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INTRODUCTION 

Whether a battle scene is presented on a display for human inter- 
pretation or is processed by an automatic target recognition system, a 
need exists in fire control for noise-free or, at least, low-noise digi- 
tal imagery of visible and infrared targets of interest.  In this report, 
initiation and implementation of an innovative effort are presented to 
investigate the median filter noise cleaning of digital imagery.  Speci- 
fically, the goal is to determine the extent to which different size 
median filter windows will improve the signal-to-noise ratio of a digital 
image with the least possible amount of deterioration or degradation to 
the shape or position of the edges of a target of interest.  Signal-to- 
noise ratio improvement is a relevant figure of merit to use for measur- 
ing the performance and usefulness of a median filter because for two 
scenes with similar kinds of noise characteristics (zero-mean Gaussian, 
for example), the image with the higher of the two signal-to-noise ratio 
has the better quality. 

In this report, median filtering and adaptive window median filter- 
ing (AWMF) are first explained and illustrated with examples of a pic- 
torial scene and digital signals before and after noise cleaning.  Next, 
an improvement over AWMF is proposed to remedy its display deficiencies. 
Then, an analytical strategy is developed by which the median filter 
reduction can be measured through representation of one-dimensional edge 
profiles by the integral of a Gaussian distribution.  A one-dimensional 
computer simulation, the program/modular subroutine package program 
SIMU1D is developed to implement the analysis and plot post-processing 
versus input signal-to-noise levels.  The implementation of programs 
LOCKON and EJSHOW, used to test the validity of the preceding analysis, 
are explained.  After a discussion of the preliminary results obtained, 
recommendations are presented on how to continue the work to obtain more 
meaningful results and how to extend the simulation to two dimensions 
before tests are performed on actual digital imagery data. 

MEDIAN FILTERING 

Operation 

The nonlinear signal-smoothing technique of median filtering was 
first developed by John Tukey and applied in the mid-1970's to. the pro- 
cessing of digital speech signals (ref 1).  When applied to two-dimensional 
image scenes, the technique has the capability to reduce the prominence 
of troublesome random noise spikes and regions in the picture. 

Figure 1 shows how two-dimensional median filtering is performed. 
Take a window box M picture elements (pixels) high and N pixels wide; and 
place it in the upper left corner of the image.  M and N are odd numbers. 
In this example, M is 3 and N is 5, although in practice the use of a 
square window is convenient as long as the dimensions are odd integers. 
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To implement the algorithm, sort the values contained by the window 
box into consecutive order and replace the pixel in the center of the 
box by the median value, that is, the middle entry in the sorted list. 
The algorithm is continued by sliding the window box one pixel to the 
right and performing the sort-and-center pixel replacement again.  The 
box is then allowed to slide across each line of pixels in the image 
and slide down to the bottom of the scene. 

Figure 2 shows an example of median filtering of an actual scene.  The 
picture of the USC cheer leader is shown before and after being operated 
on by a one-dimensional median filter window of width 5 (ref 2). 

Figure 3 shows a computer graphics plot of a noisy square-wave pulse 
with a 10 percent concentration of zero-mean Gaussian random noise. 
Figure 4 shows the square-wave pulse after it has been operated on by a 
one-dimensional median filter window of width 3 units.  As the signal is 
improved, note that the median filter has the important property to pre- 
serve the edges of the square-wave pulse.  Since the proper Fourier repre- 
sentation of a square-wave pulse contains an infinite number of terms 
decreasing only slowly by 1/N, where N is an odd integer multiple of the 
fundamental frequency, a large number of terms or frequency components 
is required to accurately represent the square wave with good convergence 
and small error.  Therefore, an ordinary band pass filter cannot do as 
good a job in removing the random noise from the signal without destroying 
its shape, phase, or other characteristics.  The only quantities that two- 
dimensional median filters will destroy are the vertices or single -corner 
pixels of sharp-cornered objects. 

Innovations 

An extension of the median filtering algorithm, an improved filtering 
technique currently in use, is the procedure known as adaptive window 
median filtering (AWMF).  In this process, the filtering window dimensions 
are allowed to vary inversely as the amount of edge or gradient in differ- 
ent regions of the image increases.  The reason for this is that a big 
median filter window will attenuate noise by a greater factor than a 
smaller one, but at the expense of smoothing over edge details less than 
one-half the window width.  For example, in regions of the picture where 
the gradient information or edge content is a maximum, one can use a window 
box of width 1, i.e., no filtering.  In regions of the picture where the 
edge content or gradient is in the midrange between the minimum and maxi- 
mum, one may filter the picture area with a 3-by-3 window matrix, for 
example, thus eliminating noise spike signal transmission errors. 

Finally, in areas of the scene where the edge content is at a low, 
the pixel information simply consists of texture background and noise. 
The 3-by-3, two-dimensional, median filtering window can be expanded to 
a 5-by-5 matrix and will remove 2-pixel noise clusters.  That is, 
in relatively quiet areas of the scene, from the standpoint of image 



A. Before, 

B. After. 

Figure 2.  Example of median filtering. 
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information of concern, where little target information is present, one 
simply lets the two-dimensional median filter window size expand to a 
maximum to be able to filter the largest noise-point cluster that can 
possibly be done. 

The values of the gradient are read off a gradient map, each point 
of which is computed for each point of the original picture for a pixel 
value P-H  where i represents the ith row of the image and j represents 
the jth column.  The magnitude of the gradient GJJ is computed from the 
horizontal (right minus left) and verticle (upper minus lower) pixel 
differences surrounding the point as follows: 

Gi,j = V <Pi,j+l " Pi,j-1>' + <pi+i,; " pi-l,j)Z (l) 

For extremely large picture areas, 512 by 512 pixels, for example, 
to save computer time, one may in practice use: 

'ij Pi+1,; - p 
i-l.j 

+ 
i,j+l 1.3- 

(2) 

For very noisy images, a more stable gradient can be obtained by 
spreading the calculation over a larger pixel area to smooth out random 
pixel fluctuations and variations that attenuate as _L for N number of 

n 
pixels.  For example, in the 3-pixel by 3-pixel box surrounding a given 
pixel, i.e., the cluster comprising a given pixel and its eight nearest 
neighbors; 

Gü = 
+ 

SUM OF TOP THREE PIXELS MINUS SUM OF BOTTOM THREE PIXELS 

SUM OF RIGHT THREE PIXELS MINUS SUM OF LEFT THREE PIXELS 
(3) 

Performing adaptive window median filtering however is difficult , 
because as the window expands, one will re-enter portions of the scene 
that have already been processed.  Alternatively, to prevent this, one 
can let the center of the median filter window box skip nonuniformly 
across the image.  This, however, prevents the center of the window box 
from contacting some points and, if they are of a spurious noise, they will 
not be replaced upon sorting.  Also, another serious problem is that 
changing the window size produces uneven noise attenuation, more so for 
the larger windows.  The results thereby obtained can be rather uneven, 
a very sloppily filtered scene with such artifacts as regions of blocking 
and false detail. 

To remedy some of these display difficulties, an improvement over the 
technique of adaptive window median filtering is proposed by which the 



output results of filtering the image by several two-dimensional windows 
are combined, being weighted by factors that are continuous functions 
of the gradient (ref 3).  In this filtering approach, as the magnitude 
of the gradient varies throughout the image, the output picture does 
not undergo sudden transitions in the gray level since the median fil- 
tering windows switch from large to medium to small.  For example, let 
P3 be a point in a picture filtered by a 3-by-3 window, let P5 be the 
result of filtering by a 5-window, and P7 be the result of filtering by 
a 7-window.  An output pixel P is then computed as the weighted sum: 

P = A x P3 + B x P5 + C x P7 (A) 

where (as stated before) A, B, and C are continuous functions of the 
gradient (figure 5).  To ensure that the pixel values are properly dis- 
played over the dynamic range of an output display, i.e., to ensure 
that gray levels are not washed out or contrast lost, 1 must also require: 

A + B + C = 1 (5) 

As the value on the gradient map of the digitized image in question 
rises from a minimum to a maximum, the function A rises from a minimum 
of 0 to a maximum of 1.  Similarly, as the gradient goes from a minimum 
to a maximum, the function B rises from a minimum to a maximum at the 
gradient midrange values and then falls to a minimum value as the image 
gradient attains a maximum.  Finally, as the image gradient goes from 
a minimum to a maximum value, the function C falls from a maximum of 1 
to a minimum of 0. 

If these criteria for describing the continuous functions of the 
gradient, A, B, and C, are adhered  to, what then occurs is as follows: 
In regions of the image where the gradient is small, A and B are approxi- 
mately equal to 0, C is approximately equal to 1, and the filtered out- 
put of the largest window has the predominant weight.  In regions of 
the image where the values of the gradient are in the midrange, the 
function B is the maximum and the midrange window-size output predominates. 
Where the gradient is near a maximum in the scene,  A is approximately 
equal to 1, and B and C are approximately 0.  Here, the filtered image 
is dominated by the output of the smallest median filter window, as is 
desired.  The problem of sudden window-size transitions simply no longer 
exists. 

The author now proposes a working scheme by which various choices 
of the continuous functions A, B, and C of image gradient can be generated 
and applied to the filtering of digitized frames of imagery of interest. 
Allow the following conditions to exist: 

Y = fk~ X = V~B~      Z =  yiT (6) 
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Then, from equation 5 one has: 

X2 +  Y2 +  Z2 = 1 (7) 

X = COS ($) SIN (0)    Y = SIN ($) SIN (9)   Z = COS (0)    (8) 

Equation 8 represents the position of a point on the surface of a sphere 
as parametrized by two angles:  9 measured down from the sphere's north pole 
and  <6 measured counterclockwise from some reference meridian that cuts 
through the sphere's equator. 

To generate the functions A, B, and C as the image gradient varies 
from a minimum to a maximum value, one can, for example, simply force 
9 and ä to vary from zero to 90 degrees, thus tracing out a curving 
path on the surface of the sphere, from its north pole to its equator. 
Specifically, if the angles 9 and ä are set equal to each other and to 
a parameter «, then from equations 6 and 8 : 

A = SIN1* (a)    B = C0S2(°0SIN2(<*)      C = COS2 («) (9) 

When the gradient varies from a minimum to a maximum, the parameter 
a  can be forced to vary from zero to 90 (in degrees), if one has: 

Sms 
\    %AX " %IN ' 

where G, G^JN and Gj^x are each the given minimum and maximum values of 
the image gradient, respectively. 

In this example, the path described on the surface cf the unit 
sphere is a curve, sweeping down from the north pole of the surface of 
the sphere in a southeasterly direction to a point down on the equator 
at 90° east longitude.  Note that each possible path that one can draw 
on the surface of the sphere represents a particular combination of 
median filter window outputs from which to form a unique resultant picture. 
An infinite number of possible paths exists on the surface of the sphere 
to choose from to produce the best output picture as a weighted sum of 
input images operated on by combinations of different two-dimensional 
median filter windows.  For combinations of four or more different input 
median filter windows per output picture, this analysis can conceivably 
be extended to uniquely link window combinations with curves drawn on 
the surface of spheres in four or higher-dimensional hyperspaces. 

10 



ANALYSIS 

Strategy 

Besides reducing the signal-to-noise ratio in an image, one hopes, 
but cannot be certain, that a particular median filter will net affect 
the shape or structure of the contour of a target or the connectivity 
of its component parts.  A good way to begin to understand how a median 
filter may affect a target is to study its effects on the edge profiles 
that surround a given target and separate it from the bordering back- 
ground information in the total scene. 

No edge in digital imagery is perfectly sharp, but is characterized 
by a sloping rise from low to high, i.e., from a cool or dim background 
to a hot or bright target.  This monatonically increasing ramp can occupy 
many or as few as two pixels, a low gray level and a high gray level. 
Part of the problem with studying median filters is investigating how the 
slope or width of these edge profiles may be affected by the operation 
of the filter. Also, the simplest case to start with involves the effect 
of a one-dimensional median filter window of width N, where N is an odd 
number, on a ramp which represents a one-dimensional slice through the 
edge profile of a target in an image under investigation. 

In terms of one-dimensional digital signal processing, the edge ramp 
E can be considered as a digital function E(t) where t is a measure of 
the pixel location in the edge.  For a given working field width of 101 
pixels, t is only defined for the integral values 0, 1, 2, ... through 
100. 

A flow diagram depicting the strategy of study of the one-dimensional 
case is shown in figure 6 as follows:  Take an input edge pure signal 
E(t) and add to it a given percentage intensity Pn of zero-mean Gaussian 
random noise Ni(t) to get a noisy edge profile F(t).  (Gaussian noise is 
characteristic of the output of mechanisms responsible for various sensor 
and transmission noise sources and is, therefore, a good model of noise 
to use in this study«) Then operate upon F(t) with a given one-dimensional 
median filter window to obtain an unknown filtered noisy edge profile 
G(t).  Assuming that the slope of the edge profile G(t) may have been 
distorted by the action of the median filter, put G(t) through an edge 
estimator to find the best fit pure signal H(t).  If one defines: 

N2(t) = G(t) - H(t) (11) 

then N2(t) is a measure of the postprocessing noise. 

The input edge profile ramp can be of any desired width and defined 
to lie within a 101-pixel working field as shown in figure 7.  The 
particular ramp shown in the figure rises from a low of zero to a high 

11 
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value of one, from pixels 41 through 61 in the field of 101.  The shape 
of the ramp is characterized by the integral of a Gaussian distribution: 

F(t) = 

3o-+A 

I   (v2^"j (EXP    -  2a*  lj 

•'-30+h 

dt (12) 

This model of a smooth edge profile has no corners or discontinuities 
and is characteristic of the way edges are represented on photographic 
film, the source of some of the author's test data imagery of infrared 
targets.  Therefore, the representation of an edge profile by the integral 
of a Gaussian distribution is a good model to use for purposes of in- 
vestigation and is the one that will be considered from now on. 

At this point, for a given percentage intensity of Gaussian noise 
Pn , the magnitude of the edge ramp is scaled so that no pixel is likely 
to exceed the maximum value Gramax (Fortran variable name).  For the signal 
and noise contributions Vs and Vn, respectively, to the edge profile 
ramp F(t), one has: 

/ Pn \ /GRAMAX \ 
Vn =[  100)   \^SIGMAS ) 

In_ 
Vs = 1 - 100 GRAMAX 

F(t) = (Vs) (RAMP) + (Vn) (GAUSIAN RANDOM NUMBER) (13) 

Here, SIGI1AS is set to a value of three standard deviations.  For 
example, if Pn is 10%, the 101 noise point contributions (Gaussian ran- 
dom number times Vn) will most likely not exceed 0.1 times GRAMAX.  The 
reason for this is that a 0-mean Gaussian random number distribution 
with standard deviation equal to 1 (which can be approximated, for 
example, by the random number generator output of a computer) will ex- 
ceed 3 only about 1 time out of 370.  The signal contribution (Vs times 
a ramp between 0 and 1) will definitely not exceed 0.9 times GRAMAX so 
that adding on the noise contribution scales the pixels up to a maximum 
value of GRAMAX. 

After the given median filter operates on F(t), the unknown noisy 
filtered edge G(t), which has been produced, may be distorted.  One must 
therefore find the nev; pure signal, the best fit H(t), to which this 
unknown edge best corresponds. 

14 



First, assume that the noise Nj (t) is always zero, i.e., the 
median filter operates solely upon the input edge E(t) as follows: 

M(E(t)) = E(t) + Aj(t) (14) 

where M is the nonlinear median filter operator and where  Aj(t) is the 
amount of degradation added to the input signal.  In other words,  Aj(t) 
is simply the degradation that, when added to the input signal, will 
produce any distortions for which the median filter may be responsible. 
If the median filter operator M is now applied to the noisy edge ramp 
F(t), one obtains: 

M(F(t)) = M(E(t)) + Nj(t)) 

= F(t) + A^(t) (15) 

For the median filter, the question that arises is, if equation 
14 is true and if the operation of the median filter M on E(t) produces 
a degradation Aj(t), what can be said about the degradation A2(t) in 
terms of E(t), Ni(t), and A, (t) as produced by the operation of the 
median filter on the sum of E(t) and N^(t)?  The problem is that  for 
linear operations a great deal can be said about this question; but, 
tor nonlinear procedures, such as median filter algorithms, nothing 
in general can be stated in terms of the results produced by perturbing 
a given input system by a given function of time.  Therefore, numerical 
techniques by computer simulation become necessary if one hopes to extract 
more useful information about this problem. 

To try to determine the new signal H(t) to which this unknown filtered 
noisy edge G(t) best corresponds, let the original ramp endpoints vary 
in and out by five units over eleven positions each.  As the left ramp 
endpoint varies between the values 36 through 46 and the right one from 56 
through 66, a set of 121 clean ramp signals will be generated.  Scale each 
one without noise by the factor GKAMAX, as in equation 13, compare it with 
G(t), and generate the mean square error by adding the squares of the 
differences of corresponding data points.  The particular ramp with the 
lowest mean square error or noise N2(t) is the best fit to the filtered 
noise-cleaned edge G(t).  The left and right endpoints of this signal 
ramp H(t) define the location and slope of the best fit edge ramp desired. 

PROGRAM SIMU1D 

Development 

Program SIMU1D is a one-dimensional median filter study simulation, 
a comprehensive, interactive Fortran program/modular subroutine package 

15 



designed to implement the one-dimensional edge profile analysis (both 
discussed in the previous section and described in figure 6).  For an 
edge ramp centered in the 101-pixel wide working area, filtered by a one- 
dimensional median filter of desired width, and for any desired number of 
trial runs per data point, the simulation calculates the percent intensity 
of Gaussian noise after median filtering versus the percentage of Gaussian 
noise in the ramp before the application of the filter.  The short 20-line 
main control program first calls upon a subroutine to interactively read in 
all user-specified parameters such as edge and window widths and minimum 
and maximum input noise intensity percentages.  Subroutines are then 
executed to process all the required calculations, write the results to 
an external file for storage, if desired, and to determine the minimum and 
maximum values of the output noise percentage data.  Subroutines are then 
called upon to print or plot the output versus input data as specified by 
the user. 

The following subsections are a summary description in order of both 
the coding of the various modular subroutines in the package and the indivi- 
dual tasks which they perform. 

Subroutine READIN 

This subroutine is the port through which the simulation interacts 
with the user and conversationally asks for and absorbs all required 
specification parameters for a given test run. 

The subroutine first asks the user for the type of display desired. 
Either a tabular printout of the results or a graphical plot or both can 
be produced.  The user next specifies the width of the centered edge to 
be analyzed, the window width of the one-dimensional median filter to be 
used, and the number of runs per data point.  For example, if the number 
of runs is specified as 25, the edge of desired width has a given percentage 
intensity of Gaussian noise added to it, is filtered, and the best edge 
found with these three operations being repeated in 25 separate trials. 
The 25 output mean square error noise values are then averaged to reduce 
the effect of fluctuations.  This average value is the desired output 
noise percentage intensity result. 

The user then specifies the range of the input noise data, the mini- 
mum and the maximum percentages of input noise intensity, and the number 
of points to be calculated within this range. For example, specifying 
10%, 20% and 11 points to the computer would cause the input noise 
intensity specifications to increments from 10% to 20%, a percentage point 
at a time, as 10%, 11%, 12%, ... 20%, for a total of 11 data values. 

Finally, if a graphical plot is requested, the user is asked to 
specify the left, right, upper, and lower margin portions- to surround the 
plot.  For example, if 0.1 is specified in each case, 10% of the available 
plotting area bordering each of the four sides of the total field available 
for graphical plot will be left blank and unused.  The graph will then 
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occupy the center 80% of the entire plotting field, leaving room for writing 
captions and labels, etc., on a hard copy of the graphical results. 

Subroutine CALC 

Having been given the edge and window sizes and the range on the 
input noise intensity percentages, this subroutine controls all calculations 
necessary to obtain the output noise intensity percentages to be displayed. 

First, subroutine IGTAB is asked to store the values of the integral 
of a Gaussian, as defined in equation 12, in the 1001-point lookup table, 
Fortran array GI, from which the edge ramps are formed by interpolation. 
Next, as defined by the specified width of the desired edge and the amount 
of variation of its endpoints in and out, subroutine STORIT is used to load 
into the array ED all edge profiles that are to be used to construct any 
subsequent edge ramps.  Then, for each input noise percentage intensity, the 
appropriate edge profile is read from the array ED into the 101-pixel length 
working field, Fortran array EJ.  The profile is then moved from the left 
and centered in the array EJ by subroutine SETEJ.  Then subroutine FILLEJ 
is used to scale the profile, as described in equation 13, to the maximum 
value GRAMAX, which is set to 255, the biggest number attainable by typical 
eight-bit image processing displays. 

At this point, array EJ contains the noisy edge ramp F(t) of figure 6. 
A one-dimensional median filter of user-specified window width is applied 
by subroutine MDlDW.  Subroutine FINDEJ is then applied to the resulting 
unknown edge profile G(t) to find the Gaussian ramp that best fits this 
profile with the lowest mean square error.  The left and right coordinates 
of the ramp are contained in variables NL2 and NR2, respectively, and the 
mean square error is contained in the variable ERVAL. 

If additional runs for the same data point are needed for subsequent 
averaging, they are done by subroutine DOMORE.  The resulting mean square 
errors are then averaged within subroutine CALC.  Note that, in equation 
13, the input noise was scaled by the factor GRAMAX divided by SIGMAS. 
For proper error scaling, this must be removed- the mean square error is 
thus multiplied by the reciprocal factor SIGMAS divided by GRAMAX and then 
by 100 to obtain the output percentage of noise intensity.  This entire 
procedure is then repeated until all output values of percentage noise 
intensity have been calculated. 

Subroutine IGTAB 

This subroutine calculates and stores in the lookup table GI 1001 
values of the integral of a Gaussian or normal distribution from three 
standard deviations before the origin to three deviations after the 
mean at the origin.  The values will then be used subsequently by sub- 
routine STORIT to construct the required edge profiles.  Specifically 

•X-L--       ^7t_ /x ,  
^2TT exp dz (16) 
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where x represents the number of standard deviations and varies uniformly 
from -3 to 3.  If x ran from -00 to 00, the ramp would rise from 0 to 
exactly 1.  However, most of the activity of the function is confined 
to within a few standard deviations about the origin.  For practical 
purposes, 3.0 was chosen as sufficiently accurate for the program, the 
maximum value of the integral obtained by the ramp in equation 16 being 
0.9973.  For proper accuracy, one would desire that, when this maximum 
valve is scaled, that is, multiplied by GRAMAX = 255, it is correct to 
within half a pixel or at least 254.5.  However, it turns out to be just 
a little bit short and yields 254.311.  For correctness to the nearest 
pixel, the user can feel free to extend the limits on the integral in 
equation 16 and subroutine IGTAB from -3.0 and 3.0 to -3.1 and 3.1.  This 
yields a maximum tabulated value of 0.99806 for a scaled value of 
254.5065;   correct to the nearest pixel. 

Subroutine SIMP 

This routine integrates a function partitioned into N steps between 
XMIN anc* XftAx by Simpson's rule.  It is used by subroutine IGTAB to re- 
cursively generate new values of the accumulating integral of the Gaussian 
from ones previously known.  The first value would be identically 0, 
being the integral from -3 to -3 of the Gaussian distribution.  The second 
value of the integral, 12, would be found by taking the integral from -3 
to X2 and adding to the first value.  X2 is the second value of x, as 
x ranges over 1001 values from -3 to 3, and would be -2.994.  In general, 
the ith value of the integral in terms of the i-one-th value would be: 

/xi 

xi-1   f2v exp [ 2  I 
Ti = ^-l + /       -i-        [--^-1   dz <17> 

For each application of subroutine SIMP to this equation by subroutine 
IGTAB, the region is divided into 10 partitions; for 1000 applications of 
subroutine SIMP, the accuracy is more than sufficient and exceeds 13 
decimal digits. 

Subroutine STORIT 

This subroutine stores, in the two-dimensional Fortran array ED, 
the full range of all the edge profiles to be used in a given test run 
of program SIMU1D.  The values are computed by either interpolating from 
or picking off uniformly spaced samples out of the lookup table GI.  If, 
for example, the width of the desired edge is 21 pixels and the amount by 
which subroutine FINDEJ will vary the endpoints in and out to find the 
best fit signal is 5 units, the original ramp has the endpoints of its 
Gaussian rise at pixels 41 and 61.  As they are varied, the narrowest 
profile produced has its endpoints at 46 and 56, being 11 pixels wide; 
and the widest profile produced has its endpoints at pixels 36 and 66, 
being 31 pixels wide.  Subroutine STORIT, therefore, stores 2.1 Gaussian 
ramp profiles ranging in width from 11 through 31 units, one profile in 
each of the 21 rows of the 101-unit length Fortran array ED, the smallest 

18 



one first.  The procedure of calculating the profiles once and storing 
them in an array for easy lookup is much more efficient than calculating 
them repetitively on demand whenever they are needed for analysis. 

Subroutine LINTERP 

Subroutine LINTERP is used by subroutine STORIT to calculate from 
the lookup table IGTAB, either by direct data point selection or by 
interpolation between existing data points, the values of the Gaussian 
ramps of various widths that are needed.  The variable NP is the number 
of divisions between the input data point in the input array DATA1, and NC, 
which must be less than NP, is the number of divisions between the points 
to be set up in the output data array DATA2.  Point selection and inter- 
polation, which are used when the variable IFLAG is or is not equal to 0 
respectively, are best illustrated by example. 

Suppose that the data in the input array have the values 0.0, 0.1, 
0.2, ..., 1.0, i.e., 11 values with 10 divisions or steps between them. 
If one is required to produce a six-point ramp with five divisions between 
points to represent these data, the values would simply be sampled or selected 
and are:  0.0, 0.2, 0.4, ..., 1.0.  If a four-point representation of the 
data with three steps between them is required, linear interpolation must 
be used, resulting in the values 0.0, 0.33, 0.67, and 1.0.  The criterion 
which subroutine LINTERP utilized to decide between point sampling and 
linear interpolation, therefore, is to check whether the number of points 
less one in the data set to be produced is evenly divisible into the number 
of points less one of the input data.  If the remainder is 0, the 
proper samples can simply be read off.  If there is a remainder, linear 
interpolation between the input array points is utilized to construct the 
Gaussian ramps of the various widths required by the simulation program. 

Subroutine SETEJ 

In subroutine CALC, when an edge profile of width 21, for example, 
is first read into the working array EJ, it occupies the 21 leftmost 
pixel positions.  Subroutine SETEJ shifts this profile to lie between 
two specified left and right coordinates for example, 41 and 61.  The 
region to the left of the profile is padded with O's and the region 
to the right with l's producing an edge as in figure 7. 

Subroutine FILLEJ 

This subroutine scales the edge ramp as in equation 13 where the 
particular values of Vs and V are read in as the Fortran variables VSIG 
and VNOI.  The subroutine BOXNO, which exists on the ARRADCOM CDC-6000 
computer system and which subroutine FILLEJ calls, produces two 0-mean, 
standard deviation-1, Gaussian random noise values A and B of which 
the first A is used. 
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Subroutine MD1DW 

This subroutine performs a one-dimensional median filter operation 
on the values in the array EJ.  The number of values read into EJ must 
not exceed 101, which is the maximum dimensioned space allowed.  Also the 
window width NW must be an odd integer for successful operation. 

Subroutine DSORT 

This subroutine is used by subroutine MD1DW and will sort out a 
list of real numbers up to 19 entries.  The technique used is a quick- 
and-efficient compare-and-exchange drop sort. 

Subroutine FINDEJ 

This routine finds the best edge fit (the one with the lowest mean 
square error) to the filtered data and delivers its left and right 
coordinates and the value of the mean square error as its outputs.  The order 
in which the possible ramps are inspected is again best described by 
example. 

If the endpoints of an edge profile, located at pixels 41 and 61 
are allowed to vary in and out by an amount v = 5, the left edge will 
run over the values 36 through 46, and the right edge over values 56 
through 66.  There are 4v + 1 or 21 possible different widths for the 
ramps 11 through 31 units. The ramps with the lowest 2v + 1 or 11 
widths, that is, 11 through 21 are inspected in the first of two passes 
and the rest of the Gaussian ramps are checked on the second pass.  In 
the first pass, the first ramp checked is of width 11, the one with 
endpoints at 46 and 56.  Then the ramps of width 12, specified by pixels 
46- and 57, and 45 and 56 are checked.  Next come the three ramps, 13 
units wide, namely. 46 and 58, 45 and 57, and 44 and 56.  Following this 
come 46 and 59, 45 and 58, ..., down to 43 and 56, that is, ramps of 
width 14.  This procedure continues in pass one until the last set checked 
has ramps of width 21, 46 and 66, 45 and 65, 44 and 64, down to 36 and 56. 

In pass 2, the first set of ramps checked has a width 22, for example, 
45 and 66, 44 and 65, down to 36 and 57.  The procedure continues, and the 
ramp width is increased.  When it is 30, the choices are 37 and 66, and 
36 and 65.  The last ramp checked has width 31,'and left and right endpoints 
of 36 and 66. 

The largest possible value for the mean square error between a pure 
signal trial ramp and a noisy edge would occur if the signal pixels had 
the value GRAMAX and the noisy edge had the value -GRAMAX across the board 
of 101 pixels.  The value would be: 

MSE = i
E
= 1 

101 

GRAMAX - (-GRAMAX) 
(18) 

= 404 (GRAMAX)- 
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This is the initialization value of the Fortran variable ERVAL in which 
the lowest mean square error will eventually be stored.  As each ramp is 
inspected, if the value of the mean square error is lower than the value 
currently sitting in ERVAL, ERVAL assumes the value of the mean square 
error of that ramp and the left and right pixel location coordinates of 
the ramp endpoints are noted.  After all of the 121 ramps have been in- 
spected, the left and right ends of the best fit are known, and its mean 
square error lies in the variable ERVAL. 

Subroutine MSE 

This subroutine is rather straightforward and simply calculates the 
total square error, that is, the sum of the squares of the point-by-point 
differences of two arrays dimensioned to a length of 101 pixels each. 

Subroutine DOMORE 

As mentioned in the description of subroutine CALC, this is the 
subroutine that performs, for each input noise data point, any subsequent 
runs besides the first if they have been requested by the user for the 
purpose of eliminating, by averaging, any statistical fluctuations in the 
mean square error of the output noise.  If, for example, 10 runs per data 
point had been specified, the first is done in subroutine CALC.  Then 
subroutine DOMORE is called on to set up a noisy edge, operate on it 
with a median filter, and find the best fit ramp and its mean square error 
for nine different sets of noise samples. 

A total of nine mean square figures are passed out of the subroutine 
in the variable VAL.  All 10 of the mean square error values are then 
averaged in subroutine CALC to produce a value of output noise relatively 
free of strong individual fluctuations. 

Display Subroutines 

The last five subroutines handle the display of the output data. 
Subroutine print 7 uses a Fortran write of the form write (7,100) to 
write the input and output noise intensity percentages to a local CDC 
SCOPE file, TAPE7, for storage and availability for further study. 
Subroutine MINMAX simply notes the minimum and maximum values of the output 
noise intensities in the array Y.  Subroutine PRINOU produces, if it has 
been requested, a chart of the input and output noise data. As explained 
in detail in the section on subroutine READIN, subroutine MARGIN prepares 
the output ploting area, leaving designated bordering portions of it blank 
and compressing the plot of the results into the central region of the 
plotting area.  Subroutine PLOT plots the output versus input noise 
intensities up to 1001 points of data.  The graphics commands assume a 
Tektronix 4014 terminal. 
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PROGRAM LOCKON 

To explore and properly interpret the preliminary results of pro^- 
gram SIMU1D, the development of program LOCKON became necessary.  For 
example, for 10% Gaussian noise intensity, the best fit signal ramp, after 
median filtering, did not agree with the input signal ramp a good percentage 
of the time.  To statistically measure how often mismatch occurs for a 
given percentage noise intensity and edge, and window widths, program 
LOCKON was devised. 

The program first asks for the input edge and window widths, and 
the number of trial runs per data point.  Finally the user furnishes the 
minimum and maximum on the range of noise intensity percentages and the 
number of data points to be tested.  The program then proceeds to calculate 
three quantities to be explained, PB, P^, and PDIF- 

In a manner similar to the one-dimensional simulation, Program LOCKON 
sets up an input edge, applies a median filter to it, and finds the best 
fit signal with the lowest mean square error.  Specifically, when a 
noisy edge F(t) is set up, subroutine FINDEJ is called upon to find the 
left and right coordinates of the best fit edge ramp.  If either coordinate 
does not coincide with those of the input signal, a mismatch is noted. 
The prescribed median filter is then applied, yielding G(t).  The best fit 
for these data is then found by subroutine FINDEJ; and any mismatch with 
the input signal is again noted.  This process is repeated for each data 
point for however many runs the user has specified. For a given number 
N of runs, the percent of time in which the noisy signal, before filtering, 
did not match the input signal is the miss probability Pg.  The percent 
of time the noisy edge, after median filtering, did not match the input 
signal ramp coordinates is the miss probability P^.  The percent of time 
the signals before and after application of the median filter differed 
from each other is the miss probability PDXF* 

PROGRAMS EJSHOW AND PULPLT 

These are graphics programs developed by the investigator to help 
conceptualize and visualize the kinds of results being generated by the 
median filtering windows being used in the one-dimensional simulation 
program SIMU1D. 

Program EJSHOW 

Program EJSHOW will graph a noisy edge F(t) and two signals.  One 
signal will be either the best fit signal or another user-specified 
signal; and a second signal, will be the user's choice, for example, 
a poor ramp fit for purposes of comparison. 
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The program will also report the output noise percentage intensities 
on these signal choices before and after application of the desired one- 
dimension median filtering window being used. 

Program PULPLT 

Program PULPLT was developed to plot the noisy square wave pulses 
before and after median filtering, as shown in figures 3 and 4.  The 
input pulse width is specified by the user as a percentage of the total 
available plotting field.  The four Fortran program/modular subroutine 
simulation packages, SIMU1D, LOCKON, EJSHOW, and PULPLT, are listed in 
appendixes A, B, C, and D, respectively, at the end of this report. 

PRELIMINARY RESULTS 

Figure 8 is a plot of the kind of results that program SIMU1D will 
generate.  A total of 101 points are plotted for input noise intensity 
percentage ranging from 0 to 100%.  The ordinate, the postprocessing 
noise rises from 0 to 65%.  This graph incorporates an edge ramp of width 
21 and a median filter window width of 3.  As the percentage of noise 
Pn rises on the graph, the corresponding percentage of signal (1 - Pn) 
diminishes.  This becomes apparent to the reader, for the high noise 
portions of the graph, as the smoothness of the curve diminishes and 
disappears into the completely uncorrelated and predominating Gaussian 
noise. 

Figure 9 shows an example of a noisy one-dimensional edge profile 
F(t) with 10% Gaussian noise intensity for a Gaussian ramp having end- 
points 41 and 61.  Also shown are two examples of pure signals:  the 
best fit signal is on the right having a Gaussian ramp rising from pixels 
41 through 61; an example of a poor fit signal is on the left curve with 
a ramp rising from points 36 through 56.  Figure 10 is an example of the 
profile G(t) obtained by filtering the noisy input F(t) of figure 9 with 
a median filter window of width 3.  Again, for comparison purposes, two 
pure signals ?re shown, the best fit to the right, with a Gaussian ramp 
rising from pixels 41 through 61, and the poor fit to the left with a 
Gaussian ramp rising from pixels 36 through 56. 

In addition to these kinds of results, preliminary tests with pro- 
gram LOCKON were conducted on the 10% input noise percentage intensity 
edges.  For 100 trial runs, for example, the pre- and postfiltered edge 
ramps do not match the input signal 40% of the time and do not match 
each other about 20% of the time out of 100.  These kinds of results 
must be further developed, interpreted, and extended to the analysis of 
two-dimensional simulated data before any testing of combined median 
filter window outputs upon actual digitized imagery data. 
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RECOMMENDATIONS 

Additional software must be developed to properly interpret the type 
of results being produced by programs SDIU1D and LOCKON.  First, in terms 
of viewing digital imagery of FLIR or visible TV-displayed signals, 40 dB 
is considered good in practice.  Any noise intensity greater than 3%, that 
is, a signal-to-noise ratio 15 dB or less is considered severe.  The noise 
intensities simulated do not go much beyond 3% and definitely do not exceed 
5%, that is, less than 13 dB.  Thus, a study of the effect of median filters 
on noise level intensities up to 5% (signal-to-noise ratios grecter than 
13 decibels) will indicate the multiplicative factor or scaling function 
by which particular median filters will supress noise. 

The mismatch probabilities between the input signal and the noisy 
edges before and after filtering, as produced by program LOCKON, are in- 
sufficient data from which to draw conclusions about any possible degradations 
of edges by median filters.  Two approaches are suggested:  They must be 
assessed and a choice must be made on the desirability of one of them. 

First, instead of computing the mismatch probabilities between the 
input signal and the noisy ramp, or the input signal and the median filtered 
ramp, program LOCKON should be modified to produce, for a given number N 
of trial runs, the means and the standard deviations of the locations of the 
left and right coordinates of the endpoints of the Gaussian ramps.  These 
quantities are more useful than the mismatch probabilities for determining 
the effects of median filter windows on edges and can be used to obtain 
measures of the mean edge width and the standard deviation of how much it 
tends to vary.  The standard deviation of variance of the edge width will 
give some indication of how much a particular median filter might be degrading 
the given edge. 

The question arises as to what is the minimum number N of trial 
runs required for a good standard deviation measurement.  Assume that a pure 
signal ramp, scaled to the maximum value GRAMAX, contains 101 points Pj. 
A median filtered noisy edge, whose best fit, pure signal is assumed not 
to match the signal Pj, contains 101 points Qj.  The root mean square 
separation of the two curves is: 

■ V 101 (19) 

If one scales out the GRAMAX dependence, the mean square percentage error 
between these two curves is: 

100 A 
MSE = GRAMAX ^20) 

27 



To calculate the number of trial runs required for a good standard 
deviation measurement of the Gaussian ramp endpoints, the average noise 
produced must be much less than the shift A of equation 19,  If the 
noise is on the order of or greater than the  A  shift between the two 
curves, that shift and, therefore, the degradation produced by the given 
median filter will be masked by the noise.  The noise of one test run is 
the value Vn of equation 13, which for N runs goes down by the square root 
of N.  One therefore has: 

V- R. 
N (2D 

For a factor a < one, which is used to ensure that the number N of trial 
runs will be high enough so that the Gaussian noise does not mask the 
degradations produced by a given median filter, one has from equations 13, 
20 and 21: 

Vioo / 
PN )   ( GRAMAX ]    ^       (a) (MSE) (GRAMAX) 

SIGMAS / 100 (22) 

N 

This reduces to: 

(-Eid       ( L__ 
N > \MSEy   \ a (SIGMAS) (23) 

For a masking prevention factor a = 0.5 and SIGMAS = 3 standard deviation 

0.44\ MSEJ N >  0.44V MSE) (24) 

This yields, say for 3% noise and 0.3% mean square error shift between the 
noisy and pure signal curves, an N of at least 44 trial runs for a legitimate 
measure of the standard deviation or variance of the Gaussian ramp edges. 

A second approach is available for detecting noise degradations 
of one-dimensional Gaussian edge ramps that is far more simple.  Instead 
of finding the best fits for the noisy edge ramp with separate sets of 
noise points and noting the average and standard deviation of these fits, 
add up a series of N noisv edge ramps and average them immediately.  The 

noise will then decrease as  .  For example, adding up 100 ramps with 
N 

identical signals and different noise samples will cut down the noise by 
a factor of 10. 
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Inspection of the resulting average ramp by subroutine FINDEJ will yield 
the best fit signal and information as to any degradations the median 
filter has produced without the problem of strong potentially masking the 
effect of small edge degradations. 

These studies are easily extended to the investigation of the effects 
of two-dimensional median filters on an edge in, for example, a 101 by 101 area. 
Each horizontal line of the synthetic picture array is formed by repeating 
the edge ramp slice E(t), thus forming a vertical edge line in the picture. 
Gaussian noise of a given percentage intensity is then added and the whole 
frame is operated on by the desired two-dimensional median filter.  Each line 
of the synthetic picture can then be inspected by subroutine FINDEJ to find 
the best fit pure signal.  If the edge line formed by the centers of the 
101 input signal ramps is vertical, the average and standard deviations of these 
101 ramps will then give an idea of how the two-dimensional median filter 
may be degrading the edge.  Alternatively, if the edge line of the ramp 
is not necessarily vertical, the location of the centers of the edge ramps 
in each horizontal line of the picture can be noted and the best line-fit 
through them can be calculated and compared with the orginal input edge line. 
Investigation of edges oriented at various angles within the picture field 
will then determine if two-dimensional median filter windows possess any 
inherent orientational biases toward the edges surrounding targets of interest 
in a given picture. 

Once the action of two-dimensional median filters has been fully 
understood and, if acceptable, the author suggests tests on actual imagery 
data as in equations 7 through 10.  Here 9 and <E can vary separately or 
together to produce different median filter window combinations governed 
by continuous functions of the picture gradient for optimal noise suppression 
and minimal, or no, signal degradation. 
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PROGRAM SIMU1D(INPUT,OUTPUT,TAPE7,TAPE61=100,TAPE62=100) 
DIMENSION X(1001),Y(lü01) 

C-TAKES A ONE-DIMENSIONAL SLICE OF AN IMAGE EDGE RAMP SIMULATED BY THE 
C-INTEGRAL OF A GAUSSIAN, ADDS NOISE, MEDIAN FILTERS IT, MEASURES 
C-THE NEW NOISE, AND PLOTS OUTPUT VS. INPUT % NOISE. 

CALL CONNEC(5LINPUT) $ CALL CONNEC(6LOUTPUT) 
CALL READIN(DISP,NE,NW,NRUN,XMIN,XMAX,NP,XLM,RM,TM,BM) 
CALL CALC(NE,NW,NRUN,X,Y,NP,DX,XMIN,XMAX) 
CALL PRINT7(X,Y,NP) 
CALL MINMAX(Y,NP,YMIN,YMAX) 
PRINT *,"OUTPUT NOISE %S: MIN = ",YMIN,", MAX = ",YMAX 
FUZZ = .Ü001*DX 
YMAX = YMAX + FUZZ $ YMIN = YMIN - FUZZ 
IF ( DISP .EQ. "PRINT") GO TO 1 
CALL MARGIN(XMIN,XMAX,YMIN,YMAX,XLM,RM,TM,BM) 

1 IF(DISP.EQ."PLOT") GO TO 2 
CALL PRINOU(X,Y,NP) 

2 IF(DISP.EQ."PRINT") GO TO 3 
CALL PLOT(X, Y , NP , XM IN ,XMAX,YMIN,YMAX) 

3 STOP 
END 
SUBROUTINE READIN(DISP,NE,NW,NRUN,XMIN,XMAX,NP,XLM,RM,TM,BM) 

1 PRINT *,"WHICH DISPLAY, PRINT, PLOT, OR BOTH? " 
READ 100,DISP 

100 FORMAT(A5) 
IF(DISP.EQ."PRINT".OR.DISP.EQ."PLOT".OR.DISP.EQ."BOTH") GO TO 2 
PRINT *,"INCORRECT DISPLAY TYPE." 
GO TO 1 

2 PRINT*,"TYPE EDGEWIDTH, MEDIAN FILTER WINDOW SIZE, & NO. RUNS. " 
READ *,NE,NW,NRUN 
IF(NE .GE. NW .AND. MOD(NW,2) .EQ. 1) GO TO 3 
IF ( NE ,LT. NW ) GO TO 4 
PRINT *,"WINDOW SIZE ",NW," MUST BE AN ODD NO." 
GO TO 2 

4 PRINT *,"EDGE SIZE ",NE," MUST BE AT LEAST WINDOW SIZE ",NW 
GO TO 2 

3 PRINT *,"ENTER MIN&MAX INPUT NOISE %, & NO.POINTS NOT .GT. 1001 " 
READ *,XMIN,XMAX,NP 
IF(DISP.EQ."PRINT") GO TO 5 
PRINT *,"ENTER LEFT, RIGHT, UPPER & LOWER MARGIN PORTIONS. " 
READ *,XLM,RM,TM,BM 
GO TO 6 

5 XLM = RM = TM = BM = 0.0 
6 RETURN 
END 
SUBROUTINE CALC(NE,NW,NRUN,X,Y,NP,DX,XMIN,XMAX) 
DIMENSION GI(1001),ED(21,101),X(1001),Y(1001),EJ(101) 

C-GIVEN EDGE & WINDOW SIZES, & RANGE ON INPUT NOISE %S, 
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C-THIS ROUTINE CONTROLS THE CALCULATIONS OF THE OUTPUT NOISE %S. 
C-SETUP TABLE OF INTEGRAL OF GAUSSIAN FROM XMIN TO X OF EXP(-X*X/2) 

CALL IGTAB(GI) 
NVAR = 5 
CALL STORIT(GI,ED,NE,NVAR) 
NL1 = (101-NE)/2+l $ NR1 = (101+NE)/2 
IBASE = NE-2*NVAR-1 $ IRAMP = NE-IBASE 
CALL SECOND(A) $ NTIME = 1000*(A+1.0) $ CALL RDMIN (NTIME) 

C-USES COMPUTER TIME TO INSURE RANDOM NO. GENER. NOT START IN SAME SPOT. 
GRAMAX = 25 5. $ SIGMAS =3.0 

C-MAX GRAY LEVEL TO HAVE, & NO. STANDARD DEVIATIONS. 
DX = (XMAX - XMIN ) / FLOAT(NP-1) 
1=0 

11=1+1 
X(I) = XMIN + DX*FLOAT(I-l) 
VNOI = X(I)/100.*GRAMAX/SIGMAS 
VSIG = (l.-X(I)/100.)*GRAMAX 

C-USED TO SCALE SIGNAL & NOISE SO GRA LEVELS SHOULD NOT EXCEED GRAMAX. 
C-SETUP NOISY EDGE, EJ. 

DO 2 J = 1,NE 
2 EJ(J) = ED(IRAMP,J) 
CALL SETEJ(NL1,NR1,EJ) 
CALL FILLEJ(VSIG,VNOI,EJ) 
CALL MD1DW(NW,EJ) 

C-MEDIAN FILTERS NOISY EDGE. 
CALL FINDEJ(NE,NL1,NR1,NVAR,ED,EJ,VSIG,GRAMAX,ERVAL,NL2,NR2) 
ERVAL = SQRT(ERVAL/101.0) 

C-FINDS BEST EDGE FIT TO FILTERED DATA, (ONE WITH LOWEST MEAN SQUARE 
C-ERROR, & GIVES LEFT & RIGHT HAND ENDPOINT COORDINATES. 

IF(NRUN .EQ. 1) GO TO 3 
CALL DOMORE(NL2,NR2,NVAR,ED,EJ,VSIG,VNOI,NW,NRUN,VAL) 

C-CONDUCTS MORE NOISE RUNS ON THE SOUGHT-FOR EDJE. 
ERVAL = ERVAL + VAL 
ERVAL = ERVAL / NRUN 

3 Y(I) = 100.*ERVAL*SIGMAS/GRAMAX 
IF ( I .LT. NP ) GO TO 1 
RETURN 
END 
SUBROUTINE IGTAB(GI) 
DIMENSION GI(1001) 

C-SETSUP TABLE OF INTEGRAL OF GAUSSIAN, FROM XMIN TO X OF EXP(-X*X/2) 
PRINT *,"DOING INTEGRAL GAUSSIAN TABLE." 
XMIN = -3.0 $ XMAX =3.0 
NP = 1001 $ NDIV = 10 
DX = (XMAX-XMIN) / FLOAT(NP-1) 
CONST = l./SQRT(8.*ATAN(l.)) 
XOLD = XMIN $ GI(1) =0.0 
1=0 

11=1+1 
X = XMIN + DX*FLOAT(I-l) 
IF ( I .EQ. 1 ) GO TO 2 

36 



H 

Y 
NEVEN ) GO TO 2 

CALL SIMP(XOLD,X,NDIV,ANS) 
GI(I) = GI(I-l) + CONST*ANS 
XOLD = X 

2 IF ( I .LT. NP ) GO TO 1 
PRINT *,"TABLE DONE, PROCEEDING TO SIMULATION. 
RETURN 
END 
SUBROUTINE SIMP(XMIN,XMAX,N,ANS) 

C-INTEGRATES A FUNCTION.BY SIMPSON'S RU.E 
H = (XMAX - XMIN ) / FLOAT(N) 
NODD = N-l 
NEVEN = N-2 
ODSUM = EVSUM =0.0 
IODD = -1 
IEVEN = 0 

1 IODD = IODD + 2 
X = XMIN + IODD*H 
Y = F1(X) 
ODSUM = ODSUM + Y 
IF ( IODD .LT. NODD ) GO TO 1 

2 IEVEN = IEVEN + 2 
X = XMIN + IEVEN * 
Y = F1(X) 
EVSUM = EVSUM + 
IF ( IEVEN .LT. 
YMIN = Fl (XMIN) 
YMAX = Fl (XMAX) 
ANS = H/3.0 .* (YMIN + 4.0*ODSUM + 2.0*EVSUM + YMAX) 
RETURN 
END 
FUNCTION F1(X) 
Fl = EXP(-X*X/2.0) 
RETURN 
END 
SUBROUTINE STORIT(GI,ED,NE,NVAR) 
DIMENSION GI(1001) fX(101) fED (21,101) 

C-THIS INTERPOLATES THE SET OF EDGE RAMPS TO BE USED LATER. 
IF(NVAR .LE. 10) GO TO 1 
PRINT *,"NVAR, ",NVAR,", 
STOP 

1 IBASE = NE-2*NVAR-1 
NRAMPS = 4*NVAR+1 
DO 2 IRAMP = 1,NRAMPS 
NWIDE = IBASE + IRAMP 
CALL LINTERP(GI,X,1001,NWIDE) 
DO 2 J = 1,NWIDE 

2 ED (IRAMP, J) = X(J) 
RETURN 
END 
SUBROUTINE LINTERP(DATA1,DATA2,NP,NC) 
DIMENSION DATA1(1001),DATA2(101) 

SHOULD BE 10 OR LESS, 

37 



C-PICKS OR LINEARLY INTERPS. BIG DATA SET TO GET SMALLER ONE. 
SKIP = FLOAT(NP-1) / FLOAT(NC-1) 
IFLAG = MOD( (NP-1), (NC-1) ) 
IF ( IFLAG .NE. 0 ) GO TO 1 

C-INTERP 3Y PICKING OFF POINTS, E.G. EVERY 10TH OF 1000. 
IC = 0 

2 IC = IC + 1 
JC = SKIP*FLOAT(IC-l)+l 
DATA2(IC) = DATAl(JC) 
IF ( IC .LT. NC) GO TO 2 
GO TO 3 

C-INTERP. BY PICKING LINEARLY BETWEEN POINTS. 
1 IC = 0 
4 IC = IC+1 

XVAL = SKIP*FLOAT(IC-l) +1 
II = XVAL $ Q = XVAL-I1 
DATA2(IC) = DATAl(Il) + Q*(DATAl(11+1)-DATAl(II)) 
IF ( IC .LT. NC) GO TO 4 

3 RETURN 
END 
SUBROUTINE SETEJ(NLEFT,NRIGHT,EJ) 
DIMENSION EJ(101) 

C-MAKES INTERPED. GAUSIAN RAMP RISE FROM 0 TO 1 BETWEEN NLEFT & WRIGHT. 
NWIDE=NRIGHT-NLEFT+1$NWIDE1=NWIDE+1$ISHIFT=NLEFT-1$IPAST=NRIGHT+1 

C-TRIAL WIDTH, 1 MORE, NO.POINTS TO SHIFT TO CENTER, 1 PAST RIGHT END. 
DO 1 I = IPAST,101 

1 EJ(I) =1.0 
DO 2 I = 1,NWIDE 
J = NWIDEl-I $ K = J+ISHIFT 

2 EJ(K) = EJ(J) 
DO 3 I = 1,ISHIFT 

3 EJ(I) = 0.0 
RETURN 
END 
SUBROUTINE FILLEJ(VSIG,VNOI,EJ) 
DIMENSION EJ(101) 

C-SCALES EDGE TO MAX OF GRAMAX WITH SIGNAL & NOISE CONTRIBUTIONS. 
DO 1 I = 1,101 
CALL BOXNO(A,B) 

C-GAUSSIAN RANDOM NOISE GENER. GIVES 2 USABLE VALUES. 
C-NOW SCALE SIGNAL BY VSIG AND ADD NOISE TIMES VNOI. 

1 EJ(I) = VSIG*EJ(I) + VNOI*A 
RETURN 
END 
SUBROUTINE MDlDW(NW,EJ) 
DIMENSION EJ(101),SORT(19) 

C-ONE-D MEDIAN FILTERS EJ. 
MDN1 = NW/2 $ MDN = MDNl+1 
NDO = 101-NW+l 

C-NO. OF APPLICATIONS OF WINDOW. 
DO 1 I = l,NDO 
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DO 2 J = 1,NW 
K = I + (J-l) 

2 SORT(J) = EJ(K) 
CALL DSORT(SORT,NW) 
L = I + MDN1 

1 EJ(L) = SORT(MDN) 
RETURN 
END 
SUBROUTINE DSORT(X,N) 
DIMENSION X(19) 

C-DOES A DROP SORT OF UP TO 19 NUMBERS. 
1 = 1 

1 IF(X(I) .GT. X(I+1) ) GO TO 2 
3 1=1+1 

IF ( I .LT. N) GO TO 1 
GO TO 4 

2 CALL SWAP( X(I), X(I+1) ) 
J = 1-1 

5 IF(J .EQ. 0 ) GO TO 3 
IF( X(J) .GT. X(J+1) ) CALL SWAP(X(J), X(J+1) ) 
J = J-l 
GO TO 5 

4 RETURN 
END 
SUBROUTINE SWAP(X,Y) 
Z=X$X=Y$Y = Z 
RETURN 
END 
SUBROUTINE FINDEJ(NE,NL1,NR1,NVAR,ED,EJ,VSIG,GRAMAX,ERVAL,NL2,NR2) 
DIMENSION ED(21,101),EJ(101),EJSIG(101) 

C-FINDS BEST EDGE FIT TO FILTERED DATA, (ONE WITH LOWEST MEAN SQUARE 
C-ERROR), AND GIVES LEFT AND RIGHT HAND END COORDINATES. 

IF(NE .LT. (2*NVAR+2) ) NVAR = (NE-2J/2 
IF(NE .GT. (101-2*NVAR) ) NVAR = (101-NE)/2 
IBASE = NE-2*NVAR-1 
ERVAL = 4.0*101.0*GRAMAX**2 
IPASS = 0 

1 IPASS = IPASS + 1 
IF(IPASS .EQ. 2) GO TO 2 
IMIN=1 $ IMAX=2*NVAR+1 $ NTIME=0 $ SIGN=1.0 
GO TO 3 

2 IMIN=2*NVAR+2 $ IMAX=4*NVAR+1 $ NTIME=2*NVAR+1 $ SIGN=-1.0 
3 DO 4 IRAMP = IMIN,IMAX 
NTIME = NTIME+SIGN*1.0 
NWIDE = IBASE + IRAMP 
IF(IPASS .EQ. 1) NLWORK = NL1 + NVAR 
IF(IPASS.EQ.l) NRWORK = NLWORK + NWIDE -1 
IF(IPASS .EQ. 2) NRWORK = NRl+NVAR 
IF(IPASS .EQ. 2) NLWORK = NRWORK-NWIDE+1 
ITIME = 0 

5 ITIME = ITIME + 1 
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DO 6 J = 1,NWIDE 
6 EJSIG(J) = ED(IRAMP,J) 
CALL SETEJ(NLWORK,NRWORK,EJSIG) 
DO 7 J = NLWORK,101 

7 EJSIG(J) = EJSIG(J) * VSIG 
CALL MSE(EJSIG,EJ,ERROR) 

C-FINDS MEANSQÜARE ERROR OR NOISE OF EDGE OVER PURESIGNAL EJSIG. 
IF(ERROR.GE. ERVAL) GO TO 8 
ERVAL = ERROR 
NL2 = NLWORK $ NR2 = NRWORK 

8 NLWORK=NLWORK-l $ NRWORK=NRWORK-l 
4 IF(ITIME .LT. NTIME) GO TO 5 

IF(IPASS .LT. 2) GO TO 1 
RETURN 
END 
SUBROUTINE MSE(X,Y,ERROR) 
DIMENSION X(101),Y(101) 
ERROR =0.0 

C-THIS CALCULATES THE MEAN SQUARE ERROR OF Y FROM X. 
DO 1 I = 1,101 

1 ERROR = ERROR + ( Y(I)-X(I) )**2 
RETURN 
END 
SUBROUTINE DOMORE (NLEFT,NRIGHT,NVAR,ED,EJ , VSIG, VNOI ,NW,NRUN , VAL) 
DIMENSION ED(21,101),EJ(101),EJSIG(101) 

C-NRUN-1 MORE RUNS ON THE FOUND EDGE TO SMOOTH THE NOISE RESULT. 
NWIDE=NRIGHT-NLEFT+1 $ IBASE=NWIDE-2*NVAR-1 $ IRAMP=NWIDE-IBASE 

C-GO PICK THE IRAMP ROW OF ARRAY ED. 
DO 1 J = 1,NWIDE 

1 EJSIG(J) = ED (IRAMP,J) 
CALL SETEJ(NLEFT,NRIGHT,EJSIG) 
DO 2 J = NLEFT,101 

2 EJSIG(J) = EJSIG(J) * VSIG 
VAL = 0.0 $ IRUN = 1 

3 IRUN = IRUN +1 
DO 4 J = 1,NWIDE 

4 EJ(J) = ED(IRAMP,J) 
CALL SETEJ(NLEFT,NRIGHT,EJ) 
CALL FILLEJ(VSIG,VNOI,EJ) 
CALL MD1DW(NW,EJ) 
CALL MSE(EJSIG,EJ,ERROR) 
ERROR = SQRT(ERROR/101.0) 
VAL = VAL + ERROR 
IF ( IRUN .LT. NRUN ) GO TO 3 
RETURN 
END 
SUBROUTINE PRINT7(X,Y,NP) 
DIMENSION X(1001),Y(1001) 

C-THIS WRITES THE INPUT AND OUTPUT NOISE %S TO TAPE7. 
DO 1 I = 1,NP 

1 PRINT(7,*) X(I),",",Y(I) 
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REWIND 7 
RETURN 
END 
SUBROUTINE MINMAX(Y,NP,YMIN,YMAX) 
DIMENSION Y(1001) 
YMIN = YMAX = Y(l) 
DO 1 I = 1,NP 
IF ( Y(I) .LT. YMIN ) YMIN = Y(I) 

1 IF ( Y(I) .GT. YMAX ) YMAX = Y(I) 
RETURN 
END 
SUBROUTINE MARGIN(XMIN,XMAX,YMIN,YMAX, XLM,RM,TM,BM) 
HH = (XMAX-XMIN) / (1.0-XLM-RM) 
HV = (YMAX-YMIN) / (1.0-TM-BM) 
XMIN = XMIN -HH*XLM $ XMAX = XMAX + HH*RM 
YMAX = YMAX + HV*TM $ YMIN = YMIN - HV*BM 
RETURN 
END 
SUBROUTINE PRINOU(X,Y,NP) 
DIMENSION X(1001) ,Y(1001) 
READ 100,ICHAR 

10 0 FORMAT(Al) 
PRINT 200 

200 FORMAT(lH , "LINE",IX,"X",14X,"Y" ) 
DO 1 I = 1,NP 
PRINT 300,I,X(I),Y(I) 

300 FORMAT(lH ,13,2X,2 (F14.9,IX) ) 
IF ( MOD(1,30) .NE. 0) GO TO 1 
READ 100,ICHAR $ PRINT 200 

1 CONTINUE 
RETURN 
END 
SUBROUTINE PLOT(X,Y,NP, XMIN,XMAX,YMIN,YMAX) 
DIMENSION X(1001),Y(1001) 
READ 10 0,ICHAR 

100 FORMAT(Al) 
CALL INITT(30) $ CALL TERM(2,4096) 
CALL DWINDO(XMIN,XMAX,YMIN,YMAX) 
CALL MOVEA( X(l) , Y(l) ) 
DO 1 I = 2,NP 

1 CALL DRAWA( X(I), Y(I) ) 
CALL ANMODE $ READ 10 0,ICHAR 
RETURN 
END 

41 





APPENDIX B 

PROGRAM LOCKON 

43 





PROGRAM LOCKON(INPUT,OUTPUT,TAPE7,TAPE 61 = 100,TAPE62 =100) 
DIMENSION GI(1001)fED(21,101),X(1001),EJ(101),PB(1001),PA(1001) 

&PDIF(1001) 
CALL CONNEC(5LINPUT) $ CALL CONNEC(6LOUTPUT) 
CALL IGTAB(GI) 
CALL SECOND(A) $ NTIME = 1000*(A+1.0) $ CALL RDMIN(NTIME) 
GRAMAX = 25 5. $ SIGMAS =3.0 
PRINT *,"TYPE EJWITH, MEDIANFILTER WINDOWSIZ, & NO.RUNS " 
READ *,NE,NW,NRUN 
NVAR = 5 
IBASE=NE-2*NVAR-1 $ IRAMP = NE-IBASE 
CALL STORIT(GI,ED,NE,NVAR) 
PRINT *,"ENTER MIN&MAX %NOISE, &NO.POINTS NOT.GT. 1001 " 
READ *,XMIN,XMAX,NP 
NLEFT=(101-NE)/2+l $ NRIGHT=(101+NE)/2 
DX   =    (XMAX   -  XMIN   )   /   FLOAT(NP-1) 
1=0 

11=1+1 
X(I)    =   XMIN   +  DX*FLOAT(I-l) 
VNOI = X(I)/100.*GRAMAX/SIGMAS 
VSIG = (l.-X(I)/100.)*GRAMAX 
MA = MB = MDIF = 0 
DO 2 IRUN = 1,NRUN 
DO 3 J = 1,NE 

3 EJ(J) = ED (IRAMP, J) 
CALL SETEJ(NLEFT,NRIGHT,EJ) 
CALL FILLEJ(VSIG,VNOI,EJ) 
CALL FINDEJ(NE,NLEFT,NRIGHT,NVAR,ED,EJ,VSIG,GRAMAX,EB,NLB,NRB) 
CALL MD1DW(NW,EJ) 
CALL FINDEJ(NE,NLEFT,NRIGHT,NVAR,ED,EJ,VSIG,GRAMAX,EA,NLA,NRA) 
IF (NLB.NE.NLEFT.OR.NRB.NE.NRIGHT) MB = MB +1 
IF(NLA.NE.NLEFT.OR.NRA.NE.NRIGHT) MA = MA +1 

2 IF(NLA.NE.NLB .OR. NRA.NE.NRB) MDIF = MDIF +1 
PB(I) = 10 0.*FLOAT(MB) / NRUN 
PA(I) = 100.*FLOAT(MA) / NRUN 
PDIF(I) = 10 0.*FLOAT(MDIF) /NRUN 
PRINT *,X(I),PB(I),PA(I),PDIF(I) 
PRINT (7,*) X(I),","/PB(I),",",PA(I),",",PDIF(I) 
IF (I .LT. NP) GO TO 1 
END 
SUBROUTINE IGTAB(GI) 
DIMENSION GI(1001) 

C-SETSUP TABLE OF INTEGRAL OF GAUSSIAN, FROM XMIN TO X OF EXP(-X*X/2) 
PRINT *,"DOING INTEGRAL GAUSSIAN TABLE." 
XMIN = -3.0 $ XMAX =3.0 
NP = 1001 $ NDIV = 10 
DX = (XMAX-XMIN) / FLOAT(NP-l) 
CONST = l./SQRT(8.*ATAN(l.)) 
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XOLD = XMIN $ GI(1) = 0.0 
1=0 

11=1+1 
X = XMIN + DX*FLOAT(I-l) 
IF ( I .EQ. 1 ) GO TO 2 
CALL SIMP(XOLD,X,NDIV,ANS) 
GI(I) = GI(I-l) + CONST*ANS 
XOLD = X 

2 IF ( I .LT. NP ) GO TO 1 
PRINT *,"TABLE DONE, PROCEEDING TO SIMULATION. " 
RETURN 
END 
SUBROUTINE SIMP(XMIN,XMAX,N,ANS) 

C-INTEGRATES A FUNCTION BY SIMPSON'S RU.E 
H = (XMAX - XMIN ) / FLOAT (N) 
NODD = N-l 
NEVEN = N-2 
ODSUM = EVSUM =0.0 
IODD = -1 
IEVEN = 0 

1 IODD = IODD + 2 
X = XMIN + IODD*H 
Y = F1(X) 
ODSUM = ODSUM + Y 
IF ( IODD .LT. NODD ) GO TO 1 

2 IEVEN = IEVEN + 2 
X = XMIN + IEVEN * H 
Y = F1(X) 
EVSUM = EVSUM + Y 
IF ( IEVEN .LT. NEVEN ) GO TO 2 
YMIN = Fl(XMIN) 
YMAX = Fl(XMAX) 
ANS = H/3.0 * (YMIN + 4.0*ODSUM + 2.0*EVSUM + YMAX) 
RETURN 
END 
FUNCTION F1(X) 
Fl = EXP(-X*X/2.0) 
RETURN 
END 
SUBROUTINE STORIT(GI,ED,NE,NVAR) 
DIMENSION GI(1001),X(101),ED(21,101) 

C-THIS INTERPOLATES THE SET OF EDGE RAMPS TO BE USED LATER. 
IF(NVAR .LE. 10) GO TO 1 
PRINT *,"NVAR, ",NVAR,", SHOULD BE 10 OR LESS." 
STOP 

1 IBASE = NE-2*NVAR-1 
NRAMPS = 4*NVAR+1 
DO 2 IRAMP = 1,NRAMPS 
NWIDE = IBASE + IRAMP 
CALL LINTERP(GI,X,1001,NWIDE) 
DO 2 J = 1,NWIDE 
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2 ED(IRAMP,J) = X(J) 
RETURN 
END 
SUBROUTINE LINTERP(DATAl,DATA2,NP,NC) 
DIMENSION DATAl(1001),DATA2(101) 

C-PICKS OR LINEARLY INTERPS. BIG DATA SET TO GET SMALLER ONE. 
SKIP = FLOAT (NP-1) / FLOAT (NC-1) 
IFLAG = MOD( (NP-1), (NC-1) ) 
IF ( IFLAG .NE. 0 ) GO TO 1 

C-INTERP BY PICKING OFF POINTS, E.G. EVERY 10TH OF 1000. 
IC = 0 

2 IC = IC + 1 
JC = SKIP*FLOAT(IC-l)+l 
DATA2(IC) = DATAl(JC) 
IF ( IC .LT. NC) GO TO 2 
GO TO 3 

C-INTERP. BY PICKING LINEARLY BETWEEN POINTS. 
1 IC = 0 
4 IC = IC+1 
XVAL = SKIP*FLOAT(IC-l) +1 
II = XVAL $ Q = XVAL-I1 
DATA2(IC) = DATAl(II) + Q*(DATAl(Il+l)-DATAl(II)) 
IF ( IC .LT. NC) GO TO 4 

3 RETURN 
END 
SUBROUTINE SETEJ(NLEFT,NRIGHT,EJ) 
DIMENSION EJ(101) 

C-MAKES INTERPED. GAUSIAN RAMP RISE FROM 0 TO 1 BETWEEN NLEFT & NRIGHT. 
NWIDE=NRIGHT-NLEFT+l$NWIDEl=NWIDE+l$ISHIFT=NLEFT-l$IPAST=NRIGHT+l 

C-TRIAL WIDTH, 1 MORE, NO.POINTS TO SHIFT TO CENTER, 1 PAST RIGHT END. 
DO 1 I = IPAST,101 

1 EJ(I) = 1.0 
DO 2 I = 1,NWIDE 
J = NWIDE1-I $ K = J+ISHIFT 

2 EJ(K) = EJ(J) 
DO 3 I = 1,ISHIFT 

3 EJ(I) = 0.0 
RETURN 
END 
SUBROUTINE FILLEJ(VSIG,VNOI,EJ) 
DIMENSION EJ(101) 

C-SCALES EDGE TO MAX OF GRAMAX WITH SIGNAL & NOISE CONTRIBUTIONS. 
DO 1 I = 1,101 
CALL BOXNO(A,B) 

C-GAUSSIAN RANDOM NOISE GENER. GIVES 2 USABLE VALUES. 
C-NOW SCALE SIGNAL BY VSIG AND ADD NOISE TIMES VNOI. 

l.EJ(I) = VSIG*EJ(I) + VNOl*A 
RETURN 
END 
SUBROUTINE MDlDW(NW,EJ) 
DIMENSION EJ(101),SORT(19) 
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C-ONE-D MEDIAN FILTERS EJ. 
MDN1 = NW/2 $ MDN = MDN1+1 
NDO = 101-NW+l 

C-NO. OF APPLICATIONS OF WINDOW. 
DO 1 I = l,NDO 
DO 2 J = 1,NW 
K = I + (J-l) 

2 SORT(J) = EJ(K) 
CALL DSORT(SORT,NW) 
L = I + MDN1 

1 EJ(L) = SORT (MDN) 
RETURN 
END 
SUBROUTINE DSORT(X,N) 
DIMENSION X(19) 

C-DOES A DROP SORT OF UP TO 19 NUMBERS. 
1=1 

1 IF(X(I) .GT. X(I+1) ) GO TO 2 
3 1=1+1 

IF ( I .LT. N) GO TO 1 
GO TO 4 

2 CALL SWAP( X(I), X(I+1) ) 
J = 1-1 

5 IF(J .EQ. 0 ) GO TO 3 
IF( X(J) .GT. X(J+1) ) CALL SWAP(X(J), X(J+1) ) 
J = J-l 
GO TO 5 

4 RETURN 
END 
SUBROUTINE SWAP(X,Y) 
2=X$X=Y$Y = Z 
RETURN 
END 
SUBROUTINE FINDEJ(NE,NL1,NR1,NVAR,ED,EJ,VSIG,GRAMAX,ERVAL,NL2,NR2) 
DIMENSION ED(21,101),EJ(101),EJSIG(101) 

C-FINDS BEST EDGE FIT TO FILTERED DATA, (ONE WITH LOWEST MEAN SQUARE 
C-ERROR), AND GIVES LEFT AND RIGHT HAND END COORDINATES. 

IF(NE .LT. (2*NVAR+2) ) NVAR = (NE-2)/2 
IF(NE .GT. (101-2*NVAR) ) NVAR = (101-NE)/2 
IBASE = NE-2*NVAR-1 
ERVAL = 4.0*101.0*GRAMAX**2 
IPASS = 0 

1 IPASS = IPASS + 1 
IF(IPASS .EQ. 2) GO TO 2 
IMIN=1 $ IMAX=2*NVAR+1 $ NTIME=0 $ SIGN=1.0 
GO TO 3 

2 IMIN=2*NVAR+2 $ IMAX=4*NVAR+1 $ NTIME=2*NVAR+1 $ SIGN=-1 
3 DO 4 IRAMP = IMIN,IMAX 
NTIME = NTIME+SIGN*1.0 
NWIDE = IBASE + IRAMP 
IF(IPASS .EQ. 1) NLWORK = NL1 + NVAR 
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IF(IPASS.EQ.l) NRWORK = NLWORK + NWIDE -1 
IF(IPASS .EQ. 2) NRWORK = NR1+NVAR 
IF(IPASS .EQ. 2) NLWORK = NRWORK-NWIDE+1 
ITIME = 0 

5 ITIME = ITIME + 1 
DO 6 J = 1,NWIDE 

6 EJSIG(J) = ED(IRAMP,J) 
CALL SETEJ(NLWORK,NRWORK,EJSIG) 
DO 7 J = NLWORK,101 

7 EJSIG (J) = EJSIG(J) * VSIG 
CALL MSE(EJSIG,EJ,ERROR) 

C-FINDS MEANSQUARE ERROR OR NOISE OF EDGE OVER PURESIGNAL EJSIG, 
IF(ERROR.GE. ERVAL) GO TO 8 
ERVAL = ERROR 
NL2 = NLWORK $ NR2 = NRWORK 

8 NLWORK=NLWORK-l $ NRWORK=NRWORK-l 
4 IF(ITIME .LT. NTIME) GO TO 5 

IF(IPASS .LT. 2) GO TO 1 
RETURN 
END 
SUBROUTINE MSE(X,Y,ERROR) 
DIMENSION X(101),Y(101) 
ERROR =0.0 

C-THIS CALCULATES THE MEAN SQUARE ERROR OF Y FROM X. 
DO 1 I = 1,101 

1 ERROR = ERROR + ( Y(I)-X(I) )**2 
RETURN 
END 
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APPENDIX C 

PROGRAM EJSHOW 
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PROGRAM EJSHOW(INPUT,OUTPUT,TAPE61=100,TAPE62=100) 
DIMENSION GI(lOOl),ED(21,101),X(101),SG(101),EU(101),SUF(101), 

&SUP(101) ,ES (101),SSP(101) ,SSP(101) 
CALL CONNEC(5LINPUT) $ CALL CONNEC(6LOUTPUT) 
NP = 101 $ NVAR = 5 
DO 1 I = 1,NP 

1 X(I) = FLOAT(I-l) 
XMIN = X(l) $ XMAX = X(101) 
DX = (XMAX-XMIN)/FLOAT(NP-1) 
FUZZ = .0001*DX 
GRAMAX = 25 5. $ SIGMAS = 3. 
CALL IGTAB(GI) 
PRINT *,"ENTER LEFT & RIGHT RAMP ENDS & % NOISE. " 
READ *,NLG,NRG,PN 
PRINT *,"ENTER WINDOW WIDTH. " 
READ *,NW 
PRINT *,"ENTER LEFT, RIGHT, UPPER & LOWER MARGIN PORTIONS. " 
READ *,XLM,RM,TM,BM 
NWG = NRG-NLG+1 $ IBASE = NWG-2*NVAR-1 
CALL STORIT(GI,ED,NWG,NVAR) 
VNOI = PN/100.*GRAMAX/SIGMAS 
VSIG = (l.-PN/100.)*GRAMAX 
IRAMP = NWG-IBASE 
DO 2 J = 1,NWG 

2 SG(J) = ED(IRAMP,J) 
CALL SETEJ(NLG,NRG,SG) 
DO 3 J = NLG,NP 

3 SG(J) = SG(J) *VSIG 
4 IRAMP = NWG-IBASE 

DO 5 J = 1,NP 
CALL BOXNO(A,B) 

5 EU(J)=SG(J)+VNOI*A 
CALL MINMAX(EU,NP,YMIN,YMAX) 
YMAX=YMAX+FUZZ $ YMIN=YMIN-FUZZ 
CALL MARGIN(XMIN,XMAX,YMIN,YMAX,XLM,RM,TM,BM) 
CALL FINDEJ(NWG,NLG,NRG,NVAR,ED,EU,VSIG,GRAMAX,ERUF,NLUF,NRUF) 
CALL MSE(SG,EU,ERUG) 
ERUF=SQRT(ERUF/101.) $ ERUG=SQRT(ERUG/101.) 
ERUF=100.*ERUF*SIGMAS/GRAMAX $ ERUG=100.*ERUG*SIGMAS/GRAMAX 
NWUF=NRUF-NLUF+1 $ IRAMP=NWUF-IBASE 
DO 6 J = 1,NWUF 

6 SUF(J) = ED(IRAMP,J) 
CALL SETEJ(NLUF,NRUF,SUF) 
DO 7 J = NLUF,NP 

7 SUF(J) = SUF(J)*VSIG 
DO 8 J = 1,NP 

8 ES(J) = EU(J) 
CALL MD1DW(NP,NW,ES) 
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TALL FINDEJ(NWG.NLG,NRG,NVAR,ED,ES,VSIG,GRAMAX,ERSF,NLSF,NRSF) 
CALL MSE(SG,ES,ERSG) 
ERSF=SQRT(ERSF/101.) $ ERSG=SQRT(ERSG/101.) 
ERSF=100.*ERSF*SIGMAS/GRAMAX $ ERSG=100.*ERSG*SIGMAS/GRAMAX 
NWSF=NRSF-NLSF+1 $ IRAMP=NWSF-IBASE 
DO 9 J = 1,NWSF 

9 SSF(J) = ED(IRAMP,J) 
CALL SETEJ(NLSF,NRSF,SSF) 
DO 10 J = NLSF,NP 

10 SSF(J) = SSF(J) * VSIG 
PRINT 100 

100 FORMAT(1H ,1OX,"GIVEN EDGE",2X,"GIVEN ERROR",IX,"FOUND EDGE",2X, 
&"FOUND ERROR") 
PRINT 200,NLG,NRG,ERUG,NLUF,NRUF,ERUF 

200 FORMAT(lH ,"UNSMOOTH",2X,2(12,IX,12,7X,F10.7,2X)) 
PRINT 300,NLG,NRG,ERSG,NLSF,NRSF,ERSF 

300 FORMAT(lH ,"SMOOTHED",2X,2(12,IX,12,7X,F10.7,2X)) 
PRINT *,"PLOT THESE RESULTS? " 
READ 400,IANS 

400 FORMAT(A3) 
IF(IANS.EQ."NO") GO TO 4 
PRINT *,"ENTER ENDS OF THIRD UNSMOOTHED SIGNAL. " 
READ *,NLUP,NRUP 
PRINT *,"ENTER ENDS OF THIRD SMOOTHED SIGNAL. " 
READ *,NLSP,NRSP 
NWUP=NRUP-NLUP+1 $ NWSP=NRSP-NLSP+1 
IRAMP = NWUP - IBASE 
DO 11 J = 1,NWUP 

11 SUP(J) = ED (IRAMP,J) 
CALL SETEJ(NLUP,NRUP,SUP) 
DO 12 J = NLUP,NP 

12 SUP(J) = SUP(J) * VSIG 
IRAMP = NWSP-IBASE 
DO 13 J = 1,NWSP 

13 SSP(J) = ED(IRAMP,J) 
CALL SETEJ(NLSP,NRSP,SSP) 
DO 14 J = NLSP,NP 

14 SSP(J) = SSP(J)*VSIG 
PRINT *,"CHOSEN RAMPS SETUP." 
CALL PLOT(X,EU,SUF,SUP,NP,XMIN,XMAX,YMIN,YMAX) 
CALL PLOT(X,ES,SSF,SSP,NP,XMIN,XMAX,YMIN,YMAX) 

15 PRINT *,"ENTER WINDOW WIDTH. " 
READ *,NW 
DO 16 J = 1,NP 

16 ES (J) = EU(J) 
CALL MD1DW(NP,NW,ES) 
CALL FINDEJ(NWG,NLG,NRG,NVAR,ED,ES,VSIG,GRAMAX,ERSF,NLSF,NRSF) 
CALL MSE(SG,ES,ERSG) 
ERSF=SQRT(ERSF/101.) $ ERSG=SQRT(ERSG/101.) 
ERSF=100.*ERSF*SIGMAS/GRAMAX $ ERSG=100.*ERSG*SIGMAS/GRAMAX 
NWSF=NRSF-NLSF+1 $ IRAMP=NWSF-IBASE 
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DO 17 J = 1,NWSF 
17 SSF(J) = ED(IRAMP,J) 

CALL SETEJ(NLSF,NRSF,SSF) 
DO 18 J = NLSF,NP 

18 SSF(J) = SSF(J) *VSIG 
PRINT 100 
PRINT 300,NLG,NRG,ERSG,NLSF,NRSF,ERSF 
PRINT *,"ENTER ENDS OF THIRD SMOOTHED SIGNAL. " 
READ *,NLSP,NRSP 
NWSP=NRSP-NLSP+1 $ IRAMP=NWSP-IBASE 
DO 19 J = 1,NWSP 

19 SSP(J) = ED(IRAMP,J) 
CALL SETEJ(NLSP,NRSP,SSP) 
DO 20 J = NLSP,NP 

20 SSP(J) = SSP(J) * VSIG 
PRINT *,"CHOSEN RAMP SETUP." 
CALL PLOT(X,ES,SSF,SSP,NP,XMIN,XMAX,YMIN,YMAX) 
GO TO 15 
END 
SUBROUTINE PLOT(X,Yl,Y2,Y3,NP,XMIN,XMAX,YMIN,YMAX) 
DIMENSION X(101),Yl(101),Y2(101),Y3(101) 
READ 100,ICHAR 

100 FORMAT(A4) 
CALL INITT(30) $ CALL TERM(2,4096) 
CALL DWINDO(XMIN,XMAX,YMIN,YMAX) 
CALL MOVEA( X(l), Yl(l) ) 
DO 1 I = 2,NP 

1 CALL DRAWA(X(I), Yl(I) ) 
CALL VCURSR(IC,IX,IY) 
CALL MOVEA(X(l), Y2(l)) 
DO 2 I = 2,NP 

2 CALL DASHA(X(I), Y2(I),12) 
CALL VCURSR(IC,IX,IY) 
CALL MOVEA(X(l) ,Y3(1) ) 
DO 3 I = 2,NP 

3 CALL DASHA(X(I),Y3(I),34) 
CALL ANMODE $ READ 100,ICHAR 
IF(ICHAR .EQ. "STOP" ) STOP 
RETURN 
END 
SUBROUTINE IGTAB(GI) 
DIMENSION GI(1001) 

C-SETSUP TABLE OF INTEGRAL OF GAUSSIAN, FROM XMIN TO X OF EXP(-X*X/2) 
PRINT *,"DOING INTEGRAL GAUSSIAN TABLE." 
XMIN = -3.0 $ XMAX =3.0 
NP = 1001 $ NDIV = 10 
DX = (XMAX-XMIN) / FLOAT(NP-1) 
CONST = l./SQRT(8.*ATAN(l.)) 
XOLD = XMIN $ GI(1) = 0.0 
1=0 

11=1+1 



X = XMIN + DX*FL0AT(I-1) 
IF ( I .EQ. 1 ) GO TO 2 
CALL SIMP(XOLD,X,NDIV,ANS) 
GI(I) = GI(I-l) + CONST*ANS 
XOLD = X 

2 IF ( I .LT. NP ) GO TO 1 
PRINT *,"TABLE DONE, PROCEEDING TO SIMULATION. " 
RETURN 
END 
SUBROUTINE SIMP(XMIN,XMAX,N,ANS) 

C-INTEGRATES A FUNCTION BY SIMPSON'S RU.E 
H = (XMAX - XMIN ) / FLOAT (N) 
NODD = N-l 
NEVEN = N-2 
ODSUM = EVSUM =0.0 
IODD = -1 
IEVEN = 0 

1 IODD = IODD + 2 
X = XMIN + IODD*H 
Y = F1(X) 
ODSUM = ODSUM + Y 
IF ( IODD .LT. NODD ) GO TO 1 

2 IEVEN = IEVEN + 2 
X = XMIN + IEVEN * H 
Y = F1(X) 
EVSUM = EVSUM + Y 
IF ( IEVEN .LT. NEVEN ) GO TO 2 
YMIN = Fl (XMIN) 
YMAX = Fl(XMAX) 
ANS = H/3.0 * (YMIN + 4.0*ODSUM + 2.0*EVSUM + YMAX) 
RETURN 
END 
FUNCTION F1(X) 
Fl = EXP(-X*X/2.0) 
RETURN 
END 
SUBROUTINE LINTERP(DATAl,DATA2,NP,NC) 
DIMENSION DATAl(1001),DATA2(101) 

C-PICKS OR LINEARLY INTERPS. BIG DATA SET TO GET SMALLER ONE. 
SKIP = FLOAT(NP-l) / FLOAT(NC-l) 
IFLAG = MOD( (NP-1), (NC-1) ) 
IF ( IFLAG .NE. 0 ) GO TO 1 

C-INTERP BY PICKING OFF POINTS, E.G. EVERY 10TH OF 1000. 
IC = 0 

2 IC = IC + 1 
JC = SKIP*FLOAT(IC-l)+l 
DATA2(IC) = DATAl(JC) 
IF ( IC .LT. NC) GO TO 2 
GO TO 3 

C-INTERP. BY PICKING LINEARLY BETWEEN POINTS. 
1 IC = 0 



4 IC = IC+1 
XVAL = SKIP*FL0AT(IC-1) +1 
II = XVAL $ Q = XVAL-Il 
DATA2(IC) = DATAl(Il) + Q*(DATA1(Il+l)-DATA1(II)) 
IF ( IC .LT. NC) GO TO 4 

3 RETURN 
END 
SUBROUTINE SETEJ(NLEFT,NRIGHT,EJ) 
DIMENSION EJ(101) 

C-MAKES INTERPED. GAUSIAN RAMP RISE FROM 0 TO 1 BETWEEN NLEFT & NRIGHT. 
NWIDE=NRIGHT-NLEFT+1$NWIDE1=NWIDE+1$ISHIFT=NLEFT-1$IPAST=NRIGHT+1 

C-TRIAL WIDTH, 1 MORE, NO.POINTS TO SHIFT TO CENTER, 1 PAST RIGHT END. 
DO 1 I = IPAST,101 

1 EJ(I) = 1.0 
DO 2 I = 1,NWIDE 
J = NWIDE1-I $ K = J+ISHIFT 

2 EJ(K) = EJ(J) 
DO 3 I = 1,ISHIFT 

3 EJ(I) = 0.0 
RETURN 
END 
SUBROUTINE FILLEJ(VSIG,VNOI,EJ) 
DIMENSION EJ(101) 

C-SCALES EDGE TO MAX OF GRAMAX WITH SIGNAL & NOISE CONTRIBUTIONS. 
DO 1 I = 1,101 
CALL BOXNO(A,B) 

C-GAUSSIAN RANDOM NOISE GENER. GIVES 2 USABLE VALUES. 
C-NOW SCALE SIGNAL BY VSIG AND ADD NOISE TIMES VNOI. 

1 EJ(I) = VSIG*EJ(I) + VNOI*A 
RETURN 
END 
SUBROUTINE MD1DW(NP,NW,EJ) 
DIMENSION EJ(1001),SORT(19) 

C-ONE-D MEDIAN FILTERS EJ. 
MDN1 = NW/2 $ MDN = MDN1+1 
NDO = NP-NW+1 

C-NO. OF APPLICATIONS OF WINDOW. 
DO 1 I = l,NDO 
DO 2 J = 1,NW 
K = I + (J-l) 

2 SORT(J) = EJ(K) 
CALL DSORT(SORT,NW) 
L = I + MDN1 

1 EJ(L) = SORT(MDN) 
RETURN 
END 
SUBROUTINE DSORT(X,N) 
DIMENSION X(19) 

C-DOES A DROP SORT OF UP TO 19 NUMBERS. 
1=1 

1 IF(X(I) .GT. X(I+1) ) GO TO 2 
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3 1=1+1 
IF ( I .LT. N) GO TO 1 
GO TO 4 

2 CALL SWAP( X(I), X(I+1) ) 
J = 1-1 

5 IF(J .EQ. 0 ) GO TO 3 
IF( X(J) .GT. X(J+1) ) CALL SWAP(X(J), X(J+1) ) 
J = J-l 
GO TO 5 

4 RETURN 
END 
SUBROUTINE SWAP(X,Y) 
Z=X$X=Y$Y = Z 
RETURN 
END 
SUBROUTINE MSE(X,Y,ERROR) 
DIMENSION X(101),Y(101) 
ERROR =0.0 

C-THIS CALCULATES THE MEAN SQUARE ERROR OF Y FROM X. 
DO 1 I = 1,101 

1 ERROR = ERROR + ( Y(I)-X(I) )**2 
RETURN 
END 
SUBROUTINE MINMAX(Y,NP,YMIN,YMAX) 
DIMENSION Y(1001) 
YMIN = YMAX = Y(l) 
DO 1 I = 1,NP 
IF ( Y(I) .LT. YMIN ) YMIN = Y(I) 

1 IF ( Y(I) .GT. YMAX ) YMAX = Y(I) 
RETURN 
END 
SUBROUTINE MARGIN(XMIN,XMAX,YMIN,YMAX, XLM,RM,TM,BM) 
HH = (XMAX-XMIN) / (1.0-XLM-RM) 
HV = (YMAX-YMIN) / (1.0-TM-BM) 
XMIN = XMIN -HH*XLM $ XMAX = XMAX + HH*RM 
YMAX = YMAX + HV*TM $ YMIN = YMIN - HV*BM 
RETURN 
END 
SUBROUTINE STORIT(GI,ED,NE,NVAR) 
DIMENSION GI(1001),X(101),ED(21,101) 

C-THIS INTERPOLATES THE SET OF EDGE RAMPS TO BE USED LATER. 
IF(NVAR .LE. 10) GO TO 1 
PRINT *,"NVAR, ",NVAR,", SHOULD BE 10 OR LESS." 
STOP 

1 IBASE = NE-2*NVAR-1 
NRAMPS = 4*NVAR+1 
DO 2 IRAMP = 1,NRAMPS 
NWIDE = IBASE + IRAMP 
CALL LINTERP(GI,X,1001,NWIDE) 
DO 2 J = 1,NWIDE 

2 ED(IRAMP,J) = X(J) 
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RETURN 
END 
SUBROUTINE FINDEJ(NE,NL1,NRl,NVAR,ED,EJ,VSIG,GRAMAX,ERVAL, NL2,NR2) 
DIMENSION ED(21,101),EJ(101),EJSIG(101) 

C-FINDS BEST EDGE FIT TO FILTERED DATA, (ONE WITH LOWEST MEAN SQUARE 
C-ERROR), AND GIVES LEFT AND RIGHT HAND END COORDINATES. 

IF(NE .LT. (2*NVAR+2) ) NVAR = (NE-2J/2 
IF(NE .GT. (101-2*NVAR) ) NVAR = (101-NE)/2 
IBASE = NE-2*NVAR-1 
ERVAL = 4.0*101.0*GRAMAX**2 
IPASS = 0 

1 IPASS = IPASS + 1 
IF(IPASS .EQ. 2) GO TO 2 
IMIN=1 $ IMAX=2*NVAR+1 $ NTIME=0 $ SIGN=1.0 
GO TO 3 

2 IMIN=2*NVAR+2 $ IMAX=4*NVAR+1 $ NTIME=2*NVAR+1 $ SIGN=-1.0 
3 DO 4 IRAMP = IMIN,IMAX 
NTIME = NTIME+SIGN*1.0 
NWIDE = IBASE + IRAMP 
IF(IPASS .EQ. 1) NLWORK = NLl + NVAR 
IF(IPASS.EQ.l) NRWORK = NLWORK + NWIDE -1 
IF(IPASS .EQ. 2) NRWORK = NRl+NVAR 
IF(IPASS .EQ. 2) NLWORK = NRWORK-NWIDE+1 
ITIME = 0 

5 ITIME = ITIME + 1 
DO 6 J = 1,NWIDE 

6 EJSIG(J) = ED(IRAMP,J) 
CALL SETEJ(NLWORK,NRWORK,EJSIG) 
DO 7 J = NLWORK,101 

7 EJSIG(J) = EJSIG(J) * VSIG 
CALL MSE(EJSIG,EJ,ERROR) 

C-FINDS MEANSQUARE ERROR OR NOISE OF EDGE OVER PURESIGNAL EJSIG. 
IF(ERROR.GE. ERVAL) GO TO 8 
ERVAL = ERROR 
NL2 = NLWORK $ NR2 = NRWORK 

8 NLWORK=NLWORK-l $ NRWORK=NRWORK-l 
4 IF (ITIME .LT. NTIME) GO TO 5 

IF(IPASS .LT. 2) GO TO 1 
RETURN 
END 
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PROGRAM PULPLT(INPUT,OUTPUT,TAPE61=100,TAPE62=100) 
DIMENSION X(1001)fY(1001),YF(1001) 
CALL CONNEC(5LINPUT) $ CALL CONNEC(6LOUTPUT) 
GRAMAX=255. $ SIGMAS=3. 
PRINT *,"ENTER % NOISE & % PULSEWIDTH " 
READ *,PN,PPW 
PRINT *,"ENTER MIN&MAX DEG.S & NO.POINTS " 
READ *,XMIN,XMAX,NP 
PRINT *,"ENTER LEFT, RIGHT, UPPER & LOWER MARGIN PORTIONS 
READ *,XLM,RM,TM,BM 
VNOI = PN/100.*GRAMAX/SIGMAS 
VSIG = (l.-PN/100.)*GRAMAX 
PWIDTH=PPW/100.*(XMAX-XMIN) 
XMID=(XMIN+XMAX)/2.0 
PMIN = XMID-PWIDTH/2.0 $ PMAX = XMID+PWIDTH/2.0 
DX = (XMAX-XMIN)/FLOAT(NP-1) 
1=0 

11=1+1 
X(I) = XMIN+DX*FLOAT(I-l) 
AMP =1.0 
IF(X(I) .LT. PMIN .OR. X(I) .GT. PMAX) AMP = 0.0 
CALL BOXNO(A,B) 
Y(I) = VSIG*AMP + VNOI*A 
IF(I .LT. NP) GO TO 1 
CALL MINMAX(Y,NP,YMIN,YMAX) 
FUZZ = .0001*DX 
YMAX = YMAX+FUZZ $ YMIN=YMIN-FUZZ 
CALL MARGIN(XMIN,XMAX,YMIN,YMAX,XLM,RM,TM,BM) 
CALL PLOT(X,Y,NP,XMIN,XMAX,YMIN,YMAX) 

2 PRINT *,"ENTER WINDOW WIDTH. " 
READ *,NW 
DO 3 I = 1,NP 

3 YF(I) = Y(I) 
CALL MD1DW(NP,NW,YF) 
CALL PLOT(X,YF,NP,XMIN,XMAX,YMIN,YMAX) 
GO TO 2 
END 
SUBROUTINE MDlDW(NP,NW,EJ) 
DIMENSION EJ(1001),SORT(19) 

C-ONE-D MEDIAN FILTERS EJ. 
MDN1 = NW/2 $ MDN = MDNl+1 
NDO = NP-NW+1 

C-NO. OF APPLICATIONS OF WINDOW. 
DO   1   I   =   l,NDO 
DO   2   J   =   1,NW 
K   =   I   +   (J-l) 

2   SORT(J)    =   EJ(K) 
CALL   DSORT(SORT,NW) 
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L = I + MDN1 
1 EJ(L) = SORT(MDN) 
RETURN 
END 
SUBROUTINE DSORT(XfN) 
DIMENSION X(19) 

C-DOES A DROP SORT OF UP TO 19 NUMBERS. 
1=1 

1 IF(X(I) .GT. X(I+1) ) GO TO 2 
3 1=1+1 

IF ( I .LT. N) GO TO 1 
GO TO 4 

2 CALL SWAP( X(I), X(I+1) ) 
J = 1-1 

5 IF(J .EQ. 0 ) GO TO 3 
IF( X(J) .GT. X(J+1) ) CALL SWAP(X(J), X(J+1) ) 
J = J-l 
GO TO 5 

4 RETURN 
END 
SUBROUTINE SWAP(X,Y) 
Z=X$X=Y$Y = Z 
RETURN 
END 
SUBROUTINE MINMAX(Y,NP,YMIN,YMAX) 
DIMENSION Y(1001) 
YMIN = YMAX = Y(l) 
DO 1 I = 1,NP 
IF ( Y(I) .LT. YMIN ) YMIN = Y(I) 

1 IF ( Y(I) .GT. YMAX ) YMAX = Y(I) 
RETURN 
END 
SUBROUTINE MARGIN(XMINfXMAX,YMIN,YMAX, XLM,RM,TM,BM) 
HH = (XMAX-XMIN) / (1.0-XLM-RM) 
HV = (YMAX-YMIN) / (1.0-TM-BM) 
XMIN = XMIN -HH*XLM $ XMAX = XMAX + HH*RM 
YMAX = YMAX + HV*TM $ YMIN = YMIN - HV*BM 
RETURN 
END 
SUBROUTINE PLOT(X,Y,NP, XMIN,XMAX,YMIN,YMAX) 
DIMENSION X(1001),Y(1001) 

100 FORMAT(A4) 
CALL INITT(30) § CALL TERM(2,4096) 
CALL DWINDO(XMIN,XMAX,YMIN,YMAX) 
CALL MOVEA( X(l) , Y(l) ) 
DO 1 I = 2,NP 

1 CALL DRAWA( X(I), Y(I) ) 
CALL ANMODE $ READ 100,ICHAR 
IF(ICHAR.EQ."STOP") STOP 
RETURN 
END 
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