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Abstract

An investigation of scattering from surface cracks has been conducted.

In particular, the change in the reflection coefficient of a Rayleigh wave

incident on a surface indentation crack has been measured as the sample is

stressed to fracture. The acoustic measurements have been correlated with the

stable crack extension that precedes final failure. The crack extension

behavior in as-indented and annealed specimens was found to be appreciably

different. The cracks in the annealed samples exhibited partial crack closure

Sbut little stable extension, whereas the cracks in the as-indented samples

Sdisplayed both crack closure and irreversible crack growth. This behavior has

S been rationalized by invoking concepts based upon the residual stresses
created by indentation.
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I. INTRODUCTION

The use of surface acoustic waves to detect and characterize surface

cracks in brittle materials has been described in previous studies.1'2 The

basic technique devised in these studies requires the excitation of a Rayleigh

wave on the surface of the brittle solid and the subsequent observation of the

acoustic wave reflections from the surface located cracks. The first studies I

were performed on glass samples containing surface cracks introduced by

indentation and then extended to a larger size by application of a sub-

critical stress. The acoustic measurements were conducted with a small stress

applied to the specimen in order to eliminate crack closure. These studies

indicated that acoustic measurements performed in the long wavelength regime

provided precise predictions of the failure strength of the glass specimens.

Subsequent studies were conducted on Si3N4 specimens. 2 The surface cracks

subject to acoustic measurements in these studies were created by direct

indentation without introducing an intermediate extension procedure. The

final fracture stresses obtained in the test specimens could be adequately

predicted from the acoustic measurements, but only by invoking an effective

fracture toughness smaller than the actual toughness of the material by -30%

(see Appendix). Additionally, the acoustic estimates of tie crack radius were

invariably smaller than the subsequently measured crack radii (at the fracture

criticality) by a factor of -2.5 . Cracks of this type are typical of

machining-induced cracks, 3 and hence, an adequate comprehension of such

discrepancies is needed before applying surface acoustic wave techniques to

the prediction of failure of components subject to surface finishing by

machining.

-2-



Recent studies of indentation fracture4-7 have demonstrated that the

cracking behavior is dominated by the residual field created during the

indentation process. This residual field causes indentation cracks to extend

when an external stress is applied.6 The initial extension is stable;

instability commences when the crack attains a length -2.5 times the initial

length. This residual stress effect is almost certainly the origin of the

discrepant acoustic predictions. The phenomenon is examined in the present

study by monitoring the acoustic scattering from a surface crack as an

external stress is applied to the test specimen.

The residual stress can be essentially eliminated by annealing at

temperatures (-12000C for Si3N4) at which dislocation climb and annihilation

can proceed. Correctly annealed specimens should thus exhibit no stable crack

extension and an enhanced fracture strength. Hence, the influence of

annealing on both the acoustic scattering and the failure prediction is also

examined.

Finally, implications for predicting the failure of machined components

from surface acoustic wave measurements are discussed. Emphasis is placed

upon the choice of an optimum measurement procedure and the role of annealing.

II. ACOUSTIC SCATTERING FROM SURFACE CRACKS

A general theory of scattering from flaws8 ,9 forms the basis for the

present study. The scattering configuration is shown in Fig. 1. The quantity

of interest is the relative amplitude of the acoustic signal scattered by the

flaw. This quantity is given by the reflection coefficient S21 and is

defined as the ratio of the amplitude of the signal reflected from the flaw,
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A2  (received by transducer 2) to the amplitude of the incident signal, A,

(transmitted by transducer 1), at the terminals of the transducers. Expressed

in terms of the input power to the transmitting transducer, PR , the Rayleigh

wave displacement field (when the receiving transducer is used as the

transmitter) u(2) , and the prior stress in the vicinity of the flaw,
t

aA(1) the reflection coefficient for a void is given byaij ,

S- u(2) aA(1) nidS (1)A1  4PR Sc

Here, the integral is taken over the entire surface of the void, Sc . For a

Rayleigh wave normally incident on a half-penny shaped surface crack of

radius a located in the x-y plane (Fig. 2), Eq. (1) becomes

SJ1 Aua A dS (2)SII - a z azz
4PR
PR S

where Au is the discontinuity in displacement across the crack and a isz zz

the prior normal stress. The integral is taken over just the semi-circular

area, S . The theory is strictly valid only in the low frequency regime

(i.e. where the maximum depth to which the crack extends below the sample

surface is required to be much less than an acoustic wavelength). The

scattering from surface cracks is also influenced by imaging at the surface

(which increases the value of the stress intensity factor) and the variation

with depth of the Rayleigh wave stress field. These influences are

incorporated into the analysis by adopting the results of Budiansky and

O'Connell 10 which permit the surface integral in Eq. (2) to be expressed in

-4-

Wmm m



terms of a contour integral

A ~2(1 - v2 ) 2

Auz  A dS - 3E= p(r) K 1(6 ) di 
(3)

where v is Poisson's ratio, E is Young's modulus, KI is the mode I

stress intensity factor, and p(r) is defined for a given point r on the

crack circumference C as the normal to the tan:ent line at r which also

passes through the origin of the crack coordinate system. The angular

dependence of KI caused by the surface imaging forces may be approximated

from the results of Smith, Emery, and Kobayashi1 1 for a half-penny shaped

surface crack in a beam of thickness 2c subject to a bending load. The

applied stress then takes the linear form

AzW)= 0(1 - y/c) (4)

where a is a constant and y is the distance from the sample surface

(Fig. 2). The corresponding stress intensity factor is given by

KI(e) = 2V.a7i a[*40(O) - (a/c) *i(e)] (5)

where the functions 0 (e) and l(8) have been numerically evaluated

(Fig. 3). These solutions are used to provide an approximate surface wave

scattering result by adopting a linear approximation to the Rayleigh wave

stress field and deducing effective values for the constants a and c . The

normalized reflection coefficient wkIS111 for a semi-circular crack obtained

-5-
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in this manner is plotted as a function of the normalized crack depth,

2wa/x , in Fig. 4. Here k = 2w/X is the propagation constant of the

Rayleigh wave, and w is the width of the acoustic beam at the location of

the crack.

Il1. EXPERIMENTAL RESULTS

A commercial hot-pressed silicon nitride (NC-132) was used for the

present study. The samples were in the form of 7.6 cm x 2.6 cm x 0.64 cm

plates with polished surfaces. A crack was introduced into the center of each

plate surface (normal to the longer edge) by Knoop indentation at 50N

load. Acoustic measurements were made at a frequency of 8.5 MHz ,

corresponding to an acoustic wavelength of -680 um . Two wedge transducers

in the configuration shown in Fig. 1 (with a = 12.50) were used to excite

and receive the acoustic signals. The experimental values for the reflection

coefficient were corrected for diffraction loss, the surface wave conversion

efficiencies of the transducers, and for the inclination of the transmitted

and reflected acoustic beams to the crack normal.

Measurements were performed on both annealed and as-indented samples.

One sample was annealed in air and another in a vacuum for an annealing period

of about six hours at a temperature of 1200C . An additional three samples

were tested in the as-indented state. In all cases, the change in the

acoustic reflection coefficient was monitored while the samples were slowly

stressed to fracture in a flexural mode. Typical variations of the reflection

coefficient (expressed in terms of a predicted crack radius - see Section IV)

with the magnitude of the applied flexural stress ace plotted in Fig. 5.
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Substantially different behavior is apparent in the as-indented and annealed

specimens. The as-indented samples exhibit a large change in the reflection

coefficient as the flexural stress is slowly increased to failure. Also, the

change is largely irreversible, as manifest in a permanent increase in S11

following the load removal prior to failure (Fig. 5a). This behavior suggests

stable crack extension during the application of an external stress,

qualitatively consistent with the residual stress notions of indentation

fracture.6 The existence of stable crack extension was substantiated by

observations of the fracture initiation site on the fracture surface

(Fig. 6a). These observations indicate an inner crack front location that

coincides with the initial radius ao of the indentation crack and an outer

crack front with a radius ac - 2.5a0  . The outer front is presumed to be

the location of the crack at the fracture criticality, as suggested by

observations on other materials.
3 ,5

The annealed specimens (Fig. 5b) exhibited appreciably larger final

levels of the fracture stress (the elevation of the fracture stress is similar

to that measured in prior studies). 12 The vacuum-annealed specimen exhibited

small reversible changes in the acoustic scattering during stressing, a

phenomenon that will be attributed to the gradual, reversible separation of

the crack surfaces (see Section IV.B). Observations of the fracture origin

(Fig. 6b) revealed closely spaced crack fronts, indicating that stable crack

extension had been largely eliminated by the annealing treatment. Some stable

extension may have occurred just prior to instability in the range of rapidly

varying crack length indicated in Fig. 6b.
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The specimen annealed in air (Fig. 5c) exhibited an additional increment

in the scattering coefficient at about one third of the fracture stress. This

effect may be attributed to the fracture of the oxide film that forms within

the crack when annealing is conducted in an oxidizing environment.

IV. DISCUSSION

A. As-Indented Specimens

The acoustic scattering and the fracture response exhibited by as-

indented specimens are both influenced by specific characteristics of the

indentation plasticity and the indentation morphology. The important

relationship between scattering, fracture, and indentation can be established

by invoking the appropriate indentation parameters. The acoustic scattering

from an indentation crack can be interpreted by noting that the residual

stress field (attributed to the elastic constraint of the indentation

plasticity)7 allows the crack surfaces in the elastic region to remain fully

separated when the indentation load is removed. However, the crack terminates

in the vicinity of the elastic/plastic boundary (Fig. 7a). The crack thus

exhibits the morphology of a semi-annulus, with the inner radius dictated by

the radius of the plastic zone. This crack geometry is not amenable to

acoustic scattering analysis using conventional analytic techniques. An

approximate solution is thus developed for preliminary crack size

estimation. The solution considers the open region of the crack to be

elliptical in section, with the major axis, 2a , given by the crack diameter

and the minor axis, 2b , given by the difference between the crack depth and

the plastic zone depth (Fig. 7b). In essence, therefore, the crack is
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considered to be held fully closed at the specimen surface by virtue of the

integrity of the plastic zone. The scattering induced by an elliptical crack

subject to a linearly varying stress (the linearized Rayleigh wave stress

field) should thus provide the approximate solution of present interest. The

stress intensity factor that characterizes this configuration is given by
13

vwbla 2 2 2 2 1/4
KI() (a cos e + b sin 2) CIMT(O)

k (6)

k2E(k) cos a

2ML) (1 + k2) E(k) - (k')2 K(k)

where K(k) and E(k) are complete elliptical integrals of the first and

second kinds, respectively, with k2 = 1 - (b/a)2 and (k')2 = (b/a)2 .

MT(e) and ML(e) represent the stress intensity magnification factors

(Fig. 8) for an elliptical crack subject, respectively, to a uniform applied

stress and a linearly varying applied stress, and C1 and C2 are constants

that characterize the linearized Rayleigh wave stress

Ab - y(7
CI (y) = C + C b(

b

The stress intensity factor can be inserted into Eqs. (2) and (3) in order to

compute the scattering coefficient. The result for the normalized reflection

coefficient, wkIS111 , as a function of the normalized crack depth,

2r(b + h)/A , is given by the solid curve in Fig. 4. A comparison of the

acoustic estimates for the initial crack depth, CO , and the depth at

fracture, Cm , with the corresponding values measured optically is given in
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Table I. From the acoustic estimates for the initial crack depth, a

prediction for the fracture stress of each sample may further be made by using

the relation

Acoustic - KIC (8)
F kI surf

where

klisurf = 1.22 kilbulk = 1.22(2a7) (9)

and K = 3.55 MPaviii .14 These predictions for the fracture stresses are

compared with the actual fracture stress values in Table II. Considering the

approximate nature of the scattering analysis, both comparisons yield

remarkably good agreement.

The fracture process is strongly influenced by the magnitude of the

residual stress induced by the plastic zone. The extension of an indentation

crack under the combined influence of an external stress and the residual

indentation stress has been predicted for axisymmetric indentations by

invoking residual stress concepts. 6 The direct applicability of these

predictions to elongated indentations, such as Knoop indentation, has not yet

been verified in detail. However, it is instructive to compare the

axisymmetric predictions with the acoustic measurements of crack extension.

The following expression relates the equilibrium crack radius, a , to the

external stress o
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Ki XrPKIC r / (0T7)12 1 (10)

w2a KI Ca

where KIC is the material's fracture toughness, P is the indentation load,

xr is a parameter (related to material hardness and elastic modulus) which

determines the intensity of the residual field, and 0 is a material

independent crack geometry constant. According to Eq. (10), the crack length

increases stably with applied stress from the initial value (given by Eq. (10)

with a = 0)

a 0  : (XrP/KIc)2/3 (11)

to the failure point (given by dajda = 0 in Eq. (10))

am = (4xrP/KIc)2/3  (12)

am  = (27/256)1/3 [KIcI/(1o) 1/2 ][K IC/XrP] 1/ 3  (13)

The parameters KIC(rQ)I/2 and XrP/KIC required for plotting Eq. (10) can

be conveniently calibrated from the calculated (from acoustic measurements)

initial crack length and the measured fracture stress. Setting a0 = 96 Pm

in Eq. (11) gives XrP/K IC = 9.2 x 10- 7m3 /2 , while the measured strength

am = 240 MPa in conjunction with Eq. (13) gives KIC /I3 = 4.95 MPavif. The

predicted dependence of crack extension on applied stress is shown in

Fig. 5a. The prediction correlates well with the acoustic measurements of

changes in crack length.
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B. Annealed Specimens

Removal of residual stress by annealing results in the development of

crack surface contacts over an appreciable fraction of the surface (Fig. 9).

Complete closure over the contacting region is prevented by "asperities" along

the crack surface. The asperities comprise either grains dislodged by crack

bifurcation or exposed grains in which residual stress (due to thermal

contraction anisotropy) has been relaxed by the passage of the crack, thus

causing the grains to displace. Compressive forces must develop at the

contact locations due to elasticity of the surrounding material. 15 The forces

are maximum close to the crack tip and decrease to zero at some distance ai

(Fig. 9). The area subject to zero contact forces defines a non-contacting

crack radius ai . The compressive forces allow the contacts to be retained

in the presence of an acoustic stress. Hence the scattering from the

contacting region of the crack surface is negligible* and the acoustic

scattering amplitude only provides a measure of the non-contacting crack

radius (Fig. 9).

The compressive tractions at the asperities are relaxed by application of

an external tensile stress. An analysis of the crack separation process
1 5

indicates that separation initiates from the periphery of the initial non-

contacting zone and extends as the external stress increases. Full crack

*Scattering occurs from the regions between the asperities within the contact
area. However, since these scattering centers act as small cracks (with radii
approximately equal to several grain di Imeters) and the scattering amplitude
is (to lowest order) proportional to a , the total scattered amplitude from
the contacting area is small compared with that from the non-contacting area.
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surface separation occurs immediately prior to unstable crack extension. The

crack separation process is reversible, and this process fully accounts for

the changes in acoustic crack length that occur during a breaking test.

V. IMPLICATIONS AND CONCLUSIONS

A combined acoustic, fracture mechanics study has demonstrated that long

wavelength, surface acoustic wave scattering measurements can provide good

estimates of the dimensions of surface located cracks and that the crack

dimensions can be clearly related to the ultimate failure strength. The

connection between the failure condition and the initial crack size estimate

depends upon the state of residual crack stress induced by the machining (or

indentation) process. The most severe residual stress exists immediately

following the machining increment that generated the crack subject to acoustic

investigation. Subsequent machining passes will remove portions of the

plastic zone and successively reduce the residual stress. However, the state

of residual stress at a specific machining-induced crack, identified by

acoustic inspection, will generally be unknown. A failure prediction

procedure that recognizes the most detrimental residual stress condition is

thus recommended.

The most consistent acoustic crack size estimation can be conducted in

the presence of the residual stress because the crack surfaces are fully

separated. Therefore the acoustic measurements should be conducted on the as-

machined surface. The failure strength prediction should be based upon the

crack size estimation procedure pertinent to indentation cracks, using the

effective value of the initial stress intensity factor (Appendix) that fully
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accounts for the (residual stress-induced) stable extension prior to

failure. This procedure will provide a conservative prediction of failure for

many of the cracks detected on a machined surface because some of the residual

stress will have been relaxed by partial plastic zone removal. However, the

unknown state of the residual stress necessitates the conservative choice.

Finally, it is recommended that the components be annealed prior to use in

order to relieve the remnant residual stresses. The stress relief will

provide an appreciable margin of safety for most cracks.

At this juncture, it is not considered appropriate to anneal the

component prior to acoustic evaluation because the variability in the crack

closure is likely to provide imprecise estimates of the actual crack length.

However, further investigation of crack closure effects may suggest effective

procedures for generating consistent acoustic measurements. Finally, it is

noted that the strength of annealed specimens deduced from acoustic

measurementF on machined surfaces may be a consistent underestimate, whereupon

the failure strength prediction could be elevated above the minimum level

presently recommended. The origin of such an underestimate would reside in

the relative influences of crack closure and of the residual stress level on

the relation between the acoustic scattering amplitude and the residual

strength. Again, studies of crack closure effects will permit such

possibilities to be fully exploited.
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APPENDIX

Relation Between Failure Strength

and Initial Size of Indentation Cracks

Previous studies have demonstrated that in order to relate the final

fracture stress of indentation flaws to the initial flaw size using the

Griffith strength equation, an effective toughness smaller than the actual

material toughness must be invoked. This result can also be derived from a

fracture mechanics analysis which takes into account the influence of residual

stresses induced by the plastic indentation zone. For axisymmetric

indentations the fracture stress can be written (using Eqs. (11) and (13)

27 1/3 KIc

256 (wiaa o)i/
2

Hence, in the idealized case, the effective toughness is Keff = 0.47 KIC

In practice, several factors can increase Keff above the idealized value.

Firstly, the incidence of lateral cracking, or chipping, after the formation

of the median crack diminishes the residual field, as characterized by the

parameter Xr in Eq. (13). This effect can cause Keff to exceed the

idealized value. Secondly, in materials susceptible to subcritical crack

growth, the initial flaw size can increase under the influence of the residual

stress, during the time period between the indentation and strength tests.

Again, the consequence is an increase in Keff . Finally, the influence of

the elongated geometry of the Knoop indentation may alter the numerical

constant in Eq. (A-I). Typically, for Knoop indentation pre-cracks in Si3N4

Keff - 2/3 KIC 12
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TABLE I: As-Indented Samples

CO = initial crack depth
Cm = crack depth at fracture

Acoustic Actual Deviation Acoustic Actual Deviation
Sample CO (Um) C0 (um) (C0 ) Cm (um) Cm (um) (Cm)

4 97 116 16% 184 220 16%

5 94 112 16% 191 223 14%

6 96 112 14% 185-191 205 7-10%

-17-



TABLE II: Fracture Stresses (As-Indented Samples)

Acoustic Actual
Sample aF (MPa) OF (MPa) Deviation

4 262 238 10%

5 266 239 11%

6 263 242 9%
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FIGURE CAPTIONS

1. A schematic of the geometry considered in the derivation of the

reflection coefficient, S21 , for a flaw. Here, n is the inward

normal to the flaw surface, Sc , and a is the inclination of the flaw

to the transducers.

2. Scattering geometry for a Rayleigh wave normally incident on a half-penny

shaped crack.

3. Angular variation of the functions 00(e) and *1(0) (after Smith et

al.). 11

4. Comparison of the results for the normalized reflection coefficient,

wkiS 1iI , as a function of the normalized crack depth for the half-penny

shaped crack theory and the elliptical crack theory. The normalized

crack depth is defined for each theory by the quantities 2ira/A and

2r(b + h)/x , respectively.

5. The variation of the crack depth (obtained from the acoustic scattering

amplitude) with the flexural stress.

(a) As-indented specimen: note the irreversibility of the crack length

indicated by the permanent change following unloading. Also shown is the

crack change predicted from the indentation model;

(b) Vacuum-annealed specimen indicating irreversibility;

(c) Oxygen-annealed specimen.

6. Optical micrographs of fracture origins:

(a) As-indented specimens indicating an initial crack front much smaller

than the crack front at instability;

-21-



(b) Vacuum-annealed specimens showing a small zone of stable crack

extension.
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7. (a) A schematic of an as-indented crack indicating that crack closure is

exhibited over the plastic zone;

(b) A subsurface elliptical crack analog of (a) used for acoustic

scattering analysis.

8. Stress intensity magnification factors MT(B) and ML(e) as functions

of the angle u for the elliptical crack configuraion of Fig. 8b,

subject to a uniform applied stress and a linearly varying applied

stress, respectively.

9. The crack configuration in annealed specimens indicating the zone of

contact and the compressive forces that exist at asperities in the

region.
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APPENDIX A

SURFACE ACOUSTIC WAVE MEASUREMENTS OF SURFACE CRACKS IN CERAMICS

J. J. W. Tien, B. T. Khuri-Yakub, and G. S. Kino
Edward L. Ginzton Laboratory

Stanford University
Stanford, California 94305

and

A. G. Evans and D. Marshall
Materials Sciences

University of California
Berkeley, California 94720

ABSTRACT

'4e have extended our earlier investigation of scattering from surface cracks. In particular, we have
studied the change in the reflection coefficient of a Rayleigh wave incident on a half-penny shaped sur-
face crack along with the corresponding change in the acoustic crack size estimates as the cracked sample
is stressed to fracture. We have examined in this manner both cracks in annealed samples and as-indented
cracks. We have found that the fracture behavior for cracks in these two types of samples differ quite
significantly, with the cracks in the annealed samples exhibiting a partial crack closure characteristic
and the cracks in the as-indented samples displaying both crack closure and crack growth effects.

INTRODUCTION is observed, terminating in fracture at lower
applied stresses than for equivalent annealed

This work is an extension of our earlier study I  samples. This hysteresis effect has been observed
aimed at the establishment of procedures for locat- for the first time acoustically. Both the initial
ing and characterizing surface cracks in structural crack radius, CO , and final radius, Cm , can be
ceramics. The basic technique we have been using measured after fracture. The results obtained can
consists of launching a Rayleigh wave on the sur- be predicted accurately via acoustic techniques and
face of the ceramic and observing the reflections agree well with the predictiQnj Qf earlier theories
of the acoustic surface wave from the crack. The and experiments by Marshall.,,
particular type of crack we have been studying is
a half-penny shaped surface crack introduced at a An important result of our work is the demon-
given orientation into the ceramic surface by a stration that it is highly desirable to anneal
Knoop hardness indentor. In a previous paper,1 we ceramics in which surface cracks are likely to be
described a scattering theory valid in the low present. Annealing inhibits further crack growth
frequency regime based on the model of an open half- by relieving the residual stresses that are present.
penny shaped crack. This theory related the reflec- As evidence, we note that when unannealed samples
tion coefficient measured in the experiment with are stressed, the crack radius increases by a
the crack size and fracture stress of the cracked factor of approximately two. Annealing, however,
sample. The theory was shown there to give predic- causes an increase in the fracture stress observed
tions for the fracture stress which were in good by a factor of approximately 1.5
agreement with experimental results. However,
predictions for the crack size were observed to be THEORETICAL REVIEW
considerably less accurate, with crack size esti-
mates for unstressed samples being smaller by A general theory of scattering from flaws
factors of two to three than the actual crack sizes developed by Kino and Auld 5,6 forms the basis for
measured after fracture. our work. The scattering configuration considered

is shown in Fig. 1. The reflection coefficient,
Since that time we have extended the theory S21 , is defined as the amplitude ratio of the

and correlated our results with what would be re lected signal from the flaw, A2 , received by
expected from fracture mechanics studies of cer- transducer 2 , to the incident signal, Al ,
amics. A series of experiments on annealed and transmitted by transducer 1 , at the terminals of
unannealed samples has demonstrated the power of the transducers. In terms of the input power to
acoustic techniques for studying cracks in ceramics. the transmitting transducer, P , the Rayleigh
The work indicates that cracks in annealed samples wave displacement field when the rec jying trans-
tend to be in contact over most of their cross- ducer is used as the transmitter, u J , and the
section and open up with applied stress. At the applied stress in the vicinit of the flaw before
point of fracture, a very slight growth in crack the flaw is introduced, Ta 1  , $21 is given by
radius is observed. On the other hand, cracks in

unannealed as-indented samples exhibit partial A2  j " 1)nid S
closure at the sample surface. Upon application of S A f u ij2)A n (1)
stress, crack growth occurs, with crack radii 21 A 4P S
tending to increase on the order of 50% . Upon 1
release of stress, the cracks partially close, with
their effective radii decreasing by less than 10%
As stress is further applied, further crack growth



for the case where the flaw is a void. Here, the where the functions lo(e) and 1(e) were numer-
integral is taken over the entire surface of the ically evaluated by Smith et al. (rig. 4). To make
void, Sc . use of these results for our case where the stress

is due to the Rayleigh wave and not a bending load,
we made a linear approximation to the Rayleigh wave

TRANSDUCER I stress field and so evaluated effective values for
the constants A and c appearing in Eq. (4).

A, Sc Our result for the normalized reflection coefficient
wkS11 , for a semi-circular crack, as a function
of t e normalized crack depth, 27ra/X , is given by

n LAWthe dashed curve in Fig. 5. Here k = 2i /X is the

propagation constant of the Rayleigh wave, and w
is the width of the acoustic beam at the crack.

n (nlI, n2 2,n
TRANSDUCER 2 A 2

Figure 1 - A schematic of the geometry considered S
in the derivation of the reflection - = z

coefficient, S I , for a flaw. Here, RAYLEIGH WAVE
A is the inward normal to the flaw
surface, Sc *

For the situation of a Rayleigh wave normally
incident on a half-penny shaped surface crack of

radius a located in the x-y plane (Figs. 2 and Figure 2 - Scattering geometry for a Rayleigh wave
3), the reflection coefficient may be written as normally incident on a half-penny shaped

j uacrack.f A Z= - fUzzzdS (2) _______________________

V S

where Au is the discontinuity in the RayleighAARADIUS
wave displacement field across the crack and azz

is the applied stress. The integral is now taken C
over just the semi-circular area, S . The theory we
have developed for this configuration is strictly
valid only in the low frequency regime (i.e. we
require the maximum depth to which the crack extends
below the sample surface to be much less than an HALF - PENNY SHAPED CRACK
acoustic wavelength). To take into account the
effect of imaging at the surface in increasing the Figure 3 Schematic of half-penny shaped crack
value of the stress intensity factor near the sur- Femtifa
face, as well as the variation with depth of the geometry.
Rayleigh wave stress fields, we use the results of
Budiansky and O'Connell 7 to write the surface
integral in Eq. (2) in terms of a contour integral 1.4
of the square of the mode I stress intensity factor, 1.2 "
KI , around the crack circumference C (Fig. 3) 10

2(1 - V 2)  *n1.

ju0 A zdSS 2( faK2(e) di (3) 0.8

s3E 0.c

Here, v is Poisson's ratio and E is Young's
modulus. The angular dependence of KI caused by 0.2-

the surface imaging forces may be approximated from OF I I I 1 i1 i1i I
the results of Smith, Emery, and Kobayashi. 8  Smith 0 0.2 0.4 0.6 0.8 1.0
et al. considered the case of a half-penny shaped
surface crack in a beam of thickness 2c subject 8x2/ 7
to a bending load. The applied stress then takes
the linear form Figure 4 - Angular variation of the functions

)A (( and 1(e) (after Smith et al.
8).

a z(y) : A(1 -y/c) (4)
EXPERIMENTAL RESULTS

where A is a constant and y is the distance In our experimental studies, we used a commer-
from the sample surface (Fig. 2). The corresponding cial hot-pressed silicon nitride (NC-132) ceramic.
stress intensity factor is given by The samples were in the form of 7.6 cm x 2.6 cm x

KI(e) = 2M77 A[tpo(e) - (a/c)i1(8)1 (5) .64 cm plates with polished surfaces into which
cracks had been introduced via a Knoop indentor.



Measurements were made at a frequency of about observed for the unstressed sample (Fig. 9). Appli-
8.5 MHz-, corresponding to an acoustic wavelength cation of a load to the cracked sample thus has the
of about 680 pm . Two wedge transducers in the effect of causing the crack to open, as indicated
configuration shown in Fig. 6 were used to excite by the increase in the acoustic size estimates with
and receive the acoustic signals. The experimental increasing load; however, subsequent removal of the
values for the reflection coefficient thus obtained load results in a return of the crack to its origi-
were then corrected for diffraction loss, the sur- nal partially closed state. Verification of this
face wave conversion efficiencies of the trans- interpretation is obtained upon inspection of the
ducers, and for the effect of the transmitted and fracture surface (Fig. 10). Here, only the initial
reflected acoustic beams each being at an angle a flaw produced by the Knoop indentor is in evidence,
from the crack normal. as indicated by the single ring near the sample

surface. Lastly, we compare the acoustic estimate
0.35, for the crack depth at fracture with the optically

measured crack depth (Table I). For both samples,
0.30 / agreement between these two values is quite good,

CRACK ENY SH - with the deviation of the acoustically predicted
0.25- values from the actual values being less than 17%

J.20- KNOOP INDENTATION

0.10. / /- ELLIPTICAL

O 0 04 0.8 t.2 1.6 2.0
NORMALIZED CRACK DEPTH

Figure 5 - Comparison of the results for the nor-
malized reflection coefficient, wkIS 11 1, CRACK CLOSURE REGION
as a function of the normalized crack Figure 7 - Fracture model for crack in an annealed
depth for the half-penny shaped crack sample C0  is the depth of the initial
theory and the elliptical crack theory. flaw produced by the Knoop indentor. In
The normalized crack depth is defined the u ed st the crac is pr

for each theory by the quantities 2ffa/X the unstressed state, the crack is par-

and 2ff(b + h)/X , respectively. tially closed, as indicated.

350, FRACTURE

TRANSMITTING
TRANSDUCER 12 300

aCRACK 250'

a
2 200-

RECEIVING 3
TRANSDUCER 2

Figure 6 - Experimental scattering configuration
used. In our study, a = 12.50 1001

Measurements were carried out on both annealed 50

and as-indented samples. One sample was annealed
in air and another in a vacuum with an annealing L L - .. ...- ..... .
period of about six hours at a temperature of 0 20 40 60 o 00 20 140 60 80 20

12000C . An additional three samples were tested CRACK DEPTH 4
t m

j

in their as-indented state. For all five samples,we monitored the change in the acoustic reflection Figure 8 - Stress versus acoustic estimates of the
conicietwhie chesamples were slowly stress e crack depth for the sample annealed in
coefficient while the air (sample 1). Crack depth estimates
to fracture in a 3-point bending jig. are obtained using the half-penny shaped
AnnealedSamples e found that the cracks in the crack theory (crack depth, C , then
Annealed Samples - Wfound well the by the equals the half-penny shaped crackannealed samples are fairly well modelled by the radius, a ). The kink observed in the

open half-penny shaped crack theory described in rveis b t be n effec of the

the previous section, subject to the additional curve is believed to be an effect of the

observation that in the unstressed state, partial severe surface oxidation which occurred

crack closure occurs (Fig. 7). As shown in Figs. during the annealing process.

8 and 9, loading the sample from zero stress to
fracture produces a steady increase in the acoustic As-Indented Samples - The fracture model for the cracks
prediction for the crack depth. We additionally in the as-indented samples differs considerablv from the
observe that if, after a period of loading, the model for the cracks in the annealed samples. Firstly,
load is reversed until the stress in the vicinity of there iscrack closure at the samnle surface in the vic-
the crack approaches zero, the crack size estimates inityof the Knoop indentation (Fig. 11). This arises
tend to return to very near the intial value because the Knoop indentation technique used to

produce the crack creates a plastic deformation

kL _ _ _ _ - --- ~~



region in the neighborhood of the indentation in by an elliptical crack with semi-major axis a and
which the residual stress fields have not been semi-minor axis b where the surface closure effect
relieved as in the annealed samples. The second is modelled by removing the elliptical crack center
difference is that as the cracked sample is stressed to a position a distance h below the sample sur-
to fracture, the crack grows from an initial depth face (b < h ; Fig. 12). We can evaluate the
of CO  to a final fracture depth of Cm . reflection coefficient for a Rayleigh wave normally

incident on this type of crack configuration much
350. FRACTURE as we did earlier. Again, the reflec-

- tion coefficient is given by Eq. (2). Here, how-
300 ever, we must use a generalized form of Eq. (3) to

relate the surface integral in Eq. (2) to the con-
2110 tour integral involving the stress intensity factor,

KI , namely

-2( - v2 ) 2 (6)

AND RELOAD3E f6)(Od
Ist UNLOJAD N EO 3E

S AND REL0SC

In Eq. (6), the quantity p(r) is defined for a
given point r on the crack circumference C as

_ ___the perpendicular to the tangent line at r which
3 20 40 60 80 100 20 140 160 180 200 passes through the origin of the crack coordinate

CRACK DEPTH kLm) system. Shah and Kobayashi9 have evaluated the
angular dependence of the stress intensity factor

Figure 9 - Stress versus acoustic estimates of the for this type of crack subject to a bending load.
crack depth for the vacuum-annealed The form for the applied stress is again linear
sample (sample 2). Two unload-reload
cycles were performed on this sample. A b - y
Crack depth estimates were obtained using azz(y) = C1 + C2  (7)
the half-penny shaped crack theory b
(crack depth, C , equals half-penny
shaped crack radius, a ). where C1  and C2  are constants. In terms of C1

and C2 , and the functions MT(6) and ML()
numerically evaluated by Shah and Kobayashi, the
stress intensity factor may be written in the form

=(a
2cos2e 2 2 I 1/4(

KIM = ( o + b sin ) CIMT(G)

". .-- [ k2E(k) cos e

-.+ C.2MLM i (8)1 (1 + k2 )E(k) - (k) 2K(k)

Here, K(k) and E(k) are complete elliptic
integrals of the first and second kinds, respec-

N tively, and the quantities k and V are defined
by

k 1 - (b/a)2

(k')
2  = (b/a)

2

MT(e) and ML(O) represent the stress intensity
magnification factors for the elliptical crack con-

- - figuration shown in Fig. 12 for the respective cases
of a uniform applied stress and a linearly varying

Figure 10 - Typical fracture surface for crack in applied stress. These functions have been calcu-
an annealed sample. lated by Shah and Kobayashi for various values of

aa a p the aspect ratio, b/a , and the depth ratio, b/h

The first problem that we encounter is that As in the actual crack, the crack width is roughly
our earlier scattering theory based on the model twice the crack depth, and the region of surface
of an open half-penny shaped crack no longer is closure is shallow compared to the maximum crackdeoth.
applicable here. We have not yet developed a theory We have chosen to use the Shah and Kobayashi results
appicabccrte.y Wdes hae notfye dlope catry- for MT(e) and ML(8) given for the parameter
which accurately models the surface closure charac- values b/a = 0.6 and b/h = 0.9 (Figs. 13 and
teristic of these as-indented cracks; however, we 14). The result for the normalized reflectionhave worked out a theory based on a very crude cefcet k~i safnto ftenr
approximation for the actual crack configuration coefficient, wkIS11 j , as a function of the nor-apprximtio fo th acualcrak cnfiuraion malized crack depth 2 r(b h)/x , is then given by
which gives surprisingly good crack size predic- t lid crve in F 5.

tions. This theory approximates the actual crack the solid curve in Fig. 5.



CRACK CLOSURE REGION 1.35

KNOOP INDENTATION 0 b/ 0.6\ /-,-° ,.30 / .

Sb/h = 0.9

z 1.25
0

1. 20
Cm

. 1.15

I-

z 1.10

z
Figure 11 - Fracture model for an as-indented crack. o.05

C0  is the depth of the initial flaw
produced by the Knoop indentor; Cm is
the depth to which the crack grows U 1.001 1 1 1 1 -1-1- 1 ,

before fracturing. Crack closure occurs 0 40 s0 120 160

at the surface in the vicinity of the 8 (degrees)
Knoop indentation.

Figure 14 - Stress intensity magnification factor

as a function of the angle e for the
elliptical crack configuration of

C hFig. 12, subject to a linearly varying
bapplied stress (after Shah and

a x Kobayashi9 ).

We used this crude theoretical model to give
TANGENT crack size estimates for the as-indented samples.

As with the cracks in the annealed samples, there
is a steady increase in the crack depth estimates
with increasing load (Figs. 15, 16, and 17). How-
ever, with these cracks, crack growth occurs, as
indicated by the failure of the cracks to return to

Y their original sizes upon subsequent unloading. In
addition, a small decrease in the crack size esti-

Figure 12 - Schematic of elliptical crack theory mates is observed when the load is relieved, thus
geometry. indicating a slight tendency of the cracks towards

partial closure at the lower boundary upon unload-
S,.35 ing. Continuous growth of the crack until fracture

is evidenced in Fig. 16 where two unload-reload
O 1cycles were performed. In each cycle, it is appar-01.30 - b/o = 0.6

b/h =0.9 ent that the crack never fully returns to the size
it had previously when the stress is reduced to near

z 1.25 zero values.

350 0
_U 1.20

u.300

S1. 1 5 250 V FRACTURE

(L a200z 1.10

Z U2 150'M UNLOAD AND
U) I I0 -RELOAD

U) 1.00 I I I I I I r

0 40 80 120 160 50

9 (degrees) at

0 20 40 60 80 100 120 140 160 180 200

Figure 13 - Stress intensity magnification factor CRACK DEPTH (gm)
as a function of the angle e for the Figure 15 - Stress versus acoustic estimates of the
elliptical Lrack configuration of F
Fig. 12, subject to a uniformsapglied crack depth for as-indented sample 4.

stress (after Shah and Kobayahi). One unload-reload cycle was performed.
The crack depth, C , equals the
quantity b + h (see Fig. 12).
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Figure 16 - Stress versus acoustic estimates of
the crack depth for as-indented
sample 5. Two unload-reload cycles
were performed. The crack depth, C
equals the quantity b + h (see
Fig. 12).

al 1.1 m irn

Figure 18 - Typical fracture surface for crack in
an as-indented sample.

FRACTURE

--- CONCLUSION

We conclude that the acoustic technique is a

SNLOAD AND powerful method for observing fracture of surface
RELOAD cracks in ceramics. Major differences in the

fracture behavior of cracks in annealed and
unannealed samples have been documented.

It is apparent that there is a need to improve
the acoustic scattering formulae and the estimates

20 40 60 80 100 120 140 160 180 200 of the stress intensity factor for cracks closed at
CRACK DEPTH ( ,) the sample surface. A theory by which to accurately

predict how a partially closed annealed crack opens

Figure 17 - Stress versus acoustic estimates of the under applied stress would also be of considerable

crack depth for as-indented sample 6. interest. We are currently developing a variational

One unload-reload cycle, where the method to deal with the problems enccJntered in the

sample was fully unloaded, was per- scattering theory and are considering simple

formed. The crack depth, C , equals theories to deal with the latter problem.

the quantity b + h (see Fig. 12). Acknowl edqenient

Examination of a typical fracture surface for
these samples reveals the presence of two rings This work was supported by the Office of Naval

near the sample surface (Fig. 18). The inner ring Research under Contract No. N00014-78-C-0283.

represents the extent of the initial flaw produced
at the time of indentation. The outer ring indi-
cates the extent to which the crack grew before TABLE I: Annealed Samples

fracture occurred. A comparison of the acoustic

estimates for the initial crack depth, CO . and C0 
= initial crack depth

the depth at fracture, Cm , with the corresponding
values measured optically is given in Table II. Cm 

= crack depth at fracture

Considering the crudeness of the model used to
obtain the acoustic estimates, the agreement C0 

= Cm
between these values is remarkably good. Acoustic Actual

Lastly, we compare the fracture stresses of Sample Cm (m) Cm (m) Deviation

the five samples. From Tables I and 11, we note

that the crack depths at fracture for the annealed 1 134 115 17%

samples tend to be much less than those for the
as-indented samples. Thus, we expect the annealed 2 "5 115 7%

samples to fracture at higher stress values than
the as-indented samples. In Table III, we show that
this is indeed the case.



TABLE II: As-Indented Samples 7. B. Budiansky and R.J. O'Connell, "Elastic
Moduli of a Cracked Solid," Int. J. Solid

CO = initial crack depth Structures, vol. 12, pp. 81-97, Pergamon Press,
1976.

Cm = crack depth at fracture
8. F.W. Smith, A.F. Emery, and A.S. Kobayashi,

C0 < Cm "Stress Intensity Factors for Semicircular
Cracks: Part 2, Semi-Infinite Solid," J. Appl.

Acoustic Actual Deviation Mech., vol. 34, no. 4, pp. 953-959, December
Sample CO (um) CO (um) 1967.

4 97 116 16% 9. R.C. Shah and A.S. Kobayashi, "On the Surface
Flaw Problem," The Surface Crack Physical

5 94 112 16% Problems and Computational Solutions,
J.L. Swedlow, ed. pp. 79-124; presented at the

6 96 112 14% Winter Annual Meeting of the ASME, New York,
New York, November 1972.

Acoustic Actual Deviation
Sample Cm (Pm) Cm (Um) 10. G.S. Kino, "Variational Formulae for Scattering

of Acoustic Waves by Flaws and for Acoustic
Wave Propagation," Ginzton Laboratory Report

4 184 220 16% No. 2634, Stanford University, November 1976.

5 191 223 14% 11. G.S. Kino, "Variational Methods for Calculating
J and M Integrals and Acoustic Scattering

6 185-191 205 7-10% From Cracks," Materials Research Council Report,
July 1980.

TABLE III: Fracture Stresses

Sample Fracture Stress (MPa)

Annealed: 1 332

2 340

As-Indented: 4 238

5 239

6 242
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MEASUREMENTS OF SURFACE DEFECTS IN CERAMICS

Introduction

During the past year we have continued our acoustic surface wave

measurements of the scattering coefficients of surface cracks in ceramics.

The aim is to measure the size of the surface cracks and predict the failure

stress of parts containing them.

The research has been extremely successful; we can now make accurate

predictions of failure stress of unannealed samples containing penney-shaped

cracks in the 100-300 um range. By changing the frequency, the basic

technique should, in fact, be usable over a far greater range in both

directions(directions?) of crack sizes. Not only can we predict the failure

stress when the applied stress is perpendicular to the direction of the crack,

but we can also make predictions accurate to within 20% of the failure

stress of cracks at angles up to 45% to the applied stress, provided we make

the acoustic wave measurement in the direction of the applied stress.

We have studied the effects of residual stress on crack size estimation,

fracture stress and slow crack growth, and now have a very good understanding

of the effects of plasticity and residual stress in ceramics. The acoustic

measurements have enabled us to watch a crack grow and to examine the effects

of crack closure. Thus, they have provided an important new experimental tool

for fundamental studies of crack growth in ceramics. We are presently

extending our study to evaluate the effects of surface roughness and machine

damage on crack size estimation and fracture.
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Research Progress

The acoustic surface wave measurement of the surface cracks is carried

out at a frequency of 8 MHz , and the cracks range in size from 50 to

300 um . Thus, we operate in the region of ka = .5 to ka = 3 . We have

already reported on the theory developed to measure the size of surface cracks

from a scattering measurement in the low ka regime. However, our initial

theory did not take into account the effect of residual stress on crack sizing

and fracture prediction. This deficiency in the theory was evidenced

experimentally by undersizing the surface cracks by a factor of 2 or more.

At the end of the last reporting period, we realized that due to the residual

stress (introduced by the Knoop indentor), the crack tip is closed at the

surface, and the reflection coefficient of the crack is greatly reduced. We

have now developed a model for such cracks, and can theoretically predict the

behavior of surface cracks in the presence or absence of residual stress. We

have confirmed this theory experimentally, and can now size cracks and predict

the failure of parts containing cracks with an accuracy of less than 20% .

Appendix A is a paper that will be published in the ARPA/AFML Review of

Progress in Quantitative NDE, 1980, in which we describe the theory and

experimental results on the measurement of surface cracks in silicon

nitride. In summary, the Knoop indentor introduces residual stress that

closes the crack at its surface. Thus, the crack displacement is reduced, and

the reflection coefficient from the crack is reduced as compared to a crack

with open crack tips. As a first order approximation, we consider the crack

to be elliptical in shape lying just below the surface (10% from total crack

depth). We calculate the reflection coefficient of an elliptical embedded
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crack, and we use this to predict crack size. Measurements of crack size were

made on several samples with and without (annealed) residual stress. We

measured the reflection coefficients of the surface cracks as they were

stressed to fracture in a three-point bending jig.

Our experiments indicate that annealed samples behave like surface

breaking surface cracks, with open-tips (no residual stress), and that no slow

crack growth is present, as would be expected in brittle materials. The crack

sizes and fracture stresses were predicted with an accuracy of better than

20% (Table I, Appendix A).

In unannealed samples, we found evidence of slow crack growth. Slow

crack growth is observed as shown in Figs. 15, 16, and 17 of Appendix A, where

the crack does not go back to its initial size when unloading the bending

stress in the three-point bending jig. These cracks behaved like buried

elliptical cracks just below the surface. The estimate of crack size and

fracture stress was again predicted with an accuracy of better than 20% . We

have thus a first order model that predicts the behavior and effect of surface

cracks when their annealing history is known.

A series of experiments were carried out to measure the reflection

coefficients of surface cracks that were oriented at an angle to the long axis

of the rectangular test bars. The angle between the long axis of the test

bars and the cracks varied from 90 to 45v . The samples were tested with a

fixed angle of incidence of the acoustic waves to the long axis of the bars,

and, the samples were broken in the same three-point bending jig. No attempt

was made to predict the crack size or its growth as the samples were stressed

to fracture. Only the reflection coefficient was measured. The crack sizes
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were not estimated because the cracks will grow in a direction perpendicular

to the direction of the applied stress, thus giving skew-shaped, not planar

cracks. The reflection coefficient from the cracks was found on the

assumption that an equivalent crack, normal to the direction of incidence of

the acoustic wave, existed, avid the failure stress was predicted on the basis

of the same assumption. The actual fracture stress was predicted with an

accuracy of better than 10% for the 10 cracks tested. This result is

extremely encouraging. We had indeed expected it because the long wavelength

scattering theory we used indicated that the fields of the surface waves are

perturbed in the same manner as the field of the static stress applied to

fracture.

At the present time, we are carrying out a series of experiments designed

to evaluate the effect of machining and surface roughness on the strength of

silicon nitride in the presence or absence of surface cracks, and in the

presence or absence of residual stress. The samples are being machined and

should be tested shortly.

Part of the error in estimating crack sizes from the reflection

coefficient measurement is due to the model used for the crack with closed

tips (buried ellipse). We have started working on a variational method to

predict the reflection coefficient of cracks with odd shapes and mixed

boundary conditions (closed or open). Appendix B is a pre-print summarizing

the variational technique. So far we have tried the theory on an infinitely

long strip crack with a known solution to the crack displacement. By using a

trial guess at the displacement, we predict a reflection coefficIent that is

10% lower than the exact solution, which results in an error of less than
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2% in the value of the stress intensity factor. The variational theory is

being programmed so that an optimum computer solution can be generated. We

also plan to expand the theory to evaluate the reflection coefficient of

two-dimensional cracks of odd shapes.
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APPENDIX B

VARIATIONAL METHODS FOR CALCULATING J & M

INTEGRALS AND ACOUSTIC SCATTERING FROM CRACKS

G.S. KINO

ABSTRACT

It is difficult to calculate acoustic scattering

coefficients, stress intensity factor and energy integrals of

cracks of arbritrary shape and with non uniform applied stress

fields. We derive here a variational technique for this pur-

pose, which uses a trial function for the crack opening dis-

placement AU. We show that the method is easily adaptable to

the use of fourier transform techniques and hence can make use

of the FFT (fast fourier transform) numerical methods commonly

employed in other fields. We give a very simple analytic ex-

ample of a plane crack in mode I plane strain. Using a crude

triangular trial function for the crack opening displacement

we obtain interaction energy (M integral) 15% lower than the

true value, with a corresponding stress intensity factor 8%

lower than the true value. We suggest the use of Rayleigh-Ritz

techniques to obtain more accurate results.

wC,
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*VARIATIONAL METHODS FOR CALCULATING J & M

INTEGRALS AND ACOUSTIC SCATTERING FROM CRACKS

G.S. KINO

INTRODUCTION

It is normally difficult to calculate the stress intensity

factor of flat crack of arbitrary shape. Similarly, the J & M

integrals or the closely related scattering coefficient of an

acoustic wave reflected from a crack can only be calculated

easily for certain simple crack shapes (ellipses or strips). A

further difficult problem is to determine these quantities when

the applied stress is non-uniform over the area of the crack.

At the 1975 MRC conference, the author derived an acoustic

wave scattering theory 1, 2, 3 which could be stated in variational

form. In essence the use of such variational theories could make

it possible to employ a trial function AU for the crack opening

displacement. A more accurate guess is then obtained for the

energy related quantity of interest such as the M integral or

acoustic wave scattering coefficient. The variational method

has the advantage of making it possible to use physical intuition

in the choice of the trial function and Rayleigh-Ritz techniques

to improve the trial function. Furthermore, it lends itself,

as we shall see, to the use of FFT (Fast Fourier Transform Tech-

niques) and makes it possible to employ many of the powerful methods

that have been used earlier in electromagnetic scattering theories.



Such techniques do not involve the use of singular integral

equations nor of Wiener Hopf methods. So, mathematically they

are relatively simple and suitable for numerical computation, and

are not restricted only to elastostatic solutions. The theory

may therefore be useful, ultimately, in applications to acoustic

wave scattering theory at arbitrary frequencies.

In this paper we have re-derived the variational

theory by a simpler, hopefully, more easily understood method.

We show that it may be generalized to determine not only

the scattering coefficient of acoustic waves, but also the in-

teraction energy of a crack and its M integral.

We then go on to demonstrate the use of fourier transform

techniques on a simple problem, that of a plane crack in static

Mode I plane strain. We show that the use of a relatively crude

triangular trial function for the crack opening displacement AU =

2 2 1/2
a-!xi, instead of the true function AU = (a -x ) where 2a is

the crack length and x the distance along its surface, gives an

interaction energy and stress intensity factor, 15% and 8% lower

than the true values respectively.



SCATTERING COEFFICIENT AND ENERGY INTEGRALS

We employ the Rayleigh-Betti reciprocity theorem to determine

the energy change due to the presence of a flaw. We consider the

material tD be stressed in a testing machine. Suppose that without

a flaw present the displacement, stress and strain at any point

in the material are i CA" n A
in t m r ei , respectively. With the

flaw present the displacement and stress at Ui, 'i., Eij' respectively.

By the use of the Rayleigh-Betti reciprocity theorem in the

material region outside the flaw, it follows that:

- I .A)nd(I

(a AU a ij) nids= - ( AU - a .U. ) nds (1)

S S F

Where S is the outer surface of material, SF the surface of the

flaw, and n . the outward normal from these surfaces.

We note that the only contribution to the integral S comes

from the two ends of the material where, we assume it is supported

in rigid clamps. (ain. = 0 at a free surface). Then at the

Aclamps U. = u.. So it will be seen that the interaction energy
w a

with a flaw is W where:



1 .A.A * ds=---+f A.
W A (2 iJ _,j -Oi2 (a. AU - .U.A )n ds (2)

S SF

When the flaw is a crack °jnl = 0 on the crack surface. So it

follows that the crack energy is

W I. (a. .AAU.)n.ds (3)W 2 f 3

SF

Where AU. is the crack opening displacement, n. is the outward normalJ 1

on one side of the crack. The energy of a more general flaw is

I .U _ . .Uj )n. ds (4)

(ci]] 1]]

s F

These results agree with those of Eshelby 4

It follows from Budiansky and O'Connell5 that the interaction

energy of a crack is

W 1-V2 P K2 + K2  + 1"2  (1 )3 5
3E ;c I II

where p and . are based on the crack based coordinates shown in

Fig (1). E is Young's modulus, v is Poisson's ratio and Ki, KII,

and KIII are the stress intensity factors for plane strain and

antiplane shear. 5  In turn, Rice's J integral 6 of fracture mechanics

is defined as

j _-)2  [K 2 + K 2 + K 2/l-) (6)E I KII KIII/(I 6



Fig.1 An illustration of crack based coordinates.



while the M integral of Knowles and Sternberg is defined by the

relation

M = J Jdk (7)

it therefore follows that

w = M/3 (8)

We conclude that if we can evaluate w we can, in turn evaluate

M. Furthermore, it was shown by Kino that when an acoustic wave is

scattered from a crack, the back scatter reflection coefficient

of the wave of frequency w is 2,3

U.1 Ai) ds (9)11 J i(U iSF

A Awhere, now, Uj, ai are the values of U.,.ij at the crack when

there is unit power emitted by a transducer. So Sl1 is just jw w/4,

with an applied stress equivalent to that of unit power in the

incident acoustic wave.

Therefore, if we can evaluate W correctly, we can determine

M and Sll' parameters of importance in fracture mechanics or in

the determination of acoustic wave scattering from a crack. For

A
an exact calculation we need to know the applied field ai and

the crack opening displacement AU. in the pressure of the applied
J

field. Thus it is necessary to solve for 6U. when

AU. = 0 outside the crack3

a..n. = 0 at the crack surface
1] 1

and a. is known.
3-



VARIATIONAL THEORY

We have found that the energy stored in a crack is

W= (oA.u - y. .UA )n.ds (10)
f iJ3 iS

Suppose we use a trial function for the fields within the interior

in which Ui,a.i etc. differ to 1st order error from the correct

0 0quantities Ui,o. . Then if we consider the quantity, called the
S8

reaction, by Rumsey

AW = (oijU - 0o  )n.ds (11)

S

taken around the outer periphery, we see that when ai =o

u. = U 0 w=O.
3 J

Suppose now we requireAW to differ from zero only to 2nd

order in error. Then if U. is the applied displacement at the
3

grips U = U0= UA

So

W = (a )U.n.ds

=rA A (aA a0 UA

= ( ij -a)U n'ds - I( - j )n. ds

AW = (a.. )UA (n2)

It therefore follows that if AW 0 to 2nd order in error,



(oij-i3) UA ni ds (13)

is a formula for w, a correct to 2nd order in error when trial

functions Ujoij are employed.

But it follows from the Betti-Rayleigh reciprocity theorem

that

=- (C..t39 - CKLJ.)nids (14)

SF

at the flaw.
If the flaw is a crack a0 .n = 0 at the crack surface and so

1J

AW becomes
C

AW=- J (AU0jai)nids 0 (15)

F

is the requirement for zero 1st order error in W, where ni is the

outward normal from one surface of the crack. But aipi is only

non zero at the crack to 1st order in error. Hence we can replace

'U by AU. and only contribute terms in error to 2nd order in &W. So

AW =- (L Uai )n. ds =0 (16)

SF

is an equally valid assumption.

It follows that Eq. (16) is the requirement for our variational

principle. It requires continuity of

f (oijAuj)nids

through the crack instead of the far more stringent boundary

condition :cijni = 0.



Now consider W. When we use a trial function AUi, it follows

that

W= Loij -ij)AU] n .ds (17)

Where the total field is

A. A + . (18)
K. =0..j +0.

So as. . is the stress field due to the displacement AU.. Because
i2.

I (aijAUj)nids = 0

we see that

W (-oa AU) n. ds (19)

But as we do not know the amplitude AU. and 0 i is proportional

to AU., we could equally well replace AUi by AAU. , where A is a

proportionality factor. In this case it follows that
A2  s

W =- - A2  ( 0Yj AU4 ) n..ds (20)2 ij J 1

However we could equally well have written

A so21)o j 2 =  o. - o.• 21

In this case

2 f(oso AUj)nids (22)

It follows that as Eqs. (20) and (22) must be identical to 2nd

order hence



I(SOAu nids

Ji3 (23)
( ,, s OA U ) n . d s

and r, 6 n ds 2

W = i. 1 - (24)

2 (as AUj)nids
fJ 1

or

EI (CA iiU j) nid

2 j (25)
2 (oijAuj)n ids

This is the variational formula required.

We can prove that this formula is variational by writing

a *(x)n i =G (x,x') AU.(x )nids" (26)
iJ f Jij J- 1

where x, x'are coordinates on the crack surface, and the Green's

function G. . (x,x') is normally symmetric in the x and x" cooL6- .e.1] . ..

It follows from Eqs. (25) and (26) that

26W (a AU') n.d 2 (aAAU0 ) n. ds (aA.6(AO n. ds
i i

JO(AtUi) Gi- (X 'x) AU°0 (x )n .dsds" (27)

Substitution from Eqs. (21) and (26) in Eq. (27) leads to the

result 6W = 0. So the formula of Eq. (25) is variation.



The theory can be generalized fairly easily using the

methods of reference 1 to show that the variational formula

for scattering from a crack by a signal incident from transducer

1 and received on transducer 2 is

A (1) AU(2) A ( 2 ) U(1)nd

S 2 4 ij i (28)
2I s (2) (1)

f (Gii U. )n ids

Where the supercripts (1) and (2) refer to the fields associated

with incident waves from transducers 1 and 2,respectively.

FOURIER ANALYSIS AND VARIATIONAL TECNNIQUES FOR A CRACK

The variational methods lend themselves well to the use

of Fourier analysis techniques, and in particular the application

of the Fast Fourier transform numerical computer routines which

are now widely available.

Our basic approach will be to use a trial function for

Au on the crack surface z = 0. Then on the plane z = 0 we can

write

AU z(x,y,0) =fIAU(c )e- (ax +6y) dad$ (29)
-CO -00

with

U (a,8) 4 2 AUz e(x+y) dxdy (30)

It is relatively easy to write down the Fourier transform of

other quantities U x,U ,U , zzxxxy. Then at any point



in space we can use the plane wave angular spectrum analysis to

find the connections between these various quantities.

If for instance, aS (x,y,o) has the Fourier transform
zz

zz(c,), it follows from Rayleigh's theorem that

azz AUzdxdy = azz(a,$)AU (,S)dada (31)

Thus it is easy to evaluate the terms we need in the

variational theory by relatively simple integrations, and to

treat flat cracks of arbitrary shape.

We shall use as an illustration of the variational

technique derived here an example calculated for scattering in

unpublished work by Kino and Tien, using the earlier 1975 formu-

lation of the variational theory. We take the crack to be located

in the z=O plane, to be of length 2a in the direction and infinitely

long in the y direction, as illustrated in Fig. 2.

We shall treat only the static case of a laae,

crack with mode I excitation. It will be clear from the treatment

how to deal with more complicated situations with time varying

excitations and more complicated shapes. We shall compare our

results, using simple trial functions, with the exact solution.

We write the displacement in the form

U =Ve + V- (32)

where

172 + k2 = 0 (33)



^X

Fig. 2 An illustration of the plane crack used in the theory.



2 2

V2i + k = o (34)

with

k 2 mo / (A+2p) (35)

k2 =2(36)
s mo

for waves whose components vary as exp jwt. The mass density

of the material ispmo and the Lam4 constants Xand U.

The potentials on each side of the crack are taken to

+4 +
be 0 (x,z); p(x,y); and -(x,z), W-(x,z), respectively.

We can carry out Fourier transforms in the x direction

of these quantities and write+ jQ
(X,Z) = fA(t) e - j a x e-JItz d (35)

(x,z) = J B(a) e- jax e-JSsz dca (36)

0-(x,z) = fC(a) e - j a x eJ£ z d. (37)

(P(Xz) = jD(a) e e Jz da (38)

where

2 2 2 (39)

a2+8 2 = k s2 (40)



It will be seen that

A(a) = 1 J +(x,o) ejax dx (41)

B(a) = - + (x,o) ejax dx (42)

C(ct) = 0 f-(x,o) ejax dx (43)

D(c) = 1- -(x,o) e j ax dx (44)

In order to find a. we take the boundary conditions at the crack

to be

= U+(xo) - U-(x,o) (45)Az z ' z

AUx = U+ (X,o) - U-(x,O) = 0 (46)x ~x

a+ (x,o) =a- (x,O) =0 s  (47)
+-S

(x,o) =Y (X,O) (48)

The use of Eq. (45) with Eqs. (41), (42), and (32) yields the

result

L(A + C) +a(B - D) = jAteJ X dx (49)

Similarly from Eq. (46) it follows that



a (A - C) -a (B + D) = 0 (50)

It may similarly be shown from Eq. (48) that

2aB (A + C) + (a2  2 ) (B - D) 0 (51)

Where we have used the relation

2  a2 +2
\+2u s s (52)

k 2 a 2 +a 2

Continuity of azzEEq.(47)] yields the result

2 2 ) (A - C) + 2 a8s (B + D) = 0 (53)
5 5

It follows from Eqs. (50) and (53) that

A = C (54)

D = -B (55)

So from Eqs. (51), (54) and (55) we see that

2 a8z
B 2 2 A (56)

a - s

It therefore follows, after substitution of Eqs. (54), (55)

and (56) in Eq. (49) that



2 2

A= a AU e ax dx (57)4 2 1 2 +a2)z
S

with

2 2 Ae-JaXda

uz j s2 2 (58)

an z -2j s s-a~
S

(2 _a2 +4
(nd a -A 2 8sZ ] jax da (59)

It follows that

00 2+a2 r 2a2 24a21
+2ji I 2 s - s da (60)

fzz z fdx1 2 2 ) 2
-oo S

We note that Bs and must always be positive, i.e. we take

their magnitude. So it is convenient to write

r0 2 2a a a (61)

a3 L a 7 tJdx = 4 j J A~ 12 2 a2)2  61°zz ( 2 2 )2
0s

If A(a) is known, this integral can be evaluated numerically.

We put

2 2

A(al = R(a) s  22 +a (62)

i)

K - n -i m n _,. -



Where

R LU ej a x dx (63)

So it follows that

a f U dx= 8jpn R1 2 2 s ] (64)
zz z2 + a2

0 s

We shall now evaluate the static case for which k ,- 0,
S

k - 0. In this case the integral reduces to the form

cc

fs AU dx = - 16p IRI 2 a [ kJ da (65)

0 s

or

5 s 4E~ R2 cdt
C U dx= 2 JREwd (66)°zz z (1-V)

0

where E is Young's modulus, v is Poisson's ratio.

Thus it follows that

W = (67)
8E 2 IRI2 a da1-V 2

Where R is given by Eq. (63).

We now use the variational formula of Eq. (67) to evaluate

W. We assume y A constant, initially.
zz



Example I: Exact Solution

AUz = K(a2_x 2 ) 1 / 2  x < a (68)

AUz = 0 x>a

In this case it can be shown that

R = jK(a/4) J1 (aa) (69)

Where Jl(X) is a ist order Bessel function of the 1st kind.

So it follows that
2

8A(A) 2 (1-V 2 ) (a 2 _x 2 ) 1 / 2 dxi

iEr 2 2 (70)

TE a- J1 (aa) da

This expression yields the correct result:

W r2 A 2 2
= (ai- ( ) / E (71)

We note, however, that the result obtained is independent of the

proportionately factor K.

Now suppose we try the approximate trial function

AUz = K (a - jxj) fxK <a (72)

AUz = 0 Ixj > a

In this case Eq. (67) yields the result



w = 2-67a2 (A 2 E(a) 2(1-v2)/Ezz

or

Wtrial / Wcorrect = 0.85

This is a fairly crude result, however, the trial function is also

a fairly crude one relative to the correct choice. But with this

choice, AU has dropped to half its maximum value at x = 0.5, while

the true function has dropped to half its maximum value at x = 0.87.

So the stored energy should be higher for the true value of AU.

CONCLUSION

We have derived a variational principle to determine the

value of the stored energy or acoustic scattering coefficient of

a plane crack. We use the crack opening displacement as a trial

function. A simple example for a plane crack using a triangular

trial function for AU gave a result with an error of 15%. Thisz

would lead to an error of 8% in estimating K . The use of Rayleigh

Ritz techniques or a better choice of trial function could improve

this result.

The technique is very easy to modify to take account of

non-uniform applied stresses. As an example, if we take a bending

stress of the form a = a Bx/a(, AU = (a 2-x2 ) / 2 , we find that
zz

W = 0.18a (aB) 2 (1-\ 2 ) / E



This would imply that the stress intensity factor is reduced by

B0.42 from the value with a uniform applied stress a. The result

9for the exact solution is a reduction 0.5, so the error is 16%.

Again the use of Rayleigh Ritz methods would be helpful

in obtaining more exact results.
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