
is set to indicate an error.

Given a line from (FX,FYJ to (TX,TY);
computes the straightest path, returning
# of L1 links in N1 and # of L2 links

in N2.

Scans the two clustering matrices,

BKTCNT and BKTOFF, to find the MAXPKS
highest values. The indices of the high
valued buckets are stored in the array
PEAKS with the number of peaks actually
chosen being in NUMPKS. THRESH defines
the minimum value to be considered as a
possible peak. PRTFLG and PWIDTH provide
information to the print routines.

Given a transformation defined by
(THETA, XSHIFT,YSHIFT), an angle tolerance
of ANGTOL and a distance tolerance of

DTOL; an evaluation of how good the trans-

formation is made. This 1is done by
transforming any image edge that possess
approximately the correct gradient onto

a map edge.

The function EMATCH is

———




Routine
Name

Arguments

Function

EMATCH

Worker routines not shown in program

STACK

PRTBKT

PRTMAT

RDWRTF

SGN

(SEG1,SEG2 ,GRAD, THETA,

XSHIFT,YSHIFT,DTOL)

(CODE,PEAKS, I)

(PWIDTH,CNTSUM)

(RSIZE,CSIZE,NIMAGE,
NMAP ,PWIDTH)

(FILENO,OPCODE,

BUFFER, IL, IERR,
TYPE)

1y

called to actually evaluate how good

each match is. Taking the results of
EMATCH, ALMTCH creates the match weight
matrix matchs (in common block MATRX),
the average match weight, MTCHWT, the
number of matching rows, NMCHRW, the
number of matching columns, NMCHCL, and in
which columnsa match has been found.

If LENCHK=1l, only edges of approximately
the same length are compared. PWIDTH

is used by available .cutput routine.

Given the transformation (THETA,XSHIFT,
YSHIFT), the edge in the image (stored
in array SEGl), the edge in the map
(stored in array SEG2), the gradient
direction of the map edge, GRAD, the
gradient direction of the image edge,
THETA, and the tolerance, DTUL;
computes strength of match and returns
a value between 0 and 1.

structure.

Maintains a push down stack that keeps
track of peaks to be evaluated. Each
entry contains 5 fields; THETA INDEX,
X-INDEX, Y-INDEX, WEIGHT and which matrix
peak appeared in.

Prints either the original or offset
clustering matrix depending on the
value of CNTSUM. Matrices in common
block BUCKET

Prints the match weight matrix created
in ALMICH.

Controls the input and output to the
intermediate disk files. Possible
operations are OPEN, READ,WRITE,REWIND,
and CLOSE. Can have up to 2 files open
at once.

Returns 1 if 1>0, -1 if I€0 and 0 if
1=0,




D.1 Procs containing common blocks used in registration

REGIST PROCHXXxXXH.P, REGISTRATION CODE QFER7ZXRKKX

SO0

INTEGER X1(200),X2(200),Y4(200),Y2(200) ,U1(30),

K U2¢30),Vi(30),V2(30) ,NIMAGE ,NMAP , IXCENT , IYCENT ,MXCENT,

Kk MYCENT ,RSIZE ,CSIZE
REAL THET(2,200),RAD(2,200)

X41,%X2,Y4,Y2 - ARRAYS FOR ENDPOINTS OF IMAGE LINES
4 ,02,V1,V2 - ARRAYS FOR ENDPOINTS OF MAP LINES
THET -~ ANGLES FOR IMAGE AND MAP

RAD - RAD FOR IMAGE AND MAP

NIMAGE - # OF LINES IN IMAGE (# OF ROWS IN MATRIX)
NHMAP ~ # OF LINES IN MAP (& OF COLUMNS IN MATRIX)
IXCENT ,IYCENT - X AND Y OF IMAGE CENTER

MXCENT ,MYCENT - X AND Y OF MAP CENTER

RGIZE - & OF ROWUS IN MATCHS

CSIZE - # 0OF COLUMNS IN MATCHS

NAMED COMMON REGIS IS USED TO HOLD INFO

ACOOQOToCOoOO0N0ON 00

COMMON /REGIS/ Xi,X2,Y1,Y2,U4,UP,V1,V2,THET ,RAD,
X NIMAGE ,NMAP , IXCENT, IYCENT ,MXCENT ,MYCENT ,RSIZE ,CSTZE
c
CXXX END OF MACRO REGIST, H.P.VERSION FFEEZ9%XKKkKK
C
C
CXXXKKPROC KUCKET H.P. VERSION 9FER7FXRKKKRKK

C
€  DEFINFS CLUSTER MATRICES, CLUSTERING IN 3-D (THETA,X,Y)
n BKTCNT - CONTAINS COUNT OF # OF HITS IN EACH BUCKET
C FKTOFF - CONTAINS COUNT OF # OF HITS IN OFFSET MATRIX
C

INTEGER BKTCNT(10,10,10) ,BKTOFF(10,10,10)

INTEGER NZEROT(10) ,NUMTHE ,NUMX ,NUMY ,NZEROD(10)

COMMON /CLSTR/BKTCNT,RKTOFF ,NZEROT,NZEROO , NUMTHE , NUMX , NUMY
C

Ckxxx END OF PROC BRUCKET kokx
c




(1
CRRXKKPRTFLG MACRO H.P . VERSTON 9FER77XXXXX

c

1N OO000

-
7

C

INTEGER PRTINP ,PRTMUM,PRTEU,PRTSEK

PRTINP - PRINT INPUT FILAG (RECTANGULAR AND POLAR)
PRTMUM ~ PRINT MATCH WEIGHT MATRIX FLAG

PRTRUK -~ PRINT 3-D CLUSTERING MATRIX FLAG (BUCKETS)
PRTSEK =~ PRINT SMOOTHED CLUSTERING MATRIX

NAMED COMMON PRTFL IS USED TO HOLD FLAGS

COMMON /PRTFIL./ PRTINP ,PRTMWM,PRTRUK,PRTSEK

CHXxX END OF PROC PRTFLG

C
C

C

C

CXXXKKPROC CHSDF8 H.P. VERSION 9FER7ZXKKKKKKK

INTEGER DX(8),DY(8B)
DX,DY — CHANGES IN X AND Y FOR CHAIN CODES
THE NAMED COMMON DELTS HOLLDS THESE VALUES AND IS INITIALIZED IN THE
BL.OCK DATA PROGRAM

COMMON /DELTS/ DX, DY

FKXX END OF PROC CHSDFS
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D.2 Possible commands

The command needed to get things started is the INPUT command.

The format is as follows (starting in column 1):

INPUT

<ancToL), $TOLY , <PTOLY, NUMLEV, PRTBUKY , {PRTOFEY , PRTMAYD,

<PWIDTHD, (LENCHKY, (THRESH)

Where the input fields have the following significance:

ANGTOL

STOL -

DTOL -

NUMLEV

PRTBUK

PRTOFF

PRTMWM

PWIDTH

LENCHK

THRESH

All above inputs are integer.

angular tolerance (in degrees) between model edge and a rotated
image edge. Used in the routine ALMTCH.

segment tolerance for generating the line segments in EDGMAP.
distance tolerance used in computing strength of match between
a model edge and a transformed image edge. Calculation using

DTOL is in routine EMATCH.

number of clustering levels desired. Maximum currently possible
is 5. Used as a controlling parameter in REGDR.

flag for printing original clustering matrix. If value is 1,
matrix is printed at each level.

flag for printing offset clustering matrix. If value is 1,
matrix is printed at each level.

flag for printing match weight matrix.

number of columns available on output line. Can be either 72
or 132,

if set to 1, only edges whose lengths are approximately the
same will be compared.

minimum number of line segments that must pass through a bucket,

at the highest clustering level, in order for that bucket to be
considered as a peak.
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The command to initiate the 3-dimensional clustering that does

the bulk of the registration work, starts in column one and is CLUSTR.

A command that can be presented independently of the CLUSTR
command, is the EMATCH command. This command allows the user to present
a possible transformation and have the software evaluate the strength of
the transformation given the edge information input as a result of the
INPUT command processing. This command can be given before, after or in
place of the CLUSTR command. The format is:

EMATCH <THETALY, <ks), &s) ,{DTOL)
where

THETAI - rotatiomal angle, in degrees, of the transformation
to be evaluated. (integer)

Xs - X~-shift of transformation to be evaluated (real)
YS - Y-shift of transformation to be evaluated (real)
DTOL - distance tolerance to be used in computing strength

of matchs for this transformation. (integer)

The command to terminate processing is simply FINISH. 1

o




Appendix E Verification Software

The software to do the verification of lineal features has been
set up as an independent load module. The main program of this system
is the program VERIFI. The software has the ability to verify both
straight and curved lines. For curved lines, the input can either be
presented one point at a time or the information can be stored in a data
file which will be processed by the software.

The program structure is:

VERIF1

ARRAY STRAIT| [MLTDIR

BEST

The verification program, given an inverse transformation,

will check the image for the presence of known map features.




Routine
Name

Arguments

Function

VERIFI

ARRAY

STRAIT

BEST

MLTDIR

3 L

main program

(DELTAX,DELTAY,
SYVXLO,SYVYLO)

(AX,AY,BX,BY,NNEIGB,
STORAG,N,NLINKS,
IFLAG)

(FX,FY,TX,TY,NNEIGB,
L1,L2,N1,N2)

(X,Y,RES,MAG, DIR,
IERR)

Receives user input which defines the
inverse transformation and the features
to be verified. The user is prompted
for the needed information. (An example
execution is presented below) For each
point on the hypothesized feature, a
profile 1s created and the gradients
along the profile are checked to see

if the feature truly exists at this
point. Execution can continue for
several edges for the given transformation.

Given the change to be made in the
X-direction (DELTAX) and in the Y-
direction (DELTAY), the stage is moved
the desired amount and the coordinates
of the point where the stage is
focused is returned in SYVXLO and
SYVYLO.

Given the tail (AX,AY), the head
(BX,BY) and the number of directions to
use (4 or 8), the links of a straight
line between the tail and head are
placed into the array STORAG. If the
number of links (NLINKS) is greater
than the value of N, IFLAG is set to
indicate an error. In this case,
STRAIT is used to create the profiles.

Calculates the straightest way to get
from (FX,FY) to (TX,TY) depending on
number of directions available for use
(4 or 8)..

See Appendix B for description of
function.




software.

The following are examples of 3 executions of the verification

Computer prompts are identified by a CP in the left margin and

user responses by a UR in the left margin.

Example 1:

SRERER3

Curved line with point information stored in disk file.

RUN VERIL,6,6

POSITION STAGE TO INITIAL POINT (BY HAND) AND INPUT COORDINATES
FORMAT IS XPT,YPT (INT/FREE)

10000,5000,

GIVE VALUE FOR DTOL (INT/FREE)

100,

GIVE GRADIENT THRESHOLD VALUE (INT/FREE)

4,
GIVE DEBUG FLAG (VALUE BETW O & 4)

3

GIVE REVTHE,REVXS,REVYS,IXCENT,IYCENT,MXCENT,MYCENT
342,-2433.,1701.,8000,8000,11000,11000,
DTOL,REVTHE,REVXS,REVYX = 100 342 -2433. 1701.
IXCENT, IYCENT,MXCENT,MYCENT = 8000 8000 11000 11000
GIVE EDGE #

1

VERIFYING EDGE # 1

IS THIS A STRAIGHT LINE? INPUT 1 FOR YES, O FOR NO

0

IS INPUT IN A FILE? (1 FOR YES, O FOR NO)

1

GIVE FILE NAME OF INPUT FILE - (3A2)

CTDRUO




When processing of edge is completed and statistics have been
printed, user will again be prompted for edge number. If there are no

more edges to be processed input a -1. User will then be prompted for

another reverse transformation, if none to be given, again input a -1.

Example 2: Curved line with.point information given by user.

First 17 lines are the same as example 1.

-

CR I8 iHIS A STRAIGHT LINE? INPUT 1 for YES, O FOR NO
gg gs INPUT IN A FILE? (1 FOR YES, 0 FOR NO)
gg SIVE X,Y AND GRAD ANGLE VALUES (-1,-1,~1, FOR ENDINC)
UR 1103Z2,10046,154,

. give one point at a time
CR, GIVé X,Y AND GRAD ANGLE VALUES (-1,-1,-1, FOR ENDING}
UR -1,~1,~1

Stopping same as in example 1.




Example 3:

CR
UR
CR
UR
CR
UR

Straight line with equally spaced sample points.
First 17 lines are the same as example 1.

.

IS THIS A STRAIGHT LINE? INPUT 1 FOR YES, O FOR NO

1

GIVE XTAIL,YTAIL (INT/FREE)

4996,7282,

GIVE DELTAX,DELTAY,GRAD,ANG AND NUMPTS (REAL,REAL,INT,INT)
55.65,113.32,334,41,

Stopping is accomplished in the same manner as in example 1.
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