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EFFECTS OF ERRORS ON T!IE SIDE-LOBE LEVEL OF
A LOW-SIDE-LOBE ARRAY ANTENNA

INTRODUCTION

Low-side-lobe array antennas have received wide interest in recent years. Theoretically, one can
design an array antenna with any desired side-lobe level. However, in practice array errors and other
imperfections limit the side-lobe level. One question is then how low a side-lobe level one may achieve
in practice. This problem is essentially that of finding the effect of array errors on the array radiation
pattern. This effect has been analyzed extensively in the literature. Ruze [1] considered the effect on
the radiation pattern of random errors in the exciting currents. Bailin and Ehrlich [2] treated the physi-
cal errors which cause the random errors in the exciting currents. Gilbert and Morgan [3] treated the
effect on gain of random geometric errors in the general two-dimensional aperture. Elliot [4] further
treated the problem of tolerance for two-dimensional scanning antennas. Allen et al. [5] reviewed the
general problem; they did extensive study on all aspects of this problem.

In this report, the relationship between the side-lobe level and the array random errors will be
examined. In particular, the limitation on the side-lobe level as a function of the array errors will be
presented. Intuitively, one may see that this limitation must be a function of the desired side-lobe
level, the number of elements in the array, and the nature of these errors. Since these errors are gen-
erally random in nature, the results are in terms of probability distributions. Allen et al. [5] showed
that all array errors that result from feed, phase shifters, mechanical location, and the orientation of
radiating elements can be characterized by a phase error and an amplitude error for each element in the
array. The results of this study, therefore, are in terms of these errors. In the past, these errors have
generally been assumed to be statistically independent. However, there are cases for which errors in
many elements are not necessarily independent. For example, the same phase and amplitude in a row
or column feed network could feed to every element in a particular row or column, or in the case of
subarray configuration, the same error may propagate to every element in a particular subarray. These
errors are correlated in these groups of elements. The effects of these correlated errors will be also dis-
cussed.

STATISTICAL DISTRIBUTION OF ARRAY PATTERN

For simplification, linear arrays will be treated first. The array pattern of a linear array can be
represented by

P@) = Y A, expl~jQmnd/\)(sin 8 — sin 6,)], )

where @ is the angle of incidence of a plane wave on the array and 0 is the beam pointing angle. Ele-
ment spacing d is assumed to be uniform. We further define

u = (2md/r)(sin 8 — sin §;). 2

Equation (1) then becomes

P@) =Y A, exp (nu). 3)

n
For radiation in real space, u is constrained so that
- | € 2u. (@)
Manuscript submitted March 13, 1981.
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Due to mechanical and electrical errors in the array, the array pattern becomes
G)= Y 4,(1+8,) exp (jo,) exp (jnu), 5)
n

where 8 5 is the amplitude error in percent and @ , is the phase error. These errors vary from element
to element and are random in nature. For simplification, we assume that these errors have a known
probability density function. Because of randomness of these errors, G (u) is a random complex func-
tion which is the sum of many random variables. Each of these random variables can be represented as

P,(u) = (1+38,) exp(io,) exp (jnu)
6)
= X, + jY,.

These random variables are independent and have the same probability density function. The
array pattern is hence a random function of the sum of many random variables, so that

G) =g+ jg)
=2"‘an +j2An Yn' 7)

According to Lindenberg and Levy’s central limit theorem [6), g, (u) and g,(u) are asymptotically
normul. The means and variances of g, () and g;(u) are the weighted sums of means and variances of
X, and Y,. The means of g,(x) and g,(u) are then respectively

g2w) =o)X A, cosnp (8a)

and
&) =o() Y A, sin npu, (8b)

where @ k) is the characteristic function of random variable x, defined as
d(k) = fg(x) exp (jkx) dx,

where g(x) is the probability density function of random variable x. Furthermore, in deriving the
abeve expression we have also assumed that the amplitude error 8, has zero mean. If the linear array
is symmetrically illuminated, such that 4, = A_,, then g,(u) = 0. The variances of g,() and g,(u)
are, respectively,

af=1/2Y AXA+ B cos2nu) (9a)
and
of=1/23 A}A— B cos2nu), (9b)
n
where
A=1+af-d) (9¢)
and
B = (1 +ad)®(2) - d2(1). (9d)
The quantity ¢ is the variance of the amplitude error 8. The covariance of g;(u) and g,(u) is
T13= 1/2214,,28 sin 2"#. (10)
n
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For thz symmetrically illuminated array, o, is zero. Derivations of these variances are included in
! Appendix A. The joint density function of the complex variable P (w) is
f

4 _ 1 (g, — %) g}
] Plg ), g,()] = Ty exp 2 2wl 48]

The probability density funcion P(g,,g;) is a generalized noncentral chi-square distribution with
two degrees of freedom. When g, = 0 and 0; = o,, this becomes a Rayleigh distribution. For the
case g, = 0 and o, = o, it is sometimes referred to as a Rician distribution. Since the chi-square dis-
tribution cannot be evaluated in a straightforward way, we shall attempt to determine if it can be

}

)

F approximated.
}

¥

The variances o) and o, as shown in Egs. (9a) and (9b), consist of two parts. The first part is
p=1/24F AL (12a) i
n

and the second part is
p2=1/2BY AZcos2nu. (12b)
n

The first part is not a function of u, but the second part is. Since p, is the sum of cosine functions
' except at regions in the vicinity of 4 = kw, p, is much greater than p,. An example is shown in Fig. 1,
P on which two sets of curves are shown. Curve | shows the o, and o, values as a function of i for the
case of a 20-element, 30-dB Chebyshev array. The amplitude error has a variance of 10%, and the
phase error has a normal distribution with zero mean and a 5° variance. One may see that the vari-
ances are independent of 4 and o | = o, except in the regions at u = 7 and u = 2w. Curve 2 on this
figure shows the case of an 80-element Chebyshev array with 50-dB side lobe design, an amplitude
error of 0.005, and a phase error of 2° rms. Note that o and o, of curve 2 are considerably smaller
than those of curve 1. This is because there are more elements and a smailer error in the case of curve
2. This will be discussed in more detail later. From this, one may conclude that in the side-lobe region
where u # 7 one may assume that o; = o, = p,. The chi-square probability density of Eq. (11) then

becomes Rician, and
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Fig. 1 = Values of o) and o, (case 1: 20 element Chebyshev, 30 dB,
oy= 0.1, 04 = 5° case 2: 80 clement Chebyshev, 50 dB, oy = 0.005,
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Rg,

o?

, (13)

P(R) = U—Rz exp - (R-2%)3 1, [

where R = +/g? + g7 is the amplitude of the radiation pattern and /I, (z) is the modified Bessel func-
tion of zero order.

Radiation in regions in the vicinity of 4 = kw, which contain the main-beam and grating-lobe
regions and a small portion of the side-lobe region, has essentially a chi-square statistical distribution as
shown in Eq. (11).

Before further discussing the radiation level statistic, let us examine o; and o, more carefully.

VALUES OF o AND [ 5]

In the vicinity of 4 = k#, o, and o, can be approximated by

al=1/2 (4 +B)2',A,,2 (14a)
n
and
oi= V24 -8B Y 42 (14b)
n
and in other sidelobe regions one has
ai=cai=A z AL (14¢)

Each o consists of two parts. The first part is z A2 which is a function of the number of elements in

n
the array and the illumination function of the array. The second partis 4, A — B, or 4 + Band is a
function of the parameters 4 and B given in Egs. {(9¢) and (9d), which are determined by random array
errors.

In finding the first part ~f o, for convenience of comparison, let us normalize the array illumina-
tion function 4, in such a w.  "at

T oA, =1 (15)

This implies that at the peak of the main beam the radiated field has unit strength (or zero dB). The
summation of 4,2 is then always less than unity. In the case of a uniformly illuminated array,

I
; A N (16)

where N is the total number of antenna elements. In Appendix B it is shown that no matter how the
illumination function is formed the 1/ N factor is its lower bound; in other words,

)": A2 > -}V an

Figure 2 shows some examples of 2 A} for a Chebyshev array. It is evident that in all the
n
differer:* designs the 2 A} is close to the factor 1/N and it is always bounded by this factor. This is

n
useful for the estimation of . One may replace EA,? by the inverse of the number of elements in the
array for a first-order estimation.
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Fig. 2 — Values of 2 A2 for a Chebyshev array with different
n
side-lobe levels

In finding the second part of o, we consider the phase error. The probability density function of
the phase error ¢ is an even function with zero mean; hence ® (k) is real. Furthermore, in most cases
of interest, the probability function is most likely concentrated in a very small angle region (less than
+ m/2). In this case ® (1) and ¥ (2) would be positive and

® (k) < 00)=1.

When the phase error probability density is an impulse function centered at zero degrees, both
(1) and ®(2) are equal to unity. Under this condition 4 = B = ¢, the variance of the amplitude
error. As the phase error increases, the probability density function p(¢) spreads out and ® (k) is less
than unity; parameter 4 then increases monotonically as the phase error increases. This is shown in
Figs. 3a and 3b. Figure 3a shows the case for which the phase error density function is normal; Fig. 3b
shaws the case for a uniform density function. In the side-lobe region, o = AZA,,; one may therefore

n
estimate the value very easily by multiplying this factor by 1/N. Some typical values of the parameter B
are shown in Figs. 4a and 4b for normal and uniform angle error density functions, respectively.

STATISTICAL DISTRIBUTION OF SIDE-LOBE LEVEL

In the main-beam region where u = 0 and o, # o,, the radiation level has a noncentral chi-
square density function. For this type of density function most of the probability mass concentrates
within an ellipse with major and minor semiaxes of two to three times o and o ,, centered at the mean
value g,. Furthermore,

§) >> o) Or o,

Therefore, for practical purposes one may assume that the radiation amplitude (R, = Vel +gd).is
equal to g, with a probability of unity,

Ro=% =0 4,

Since the illumination function A, is normalized, one finds
Ry = ®(1).
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Fig. 4(b) — Values of B: angle error has a uniform distribution

In the side-lobe region, there are cases in which 4 = 7 and in which u # #. Since the region in
the vicinity of 4 = = is limited to about one beamwidth, we shall first examine the case for u # 7.

The probability density function in the side-lobe region where x # 7 has a Rician distribution.
The side-lobe level is defined as the ratio of the main-beam level to the side-lobe level. Its probability
function is the joint probability function of Ry and R. Since we showed earlier that Ry = & (1) with a
probability of unity, the probability density function of the ratio of R to R, is the same as that of R
with a scale factor & (1); that is, R' = R/® (1), and the density function of R’ is then

B ey




J K. HSIAO

! R'd()g
PRY = £ e (RO P - 2212071y _2_&] (19)
[+4 ag
where
g =0=0);
and
2 =dU) Y A, cos nu.
For convenience, we shall normalize this R’ in such a way that
M $1+1 S
P(S) - ;,—26Xp - 20-’2 10 ;i']. (20)
where
S=RY7Y A, cos nu (21a)
and
(r’=(r’[zl4,, cos np.]. (21b)

We notice that ZA,, cos nu represents the side-lobe level at the angle u when there is no error
n
present. Therefore, both S and o' in this equation are measured in terms of the designed side-lobe
level. This is more convenient to use than are values in terms of o or g,.
The cumulative probability of S being less than S; is then

s 2,
P(S<SL)=-f()L(—TS7exp 37,2—1

Io iz] ds. (22)
a

A family of such curves with o' as parameter is shown in Fig. 5. Each of these curves presents
the cumulative probability that S (in terms of designed side lobe) is less than or equal to a level S, for
a given o’. Since this curve is presented in such a way that it is not a function of the angle u, these
curves apply to all points in the side-lobe region. Secondly, these curves are normalized with respect to
the ideal side-lobe level. It repr-sents the probability of the deviation of side-lobe level from the
designed value. Although they are not presented explicity as a function of u, they are related to the
side-lobe level. For example, at the peak of a side lobe, the normalized o’ may be only equal to 0.1,
but at a point where the side-lobe level may be 10 times smaller, the normalized o' then becomes 10
times larger. One can see the difference in the probability distribution for these two cases. This set of
curves is universal. [t applies to arrays with different illumination designs, different sizes, and different
errors.

With the aid of this plot, one may easily determine the required error tolerance to achieve a
desired side-lobe level. For example, one may wish to design an array having a 50-dB side-lobe. with
probabiiity of 90% that the side-lobe level will not exceed the designed level by more than 30".. The
curve for o' = 0.2 satisfies this condition, because for § = 1.3 the cumulative probability is 90",
Since o' = 0.2 is equivalent to — 14 dB, the required o’ is approximately 64 dB (50+14,. Suppose that
the array has 100 elements. This value of N gives at best 20 dB: one therefore needs an error level that
would yield no less than 44 dB. From Fig. (3a), one sees that an amplitude error of 0.5% (1 ) and an
angle error of 1.5° (1 o) will satisfy this requirement.

|
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Fig. S — Cumulative probability distribution of normalized side-lobe level
(normalized to the designed value)

The validity of the curves shown in Fig. 5 has been checked by means of computer simulation. In
this simulation, we first computed the probability curve as shown in Fig. S for an array of 52 elements
with a 50-dB side-lobe design with given phase and amplitude statistical error distributions. The results
are ploited in Fig. 6. Next, we computed the side lobe level of this array about 10,000 times. Each
time the actual phase and amplitude for each element of the array was generated by the random-
number generator according to the prescribed distribution. These phase and amplitude errors were then
added to each element in the array. Pattern values were computed in the side-lobe region and normal-
ized to the designed side-lobe level. The statistical distribution of these computations is plotted in Fig.
6 with crosses, and the theoretical curve is also piotted. One may see that these two results closely
coincide.

SIDE-LOBE REGION FOR & = =

In the side-lobe region where u = 7, oy & o ,, and the probability density function of the radia-
tion pattern becomes a noncentral chi-square distribution similar to that in the main-beam region. The
relationship that g; > > o, and o, does not hold, therefore, the approximation used in the main-beam
region cannot be applied. Because the region in the vicinity of 4 = = is very small (about one
beamwidth), it has been ignored in the past. However, it is worthwhile to investigate the probability
that an undesired high side-lobe may appear in this area.

It was pointed out earlier that most of the probability mass of a noncentral chi-square disiribution
concentrates within an ellipse with major and minor semiaxes of two times o, and o ,, centered at the
mean value g;. This situation is depicted in Fig. 7. When o; = o, the maximum value of R is

Ropax= V&I + (2‘72)2' (23)

and wheno,; << o,
Rpox= 81+ 201 (24)

This Rp,.x i the maximum side-lobe level, with a very high probability that no side-lobe level will
exceed this value. When g, > o, or o,, the difference between values of R, in Egs. (23) and (24)
is very small. Thus for cases which have a very high probability of a small deviation of the side lobe
from the designed value, the approximation of the noncritical chi-square distribution with a Rician dis-
tribution is acceptable.
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In this region, from Egs. (9a) and (9b),

U

1
. ot

(A+B)Y A} (25a)

1 and

i

o3 %(A—B)EA’.. (25b)
n

where A and B are functions of the characteristic function of phase error and the standard deviation of

amplitude error as shown in Egs. (9¢) and (9d). For a very small phase error both & (1) and ®(2) are

e close to unity, hence 4 = B, o} = 24, and o, = 0. As the phase error increases, 4 increases and 8
decreases. One may see this from Figs. 3a and 4a (or Figs. 3b and 4b). In this case, one may assume
that B = 0 and 0y = o, = A. The maximum side-lobe levels with a high probability for these two
cases are, respectively,

Ruax = 21 + 44 (26a)

and

i Ropax = B0 + 24. (26b)

One may see this intuitively. When the phase error is zero, amplitude errors have a good chance
to line up and induce a higher side-lobe level. On the other hand, if phase errors are introduced the
chance of all amplitude errors to be lined up in the same direction is greatly reduced, hence the R,
value has a higher probability of being smaller. If the phase error is further increased, eventually
A = —B. In this case o) = 0 and o, = 24, and under this condition

Roex = V2L + (44)2 (27

This Ry, value is slightly greater than the one in Eq. (26b). This is the case in which phase
errors are so great that the imaging component dominates and it has a good chance to be lined up and
introduces a higher amplitude error. However, if g, >> A, the error introduced by the approximation
o= 0= Aissmall. This is shown in Fig. 8. Curve 1 is the cumulative probability of the normalized
amplitude for o} = o, with the normalized o= 0.1; curve 2 is for the case o= 0.199 and
o3 = 0.0001; and curve 3 is for the case o) = 0.0001 and o, = 0.199. The difference in the probability
distribution of these three cases is negligible for practical purposes.

PLANAR ARRAYS WITH CORRELATED ERRORS

For a planar array, if errors in each element are independent, the results of the linear array can be
applied directly. The array pattern of a planar array with independent errors can be represented by

Gu.v) =33 Apm(1 +8,,) exp (idm) exp lilmu + nv)l, (28)

where i
w = (2md/\) (sin 6 cos ¢ — sin B, cos @),
v = (2md,/\) (sin @ sin ¢ — sin 6 sin @),

and 8,, and ¢,, are the amplitude and phase errors respectively. It can be shown that the o; and o
of this case are given by
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Fig. 8 — Probability distribution at regionpu = 7, o = 0.1

ol=% I3 (Com + Dy cos Qmu + 2nv)], (292)
0} =%y [Com ~ Dy cos Qmu + 2nv)], (29b)
where

Com= 1402 —®2, (1) 42, (29¢)

and
Dpm= 1 +02) ®,, ()-02 (D4}, (29d)

and
=% ¥YY [1+a})®,,2) -2 (D4 sin Qmp + 2mv). (30)

Comparing these equations with Egs. (9a), (9b), and (10) one may see that they are almost identical.
Therefore, all results obtained for the linear array can be applied directly. Since a planar array usually
has more elements than a linear array, o; and o, in general are smaller. It therefore can tolerate larger
errors with less degradation. Unforiunately, in most cases errors in each element are not independent.
They may be correlated. For example, a planar array may be fed by rows and columns. The same error
from the feed network may appear in every element in an entire row (or column) or in many cases all
elements of a subarray may contain the same error due to mechanical reasons. To examine this effect,
we shall first examine a case for which the same error appears in every element of a row {(or column) in
an array. Besides this correlated error, there are also independent errors in every element. The array
pattern can then be assumed to have the following form:

Gu.v) =30 +8,) exp Ub,) I A (1 +8,,) exp (dnm) exp lilmu + n)). 31

where 8, and ¢, are, respectively, the amplitude and phase errors which appear in the nth row. Appen-
dix C shows that

of=E+ F (32a)

12
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and
oi=E-F (32b)
where
E=%YY ((1+c) U+al) -2, (D] 42
+ 1Y U+ -2 (D] d2, (1) XY ApnAps cos (m — s)u (32c)
and

F=%Y¥Y [(+c) U+al) o, P,, 2 -7, ()]

- A2, cos Qmu + 2nv) + 4 222 [(1+a) D, —d2()]

nms$

c @2, (1) ApyyAys cos [(m + 5) u + 2nv]. (32d)

In the derivation of Egs. (32), it is assumed that the amplitude errors §,, and 8,, have zero mean
and their respective variances are o and o 2, In the formulation, we also assumed that the amplitude
error consists of two levels 8, and 8,,, and the total error is (1 +8,) (1 +8,,). The mean of this
error is zero, however, the composite variance is given by

l+c) M+ol)=1+c+0a} +0la},. (33)

Let the total amplitude variance o be given by

ol=cl+ol, +tolol,. (34)
If both o, and o, are small, the total variance o? can be viewed as the sum of the individual vari-
ances o and o2,. Let the total phase error ¢ be the sum of the two phase errors ¢, and ¢,,, then
the characteristic function of & is

¢ =0, (Nd,,(1). (33)

Equations (32a) and (32b) consist of two parts, similar to Eqs. (9a) and (9b) in the case of a
linear array. The terms which involve cos (2mu + 2nv) and cos [(m + s) u + 2nv] can be ignored
except perhaps in regions very close to the main beam and where 2mu + 2nv and (m + s)u + 2nv are
integer multiples of 2. These regions are only one beamwidth in extent, and their effect may be
ignored for the same reason that was used in the case of a linear array. We hence have

ol=a}=%IY N+a2=dDI4L +% T (1 +02- 02D |G, W) (36)
where
|G,y 12 = @2, (DT T ApmAns cos (m = s)u, 37

and o ,, &, P,, and ®,,, are replaced by o and @ as shown in Eqgs. (34) and (35).
The mean radiation pattern of the linear array of the nth row is

G =d,, (DY A, exp (jmu), (38)

therefore |G (u)|? is its power pattern. The o; and o, consist of two parts. The first part, 1/2 EZ

nm
(1 + 02 — ®2(1)] 4.%,, is identical to that of an array with uncorrelated errors when both the correlated
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and uncorrelated errors in each element are taken into account. The second portion, ' 2
n

[0 +o2—®2(1)] |G@)!? has a value similar to that of a linear array with the illumination weights
A, replaced by the power radiation pattern function |G (x)|2. It is interesting to note that when u = 0,
|G w)1? has its maximum value. In other words, at u = 0 the correlated errors have the strongest
effect on o and the array patterns would most probably deteriorate more at « = 0 in the s, v domain.
For example, a column and row fed array, as discussed in this section, has rows in the x direction and
columns in the y direction. Elements in each column have a common error. If the array beam is
steered at the broadside (63 = 0), then u = sin 8 cos ¢, and the maximum degradation will occur in a
plane along the y direction (the E plane), when ¢ = 90°. However, if elements in each row have a
common error, the worst degradation may occur at v = 0, along the x direction (the H plane). Under
this condition,

G, @)P =3 [2 A,,,]z. (39)
n m
If the illumination coefficient A4, values are normalized such that
TY A =1, (40)
n m
one can show that
1
|G @) ? 2 ~ (41)

where N is the total number of rows which have correlated errors. One may hence conclude that:
° o, =0,

® Both o, and o, consist of two parts, with the first part due to total errors (including both
correlated and uncorrelated) at each array element (o, ) and the second part due to the correlated error
fed to each row (or column) (o.). The o is the root sum square {RSS) of these two parts.

® Both o, and o, are functions of both the array element errors and the illuminations. The
effects of amplitude and phase errors on the o value are identical to that of the case of a linear array.
Curves shown on Figs. 3a and 3b can be used to estimate this value. The array illumination can be
approximated by the number of elements in the array (for o,) and the number of rows (for o ) for the
correlated errors.

The covariance o |; between real and imaginary parts of the array pattern is
on=%YY [l+a) 0 +02)0,DP,,(2) - DD, (1)]A2, sin Qmp + 2nv)
: nm

+BITY (1 + 0D, 2) — @2DID 2, Apyn Ams sin [(m + $)u + 2nv]. (42)
nm s
When the array is symmetrically illuminated and the phase center of the array is taken at the center of
the array, one may show that o, = 0. Therefore, the distribution of array patterns of a planar array is
Rician as shown in Fig. 5. The value of o is the RSS of o, and o.. The above results can be appiied
to an array which is fed by subarrays and the correlated error appears in each subarray. In this case,
one has to replace the parameters . and v with functions of 4 andv.

14
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CONCLUSIONS

In this report, we have shown the following:

1. The amplitude distribution of the radiation pattern for both a linear array and a planar array is
Rician. A set of universal curves for such distributions is shown on Fig. 5. The curves are presented
for different o values and are normalized to the mean pattern value. They thus read directly in terms
of cumulative probability of the degradation of the side-lobe level.

2. The o value for both linear arrays and planar arrays has a similar form, which is a function of
errors and array illuminations. The effect of errors is plotted in Fig. 3 for different error distributions.
‘ Figure 3 also shows that the illumination function of the array can be approximated by the number of
1 elements.

3. For a planar array with correlated errors the variance o is the RSS of o, and o.. The variance
o, takes into account the error in each element (including both correlated and uncorrelated errcis) and
| o is due to the contribution of correlated error in a subarray. Both o, and o, are functions of the
4 errors and the illuminations. However, o, is also a function of the subarray pattern in which the errors
are correlated.
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Appendix A
DERIVATION OF VARIANCES FOR A LINEAR ARRAY
Define a complex random variable
z=x+jy; (A1)
then
: Ellz - E@Q)P) =0+ 0 (A2)
[ where
ot = E{lx - E(x))3, (A3)
| of=E(ly - E0, (A4)
F and
X Elz - E@QP) =0l -0f+ 2jo) (AS)
' where
T o= Ellx — Ex)] [y — EOM}. (A6)
Solving Egs. (A5) and (A2), one gets
20f= Eflz ~ E(2)|} + Re E{lz — E@)}3, (A7)
203 = E{lz ~ E(2)|?} — Re E{lz — E(2)]%, (A8)
and
2r,=Im E {Iz — E(2))?). (A9)
For a linear antenna, the pattern function is
Gw)= 3 4, 1 +5,) &’ e, (A10) |
E(G) =) 3 A, e, (A1) :
[EG)2 = 02(1) Y A, Ay e/~ ™k, (A12)
[E(G))=02(1) TF A, Ay e/intm, (A13)
E(IG1) = Y 4,4, (1) /"™ 4+ T 42 (1 +0?), (A14)
) where o2 is the variance of the amplitude error §,,, ‘
; E(G — EG)[) = Ellz2— [EG)
] — T 42 (1 +0) = T4 &71), (A15)
.ﬂ E{(G)) = T ®2(1) e/"+mi £ F A2 (1 + o)) ®(2) &/, (A16)
’ nm n
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! EUG - E(G))Y) = E{(G)Y ~ [E(G)]?
g = [(1 + o) & () - ®2(1)] /2w,
‘ ol=% 1+l = dXMI T AL+ A1 +aD) & (2) - 2] T 4.7 cos 2npu, (A17)
L oi=%hU0+c?—d2M T AZ— %l +a?) & (2) - &2 (D] Y 4,7 cos 2nu., (A18)
l anG
on="1+a)d (2) — d21)] T A2 sin 2npu. (A19)

u
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Appendix B
PROOF THAT THE ILLUMINATION FUNCTION IS BOUNDED

Cauchy’s inequality is given by [B1]
2
<

N
[Z XY,
=1

N N
3418
i=1 i=1
Let ¥, = 1, then

X X)) < (TXIN,

or
2 X7
1 <
N (ZX,-)Z'
i
When X, =1,
Ix:
(£X)2 N
therefore
X!
(T X))
is bounded.
REFERENCE

Bl. E.F. Beckenbach and R. Bellman, Inequalities, Springer-Verlag, Berlin, 1971, p. 2.




Appendix C
DERIVATION OF VARIANCES FOR A PLANAR ARRAY

For the noncorrelated case,

Guv)=Y3 (1+8,,) exp (jb,n) - exp i(mu + nv)] 4,,,

ElGuv)= YT, (DA, exp lilmpe + nv)l,

G )= 3T T T Apmd, (1+8,,) (1+8,) exp (b, — ¢,)]

nmr s

cexp l(m = s + (n— rivl},

«cn

(C2)

(€3

ElGu» =3 T T T4m4a,02 Dexplilm—s)+ (n—rwll + TT4L (1 +02,). (CH

n m r s
| nxrorm#»=s

EIGG@ 2= 3 I¥®2, (DAumA,exp (ilim— s)u + (n = rivl},

n mr s

ot+od=ENGuv) - |EIGE I
=3y +cl, -0k )]

(Gu.v»)=3IFTTT 1+8,,) A+8,) exp i@ m+o, ) exp lilm+s)u+nt+riv],

{ nmr s

EllGu )= 3T T Tamd ®,m (Dexp lilm + s)u + (n + rv]

n m r s
n#rorm#=s

tIY A +0l)®,, (4% exp [Qmu + 2mv)],

(EIGW . )N = T X T T A A, @ (1) exp ilm + )u + (0 + i,

n mr §

ol-a}=3YF A +02)P,, 2 -®2,(1)] 42, cos 2mu + 2nv),
onp=% I3 +02)P,, -2 (D] 42 sin Qmu + 2nv),

ol=% Ty [Cyy + Dpy cos 2mu + 2nv))

nm
and
ai=1% T Y [Chy — Dy cos 2mu + 2nv)]
am
:" where
”' C=ll+al, -0 (] 42,
and
D=[(1+¢02)®,, )—-®2 (1] 42.
19
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(C5)

(Cé6)

(cn

(C8)

(C9
(C10)
(C11)

(C12a)

(C12v)

(Cl2c)

(C12d)
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For the case of correlated errors,
Guw)=Y (1+8,) exp (j8,) T (1 +84,) exp (b um) Aum exp Ui(mu + nv)l,
n m

ElGev)]=3IY ¢, ), (DA, exp [ (mu + nv)],
[Gu.PP=YXY0+5) 0 +8)exp i@, — )T (1 +8,,) (1+5,)

“ ApmArs exp [ldpm — b ) exp lm =) w + (n — )],
EllGu.»)1=F Tro2() T T2, (1) AppAysexp ilm — s)u + (n — rivl]

n®rs m= s
+Y U+ Y Y02 (NAypAexp llm—sl+ 3 To2 (1)
m#=s n*r

' zq)Zm(l)AnmArm €xp [/(n -]+ 22 (a +0'3) Q +0’3m) A,,zm.

IEIGu ) = I3 Y A A @ 2D 2, (1) Apm A exp {illm — s)u + (n — riv]),

A mr s

cl+oi=3FTU+0d) (1+0k) - 22 ()P}, (D] AL,
+ MM+ —2DID2, (1) LY AppAns cos (m ~ s)u
[Gu.v)P=FF(U+5,) (1+8,)exp lild, +¢,)] LTI (1+38,,) (1+38,)

exp U@ m + 0,501 4pmd,s exp Lillm + s)u + (n + 1) v]],
EllGu, =3 T02(1) Y T2, (1) AumA, exp {illm + s)u + (n + r) v])

n=r m=s

+Y 040D, Y T2, AumAn exp Uillm + s)u + 2nv])
! s

+ Y 3T02(1) Y02, ApmAm exp iQmu + (n + riv]

n*r

+3TA+e) U+02)@,2)0,,(D]142 exp [i2mu + 2m)),

(EIGE. ) =TT T T2 (1) 02, (D ApmA, exp [jl(m + s)u + (n + riwl},

ol~ai=FF 1+ 1 +02)0,2),,(2)
- @22, (1)) Ay cos 2mu + 2nv)
+3¥3T 0+, Q-0 M]D2 4,4,

nmsygs

-cosl(m + ) u + 2nv],

20

(C13)

(C14)

(C15)

(C16)

17

(C18)

(C19)

(C20)

(cz2mn

(C22)
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onp=%3IYy tl+ad) 1 +0l)d,9,, () - 022, (1))

A2 sin Qmu + 2nv)
+1IIFT+chH e, -2 1)

@2 (1) Apn Ay sin [(m + s) p + 2n0], (C23)

ol=E+F (C23a)
1 and
o}=E-F (C23b)
‘ where
f E=% ST +02 (1+a2)— 02102, 1)) 42,
? +%u T A+aH -0 (P (1) T T A, A4y cos (m— s (C23c)
’ and

F=%YY [+ U+al) o, ¢, Q0 -o21) 02, (D] 42, cos Qmu + 2nv)

B +%B IIT A +0D@,02) — 22D 2, (1) AppnAp cos [(m + sl + 2nv]. (C23d)

n m.s

N N







