
■ill»»»;».. TECHNICAL
5 07^ 010757&T1 LIBRARY

8 ' AD

t
TECHNICAL REPORT ARSCD-TR-81007

MEDIAN FILTER NOISE IMPROVEMENT

OF DIGITAL IMAGERY

GARY SIVAK

JUNE 1981

US ARMY ARMAMENT RESEARCH AND DEVELOPMENT COMMAND
FIRE CONTROL AND SMALL CALIBER

WEAPON SYSTEMS LABORATORY
DOVER, NEW JERSEY

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views, opinions, and/or findings con-
tained in this report are those of the au-
thors) and should not be construed as an
official Department of the Army position,
policy or decision, unless so designated by
other documentation.

Destroy this report when no longer
needed. Do not return it to the origin-
ator.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

1. REPORT NUMBER

TECHNICAL REPORT ARSCD-TR-8I007
2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle)

MEDIAN FILTER NOISE IMPROVEMENT OF DIGITAL
IMAGERY

5. TYPE OF REPORT & PERIOD COVERED

Final
6. PERFORMING ORG. REPORT NUMBER

7. AUTHORC«;

GARY SIVAK
8. CONTRACT OR GRANT NUMBER(s)

9. PERFORMING ORGANIZATION NAME AND ADDRESS

ARRADCOM, FCSSCWSL
Fire Control Div (DRDAR-SCF-IO)
Dover, NJ 07801

10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS

Project 12161101A011A

11. CONTROLLING OFFICE NAME AND ADDRESS

ARRADCOM, TSD
STINFO Div (DRDAR-TSS)
Dover, NJ 07801

12. REPORT DATE

June 1981
13. NUMBER OF PAGES

64
U. MONITORING AGENCY NAME a ADDRESSf«/ different from Controlling Office) IS. SECURITY CLASS, (of this report)

Unclassified
15a. DECLASSIFIC ATI ON/DOWN GRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, it different from Report)

18. SUPPLEMENTARY NOTES

19- KEY WORDS (Continue on rovorso aide If necessary and Identity by block number)

Image processing Automatic target recognition system
Median filtering Adaptive window median filtering (AWMF)
Digital imagery
Signal-to-noise ratio

20. ABSTRACT (XJantimie em rtvsna attßa tt naceaaaty ami Identify by block number)

Designs for fire control automatic target recognition systems require poise-
free or low-noise digital imagery of visible and infrared targets. Median
filter noise cleaning of digital imagery was investigated to determine the
extent to which different size median filter windows will improve the signal-
to-noise ratio of a digital image with the least deterioration or degradation
to the shape or position of the edges of a target. Examples of median fil-
tering and adaptive window filtering (AWMF) are presented before and after

(CONTINUED)

DD/, FSTW M73 EDITION OF 1 NOV 65 IS OBSOLETE UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGEfWhon Data Enterod)

20. ABSTRACT (Cont)
noise cleaning, and an improvement over AWMF is proposed to remedy its display
deficiencies. Recommendations are offered on how to proceed to obtain more
meaningful results and how to extend the simulation to two dimensions before
performing test on actual digital imagery data.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGEfHfien Data Entered)

CONTENTS

Page

Introduction 1

Median Filtering 1
Operation 3
Innovations

Analysis 11
Strategy 11

Program SIMU1D 15
Development 15
Subroutine READIN 16
Subroutine CALC 17
Subroutine IGTAB 17
Subroutine SIMP 18
Subroutine STORIT 18
Subroutine LINTERP 19
Subroutine SETEJ 19
Subroutine FILLEJ 19
Subroutine MD1DW 20
Subroutine DSORT 20
Subroutine FINDEJ 20
Subroutine MSE 21
Subroutine DOMORE 21
Display Subroutines 21

Program L0CK0N 22

Programs EJSHOW and PULPLT 22
Program EJSHOW 22
Program PULPLT 23

Preliminary Results 23

Recommendations 27

References 29

Bibliography 30

Appendixes
A. Program SIMU1D 33
B. Program LOCKON 43
C. Program EJSHOW 51
D. Program PULPLT 61

Distribution List 65

FIGURES

Page

1 Median filter 2

2 Example of median filtering 4

3 Noisy square wave, 10% Gaussian noise 5

4 Noisy square wave, 10% Gaussian noise, filtering 6
window width 3

5 Adaptive window median filtering weighting functions 9

6 One-dimensional analytic procedure 12

7 One-dimensional edge profile 13

8 Filtered versus input Gaussian noise: one-dimensional 24
simulation

9 One-dimensional noisy edge 25

10 One-dimensional edge analysis, 10% Gaussian noise, 26
filtering window width 3

INTRODUCTION

Whether a battle scene is presented on a display for human inter-
pretation or is processed by an automatic target recognition system, a
need exists in fire control for noise-free or, at least, low-noise digi-
tal imagery of visible and infrared targets of interest. In this report,
initiation and implementation of an innovative effort are presented to
investigate the median filter noise cleaning of digital imagery. Speci-
fically, the goal is to determine the extent to which different size
median filter windows will improve the signal-to-noise ratio of a digital
image with the least possible amount of deterioration or degradation to
the shape or position of the edges of a target of interest. Signal-to-
noise ratio improvement is a relevant figure of merit to use for measur-
ing the performance and usefulness of a median filter because for two
scenes with similar kinds of noise characteristics (zero-mean Gaussian,
for example), the image with the higher of the two signal-to-noise ratio
has the better quality.

In this report, median filtering and adaptive window median filter-
ing (AWMF) are first explained and illustrated with examples of a pic-
torial scene and digital signals before and after noise cleaning. Next,
an improvement over AWMF is proposed to remedy its display deficiencies.
Then, an analytical strategy is developed by which the median filter
reduction can be measured through representation of one-dimensional edge
profiles by the integral of a Gaussian distribution. A one-dimensional
computer simulation, the program/modular subroutine package program
SIMU1D is developed to implement the analysis and plot post-processing
versus input signal-to-noise levels. The implementation of programs
LOCKON and EJSHOW, used to test the validity of the preceding analysis,
are explained. After a discussion of the preliminary results obtained,
recommendations are presented on how to continue the work to obtain more
meaningful results and how to extend the simulation to two dimensions
before tests are performed on actual digital imagery data.

MEDIAN FILTERING

Operation

The nonlinear signal-smoothing technique of median filtering was
first developed by John Tukey and applied in the mid-1970's to. the pro-
cessing of digital speech signals (ref 1). When applied to two-dimensional
image scenes, the technique has the capability to reduce the prominence
of troublesome random noise spikes and regions in the picture.

Figure 1 shows how two-dimensional median filtering is performed.
Take a window box M picture elements (pixels) high and N pixels wide; and
place it in the upper left corner of the image. M and N are odd numbers.
In this example, M is 3 and N is 5, although in practice the use of a
square window is convenient as long as the dimensions are odd integers.

o o o o o o
o o o o o o
o o o o o o
o o o o o o

o o o o
o o o
o o o
o o o
o o o
o o o

o f° o
o o o
o o o
o • o
o o o
o o o

u
0)

4-t

C
t0

•H
T3
0)

sa

M

00
•H
fa

To implement the algorithm, sort the values contained by the window
box into consecutive order and replace the pixel in the center of the
box by the median value, that is, the middle entry in the sorted list.
The algorithm is continued by sliding the window box one pixel to the
right and performing the sort-and-center pixel replacement again. The
box is then allowed to slide across each line of pixels in the image
and slide down to the bottom of the scene.

Figure 2 shows an example of median filtering of an actual scene. The
picture of the USC cheer leader is shown before and after being operated
on by a one-dimensional median filter window of width 5 (ref 2).

Figure 3 shows a computer graphics plot of a noisy square-wave pulse
with a 10 percent concentration of zero-mean Gaussian random noise.
Figure 4 shows the square-wave pulse after it has been operated on by a
one-dimensional median filter window of width 3 units. As the signal is
improved, note that the median filter has the important property to pre-
serve the edges of the square-wave pulse. Since the proper Fourier repre-
sentation of a square-wave pulse contains an infinite number of terms
decreasing only slowly by 1/N, where N is an odd integer multiple of the
fundamental frequency, a large number of terms or frequency components
is required to accurately represent the square wave with good convergence
and small error. Therefore, an ordinary band pass filter cannot do as
good a job in removing the random noise from the signal without destroying
its shape, phase, or other characteristics. The only quantities that two-
dimensional median filters will destroy are the vertices or single -corner
pixels of sharp-cornered objects.

Innovations

An extension of the median filtering algorithm, an improved filtering
technique currently in use, is the procedure known as adaptive window
median filtering (AWMF). In this process, the filtering window dimensions
are allowed to vary inversely as the amount of edge or gradient in differ-
ent regions of the image increases. The reason for this is that a big
median filter window will attenuate noise by a greater factor than a
smaller one, but at the expense of smoothing over edge details less than
one-half the window width. For example, in regions of the picture where
the gradient information or edge content is a maximum, one can use a window
box of width 1, i.e., no filtering. In regions of the picture where the
edge content or gradient is in the midrange between the minimum and maxi-
mum, one may filter the picture area with a 3-by-3 window matrix, for
example, thus eliminating noise spike signal transmission errors.

Finally, in areas of the scene where the edge content is at a low,
the pixel information simply consists of texture background and noise.
The 3-by-3, two-dimensional, median filtering window can be expanded to
a 5-by-5 matrix and will remove 2-pixel noise clusters. That is,
in relatively quiet areas of the scene, from the standpoint of image

A. Before,

B. After.

Figure 2. Example of median filtering.

<x>
(0

•H
O
C

c
CO

•H
Cfi
in

CO
o

o

CD
>
CO

0J
M
CO

cr

>^
c/>

•H
O

23

a)

60

x.
u
-ö
•H

o
d

•H

ö
•rl
H

14-1

0)

o
d
d
cd
•H
m
w

cfl

o

> re

v
u
co
o<
CO

en
•H
o

2=

OJ

M-,

information of concern, where little target information is present, one
simply lets the two-dimensional median filter window size expand to a
maximum to be able to filter the largest noise-point cluster that can
possibly be done.

The values of the gradient are read off a gradient map, each point
of which is computed for each point of the original picture for a pixel
value P-H where i represents the ith row of the image and j represents
the jth column. The magnitude of the gradient GJJ is computed from the
horizontal (right minus left) and verticle (upper minus lower) pixel
differences surrounding the point as follows:

Gi,j = V <Pi,j+l " Pi,j-1>' + <pi+i,; " pi-l,j)Z (l)

For extremely large picture areas, 512 by 512 pixels, for example,
to save computer time, one may in practice use:

'ij Pi+1,; - p
i-l.j

+
i,j+l 1.3-

(2)

For very noisy images, a more stable gradient can be obtained by
spreading the calculation over a larger pixel area to smooth out random
pixel fluctuations and variations that attenuate as _L for N number of

n
pixels. For example, in the 3-pixel by 3-pixel box surrounding a given
pixel, i.e., the cluster comprising a given pixel and its eight nearest
neighbors;

Gü =
+

SUM OF TOP THREE PIXELS MINUS SUM OF BOTTOM THREE PIXELS

SUM OF RIGHT THREE PIXELS MINUS SUM OF LEFT THREE PIXELS
(3)

Performing adaptive window median filtering however is difficult ,
because as the window expands, one will re-enter portions of the scene
that have already been processed. Alternatively, to prevent this, one
can let the center of the median filter window box skip nonuniformly
across the image. This, however, prevents the center of the window box
from contacting some points and, if they are of a spurious noise, they will
not be replaced upon sorting. Also, another serious problem is that
changing the window size produces uneven noise attenuation, more so for
the larger windows. The results thereby obtained can be rather uneven,
a very sloppily filtered scene with such artifacts as regions of blocking
and false detail.

To remedy some of these display difficulties, an improvement over the
technique of adaptive window median filtering is proposed by which the

output results of filtering the image by several two-dimensional windows
are combined, being weighted by factors that are continuous functions
of the gradient (ref 3). In this filtering approach, as the magnitude
of the gradient varies throughout the image, the output picture does
not undergo sudden transitions in the gray level since the median fil-
tering windows switch from large to medium to small. For example, let
P3 be a point in a picture filtered by a 3-by-3 window, let P5 be the
result of filtering by a 5-window, and P7 be the result of filtering by
a 7-window. An output pixel P is then computed as the weighted sum:

P = A x P3 + B x P5 + C x P7 (A)

where (as stated before) A, B, and C are continuous functions of the
gradient (figure 5). To ensure that the pixel values are properly dis-
played over the dynamic range of an output display, i.e., to ensure
that gray levels are not washed out or contrast lost, 1 must also require:

A + B + C = 1 (5)

As the value on the gradient map of the digitized image in question
rises from a minimum to a maximum, the function A rises from a minimum
of 0 to a maximum of 1. Similarly, as the gradient goes from a minimum
to a maximum, the function B rises from a minimum to a maximum at the
gradient midrange values and then falls to a minimum value as the image
gradient attains a maximum. Finally, as the image gradient goes from
a minimum to a maximum value, the function C falls from a maximum of 1
to a minimum of 0.

If these criteria for describing the continuous functions of the
gradient, A, B, and C, are adhered to, what then occurs is as follows:
In regions of the image where the gradient is small, A and B are approxi-
mately equal to 0, C is approximately equal to 1, and the filtered out-
put of the largest window has the predominant weight. In regions of
the image where the values of the gradient are in the midrange, the
function B is the maximum and the midrange window-size output predominates.
Where the gradient is near a maximum in the scene, A is approximately
equal to 1, and B and C are approximately 0. Here, the filtered image
is dominated by the output of the smallest median filter window, as is
desired. The problem of sudden window-size transitions simply no longer
exists.

The author now proposes a working scheme by which various choices
of the continuous functions A, B, and C of image gradient can be generated
and applied to the filtering of digitized frames of imagery of interest.
Allow the following conditions to exist:

Y = fk~ X = V~B~ Z = yiT (6)

CQ

CJ3

c_> e
o

•H
4-1

u
c
3

Q_

+

D_

PQ

+

Q_

<ÖC

II

Q_

C_>

+
PQ

+ PQ

ce:

00
C

•H
4-1

JZ
&0

•H
<D
&
(30
c

■H
M
CD

■H
<4-l

C
cfl

•H

CD
B

o

C
•H
&

>
•H
4-1

&>
Cfl

0)

&0

Then, from equation 5 one has:

X2 + Y2 + Z2 = 1 (7)

X = COS ($) SIN (0) Y = SIN ($) SIN (9) Z = COS (0) (8)

Equation 8 represents the position of a point on the surface of a sphere
as parametrized by two angles: 9 measured down from the sphere's north pole
and <6 measured counterclockwise from some reference meridian that cuts
through the sphere's equator.

To generate the functions A, B, and C as the image gradient varies
from a minimum to a maximum value, one can, for example, simply force
9 and ä to vary from zero to 90 degrees, thus tracing out a curving
path on the surface of the sphere, from its north pole to its equator.
Specifically, if the angles 9 and ä are set equal to each other and to
a parameter «, then from equations 6 and 8 :

A = SIN1* (a) B = C0S2(°0SIN2(<*) C = COS2 («) (9)

When the gradient varies from a minimum to a maximum, the parameter
a can be forced to vary from zero to 90 (in degrees), if one has:

Sms
\ %AX " %IN '

where G, G^JN and Gj^x are each the given minimum and maximum values of
the image gradient, respectively.

In this example, the path described on the surface cf the unit
sphere is a curve, sweeping down from the north pole of the surface of
the sphere in a southeasterly direction to a point down on the equator
at 90° east longitude. Note that each possible path that one can draw
on the surface of the sphere represents a particular combination of
median filter window outputs from which to form a unique resultant picture.
An infinite number of possible paths exists on the surface of the sphere
to choose from to produce the best output picture as a weighted sum of
input images operated on by combinations of different two-dimensional
median filter windows. For combinations of four or more different input
median filter windows per output picture, this analysis can conceivably
be extended to uniquely link window combinations with curves drawn on
the surface of spheres in four or higher-dimensional hyperspaces.

10

ANALYSIS

Strategy

Besides reducing the signal-to-noise ratio in an image, one hopes,
but cannot be certain, that a particular median filter will net affect
the shape or structure of the contour of a target or the connectivity
of its component parts. A good way to begin to understand how a median
filter may affect a target is to study its effects on the edge profiles
that surround a given target and separate it from the bordering back-
ground information in the total scene.

No edge in digital imagery is perfectly sharp, but is characterized
by a sloping rise from low to high, i.e., from a cool or dim background
to a hot or bright target. This monatonically increasing ramp can occupy
many or as few as two pixels, a low gray level and a high gray level.
Part of the problem with studying median filters is investigating how the
slope or width of these edge profiles may be affected by the operation
of the filter. Also, the simplest case to start with involves the effect
of a one-dimensional median filter window of width N, where N is an odd
number, on a ramp which represents a one-dimensional slice through the
edge profile of a target in an image under investigation.

In terms of one-dimensional digital signal processing, the edge ramp
E can be considered as a digital function E(t) where t is a measure of
the pixel location in the edge. For a given working field width of 101
pixels, t is only defined for the integral values 0, 1, 2, ... through
100.

A flow diagram depicting the strategy of study of the one-dimensional
case is shown in figure 6 as follows: Take an input edge pure signal
E(t) and add to it a given percentage intensity Pn of zero-mean Gaussian
random noise Ni(t) to get a noisy edge profile F(t). (Gaussian noise is
characteristic of the output of mechanisms responsible for various sensor
and transmission noise sources and is, therefore, a good model of noise
to use in this study«) Then operate upon F(t) with a given one-dimensional
median filter window to obtain an unknown filtered noisy edge profile
G(t). Assuming that the slope of the edge profile G(t) may have been
distorted by the action of the median filter, put G(t) through an edge
estimator to find the best fit pure signal H(t). If one defines:

N2(t) = G(t) - H(t) (11)

then N2(t) is a measure of the postprocessing noise.

The input edge profile ramp can be of any desired width and defined
to lie within a 101-pixel working field as shown in figure 7. The
particular ramp shown in the figure rises from a low of zero to a high

11

! -P

LU
CO ^-N,

-P
O ^-^
zr nz
^ i
LU
~^^: X—N

"P
U_ \~*
O CD

LU II
CÜ
rD ^^
co -P
<a: **-•

LU CSJ

^~
Z i

CD

£ I
LU -^ I
Qi -p !

Q_ zr

00
LU
PQ

00

CD
(=5

<u

a)
a
o
u
p.
o

•H

CD

I—
ZD

CD

CD

>-
CO

o

etc >-
00
1—1 1
0 !
2: ^-%

■P' ^*- ^~^
S: CD
CD
5g LU '
N£ CD
s: «

cd
C
cd

c
o

■H
CO
c
e

•H
T3

I
a)

n
CU)

•H

12

•H

O

a
QJ
so

-a
O)

c
o

•H
en
c
a)
E

■H
-a

I
a)
C o

0)

3
00

•H

-I Ui
Ul 3
X -I
•- < a- >

13

value of one, from pixels 41 through 61 in the field of 101. The shape
of the ramp is characterized by the integral of a Gaussian distribution:

F(t) =

3o-+A

I (v2^"j (EXP - 2a* lj

•'-30+h

dt (12)

This model of a smooth edge profile has no corners or discontinuities
and is characteristic of the way edges are represented on photographic
film, the source of some of the author's test data imagery of infrared
targets. Therefore, the representation of an edge profile by the integral
of a Gaussian distribution is a good model to use for purposes of in-
vestigation and is the one that will be considered from now on.

At this point, for a given percentage intensity of Gaussian noise
Pn , the magnitude of the edge ramp is scaled so that no pixel is likely
to exceed the maximum value Gramax (Fortran variable name). For the signal
and noise contributions Vs and Vn, respectively, to the edge profile
ramp F(t), one has:

/ Pn \ /GRAMAX \
Vn =[100) \^SIGMAS)

In_
Vs = 1 - 100 GRAMAX

F(t) = (Vs) (RAMP) + (Vn) (GAUSIAN RANDOM NUMBER) (13)

Here, SIGI1AS is set to a value of three standard deviations. For
example, if Pn is 10%, the 101 noise point contributions (Gaussian ran-
dom number times Vn) will most likely not exceed 0.1 times GRAMAX. The
reason for this is that a 0-mean Gaussian random number distribution
with standard deviation equal to 1 (which can be approximated, for
example, by the random number generator output of a computer) will ex-
ceed 3 only about 1 time out of 370. The signal contribution (Vs times
a ramp between 0 and 1) will definitely not exceed 0.9 times GRAMAX so
that adding on the noise contribution scales the pixels up to a maximum
value of GRAMAX.

After the given median filter operates on F(t), the unknown noisy
filtered edge G(t), which has been produced, may be distorted. One must
therefore find the nev; pure signal, the best fit H(t), to which this
unknown edge best corresponds.

14

First, assume that the noise Nj (t) is always zero, i.e., the
median filter operates solely upon the input edge E(t) as follows:

M(E(t)) = E(t) + Aj(t) (14)

where M is the nonlinear median filter operator and where Aj(t) is the
amount of degradation added to the input signal. In other words, Aj(t)
is simply the degradation that, when added to the input signal, will
produce any distortions for which the median filter may be responsible.
If the median filter operator M is now applied to the noisy edge ramp
F(t), one obtains:

M(F(t)) = M(E(t)) + Nj(t))

= F(t) + A^(t) (15)

For the median filter, the question that arises is, if equation
14 is true and if the operation of the median filter M on E(t) produces
a degradation Aj(t), what can be said about the degradation A2(t) in
terms of E(t), Ni(t), and A, (t) as produced by the operation of the
median filter on the sum of E(t) and N^(t)? The problem is that for
linear operations a great deal can be said about this question; but,
tor nonlinear procedures, such as median filter algorithms, nothing
in general can be stated in terms of the results produced by perturbing
a given input system by a given function of time. Therefore, numerical
techniques by computer simulation become necessary if one hopes to extract
more useful information about this problem.

To try to determine the new signal H(t) to which this unknown filtered
noisy edge G(t) best corresponds, let the original ramp endpoints vary
in and out by five units over eleven positions each. As the left ramp
endpoint varies between the values 36 through 46 and the right one from 56
through 66, a set of 121 clean ramp signals will be generated. Scale each
one without noise by the factor GKAMAX, as in equation 13, compare it with
G(t), and generate the mean square error by adding the squares of the
differences of corresponding data points. The particular ramp with the
lowest mean square error or noise N2(t) is the best fit to the filtered
noise-cleaned edge G(t). The left and right endpoints of this signal
ramp H(t) define the location and slope of the best fit edge ramp desired.

PROGRAM SIMU1D

Development

Program SIMU1D is a one-dimensional median filter study simulation,
a comprehensive, interactive Fortran program/modular subroutine package

15

designed to implement the one-dimensional edge profile analysis (both
discussed in the previous section and described in figure 6). For an
edge ramp centered in the 101-pixel wide working area, filtered by a one-
dimensional median filter of desired width, and for any desired number of
trial runs per data point, the simulation calculates the percent intensity
of Gaussian noise after median filtering versus the percentage of Gaussian
noise in the ramp before the application of the filter. The short 20-line
main control program first calls upon a subroutine to interactively read in
all user-specified parameters such as edge and window widths and minimum
and maximum input noise intensity percentages. Subroutines are then
executed to process all the required calculations, write the results to
an external file for storage, if desired, and to determine the minimum and
maximum values of the output noise percentage data. Subroutines are then
called upon to print or plot the output versus input data as specified by
the user.

The following subsections are a summary description in order of both
the coding of the various modular subroutines in the package and the indivi-
dual tasks which they perform.

Subroutine READIN

This subroutine is the port through which the simulation interacts
with the user and conversationally asks for and absorbs all required
specification parameters for a given test run.

The subroutine first asks the user for the type of display desired.
Either a tabular printout of the results or a graphical plot or both can
be produced. The user next specifies the width of the centered edge to
be analyzed, the window width of the one-dimensional median filter to be
used, and the number of runs per data point. For example, if the number
of runs is specified as 25, the edge of desired width has a given percentage
intensity of Gaussian noise added to it, is filtered, and the best edge
found with these three operations being repeated in 25 separate trials.
The 25 output mean square error noise values are then averaged to reduce
the effect of fluctuations. This average value is the desired output
noise percentage intensity result.

The user then specifies the range of the input noise data, the mini-
mum and the maximum percentages of input noise intensity, and the number
of points to be calculated within this range. For example, specifying
10%, 20% and 11 points to the computer would cause the input noise
intensity specifications to increments from 10% to 20%, a percentage point
at a time, as 10%, 11%, 12%, ... 20%, for a total of 11 data values.

Finally, if a graphical plot is requested, the user is asked to
specify the left, right, upper, and lower margin portions- to surround the
plot. For example, if 0.1 is specified in each case, 10% of the available
plotting area bordering each of the four sides of the total field available
for graphical plot will be left blank and unused. The graph will then

16

occupy the center 80% of the entire plotting field, leaving room for writing
captions and labels, etc., on a hard copy of the graphical results.

Subroutine CALC

Having been given the edge and window sizes and the range on the
input noise intensity percentages, this subroutine controls all calculations
necessary to obtain the output noise intensity percentages to be displayed.

First, subroutine IGTAB is asked to store the values of the integral
of a Gaussian, as defined in equation 12, in the 1001-point lookup table,
Fortran array GI, from which the edge ramps are formed by interpolation.
Next, as defined by the specified width of the desired edge and the amount
of variation of its endpoints in and out, subroutine STORIT is used to load
into the array ED all edge profiles that are to be used to construct any
subsequent edge ramps. Then, for each input noise percentage intensity, the
appropriate edge profile is read from the array ED into the 101-pixel length
working field, Fortran array EJ. The profile is then moved from the left
and centered in the array EJ by subroutine SETEJ. Then subroutine FILLEJ
is used to scale the profile, as described in equation 13, to the maximum
value GRAMAX, which is set to 255, the biggest number attainable by typical
eight-bit image processing displays.

At this point, array EJ contains the noisy edge ramp F(t) of figure 6.
A one-dimensional median filter of user-specified window width is applied
by subroutine MDlDW. Subroutine FINDEJ is then applied to the resulting
unknown edge profile G(t) to find the Gaussian ramp that best fits this
profile with the lowest mean square error. The left and right coordinates
of the ramp are contained in variables NL2 and NR2, respectively, and the
mean square error is contained in the variable ERVAL.

If additional runs for the same data point are needed for subsequent
averaging, they are done by subroutine DOMORE. The resulting mean square
errors are then averaged within subroutine CALC. Note that, in equation
13, the input noise was scaled by the factor GRAMAX divided by SIGMAS.
For proper error scaling, this must be removed- the mean square error is
thus multiplied by the reciprocal factor SIGMAS divided by GRAMAX and then
by 100 to obtain the output percentage of noise intensity. This entire
procedure is then repeated until all output values of percentage noise
intensity have been calculated.

Subroutine IGTAB

This subroutine calculates and stores in the lookup table GI 1001
values of the integral of a Gaussian or normal distribution from three
standard deviations before the origin to three deviations after the
mean at the origin. The values will then be used subsequently by sub-
routine STORIT to construct the required edge profiles. Specifically

•X-L-- ^7t_ /x ,
^2TT exp dz (16)

17

where x represents the number of standard deviations and varies uniformly
from -3 to 3. If x ran from -00 to 00, the ramp would rise from 0 to
exactly 1. However, most of the activity of the function is confined
to within a few standard deviations about the origin. For practical
purposes, 3.0 was chosen as sufficiently accurate for the program, the
maximum value of the integral obtained by the ramp in equation 16 being
0.9973. For proper accuracy, one would desire that, when this maximum
valve is scaled, that is, multiplied by GRAMAX = 255, it is correct to
within half a pixel or at least 254.5. However, it turns out to be just
a little bit short and yields 254.311. For correctness to the nearest
pixel, the user can feel free to extend the limits on the integral in
equation 16 and subroutine IGTAB from -3.0 and 3.0 to -3.1 and 3.1. This
yields a maximum tabulated value of 0.99806 for a scaled value of
254.5065; correct to the nearest pixel.

Subroutine SIMP

This routine integrates a function partitioned into N steps between
XMIN anc* XftAx by Simpson's rule. It is used by subroutine IGTAB to re-
cursively generate new values of the accumulating integral of the Gaussian
from ones previously known. The first value would be identically 0,
being the integral from -3 to -3 of the Gaussian distribution. The second
value of the integral, 12, would be found by taking the integral from -3
to X2 and adding to the first value. X2 is the second value of x, as
x ranges over 1001 values from -3 to 3, and would be -2.994. In general,
the ith value of the integral in terms of the i-one-th value would be:

/xi

xi-1 f2v exp [2 I
Ti = ^-l + / -i- [--^-1 dz <17>

For each application of subroutine SIMP to this equation by subroutine
IGTAB, the region is divided into 10 partitions; for 1000 applications of
subroutine SIMP, the accuracy is more than sufficient and exceeds 13
decimal digits.

Subroutine STORIT

This subroutine stores, in the two-dimensional Fortran array ED,
the full range of all the edge profiles to be used in a given test run
of program SIMU1D. The values are computed by either interpolating from
or picking off uniformly spaced samples out of the lookup table GI. If,
for example, the width of the desired edge is 21 pixels and the amount by
which subroutine FINDEJ will vary the endpoints in and out to find the
best fit signal is 5 units, the original ramp has the endpoints of its
Gaussian rise at pixels 41 and 61. As they are varied, the narrowest
profile produced has its endpoints at 46 and 56, being 11 pixels wide;
and the widest profile produced has its endpoints at pixels 36 and 66,
being 31 pixels wide. Subroutine STORIT, therefore, stores 2.1 Gaussian
ramp profiles ranging in width from 11 through 31 units, one profile in
each of the 21 rows of the 101-unit length Fortran array ED, the smallest

18

one first. The procedure of calculating the profiles once and storing
them in an array for easy lookup is much more efficient than calculating
them repetitively on demand whenever they are needed for analysis.

Subroutine LINTERP

Subroutine LINTERP is used by subroutine STORIT to calculate from
the lookup table IGTAB, either by direct data point selection or by
interpolation between existing data points, the values of the Gaussian
ramps of various widths that are needed. The variable NP is the number
of divisions between the input data point in the input array DATA1, and NC,
which must be less than NP, is the number of divisions between the points
to be set up in the output data array DATA2. Point selection and inter-
polation, which are used when the variable IFLAG is or is not equal to 0
respectively, are best illustrated by example.

Suppose that the data in the input array have the values 0.0, 0.1,
0.2, ..., 1.0, i.e., 11 values with 10 divisions or steps between them.
If one is required to produce a six-point ramp with five divisions between
points to represent these data, the values would simply be sampled or selected
and are: 0.0, 0.2, 0.4, ..., 1.0. If a four-point representation of the
data with three steps between them is required, linear interpolation must
be used, resulting in the values 0.0, 0.33, 0.67, and 1.0. The criterion
which subroutine LINTERP utilized to decide between point sampling and
linear interpolation, therefore, is to check whether the number of points
less one in the data set to be produced is evenly divisible into the number
of points less one of the input data. If the remainder is 0, the
proper samples can simply be read off. If there is a remainder, linear
interpolation between the input array points is utilized to construct the
Gaussian ramps of the various widths required by the simulation program.

Subroutine SETEJ

In subroutine CALC, when an edge profile of width 21, for example,
is first read into the working array EJ, it occupies the 21 leftmost
pixel positions. Subroutine SETEJ shifts this profile to lie between
two specified left and right coordinates for example, 41 and 61. The
region to the left of the profile is padded with O's and the region
to the right with l's producing an edge as in figure 7.

Subroutine FILLEJ

This subroutine scales the edge ramp as in equation 13 where the
particular values of Vs and V are read in as the Fortran variables VSIG
and VNOI. The subroutine BOXNO, which exists on the ARRADCOM CDC-6000
computer system and which subroutine FILLEJ calls, produces two 0-mean,
standard deviation-1, Gaussian random noise values A and B of which
the first A is used.

19

Subroutine MD1DW

This subroutine performs a one-dimensional median filter operation
on the values in the array EJ. The number of values read into EJ must
not exceed 101, which is the maximum dimensioned space allowed. Also the
window width NW must be an odd integer for successful operation.

Subroutine DSORT

This subroutine is used by subroutine MD1DW and will sort out a
list of real numbers up to 19 entries. The technique used is a quick-
and-efficient compare-and-exchange drop sort.

Subroutine FINDEJ

This routine finds the best edge fit (the one with the lowest mean
square error) to the filtered data and delivers its left and right
coordinates and the value of the mean square error as its outputs. The order
in which the possible ramps are inspected is again best described by
example.

If the endpoints of an edge profile, located at pixels 41 and 61
are allowed to vary in and out by an amount v = 5, the left edge will
run over the values 36 through 46, and the right edge over values 56
through 66. There are 4v + 1 or 21 possible different widths for the
ramps 11 through 31 units. The ramps with the lowest 2v + 1 or 11
widths, that is, 11 through 21 are inspected in the first of two passes
and the rest of the Gaussian ramps are checked on the second pass. In
the first pass, the first ramp checked is of width 11, the one with
endpoints at 46 and 56. Then the ramps of width 12, specified by pixels
46- and 57, and 45 and 56 are checked. Next come the three ramps, 13
units wide, namely. 46 and 58, 45 and 57, and 44 and 56. Following this
come 46 and 59, 45 and 58, ..., down to 43 and 56, that is, ramps of
width 14. This procedure continues in pass one until the last set checked
has ramps of width 21, 46 and 66, 45 and 65, 44 and 64, down to 36 and 56.

In pass 2, the first set of ramps checked has a width 22, for example,
45 and 66, 44 and 65, down to 36 and 57. The procedure continues, and the
ramp width is increased. When it is 30, the choices are 37 and 66, and
36 and 65. The last ramp checked has width 31,'and left and right endpoints
of 36 and 66.

The largest possible value for the mean square error between a pure
signal trial ramp and a noisy edge would occur if the signal pixels had
the value GRAMAX and the noisy edge had the value -GRAMAX across the board
of 101 pixels. The value would be:

MSE = i
E
= 1

101

GRAMAX - (-GRAMAX)
(18)

= 404 (GRAMAX)-

20

This is the initialization value of the Fortran variable ERVAL in which
the lowest mean square error will eventually be stored. As each ramp is
inspected, if the value of the mean square error is lower than the value
currently sitting in ERVAL, ERVAL assumes the value of the mean square
error of that ramp and the left and right pixel location coordinates of
the ramp endpoints are noted. After all of the 121 ramps have been in-
spected, the left and right ends of the best fit are known, and its mean
square error lies in the variable ERVAL.

Subroutine MSE

This subroutine is rather straightforward and simply calculates the
total square error, that is, the sum of the squares of the point-by-point
differences of two arrays dimensioned to a length of 101 pixels each.

Subroutine DOMORE

As mentioned in the description of subroutine CALC, this is the
subroutine that performs, for each input noise data point, any subsequent
runs besides the first if they have been requested by the user for the
purpose of eliminating, by averaging, any statistical fluctuations in the
mean square error of the output noise. If, for example, 10 runs per data
point had been specified, the first is done in subroutine CALC. Then
subroutine DOMORE is called on to set up a noisy edge, operate on it
with a median filter, and find the best fit ramp and its mean square error
for nine different sets of noise samples.

A total of nine mean square figures are passed out of the subroutine
in the variable VAL. All 10 of the mean square error values are then
averaged in subroutine CALC to produce a value of output noise relatively
free of strong individual fluctuations.

Display Subroutines

The last five subroutines handle the display of the output data.
Subroutine print 7 uses a Fortran write of the form write (7,100) to
write the input and output noise intensity percentages to a local CDC
SCOPE file, TAPE7, for storage and availability for further study.
Subroutine MINMAX simply notes the minimum and maximum values of the output
noise intensities in the array Y. Subroutine PRINOU produces, if it has
been requested, a chart of the input and output noise data. As explained
in detail in the section on subroutine READIN, subroutine MARGIN prepares
the output ploting area, leaving designated bordering portions of it blank
and compressing the plot of the results into the central region of the
plotting area. Subroutine PLOT plots the output versus input noise
intensities up to 1001 points of data. The graphics commands assume a
Tektronix 4014 terminal.

21

PROGRAM LOCKON

To explore and properly interpret the preliminary results of pro^-
gram SIMU1D, the development of program LOCKON became necessary. For
example, for 10% Gaussian noise intensity, the best fit signal ramp, after
median filtering, did not agree with the input signal ramp a good percentage
of the time. To statistically measure how often mismatch occurs for a
given percentage noise intensity and edge, and window widths, program
LOCKON was devised.

The program first asks for the input edge and window widths, and
the number of trial runs per data point. Finally the user furnishes the
minimum and maximum on the range of noise intensity percentages and the
number of data points to be tested. The program then proceeds to calculate
three quantities to be explained, PB, P^, and PDIF-

In a manner similar to the one-dimensional simulation, Program LOCKON
sets up an input edge, applies a median filter to it, and finds the best
fit signal with the lowest mean square error. Specifically, when a
noisy edge F(t) is set up, subroutine FINDEJ is called upon to find the
left and right coordinates of the best fit edge ramp. If either coordinate
does not coincide with those of the input signal, a mismatch is noted.
The prescribed median filter is then applied, yielding G(t). The best fit
for these data is then found by subroutine FINDEJ; and any mismatch with
the input signal is again noted. This process is repeated for each data
point for however many runs the user has specified. For a given number
N of runs, the percent of time in which the noisy signal, before filtering,
did not match the input signal is the miss probability Pg. The percent
of time the noisy edge, after median filtering, did not match the input
signal ramp coordinates is the miss probability P^. The percent of time
the signals before and after application of the median filter differed
from each other is the miss probability PDXF*

PROGRAMS EJSHOW AND PULPLT

These are graphics programs developed by the investigator to help
conceptualize and visualize the kinds of results being generated by the
median filtering windows being used in the one-dimensional simulation
program SIMU1D.

Program EJSHOW

Program EJSHOW will graph a noisy edge F(t) and two signals. One
signal will be either the best fit signal or another user-specified
signal; and a second signal, will be the user's choice, for example,
a poor ramp fit for purposes of comparison.

22

The program will also report the output noise percentage intensities
on these signal choices before and after application of the desired one-
dimension median filtering window being used.

Program PULPLT

Program PULPLT was developed to plot the noisy square wave pulses
before and after median filtering, as shown in figures 3 and 4. The
input pulse width is specified by the user as a percentage of the total
available plotting field. The four Fortran program/modular subroutine
simulation packages, SIMU1D, LOCKON, EJSHOW, and PULPLT, are listed in
appendixes A, B, C, and D, respectively, at the end of this report.

PRELIMINARY RESULTS

Figure 8 is a plot of the kind of results that program SIMU1D will
generate. A total of 101 points are plotted for input noise intensity
percentage ranging from 0 to 100%. The ordinate, the postprocessing
noise rises from 0 to 65%. This graph incorporates an edge ramp of width
21 and a median filter window width of 3. As the percentage of noise
Pn rises on the graph, the corresponding percentage of signal (1 - Pn)
diminishes. This becomes apparent to the reader, for the high noise
portions of the graph, as the smoothness of the curve diminishes and
disappears into the completely uncorrelated and predominating Gaussian
noise.

Figure 9 shows an example of a noisy one-dimensional edge profile
F(t) with 10% Gaussian noise intensity for a Gaussian ramp having end-
points 41 and 61. Also shown are two examples of pure signals: the
best fit signal is on the right having a Gaussian ramp rising from pixels
41 through 61; an example of a poor fit signal is on the left curve with
a ramp rising from points 36 through 56. Figure 10 is an example of the
profile G(t) obtained by filtering the noisy input F(t) of figure 9 with
a median filter window of width 3. Again, for comparison purposes, two
pure signals ?re shown, the best fit to the right, with a Gaussian ramp
rising from pixels 41 through 61, and the poor fit to the left with a
Gaussian ramp rising from pixels 36 through 56.

In addition to these kinds of results, preliminary tests with pro-
gram LOCKON were conducted on the 10% input noise percentage intensity
edges. For 100 trial runs, for example, the pre- and postfiltered edge
ramps do not match the input signal 40% of the time and do not match
each other about 20% of the time out of 100. These kinds of results
must be further developed, interpreted, and extended to the analysis of
two-dimensional simulated data before any testing of combined median
filter window outputs upon actual digitized imagery data.

23

o
•H

3
B

•H
0)

n)
C
o

•H
CO c
cu e

•H
•a

I
cu
c
o

0)
CO

•H
o
C

ß
•H

CO
CO

m

3
P.
C

CO
3
CO

cu
>

<U

cu

cu
3
00

•H

24

0)
00

<U

•H
O

0)

o
•H

(3
01

I a;
a
o

M

. oo

25

CO

LO

T3
■H

I
XI
C

M
Ö

•H
u

14-1

to
•H
O
C

Ö
cd

•H
M
en
■3
cO
O

05
•H
en
!^

rH
rS
C
ca

a«
60

T3

cfl
c
O

•H
W

I
•H

I
0)
c o

3
00

26

RECOMMENDATIONS

Additional software must be developed to properly interpret the type
of results being produced by programs SDIU1D and LOCKON. First, in terms
of viewing digital imagery of FLIR or visible TV-displayed signals, 40 dB
is considered good in practice. Any noise intensity greater than 3%, that
is, a signal-to-noise ratio 15 dB or less is considered severe. The noise
intensities simulated do not go much beyond 3% and definitely do not exceed
5%, that is, less than 13 dB. Thus, a study of the effect of median filters
on noise level intensities up to 5% (signal-to-noise ratios grecter than
13 decibels) will indicate the multiplicative factor or scaling function
by which particular median filters will supress noise.

The mismatch probabilities between the input signal and the noisy
edges before and after filtering, as produced by program LOCKON, are in-
sufficient data from which to draw conclusions about any possible degradations
of edges by median filters. Two approaches are suggested: They must be
assessed and a choice must be made on the desirability of one of them.

First, instead of computing the mismatch probabilities between the
input signal and the noisy ramp, or the input signal and the median filtered
ramp, program LOCKON should be modified to produce, for a given number N
of trial runs, the means and the standard deviations of the locations of the
left and right coordinates of the endpoints of the Gaussian ramps. These
quantities are more useful than the mismatch probabilities for determining
the effects of median filter windows on edges and can be used to obtain
measures of the mean edge width and the standard deviation of how much it
tends to vary. The standard deviation of variance of the edge width will
give some indication of how much a particular median filter might be degrading
the given edge.

The question arises as to what is the minimum number N of trial
runs required for a good standard deviation measurement. Assume that a pure
signal ramp, scaled to the maximum value GRAMAX, contains 101 points Pj.
A median filtered noisy edge, whose best fit, pure signal is assumed not
to match the signal Pj, contains 101 points Qj. The root mean square
separation of the two curves is:

■ V 101 (19)

If one scales out the GRAMAX dependence, the mean square percentage error
between these two curves is:

100 A
MSE = GRAMAX ^20)

27

To calculate the number of trial runs required for a good standard
deviation measurement of the Gaussian ramp endpoints, the average noise
produced must be much less than the shift A of equation 19, If the
noise is on the order of or greater than the A shift between the two
curves, that shift and, therefore, the degradation produced by the given
median filter will be masked by the noise. The noise of one test run is
the value Vn of equation 13, which for N runs goes down by the square root
of N. One therefore has:

V- R.
N (2D

For a factor a < one, which is used to ensure that the number N of trial
runs will be high enough so that the Gaussian noise does not mask the
degradations produced by a given median filter, one has from equations 13,
20 and 21:

Vioo /
PN) (GRAMAX] ^ (a) (MSE) (GRAMAX)

SIGMAS / 100 (22)

N

This reduces to:

(-Eid (L__
N > \MSEy \ a (SIGMAS) (23)

For a masking prevention factor a = 0.5 and SIGMAS = 3 standard deviation

0.44\ MSEJ N > 0.44V MSE) (24)

This yields, say for 3% noise and 0.3% mean square error shift between the
noisy and pure signal curves, an N of at least 44 trial runs for a legitimate
measure of the standard deviation or variance of the Gaussian ramp edges.

A second approach is available for detecting noise degradations
of one-dimensional Gaussian edge ramps that is far more simple. Instead
of finding the best fits for the noisy edge ramp with separate sets of
noise points and noting the average and standard deviation of these fits,
add up a series of N noisv edge ramps and average them immediately. The

noise will then decrease as . For example, adding up 100 ramps with
N

identical signals and different noise samples will cut down the noise by
a factor of 10.

28

Inspection of the resulting average ramp by subroutine FINDEJ will yield
the best fit signal and information as to any degradations the median
filter has produced without the problem of strong potentially masking the
effect of small edge degradations.

These studies are easily extended to the investigation of the effects
of two-dimensional median filters on an edge in, for example, a 101 by 101 area.
Each horizontal line of the synthetic picture array is formed by repeating
the edge ramp slice E(t), thus forming a vertical edge line in the picture.
Gaussian noise of a given percentage intensity is then added and the whole
frame is operated on by the desired two-dimensional median filter. Each line
of the synthetic picture can then be inspected by subroutine FINDEJ to find
the best fit pure signal. If the edge line formed by the centers of the
101 input signal ramps is vertical, the average and standard deviations of these
101 ramps will then give an idea of how the two-dimensional median filter
may be degrading the edge. Alternatively, if the edge line of the ramp
is not necessarily vertical, the location of the centers of the edge ramps
in each horizontal line of the picture can be noted and the best line-fit
through them can be calculated and compared with the orginal input edge line.
Investigation of edges oriented at various angles within the picture field
will then determine if two-dimensional median filter windows possess any
inherent orientational biases toward the edges surrounding targets of interest
in a given picture.

Once the action of two-dimensional median filters has been fully
understood and, if acceptable, the author suggests tests on actual imagery
data as in equations 7 through 10. Here 9 and <E can vary separately or
together to produce different median filter window combinations governed
by continuous functions of the picture gradient for optimal noise suppression
and minimal, or no, signal degradation.

REFERENCES

1. James W. Tukey, Exploratory Data Analysis, Reading, MA: Addison-
Wesley, 1971 and 1979.

2. William K. Pratt, Digital Image Processing, John Wiley and Sons,
1978, p 333.

3. Frofessor Thomas S. Huang, Dept. Electrical Engineering, Purdue,
Lafayette, Indiana (private communication).

29

BIBLIOGRAPHY

Andrews, Harry C., and John Baird Morton, "A Posteriori Method of Image
Restoration," Journ. Optical Society of America, February 1979,
pp 280-290.

Andrews, Harry C, Digital Image Restoration, Prentice Hall, 1976.

Castleman, Kenneth R., Digital Image Processing, Prentice Hall, 1979.

Froehlich, Gary K., Robert B. Asher, and John F. Walkup, "Optical Estima-
tion in Signal-Dependent Noise," JOSA, December 1978, pp 1665-1671.

Gonzalez, Raphael C. and Paul A. Wintz, Digital Image Processing, Reading,
MA: Addison-Wesley, 1977.

Huang, T.S. and G. Yang, "A Fast Two-Dimensional Median Filtering Algorithm,"
IEEE Transactions on Acoustics, Speech, and Signal Processing, Feb-
ruary 1979, pp 13-18.

Jayant, N.S., "Average and Median-Base Smoothing Techniques for Improving
Digital Speech Quality in the Presence of Transmission Errors,"
IEEE Transactions Communications, September 1976, pp 1043-1045.

Justusson, B., "Statistical Properties of Median Filters in Signal and
Image Processing," Unpublished report., Math. Institute, Royal In-
stitute of Technology, Stockholm, Sweden, December 1977.

Kanefsky, Morton and Michael Strintzis, "A Decision-Theory Approach To
Picture Smoothing," IEEE Transactions on Computers, January 1978,
pp 32-38.

Marmolin, H., S. Nyberg and U. Berggrund, "A Visual Optimized Restoring
Filter," FOA report C56016-H9, December 1977, National Institute for
Defense Research, Sweden.

Naderi, Sawchuk, "Detection of Low-Contrast Images in Film-Grain Noise,"
Applied Optics, September 15, 1978, pp 2883-2891.

Panda, Durga, "Recursive Least-Squares Smoothing of Noise in Images,"
with A.C. Kak, IEEE Transactions on Acoustics, Speech, and Signal
Processing, December 1977, pp 520-524.

Pratt, William K., "Median Filtering, Semiannual Report," Image Processing
Institute, University Southern California, September 1975, pp 116-123.

Rabiner, L.R., M.R. Sambur, C.E. Schmidt, "Application of a Nonlinear
Smoothing Algorithm To Speech Processing," IEEE Transactions on
Acoustics, Speech, and Signal Processing, December 1975, pp 552-557.

30

Rosenfeld, A. and A.C. Kak, Digital Picture Processing, Academic Press,
1976.

Schreiber, W.F., "Image Processing for Quality Improvement," IEEE
Proceedings, December 1978, pp 1640-1651.

Zweig, Barrett, and Hu, "Noise-Cheating Image Enhancement, JOSA, Novem-
ber 1975, pp 1347-1353.

31

APPENDIX A

PROGRAM SIMUID

33

PROGRAM SIMU1D(INPUT,OUTPUT,TAPE7,TAPE61=100,TAPE62=100)
DIMENSION X(1001),Y(lü01)

C-TAKES A ONE-DIMENSIONAL SLICE OF AN IMAGE EDGE RAMP SIMULATED BY THE
C-INTEGRAL OF A GAUSSIAN, ADDS NOISE, MEDIAN FILTERS IT, MEASURES
C-THE NEW NOISE, AND PLOTS OUTPUT VS. INPUT % NOISE.

CALL CONNEC(5LINPUT) $ CALL CONNEC(6LOUTPUT)
CALL READIN(DISP,NE,NW,NRUN,XMIN,XMAX,NP,XLM,RM,TM,BM)
CALL CALC(NE,NW,NRUN,X,Y,NP,DX,XMIN,XMAX)
CALL PRINT7(X,Y,NP)
CALL MINMAX(Y,NP,YMIN,YMAX)
PRINT *,"OUTPUT NOISE %S: MIN = ",YMIN,", MAX = ",YMAX
FUZZ = .Ü001*DX
YMAX = YMAX + FUZZ $ YMIN = YMIN - FUZZ
IF (DISP .EQ. "PRINT") GO TO 1
CALL MARGIN(XMIN,XMAX,YMIN,YMAX,XLM,RM,TM,BM)

1 IF(DISP.EQ."PLOT") GO TO 2
CALL PRINOU(X,Y,NP)

2 IF(DISP.EQ."PRINT") GO TO 3
CALL PLOT(X, Y , NP , XM IN ,XMAX,YMIN,YMAX)

3 STOP
END
SUBROUTINE READIN(DISP,NE,NW,NRUN,XMIN,XMAX,NP,XLM,RM,TM,BM)

1 PRINT *,"WHICH DISPLAY, PRINT, PLOT, OR BOTH? "
READ 100,DISP

100 FORMAT(A5)
IF(DISP.EQ."PRINT".OR.DISP.EQ."PLOT".OR.DISP.EQ."BOTH") GO TO 2
PRINT *,"INCORRECT DISPLAY TYPE."
GO TO 1

2 PRINT*,"TYPE EDGEWIDTH, MEDIAN FILTER WINDOW SIZE, & NO. RUNS. "
READ *,NE,NW,NRUN
IF(NE .GE. NW .AND. MOD(NW,2) .EQ. 1) GO TO 3
IF (NE ,LT. NW) GO TO 4
PRINT *,"WINDOW SIZE ",NW," MUST BE AN ODD NO."
GO TO 2

4 PRINT *,"EDGE SIZE ",NE," MUST BE AT LEAST WINDOW SIZE ",NW
GO TO 2

3 PRINT *,"ENTER MIN&MAX INPUT NOISE %, & NO.POINTS NOT .GT. 1001 "
READ *,XMIN,XMAX,NP
IF(DISP.EQ."PRINT") GO TO 5
PRINT *,"ENTER LEFT, RIGHT, UPPER & LOWER MARGIN PORTIONS. "
READ *,XLM,RM,TM,BM
GO TO 6

5 XLM = RM = TM = BM = 0.0
6 RETURN
END
SUBROUTINE CALC(NE,NW,NRUN,X,Y,NP,DX,XMIN,XMAX)
DIMENSION GI(1001),ED(21,101),X(1001),Y(1001),EJ(101)

C-GIVEN EDGE & WINDOW SIZES, & RANGE ON INPUT NOISE %S,

35

C-THIS ROUTINE CONTROLS THE CALCULATIONS OF THE OUTPUT NOISE %S.
C-SETUP TABLE OF INTEGRAL OF GAUSSIAN FROM XMIN TO X OF EXP(-X*X/2)

CALL IGTAB(GI)
NVAR = 5
CALL STORIT(GI,ED,NE,NVAR)
NL1 = (101-NE)/2+l $ NR1 = (101+NE)/2
IBASE = NE-2*NVAR-1 $ IRAMP = NE-IBASE
CALL SECOND(A) $ NTIME = 1000*(A+1.0) $ CALL RDMIN (NTIME)

C-USES COMPUTER TIME TO INSURE RANDOM NO. GENER. NOT START IN SAME SPOT.
GRAMAX = 25 5. $ SIGMAS =3.0

C-MAX GRAY LEVEL TO HAVE, & NO. STANDARD DEVIATIONS.
DX = (XMAX - XMIN) / FLOAT(NP-1)
1=0

11=1+1
X(I) = XMIN + DX*FLOAT(I-l)
VNOI = X(I)/100.*GRAMAX/SIGMAS
VSIG = (l.-X(I)/100.)*GRAMAX

C-USED TO SCALE SIGNAL & NOISE SO GRA LEVELS SHOULD NOT EXCEED GRAMAX.
C-SETUP NOISY EDGE, EJ.

DO 2 J = 1,NE
2 EJ(J) = ED(IRAMP,J)
CALL SETEJ(NL1,NR1,EJ)
CALL FILLEJ(VSIG,VNOI,EJ)
CALL MD1DW(NW,EJ)

C-MEDIAN FILTERS NOISY EDGE.
CALL FINDEJ(NE,NL1,NR1,NVAR,ED,EJ,VSIG,GRAMAX,ERVAL,NL2,NR2)
ERVAL = SQRT(ERVAL/101.0)

C-FINDS BEST EDGE FIT TO FILTERED DATA, (ONE WITH LOWEST MEAN SQUARE
C-ERROR, & GIVES LEFT & RIGHT HAND ENDPOINT COORDINATES.

IF(NRUN .EQ. 1) GO TO 3
CALL DOMORE(NL2,NR2,NVAR,ED,EJ,VSIG,VNOI,NW,NRUN,VAL)

C-CONDUCTS MORE NOISE RUNS ON THE SOUGHT-FOR EDJE.
ERVAL = ERVAL + VAL
ERVAL = ERVAL / NRUN

3 Y(I) = 100.*ERVAL*SIGMAS/GRAMAX
IF (I .LT. NP) GO TO 1
RETURN
END
SUBROUTINE IGTAB(GI)
DIMENSION GI(1001)

C-SETSUP TABLE OF INTEGRAL OF GAUSSIAN, FROM XMIN TO X OF EXP(-X*X/2)
PRINT *,"DOING INTEGRAL GAUSSIAN TABLE."
XMIN = -3.0 $ XMAX =3.0
NP = 1001 $ NDIV = 10
DX = (XMAX-XMIN) / FLOAT(NP-1)
CONST = l./SQRT(8.*ATAN(l.))
XOLD = XMIN $ GI(1) =0.0
1=0

11=1+1
X = XMIN + DX*FLOAT(I-l)
IF (I .EQ. 1) GO TO 2

36

H

Y
NEVEN) GO TO 2

CALL SIMP(XOLD,X,NDIV,ANS)
GI(I) = GI(I-l) + CONST*ANS
XOLD = X

2 IF (I .LT. NP) GO TO 1
PRINT *,"TABLE DONE, PROCEEDING TO SIMULATION.
RETURN
END
SUBROUTINE SIMP(XMIN,XMAX,N,ANS)

C-INTEGRATES A FUNCTION.BY SIMPSON'S RU.E
H = (XMAX - XMIN) / FLOAT(N)
NODD = N-l
NEVEN = N-2
ODSUM = EVSUM =0.0
IODD = -1
IEVEN = 0

1 IODD = IODD + 2
X = XMIN + IODD*H
Y = F1(X)
ODSUM = ODSUM + Y
IF (IODD .LT. NODD) GO TO 1

2 IEVEN = IEVEN + 2
X = XMIN + IEVEN *
Y = F1(X)
EVSUM = EVSUM +
IF (IEVEN .LT.
YMIN = Fl (XMIN)
YMAX = Fl (XMAX)
ANS = H/3.0 .* (YMIN + 4.0*ODSUM + 2.0*EVSUM + YMAX)
RETURN
END
FUNCTION F1(X)
Fl = EXP(-X*X/2.0)
RETURN
END
SUBROUTINE STORIT(GI,ED,NE,NVAR)
DIMENSION GI(1001) fX(101) fED (21,101)

C-THIS INTERPOLATES THE SET OF EDGE RAMPS TO BE USED LATER.
IF(NVAR .LE. 10) GO TO 1
PRINT *,"NVAR, ",NVAR,",
STOP

1 IBASE = NE-2*NVAR-1
NRAMPS = 4*NVAR+1
DO 2 IRAMP = 1,NRAMPS
NWIDE = IBASE + IRAMP
CALL LINTERP(GI,X,1001,NWIDE)
DO 2 J = 1,NWIDE

2 ED (IRAMP, J) = X(J)
RETURN
END
SUBROUTINE LINTERP(DATA1,DATA2,NP,NC)
DIMENSION DATA1(1001),DATA2(101)

SHOULD BE 10 OR LESS,

37

C-PICKS OR LINEARLY INTERPS. BIG DATA SET TO GET SMALLER ONE.
SKIP = FLOAT(NP-1) / FLOAT(NC-1)
IFLAG = MOD((NP-1), (NC-1))
IF (IFLAG .NE. 0) GO TO 1

C-INTERP 3Y PICKING OFF POINTS, E.G. EVERY 10TH OF 1000.
IC = 0

2 IC = IC + 1
JC = SKIP*FLOAT(IC-l)+l
DATA2(IC) = DATAl(JC)
IF (IC .LT. NC) GO TO 2
GO TO 3

C-INTERP. BY PICKING LINEARLY BETWEEN POINTS.
1 IC = 0
4 IC = IC+1

XVAL = SKIP*FLOAT(IC-l) +1
II = XVAL $ Q = XVAL-I1
DATA2(IC) = DATAl(Il) + Q*(DATAl(11+1)-DATAl(II))
IF (IC .LT. NC) GO TO 4

3 RETURN
END
SUBROUTINE SETEJ(NLEFT,NRIGHT,EJ)
DIMENSION EJ(101)

C-MAKES INTERPED. GAUSIAN RAMP RISE FROM 0 TO 1 BETWEEN NLEFT & WRIGHT.
NWIDE=NRIGHT-NLEFT+1$NWIDE1=NWIDE+1$ISHIFT=NLEFT-1$IPAST=NRIGHT+1

C-TRIAL WIDTH, 1 MORE, NO.POINTS TO SHIFT TO CENTER, 1 PAST RIGHT END.
DO 1 I = IPAST,101

1 EJ(I) =1.0
DO 2 I = 1,NWIDE
J = NWIDEl-I $ K = J+ISHIFT

2 EJ(K) = EJ(J)
DO 3 I = 1,ISHIFT

3 EJ(I) = 0.0
RETURN
END
SUBROUTINE FILLEJ(VSIG,VNOI,EJ)
DIMENSION EJ(101)

C-SCALES EDGE TO MAX OF GRAMAX WITH SIGNAL & NOISE CONTRIBUTIONS.
DO 1 I = 1,101
CALL BOXNO(A,B)

C-GAUSSIAN RANDOM NOISE GENER. GIVES 2 USABLE VALUES.
C-NOW SCALE SIGNAL BY VSIG AND ADD NOISE TIMES VNOI.

1 EJ(I) = VSIG*EJ(I) + VNOI*A
RETURN
END
SUBROUTINE MDlDW(NW,EJ)
DIMENSION EJ(101),SORT(19)

C-ONE-D MEDIAN FILTERS EJ.
MDN1 = NW/2 $ MDN = MDNl+1
NDO = 101-NW+l

C-NO. OF APPLICATIONS OF WINDOW.
DO 1 I = l,NDO

38

DO 2 J = 1,NW
K = I + (J-l)

2 SORT(J) = EJ(K)
CALL DSORT(SORT,NW)
L = I + MDN1

1 EJ(L) = SORT(MDN)
RETURN
END
SUBROUTINE DSORT(X,N)
DIMENSION X(19)

C-DOES A DROP SORT OF UP TO 19 NUMBERS.
1 = 1

1 IF(X(I) .GT. X(I+1)) GO TO 2
3 1=1+1

IF (I .LT. N) GO TO 1
GO TO 4

2 CALL SWAP(X(I), X(I+1))
J = 1-1

5 IF(J .EQ. 0) GO TO 3
IF(X(J) .GT. X(J+1)) CALL SWAP(X(J), X(J+1))
J = J-l
GO TO 5

4 RETURN
END
SUBROUTINE SWAP(X,Y)
Z=X$X=Y$Y = Z
RETURN
END
SUBROUTINE FINDEJ(NE,NL1,NR1,NVAR,ED,EJ,VSIG,GRAMAX,ERVAL,NL2,NR2)
DIMENSION ED(21,101),EJ(101),EJSIG(101)

C-FINDS BEST EDGE FIT TO FILTERED DATA, (ONE WITH LOWEST MEAN SQUARE
C-ERROR), AND GIVES LEFT AND RIGHT HAND END COORDINATES.

IF(NE .LT. (2*NVAR+2)) NVAR = (NE-2J/2
IF(NE .GT. (101-2*NVAR)) NVAR = (101-NE)/2
IBASE = NE-2*NVAR-1
ERVAL = 4.0*101.0*GRAMAX**2
IPASS = 0

1 IPASS = IPASS + 1
IF(IPASS .EQ. 2) GO TO 2
IMIN=1 $ IMAX=2*NVAR+1 $ NTIME=0 $ SIGN=1.0
GO TO 3

2 IMIN=2*NVAR+2 $ IMAX=4*NVAR+1 $ NTIME=2*NVAR+1 $ SIGN=-1.0
3 DO 4 IRAMP = IMIN,IMAX
NTIME = NTIME+SIGN*1.0
NWIDE = IBASE + IRAMP
IF(IPASS .EQ. 1) NLWORK = NL1 + NVAR
IF(IPASS.EQ.l) NRWORK = NLWORK + NWIDE -1
IF(IPASS .EQ. 2) NRWORK = NRl+NVAR
IF(IPASS .EQ. 2) NLWORK = NRWORK-NWIDE+1
ITIME = 0

5 ITIME = ITIME + 1

39

DO 6 J = 1,NWIDE
6 EJSIG(J) = ED(IRAMP,J)
CALL SETEJ(NLWORK,NRWORK,EJSIG)
DO 7 J = NLWORK,101

7 EJSIG(J) = EJSIG(J) * VSIG
CALL MSE(EJSIG,EJ,ERROR)

C-FINDS MEANSQÜARE ERROR OR NOISE OF EDGE OVER PURESIGNAL EJSIG.
IF(ERROR.GE. ERVAL) GO TO 8
ERVAL = ERROR
NL2 = NLWORK $ NR2 = NRWORK

8 NLWORK=NLWORK-l $ NRWORK=NRWORK-l
4 IF(ITIME .LT. NTIME) GO TO 5

IF(IPASS .LT. 2) GO TO 1
RETURN
END
SUBROUTINE MSE(X,Y,ERROR)
DIMENSION X(101),Y(101)
ERROR =0.0

C-THIS CALCULATES THE MEAN SQUARE ERROR OF Y FROM X.
DO 1 I = 1,101

1 ERROR = ERROR + (Y(I)-X(I))**2
RETURN
END
SUBROUTINE DOMORE (NLEFT,NRIGHT,NVAR,ED,EJ , VSIG, VNOI ,NW,NRUN , VAL)
DIMENSION ED(21,101),EJ(101),EJSIG(101)

C-NRUN-1 MORE RUNS ON THE FOUND EDGE TO SMOOTH THE NOISE RESULT.
NWIDE=NRIGHT-NLEFT+1 $ IBASE=NWIDE-2*NVAR-1 $ IRAMP=NWIDE-IBASE

C-GO PICK THE IRAMP ROW OF ARRAY ED.
DO 1 J = 1,NWIDE

1 EJSIG(J) = ED (IRAMP,J)
CALL SETEJ(NLEFT,NRIGHT,EJSIG)
DO 2 J = NLEFT,101

2 EJSIG(J) = EJSIG(J) * VSIG
VAL = 0.0 $ IRUN = 1

3 IRUN = IRUN +1
DO 4 J = 1,NWIDE

4 EJ(J) = ED(IRAMP,J)
CALL SETEJ(NLEFT,NRIGHT,EJ)
CALL FILLEJ(VSIG,VNOI,EJ)
CALL MD1DW(NW,EJ)
CALL MSE(EJSIG,EJ,ERROR)
ERROR = SQRT(ERROR/101.0)
VAL = VAL + ERROR
IF (IRUN .LT. NRUN) GO TO 3
RETURN
END
SUBROUTINE PRINT7(X,Y,NP)
DIMENSION X(1001),Y(1001)

C-THIS WRITES THE INPUT AND OUTPUT NOISE %S TO TAPE7.
DO 1 I = 1,NP

1 PRINT(7,*) X(I),",",Y(I)

40

REWIND 7
RETURN
END
SUBROUTINE MINMAX(Y,NP,YMIN,YMAX)
DIMENSION Y(1001)
YMIN = YMAX = Y(l)
DO 1 I = 1,NP
IF (Y(I) .LT. YMIN) YMIN = Y(I)

1 IF (Y(I) .GT. YMAX) YMAX = Y(I)
RETURN
END
SUBROUTINE MARGIN(XMIN,XMAX,YMIN,YMAX, XLM,RM,TM,BM)
HH = (XMAX-XMIN) / (1.0-XLM-RM)
HV = (YMAX-YMIN) / (1.0-TM-BM)
XMIN = XMIN -HH*XLM $ XMAX = XMAX + HH*RM
YMAX = YMAX + HV*TM $ YMIN = YMIN - HV*BM
RETURN
END
SUBROUTINE PRINOU(X,Y,NP)
DIMENSION X(1001) ,Y(1001)
READ 100,ICHAR

10 0 FORMAT(Al)
PRINT 200

200 FORMAT(lH , "LINE",IX,"X",14X,"Y")
DO 1 I = 1,NP
PRINT 300,I,X(I),Y(I)

300 FORMAT(lH ,13,2X,2 (F14.9,IX))
IF (MOD(1,30) .NE. 0) GO TO 1
READ 100,ICHAR $ PRINT 200

1 CONTINUE
RETURN
END
SUBROUTINE PLOT(X,Y,NP, XMIN,XMAX,YMIN,YMAX)
DIMENSION X(1001),Y(1001)
READ 10 0,ICHAR

100 FORMAT(Al)
CALL INITT(30) $ CALL TERM(2,4096)
CALL DWINDO(XMIN,XMAX,YMIN,YMAX)
CALL MOVEA(X(l) , Y(l))
DO 1 I = 2,NP

1 CALL DRAWA(X(I), Y(I))
CALL ANMODE $ READ 10 0,ICHAR
RETURN
END

41

APPENDIX B

PROGRAM LOCKON

43

PROGRAM LOCKON(INPUT,OUTPUT,TAPE7,TAPE 61 = 100,TAPE62 =100)
DIMENSION GI(1001)fED(21,101),X(1001),EJ(101),PB(1001),PA(1001)

&PDIF(1001)
CALL CONNEC(5LINPUT) $ CALL CONNEC(6LOUTPUT)
CALL IGTAB(GI)
CALL SECOND(A) $ NTIME = 1000*(A+1.0) $ CALL RDMIN(NTIME)
GRAMAX = 25 5. $ SIGMAS =3.0
PRINT *,"TYPE EJWITH, MEDIANFILTER WINDOWSIZ, & NO.RUNS "
READ *,NE,NW,NRUN
NVAR = 5
IBASE=NE-2*NVAR-1 $ IRAMP = NE-IBASE
CALL STORIT(GI,ED,NE,NVAR)
PRINT *,"ENTER MIN&MAX %NOISE, &NO.POINTS NOT.GT. 1001 "
READ *,XMIN,XMAX,NP
NLEFT=(101-NE)/2+l $ NRIGHT=(101+NE)/2
DX = (XMAX - XMIN) / FLOAT(NP-1)
1=0

11=1+1
X(I) = XMIN + DX*FLOAT(I-l)
VNOI = X(I)/100.*GRAMAX/SIGMAS
VSIG = (l.-X(I)/100.)*GRAMAX
MA = MB = MDIF = 0
DO 2 IRUN = 1,NRUN
DO 3 J = 1,NE

3 EJ(J) = ED (IRAMP, J)
CALL SETEJ(NLEFT,NRIGHT,EJ)
CALL FILLEJ(VSIG,VNOI,EJ)
CALL FINDEJ(NE,NLEFT,NRIGHT,NVAR,ED,EJ,VSIG,GRAMAX,EB,NLB,NRB)
CALL MD1DW(NW,EJ)
CALL FINDEJ(NE,NLEFT,NRIGHT,NVAR,ED,EJ,VSIG,GRAMAX,EA,NLA,NRA)
IF (NLB.NE.NLEFT.OR.NRB.NE.NRIGHT) MB = MB +1
IF(NLA.NE.NLEFT.OR.NRA.NE.NRIGHT) MA = MA +1

2 IF(NLA.NE.NLB .OR. NRA.NE.NRB) MDIF = MDIF +1
PB(I) = 10 0.*FLOAT(MB) / NRUN
PA(I) = 100.*FLOAT(MA) / NRUN
PDIF(I) = 10 0.*FLOAT(MDIF) /NRUN
PRINT *,X(I),PB(I),PA(I),PDIF(I)
PRINT (7,*) X(I),","/PB(I),",",PA(I),",",PDIF(I)
IF (I .LT. NP) GO TO 1
END
SUBROUTINE IGTAB(GI)
DIMENSION GI(1001)

C-SETSUP TABLE OF INTEGRAL OF GAUSSIAN, FROM XMIN TO X OF EXP(-X*X/2)
PRINT *,"DOING INTEGRAL GAUSSIAN TABLE."
XMIN = -3.0 $ XMAX =3.0
NP = 1001 $ NDIV = 10
DX = (XMAX-XMIN) / FLOAT(NP-l)
CONST = l./SQRT(8.*ATAN(l.))

45

XOLD = XMIN $ GI(1) = 0.0
1=0

11=1+1
X = XMIN + DX*FLOAT(I-l)
IF (I .EQ. 1) GO TO 2
CALL SIMP(XOLD,X,NDIV,ANS)
GI(I) = GI(I-l) + CONST*ANS
XOLD = X

2 IF (I .LT. NP) GO TO 1
PRINT *,"TABLE DONE, PROCEEDING TO SIMULATION. "
RETURN
END
SUBROUTINE SIMP(XMIN,XMAX,N,ANS)

C-INTEGRATES A FUNCTION BY SIMPSON'S RU.E
H = (XMAX - XMIN) / FLOAT (N)
NODD = N-l
NEVEN = N-2
ODSUM = EVSUM =0.0
IODD = -1
IEVEN = 0

1 IODD = IODD + 2
X = XMIN + IODD*H
Y = F1(X)
ODSUM = ODSUM + Y
IF (IODD .LT. NODD) GO TO 1

2 IEVEN = IEVEN + 2
X = XMIN + IEVEN * H
Y = F1(X)
EVSUM = EVSUM + Y
IF (IEVEN .LT. NEVEN) GO TO 2
YMIN = Fl(XMIN)
YMAX = Fl(XMAX)
ANS = H/3.0 * (YMIN + 4.0*ODSUM + 2.0*EVSUM + YMAX)
RETURN
END
FUNCTION F1(X)
Fl = EXP(-X*X/2.0)
RETURN
END
SUBROUTINE STORIT(GI,ED,NE,NVAR)
DIMENSION GI(1001),X(101),ED(21,101)

C-THIS INTERPOLATES THE SET OF EDGE RAMPS TO BE USED LATER.
IF(NVAR .LE. 10) GO TO 1
PRINT *,"NVAR, ",NVAR,", SHOULD BE 10 OR LESS."
STOP

1 IBASE = NE-2*NVAR-1
NRAMPS = 4*NVAR+1
DO 2 IRAMP = 1,NRAMPS
NWIDE = IBASE + IRAMP
CALL LINTERP(GI,X,1001,NWIDE)
DO 2 J = 1,NWIDE

46

2 ED(IRAMP,J) = X(J)
RETURN
END
SUBROUTINE LINTERP(DATAl,DATA2,NP,NC)
DIMENSION DATAl(1001),DATA2(101)

C-PICKS OR LINEARLY INTERPS. BIG DATA SET TO GET SMALLER ONE.
SKIP = FLOAT (NP-1) / FLOAT (NC-1)
IFLAG = MOD((NP-1), (NC-1))
IF (IFLAG .NE. 0) GO TO 1

C-INTERP BY PICKING OFF POINTS, E.G. EVERY 10TH OF 1000.
IC = 0

2 IC = IC + 1
JC = SKIP*FLOAT(IC-l)+l
DATA2(IC) = DATAl(JC)
IF (IC .LT. NC) GO TO 2
GO TO 3

C-INTERP. BY PICKING LINEARLY BETWEEN POINTS.
1 IC = 0
4 IC = IC+1
XVAL = SKIP*FLOAT(IC-l) +1
II = XVAL $ Q = XVAL-I1
DATA2(IC) = DATAl(II) + Q*(DATAl(Il+l)-DATAl(II))
IF (IC .LT. NC) GO TO 4

3 RETURN
END
SUBROUTINE SETEJ(NLEFT,NRIGHT,EJ)
DIMENSION EJ(101)

C-MAKES INTERPED. GAUSIAN RAMP RISE FROM 0 TO 1 BETWEEN NLEFT & NRIGHT.
NWIDE=NRIGHT-NLEFT+l$NWIDEl=NWIDE+l$ISHIFT=NLEFT-l$IPAST=NRIGHT+l

C-TRIAL WIDTH, 1 MORE, NO.POINTS TO SHIFT TO CENTER, 1 PAST RIGHT END.
DO 1 I = IPAST,101

1 EJ(I) = 1.0
DO 2 I = 1,NWIDE
J = NWIDE1-I $ K = J+ISHIFT

2 EJ(K) = EJ(J)
DO 3 I = 1,ISHIFT

3 EJ(I) = 0.0
RETURN
END
SUBROUTINE FILLEJ(VSIG,VNOI,EJ)
DIMENSION EJ(101)

C-SCALES EDGE TO MAX OF GRAMAX WITH SIGNAL & NOISE CONTRIBUTIONS.
DO 1 I = 1,101
CALL BOXNO(A,B)

C-GAUSSIAN RANDOM NOISE GENER. GIVES 2 USABLE VALUES.
C-NOW SCALE SIGNAL BY VSIG AND ADD NOISE TIMES VNOI.

l.EJ(I) = VSIG*EJ(I) + VNOl*A
RETURN
END
SUBROUTINE MDlDW(NW,EJ)
DIMENSION EJ(101),SORT(19)

47

C-ONE-D MEDIAN FILTERS EJ.
MDN1 = NW/2 $ MDN = MDN1+1
NDO = 101-NW+l

C-NO. OF APPLICATIONS OF WINDOW.
DO 1 I = l,NDO
DO 2 J = 1,NW
K = I + (J-l)

2 SORT(J) = EJ(K)
CALL DSORT(SORT,NW)
L = I + MDN1

1 EJ(L) = SORT (MDN)
RETURN
END
SUBROUTINE DSORT(X,N)
DIMENSION X(19)

C-DOES A DROP SORT OF UP TO 19 NUMBERS.
1=1

1 IF(X(I) .GT. X(I+1)) GO TO 2
3 1=1+1

IF (I .LT. N) GO TO 1
GO TO 4

2 CALL SWAP(X(I), X(I+1))
J = 1-1

5 IF(J .EQ. 0) GO TO 3
IF(X(J) .GT. X(J+1)) CALL SWAP(X(J), X(J+1))
J = J-l
GO TO 5

4 RETURN
END
SUBROUTINE SWAP(X,Y)
2=X$X=Y$Y = Z
RETURN
END
SUBROUTINE FINDEJ(NE,NL1,NR1,NVAR,ED,EJ,VSIG,GRAMAX,ERVAL,NL2,NR2)
DIMENSION ED(21,101),EJ(101),EJSIG(101)

C-FINDS BEST EDGE FIT TO FILTERED DATA, (ONE WITH LOWEST MEAN SQUARE
C-ERROR), AND GIVES LEFT AND RIGHT HAND END COORDINATES.

IF(NE .LT. (2*NVAR+2)) NVAR = (NE-2)/2
IF(NE .GT. (101-2*NVAR)) NVAR = (101-NE)/2
IBASE = NE-2*NVAR-1
ERVAL = 4.0*101.0*GRAMAX**2
IPASS = 0

1 IPASS = IPASS + 1
IF(IPASS .EQ. 2) GO TO 2
IMIN=1 $ IMAX=2*NVAR+1 $ NTIME=0 $ SIGN=1.0
GO TO 3

2 IMIN=2*NVAR+2 $ IMAX=4*NVAR+1 $ NTIME=2*NVAR+1 $ SIGN=-1
3 DO 4 IRAMP = IMIN,IMAX
NTIME = NTIME+SIGN*1.0
NWIDE = IBASE + IRAMP
IF(IPASS .EQ. 1) NLWORK = NL1 + NVAR

48

IF(IPASS.EQ.l) NRWORK = NLWORK + NWIDE -1
IF(IPASS .EQ. 2) NRWORK = NR1+NVAR
IF(IPASS .EQ. 2) NLWORK = NRWORK-NWIDE+1
ITIME = 0

5 ITIME = ITIME + 1
DO 6 J = 1,NWIDE

6 EJSIG(J) = ED(IRAMP,J)
CALL SETEJ(NLWORK,NRWORK,EJSIG)
DO 7 J = NLWORK,101

7 EJSIG (J) = EJSIG(J) * VSIG
CALL MSE(EJSIG,EJ,ERROR)

C-FINDS MEANSQUARE ERROR OR NOISE OF EDGE OVER PURESIGNAL EJSIG,
IF(ERROR.GE. ERVAL) GO TO 8
ERVAL = ERROR
NL2 = NLWORK $ NR2 = NRWORK

8 NLWORK=NLWORK-l $ NRWORK=NRWORK-l
4 IF(ITIME .LT. NTIME) GO TO 5

IF(IPASS .LT. 2) GO TO 1
RETURN
END
SUBROUTINE MSE(X,Y,ERROR)
DIMENSION X(101),Y(101)
ERROR =0.0

C-THIS CALCULATES THE MEAN SQUARE ERROR OF Y FROM X.
DO 1 I = 1,101

1 ERROR = ERROR + (Y(I)-X(I))**2
RETURN
END

49

APPENDIX C

PROGRAM EJSHOW

51

PROGRAM EJSHOW(INPUT,OUTPUT,TAPE61=100,TAPE62=100)
DIMENSION GI(lOOl),ED(21,101),X(101),SG(101),EU(101),SUF(101),

&SUP(101) ,ES (101),SSP(101) ,SSP(101)
CALL CONNEC(5LINPUT) $ CALL CONNEC(6LOUTPUT)
NP = 101 $ NVAR = 5
DO 1 I = 1,NP

1 X(I) = FLOAT(I-l)
XMIN = X(l) $ XMAX = X(101)
DX = (XMAX-XMIN)/FLOAT(NP-1)
FUZZ = .0001*DX
GRAMAX = 25 5. $ SIGMAS = 3.
CALL IGTAB(GI)
PRINT *,"ENTER LEFT & RIGHT RAMP ENDS & % NOISE. "
READ *,NLG,NRG,PN
PRINT *,"ENTER WINDOW WIDTH. "
READ *,NW
PRINT *,"ENTER LEFT, RIGHT, UPPER & LOWER MARGIN PORTIONS. "
READ *,XLM,RM,TM,BM
NWG = NRG-NLG+1 $ IBASE = NWG-2*NVAR-1
CALL STORIT(GI,ED,NWG,NVAR)
VNOI = PN/100.*GRAMAX/SIGMAS
VSIG = (l.-PN/100.)*GRAMAX
IRAMP = NWG-IBASE
DO 2 J = 1,NWG

2 SG(J) = ED(IRAMP,J)
CALL SETEJ(NLG,NRG,SG)
DO 3 J = NLG,NP

3 SG(J) = SG(J) *VSIG
4 IRAMP = NWG-IBASE

DO 5 J = 1,NP
CALL BOXNO(A,B)

5 EU(J)=SG(J)+VNOI*A
CALL MINMAX(EU,NP,YMIN,YMAX)
YMAX=YMAX+FUZZ $ YMIN=YMIN-FUZZ
CALL MARGIN(XMIN,XMAX,YMIN,YMAX,XLM,RM,TM,BM)
CALL FINDEJ(NWG,NLG,NRG,NVAR,ED,EU,VSIG,GRAMAX,ERUF,NLUF,NRUF)
CALL MSE(SG,EU,ERUG)
ERUF=SQRT(ERUF/101.) $ ERUG=SQRT(ERUG/101.)
ERUF=100.*ERUF*SIGMAS/GRAMAX $ ERUG=100.*ERUG*SIGMAS/GRAMAX
NWUF=NRUF-NLUF+1 $ IRAMP=NWUF-IBASE
DO 6 J = 1,NWUF

6 SUF(J) = ED(IRAMP,J)
CALL SETEJ(NLUF,NRUF,SUF)
DO 7 J = NLUF,NP

7 SUF(J) = SUF(J)*VSIG
DO 8 J = 1,NP

8 ES(J) = EU(J)
CALL MD1DW(NP,NW,ES)

53

TALL FINDEJ(NWG.NLG,NRG,NVAR,ED,ES,VSIG,GRAMAX,ERSF,NLSF,NRSF)
CALL MSE(SG,ES,ERSG)
ERSF=SQRT(ERSF/101.) $ ERSG=SQRT(ERSG/101.)
ERSF=100.*ERSF*SIGMAS/GRAMAX $ ERSG=100.*ERSG*SIGMAS/GRAMAX
NWSF=NRSF-NLSF+1 $ IRAMP=NWSF-IBASE
DO 9 J = 1,NWSF

9 SSF(J) = ED(IRAMP,J)
CALL SETEJ(NLSF,NRSF,SSF)
DO 10 J = NLSF,NP

10 SSF(J) = SSF(J) * VSIG
PRINT 100

100 FORMAT(1H ,1OX,"GIVEN EDGE",2X,"GIVEN ERROR",IX,"FOUND EDGE",2X,
&"FOUND ERROR")
PRINT 200,NLG,NRG,ERUG,NLUF,NRUF,ERUF

200 FORMAT(lH ,"UNSMOOTH",2X,2(12,IX,12,7X,F10.7,2X))
PRINT 300,NLG,NRG,ERSG,NLSF,NRSF,ERSF

300 FORMAT(lH ,"SMOOTHED",2X,2(12,IX,12,7X,F10.7,2X))
PRINT *,"PLOT THESE RESULTS? "
READ 400,IANS

400 FORMAT(A3)
IF(IANS.EQ."NO") GO TO 4
PRINT *,"ENTER ENDS OF THIRD UNSMOOTHED SIGNAL. "
READ *,NLUP,NRUP
PRINT *,"ENTER ENDS OF THIRD SMOOTHED SIGNAL. "
READ *,NLSP,NRSP
NWUP=NRUP-NLUP+1 $ NWSP=NRSP-NLSP+1
IRAMP = NWUP - IBASE
DO 11 J = 1,NWUP

11 SUP(J) = ED (IRAMP,J)
CALL SETEJ(NLUP,NRUP,SUP)
DO 12 J = NLUP,NP

12 SUP(J) = SUP(J) * VSIG
IRAMP = NWSP-IBASE
DO 13 J = 1,NWSP

13 SSP(J) = ED(IRAMP,J)
CALL SETEJ(NLSP,NRSP,SSP)
DO 14 J = NLSP,NP

14 SSP(J) = SSP(J)*VSIG
PRINT *,"CHOSEN RAMPS SETUP."
CALL PLOT(X,EU,SUF,SUP,NP,XMIN,XMAX,YMIN,YMAX)
CALL PLOT(X,ES,SSF,SSP,NP,XMIN,XMAX,YMIN,YMAX)

15 PRINT *,"ENTER WINDOW WIDTH. "
READ *,NW
DO 16 J = 1,NP

16 ES (J) = EU(J)
CALL MD1DW(NP,NW,ES)
CALL FINDEJ(NWG,NLG,NRG,NVAR,ED,ES,VSIG,GRAMAX,ERSF,NLSF,NRSF)
CALL MSE(SG,ES,ERSG)
ERSF=SQRT(ERSF/101.) $ ERSG=SQRT(ERSG/101.)
ERSF=100.*ERSF*SIGMAS/GRAMAX $ ERSG=100.*ERSG*SIGMAS/GRAMAX
NWSF=NRSF-NLSF+1 $ IRAMP=NWSF-IBASE

54

DO 17 J = 1,NWSF
17 SSF(J) = ED(IRAMP,J)

CALL SETEJ(NLSF,NRSF,SSF)
DO 18 J = NLSF,NP

18 SSF(J) = SSF(J) *VSIG
PRINT 100
PRINT 300,NLG,NRG,ERSG,NLSF,NRSF,ERSF
PRINT *,"ENTER ENDS OF THIRD SMOOTHED SIGNAL. "
READ *,NLSP,NRSP
NWSP=NRSP-NLSP+1 $ IRAMP=NWSP-IBASE
DO 19 J = 1,NWSP

19 SSP(J) = ED(IRAMP,J)
CALL SETEJ(NLSP,NRSP,SSP)
DO 20 J = NLSP,NP

20 SSP(J) = SSP(J) * VSIG
PRINT *,"CHOSEN RAMP SETUP."
CALL PLOT(X,ES,SSF,SSP,NP,XMIN,XMAX,YMIN,YMAX)
GO TO 15
END
SUBROUTINE PLOT(X,Yl,Y2,Y3,NP,XMIN,XMAX,YMIN,YMAX)
DIMENSION X(101),Yl(101),Y2(101),Y3(101)
READ 100,ICHAR

100 FORMAT(A4)
CALL INITT(30) $ CALL TERM(2,4096)
CALL DWINDO(XMIN,XMAX,YMIN,YMAX)
CALL MOVEA(X(l), Yl(l))
DO 1 I = 2,NP

1 CALL DRAWA(X(I), Yl(I))
CALL VCURSR(IC,IX,IY)
CALL MOVEA(X(l), Y2(l))
DO 2 I = 2,NP

2 CALL DASHA(X(I), Y2(I),12)
CALL VCURSR(IC,IX,IY)
CALL MOVEA(X(l) ,Y3(1))
DO 3 I = 2,NP

3 CALL DASHA(X(I),Y3(I),34)
CALL ANMODE $ READ 100,ICHAR
IF(ICHAR .EQ. "STOP") STOP
RETURN
END
SUBROUTINE IGTAB(GI)
DIMENSION GI(1001)

C-SETSUP TABLE OF INTEGRAL OF GAUSSIAN, FROM XMIN TO X OF EXP(-X*X/2)
PRINT *,"DOING INTEGRAL GAUSSIAN TABLE."
XMIN = -3.0 $ XMAX =3.0
NP = 1001 $ NDIV = 10
DX = (XMAX-XMIN) / FLOAT(NP-1)
CONST = l./SQRT(8.*ATAN(l.))
XOLD = XMIN $ GI(1) = 0.0
1=0

11=1+1

X = XMIN + DX*FL0AT(I-1)
IF (I .EQ. 1) GO TO 2
CALL SIMP(XOLD,X,NDIV,ANS)
GI(I) = GI(I-l) + CONST*ANS
XOLD = X

2 IF (I .LT. NP) GO TO 1
PRINT *,"TABLE DONE, PROCEEDING TO SIMULATION. "
RETURN
END
SUBROUTINE SIMP(XMIN,XMAX,N,ANS)

C-INTEGRATES A FUNCTION BY SIMPSON'S RU.E
H = (XMAX - XMIN) / FLOAT (N)
NODD = N-l
NEVEN = N-2
ODSUM = EVSUM =0.0
IODD = -1
IEVEN = 0

1 IODD = IODD + 2
X = XMIN + IODD*H
Y = F1(X)
ODSUM = ODSUM + Y
IF (IODD .LT. NODD) GO TO 1

2 IEVEN = IEVEN + 2
X = XMIN + IEVEN * H
Y = F1(X)
EVSUM = EVSUM + Y
IF (IEVEN .LT. NEVEN) GO TO 2
YMIN = Fl (XMIN)
YMAX = Fl(XMAX)
ANS = H/3.0 * (YMIN + 4.0*ODSUM + 2.0*EVSUM + YMAX)
RETURN
END
FUNCTION F1(X)
Fl = EXP(-X*X/2.0)
RETURN
END
SUBROUTINE LINTERP(DATAl,DATA2,NP,NC)
DIMENSION DATAl(1001),DATA2(101)

C-PICKS OR LINEARLY INTERPS. BIG DATA SET TO GET SMALLER ONE.
SKIP = FLOAT(NP-l) / FLOAT(NC-l)
IFLAG = MOD((NP-1), (NC-1))
IF (IFLAG .NE. 0) GO TO 1

C-INTERP BY PICKING OFF POINTS, E.G. EVERY 10TH OF 1000.
IC = 0

2 IC = IC + 1
JC = SKIP*FLOAT(IC-l)+l
DATA2(IC) = DATAl(JC)
IF (IC .LT. NC) GO TO 2
GO TO 3

C-INTERP. BY PICKING LINEARLY BETWEEN POINTS.
1 IC = 0

4 IC = IC+1
XVAL = SKIP*FL0AT(IC-1) +1
II = XVAL $ Q = XVAL-Il
DATA2(IC) = DATAl(Il) + Q*(DATA1(Il+l)-DATA1(II))
IF (IC .LT. NC) GO TO 4

3 RETURN
END
SUBROUTINE SETEJ(NLEFT,NRIGHT,EJ)
DIMENSION EJ(101)

C-MAKES INTERPED. GAUSIAN RAMP RISE FROM 0 TO 1 BETWEEN NLEFT & NRIGHT.
NWIDE=NRIGHT-NLEFT+1$NWIDE1=NWIDE+1$ISHIFT=NLEFT-1$IPAST=NRIGHT+1

C-TRIAL WIDTH, 1 MORE, NO.POINTS TO SHIFT TO CENTER, 1 PAST RIGHT END.
DO 1 I = IPAST,101

1 EJ(I) = 1.0
DO 2 I = 1,NWIDE
J = NWIDE1-I $ K = J+ISHIFT

2 EJ(K) = EJ(J)
DO 3 I = 1,ISHIFT

3 EJ(I) = 0.0
RETURN
END
SUBROUTINE FILLEJ(VSIG,VNOI,EJ)
DIMENSION EJ(101)

C-SCALES EDGE TO MAX OF GRAMAX WITH SIGNAL & NOISE CONTRIBUTIONS.
DO 1 I = 1,101
CALL BOXNO(A,B)

C-GAUSSIAN RANDOM NOISE GENER. GIVES 2 USABLE VALUES.
C-NOW SCALE SIGNAL BY VSIG AND ADD NOISE TIMES VNOI.

1 EJ(I) = VSIG*EJ(I) + VNOI*A
RETURN
END
SUBROUTINE MD1DW(NP,NW,EJ)
DIMENSION EJ(1001),SORT(19)

C-ONE-D MEDIAN FILTERS EJ.
MDN1 = NW/2 $ MDN = MDN1+1
NDO = NP-NW+1

C-NO. OF APPLICATIONS OF WINDOW.
DO 1 I = l,NDO
DO 2 J = 1,NW
K = I + (J-l)

2 SORT(J) = EJ(K)
CALL DSORT(SORT,NW)
L = I + MDN1

1 EJ(L) = SORT(MDN)
RETURN
END
SUBROUTINE DSORT(X,N)
DIMENSION X(19)

C-DOES A DROP SORT OF UP TO 19 NUMBERS.
1=1

1 IF(X(I) .GT. X(I+1)) GO TO 2

57

3 1=1+1
IF (I .LT. N) GO TO 1
GO TO 4

2 CALL SWAP(X(I), X(I+1))
J = 1-1

5 IF(J .EQ. 0) GO TO 3
IF(X(J) .GT. X(J+1)) CALL SWAP(X(J), X(J+1))
J = J-l
GO TO 5

4 RETURN
END
SUBROUTINE SWAP(X,Y)
Z=X$X=Y$Y = Z
RETURN
END
SUBROUTINE MSE(X,Y,ERROR)
DIMENSION X(101),Y(101)
ERROR =0.0

C-THIS CALCULATES THE MEAN SQUARE ERROR OF Y FROM X.
DO 1 I = 1,101

1 ERROR = ERROR + (Y(I)-X(I))**2
RETURN
END
SUBROUTINE MINMAX(Y,NP,YMIN,YMAX)
DIMENSION Y(1001)
YMIN = YMAX = Y(l)
DO 1 I = 1,NP
IF (Y(I) .LT. YMIN) YMIN = Y(I)

1 IF (Y(I) .GT. YMAX) YMAX = Y(I)
RETURN
END
SUBROUTINE MARGIN(XMIN,XMAX,YMIN,YMAX, XLM,RM,TM,BM)
HH = (XMAX-XMIN) / (1.0-XLM-RM)
HV = (YMAX-YMIN) / (1.0-TM-BM)
XMIN = XMIN -HH*XLM $ XMAX = XMAX + HH*RM
YMAX = YMAX + HV*TM $ YMIN = YMIN - HV*BM
RETURN
END
SUBROUTINE STORIT(GI,ED,NE,NVAR)
DIMENSION GI(1001),X(101),ED(21,101)

C-THIS INTERPOLATES THE SET OF EDGE RAMPS TO BE USED LATER.
IF(NVAR .LE. 10) GO TO 1
PRINT *,"NVAR, ",NVAR,", SHOULD BE 10 OR LESS."
STOP

1 IBASE = NE-2*NVAR-1
NRAMPS = 4*NVAR+1
DO 2 IRAMP = 1,NRAMPS
NWIDE = IBASE + IRAMP
CALL LINTERP(GI,X,1001,NWIDE)
DO 2 J = 1,NWIDE

2 ED(IRAMP,J) = X(J)

58

RETURN
END
SUBROUTINE FINDEJ(NE,NL1,NRl,NVAR,ED,EJ,VSIG,GRAMAX,ERVAL, NL2,NR2)
DIMENSION ED(21,101),EJ(101),EJSIG(101)

C-FINDS BEST EDGE FIT TO FILTERED DATA, (ONE WITH LOWEST MEAN SQUARE
C-ERROR), AND GIVES LEFT AND RIGHT HAND END COORDINATES.

IF(NE .LT. (2*NVAR+2)) NVAR = (NE-2J/2
IF(NE .GT. (101-2*NVAR)) NVAR = (101-NE)/2
IBASE = NE-2*NVAR-1
ERVAL = 4.0*101.0*GRAMAX**2
IPASS = 0

1 IPASS = IPASS + 1
IF(IPASS .EQ. 2) GO TO 2
IMIN=1 $ IMAX=2*NVAR+1 $ NTIME=0 $ SIGN=1.0
GO TO 3

2 IMIN=2*NVAR+2 $ IMAX=4*NVAR+1 $ NTIME=2*NVAR+1 $ SIGN=-1.0
3 DO 4 IRAMP = IMIN,IMAX
NTIME = NTIME+SIGN*1.0
NWIDE = IBASE + IRAMP
IF(IPASS .EQ. 1) NLWORK = NLl + NVAR
IF(IPASS.EQ.l) NRWORK = NLWORK + NWIDE -1
IF(IPASS .EQ. 2) NRWORK = NRl+NVAR
IF(IPASS .EQ. 2) NLWORK = NRWORK-NWIDE+1
ITIME = 0

5 ITIME = ITIME + 1
DO 6 J = 1,NWIDE

6 EJSIG(J) = ED(IRAMP,J)
CALL SETEJ(NLWORK,NRWORK,EJSIG)
DO 7 J = NLWORK,101

7 EJSIG(J) = EJSIG(J) * VSIG
CALL MSE(EJSIG,EJ,ERROR)

C-FINDS MEANSQUARE ERROR OR NOISE OF EDGE OVER PURESIGNAL EJSIG.
IF(ERROR.GE. ERVAL) GO TO 8
ERVAL = ERROR
NL2 = NLWORK $ NR2 = NRWORK

8 NLWORK=NLWORK-l $ NRWORK=NRWORK-l
4 IF (ITIME .LT. NTIME) GO TO 5

IF(IPASS .LT. 2) GO TO 1
RETURN
END

59

APPENDIX D

PROGRAM PULPLT

61

PROGRAM PULPLT(INPUT,OUTPUT,TAPE61=100,TAPE62=100)
DIMENSION X(1001)fY(1001),YF(1001)
CALL CONNEC(5LINPUT) $ CALL CONNEC(6LOUTPUT)
GRAMAX=255. $ SIGMAS=3.
PRINT *,"ENTER % NOISE & % PULSEWIDTH "
READ *,PN,PPW
PRINT *,"ENTER MIN&MAX DEG.S & NO.POINTS "
READ *,XMIN,XMAX,NP
PRINT *,"ENTER LEFT, RIGHT, UPPER & LOWER MARGIN PORTIONS
READ *,XLM,RM,TM,BM
VNOI = PN/100.*GRAMAX/SIGMAS
VSIG = (l.-PN/100.)*GRAMAX
PWIDTH=PPW/100.*(XMAX-XMIN)
XMID=(XMIN+XMAX)/2.0
PMIN = XMID-PWIDTH/2.0 $ PMAX = XMID+PWIDTH/2.0
DX = (XMAX-XMIN)/FLOAT(NP-1)
1=0

11=1+1
X(I) = XMIN+DX*FLOAT(I-l)
AMP =1.0
IF(X(I) .LT. PMIN .OR. X(I) .GT. PMAX) AMP = 0.0
CALL BOXNO(A,B)
Y(I) = VSIG*AMP + VNOI*A
IF(I .LT. NP) GO TO 1
CALL MINMAX(Y,NP,YMIN,YMAX)
FUZZ = .0001*DX
YMAX = YMAX+FUZZ $ YMIN=YMIN-FUZZ
CALL MARGIN(XMIN,XMAX,YMIN,YMAX,XLM,RM,TM,BM)
CALL PLOT(X,Y,NP,XMIN,XMAX,YMIN,YMAX)

2 PRINT *,"ENTER WINDOW WIDTH. "
READ *,NW
DO 3 I = 1,NP

3 YF(I) = Y(I)
CALL MD1DW(NP,NW,YF)
CALL PLOT(X,YF,NP,XMIN,XMAX,YMIN,YMAX)
GO TO 2
END
SUBROUTINE MDlDW(NP,NW,EJ)
DIMENSION EJ(1001),SORT(19)

C-ONE-D MEDIAN FILTERS EJ.
MDN1 = NW/2 $ MDN = MDNl+1
NDO = NP-NW+1

C-NO. OF APPLICATIONS OF WINDOW.
DO 1 I = l,NDO
DO 2 J = 1,NW
K = I + (J-l)

2 SORT(J) = EJ(K)
CALL DSORT(SORT,NW)

63

L = I + MDN1
1 EJ(L) = SORT(MDN)
RETURN
END
SUBROUTINE DSORT(XfN)
DIMENSION X(19)

C-DOES A DROP SORT OF UP TO 19 NUMBERS.
1=1

1 IF(X(I) .GT. X(I+1)) GO TO 2
3 1=1+1

IF (I .LT. N) GO TO 1
GO TO 4

2 CALL SWAP(X(I), X(I+1))
J = 1-1

5 IF(J .EQ. 0) GO TO 3
IF(X(J) .GT. X(J+1)) CALL SWAP(X(J), X(J+1))
J = J-l
GO TO 5

4 RETURN
END
SUBROUTINE SWAP(X,Y)
Z=X$X=Y$Y = Z
RETURN
END
SUBROUTINE MINMAX(Y,NP,YMIN,YMAX)
DIMENSION Y(1001)
YMIN = YMAX = Y(l)
DO 1 I = 1,NP
IF (Y(I) .LT. YMIN) YMIN = Y(I)

1 IF (Y(I) .GT. YMAX) YMAX = Y(I)
RETURN
END
SUBROUTINE MARGIN(XMINfXMAX,YMIN,YMAX, XLM,RM,TM,BM)
HH = (XMAX-XMIN) / (1.0-XLM-RM)
HV = (YMAX-YMIN) / (1.0-TM-BM)
XMIN = XMIN -HH*XLM $ XMAX = XMAX + HH*RM
YMAX = YMAX + HV*TM $ YMIN = YMIN - HV*BM
RETURN
END
SUBROUTINE PLOT(X,Y,NP, XMIN,XMAX,YMIN,YMAX)
DIMENSION X(1001),Y(1001)

100 FORMAT(A4)
CALL INITT(30) § CALL TERM(2,4096)
CALL DWINDO(XMIN,XMAX,YMIN,YMAX)
CALL MOVEA(X(l) , Y(l))
DO 1 I = 2,NP

1 CALL DRAWA(X(I), Y(I))
CALL ANMODE $ READ 100,ICHAR
IF(ICHAR.EQ."STOP") STOP
RETURN
END

64

DISTRIBUTION LIST

Director
U.S. Army Research Office
ATTN: Library
P.O. Box 12211
Research Triangle Park, NC 27709

Director
Department of Defense
Advanced Research and Projects Agency
Washington, DC 20301

Commander
U.S. Army Aviation Systems Command
12th and Spruce Streets
St. Louis, MO 63166

Commander
U.S. Army Tank-Automotive Research and

Development Command
ATTN: DRDTA, Technical Library
Warren, MI 48090

Commander
U.S. Army Electronics Command and

Devices Laboratory
Ft Monmouth, NJ 07703

Commander
U.S. Army Electronics Command
Atmospheric Science Laboratory
White Sands Missile Range
ATTN: DRSEL-BL-MS, R. Gomez

ATAA-SL
White Sands, NM 88002

Commander
U.S. Army TEC0M
ATTN: AMSTE-TA-A (2)

STEAP-TL
STEAP-DS-LP

Aberdeen Proving Ground, MD 21005

65

Commander
U.S. Army Harry Diamond Laboratories
ATTN: AMXDO-TD/002

AMXDO-TIB
2800 Powder Mill Road
Adelphi, MD 20783

Commander
U.S. Army Armament Research and

Development Command
ATTN: DRDAR-SC (2)

DRDAR-SCF
DRDAR-SCF-I
DRDAR-SCF-IO
DRDAR-SCP
DRDAR-MSA
DRDAR-TSS (5)
DRDAR-GCL

Dover, NJ 07801

Administration
Defense Technical Information Center
ATTN: Accessions Division (12)
Cameron Station
Alexandria, VA 22314

Commander
U.S. Army Armament Materiel and

Readiness Command
ATTN: DRDAR-LEP-L
Rock Island, IL 61299

Director
U.S. Army Materiel Systems

Analysis Activity
ATTN: DRXSY-MP
Aberdeen Proving Ground, MD 21005

Commander/Director
Chemical Systems Laboratory
U.S. Army Armament Research and
Development Command

ATTN: DRDAR-CLJ-L
DRDAR-CLB-PA

APG, Edgewood Area, MD 21010

66

Chief
Benet Weapons Laboratory, LCWSL
U.S. Army Armament Research and
Development Command

ATTN: DRDAR-LCB-TL
Watervliet, NY 12189

Thomas S. Huang
Institute for Image Technology
1000 North Western Avenue
West Lafayette, IN 47906

Gary Sivak (10)
5862 Troy Villa Boulevard
Huber Heights, OH 45424

67

