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IR Abstract

~ One of the most fundamental probiems in vision is segmentation; the way in which parts of an
Image are perceived as a meaningfu! whole.

Recent work has shown how to calculate images of physical parameters from raw intensity data.
Such images are known as 1nuinsic images, and cxamples are :mages of velocity {opucal flow),
surface onentation, occluding contour, and dispanty. The pnacipal ¢iificuily with intnnsic images
that each by itsell is generally underconstrained; they can only be ¢amputed in paratlel with each
other and with the use of parameters obtained through segmentauon,

While intrinsic images are nol segmented, they are distinctly easier ‘0 segment than the original
intensity image. If parts of these images are organized i1n some way, this organizauon can he
detected by a general Hough transform technique. Networks of feature parameters are appended o
the intrinsic image organization. Then the inlrinsic image points are mapped into Lhese networks.
This mapping will be many-to-one onto interesting parameter values. This basic relatonshin s
extended into a general representation and contro! technique with the additon of three main :deas: :
abstracton levels; sequental scarch; and tight couplng. These ideas are a nucleus of a theory ¢f 1‘
low-level and tntermediate-level vision. This theory explains segmentation 0 terms of hughly parallel !
cooperalive computation among intrinsic images and a set of parameter spaces at different levels of '

abstraction.
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1.  Overview

One of the most troublesome puzzies in vision is how parts of an image are seen as a
meaningful whole or segment. Thus is known as the segmentauon problem. The ambiguous use of
segment, which means part, to denote a whole, arises from the fact that a segment is an
intermediate component in a description which relates an object with an image. From the viewpoint
of the object descripuon, the segment is a part. From the viewpoint of a group of image points with
common propertes, the segment 18 a whole.

Parts of an image are seen as a segment if the corresponding physical object has common
physical properties, or features. For example, if a connected component of the image has a single
color, say red, then it may be seen as a segment. The patch of red arises from the physical object’s
surface reflectance. Usually there are not one but several features which have tie same spaual
regisiration. For example, an object may be moving, red, and a cube. IFigure la shows this case.
Segmentaton s more difficult when [leatures are not spatially registered. Figure 1b shows a
multicolored cube. Which feature should be the most compelling, the color or the geometric lines
indicating the cube? In the general case this answer depends on the goals of the perceiver. Another
common problem occurs when an object is occluded (Figure Ic); a theory of low-leve vision must
be able to explain how an object 1s seen as a segment when the features are only parually registered
or incnmplete. Real image data 15 also noisy and many segments are only perceived cwing o the
combiaauon of weak evidence of several features. The evidence may be so weak that each feature, if
viewed in isolation, would be uninterpretable.

Figure 1

We develop the nucleus of a theory of low-level and intermediate-level vision which explains
the above aspects of segmentaton in terms of massively-parallel cooperatve computation {Rosenfeld
et al., 1976; Zucker, 1976; Marr, 1979] between wo groups of networks. One group, intrinsic images
|Barrow and Tenenbaum, 1978), can be computed prinuarily in terms of local constraints. The other,
lermed a feature space, can be computed primarily in terms of global mappings from intrinsic
tmages o feature space. Feature space iwell may have many different levels of abstracuon. Iatrinsic
images and feature spaces are collectively called parameter networks decause they both have a
common organization, That s, the network is an crganization of basic units, cach representing
values of a parucular parameter. The simple structure ¢f units simplifies the conuo! task and also
makes the nelwork represenauon easily extencable, The basic elements of the theory are the
following,

1) The cooperative computaton of several intrinsic images.

Recent work has shown how to calculate intrinsic images {tom raw intensity
data. Examples are images of velocity (optical flow) [Horn and Schunck, 193C;
Ullman, 1977; 1979], surface orientation (Ilorn and Sjoberg, 1978; lkeuchi, 1980),
occluding contour [Prager, 1980; Rosenfeld et al., 1976}, and disparity {Marr and
Poggio, 1976; Barnard and Thompson, 1979). Intrinsic images can bhe computed
independenty under special conditions, but in general they are interdependent.
Intrinsic images are in concert with the hynothesis that the visual system buids
many intermediate descripuons [rom image datn, These descripuons represent
important parameters such as velocity, dent, surface reflectance exphedy, since
in the explicit form they are ecasier to map (nlo obrect deseripuons.

2) The extracton of useful parameters from intrinsic images.

If parts of the intrinsic image are organized in some way, this organization
can he detected by a general Hough transform technique [Duda and lart, 1972,
Railard, 1981a; Kender, 1978; Ohlander ¢t al, 1979]. This is done by deseribing
the organizalion n terms of paramerters and then mapping te intrinsic image
nomnts 'n'o parameter space. The traasiormauon will be many-to-one onlo
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parameter values which represent meaningful umits. A major advantage of the
Hough transform s that it s relauvely insensitive to occlusion and noise.

3) Interactons involving several levels of abstraction.

The Hough transform is a way of seeing spaual information as a unit,
However, if the unit has a complex structure the mapping from space to unit can
be unmanageably complex. A way around this 1s 1o nuoduce umts of
intermediate levels of abstraction [Sabbah, 1981; Ballard and Sabbah, 1981;
Kender, 1978). This reduces a complex transform to several simpler wansforms
between units at successively higher levels of abstiacuon.

4) Focus-of-attention mechanisms,

Visual focus-of-attention can be partly explained as the comuncton of two
mechanisms: 1) the use of Ilough transforms to modify sensor input; and 2) the
sequential applicaton of Hough transforms.

5) Coupling between intrinsic images and parameters.

In general, intrinsic images cannot be computed without global parameters.
At the same tme, these global parameters are what we mean oy seeing parts of
the inuinsic image as a segment. In these cases the intrinsic image and
parameters are sad O be tightly coupled, although each cannot be computed
independenty, they can be computed simullaneously {Ballard, 1981b; 19%81cl

We re-emphasize that our interest is low-level vision. Thus in item (4) above, focus of attention is
interpreted in a narrow sense: visual features which are clear can help the recogniuon of other
features (or perhaps direct eye movements). We do not attempt (0 expla:n general plans and goals.

Representations for Parameter Networks

The basic element of a parameter network is a parameter node. A parameter node will
represent a single parameter va/ue and has an assoctated confidence, The value s a set of numerica;
measurements for the node; the conlidence is a measure of their believanility. [For example, if there
is an edge at (10,10) with orientauon 30 and length 5 units, the vector value of the parameter node
represenung the edge Is (x,y,0,5) = (10,10,300,5). The associated confidence is a measure of the
fuzziness of this esumate. One way a confidence may be increased is if there are nearby edges of
the same orientation which align, ‘Thus in Figure 2 the edges in (a) and (b) have the same value but
we can be more confident in case (b).

Figure 2.

This paper assumes a very simple model; namely, collections of value units. Each value unit is
connected w0 a subset of other value units, and can alter only those units. Underlying physicai
principles determine the appropriate connection subse's. The confidence updatng is done by non-
linear relaxaton. The overall siructure of the paper is slanted towards abstractons of physical
principles; however, we aiso show how these wrinciples are implemented 10 the networxs.

2. Intrinsic Tmages

An intrinsic 1mage is an image of some important parameter that is in registration with the
original intensity image [Barrow and Tenenbaum, 1978; Marr, 1979], that is, cach parameter s
indexed by reunal coordinates, For example, in the velocity (opucai Now) image, one 1s able to
compute at each point in ume and for cach spatal posiuon a local velocity vector vix,l). Figure 2
shows lorn’s example for a rotaung sphere [Horn and Schunck, 19%C). Intninsic images may only be
computable over certar parts of te image, and over those pars the paramelers are confinuonsiv




varying. While intrinsic images are not segmented into parts of objects, they are disunctly easier ©
sepment than the original intensity image. Other examples of such images are surface orientation,
occluding centour, and dispany.

Figure 3.

Very recently there has been rapid progress in finding algorithms for compuung intrinsic
images from intensity data. What 15 remarkable is that each such image type is computed in the
same manner. F'wo constraints, one derived from physical puncipals and the other {rom a constraint
that the resultant images should be locally smooth, suffice to specify a parallel-iterauve algorithm,
Table 1 shows this commonality but is not an exhaustve st ¢f approaches. See page 2 for
additonal references,

Table 1: Intrinsic Images

Parameter Physical Constraint Stoothness Constaint Refs.
Edge Orientauon  boundaries are nearby edges Prager 1979
7} locally linear should align
Disparity if x corresponds neighboring points Marr and Poggio
d to x' then should have 1976
fix+A)=fx"'+4) similar disparities
Surface Onent'n.  f(x)=R(0,9.0,9,) v29=0 tkeuchi 1980
0. 0,9 is the light 2 =0
source direcuon
Opucal FFlow df/dt=0 | v2u=0 Horn and
u,v vy=0 Schunck 1980

While the above algorithms work well on images which are constrained to sausfy the underlying
assumptions, they may not work in the general case. Almost always there are free parameters or
boundary condituons which have to be determuned independently.

2.1 Multi-Resolution Relaxation Methods

Omne general nouon of "boundary condition” is image resoluton. Previous methods for
compuung intrinsic images have used a single image resolution, bul :n most sitwauons dus s
unrealisic. What is the correct resolution? At lugh resolution

*  noise is a factor
convergence S slow
basic assumpuons may not hold

L

To see the last pont, imagine a surface with a micro-texture. At low resoluton the surface
structure s blurred and simple reflectance models old, but at high resoluton the mucrostruciure
can render such models uscless. At low resolution

noise is less of a factor

convergence s fast

basic assumptons may not hold

The last point anses from the fact that most intrinsic images are computed from constramnts which
assume local vanadons are smooth,  With increasing gnid resoluuces, these assumpuons are [uss
Iikely to be valid.

o e ecand




Hence a conjecture is that there is a range of resoluuons for which the computations will be
valid. FFurthermore, this range 1 expected o be spatially variant. A too! for exploring this conjecture
s mulugnd celaxation wchniques [Brandy, 1977), which have proven very useful for solving
differerual equauons. This medel, logether with reasoning from physical first principles, should
allow the determinauon of image-depenaent gnd resoluuons for which intninsic image computations
are valid, Multigrid technigues are of course relaed o pyramids [Tanimoto and Pavlidis, 1975,
lHanson and Riseman, 1973|.

2.2 Cooperative Computation of Multiple Intrinsic Images

Intrinsic images are logically computed simultaneously. In fact, they have to be; otherwise each
intrinsic image 15 underdetermned in the general case. (Only on certain syntheuc :mages 15 the
compuation well-defined.) Furthermore, they are highly interdependent, partcularly at points of
disconunuity {Barrow and Tenenbaum, 1978). I‘or example:

* intensity edges can be indicauve of depth disconunuites. Thus the edge image
1s coupled w the disparity image;

* surface orientation 1s also indicative of depth disconunuity and is thus related
w the other two; and

*  different objects whuch are moving relauve o each other produce
disconunuiues in the flow field.

By incorporaung these couplings in the intrinsic image computations, one should find general
cases where the computations will converge. A separate issuc is the behavior of the coupled
computadons in the face of conflicung informaton.

2.3 Intrinsic tmages at Different Levels of Abstraction

The survey of intrinsic images (Table 1) excluded the fact that intrinsic images may have fine
stricture involving several levels of abstracuon. In fact, it secems likely that muluple abstracuon
levels are necessary 11 many cases. For example, Zucker [1980] uses two levels of abstracuon in
compulng onentauon 1inuinsic images, one lor points of high gradients and the other for edge
segments, The computauon of a velocity image in 3-d could involve three levels of abstracuon:

* a change detection level where units are used for varialions in intensity over
space and ume Al/Ax', Al/Ay', AlZAU {primes denote reunal coordinates),

* an optical flow level where units correspond to retnal velocities
{u(x 'y " )v(x*ty ',

* a 34 flow level where units correspond o 3-d  velocities
vy(xy.2 vy (xy.2).9,(x.y.2)).

The feasibility of computing the optical flow from change measures has been studied by
[Barnard and Thompson, 1979; Prager, 1980; Horn and Schunck, 1980]. The feasibility of computing
3-¢ flow 15 expiored in [Ballard, 19%1c).

2.4 Intrinsic Ymuages and Parameter Nodes

Two rmodels have been used to compute intrinsic ‘mages: 1) the value unit defined in Section .
[Prager, 1980; Marr and Poggio, 1976); and 2) a varabie unit [Ikeach., 1980; Horn and Schunck,
1980], In the first mode! there s a unit for every value of every vanabie: in effect the representation
has only constants. Constant value units may have outputs which are conflidences between zero and
one, In the second model, each unit represens a varabie which can take on values (the standard
method 15 (0 use an array ‘or these unis), Ihe ouomul « the value, fere 1 no eaplcit nodon of
confidence,

| 3
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In general the unit/value representation is sufficient since problems formulated o use varnables
can be tansformed o untt/value problems in the following manner. Suppose x, y, and z sausfy a
relaton R(xy,2) = 0. Let us use a set of values A for x, B for y, and C for z Where a € A, we
would like Cla) to be 11 there exist b € B and ¢ € C such that C(b) = 1, Clc) = I, and R{a,b.c)
= 0. To implement this in a parameter network connect all pairs of {b,c) € BaC o a value {a) o]
R{a,b.c) = 0. Then starting with inital confidences, :ncrement Cla) tf there exist (b.c) such that
Ria,b.c) = 0 and C(b) + C(<) > some threshold. The individual vaiues b and ¢ may be freatec
similarly,

Note that the updatng function is nonlinear, when the underlying physical relaton R s
nonlinear. If the relauon R can be lincarized then the cooperalive computations can be shown o be
equivalent to lincar programmung [!inton, 1979, The lnear case has also been analyzed by
{Hummel and Zucker, 19%0].

3. Parameter Spaces

What does it mean (o perceive parts of an image as a segment? In our theory, this percepuon
takes place if there 1§ a parameter space such that cach of the parts can have the same parameter
value. This general idea s (llustrated by the following examples.

* Parts of a color image may be seen as a segment if they have the same color.
In this case the parameter space is a space of colors and the parts map into a
common point represenung the common color.

* Parts of an optical flow image may be seen as a scgment if they are part of a
ngid body that 1s moving, In this case the parameter space represemts the rigid
hody mouon parameters of transladonal and rotatonal velocity and pars of
the image map inlo a common point in that space.

*  Parts of edge and surfuce orientation images may be scen as a segment if they
are part of the same shape. This case is more complicated as there must east
some nternal representation of the shape. Given this representation, the
parameter space represents the transformauon (scale, rotauon, translaton)
from the internal representation to the (viewer-centered) image representation,
Pars of the mmage which are seen as the shape have common vaiues for these
parameters.

A general way of describing this relatonship between parts of an image and the associated
parameters s the Hough transform |Hough, 1962; Duda and Hart, 1972; Kimme et al, 1975;
Shapiro, 1978]. In our low-level vision theory, Hough tansforms relate intrinsic images and feature
spaces and feawure spaces at different levels of abstracuion. I[ the intrinsic image parameter s a
vector (x.a(x)) € A and an element of feature space i§ a vector h € B then there 1s usually a
physical constraint that relates a(x) and b, ie, some relavon flah) such that

flap) = 0.

The space A represents all possible intrinsic image values. A particular intnnsic image s
described by a set of vaiues {ay} where 2, = a(x ). Now the set lay} is only consistent with
certain clements in the space B, owing to the constraint imposed by the reladon . This physici
constraint can be exploited in the foliowing manner. For each wy we can compute the se

By = {bluayg and Rayh) ¢ 8y}

Define 11(h) as the number of umes the value b occurs in Uy By, T1(h) is the Hough transform
from the space a (o the space b and is the number of points in :ntrinsic image space which are
consistent with the parameter vaite b, I(h) makes the most sense when the values both (a(x),x) and
boare diserete. Hence tie constant 8,y above 1§ reated o tie quantzaton in the space B, s alse
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best normalized by definmng C(h) = (h)/ZylH(h). In that case, the vaive C(b) can stand for the
confidence that the segment with feawre value b s present in the image.

Concerning the implementauon of Hough transforms in networks, B, C B is the subset of B

unts 10 which the umt 2 hould be connected in the network. A separate Hmax un:t is needed for
normalizauon.

The Hough transform need not originate from intrinsic image space but can be defined
between any two spaces A and B as long as there is some relation flah) = Ofora € Aand b € B.
To avoid describing the above computations in deta:l, we can use a shorthand notauon for Hough
transforms. Lach tansform can be described as the uiple

<ab.D

where the necessary computations are implicit. Note that the order of a and b is important n the
notauen; in general, <a,b,® is not equivaient w0 <baf>.

As a very simple example of a Hough transform, we describe how a patch of red in an image
may be seen as a unit. For this 1o happen, an assoclation s made between the spaually conuguous
points in the image and the particular value "red” in a parameter space of colors. There are
essentially three dimensions to color space. Although t-g-b is widely used 1n computer applications,
humans seem 10 use an opponents-process basis (r-g, y-b, white-black) [Iurvich and Jameson, 1957}
One (admittedly overly smpliied) way of transforming {rom (r,g,b) space (o opponents color space
s to use the following Uunear transformation:

g 1 -2 1 r
yb = -1 -1 g
bw_ A 1 1 _b 3.0

Thus the Hough tansform is given by <abf> where

(r(xy), blxy). glx.y)
(rg, yb, bw)

a

and
f = Ta - b

where T is the mauix defined by Eq. 3.1

For a red spot on a green background there are two values of color parameters which have
high values for C(h): red and green, The rest of color Hough transform has low values. Figure 4
shows this idea, which has been used by [llanson and Ruseman, 1978; Ohlander et al., 1979},
applied to a color image.

Figure 4: Hanson and Ruseman’s
Segmentauon :n Color Space.

To show that intrinsic jmages and parameter spaces may be related in more complicated ways,
we briefly describe an exampie of how a specific two-dimensional shape Is detected by specifying a
ITough transformaton from edge space (local Lnear edges detected with a standard edge deteclor) o
a four-dimensional parameter space consisung of !ocal origin coordinates, rotaton and scale. Both
the color-space example and thus one have the same soluuon at an abstract level In each case there
is a uansformation from :nUinsic :mage space "0 parameter space thal segmenis the :mage. In the
first case, points i the cojor 1mage have the same celor values. In the second case, poinis in the
edge image have the same shape narameter values. In fact, almost all segmentauon problems can be
charactenized in this fashuon.

Table 2 shows some other !lough transforms.
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Table 2: Hough Transforms

Intrinsic Image Hough Transform
Optical Flow * lleading

* Rotauon of 3d ngid bocy
Surface Orientauon * [llumination angle

* Shape
Occluding Contour * Shape

* Surface orientation
Disparity * Segments of constant disparity
Color * Segmen's of constant color

The two-dimensional shape example shows the general feature of Ilough uansforms: if the
algorithms are completely parallel, the space required is exponential in the number of parameters.
This can lead w immense space requirements. For ¢xample, consider an eighl-parameter space of
100 discrete values [or each parameter. The wotal number of parameter rodes required to represent
the space is 10081 Fortunately this problem can generally be alleviated by detecting groups of
parameters sequentially. The example of 2-d shape detection is reconsidered in Section 3.2 to
Ulustrate this extremely powerful decomposition lechnique.

3.1 Detecting Two-Dimensional Shapes

Two-dimensional shapes can be found from a primal sketch [Marr, 1978] by encoding the shape
informauon in constraint tubles |Ballard, 1981a). Consicer the case where an object being sought has
no simple analytic form, but has a particular silhouette. Suppose for the moment that the object
appears in the image with known shape, orientation, and scale. (If onentaton and scale are
unknown, they can be handled as additional parameters, as we will show.) Now pick a coordinate
system for the silhouette and draw a line (o the boundary {Tom the coordinate system origin. At the
boundary point we can compute the gradient direction and length and store the reference point as a
funcuon of this information. Thus it is possible t0 precompute the location of the reference point
from boundary pomts given the gradient angle. The basic strategy of the Ilough technique for
shapes is © compute the loci of points in parameter space from an cdge in image space and
increment those points in an array. Figure 5 shows the relevant geometry.

Figure 5: Geometry for the Hough Transform.

In this case the reference point coordinates (xc,yc) are the only parameters (remember, rotauon and
scaling _have been fixed). Thus if we encounter in an image an cdge point (x.y) with gradient
onentaton () and span (1) we know thal the possible reference points are at

(x+ (e, cos(alp.D))y + (@ lsin{alep,1)))
and so on. -

Thus we can describe the generalized !ough aigorithm as ‘ollows:

b}

;
X
3
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Generalized Iough for Shapes

Step 0. Make a table for the shape 10 be located like that shown in Figure 2,
Step 1. Form an array of possible reference points
H(XCmin' X max: Ymin‘Y<max) initalized 0 zero.
Step 2. For cach edge do the following:
Step 2.1. Compute (x)}x)
Step 2.2a. Calculate the possible centers, e, foreach table enuy for (@)
compute
x¢ 1= x+1(p,cos(a{p,l))
yc 1= y+r(plsin{alp,l))
Step 2.2b. Increment the array
I(xeye) := I(xc,ye)+1
Step 3. Possible locations for the shape are given by maxima in the array H.

In terms of our lough transform notation, the transform is of the form

Lp(xy)lixy)xyh(xeye), T>
where T is the constraint relaton between (p(x,y).)(x.y).x.y) and (xc,yc) shown by Figure 5. Also the
inner loop of the algorithm (Step 2.2) computes By given an edge (q)K,lK). ‘The outer loop {Step 2)
computes UKBK. The reselts of using this transform © detect a shape are shown in Figure 6,
Figure 6a shows an image of shapes. The R-table has been made for the muddle shape. Figure 6b
shows the Ilough Transform for the shape, Le., Fl(xc,yc) displayed as an image. Figure 6¢ shows the
shape given by the maxima of !(xcyc) overard on wp of the image.

Tigure 6. Appiying the Generalized Hough Technigue,
(a) Syntheuc tmage. (b) lough Transform
A(xc,yc) for midd.e shape.

What about the parameters of scale and rotation, s and 9?7 These are readily accommodated by
expanding the accumulator array and dotng mote work n the ncrementauon step, Thus, tn Siep 1,
the accumulator array s changed to

H(xemin Xemax-Yemin-Yemax-Smin:Smax-d min’
and Step 2.2a is changed

0 nax)

foreach table enury for () do
foreach s and ¢
x¢ := x+r(pl} s coslalep,l)+8)
yc 1= y+r(pl) s sinfa(pl)+0)

Finally, Step 2.2b is now
I(xeyes,d) 1= 1xeyes.d)+1 X

AN

Now the transform s given by <{p(x,y).4xy)x.y).(xcycs,@).T'> where 7' incorporates the rules
for computing s and . Nouce that thus algorithm s roponally parallel since all the incrementauons
are independent, and that the space required s cxponental m the number of parameters.

32 Feature Space Decompositions

In the example of Secuon 3.1, a parucular shape is found by a notonaily parallel transform
from edge space (p(x,y).(x.y).xy) 0 a four-dimensicral shape space {xc,ve,s,#). However, ume can
be traded for space by fnding grewps of these maramelers sequensicly. The advantage of e
sequential search s chot the dimensionality of the comnuiation ab vach swege s mach less than i
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single computation involving all ol the parameters simu'taneously [Ballard and Sabbah, 19811 For
example, where Ny, Ng, and Ny are the sizes of te spaces {xc,yc), s, and # respecuvely, scarching
for a particular shape'’s parameters n the order (s,0) and (xc,ye) requires parameter space equal o
NNy + Ny instead of NgNyN,. The Hough tansform for the individual group 1§ suil nouonaliy
parallel, so the ume needed in the sequental transform is only proporucnal o the number of
parameter groups. In the shape example, the number of groups s two.

To see how scale and orientation can be detected independently, consider a table that encodes
the orientation of the edge with respect (0 the sithouette’s coordinate system, For example, for each
edge (@.l) encode the angle necessary to rotate the edge clockwise so that it is paraile! to the x-axis.
Using thus table, the algonthm s as follows:

Hough Algorithm for Orientaton and Scale:

Step 0. Make an orientation table as a function of ¢ and L
Step 1. Form an array of possible scale-orientauon pairs 1H(0:2e,Sp. S0 ).
Step 2. For each edge do the following:
Step 2.1 Compute @(x),l(x).
Step 2.2 Foreach S do the following:

(a) look up the table entry a{p(x)s®i(x)).

(b) increment the array

Mas) = Hlas)+1

Step 3. Possible orientations and scales are given by maxima in the array H.

The value of sequential searches through parameter space becomes even more important in 3-d
since this case requires seven parameters; three positonal coordinates; three ornentation angles; and
a scale factor. The sequential [fough-shape transform extends readily to 5-d and has been used ©
detect polyhedra [Bailard and Sabbah, 1981] using the constraints of [Kanade, 1978; 19791

The previous example is for a single shape, For N shapes, given that the search is in parallel, a
size factor of N is added to the search space. To cut down on the impact of this factor one needs a
shape taxonomy like that of Bribiesca [Bribiesca and Guzman, 1979 where all shapes can be
described as a branch in a single shape tree. The advantage of the shape tree is that rather than
looking for all N shapes in parailel, the search can be paruuoned into searches of spaces of size N,

NU' Nijk' elc., where the sum of these is roughly equivalent to log(N).

0
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4. Mierarchies of Abstraction levels

The value of using several hrerarchical levels of abstracuon :n vision 1 that the interacton
between levely s sumphlivd, Thus does not mean that hugh-level dsermuons cannot nfluence iGw-
wvel descrniptions, or that the entire compuatons are not carnet cu o paralicl. Rader, each
descriptve level can only nfluence nearby levels. fn Sabbah [T987) the imutation s 10 ieves
direet'y above and below. Other levels are iniluencece indirectly. Tne tmalicavon or the Hougn
transiorms, which specity the constrants between leves, s thal the censirun! reialionships delwesn
ievels involve only o few narameters. Thus s an espectally impoerees feaware, sinee the spacy
requured by the Hough wransform s exponential in the number of nparameters, as are the sels {HK}.
Different levels of abstracton have been used by Hlansor and Riseman, 978) Tixamples using e
Hough transform may be found tn [Sabbah, 1951, Kender, 197850 Sannah uses four levels such oy
those shown 1n [gure 7 t0 reorganize ongamu word {igures,

Figure 7,

To show an example 1in detail, Kender's technique for detecung vanishing poin's 'n an umages
from orrented hne segments [Kender, 1978] 15 described. Such lime segments which are part of a
given vamshing pont form a radial field which ¢manates from the pornt [ferent varshing points
have dilferent sets of associated rachial line segments (Ing. 8)

[Figure 8.

This example s interesting since the same siuaton occurs with respect o opucal Jow due Lo pure
translauon. I the objects in the image are stauonary with respect to a ranslaung observer, then the
flow vectors will be emanaung radially from a “focus-ol-expansion™ H0OF) in the directon of
mouon. Objects transietng with respect to the observer's frame will nroduce therr own ow
emanaung rom a d:iferent FOR (Ig, 8).

This example involves two levels of absuacucn. The first wansforms colinear edge segments
into potnts (represenuny imes). Radial sets of edge elements correspond o circles threugh the orig:
i line-space. Thus the second transformaton s between creles o ine-space o pomts .o radia-le.d
space.

The first level 1s easy :f a (p,f) lne space is used where
p = X cosfl + y sinf.
Since an edge element has direction a (Fig 9), each such element maps onto precisely one point in
(p.0) space: (x cosa + y sina, a). Thus the {lough transform. :n e notuon of Secuon 3,
Axy,alxy)), (p0), (0 = a; p = x cosa + Yy sina)).
Figure 9.

Now maxma in C(p,f) correspond o lines in the image. Also, racial lines will form a circle of
‘ocal maxima in (p,f#)-space. To see dus note that the wnangle OPQ in uure 1H s always a right
tangle, and therefore OQ must be the crameter of a arcie. Note that this crele 18 consirained o
go through the crigin so that s diameter must e on e bne

p/2 = a cosd + b osind

where (2a,29) 15 the ‘ocavon of the focus of expansion (or vamshing noint). Thus the second
transform 1y

p.0), (ab), (p/2 = a cosfl + b sinfd.
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Implementation in Parameter Networks

In our earlier definition of the Hough transform, we assumed that the measurements ay all had

confidence equal to unity. With mgher level of abstracton Hough transforms, this may no longer be
the case. This s eastly handled by keeping track of the contidences in the set By, e,

B = {(b.O]lyb) ¢ 8y and C = Clay)}.
Then THL) is the sum of the confidences associated with the value b in UpB,.

5. Tocus-of-Attention

Previously, intrinsic image to feature space transforms used single ough transforms. We are
now ready Lo tackle ssues which anse wnen several ough transforms are used. Fist we show that
muiuple Hough wansforms can be nvoked 1n paralle! w resolve the orobiem of cetecung a unit
with mulupie features. [Mus s done via the mechanism of a conrext ough transform which s the
sum of mdividual Hough transforms. Next, we deseroe a focusing mechamsm which explos the
fact that an ambrguily in one space may be resolvee :n another. This nique allows the aetecton
of arbitranly fine detail, Attenuon can be directed frem a umit W s subpars and back again via a
mechamsm  termed  sequencing.

5.1 Spatial Context

If a unit has muluple spadally registered features, these can e detected by applying two
different sets of Hough Transforms. The Hough Transform defined in Sccuon 3 is Hotwom-up:
pornts in the mtnnsic image spece determune plaustble sets of points 1n feature space. The
compiementary transform s ‘op-down: points in feature space determune nlausible sets of points in
inurinsic mmage space. Formally, given a set {bk} € B, we compute

Ak = {u . hk and r(.‘l-hk) S 5/\}

H(x) is the number of umes the value w(x) occurs in Uy Ay. The mapning which defines 1(a) 1s
likely o be one to many and furthermore, for a given feature, different bys should give nse (o
disjont subsets of A. Owing to this last point, 1t is inwuitively appealing o deal with I, (x) which s
sstmply the sum of the confidences of different values of the parameters a1.89,... Which are at the
same spatial location x,y, Le.,

Ha(x) = 2a l!{ax)
An Example

_ Consider again the image of a red spot on a green background, where the spot takes up one-
third of the mmage pixels. Then the transform H(h) where b = rgb has two peaks and s zero
everywhere else, i.e., for four-bit color scale accuracy

I = 1 if b = (0150
172 i b = (1500
0 otherwise

Now consider by = (150,0) and compute Il(ax). This is given by

Ilax) = 1 if x in spot and a = RED
0 otherwise

A point in A represents the single color red and so FI(x) in this case is

H{x) = ! if x 15 spot
0 otherwise




The transform H(x) is called the spatial context wansform for reasons that will hecome more
apparent when we discuss ‘ocus of attenton. The effeer of this transform is o place an imaginary
filter 1n front of the sensors. In the above case, only sensors that are spatally registered with RID
sensors would receive nput

Multiple Features

Now consider the case where multiple features are present in the image. Ilach individua!
bottom-up transforms for different features can be applicd in paralle! w0 compute 11y(hy),

Hz(ln)....,l'lm(hm) (for m feature spaces). Now maxma n each of these spaces can he used to
compute individual top-down transforms Hal(x)_l!,n(x).....llzm(x). The generalized spaual-contex:
tansform 1Ux) s smply te normalized sum ¢f these individual transforms, e,

Hx) = (/m) 2 1L (x)

Now the value of Il{x) at a point x is the fraction of the maximum number of spatially
registered features that are present. !ligh values of Il correspond 10 spaually registercd mntnnsic
unage points whuch cach have been grouped tnto a umt by a separate botiom-up transform. Thus
TH{x} represens a possible soluton 0 the mulupie-feature probiem.

5.2 Subspaces and Sequencing

In our formalism, a segment 1n an 1mage is ideally represente¢ as a conjuncuon of !ough
transform maxma. Fach sct of maxima corresponds ‘0 an orgamzzlion with respect 10 a given
modality: color, velocity, ete. In the previous secuon we showed how the narallel generaton of these
maxima couid be used to discover regions in the wumage corresponding o mulu-modal umts,
Unlorwunately, thus weehnique will usuaily be :nadequate because the umt is not mamfested as a
clear maxima in all the modalitics. As an exampie, consider a lght-biue, moving umt, agamsl a
background of other units, none of which are Lght-blue, but which are moving. In the color space,
the umit iy clearly revealed; light-blue umts have hugh confidence values (Ig 10).

Figure 10,
In velocity space, however, there 1 no clear maxumum owing to the presence of other moving units,

The fundamental problem is that each modality consists of a projection of feature space. In the
high-dimensional space consising of the concatenazon of all the ndivicual dimensions of each
medality, each umit would appear as a disunct maxmum, The visual system mode] 1y structurec o
exanune only the subspaces of the individual modalites. The principal reason for this s cconomy;
the space requirement ncreases exponentally with the number of modalites.

This problem can be surmounted if the different parameter spaces are examined sequentally.
First the parameter spaces are examuned for maxuma. The most distingt maxima 1s picked and 1(s
inverse Hough transform, C(x), is generated. This transform can be usd 1© block input from sensors
positioned at its low confidence values. To see how this might work, let us reconsider the previous
example of the light-blue, moving unil, In color space there is a clear maximum corresponding 1o
ight-blue. Thus value 15 used 10 generate Cpigni.p)ye(*) and block input from all sensors that are
not spaually registered with light-blue color inputl. The net effect '8 that :n veloaty space there oy
now a clear maxima as :nput from other units has been blocked,

5.3 Multiple, Spatially-Registered Features

Sequencing solves the problem of building up coherent groups of features, but has iis
drawhacks. [For example, if te “blue,” "moving,” “honzontal” object were a “fnsbee,” one would
iake tus percept to be triggered via a Hough-lxe transtorm. However, :n the seqguencing example,
there 1s muual evidence for all light-blue objects, and tus 1s a very large set. Warse, the pereent
“frisbee” could he thggered By non-spacally reestered groups of Uhiue” and “meving” inpuls,
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There is a solution to these problems if we assume that, tn general, actual occurrences of features
will be sparse. In other words, 1n a grven image there should not be two very similar colors
associated with different objects. If there are, our Tough transform model will only be able
concentrate on one of them at a ume

The soluton is due to [Feldman and Ballard, 1981). We will develop it here in terms of our
Iough uansform formalism in stages. First we formally concatenate parameter spaces. Next we
describe fow-resolution concatenated spaces. IMinally, we consider low-resoluuon parameter spaces
which can be tuned 1o specilic parameter values,

Ideally, one could resolve the spatial registrauon problem by concatenaung feature spaces. For

example, concatenaung color space with mouon space leads (o

By = {(bubm)lagcla, agmxe) flaged: K86 fmlabm)<snq}
where elements in the expanded space (5.,by,) € B.xBy are only inclucecd if the input features are
spatally registered, 1.e., while this is simply described :n symbolic form, it is also impracucal since
the parameter spaces for the combined-modality elements are unpracucally large. A narual soluuon
to the size problem s to decrease the number of paramcter nodes. Let b." by be vaiues for color
and moton parameters respectvely in the low-resoludon spaces. Then the low resoluton [lough
tansform 1s given by

Bk = {(bC ! ,bm ") | akc(xk), akm(xk), fc(akc.bc ! )S-AC' Hakm'bm ! \_(.Am} (51)
where the bounds A and Ay are larger 1o account for the lower-resolut:on 1n parameter space. The

grain of the low-resolution space can always be chosen 10 make the transform practical in terms of
space. However, now groups ol parameters that are sufficiently similar may be tansformed into the
same parameter node via Eq. (5.1). To resolve this problem we use a two-ucred transform,
consisting  of high-resolution  single-modality transforms  and  low-resolution multi-modalty
vansforms, Using the single-modality transforms, we sclect maxima U)c‘} and {b, %} such that

- — ) S
b = maxy{b, € b’ * 5S4}
and
.
bm
These values are then used to rune the low-resolution ITough transorm, ie.,

By = {(bc"bm')lakC' dxm: f‘c(ak'bc‘)sAty Imlagbm,*)<a.

= maxyn{by, € by’ £ SaL}

Thus the low resolution transform can be mned o count only a subset of the high resolution
parameter nodes. The drawback of tus technique s that it can only respond to o single value of
(be.bpyy) in cach range {b. £ 54, by £ Sy} Thus cither the high confidence parameter nodes
must be sufficiently sparse, or only one of the confusion classes can be examined at any one ume.
Ihis disadvantage is outweighed by being able to detect spaually-registered [eatures and thus
circumvent the more sgvere problem  discussed carlier,

6. Tight Coupling

Most of the previous examples imply that the vanous [lough transforms are relauvely
independent. That is, once the intrinsic images are computed, the transforms can be computed. The
general case is that this is not true; the intrinsic image contans global narameters which must He
computed using Hough transforms. Since the Fough wransform required an intninsic :mage it might
seem that neither could be computed. In facy, both the Tough transform and the intrinsic images
can be computed by incorporaung the Hough transforms into the paralict-iterauve scheme used to
compute the intrinsic images, I the combined problem s well-condivoned: 1) the parual result for
the intrinsic image will be sufficient to produce a partial result for the Hough transform, and vice
versa, and 2) this process of using parual results in a parallel-itcratve manner will converge. We
werm  this interdependence tight coupling and illustrate 1t with two cxamples.
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In the first example, we show how a surface ofientauon intrinsic tmage can be computed from
intensity informauon. Tus example seems paradoxica. at first since 10 compuie surface orentauon
one must know the locauon of the source of diuminauon and vice versa. We show how both these
computatons can be conducted stmultaneously with the parual result for the surface onentason
helping the illumination angle determinauon, and the parual result for the sdluminaton angle
helping the surface orientauon determinauon. The ilumunauon angle is determuned by a Hough
transform.

In the second example, we show that a three-dimensional flow field can be segmented into
groups of vectors that represent general nigid body mouon. The problem here 1s that an ndividua
field vector v{x) is an unknown sum cf rotational an¢ translational components, te., v(x) = vp(x)

+ vp(x). These components can only be determuned by knowing eglobal ngid body mouon
parameters. However, these parameters can be cetermened only if ¥{x) 15 paruuoncd nlo vp(x) and
vi{x). As in the earlier example, this problem can he resolved by a naralle¢l-iterauve scheme which
computes both the global parameters and the velocty-field decomposiuon smuianeously.

Rather than being isolated examples, ught couplng is believed o be the general case.
Extending the scope of the parallel-iteraive computauon s the general soluuon.

6.1 Shape from Shading by Relaxation

Given the orientaton of a surface with respect to a viewer, its refeclance propertes and ¢
location of a single lght seurce, that the brghtness at a point of e viewer's reuna can ¢
determined. That is, the reflectance funcuon R(4, .0 ), where B, and O @, are orieniauons ©f

PPy r 5Py

the surface and source respectvely, allows us to cerermune I(x,y), the (ntensity .» terms of reunal
coordinates [Horn and Syoberg, 1978). The form of R s assumed to oe known. !lowever, the
perceptual problem s the reverse: given 1(xy) and R(..), determine #(xy).p(xy) and fomp..

In general, the problem of deriving A(x,y)p(x.y) and fgp, s underdetermuned. However,
Tkeuchi {1980} showed that the surface could be determined locally once fgpg was speatfied.  Ihs
method has been extenced [Ballard, 1981b] o the case where Zopg s amually unknown.

‘The algonithm is outlined as follows. IFor a single Light source, the intensity at & pomnt on a

reuna can He described moerms of the orientaton 2! e normal of the correspondiny surlace point
and the surface orientation. That i, n spherical notauon,

{xy) = R(Il,tp,ds.rps)

where the angles # and ¢ are functions of x and y. Now by munimuzing (I~R)2 and appending a
smoathness constraint on § and g we have {Tkeuchi, 1980) an expression for the Jocdl error (i the
esumate for 4 and ¢ is unreliable) as follows:

Elxy) = (I-R)? + M(V2012+(V2))
where A 1s a Lagrange multiplier. Ior a minimum, £ and E{p = 0. Sk:pping some steps, this leads
10

PlxY) = @apelxy)+ T(XY)R

O(xy) = 0 4,x5)+ TRy
where @, (xy) s 2 local average and

T(x.y) = (1/7161)1-R)

In solving these equauons, we assume f and P are known. An iterauve method is used where the
Paye and O, are calculated from a previous tlerauon,




M

To calculate ¢ and @, we assume ¢ and @ are known and use a lough technique. Fust we
form an array H|#@ ) of possible values of flg and @y imtahzed 0 7ero. Now we can solve the
reflectance equation for @ The IHough techmque works as follows. For each surface element 0.,
and for each ¢ we calculate @g and increment Hfgpgl, 1e. Hidgp ] 1= g+ After all

surface elements have been processed, the maximum value of C corresponds to the locauon of the
pornt source. [n [Ballard, 1981b] it i1s shown that calculaton of the source locauon can proceed in
parallel with that of 0(xy) and @(xy) and that the two calculatons will converge.

Results for the one-dimensional case are shown in Figure 11 for the case of a small surface
"bubble.” Figure 11 shows the surface convergence, as well as the convergence of the :lumunaton
angle.

Figure 11: (a) Shading (top left curve).
(b) Surface convergence (colored points immediately below (a)).
(¢} Nlurmunauon angle Hough transform (botom i¢t).
(d) Hlumination angle convergence (upper right).

It is important to remember that the boundary condiuons in thus problem have been provided @
priori, in tus case they are the ortentation of the surface at the boundary of the bunisie. Generally,
these will have (0 be determined by multiple intrinsic images relaxauons, as menuoned :n Secton 2.

6.2 3-D Rigid Body Motion

The general motion of a rigid body can be described by cight parameters: three for
translational velocity vp; three for angular velocity Q; and two for the locaton of the axis of

rotation r. We describe the detection of rigid body mouon n three parts, cach of which uses !lough
rransforms. First, we show how (o detecr pure vansiadon (vp). Next we show how o detect pure

rotation (Q2.r). Finally, we show that a 3-d flow vector can be iteratively decomposed mio a
translational component and a rotauonal componenl These components are described by the
parameters (V'I'- Q, r).

Pure Translational Motion

‘This case is very simple. If a rigid body is Uanslating with velocity vy, then a pont on the
body at location x will have velocity v(x) = vp. To detect this take the {lough transform given hy
Ax, v(x)). (vp) (W(x)=vp=0)>. The maximum value :n H(vp) will correspord to the translationa!
velocity.

Pure Rotational Motion

In the case of pure rigid-body motion, each point on an axis in space such that
v(x) = Qxp(x). (6.1)

where v, Q, and r are all orthogonal and p(x) is a vector from the point x to the axis of rotation
such that

p(Q2xv) = 0.
That is, p is defined so as to be perpendicular to R and v

One problem is to specify the axis of rotaton. This is done using a vector r which i the
smallest vector from the origin o the rotation axis (see [Figure 12).

Figure 12,

)
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~ The pure rotauon case involves five parameters: three for the vector € and two to specify the
axts of rotaton. A standard Hough techmque would involve a transforrauon from (x, v(x))

(82,r') using Eq. (6.1). Only a vector r* equal to any two components of r 1s necessary since 1 =
0. llowever, a five-dimensional space is large, thus we are mouvated 10 decompose the parameter
space (Q2,r) into two, smaller spaces [Ratlard and Sabbah, 1981). One space 1s composed of (wo
components wy and w of a umit vector w which defines the direcuon of Q. The other 1s composed

of the magnitude of 2 and two components of r.

Since w must be perpendicular to v,
w - v =0
Furthermore, |w| = 1. Combining these two equatons leads (o
wevg + oy + V(- wld =@y, =0, (6.2)
which 15 a quadrauc equauon in unknowns
may be found from the Hough transform
vx)). (wywy) (Fq. (62D

Once w is known, it can be used in the following seties of equations. If [Qf is the magnitude of
the rotation vector, the vector s given by

x and wy- Thus the direction of the rotauon vector

s = x - wxv/|Q
is on the rotation axis. Furthermore, r is given by
r=s -~ (s ww
so that
r=(x - wxv/1QY) - (x * ww. 6.3)

This equation can be used to determune the first two components of r given a value for |Q]. Thus
we can determune Q) and v rom the following IHough transform:

Ax v(0.w) (ry, 1y, Q) (Eq. (63)).
General Rigid Body Motion

Finally, suppose the motion is completely general so that
v(x) = vip(x) + Qxp(x).

Since only v(x) can be measured, how can one determine how much is translational velocity and
how much s rotauonal veiocity? One possibility is to dynamucally narttion the velocity into two
components vq{x) and vq(x) which give the most consistent global parameters {vr. Q and r). 'This

would work as follows:
Step 0. Assume vo(x) = v(x).

Step 1. Use the !lough transforms to estmate (Q, r).
Step 2. Use (Q. 1) (o determine vo(x).

Step 3. Compute vp(x) = w(x) - vo(x).

Step 4. Use the IHough transform to estimate VT
Step 5. Compute vgo(x) = ¥(x) - vr(x).

Step 6. Il vg(x) has not converged, go to Step 1.

£
.
]
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7. Discussion

The key ideas of this paper are summarized in the introducton, [Tere we mention other ideas
which do not fit casily under any one of the previous headings.

1) The Intrinsic Image/Feature Space Duality. By distinguishing between image fields and
image features we know when relaxation is the more important tool and when the Hough transform
IS more important.

2) Unit/value. By reducing the underlying primitives to units of extreme simplicity we can
algorithmically determine the connection patterns 0 represent m-ary relauons,

3) Massive Parallelism. By assuming the availability of massive parallel computauon, we reduce
the need for sequenual processing 0 more essenual cases. I'or cxample, we use sequenual
processing in Secucn 5 1o resolve real ambiguiues in the nput

4) Extensibility. The representation is very general, being m-ary consistency relatons, and can
be extended o other dumains besides< vision, to arbitrary levels of abstracuon within vision.
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