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Abstract

One of the most fundamental problems in vision is segrnentaion: the way in which parts of an
image are perceived as a meaningfu! whole.

Recent work has shown how to calculate images of physical parameters from raw intensity data.
Such images are known as intrinsic images, and examples are ,rnages of velocity (opucal flow),
surface orientation, occluding contour, and disparity. The principal d:tflctty with intnrs:c inaves :s
that each by itself is generally underconstrained: they can only be cmputetl in parale with each
other and with the use of parameters obtained .hrough segmentacon.

While intrinsic images are not segmented, they are distinctly easier .o segment than the original
intensity image. If parts of these images are organized in some way, this organizauon can be
detected by a general I lough transform technique. Networks of feature parameters are appended to
the intrinsic image organization. Then the intrinsic image points are mapped into these networks.
This mapping will be many-to-one onto interesting parameter vaLurs. !'h:s basic relauonshi :s
extended into a general representation and contro! technique with the addition of three man :.aeas:
abstracuon levels, sequenual search; and tight couping. These ideas are a nucleus of a theory of
low-level and intermediate-level vision. This theory explains segmenwutIon in terms of highly paraEfc
cooperative computabon among intrinsic images and a set of parameter spaces at differvnt 'evels rf
abstraction.

The preparation of this paper was supported in parr h e-Danse. Advalg-Rcearch
Projects Agency, monitored by the ONR, tinder Contract'/ NP014-78-C-0164)& N00014-80-C-0197/
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1. Overview

One of the most troublesome puzzles in vision is how parts of an image are seen as a
meaningful whole or segment. This is known as the segmentauon problem. The ambiguous use of
segment, which means part, to denote a whole, arises from the fact that a segment is all
intermediate component in a description which relates an object with an ianage. From the viewpoint
of the object descripuon, the segment is a part. From the viewpoint of a group of image points with
common properties, the segment is a whole.

Parts of an image are seen as a segment if the corresponding physical object has common
physical properties, or features. For example, if a connected component of the image has a single
color, say red, then it may be seen as a segment. The patch of red arises from the physical object's
surface reflectance. Usually there are not one but several features which have de same spaual
registration. For example, an object may be moving, red, and a cube. Figure la shows this case.
Segmentation is more difficult when features are not spatially registered. Figure lb shows a
multicolored cube. Which feature should be the most compelling, the color or the geometric lines
indicating the cube? In the general case this answer depends on the goals of the perceiver. Another
common problem occurs when an object is occluded (li"gLtre Ic); a theory of low-levw vision must
be able to explain how an object is seen as a segment when the features are only partially registered
or inomplete. Real image data is also noisy and many segments are only perceived cwing to the
combination of weak evidence of several features. The evidence may be so weak that each feature, if
viewed in isolation, would be uninterpretable.

Figure l

We develop the nucleus of a theory of low-level and intermediate-level vision which explains
the above aspects of segmentation in terms of massively-parallel cooperative computation IRosenfeld
et al.. 1976; Zucker, 1976; Marr, 1979J between two groups of networks. One group, intrinsic images
[Barrow and Tenenbaum, 19731, can be computed primarily n terms of local constraints. The other,
termed a feature space, can be computed primarily in terms of global mappings from intrinsic
images to feature space. Feature space itself may have many different :eve!s of abstraction. Intrinsic
images and feature spaces are collectively called paranieter networks because they both have a
common organization. !'hat is, the network is an organization of basic units, each representing
values of a parucular parameter. 1The simple structure of units sunoLlcs the contro! task and also
makes the network representation easily extendable. The basic elemen's of the theory are the
following.

1) The cooperative computation of several intrinsic images.

Recent work has shown how to calculate intrinsic images from raw intensity
data. Examples are images of velocity (opuical flow) [llorn and Schunck, "9SC;
Ullman, 1977; 19791, surface orienuation [Iforn and Sjoberg. 197F; Ikeuchi, 19,01,
occluding contour 11Prager, 1980; Rosenfeld et al., 19761, and disparity [Marr and
Poggio, 1976; Barnard and Thompson, '979]. Intrinsic images can be computed
independently Linder special conditions, but in general they a r interdependcnt.
Intrinsic images are in concert with the hypothesis that the v:s.:al system bu:,ds
many intermediate descriptions from imige (!a=. These descr:ptons represent
important parame.ers such as velocity, delpth-, surface reliectan:Q expliCiLly, s:nce
in the explicit form they are easier to map into object desc:puons.

2) The extraction of useful parameters from intrinsic images.

If parts of the intrinsic image are organized in some way, this organization
can be detected by a general Hough transfbrm technique [Duda and IHart, :972;
lil'ard, 19,1a; Kender, 1978; Ohliander ct a'., 19791. [his is done by describing

the organizatuon n terms of parameters and! then mapping the intrinsic image
rpoints n o parameter space. The tra s'rrmnauon will be many-to-one onto
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parameter values which represent meaningful units. A major advantage of the
lough transform is that it is relauvely insensitive to occlusion and noise.

3) Interactions involving several levels of abstraction.

The Hough transform is a way of seeing spaual information as a urit.
However, if the unit has a complex structure the mapping from space to unit can
be unmanageably complex. A way around this is to introduce units of
intermediate levels of abstraction ISabbah, 1981; Ballard and Sabbah, 1981;
Kender, 1978]. 'his reduces a complex transform to several simpler transforms
between units at successively higher levels of absi'acuon.

4) Focus-of-attention mechanisms.

Visual focus-of-attention can be partly explained as the conjunction of two
mechanisms: 1) the use of IHough transforms to modify sensor input; and 2) the
sequential applicauon of Hough transforms.

5) Coupling between intrinsic images and parameters.

In general, intrinsic images cannot be computed without global parameters.At the same time, these global parameters art what we mean oy seeing parts of
the intrinsic image as a segment. In these cases the intnnsic image and
parameters are said to be tightly coupled although each cannot be computed
independently, they can be corppoted simultaneously Iliallard. 1981b; 91c}.

We re-emphasize that our interest is low-level vision. Thus in item (4) above, focus of attention is
interpreted in a narrow sense: visual features which are clear can help the recogniuon of other
features (or perhaps direct eye movements). We do not attempt to exp!a.n general plans and goals.

Representations for Parameter Networks

The basic element of a parameter network is a parameter node. A parameter node will
represent a single parameter value and has an associated confidence. The value is a set of numerica,
measurements for the node; the confidence is a measure of their believaibility. For example, if there
is an edge at (10,10) with orientauon 30o and length 5 un.'s, the vector value of the parameter node
representing the edge is (x,y,O,s) = (10,10,30o,5). The associated conf!",ience is a measure of th'
fuzziness of this estimate. One way a confidence may be increased is if there are nearby edges of
the same orientation which align. Thus in Figure 2 'he edges in (a) and (b) have the same value bu.
we can be more confident in case (b).

Figure 2.

This paper assumes a very simple model. namely, collections of va'ue units. Each value unit is
connected ,o a subset of other value units, and can alter only those '.nits. Underlying ohysicul
principles determine the appropriate connection subsets. The confidence updating is done by non-
linear relaxation. 'The overall structure of the paper is slanted towards abstractions of" physical
principles: however, we aso show how these principles are imp>er-'ed in th. networks.

2. Intrinsic images

An intrinsic image is an image of some important parameter that is in registration with the
original intensity image jBarrow and Tenenbaum, 1978; Marr, 19791, that is, each parameter :s
indexed by retinal coordinates. For example, in the velocity (optical fow) image, one is able to
compute at each point in time and for each spatial posiuon a local vcloc.ty vector v(X,'). Figure 2
shows Horn's example for a rotatng sphere Ibor and Schunck, 19 C1. lIntnnsic images may only be
coimpu ible over cerwin parts o1 Ie :mnge, an( ovuer t'hose parts .he Parnmeters art contrnumosi,
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varying. While intrinsic images are not segmented into parts of objects, hey are distinctly easier to

segment Utan the original intensity Image. Other examples of such images are surface orientation,
occluding ccIwur, and disparity.

Figure 3.

Very recently there has been rapid progress in finding algorithms for computiung intrinsic
images from intensity data. What is remarkable is that each such image type is computed in the
same manner. Two constraints, one derived from physical principals and the other from a constraint
that the restltant images should be locally smooth, stifflce to specify a parallel-iterauve algorithm.
Table I shows this commonality but is not an exhaustive list of approaches. See page 2 for
additional references.

Table 1: Intrinsic Images

Parameter Physical Constraint Smoothness Constaint Refs.

Edge Orientation boundaries are nearby edges Prager 1979
1) locally linear should align

Disparity if x corresponds neighboring points Marr and Poggio
d to x' then should have 1976

f(x + A) = qx' + A) similar disparities

Surface Onent'i. f(x)=R(0,p.0s5.p) 720=0 lkeuchi 1980

O, q 0s.(s is the light 72 P=O

source direction

Optical Flow df/dt=0 V2u=0 IIorn and

u,v 7 2 v=0 Schunck 1980

While the above algorithms work well on images which are constrained to satisfy the underlying
asstImptions, they may not work in the general case. Almost always there are free parameters or
boundary conditions which have to be determined independently.

2.1 Nulti-IResolution Relaxation Methods

O1 e general notion of "boundary condition" is image resolutdon. Previous methods for
compuung intrinsic images have used a single image resolution, bu' :n most situaUons tLhiS N
unrealistic. What is the correct resolution? At high resolution

" noise is a factor
* convergence !s slow
" basic assumptions may not hold

To see the last point, imagine a surface with a micro-texture. At low resolucon the surface
structure is blurred and simple reflecutance models >old, but at high resoluuon ',he Ocrustru',rt:
can render such models useless. At !ow resolution

" noise is less of a factor
" convergence is fast
* basic assumpUons may not hold

The last point arises from the fact that most intrinsic :rnages are computed from constraints which
assume local variations are smooth. Wid incrcm:ng gr:d resoluuc\r.,, tese assumpuons are 'o,,
like!y to be valid.

--



Hence a conjecture is that there is a range of resoluuons for which the computations will be
valid. Furthermore, this range IS expected to be spatially variant. A tool for eXplor rig this conjecture
ts Intltigtit %Iaxation techniques 1llrandt, 19771, which have proven very useful for Solving
differen~tial equauons. TIhis Model, together with reasoning flurn physical First principles, should
allow the dt.termination of' imlage-depenUCrit grid resolutions for which intrinsic iiInige cOMPUtations
are validI. Multi1.grid !echriiui:c:s are Of Course related to pyramrids ITanimoto and flavlidis, 1975;
Hanson and Riseman, :9781.

Z.2 Cooperative Computation of Multiple Intrinsic Images

Intrinsic images are logtcally computed simultaneously. In fact, they have to be', otherwise each
inrinsic CImage IS Underdectermined in the general case. (Only on certain synthetic images is the
compuiauon well-defined.) l'urthermore, they are highly interdependent, partilarly at Points Of
discontinuity (Harrow and Tlenenbaum, 19781. I-ocr example:

intensity edges can be indicauve of depth discontinuities. Thus the edge image
IS Coupled to the disparity image;,
Surface orientation is also indicative of depth discontintiity and is thus related
to the other two; and
different objects whiuch are moving relative to each other produce
disconunUlues in the flow field.

By incorporating these couplings in the intrinsic image computations, one should find general
cases where the computations will converge. A separate issue is the behavior of the coupled
computations in, the face of conflicting information.

2.3 Intrinsic Iniags at Different Levels of Abstraction

Trhe Survey of intrnrsic images (Table 1) excluded the fact th71a2 intrinsi c Images may have Fine
stricture involving sev %,l levels of' abstraction. In fact, it seems likely that Multiple abstraction
lezvels are necessary in many cases. For example, Zucker (19801 uses two levels of abstraction in
computing orientation intrnsic imiages, one for points of high gradients and the other for edge
segments. 'Ihe CompLItation of a velocity image in 3-d Could involve three levels of abstraction:

"a change d~'eclion level where units are used for variations in intensity over
space and time Al/Ax, AI/Ay, AUL/ (primes denote reunal coordinates);

"an optical flow level where units correspond to reunal velocities
(uI(X ,y'),V(x',Y'Th

"a 3-4i flow level where units correspond to 3-d velocities

The feasibility of computing the optical flow from change measures has been studied by
[Barnard and Thompso~i, 1979; P'rager. 1930; 1 fon and, Schuinck, 19901. 'lhe feasibility Of Computing
3-ti flow is explored in Iliallard. '.991cl.

2.4 Intrinsic Images and Parameter Nodes

Two models have beer. used to comptute intrinsic images: 1) the value unit defined in Section
111rager, 19-40; Mann and lPoggio, 19761: and 2) a var:ibe unit l~kVeuC'., 1980; Ilur and SchUnck,
M01O. In Ule first mo~le' th1re :S a unit for every valu.e of every varia)be: :n1 effect the repreSentauoC

has only constants. Constant va!le Units may have ou.:tuts which are conFl.dencvs between zero an(:
one. In the second Model, each unit rcoresei~ a var: abcv which can :ake on values (the standard
method is to use an array; for utese urus). Vhu 'ouj)nut Sthe value; her is no e.,pl:eiu notion L)!
con fidence.

4 -t - .
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In general the unit/value represenaidon is sufficient since problems formulated to use variables

can be transformed into unt/value problems in the foilowing manner. Suppose x, y, and z sausfy a
re!aon R(.y,Z) = 0. Let us use a set of values A for x, ! for y, and C for z. Where a _ A, we
would like C(a) to be I if there exist b E B and c E C such that C(b) = 1, C(c) = ", and R(a,b.c)
= 0. To implement this in a parameter network connect all pairs of (b,c) E BxC to a valte (a) if
R(ab,c) = 0. Then starting with initial confidences, :ncrement C(a) if there exist (bc) such that
R(a,b,c) = 0 and C(b) + C(c) > some threshold. The individual vaities b and c may be treated
similarly.

Note that the updating function is nonlinear, when the underlying physical relation R is
nonlinear. If the relation R can be linearized then the cooperative computations can be shown to be
equivalent to Linear programming [llinton, 1979!. The linear case has also been analyzed by
Illurrimel and Zucker, 19801.

3. Parameter Spaces

What does it mean to perceive parts of an image as a segment? In ouT theory, this percepuon
takes place if there is a Iarameter space such that each of the parts can have the same parameter
value. This general idea is illustrated by the following examples.

" Parts of a color image may be seen as a segment if they have the same color.
In this case the parameter space is a space of colors and the parts map into a
common point representing tht; common color.

Parts of an optical flow image may be seen as a segment if they are part of a
rigid body that is moving. In this case the parameter space represents the rigid
body mouon parameters of translatonal and rotational velocity and parts of
the image map into a common point in that space.

Parts of edge and surface orientation images may be seen as a segment if they
are part of the same shape. This case is more complicated as there must exist
some imurnal representation of the shape. Given this representation, the
parameter space represents the transformauon (scale, rotauon, translation)
from the internal representation to the (viewer-centered) image representauon.
Parts of the image which are seen as the shape have common vaiues for these
paraeters.

A general way of describing this relationship between parts of an image and the associated
parameters is the Hough transJbrn I1ough, 1962; Duda and Hart, 1972; Kimme et al.. 1975:
Shapiro, 19781. In our low-level vision theory, Ilough transforms relate intrinsic images and feature
spaces and feature spaces at different levels of abstraction. If the intrinsic image parameter is a
vector (x,a(x)) E A and an element of feature space is a vector 1) E I then there is usually a
physical constraint that re!ates a(x) and 1), i.e., some relation f(a,bh) such that

f(a,h) = 0. '

The space A represents all possible intrinsic image values. A particular intrnsic image is
described by a set of vaiues {ak} where ak = a(xk). Now the set is only consistent wit!,
certain elements in the space B, owing to the constraint imposed by the relauon f. This physicz!.
constraint can be explo!ted in the ollowmng manner. For each ak we can compute the st'

I3k = hk and f(ak,h) < 8b)

Define I(h) as the number of tmes the value ) occurs in Ukllk. 11() is the Ilough transform
from the space a to the space h and is he number of points in intrinsic image space which are
consistent with the parameter vaLie b. ]I(h) makes the most sense when th- valueS both (a(X),x) and
h1 are discre'e. Ilence .!,: constant f5i above is reia.C. 'o the uuants'azon in the spsce B. II s .Th

I!
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best normalized by defining C(h) = lI(l))/IEbl(h). In that case, the value C(b) can stand for the

conficence that the segment with feature Value b is preselt inI 'tle image.

Concerning the implementation of IHough transforms in networks, Bk C 1 is the subset of 13
units to which the unit ak hould be connected in the network. A separate Imax unit is needed for

normalization.

The lough transform need not originate from intrinsic image space but can be defined
between any two spaces A and I1 as long as there is some relation fieh) = 0 for a E A and Ii E B.
To avoid describing the above computations in detail, we can use a shorthand notauon for lough
transforms. Each transform can be described as the triple

<a,b,f>

where the necessary computations are implicit. Note .hat the order of a and b is important in the
notation; in general, <a,b,.f> is not equivalent to <bha,f>.

As a very simple example of a lough transform, we describe how a patch of red in an image
may be seen as a unit. For this to happen, an association is made between the spatially contiguous
points in the image and the particular value "red" in a parameter space of colors. There are
essentially three dimensions to color space. Although r-g-b is widely use,[ in computer applications,
humans seem to Use an opponents-process basis (r-g, y-b, white-black) [Ulurvich and Jameson, 1957].
One (admittedly overly simpified) way of transforming from (r,g,b) space to opponents color space
is to use the following linear transformation:

rg 1 -2 1 r

yb = -1 -1 2 g
Lbw 1 1 1 b (3.1)

ThIus the Ilough transform is given by <ahj,' where

a = (r(x,y), b(x,y), g(xy))

b = (rg, yb, bw)

and

f = 'a - h
where T is the matrix defined by Eq, 3.1.

For a red spot on a green background there are two values of color parameters which have
high values for C(1): red and green. The rest of color Hough transform has low values. Figure 4
shows this idea, which has been used "by Illanson and Riseman, 1978: Ohlander et al., 19791,
applied to a color image.

Figure 4: Hanson and Riseman's

Segmentauon in Color Space.

To show that intrinsic images and parameter spaces may be related in more complicated ways,
we briefly describe an exampie of how a specific two-dimensional shape is detected by specifying a
I lough transformatIuon from edge space (:ocal Lnear edges detected wth a standard etige detector) to
a four-dimensional parameter space consisting of 'ocal origin coordinates, rotion and scale. Iloth
the color-space example and this one have the same so!uuon at an abstract level. In each case there
is a transformation from :ntr:.nslc imag,: space :o parnmeter space that segmens the mage. In ',he
first case, points ,n the color tmage !have the same color values. In the second case, poin's in the
edge image have the same shape parameter values. In fact, almost all segmentaLion problems can be
characterized in this Cash, n.

TFable 2 shows some other I lough trans!orms.
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Table 2: 1 Tough Transforms

Intrinsic Image Hough Transform

Optical Flow * IIeading
* Rotation of 3d rigid bocy

Surface Orientation * Illumination angle
* Shape

Occluding Contour * Shape
* Surface orientation

Disparity * Segments of constant disparity

Color * Segments of constant color

The two-dimensional shape example shows the general feature of llough transforms: if the
algorithms are completely parallel, the space required is exponential in the number of parameters.
[his can lead to inunense space requirements. For example, consider an eight-parameter space of
100 discrete values for each parameter. The total number of parameter nodes required to represent
the space is 1008! Fortunately this problem can generally be alleviated by detecting groups of
parameters sequentially. The example of 2-d shape detection is reconsidered in Section 3.2 to
illustrate this extremely powerful decomposition technique.

3.1 Detecting Two-)irnensional Shapes

Two-dimensional shapes can be found from a primal sketch IMarr, 19781 by encoding the shape
infbrmation in constraint tables HBallard, 1981a]. Consider the case where an object being sought has
no simple analytic form, but has a parUcular silhouette. Suppose for the moment that the object
appears in the image with known shape, orientaton, and scale. (If onentation and scale are
unknown, they can ue handled as additional parameters, as we will show.) Now pick a coordinate
system for the silhouette and draw a line to the boundary Ifrom the coordinate system origin. At the
boundary point we can compute the gradient direction and length and store the reference point as a
function of this information. Thus it is possible to precompute the location of the reference point
from boundary points given the gradient ang!e. The baLsic strategy of the I Hough techique for
shapes is to compute the loci of points in parame'er space from an edge in image space arid
increment those points in an array. Figure 5 shows the relevant geometry.

Figure 5: Geometry for the I Iough Transform.

In this case the reference point coordinates (xc,yc) are the only parameters (remember, rotation and
scaling have been fixed). Thus if we encounter in an image an edge point (x,y) with gradient
orientation ((p) and span (1) we know that the possible refi,,rence points are at

(x + r( tp,l)cos(a((pl)),y + r(p,l)sin(a(cp,l)))

and so on.

Thus we can describe the generalized Ilough aigoithm as fo!ows:

- , i I



Generalized Holugh for Shapes

Step 0. Make a tible for the shape to be !ocated like that shown in Figure 2.

Step 1. Form an allay Of posbl ef.Dence points

II(xcmiun:xcmax, Ycmin:ycmax) Inidialized .o zero.
Step 2. For each edge do thie following:

Step 2.1. Compute (X),l(X)
Step 2.2a. CalCUlate the possible centers, i.e., foreach tbeentry for (ep.')

Compute
xC x+ r((P,!)cos(a((Pl))
yc :=y+r(rp,l)sin(a(rp,!))

Step 2.2b. Incirmnt the array

II(xc'yc) := ll(xc~yc)+1
Step 3. Possible locat~ions for the shape are given by maxima in the array 1-.

In terms of our Hlough transform notation, the transform is of the form

where T is the constraint relation between (rp(x,y),!(x,y),x,y) and (xc,yc) shown by Figure 5. Also the
inner loop of the algorithm (Step 2.2) computes 13K given an edge (TK2 :K). TIhe outer !oop (Step 2)

comPutes 'UKIK. T'he rslsOf k'sing this ttansform to detect a shape are shown in Figure 6,
Figture 6a shows an image of shapes. ']'he R-table has been made for the middle shape. 1Fi.gure 6b
shows the I lou.gh Transform for the shape, ,.e., I l(xc~yc) displayed as an image. Figure 6c shows Lhe
shape given by the maxima of I r(xc,yc) overlaid on top of the image.

Vigtnre 6:. Applying the Gtneraited I lough Tiehnique.
(a) Syntheuc image. (b) I laugh Transform

A(xc~yc) for miudd'e shape.

What about the parameters of scale and rotation. s and 9 These are readily accommodated by
expanding the accumuLlator array and doing more: worz in the Lncremenation step. 1 titis, in Step
the accumulator array !s changed to

I l~ci~ca-cinymxs-in sx 0 m Oa
antd Step 2.2a is changed to

foreach table entry for (9.,l) do
foreach s and 0
xc := x+r(rP,l) s cos(at(ep,l)+O)
yc y + yr(p, 1) s sin(at(rp,l)+0)

Finally, Step 2.2b is now

I I(xc'yc's,9) : = I I(xc,yc,s.9)+ 1

Now the transform is given by (((x,y),(x,y),x,y),(xc,yc,s,cp).' ) where Ti' incorporates the rules
For computig s and p. Notice that thIS 0lgorithmn ,s ,oqonally paralle: snce all, the incremnentatons
are independent, and that the space required ,s exponential in t,"e number of parameters.

3.2 Feature Space D~ecompositions

In the example of Secuon 3. a particular shape is found by a nationaily parallel transform
from edge space (qp(x,y).'(xy),x,y) to a fotir-d!,mens:ona! shape space t.ycs,) Iluwever, time can
1bv traded fur sp;,,e, 1)v 21 r(d: ni t:rcu of thescL n);!'amvctrs Veur,'x: iea ug of t,!(
scquenta seairch : h:,, hc ine!!S:0ona1tY 01 ( .vmuT!aL:on iit '22sie i: ess tan '
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single computation invo!ving a!! of the parameters sirnL!,.aneously !a!'ard and Sabbih, '91 I. For
example, where Nx. Ns . an, N# are lhe sizes of -tiv spaces (xc,yc), N, and II respctuvely, scarching,
for a particular shape's parameters in the order (s,//) and (xc,yc) requires parameter spac e equal 'to
NsN 0 + Nx instead of N ONx . The 1lough transform for the indvidual group is si:! nouonaly

parallel, so the Lime needed in the sequential transform is only proportional to the number of
parameter groups. In the shape example, the number of groups .s .wo.

To see how scale and orientation can be detected independently, consider a table that encodes
the orientation of the edge with respect to the silhouette's coordinate system. For example, !br each
edge (rp,l) encode the angle necessary to rotate the edge clockwise so ,i' :t is para;iV to the x-ax:5.
Using this table, the algorium is as follows:

Hough Algorithm for Orientation and Scale:

Step 0. Make an orientation table as a function of ip and I.
Step 1. Form an array of possible scale-orientation pairs IH0: 2 ,Smn:Smax).
Step 2. For each edge do the following:
Step 2.1 Compute cp(x),l(x).
Step 2.2 Foreach S do the following:

(a) look up the table entry a(q'(x),s*!(x)).
(b) increment the array

ll(a,s) := II(a,s)+1.
Step 3. Possible orientations and scales are given by maxima in the array H.

The value of sequential searches through parameter space becomes even more important in 3-d
since this case requires seven parameters: three posiuonal coordinates: three orientation angles; and
a scale factor. The sequenti.a Ilough-shape transform extends readiy to 3-d and has been used o
detect polyhedra Iliallard and Sabbah, 1981] using the constraints of [Kanade, 1978; 19791.

The previous example is for a single shape, For N shapes, given that the search is in parallel, a
size factor of N is added to the search space. To cut down on the impact. of this lIctor one needs a
shape taxonomy like that of Bribiesca [Bribiesca and Guzman, 19791 where all shapes can be
described as a branch in a single shape tree. The advantage of the shape tree is that rather than
looking for all N shapes in parallel, the search can be parutioned into searches of spaces of size N,,
NU ijk, etc., where the sum of these is roughiJy equivalent to 'og(N).

i,



4. lierarchies of .Xlstraictiott LevlIs

The valule o' uiSing several herarchical levelS of absracuon in vision is that -he interacuion
between levels Is SIITip ,.IivC. Ib1is d oes not mean that bigh-evvl 2lsc r:rncons cannot nflaeInCe :(w-
levei dcscriptions, or .hat, the enireCmorimsi not ca)T ec''o .! paiel. R :Icicuea
descriptive level Canl on1y nf1CLIencv nearby lvvels. !in Saobah 198 '.h, mliniiton is 1.o .evu.s
(!irecL y above and beo. terlvel arc: In: 'eLnc,-t' in,: retL1y. 1 nL M'lIC~j con 'ar cb I! Lt
t.ransiorrns, whic;h spec::',,' the constrai fs be,:,ten .cv s , aL -iattv relatlonsnIlps ntc
;vvels involve only it Cw paafieCtrS. Thlis Is WnI pe~b n ~',-,LIurV. s 1nce the s'iic
required by the I lough trnsform- is exponentur' In the nimbelr of - ~ '' as atre nc scts 1K 0
Different levels of abstractoni have been used by Ml lason anid R:9 ~' 78j. Examples using 'n
H ough translorm mal, be caQnd In ISibbah, i9%1: KencLer, :97M.S ! . !e !sO:s Vor.'Iels suc(h ,-s
thiose shown in 1ligure 7 to reorganize origami wo.d- figures.

Figoure?7.

1'o show an example In detail, Kender's techn!Ciue for deteCUng van.sh:ng poinus in an Images
from oriented line segments [Kender, '9781 s descrinetl. Such line e'nnv which ire part of i
given Vanishing point , rm. a radial field Which ematnates from the 1non ' hfrcint van~ishing pointr
have diffcernt sets of' :1SSOC.'aLe radial line segments (F!8. S).

Figure S.

This example is inrere.sung since the same siiuauon ocotirS With respect, .o opucal 'now dtie .o pure
translauon. If the ohbj ects :n the image are stationary wvith' respect to, a Tr!ns aunv ob.'erver, then thIe
Plow vetors will 1be e'monaung radially fr-om a foCcus-of-expanvon- h in tL'e d~rection tof
Mouon. Obiecus Lransli~cng with respect to t-he observer's framec w:!' Wrotuci :r own fo
teminau ng ram it diffcern P"OE i g. S).

This exampli: involvtes tvo levels of abstacton. The first transforms colinear edge segments
into Points ( represenunp '!nes). Radial scts of edge ,ementLs corresn~ond t~o c~rcles thrceugo the orlv:,ri
in line-space. 'I 11s theC >cL no0 transltormiaon is betwenm c:rcies !11n-nrc to points .n 2 oab~
space.

The first lvel IS easy :f a (pU,) Line space is used where

p = x cost) - y sin(J.

Since an edge element has dlirection a (Fig 9), each stich el ement maps onto preclsely one point in
0),0)) Space: (X coSa( - Y SInM, a). Thus rte I 'Lugh transform ,. :t .he notationI of' Seccon 3. ts:

((x,y,a(x,y)). (p,#), (0= a-, p = x cosa + y sina)X

Figure 9.

Now maxima in C(p,0J) correspond to lines in the image. Also, radal lines will form a c;ircle of
local maxima in (pY-nc.TO See this note that Uhe triangle OIPQ ., Figure lb !s ailways a right.
trigle, and therefore 00 mLisL be the ciameter of* a irleNote t!a t' circle is; ons,,rai neL: 'o

go hrough the origin so that :Ls diameter !mist be Urn Jte il.

p/ 2 = i cos9 - - b sinti

where (2a,21)) is the becauon of t-he FOetiS of e~xpansion (or vanishing p)oirr). [haIs the seconld
transformi is

<(p.#), (a~b), (1p12 =a cosOi + b sin#)>.
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Implementation in Parameter Networks

In Our earlier definition of the lough transrorm, we assumed that the mcasturements ak all had
confidence equal to unity. With higher !eve! of abstract;on ilough transfn rms, this may no longer be
the case. This is easiy handled by keeping track of the cofidences in the set Ilk, I.C.,

Ilk = [(bC)fiak,b) < and C = C(ak)}.
Then 11(b) is the sum of the confidences associated with the value b in Uk'k .

5. Focus-of-Attention

Previously, intrinsic image to feature space transforms used sing!e [rough transforms. We are
now ready to tackle issues which arise wren severa lugh transforms are used. H.rst we show that

itt.kip le louigh transiorms can be :nvoked in pw',: .o resolve the robnl of' utctiug a Lofn'
with multiple features. lhis is done via the mechanism !'a conte.t !luigh transform which is '%,
sum of individual lough transforms. Next, we dtescr-)e a focusing mechanism which exploits the
fact that an ambiguity ,n one space may be resolvet :n another. I h:s tenh n!quC allows the UeteciUon
of arbitrarily Fine detail. At'enuon can be directed f"rom a unit to !ts vlpar's and back again via a
mechanism termed sequenCini..

5.1 Spatial Context

If a unit has multiple spatially registered features, these can be detected by applying two
different sets of lough Translbrms. T'e I lough Transform defined in Section 3 is 'bottom-up:
points in de intr:nsic Image spuce dterimne plaus~b!L sets of po:ns in feature space. The
complementary transform !s top-down: points in feature space determine platisible sets of points :n
irmsic image space. Formally, given a set {ilk} E B, we compute

Ak = Ia I 1)k and f(ahk) _ SA}

11(x) is the number or times the value a(x) occurs in UkAk. The mapping which defines 11(a) is
akely to be one to many and furthermore, for a given feature, liff'erent bks shoLld give rise to
disjoint subsets of A. Owing to this last point, it is intuitively appealing to deal with I 1.(x) which :s
simply the sum of the confidences of different values of the parameters a,a2,.... which are at the
same spatial location x,y, i.e.,

lla(x) = Za Il(,x)

An Example

Consider again the image of a red spot on a green background, where the spot takes up one-
third of the image pixels. Then the transform 11(1)) where 1) = r,gb has two peaks and is /.ero
everywhere else, i.e., for four-bit color scale accuracy

II(h) = 1 if h = (0,15,0)
1/2 if' h = (15,0,0)
0 otherwise

Now consider h1  = (15,0,0) and compute ll(ax). This is given by

1 I(a,x) = 1 if x in spot and a = RED
0 otherwise

A point in A represents the single color red and so 11(x) in this case is

H(x) = 1 if x is spot
0 otherwise

k
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The transform 11(x) is cal.ed the spatial context .ransform for reasons that will become more 3
apparent when we discuss locus of atnt.on. [he eJ,.c' of this trans!orm is to place an Imaginary
filter in front of the sensors. In the above case, only sensors that arc spaially registered with RI.L)
sensors would receive input.

Multiple Features

Now consider the case where multiple features are present in -he image. Fach individua!
bottom-up transforms for different features can be applied in paralle! to compute II (!i),

.H(Ibm) (for m feature spaces). Now maxima !n each of .hese spaces can be used 'o
compute individual top-down transforms T-3a(x),l!:2(x), (x). "he generalized spatial-context
transform If(x) is simply the normalized sum uf .hese individual tmnsforms, :.e..

(x) = (1/m) >-k Ilak(X)

Now the value of II(x) at a point x is the fraction of the maximum number of spatially
registered Jfeutures that are present. H igh values of 11 correspond to spaiually registered itrmnsc
iage points which each have been grouped !nto a unt by a separate bot'om-up transform. Thus

11(x) represents a possible soluton to the mulupke-feature prob',m.

5.2 Subspaces and Sequencing

In our Formalism, a segment in an image is iden'y represented ,-s a conjuncuon of lough
transfbrm maxima. Fach set of maxima corresponds to an organ:/zL!1_un with respect to a givv:
modality: color, velocity, etc. In the previous secuon we showed how ., paral!lel genernuon of these
maxima could be used to discover regions in the Limage corresportd. :g to mu:'t-modal un:ts.
Uiifortunate!y, this technique will usually be :nadeqUate because the :MiL is not maifested a% a
clear maxima in all the modalities. As an example, consider a ,ght-bue, moving unit, against a
background of other units, none of which are light-blue. but which are moving. In the color space,
the unt is clearly revealed; light-blue inits have high confidence values (H.*g '0).

Figure 10.
In velocity space, however, there is no clear maximum owing to the presence of other moving units.

The fundamental problem is that each modality consists of a projection of feature space. In tle
high-dimensional space consisting of the concatwnauon of aU Ole 'nC;viCual dimensons of each
modality, each unit would appear as a disunct max~m,.:m. ['he visiia' system model is structurec to
examine only the subspaces of" the individual modali,,ties. The principa: reason fur 'his is economy;
the space requirement increases exponentially wt-h -he number of modalius.

This problem can be surmounted if the different parameter spaces are examined sequentially.
First the parameter spaces are examined for maxima. The most disunct maxima is picked and its
inverse lough transform, C(x), is generated. This transform can be usd to block Input from sensors
positioned at its low confidence valies. To see how this might work, let us reconsider the previous
example of the light-blue, moving unit. In color space there is a clear maximum corresponding to
light-blue. Tius viiiue is used to generate ClightLblue(x) and block input from all sensors that are
not spaually registered with light-blue color input. [he net effect is that :n ve!oc;ty space there s
now a clear maxima as :nput from other units has been blocked.

5.3 Multiple, Spatially-Registered Features

Sequencing solves the problem of building tip coherent groups of features, but has its
drawbacks. For example, if the "blue," "movng.. "horizontal" object were a "'frisbee," one wou!d
like tus percept to be triggered via a IHough-.lke transform. llowcvur, :n the sequencing example,
there is initial evidence for a!l light-blue objects, arid this is a very large set. Worse, the percept

frisbee" cnuld he trigered by rnn-snauaily reg~s'ered groups of'"b.e" and "mnving" Mpuus.

Ii
_ _ _ ,,,. I,
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There is a solution to these problems if we assume thal, in general, act.ual occurrences of features
will be sparse. In other words, ,n a g.ven image there should not be two very similar colors
associated with different objects. If there are, our I lough transform model will only be able to
concentrate on one of them at a -,me.

The solution is due to [Feldman and Ballard, 19911. We will develop it here in terms of our
Hlough transform formalism in stages. First we formaily concatenate parameter spaces. Next we
describe low-resolution concatenated spaces. Finally, we consider Iow-resoluuon parameter spaces
which can be tuned to specific parameter values.

Ideally, one could resolve the spatial registrauon problem by concatenaung feature spaces. For

example, concatenating color space with motion space leads to

Bk = {(bc, bm)l akc(Xk), akm(xk), fc(akc,bc),c, fm(alc,bm)<_Sm}
where elements in the expanded space (bc,bm) E Bc~x m are only ncl!udt-d if the lnput features are
spatially registered, i.e., while this is simply described :n symbolic form, it is also impracucal since
the parameter spaces for the combined-modality e!ements are impracucally :arge. A paral solution
to the size problem is to decrease the number of parameter nodes. Let bc' bm be values for color
and motion parameters respectively in the low-resolution spaces. Then the low reso!utuon I lough
transform is given by

Bk = {(bc' ,bm') I akc(xk), akm(xk), fc(akcbc')<Ac , fakmbm')<Am} (5.1)

where the bounds Ac and Am are larger to account for -he lower-resout:on in parameter space. The
grain of the low-resolution space can always be chosen to make the transform practical in terms of
space. I lowever, now groups of parameters that are suffLIcenty simi!ar n!.!y be transformed into the
same parameter node via Eq. (5.1). 'To resolve this problem we use a two-utered transform,
consisting of high-resolution single-modality transforms and low-resolution mulb-moda'I.ty
transforms. Using the single-modality translorms, we select maxima 0bc*} and {bm' such that

be = maxbc{bc E bc' ± .5Cc}
and

bm* = maxbmbm E bm' ± .SAm}.
These values are then used to tune the low-resolution [Tough trvnsform, i.e.,

Bk = {(bc',bm')Iakc, akin, fc(ak,bc*)K_'c, !'m(k,bm*)<Ac'

Thus the low resolution transform can be tuned to count only a subset of the high resolution
parameter nodes. [he drawback of dlis technique is that it can only respond to a single value of
(bc,bm) in each range {b, ± .5Ac, bm ± .5AmI. Thus either the high confidence parameter nodes
must be sufficiently sparse, or only one of the confusion classes can be examined at any one time.
This disadvantage Is otitweighed by being able to detect spatiady-registered features and thus
circumvent the more severe problem discussed earlier,

6. Tight Coupling

Most of the previous examples imply that the various [Tough transforms are relauve!y
independent. That is, once the intrinsc images are computed, the transforms can be computed. I he
general case is that this is not true; the intrinsic image contains global parameters which must )e
computed using I laugh transforms. Since the [lougih "ransform reqLiretl an intrinsic mage it might
seem that neither could be computed. In fact, both the tough transform and de intrinsic imagcs
can be computed by incorporaung the lough transforms into the parallel-iterative scheme used to
compute the intrinsic images. If de combined prolem :S well-condtioned: 1) the partial result for
the intrinsic image will be sufficient to prodLuce a partial result for the lotigh transform, and vice
versa; and 2) this process of using parual results in a parallel-ieratve manner will converge. We
tern this interdependence tight emplimg and illustrate it With two examples.

'I' .117
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In the first example, we show how a surface orienution intrinsic image can be computed from
one must know the location of the source of illumrinauon and Vice versa. We show how both dIUSC

computtions can be conducLed sinilLaneotisly wILth he parual resLt', for the surlacC orienulati
helping the illumination angle determinauon, and the parual result for the illumination angle
helping the surface orientauion dCtermIn.auon. The Illuminauon angle Is determined by a Ilough
translbrm.

In the second example, we show that a three-dimensional flow field can be segmented into
groups of vectors that represent general rigid body motion. The prob!em here is that an ndiiLdual

field vector v(x) is an unknown sum of rotational and translational components, i.e., v(x) = vR(X)

+ vT(x). These components can only be deterrmned by knowing global rigid body motion
parameters. However, these parameters can be deterrnoned only if v(x) is partitioned into vR(X) anti
V-l4x). As in the earlier example, this problem can be resolved by a parai!e-Iterauve scheme which
computes both the global parameters and the ve!ocity-Field decomprosNuon simultaneously.

Rather than being isolated examples, tight couplIng is believed to be the general case.
Extending the scope of the paral!el-iteraLive computation is the general solution.

6.1 Shape from Shading by Relaxation

Given the orientation of a surface with respect to a viewer, its reflec.ance propertes and t'e
location of a single light source, that Je brightness ;t a point o!" ,!:c viewer's retna an '
determined. That is, the rePfectance function R(Vip,.p) where O,. i.t! 0.i,rps are ornentauons ',t

die surface and source respectively, allows us to deter.ine l(x,y), '.he ut,.ensay :' terms of ru,nal
coordinates Horn and Soberg, 19781. [he form of R Is assumed to 7)e known. Ilowever, the
perceptual problem is the reverse: given I(xy) and R(.,.), determine t](x,y),q,(xy) and s,jp,.

In general, the problem of deriving (x,y)cp(xy) and Oscps is t,:nderdetermined. IHowever,
Ikeuchi 119S01 Showed that 'Ule surface could be d.e-,rm, ned locaiy once (](p was specifled. l!::s
me'tod ha', been exte:nded [Ballard, !9g bj to "he case where '/1,rp .s iniually unknown.

The algorithm is outined as follows. For a singie !lght source, :nh itensity at a point on a
retina can be described n .erms of the orientaton o! .'.e normal of t.he Xrr-spond,:w SuraLce poin.
and the stirface orienution. That is, in spher:cal notauon,

l(x,y) = R(f,(PVs, Ps)

where the angles H and (p are functions of x and y. Now by minimizing (l-R) 2 and appending a
.smoodness cunstraint on 0 and tp we have jlkeuchi, 199O an expression for the local error (if ,he
esumate for 0 and (p is unreliable) as follows:

E(xy) = (I-R) 2 + \((72f)2+(V2(P)2)

where X is a Lagrange multiplier. For a minimum, Eu and EP = 0. Skipping some steps, this leads
to

(P(x,y) = 4)ave(x,y)+T(x,y)R T

(x.y) = 0ave(x,y)+T(xy)R9

where Pavte(X,y) is a local average and

T(x,y) = (1/161)(I-R)

In solving these eqLauons, we assuMme 0 and qPs are known. An iterative method is used where the

Pave and 0 ave are calculated from a previous iteration.
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4

To calcUlate #, and ?,, we assume 0 and q) are known and use a Ilough technique. First we

form an array 1l!s, q~s of possible values of #s and rps initialized to zero. Now we can solve the

reflectance eqUtuon lor (ts" The lough technique works as follows. For each surfaet: element t.rp,

and for each 0. we calculate cps and increment llIOs,pSI, i.e., I1IOScp+s '= lIlj1,qsl+l. After all

surface elements have been processed, the maximum value of C corresponds to the locauon of the

point source. In [lallard, 1981b1 it is shown that calculation of the source location can proceed !n

parallel with that of #(x,y) and q)(x,y) and that the two calcu~at:ons will converge.

Results for the one-dimensional casq are shown in Figure 11 for -he case of a small surface
"bubble." Figure 11 shows the surface convergence, as wel as the convergence of the :1lumination
angle.

Figure 11: (a) Shading (top left curve).
(b) Surface convergence (colored points immediately below (a)).

(c) Illuminauon angle I lough transform (tYottuin ;L!t).
(d) Illumination angle convergence (upper nght).

It is important to remember that the boundary conditions in tus problem have been provided a

priori; in this case they are the orientation of the surface at the bountary of the bu'c. Generally,
these will have to be determined by muluple intrinsic :mages relaxations, as menuonec .n Section 2.

6.2 3-D Rigid Body Motion

The general motion of a rigid body can be described by eig.ht parameters: three for

translational velocity VT; three for angular velocity .Q; and two for 'ie location of the axis of

rotauon r. We describe the detection of rigid body mouon in three parts, each of whi'ch uses Ilough
transfbrms. First, we show how to detec' pure translauon (VT). Next we show how to detect pure

rotation (Q,r). Finally. we show that a 3-d flow vector can be iteratively decomposed into a
translational component and a rouaionml component. These components are tlescr:bed by the
parameters (vT , 2, r).

Pure Translational ,Motion

This case is very simple. If a rigid body is translating with velocity vT , then a point on the

body at location x will have velocity v(x) = YT . To detect this take 'the lough transform given )y

<(x, v(x)), (V-T), (v(x)-vT=0)>. The maximum vaLIe In H1(vTr) will correspond to the translatona!

velocity.

Pure Rotational Motion

In the case of pure rigid-body motion, each point on an axis in space such that

v(x) = £xp(x). (6.1)

where v, Q, and r are all orthogonal and p(x) is a vector from the point x to the axis of rotation
such that

p'(2xv) = 0.

That is, p is defined so as to be perpendicular to f? and v.

One problem is to specify the axis of rotation. This is done using a vector r which is the
smallest vector from the origin to the rotation axis (see Figure '.2).

Figure 12.

U ....--
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The pure rotation case involves Five parameters: three for the vector 2 and two to specify the
axis of rotation. A standard I lough technique woUld involve a transformation from (x, v(%)) to
(Q2,r' ) using Eq. (6.1). Only a vector r' equal to any two components of r is necessary since 1 r =
0. 1 lowever, a five-dimensional space is large, thus we are motivated to decompose the parameter
space (Q,r) into two, smaller spaces I1allard and Sabbah, 19811. One space is composed of two
components wx and w y if a unit vector w which defines the direction of Q2. The other is composed
of the magnitude of 2 and two componenu of r.

Since w must be perpendicular to V,

W-V = 0.
Furthermore. Iwi = 1. Combining these two equations leads to

OxVx + W yVy + / (1 - x2 -Wy 2 )vz = 0, (6.2)
which is a quadratic equation in unknowns wx and w . Thus the direction of the rotation vector
may be found from the Iough transform

<(v(x)). (Wx,.Wy). (Eq. (6.2))>.

Once w is known, it can be used in the following series of equations. If I21 is the magnitude of
the rotation vector, the vector s given by

s = x - Wxv/21
is on the rotation axis. Furthermore, r is given by

r = s - (s • w)w

so that

r = (x - W x v/1) - (x" W)W. (6.3)
This equation can be used to determne the first two components of r gven a value for 121. Thus
we can determine :Q! and v !'tom the following Hough transform:

<(x, v(x),W) (rx, ry, !1) (Eq. (6.3)).

(;eneral Rigid Body MVotion

Finally, suppose the motion is completely general so that

v(x) = V.(X) + 12.Xp(X).
Since only v(x) can be measured, how can one determine how much is translationa,' velocity and
how much is rotational veiociLy'? One possibility is to dynamically partion the ve!ocity into tMo
components vT<x) and vg2(x) which give the most consistent global parameters (v., S2 and r). This
would work as follows:

Step 0. Assume v1 (x) = v(x).
Step 1. Use the !ITough transforms to estimate (Q, r).
Step 2. Use (Q, r) to determine vg(x).
Step 3. Compute vT(x) = v(x) - vQ(x).
Step 4. Use the Hough transform to estimate vT.
Step 5. Compute vQ(x) = v(x) - vT(x).
Step 6. If vQ(x) has not converged, go to Step 1.



7. D~iscussion

The key ideas of ithis paper are summarized in the introducuon01. Here we mention other ideas
which (to not lit Cal tiunder any one of the preV!otis headings.

1) [he Intrinsic Image/Featire Space Duality. By distingishing between image fields and
image features we know when relaxation is the more important tool and when the HuLoigh transform
is more important.

2) Unit/value. By reducing the underlying primitives to units of extreme simplicity we (;an
algorithmically determine the connection patterns to represent m-Iry relations.

3) Massive Parallelism. By assuming the availability of massive parallel comptitation, we redtice
the need for sequential processing to morc essential cases. [For example, We use sequential
processing in ScLUcn 5 to resolve real ambiguities in the input.

4) Extensibility. The representattion is Very general, being m-ary consistency relations, and can
be extended to other domains besides, vision, to arbitrary levels of ab~straction within vision.
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