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FOREHORD
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This technical report summarizes research performed in-house at the
High Speed Aero Performance Branch, Aeromechanics Division, Flight !
Dynamics Laboratory, Air Force Wright Aeronautical Laboratories, Wright-
3 . Patterson Air Force Base. The analytical work was performed under Pro-
? Ject 2404, “Aeromechanics,” Task 240407, "Aeroperformance and Aeroheating
Technology.” The experimental work was performad as tecnnical support
1 to the Space and Missfle System Organization (SANSO). The study period

was March 1974 to April 1979.
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The report was written by Valentine Dahiem, Donald E. Shereda, and
Jack 1. Flaherty of the High Speed Aero-Performance Branch. One section,
the Literature Review, was written by Dr. Christian E.G. Przirembel,
Professor of Mechanical Engineering, Putgers, The State University of
New Jersey. Professor Przirembel conducted a review of the high angle-
of-attack problem as part of a USAF-ASEE Summer Faculty Research Program
at the Flight Dynamics Laboratory.
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The experimental program described in this report produced a very
large amount of data. The results are summarized here, but in many cases
the results of a particular test condition are omitted. Data lists are
available to qualified research engineers upon request from the High
Speed Aero Performance Branch.
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Cz Crossflow Lift Coefficient

(A

i \

~ c” Pitching Moment Coefficient, Hm/q@Sd

3 3 CN Normal Force Coefficient, FN

"‘ qa;ua

Cn Yawing Moment Coefficient, Mnlq 3d

: (:P Pressure Coefficient, " Pw = P

’ ‘ llZyP:nMuu 8

: & Side Force Coefficient, 'Y

3 Q.

3 d,b Reference Body Diameter

7 dc,

9 —_— Distributed Normal Force Coefficient

s d(x/d)

et

2 daCy

a 74y Distributed Side Force Coefficient

H

5

] Fa Axfal Force

4 N

A Fg Body Fineness Ratio, 2g/d

'g Fy (a) Mormal Force, (b) Nose Fineness Ratio, 274
b Fy Stde Force

H
> 9 Distance Between Breakaway Points of Yortex Lines

3 of Like Sign, Figure (86)
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Number of Concentrated Vortices in the Flow
Body Length

Nose Length

Total Model Length, £N + zs

Momentum Flux Ratio

Pitching Moment

Yawing Moment

Freestream Mach Number

Crossflow Mach Kumber, [M_ sin a]

Frequency of Shedding of Vortices of Like Sign
Rozzle Chamber Pressure

Nozzle Exit Static Pressure

impact Pressure .

Freestream Static Pressure

Freestream Dynamic Pressure

Freestream Unit Reynolds Number per Foot

Crossflow Reynolds Number Based on Cylinder
Diameter, [Re sin a]
2}

Freestream Reynolds Number Based on Cylinder Diameter

*Syrface Streamiine® Reynolds Mumber Based on Cylinder
Diameter
tocal Body Radius, r(x} In General

Radius of the jth Yortex, {yg + zg

Strouhal Number

Crossflow Velocity Component, U sinx
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3 U, v, Freestream Velocity

; u % ~ Component of Velccity (Perturbation)

v y - Component of Velocity {Parturbation)

w z - Compenent of Velocity (Perturbation)

' X Cartesian Coordinate, Aligned Along the Body Axis
:i; Pointing Aft

E y Cartesian Ccordinate, Pointing Left When Lcoking
Aft Along the Body Axis

2 z Cartesian Coordinate, Pointing Upward fn the Body
Axis System

- i 2y y and z Coordinate of the jth Vortex

3 Greek Symbols
9 a Angle-of-Attack
Gj Nozzle peflection Angle

3 £ Angle Between thie Vortex Lines and the Body Axis,
k- Figure 33

; [} Complex Potential, Defined by Equatfon 9

’ £ Polar Angle, Figure 87

j T Circulation, § Vds

1; T, Single Equivalent Circulation About Hissile Centerline
; Y Ratio of Specific Heats Tp/Cv

. v Kinematic Coefficient of Viscosity

4 Density

' T Complex Variable, y + iz
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SECYIOR
INTRODUCTION

The need to determine forces and moments acting on bodies of reves-
luticn at angles-of-attack originaily arose in connection with airships.
During the early stages of the development of subsonic airplanes, interest
in this probiem diminished because of the relatively minor contribution
of the fuselage to the aerodynamic characteristics of the total aircraft
configuration. The advent of highly maneuverable afrcraft and missile
design cencepts has required a major effort in understanding the problem
of siender bodies of revolution at high angles-of-attack. For that case
the bedy is a major contributor to the overall aerodynamics of the system.

The primary impetus for the current investigatfon is the problem
associated with the prediction of the subsonic and transonic flight
characteristics of stender missiles at large angles-of-attack. These
large angles will occur during the launch phase of an air-mobile inter-
continental missile. The same flight environment may also exist during
the launch of highly maneuverable afr-to-air missiles. Although in both
cases the launch phase represents only a very short pertion of the total
missile flight time, the contrel of strong side forces and yawing moments
is crucial to the completion of the desired mission.

The Flight Dynamics Labsratory conducted an extensive experimental
investigation to determipe the aerodynamic forces and moments, the pressures,
and the iee-side flow field for a smooth body missile at large angle-of-
attack. The tests, undertaken in support of the MX program, were sponsored
by the Afr Force Space and Missile System Organization {SAMSO). The MX
erperiments erplored the aerodynamic loads, associated with air launch,
encountered by a large missile at subsonic and transonic speeds. The
aeradynamic data were needed tc establish the structural and control
system reguirements.

20
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This report presents a summary of the experimental aerodynamic
characteristics, provides a review of the existing data and the analysis
methods that relate to bodfes at high angles-of-attack, and presents the
results of analytical developments based on the MX data.
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SECTION II
LITERATURE REVIEW AND STATUS OF THE PROBLEM

In viewing the overall fluid dynamics problem associated with flow
about bodies of revelution at angles-of-attack, the important features
may be delineated which contribute to the complexity of the analysis.
The complete analysis must treat the inviscid flow field and the three-
dimensional boundary layer on the vehicle surface (see Reference 1). At
sufficiently hign angles the interacting viscous and inviscid flow field
produce an adverse pressure gradient on the lee side of the body which
causes the three-dimensional boundary layer to separate. The separated
shear laser rolls up into a vortex in the wake, which influences the
pressure distribution on the oody and may interfere with the flow about
control surfaces, The conflicting conclusions from many experimental
studies 1lustrate 2 major problem of interpreting, scaling, and extra-
polating wind tunnel data from high angle-of-attack tests.

1. BASIC PHYSICAL FEATURES OF VARIOUS AERODYNAMIC REGIMES

As & slender body of revolution traverses the range of angles-of-
attack from O to 90 degrees, there are at least four distinct aercdynamic
regimes that must be concidered in the analysis of this problem. The
anpearance and diszhppearance of each regime as a function of angle-of-
attack is also dependent or many other fuctors. The most important are
nose shaps, overall fineness ratfo, crossflow Mack number, and Reynolds
nusher. Other factors may include roll angle, free stream turbulence,
surface rcughnass, acoustic environment and model vibrations. The follow-
ing regimes can be identified for the subonic analysis of a slender budy
of revolution,

Regime [ {0°<a<5°): At very low angles-of-attack there is no dis-
cernabie boundary layer separation and the flow can be characterized by
a classical potentfal flow field and an attached laminar or tu.bulent
beundary layer.

22
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Regime I1 (59<a<20°): Boundary layer separation occurs on the lee
side of the body. The separated boundary layer becomes a free shear
layer, which rolls up into two symmetrical concentrated vortices. The
vortices are steady with time. A schematic of the flow field is depicted
in Figure 1. No side force or yawling moment is present. Normal force is
the parameter of interest.

Regime IIl (20°<60%): In tnis regime the concentrated vortices
break away from the slender bcdy from alternate sides. The vortices are -
shed from the right and left sides in a pattern normally asscciated with
the classical von Karman vortex, but the vortices are arrayed in the
spacfal sense and not in the temporal sense. This flow fi2ld {s shown
in Figure 2. These asymmetrical vortices give rise to significant side
forces and yawing moments. This flow regime is of primary interest in
the current study. Note that several exparimental investigations have
shown some randem flow switching and flow instabilities at the higher
end of this angle-of-attack range. Some workers in the field have de-
fined this unsteady portion as a separate flow regime.

Regime IV (60°<a<90°): The flow field is characterized by some form
of temporal vortex shedding, as has been observed for infinite length

right circular cylinders. A von Karman vortex trail is usually assumed
to be present in the wake.

g

3

3

2.  CURRENT STATUS OF EXPERIMENTAL INVESTIGATIONS: REGIME II ?
This section and the following one is primarily concerned with those ﬁ
experimental investigations which have provided physicai insight inte the g
important aerodynamic and geometric variables governing the flow field in %
Regime II and III. Because of the similarities between the rurrent pro- g
blem and the more classical problem of the infinfte right circular cylin- %
der normal to the freestream, some of the important concepts from the K
latter problem will also be included. §
g

3
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Foliswing the publicaiion of Alien's analysis of the fluw about a
body of revolutfon at small angles-of-attack usiag the crossfiow drag
cencept (Reference 2), there was a significant flurry of experimental
investigations conducted by NACA and later NASA. Extensive experimental
data was obtained for a model consisting of an ogive nose 3 Jiameters
long and 3 cylindrical body 7.7 dizmeters long. iformal forces, surface
pressure distributions and voriex wake chcracteristics for “oth subsonic ’
and supersonic approach flows were reforted by Ferkins and Jorgensen
(Reference 3}, Jorgensen and Perkins (Reference 4), and Tinling and
Allen (Reference 5). The latter two references 2ve nf particular impor-
tance in that they provide quantitative data on the tecation of the
sysmetric vortex centers and the strength of thz vorticas at varicus
stations along the body. Jorgenser and Perias {Reference &) alsc
attespted to locate the sepzraiion lire 20 the modef hy tracing foten-
tial streanlines on a plot of iscbars. The authors also proposed “hat
the strengths of the concentrated veriiczs cocld be esticatad from the
normal force distribution and vortes pozittons. Parkins and Xuzhn
(Refarence 6) obtained pressure distributions and force characteristics
for a bcdy of similar gepmetric characleristics, hur for » larger range
of angles-of-attack. At 25 angle of 5 degrees, the starting point of
separation was reporied to be atl the vertex of the model. Tae crossflow
Reynolds number, Rp , 2t which the crossrlow Griy coef{icient decreased
wis observed to be less thet the famfliar cryzical value tor a right
circular cylinder. furtheomore, the crossficw Mach namber was greater
than the critical! Mach mumber for a Circalcr cylinger.

Gowen and Perkirs (Reference 7; used the vapor .creen viow visual-
fzatfon technique to investigate the offect of buty shepe on the character-
istics of tne vortex sixas at ¥yck 2. Primary emphasis «as plazed on
determining the angle-of-attack at which the vortices indicateC in unsteady
behaviur. Gowen and Pevkins found tha® tie angie-of-xttack al which tua
vertex wake becane unsteady cculd pe increxsed hy reducing the nos2
bluntasss. Addi-isnal experivental date on ncrmal forcer and prossure
distributions for varinus gesmetric shzpes may be found in Ailen and
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perkins {References 8,9,10). More recently Grosche (Referance 11)
reported some very detailed experimental measurements of velocity
direction and impact pressures for symietrical vortices in incompres-
sible flow at high Reynolds numbers.

Experimentai measurements on ellipsoidal bodies of revolution,
at small angles-of-attack have beer reported by Rodgers (Reference 12)
and Atraghjf (Reference 13). Both fnvestigaticns combine surface ofl
flow ovservations with detuiled surface pressuve distributions. As a
rarult, it fs5 possible to determine the free shear layer separation
point on the crossflow pressyre distritutions.

Rodgers {kefareazz 12} found that the actual surface streamlines
do not differ significantly from those of the potential solution on the
windward side of the body. I%wever, there fs a significant dffference
between potential and real surface streanlines on the lesucrd side.
Thisc shourvations are particularly importunt in any theoretical attempts
of appiying existing boundary layer separation criteria to crossflow
rreasure distributicns.

Alzghji {Scference 13) has scme particulerly illuminating graphs
in which the o1 flow results and the isobar plots show the presence of
both primarv semaration, i.e., separation cf the attached boundary layer
growing from the fruni stagnation point, and separation and attachment
of the ovounddry layer growing beneath the free vortex. The influence
of thi. secondary separated {low region has not beea determined for
either tne symmetric primary vortices !Regime II} or the asymmetric
orizary vertices (Regfme III).

3. CJRRENT STATUS OF EXPERIMENTAL INVESTIGATIONS: REGIME III

ser 28 years ago Aller and Perkins (Reference 9), presented ¢isual
evidenze of asymmetric vertices in the wake of an inclined slender body
of revolution. The first measurements of substantial side forces and

27
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yawing moments were obtained by Letko (Reference 14} in an investigation
of the directional characteristics of a sharp-nosed fuselaoe model at
large angles-of-attack. After these early investigations of these aerc-
dynamic phenomena, there was nc real effort to understand the probles
until the extensive experimental and theoretical study of asymmetric
vortices by Thompson and Morrison {Reference 15}. Their investigation

of flow around very long slender bodies of revolution at high angles-of-
attack suggested that the vortex pattern was perfodic in 2 spatial sense
and could be related to some aspects of the two-dimensional flow in the
wake of an jmpulsively started circular cylinder. The particular descrip-
tion for this typa of flow field proposed in their paper has had a major
influence on subsequent experimental investigations. In fact, since the
publication of tneir paper, the number of reported experimentzl and
theoretical studies has increased considerably. References 16 through
29 are the primary experimental investigations published in recent years.
A Bidbliography of additional publications {not reviewed) is included
herein.

As indicated praviousiy there are many aerodynamic and geometric
parameters that influence the existence and magnitude of iarge side
forces and yawing moments. Also, as expected, these various parameters
interact nen-inearly, precluding the application of the principle of
cuperpesition. MHence, in reviewing the current physical understanding
of the flow field in Regime [II, each major variable is ctonsidered
separately, and the basic changes in side and normal force is discussed.

a. Mach Humber Effects

Side forces and yawing moments decrease in magnitude at tran-
sonic Mach numbers. This trend has been measured by Pick (Reference 16),
Fiecnan and Nelson (Reference 21), Keener, Chapman and Kruse {Reference
27}, and Jorgensen and Nelson (References 22,24). Although this trend
is generaily observed. theie are evscpiions. For instance, Keener and
Chapman {Reference 20) and Pick (Reference 16) show very frregular trends.

28

AR AR

PN T LI

SR

WA SIS IR XY NPPYINY

3
2
2
|



b by o

et

5

e

AFWAL-TR-80-3070

For instance, Pick's models with a nose fineness ratio of four and nose
bluntness of 5% show first 2 decrease of maximum side force for Mach num-
bers between 0.5 to 6.8, and then a substantial increase from 0.8 to i.l.
Fieeman and Nelson (Reference 21) show a dfsappearance of side force and
yawing moment as the freestream Mach number approaches unity, and then
they reappear at supersonic Mach numbers.

Keener and Chapman (Reference 20) found that the onset ¢f side ferce

was rniot influenced by Mach number.

b. Reynolds Number Effects

There are three different Reynolds numbers that have been used
in the literature to describe the state of the flow around a siender body
of revolution at angles-of-attack. For reference they are listed below:

(1) Freestream Reynolds numbers based on maximum diameter
of the model

ey = (1)

{2) C-ossflow Reynolds tiumber based on crossflow velocity
comporent

Ry, . Yesine) p 2)
¢ v

{3) Surface Streamline Reynolds number based on characteristic
length in freestrzam direction

D
v
r, - —mEEEL )
S

The latter Reynolds number was first suggested by Bursrall and
Loftin (Reference 30) while investigating the pressure distribution about
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a yawed circular cylinder in the criticail Reynolds number range. Lamcnt
and Hunt (Reference 31) al<o suggested that this Reynolds number may be
more appropriate in describing the condition of the attached boundary
layer. Both papers claim that the critical Reynolds number for transi-
tion to turbulent flow is independent of the angle-of-attack if Reg 1s
used. Hence, it 15 possible ts determine the critical Reynolds numher
from tests at 90° angle-of-attack. This Reynolds number, however, has
not found general acceptance in the literature, and the current discus-
sion will be restricted to variaticns with the crossflow Reynolds number
or freestream Reynolds number, an important factor is the conditinn of
the attached boundary layer, either laminar, transitional, or turbulent.

Pick {Keference 16), found that the magnitude of the average
side force was decreased by as much as 80 oercent, for most Mach numbers
and geometrical configqurations, when the attached boundary layer was
tripped on the windward side. The freestream Reynolds number range for
these tests was frem 2.25 x 106 to 0.39 x 166.

Fieeman and Nelson {Reference 21), show significant variation
of both the sfde force and yawing moment with Reynolds number. For a
model consisting of a tangent ogive nose {1/D - 2.8) and a cylindrical
afterbody (1/D - 12), the side force and yawing moment increased up to
Ren -2.5«x 105, and then decreased with increasing Reynolds rumbers.
Peak values of cide force and yawing mument occurred at crossflow Rey-
nolds rumbers between 1.4 x 10% and 2.5 x 105. For approximately the
same fresstream Reynelds number, Coe, Chambers and Letko (Reference 17)
observed ns significant Reynolds number effect.

Jorgznsen and Nelson {Reference 22) observed that the normal
forces and side forces for a model with 2 high fineness ratic nose were
significantty affected by a change in the freestream Reynclds number.
However, no trends were clearly established. Similar results were also
presented by Keener, Chapman and Kruse {Reference 27). They report the
largest side force at Reg - 4.3 x 105,

§
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c. KNose Fineness Ratio and Bluntness Effects

for ogive cylinder bodies, the magnitude of the average side
farce increases with increased fineness ratio. This trend was reported
by Pick {Referencc 16}, Jorgersen and Nelson (Reference 22), Keener and
Chapman (Reference 20), and Keener, Chapman and Kruse (Reference 27).

Several investigations have shown that for 2 given nose fineness
ratio, a judicious chofce of nose bluntness will reduce the maiinum side
force associated with a particular model. Keener and Chapman {Reference
20) found a decrease in the side force coefficient for nose bluntness
values of 4.2% and 8.4% (nose radius referenced to maximum body radius).
In fact, for a pointed tangent ogive (1/0 - 3.5), the latter value
resulted in almost negligible side force at Mach 0.25. However, as the
nose bluntness was increased, the measured side force began to become
signiffcant again. For the most slender tangent ogive {1/0 - 5.G), the
largest nose bluntness value produced significant unsteadiness in the
flow field.

Pick {(Reference 16) reported that in general an increase in nose
bluntness reduced the maximum values of the side forces. The reducticn
| was most prenounced at the lower Mach numbers. However, for a model with
;{ a nose fineness ratio of 2 the side force actually increased for bluntness
3 ratios greater than 5%.

E- Jorgensen and Nelson (Reference 22) recorded significant
N decreases in measured side forces and yawing moments for a model with
a blunted ogive nose (1/D - 3.0), when compared with the original sharp ;
ogive nose {1/D - 3.5). However, they noted that the same reduction in :
- side forces and yawing moments could be achieved with a sharp ogive nose
3 of equivalent nose fineness (1/D - 3.0).

draie

C3adin o
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”

In summary, nose bluntness may reduce the side forces and
E yawing moments. However, some caution must be used in the choice of
the appropriate value of the nose bluntness ratio. In view of the
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uncertainty in the current understanding of the flow mechanism, experi-
mental measurements should be used for design purposes.

< d. 8ecmetric Changes to Reduce Side Forces and Yawing Moments

A One of the principle objectives of the available studies has
f been to eliminate or at least reduce the magnitude of induced side forces
: and yawing moments. Hence, a series of devices or technigues have been
k investigated on a somewhat triai ard error basis. Letko (Reference 14)
ii found that a small strake on the nose of a conical yaw and pitch tube
Y eliminated unsteady pressure measurements, which were attriouted to the
random asymmetric vortex flow-Tieid switching. Letko also reported that
. g a ring or other roughness on the nose of a sharp-nosed fuselage model
-Aaf reduced the yawing moment. The »ffect of nose strakes on forebodies was
K investigated by Keener and Chupman (Reference 20), and Coe, Chambers and
';, Letko (Reference 17). In general, symmetric nose strakes significantiy
3 reduced or eliminated side forces and yawing moments for sharp-nosed
tangent ogives (1/D - 3.9), The flow mc hanism of the nose strakes is
to force the local boundary laver separation to occur symmetrically.
This condition is obviously very sensitive to roll and yaw angles.

Jorgensen and Nelson (References 22,24) found that nose Strakes
on a model with an ogive nose (1/D - 3.0) and a cyiindrical afterbody
(1/D - 7.0) made 1ittle or no change in the measured side forces and
‘i; yawing moments. MNose strakes did increase the normal force and moved

- the aerodynamic force center forward.

The use of boundary layer trips in the form of grit rings or
strips has met with mixed results. For grit rings on a pointed tangent
ogive, Keener and Chapman (Reference 25) obtained significant reduction
in the side forces. For meridional grit strips on the windward side,
Pick (Reference 16) and Keener and Chapman {Reference 20) measured de-
k- creases in the side forces. Clark, Peoples and Briggs {Refereace 18)
had some success in reducing side forces in a model with a tlunt nose
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and cylindrical afterbody by placing grit rings on the nose. However,
Jorgensen and Nelson (Reference 22} observed no changes in side forces

and yawing moments for a ring of grit placed on the roses of models
with painted ogive noses {1/D - 3.5).

Other devices that have reduced side forces include nose-mounted
vortex generators {Reference 18) and nose booms (Reference 29). Changes *

in the cross-sectional shape of mcdels have also been shown to decrease
side forces.

RIS

M

e. Roll Angle and Rose Misalignments

COR AN

An additional complexity in the aerodynamic problem of slender E
bodies of revolution at high angle-of-attack is the varfation ef side
force and yawing moment with roll angle and/or model nose misalfgnment.
Thomson and Morrison (Referenze 15) reported that rotation of a seemingly

axisymmetric model (cone-cylinder with a measured nose misalignment of
less than 5 x 1074

to the other.

i

in.} changed the flow pattern from one vortex sequence
For one test medel, Pick {Raference 16) found that not
only did the sign of the measured side force change but also the magni-
tude of the side force, as the model was rolled 180°; however, for a
second model, only the sign of the side force changed as it was zgain
rolled 180°. Other investigators reporting changes in side force with
roll angle are Wardlaw (Reference 32), Lamont and Hunt (References 31,33),

Xeener and Chapman (Reference 20), and Clark, Peoples and Briggs (Refer-
ence 18).

The results obtafned by Keener and Chapman (Ra2ference 20), ave
particularly interesting. They found that by rotating the entire mcdel,
which was a pointed tangent ogive {1/D - 3.5), the changes in side force
are consistent with previous results, presented above,

A M et e

They also con-
ducted similar experiments fn which the rewovabie nose tip (length of
0.19 1.) was rotated.
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The results of these tests are very similar to the results
obtained fr the earlier tests. Hence, it appears that the asymmetry
of the vortex flew is very sensitive to the nose geometry. Similar
results were also obtzined by Clark, Peoples and Briggs (Reference
18). In these tests, either the entire nose was rolled with respect
to the body or the entire body was rolled. Under either condition,
the magnitude of the measured yawing moment changed substantially.

These results have very serious implicatious for tne designer
who must rely on wind tuanel test data. Uniess the particular model
was tested at several roll angles, the selected data may not represent
the maximum possible side forces or yawing moments. In fact, using
existing expacimental data to evaluate the accuracy eof existing analy-
tical techniques is equally as hazardous.

To complicate this problem further, an experimesntal investiga-
tion by Coe, Chamders and Letko (Reference 17} of rol} angle effect on
a tangent ogive {1/0 - 3.5) and a cone (1/D - 3.5) showed no significant
changes in the yawing moment coefficient.

f. Flow Field Unsteadiness

Several experimenters have reported various manifestations of
flow field unsteadiness or time-dependent bshavior. Lletko (Reference
14} observed an aperiodic pressure variation for yaw pressure orifices
on a yaw and pitch probe at high angles-of-attack. These results seemed
to imply that complete flcw reversal or flow switching existed. tetko
eliminated this probiem by placing a small nose strake on the prebe.
Similar inpvestigations of a pointed fuselage modal indicated only partial
flow reversal. Thomson and Morrison (Reference 15) found some gross
instabilities for certain incidence ranges between 30° to 40°, These
wake instabilities occurred either at various angles-of-attack for 2
fixed roll engle, or at fixed angies-of-attack and varying roll angle.
From visual cbservaticn, the authors cencluded that the wvortex system
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appeared to oscillate betweer the two stable flow patterns which existed
on either side of the instability. Themson and Morrison (Reference 15)
proposed that the instabiiities are inftiated by asymmetries in the flow
very close to the nose. These asymmetries may be related to either nose
ceometry or approach flow direction, or both. From a typica? oscillo-
graph output in Fick's paper (Reference 16), it appears that the measured
side force oscillates at about 20 kz. However, there is no discussion

or comment in the papar concerning the existence, frequency and/or magni-
tude of the time dependent sariation of the side force. Clark and Nelson
(Reference 26} reported visual observation fn a water tunnel, which
seemed to show flow switching between two distinctly different flow
patterns. Keener, Chapman and Xruse (Reference 27) observed flow
unsteadiness above ar. angle-of-attack of 45°. In fact, the amolftudes

of the unstzady side force were sometimes as large as 30% of the balance
load capacities. The mean side forces were obtained by electronic
filtering.

in contrast to the above qualitative observations of flow
unsteadiness, Coe, Chambers, and Letkc (Reference 17), using a tuft
grid to investigate the free vortex system, found that the various flow
patterns were relatively steady with time.

Lamont and Hunt {Reference 32) made some time-dependent surface
pressure measurements on models with circular arc ogive noses and cylin-
drical afterbodies. They observed varfous degrees of unsteadiness at
various angles-of-attack. At angies-of-attack between 30° and 50°, it
appeared as if random, partial or sometimes, complete flow field switch-
ing occurred. The flow seems to have a preferred state but was disturbed
in 8 random fashion. At inciinations of 65° to 70°, complete flow switch-
ing occurred more ofien, and at higher angles-of-attack perfodic vortex
shedding was observad, MNote that alil these tests were carefully controlled
to maintain Taminar boundary laver conditions.

As a result of these tests, Lamont and Hunt (Reference 33)
suggest that the random flow switching pahavior may be attributed to
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the turbulence Tevel in the approaching freestream. It is proposed that
if eddies of sufficient size are convected past the cylinder, then these
turbuient eddies will influence the local value of circulation about the
model at any instant, and cause a change in the free vertex orientation.
A similar approach has been used by Tunstail and Harvey (Reference 34}
to explain the switching of secondary circulation in the flow in pipes
with sharp bends.

These uncertainties associated with flow switching and tne
results reported by Smith and Nunn (Reference 35) on the effect of pitch
rate should be a strong warning to experimentalists in chsosing appro-
priate time scales for time-averaged pressure and force measurements.
Particular attention must be given to total sample time per data point
and frequency response characteristics of instruments and recorders.
Also, the dynamic characteristics of the medel support system must de
taken into consideration.

g. Vertex Shedding and Spacing

The alternate spatial shedding of vortices is an integral part
of the flow field in Regime III. Most investigators have assuamed expii-
city or implicity that the local maximum side force occurs at the axial
staticn at which the vortex breaks away from the model.

In view of the above and the concept of the impuisive flow
analogy, it is necessary to predict the locations of the shedding points.
Since the shedding process is continuous. some criterion has to be given
to define the aerodyramic condition indicating the shedding point.
Tnomson and Morrisen (Reference 15) used Schlieren photographs and
yawmeter traverses to obtain the location of the free vortex core after
shedding. Since the vorte« core path away from the medel was reasonably
straight, they calculated a "Strovhal number® for the spatial shedding
problem.
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Pick {Reference 16), following Thomson's anrd Morrison’s path of
{nquiry, obtained simiiar results. He showed that an increase in the
crossflow Mach number, Hc moved the virtual vortex origin downstream
along the model. Also, for the same gecmetry and approach flow condi-
tions, the vortex breakaway points moved downstream as the boundary
1ayer changed from laminar to turbulent.

Using cavitation as a means of flow visualization, Clark and
Nelson (Reference 26) observed body vortex cores in the wake of a model E

consisting of 2 tangent ogive nose (1/D - 2.5) and a cylindrical after- 3
bedy {1/D0 - 12.5). They found that the vortex starting positions move E
toward the nose as the angle-of-attack or the crossflow Mach number 3
increased.

A1l three available investigations used ertrapolated data to
determine the breakaway point, without having any surface pressure
measurements or other model surface measurements. It seems instructive
then to look to the analogous time-dependent shedding problem for a
right circular cyltinder normal to a uniform stream. There have been

Sl Aot

carefully documented experimental investigations on the formztion of

A hadhe

vortices. The most illuminating measuremenis of the temporal shedding
of vortices and their effect on the cscilizting 1ift and drag of a right
circular cylinder have been reported by Drescher (Reference 36}. By
combining simultaneous time-dependent pressure measurements with synchro-
nized fiow visualization motion pictures of the formation and path of
the shed vortices, Drescher was able to show the 1ift and drag force
dependence on both the location of ths shed vortices and the associated
surface pressure distributfon., In view of the impulsive flow analogy

it seems instructive to compare the time-dependent pressure distribution
variations along an inclined slender body. The only other time-dependent
pressure measurements for a right circular cylinder have been reported

by Haumann and Pfeiffer (Reference 37) and Naumann, Morsbach and Kramer
(Reference 38). The laztter investigations are of particular interest

in assessing the effect of shock formation on the model as the local
crossflow Mach number exceeds urity.
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The work of Gerrard and his co-worker Bluor (References 39,40,41)
alsc provides significant insight into the formation of wake vortices.
of particular importance to the problem under investigation is the de-
tailed mechanism of the development of the free vortex. Gerrard (Refer-
ence 40) has shown thav the circulation of the free vortex is lass than
the vorticity associated with the free shear layer leaving the body.
This is because, in the formation procecs, vorticity of opposit= sign
is entrained by the vortex sheet from the other side of the model. This
entrainment process occurs very close to the model surface and, therefore,
has a substantial effect on the local pressure distribution. This, in
turn, influences the magnitude of the local side force.
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SECTION 111
EXPERIMENTAL PROGRAM

The primary purpose of the experimental program was to determine the
seccdynamic loads on a smeoth missile at conditions of high angle-of-
attack at subsonic and transonic speeds. NKose shape was the principal
variable. Initially the data were intended to develop design criteria
for a missile concept, dbut were subsequently used to expand the basic
ynderstanding of complex flow phencmena that have applicaticn to several
missile and aircraft analysis problems.

The selection of the AEDC 16-Foot Transonic Test Facility was based
on a need to obtain data at near full-scale conditions, since this type of
data could not be corrected for large changes in Mach numbar or Reynolds
number with confidence. An extrapolation method had not been developed
for flows involving asyrmetric vortex separation at angle-of-attack. The
data presented in this report were obtained at a Reynolds number range
from 3.17 « 105 to 3.55 x 106, based on body diameter. The latter re-
presents some of the highest Reyrolds number data obtained to date at
tiese high anyle-of-attacx conditions.

Yesting was accomplished during 3ix tunrel entries, coveriag the
complete angle-cf-attack range from 9° to 180°, Measurements were made
of the surface static pressures, surface pressure oscillations, total
forces and moments, and the flcw field velocities on the lee side of
the missile. During the early pressure tests a high-pressure air supply
system was connected to simulate the rocket exhaust for missile angles-
of-attack above 40°.

The particuiar conditions of Mach number, Reynolds number, ard
angle-of-attack which comp: "s2 the test series are shown in Table 1.
The model designation, type of test, and the use of boundary layer trips
or rocket plume simulation is also noted.
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1. TEST FACILITY

The AEDC 16-Foot Transonic Test Facility (16T) is a ciosed-circuit
continuous-flow wind tunnel with a range of operation at Mach numbers
from 0.20 to 1.6C. The tunnel is capable of operating within a
stagnaticn pressure range from approximately 120 to 4000 psfa, depending
on the Mach number, and over a stagnation temperature range from about
80°F to a maximum of 160°F. The specific humidity of the air is
controlled by removing tunnel air and supolying conditioned make-up air
from an atmospheric dryer.

The high angle-of-attack missile tests were conducted over a range of
Mach numbers from 0.36 to 1.40. In the range 0.60 to 1.40 the tunnel has
a maximum dynamic pressure of nominally 750 psfa. This corresponds to a
maximum unit Reynolds number of 5.5 x 106 per foot at Mach 0.60 and
3.5 x 10° per foot at Mach 1.40.

In 16T the contour of each sidewall of the nozzle is adjusted by
motor-driven actuators. The test section is 16 feet square in cross
section and 40 feet lorng. The test sections are completely enclesed in a
plenum chamber which can be evacuated, allcwing part of the tunnel main
flow to be removed through the test section perforated walis, thereby
unchoking the test section at near sonic speeds and alleviating wall
interference effects., A more extensive description of the tunnel and its
operating characteristics is contained in Reference 42.

2.  TEST HARDWARE AND INSTRUMENTATION
a. Pressure and Force Tests

The missile configuration consisted of a 7.6-inch-diameter
cylindrical body and a set of interchangeable nose parts of various shape
and bluntness. A sketch showing the model located in the wind tunnei test
section is shown in Figure 3, and installation photographs of the model
are presented in Figure 4. The model was tested with two basic body
lengths and with various combinations of three ogive and three triconic
nose configurations. Major details and dimensionis of the model are shown
in Figure 5, and a photograph of the ogive nose configurations is shown in
Figure 6.
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NOSE A B R
NI 53.2  19.695 0
N2 53.2 19.345 0.23)
N3 38.0 16.258 0.23I
N4 22.8  12.411 0.23
XA
i 1
I
- - 7.6
R_/ N .
B }4—2.352
TANGENT
POINT
» 81 o
| o x IL: 82
- ——— ]
\
]-—z7.eo--
46.75
£6.583
le—————— 78.63 (N1} —————————]

Figure 5. Model Dimensions
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Nose Configurations

Figure 6.
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pision

One of the primary test variables was the shape of the nose.
Thirteen different nose configurations were tested at various conditions
during the force and pressure testing. Figure 5 shows sketches of 12 of
the nose shapes that were btuilt for wind tunnel testing. The five basic
2 noses were N2, N3, N6, N8 and N11; the 7-caliber, 5-caliber and triconic

Rt ok i

ot

2 noses, respectively. Caliber as defired in this report is the radius of
- R the arc from the body tangent point divided by the diameter as shown in
; : Figure 28. The N1 nose was the N2 nose with material added to the tip
_ and machined to a sharp point. N4 was a 3-caliber nose tested to give
parametric data on the effect of fineness ratio. The N5, N7, N9, N10,

N12 and N13 noses were made by changing the nose "button”, a removable
screw-in nosetip on the basic triconic shape, tv change the bluntness

9 of the triconic configuration. The N14 nose was a 3-caliber nose

(Vike N4) with increased nosetip bluntness. The triconic nose
’ configurations, were developed to increase usable volume in the nose
3 while reducing nose length, allowing increased body cylindrical length

within a fixed maximum-overall-length missile.

The pressure models were instrumented with up to 308 pressure
orifices. Shown in Figure 7 is Configuration N2B1 with 244 pressure
orifices. For the various nose configuraticns the station Tocation of
the nose pressure rings varied slightly and are called sut as a nominal
X/D location in this report. The data were obtained with up to seven
internaliy mounted 48-port Scaniva]vesR with strain gage pressure trans-
ducers. The first two test entry mcdels included 32 microphone taps with
the static taps. These data are reported in AFFDL TR 76-109, Reference 52.
The cold-air nozzles which simulated the rocket plume are shown in
Figure 8. The exhaust nozzle weight flow was determined from cnamber
pressure and temperature measurements and the iaternal geometry of the
5 exhaust nozzie. A pitch indicator mounted on the pitch support system
Lt was used to determine the model angle-of-attack.

At

Ay

AR il

The external contuur of the force model was identical to the
pressure model except the force model did not have the surface pressure
orifices. The support system hardware was also the same for both models
with the addition of six-component strain gage balance. The pitch attitude
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of the sting-mounted force model was determined from an internally mounted
angle-of-attack indicator, and the strut-mounted-model attitude was
determined from an angle-of-attack indicator mounted on the pitch mechanism
and corrected for balance deflections.

The model was mounted on a remotely controlled sting support
system with a pitch range from -5° to 45°. To obtain model force and
pressure data through an angle-of-attack range from 0 to 180 degrees,
essentially two separate model support systems were required. A sketch
showing the model support arrangement and associated angle-of-attack
range is shown in Figure 9.

To obtain data through an angle-of-attack range from 0 to 45
degrees, the model was aft mounted on a straight sting support system,
Figure 10. To obtain data through an angle-of-attack range from 45 to
180 degrees the model was strut mounted, Figure 10, and attached to 2
sting support with a clutch face arrangement. The clutch face allowed
the model to be positioned at either 45, 90 or 135 degrees with respect
to the main support system. High-pressure air was supplied through the
sting and strut to an aft-mounted nozzle for coid-fiow simulation of the
nozzle echaust plume during the pressure phase of the test.

A large number of the sting-mounted configurations were tested
with a boundary-layer transition strip around the nose. The transition
strip consisted of a 1/8-inch-wide ring of “grit" around the nose. The
grit consisted of No. 70 (approximately .0083-inch-diameter} alass Spheres
glued on with polaroid print fixer. The chart in Figure 11 lists the
location of the grit ring for each of the 14 nose configurations. The
K1B1 configuration was also pressure tested with two lengthwise strips of
'grit located 30 degrees either side of the winaward meridian for tripping
the boundary layer when the model was at high angles-of-attack.

b. Flow Field Tests

The N2B1 configuration described in the previous section was used

for a =ore detailed analysis of the wake characteristics. The missile model

was floor mounted on a strut/sting arrangement with a piteh range from
0 to 70 degrees and a roll range of from -180 to 180 degrees.
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ANGLE- OF -
ATTACK RANGE
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45° _m90*

90° e 135°
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Figure 9. Model Support Arrangements
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The probe rake was sting mounted and positioned automatically under
computer control. Figure 12 shows the model and the cone probe rake
installed in the wind tunnel test section.

Thé wake data, consisting of steady state flow angularity and
pressures, were obtained with a nine-probe rake, each probe having a
conic tip with four static and one total pressure orifice. In addition,
unsteady flow fieid data was obtained with a rake of the same geometric
design, employing Kulite transducers in each probe. The geometricel details
of the probe are shown in Figure 13.

The missile model was instrumented with 260 pressure taps as
shown in Figure 7. Sixteen mode) pressures at station X/0 = 7.4 were
measured by the PRT digital pressure system to provide a centinuous
sampling of the data with respect to time. The purpose was to determine
the steady or unsteady nature of the data being recorded. More
information cn the procedure will be provided in following sections. AN
other pressures were measured by 6 internally mounted 48-port Scanivalves
and strain gage pressure transducers.

3. DATA REDULTION
a. Pressure and Force Tests

The pressure and force data presented in this report were
obtained at freestream Mach numbers from 0.30 to 1.5G and angles-of-attack
from 0 tc 180 cdegrees. The freestream Reynolde number per foot was varied
from 0.50 to 5.00 x 10" at discrete Mach nusbers as shown in Table 1.

The steady-state force, moment, and pressure coefficient data
were obtained by setting the appropriate tunnel conditions and varying the
angle-o?-attack in 5-degree increments. The pressure coefficient data
were alsg cbZained both with and without simulated nozzle exhaust flow.

The force and moment data were corrected for weight tares and
reduced tc body axis coefficients by AEDC. Moment coefficients were
referred to a lecetion 27.8 inches ferward of the basz of the model,
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FIRST
RING OF PORTS

2
‘mn_‘4 g {
#70 GRIT.# g

hay— LG ——q-—i—-

Ly

L] = Distance from nose to q_of first ring of pressure ports
Axial distance from nose to leading edge of grit ring

% = Axjal aistance from leading edge of grit ring to i of first ring of
pressure ports

=
[
"

NOSE ™ l] LG 2

CONFIGURATION D linches | mnches | mceEes
Nl 7-cal. ogive 0 3.90 2.82 1.10
N2 - .G304 | 3.50 2.40 1.10
53 §-cal. ogive .0304 | 3.00 2.40 .60
Ky 3-cal. ogive 0304 | 2.38 1.88 .50
N, S5-cal. triconic .040 | 4.63 2.40 2.23
H5 " .C80 3.78 1.55 2.23
N7 4-cal. triconic .040 2.78 2.40 .50
NB * .080 2.15 1.77 .50
N9 v .120 1.52 1.1 .50
Nlo 3-cal. tieiconic .040 3.58 2.50 1.08
Nll * .080 3.07 1.99 1.08
le " 120 2.56 1.48 1.08
H]3 d .160 2.05 .67 1.08
N]4 3-cal. ocive 150 -~ 1.00 -

Figure 11. Nose Ring Grit Patterns
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] PHOTOGRAPH OF MODEL INSTALLATION

3 Figure 12. Model Installation for Flow Fielc Test
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The pressure data was recefved from AEDC in tabulated listings
and on magnetic tape. The pressure coefficients were plotted and
integrated to give running loads and total force and monent coefficients.

b. Flow Field Test

The flow field measurements were cbtained at Mach 0.40 at 40- and
45-degree angle-of-attack, and at Yach 0.60 at 40-degree angle-of-attack.
The freestream Reynoids number was 2.0 x 106 per foot at Mach 0.40 and
5.0 x 106 per foot at Mach 0.60. %ake data were obt.ined at three model
stations at Mach 0.40 and 45-degree angle-of-attack, two model stations
at Mach 0.40 and 40-degree angle-of-attack, and one model station at
Hach 0.60 and 40-degree angie-cf-attack. The first survey station was
at X/0 = 3.78. The two subsequent survey staticns were at X/D = 7.4
and 8.8. The dynamic total pressure surveys were made parallel to the
model centerline at about 1.0 diameter above the centerline. The wake
velocities and flow angularities ware calculated from the pressures
based on calibrations of the cone probe rake.

The ebjective of this test was to obtain flow field velocity data
with the model at a roll angie where the side force was high. To select
this rdil angle the model was rolled 180 degrees in 22.5-degree increments
with the model pressure data recorded at each roll angle. It was surmised
that the maximum side force would cccur when the pressure differential
between taps on opposite sides of the missile at ¢ = 30° was a maxiexmi,

At Mach .40 and 45-degree angle-of-attack the abjective was
accomplished and a 2ero degree roll angle was selected. However, after
this set of datz was obtained, one of the taps at the survey station
became plugged snd remained undetected during the acquisition of the
remaining test data. As a consequence, a roll angle was selected for
the remaining sets of data which did not give the maximum side force.

Vortex switching did net occur for the present test conditions.
This was determined by monitoring two pressure transducers at the save
relative leeward position on each side of the body as 2 function of time.
Had vortex switching cccurred the relative reading between these two taps
would have fluctuated from positive to negative. At Mach 0.40 tie
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difference between the two leeward taps was cbserved to be nearly constant
with time, indicating steady flow conditions. At Mach 0.60 there were
large differences between the two leeward taps with time, although the
readings were always positive. Thus one may conclude that the flow

field was unsteady at Mach 0.60 but vortex switching did not occur.

4. PRECISION OF MEASUREMENTS
a. Pressure and Force Tests

An estimate of the precision of the data 3t two standard deviation
is presented beiow for Mach number 0.60 to 1.30.

Mach No. = 0.60 Mach Ko. = 1.30
Parivetar gfgnglig6ﬂ ) gfﬁn:lg; o §fzn:1§3°ﬂ°'

Cy ¥ o711 t 0.077 +0.093

[ t 0.226 * 0.039 *9.150

C * o.586 % 0.065 %0.02.

[ % 0.008 1 0.008 to.008

Gy to.312 Yoo ¥o.025

B +0.003 ¥o.003 *o.010

4 F3.0pst +3.0 psf +3.0 psf

o +o.10° +0.10° *o.20°

At Mach 0.6G the estimates point out the loss of accuracy of
the force and moment data at the low Reynoids numbers. The original
test plan called for the maximum Reynolds number avaiiable and the
baiance was therefore sized and calibrated to accommodate the higher
loads.
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b. Fiow Field Test

Estimates of the precision in certain test parameters at a
85-vercent confidence level are as follows:

RParameter Mach No. ~ 0.40 Mach ¥o. - 0.60

Mo * 0.004 *0.603

9 +as psf + 3.3 psf

p (Scanivalve) +5.8 psf i 6.2 psf

p (PPB system) tss psf Y. pst

o (model) *o.15° .15

ot (rake) % 0.05* too.05°

? o5 *o.5°
x/5{rake) to.014 to.014
y/D(xake) Yo.04 to.014
2/D(rake) *o.014 + 0.014

i
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SECTION IV
EXPERIMENTAL RESULTS OF THc PRESSURE AHD FORCE TESTS

The effects of the major variables in the eiperimental program have
been separated into sections. The intent is to snow trends and seasitivities
as functions of flow field and geometric varfables. Tws principui questicnc
were identified as the test plan was developed. The application of the
test data to flight conditions reguirec more than a correction to the
axial force coefficient to account for skin friction differences. All
of the static force and moment coefficients weuld be sensitive to
boundary layer separatios at high angles of attack and scme type of
Reynolds number scaiing description was required. The second guestison
was the effact of the nose shape on the separatea vortex pattern. The
separated vortices induce forces and moments which affect flight
characteristics. Both the force balance data and the surface precsure
data were used to show the experimental trends.

1.  PRESSURE INTEGRATION

The pressure data offered a unique opportunity to compare aercdiramic
charactaristics as measured from twd independent sources. The pressure
coefficiarts were integrated over the surface of the missile tc cbtain
force and moment coefficients. The integrated values were then compared
with the direct measurements of forces and moments. The comparison
answered questions about the repeatability of dats and instrumsntaticn
response to time dependent pressure fluctuations. 3tructural amalysis
requires data on running loads, and this could only be provided by tae
integrated pressure data. Analytical development was also dependent vpon
the measurements of running load pattemns.

Pressure integration was accomplished using geometric data which
describes the slope and lccation of gach tap on the model. Direction
cosines are computed at each tap. Experimental pres:ure cortficients ars
read from the data tape. multiplied by the appropriate direction cosines,
and integrated with respect to location over the missiie surface.
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Figures 14 through 16 present cenparisons between force data and
integrated pressure Jata for the #42B) and N6RZ configuratiuns, ahich are
typical. The normal force coefficiints for oath confiauratians show ercel-
Tent agreement below 35-deoree angle-of-attack dut 2t 33 degrees and
higher some differences are notes. The effect of the asymmetric “low
on the aerodynamic ccecficients akovs 35 degrees i. prsbably the biggest
factor causing these differonces. Differences have been feund in exnectea
normal force levels for othor cases end thaese differences invariably cccur
when the asymmetric forces are very lzrge. The axial force coefficient
plots shiw that with correctians tor base axial force {Figur> 13) znd skin
friction the integrated pressure jata would agree qhite well with the Torce
data. The side force coefficient at 35-degree angle-of-attack is plotted
versus Mach number for both configurations. These figures show that, in
general, the magnitude of the side force ccafficients is the same but that
the signs may be different. This difference in signs, even with just smal}
angle-cf-attack differences, indicates that the flow pattern of shedding
vortices and their frequencies and strergths are highly dependent on x lsrge
ntber of factors which must be systematicaly tested to improve analytical
wethods.

The pressure data can reveal much more about what is happening o=
the 3o0del as opposed to total forces and moments, and, as such, provides
invaluzble information for research on asymemetrical flow phenomena.

2.  ASYMMETRIC FORCES

gne of the primary objectives c¢f this test effort was the investi-
gation of asymmetric fiow on slender bodies at angles-of-attack above
25 degrees. The large model at high Reynolds number combinad with the
12rge Mach number range and 13 nose configurations tested provide a
wealth of useful data for this type of investigation.

Figure 17 presents the absolute value of the ratio of side force
coeffictent to normal force coefficient (ICY/CNH Jersus angle-of attack
for eignt of the configurations at Mach numbers 0.4, 0.6, and 0.8.

—————
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Cne of the most inleresting results is the effect of nose shape on
the development of side force with increasing angle-cf-attack atove 2%
degrees. The lowest fineness ratio nose (N4) is shown to have, in
general, much icwer side forces at all Mach numdbers than the other
configurations, while the triconic (NSB2, N632) nose configurations side
forces are the highest. In fact at Hach 0.4, the N5BZ side force is
seer to be a5 much as 73 percent of the normal force at a = 40 degrees,
while the N4B2 is oaly sbout 6 or 7 percent. The ogive nose (N1, N2, K3
and H4) configuraticns side forces generally decrease witi decreasing
fineness ratio. Tne figures again show the side forces decreasing with
intreasing Macn number, dropping from 30 to 40 percent of normal force
te about 5 percent -- going from Kach 0.3 to 0.8.

The section on Reynolds number effects will show that for all but
the N4BZ the magnitudes of the forces and moments were sensitive to
freestream Reynolds number once asymmetric flow had occurred. The trends
with Reynolds viumber varied with configuration, and only generalized
statements could be made concerning tihese effects. For the bluntest
nose configuration, N4B2, the side forces and yawing moments stayed very
small with Reynolds number variation; other nose configurations varied so
much that there must be a point where decreased fineness ratio effects on
the boundary layer are such that symmetrical shedding is continued to a
much righer angle-of-attack. For other nose configurations the change in
Reynolds rurber probably affects flow such that it changes the vortex
shedding pattern in varying ways.

3. REYNOLDUS NUMBER EFFECTS

The MX wind tunnel model was designed to as large a scale as possible
for testing at maximum dynamic pressure in the 16T facility. The primary
purpose for this was to test at the highest crossflow Reynelds number
possible because of the very large angle-of-attack encountered by the MX
air-launched missile, with possidilities of large side forces and
yawing moments due to asymmetric vortex flow phenomena. Simulation of
these phenomenon fs a stroag function of crossfiow Reynolds number, Re N
and crossflow Mach nucder, Hr.' The expected variation of full-scale ¢
R, with Hc for the forward and rearward launch of the MX 3-80 missile

.
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are shown in Figure 18 along with the wind zunnel valugs run during the MX
testing program. Maximum R for ful) scale 15 7.2 x 106 at "C 0.4
while wind tunnel Rec was 2. 35 x 106, Alihough the mismatch of Reynolds
number is apparent, these data still reprecent some of the highest
Reynolds number testing at very high angles-of-attack to date and, as such,
should aid in uncerstanding the asymmetric vortex skedding problem area.
Figure 19 shows the range of crossfiow Reynolds nrumbers covered during
these tests with respect to crossflow drag coefficient.

Since the primary purpose of the high Reynoids number was to
investigate the asymmetric flow phenomena the emphasis in looking at the
data was concentrated on angles-of-attack between 30 nd 45 degrees.

The very high angle-of-attack data were obtained on the strut model
sypport. A data shift was observed when strut data were ~ompared with
sting data, indicating support interference effects due to the forward
svept strut. For this reason the sting-mounted model data were primarily
used.

Pressure coefficient data for the N2Bl configuration at M = 0.6,

= 45° and Reynolds numbers of 0.5, 1.0, 3.0 and 5.6 x 10° are shown in
Figure 20a through f. A scrutiny of each station revesls that the effect
of Reynolds number on the pressure distribution varies considerably. Each
station has its own variations with meridian angle, and few definite trends
could be noted. The positive C_ values are virtually unaffected by the
changirg Reynolds number, while the negative Cp's fluctuate with the Reynoids
number. At station 10.5, for example, the pressure distribution is symmet-
rical with the largest negative C_ on the far leeward side being for the
Towest Reyrolds nupber. At station 17.5 the distribution is slightiy un-
symmetrical. with the highest Reynolds number vun shewing the largest
negative Cp on the far leeward side. For meridian angles of 60 to 110
degrees, the increasing negative C_ corresponds to increasing Reynolds
number in most cases. A noteworthy effect was the increzsingly unsymmet-
rical pressure distribution, particularly at the higher Reynolds numbers,
with orly a short change in body length. At station 17.5 the distribution
is already slightly unsyrmetrical, and at X = 26.5 the distributian is
quite unsymmetrical. At X = 46.5 the distribution is fairly symmetrical
again, and at X = 65.5 the distribution is unsymmetrical, with the larger
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MX REYNOLDS NUMBER EFFECTS
Mo*6 e=45° X-STA=105

]E X 10°6

X
3
10

+20
J
a. Xe= W5
Figure 2G. Effect of feynolds Himber on Local Prelsura Cor “ficient
Distribution
85

PR T

r—t—————_




AFWAL-TR-80-3070

MX

REYNOLDS NUMBER EFFECTS
Mo*6 o245 X -STA=TS
N28BI
RUN AE X 1078

b. «<17.5
Figure 20 {Continued)

Aensak pama mn b




AFWAL-TR-80- .

MX
REYNOLDS NUMBER EFFECTS
Moz 6 «=45 X-STA=265
N2BI
RUN RE X 106
O 3% s
O 39 10 180
O 40 30
Fayy v} 56

Q

¢. X=26.5
Figure 20 (Cootiaued)

P

e e




LRl AR

.},:‘{_

pcis

D)

AFRAL-TR-80-307C

MX
NUMBER EFFECTS
Mos6 245 X-STA=465

AuUN REX 10

@80

C

t+
4. X+ 46.5
figurs 26 (Continued)




AFRAL-TR=0-3070

MY

REYNOLDS NUMBER EFFECTS
Mo»6 345 X-STA=655

Four | 36 180

e« X+66.5

tQure 20 ((vatinued)

89

7
4
N - a ek et M}J

W oem s QA e A

hﬁaux .




AFWAL-TR-30- 5070

X
REYNOLDS NUMBER EFFECTS

Mo=6 45 X-STA=T775
N2l

)
RN REX 1076

c 36 5

8 3 1)
40 30

A at %6

ae o Teamanen

f. Xa71.5
tigure 20 {Toncluded)

PR,




T,

ot

APHAL-TR-80-3070

negative vaiues to the opposite side of the X = 26.5 values. The system-
atic variation of side force values from side to side s apparent from the
pressure data. Depending on the pattern, the integrated side forces could
give a small summation force; whereas with the unsymmetrical pattern
starting so far forward, the yawing moments could still be very large.

The force and moment balance data for various Reynalds nusbers on
the N2B1, N3B2, N4B2 and 682 configurations was so inconsistent that no
definite trends could be estanlished. Figures 21 through 22 show the CN’
CY and Cn aercdynamic coefficients plotted versus angle-of-attack for the
N28B1 and N3B2 configurations at M_ = 0.6 for four different Reynolds
numbers. Initial conclusions from these figures would indicate that the
highest Reynolds number would have the largest normal force, side force,
and yawing moment coefficients at the higher angles of-attack.
tnfortunately, the baiance data for other fach numbe 's and configurations
did not always show these same trends. Crosspiots of CN’ CA' Cy and Cn
with Reynolds number for the N2Bi, N3B2 and N6B2 configuvration at angles-
of-attack between 25 and 45 degrees {shown in Figure 23) demoastrate that
even at a constant Mach number of 0.6 the trends are not completely
consistent. Generally, increasing the Qeynolds number increased the
magnitude of the side force an¢ yawing moment coefficients and increased
normal force coefficients over the medium Reynolds nusber values.

The strut data for the N3B2 configuration was also c¢ross plotted
(Figure 28) to see if the trends noted bove Tor the sngles-of-attack,
40 and 45 degrees on the sting, remained che same. The side force and
yawing moment were of different values but showed the same trends. The
integrated pressure data for the 1281 cunfiguration was alsc piotted
(Figure 25) to sece 1f the pressure data trends were similar. These plots
show a different shape to the curves witk the increases in cogfficients
Teveling off above a Reynolds number o¢ 3.0 x 106.
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4.  HACH NUMBER EFFECTS

Testing spanned Mach numbers from 0.3 to 1.5 for most of the model
configurations. Figures 26 and 27 present some of the higher angle-of-
attack aerodynamic coefficient data showing the effect of increasing Mach
nunber. Figure 26 shows the increasing norma! force coefficient with
iacreasing Mach number for seven different configurations at an angle-of-
attack of 35 degrees. Figure 27 shows the decreasing side force and
yawing moment coefficients with increasing Mach number. These plots clearly
demonstrate that asymmetric force phenomena is essentially associated
with subsonic Mach numbers.

5.  NOSE SHAPE EFFECTS

Figure 28 shows sketches of 211 14 nose shapes which were built for
wind tunnel testing. Fiqures 29 to 31 compare the N1, Nz, N3 and N4
noses (with Bl body length) aerodynamic coafficients for Mach numbers
of 0.4, 0.6 and 0.8. The N3Bl and N4B1 data are integrated pressure results.
At Mach number 0.4 the normal force coeffirient for the N4B1 configuration
is noted to be somewhat lower than the others for angles-of-attack above
30 degrees. The N1B1, NZB1 and N3B1 CN values are very ciose and ali
increase rapidly from 35 to 45 degrees. The side force and yawing
moment coefficients are quite small until angles-of-attack increase
ahove 25 degrees. The side force increases rapidly for all configurations,
but much less with the N4B1 than with the other three. The yawing moment
stays relatively small until 40 degrees, meaning that, although the
side forces are large, the distribution is such that they cancel out as
moments, then increase dramatically for the NiBl1, N2B1 and N381 con-
figurations. Again the H4B1 asymmetric forces are much less tnan the
other three. At Mach number 0.6 the plots show similar trends with the
exception of the jump in normal force coefficient of the H3B1 configuration.
It is of interest to note that this occurs at the angle-of-attack where
the N3B1 configuraticn has large asymmetric forces, in fact, much larger
than the other three configuraticns. The Mach number C.8 data show
little difference in CN and only small asymmetric forces for altl
configurations.
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Figures 32 to 34 show similar results for the 282, R3B2, N4B2 and
N14B2 configurations at Mach numbers of 0.4, 0.6 and 0.8. The N2B2
configuration shows much larger asymwetric forces and moments than the
lower fineness ratio nose configurations. The increased tip bluntness
on R14 compared to N4 showed a reduction in normal force coefficient but
with no additional reducticn in the asymmetric forces and moments.

Figures 35 through 37 compare the two 5-caliber triconic noses N5
and N6. The nose tip bluntness on M6 is twice that of N5. Both noses
are seen to have large side force and yawing moment coefficients at the
lower Mach numbers and that no advantage was gained from the increased
bluntness.

The effect of nose tip bluntness on the serodynamic coefficients of
the 4-caliber triconic noses for Mach numbers 0.4, 0.6 and 0.8 is shown
in Figures 38 through 40. HN77 is the N7 nose removed from the cylindrical
body, rotated 180 degrees, and re-attached. At the lower Mach numbers
the sharpest ncse has the larger normal force and side force coefficients
at the higher angles-of-attack but the N9 nose configuration with its
increased bluntness shows no additional reduction over the N8 nose
configuration.

Similar data are shown in Figures 41 through 43 for the 3-caliber
triconic rose configurations N10, N11 and N13. The N12 configuration nose
button was built but never tested. For this fineness ratio (3) basic
nose shape, increasing the bluntness reduced the asymmetric forces and
moments only at Mach 0.4.

The effect of fineness ratio on the triconic-type noses is shown
in Figures 44 to 46 comparing N5B2, N77B2 and N10B2 configurations.
These are the smallest nose tip bluntness (.04 D) noses for fineness
ratio 5.0, 4.0 ard 3.0 triconic configurations. At Mach 0.4 all three
noses exhibit large side force and yawing moment coefficients at the high
angles-of-attack with corresponding fluctuations in normal force
coefficients. At Mach 0.6 the two slender nose configurations exhibit
large asymmetric forces and moments. At Mach 0.8 the largest fineness
ratio (5.0) configuration still shows a relatively large side force
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Figure 42 {Continued)
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Figure 43. Comparisons of the Yawing Moment Coefficient for 3-Caliber
Nose Shapes
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Figure 44 (Continued)
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Figure 34 (Concluded)

162




4
' AFKAL-TR-80-3070
3 MX _FORCE TEST DATAH
’ NOSE ShRPE EFFECTS
Es
K- -]
5 2.0 MH(‘H1 MIMREE = 0,403 REYNDIGS MIMRER = 2.Gix|o°
4 A
g LEGEND
i © - RUN 499-N77R2
3 L.c A - RUN 422-N10B2
o= RUNZ08-N 5BZ ¢ o
)
z |
[} 5 O e lol
o & SR S ST S
e o ! c &
- [
e o) {
E- 8 -1.6 1
i wo i a8t
. (%) [o]
L ' gy
3 w LTk
k> S 2.0 44— T
& ¢ c
= R . ¢
3] Pl
- 3.8 4 <L_N5|
E |
25 i
3 e ; i
k- 5.0 i6.e . 3.6 4G.c 5 ¢
] ANGLE OF ATTACK IN DEGREES
£
3
Z1
. |
2

3 H =04

Flgure 45. Effect of Finsness Ratio of the Triconic Nosc Shapes oa Sfda
Ferce Coefficient, Bluntaess Patin = 0.34D




AFWAL-TR-80-3070

MA_FORCE TEST LATA
NOSE SHAPE FFFECTS

~ 2.6 MACH NIMBER = 0 EQ: REYNQ DS NUMBFR = 5.01x10" :
3 LEBEND 3
3 o - RUN 514-N7782
g & - RUN 428-N1082 :
c = RUNZIZ-N SEc .
H
3 ! A
By s i ]
E: @ c.s.*..‘,: St 4 3 — A_b oA E
P> (&) 4 %
= oxdosc o 0 ¢ o L h 2 a :
b c H
P Q s
3 2 e Z
ps L . ’.
o 3
: | <
o
i - : E
E SRR S l
=5 ; i 1
3 g
; el |
3 304 5 2
k. Ty
% } . .
2 } t ¥ K
: e d i : :
3 5.6 16.5 6.5 3.5 e 6.0 .
S ANGLE OF ATTREY IN DESREES h
3
E z
3 s
P 3
S b % s o g
3 3
- Flgure 45 {Continuzd) :
3N
154




AFWAL-TR-80-3070

SIDE FORCE COEFFICIENT

MX_FORCE TEST DATA

NOSE SHAPE EFFECTS

MACH MIUMRER = 0.798  REYNOI DS NUMBER - 3.99x10°

2.9 I I
LEGEND
o = RUN 507-N7782
Lo & = RUN 439-N10B2
o= RUN 220-N 582
A
N . a
o a0 2 S
00d00 0 0 ° o P D op
b
1.9 <
-2.04—"
<ﬂﬂ|
3.04— @
1
-4.0 { —_—
G.0 1G.9 26.9 30.9 40.9 50.0
ANELE OF ATTACK IN DEGREES

c. M =038

Figure 45 (Concluded)

165

L&}.\/Aﬂ!ﬂbwmﬁ el s

P o




AFHAL-TR-80-3070

YRARING MOMENT COCFFICIENT

5.0 - MACH NUMBFR - 0 401 REYNGLOS_NUMBFR = 2.0ix)C°

MX_FORCE TEST DATA
NOSE SHAPE EFFECTS

!

LEGEND
0 - RUN 493-N7782
o 5 - RUN 422-N1082 =
C = RUN 208-N 582
2.0 - &
o a
o G b
° A s,

?
Lo
o
o

e

| 1
£.0 : }
5.3 6.9 2.5 35.0 15.C SC.6
ANGLE OF RTTACK IN DEGREES
a. M =04
Figure 46, Effec’. of Fineness Ratio of the iriconic Nose Shares on

Yawing Mosent Coefficient, Bluntness = 0.04D
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Figure 46 {Concludzd)
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coefficient at angles-of-attack above 30 degrees even though there appears
to be a shift in the data.

Several of the previous figures show offsets in the side force
coefficient curves, with fairly large values at low angles of attack and no
sidesiip angle. No explanation is readily available as to the reason for
this. Since the offset was not constant with Mach number and no corres-
ponding yawing moment coefficient was shown, the shift in side force
coefficient is apparently not real and should be disregarded.

Figures 47 through 49 compare the largest tip bluntness triconic nose
configurations for effects of fineness ratio at Mach numbers 0.4, 0.6
and 0.7. These plots indfcate that with reduced fineness ratios less than
4.0 calibers the asymmetric forces and moments are greatly reduced. The
5.0 and 4.0 caliber fineness ratio nose configurations both exhibit large
side force and yawing moment coefficients of about the same magnitude.

The final plots on nose shape effects compare the ogive nose (N3)
and triconic nose (N5) configurations of comparable fineness ratio at
Mach numbers 0.4, 0.6 and 0.8 (Figures 50 through 52). The ogive nose
configuration has smaller asymmetric forces and moments than the triconic
nose configuration particularly at Mach number 0.4.

The data show that the smallest length to diameter nose (N4,
1/d = 1.6333) had much Jower asymmetric forces and moments than any of the
other nose shapes. As the 1/d of the ogive shape nose was decreased,
there was generally a decrease in the asymmetric forces and moments. The
triconic nose configurations generally had, as large or larger asymmetric
side forces and yawing moment coefficients as the ogive noce configuraticn
of the same length-to-diameter ratio.

6.  BODY LENGTH EFFECTS

The H2 nose configuration was the only one that was force tested with
and withcut the 9.8333-inch-long budy insert in the 0 to 45 degrees anale-
of-attack region. Plots of the aerodynamic coefficients comparing the
N281 end N2BZ2 configurations at Mach numbers 0.4, 0.6 and 0.8 are shown
in Figurs 53. The figures show the expectad resulting effects of increased
planform area. B3se Area of 45.36 in.Z was kept constant.

169

Ay




I
" VAN a4 ,J

AFWAL-TR-80-3070
MX _FORCE TEST DATA
NOSE SHAPE EFFECTS
12,0 —UACH NUMRFR = 0.40i REYNOD DS NJMBER ¢ 2.09x10°
LEGEND <]
0 - RUN S52G-N 882 C -
1.6 a4 - RUN45]1-N1iB2 —_—
o= RIN 202-N 6B2 @
D
[ g . 5
= _
5 o0 TR} —
2 .
[ 99
Ll
O
(&)
o 66
Q
o
o
(79 c o
o2 | 00
E 45 B
8
= oa i
g ! -
% {
-y
2.5 7
[o]
a
[ ]
F
5
£
G.wh—
5.5 1.5 20.9 36.5 40.0 56 o]

ANGLE OF ATTACK IN DEGREES

€ Lpraege a

N
-

a. M =04

Figure 47. Effect of Fineness Ratio cf the Triconic Rose hapes on
Hormal Force Coefficient, Bluntness Ratio = 0.080
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Figure 47 (Continued)
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Figure 43 {Cootinuez)
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Of particular interest is the effect of increased length on the
running loads patterns. Figure 54 shows the HAB1 and N4B2 normal force
and side force coefficients at each pressure station at Mach number 0.4,
and an angle of attack of 40 degrees. The patterns shown are very
similar, with the excepticn of the dropoff in CN at the aft end of N4B2,
caused by base effects. The next figure (Figure 55) compares the rumning
loads for the N381 and N3BZ configurations at Mach number 0.6 and an
angle-of-attack of 40 degrees. Again the patterns are simflar. These
results indicate that the extended body continues the running lcad
pattern of the shorter body length.

Body length effects on asymmetric forces were also studied in
Reference 20, which contains test data on nose configurations without
an afterbody and with a detached afterbody, The research found that

no changes in the nose asymmetric forces and mements occurred due to
the presence of an afterbody.

7. ROLL ANGLE EFFECT>

During the second force-and-moment test entry, which was the last
of the five entries in 167 for this test series, roll angles were varied
from -10 to 190 degrees at several high angles-of-attack at Mach numbers
of from 0.4 to 0.7 to investigate the effect of roll angle on the
asymmetric forces. Repeatability of the continuous-roll data was
checked by recording data from -10 to 190 degrees and from 190 to -10
degrees. Good repeatability was found on several different configurations
so the remaining roll runs were made in oniy one direction. The model
was rolied at a rate of 2 degrees per second. Data were recorded at a
rate of 100 samples per second on magnetic tape for off-line analysis
(Reference 43). As a check on the validity of the centinuous-roll
procedure, data were taken using manual roll settings with the model
held stationary. Excellent agreement was obtained as shown in
Figures 56 (2) and 57 (a). Figures 56 through 57 show the effect of rell
angle on Cy and Cy for the N26Z2 configuration at Mach numbers 0.4, 0.6
and 0.7. These plots indicated the necessity of rolling the model to
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EFFECT OF BODY LENGTH
M348  Repr s2XI08 =400
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Figure 4. Effect of Body Length on the Distributed Force Coefficients
at Mack 0.2
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determire the maximum side force. Figures 56 (2) and 57 {a) include the
manual roil settings and angle-of-attack sweep points which indicate the
repeatability of the test data.

Figures 58 thrcugh 59 show the evfect ¢f roll angle on the N1482
configuration for Mach numbers from 0.4 to 0.7. The side force coefficient
is seen tu vary between -71.0 and 1.7 at Mach number 0.4, depending on
the roll angle.

To shed some 1ight on the effect of possible nose asymmetrics on the
asymmetric forces, the triconic nose N7 was removed from the 82 body and
reinstalled 180 degrees from its original position (and designated N77).
Theoretically if the nose asymmetrics caused the asymmetric flow pattern
the data should now be shifted 180 degrees. Figures 60 and 61 show the
results, which reveal a lack of repeatability at roll angles of O degrees
and 180 degrees. This may have been caused by a change in the asymmetry
of nose to body alignment when the nose was reinstalled.

8.  GRIT EFFECTS

A large number of the sting-mounted configurations were tested with a
boundary-layer transiticn strip around the nose. The transition strip
consicted of a 1/8-inch-wide ring of “"grit" around the nose. The grit
consisted of No. 70 (approximately .0083-inch-diameter) glass spheres
glued on with polaroid print fixer. The chart in Figure 62 lists the
location of the grit rinc for each of the 14 ncse configurations. The
N1B1 configuration was also pressure tested with two lengthwise strips of
grit located 30 degrees either side of the windward meridian for trippirg
the boundary layer when the model was at high angles-of-attack.

Plots were genzrated comparing grit ring on and off results of the
higher Reynolds number runs. Typical normal and axial force coefficient
results are shown in Figure 63. No regular trends were apparent ir these
data. To isolate the grit effects, if any, on the aerodynamics at higher
Reynolds numbers, the differences between CN, CA' cn and Cy, with and
without grit, for the N3B2 were plotted for Mach numbers of 0.3 to 0.9.
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FIRST

RING OF PORTS
s
.125
#70 GRITﬂl

T

- 1

Greariy o dh (o

Gt

.

"
B L

.

]

L] = Distance from nose to E of first ring of pressure ports

G Axial distance from nose to leading edge of grit ring .
£ = Axial distance from leading edge of grit ring to E of first ring of
- pressure ports
3 NOSE wly Lg . '
1 CONFIGURATION | o INCHES | INCHES :
} N., 7-cal. ogive 0 3.90 2.80 1.10
E: X, . -0304 3.50 2.40 L1e K
o N3 5-cal. ogive -0304| 3.00 2.490 .60
5 Ny 3-cal. ogive 0304 2.38 1.88 .50
; N S-cal. triconic .p40 4.63 2,40 2.23 ¢
' : N6 " .080 3.78 1.55 2.23
N‘7 4-cal. triconic 040 2.78 2.40 .50
; N8 " .080 2.18 1.77 .50
£ Ng " 120 1.52 1.14 .50
¢ N]0 3-cal. triconic .040 3.58 2.50 1.08
1 N” " .080 3.07 1.99 1.08
4 Np " 20 [ 2.56 | 1.8 ! .08
\ N]3 " .160 2.05 .97 1.08
Nig 3-cal. ogive . 150 - 1.00 -
3 Figure 62. Nose Ring Grit Patterns
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Figures 64(a through d) show typical results. The CN plots show very

small differences, less than i3 percent, for angles-of-attack less than

30 degrees. Above 30 degrees the differences were larger but, again,

both positive and negative. The CA differences are also very small and the
values graph on both sides of zero. Since the expected effect of roughness
would be to increase axial force, the changing sign indicates the differences
are probably within the accuracy of tne balance. Side force coefficients
and yawing moment coefficients, Cy, and (‘n, have very small differences for
angles-of-attack less than 35 degrees. The diffevences become large

above 30 degrees, but this is due more to the nature of the asymmetric

flow field (i.e. large forces of opposite signs) and model dynamics than
can be contributed to grit effect.

Figure 65 shows typical pressure coefficients for the N2B1 configuration
3.5-inch station plotted for grit ring "on” and "off.” No difference
could be seen, lending strength to the conclusior that the grit ring at
the higher Reynolds number (3.0 x 10° per foot) had no regular effect
on the aerodynamics.

The N1B1 configuration without orit, with a grit ring on the nose and
with both the grit ring and lengthwise grit strips {N181, N1B1G, N1BI1GS
raspectively) aerodynamic coefficients are compared in Figures 66 and 67
for Mach numbers 0.4 and 0.6 at high Reyrolds numbers. The grit affects
the asymmetric force values at angles-of-attack greater than 20 degrecs.
The grit strips tend to increase the normal force coefficient and yawing
moments at angles-of-attack as lcow as 25 degrees. The maximum yawing
moments are encountered with the grit strips for these conditions.

To determine if the addition of the g¢rit ring plus grit strips
improved Reyrolds number simulation, the HIB1 and NIBIGS data for low
Reynolds number was compared with the data of NIB1 for high Reynolds
number at Mach number 0.6. Ho benefiis from adding the grit could be
found. In fact, the no-grit run matched tha high Reynolds number data
better than did the configuration with grit ring and strips. This is
shown in Figure 68. The lew Reynolds number data are subject to a rwch
greater uncertainty due to the low dynamic pressuras and resultiing forces

212




A NI R U TR

ECE AV £ A S X AR e

AFWAL-TR-80-3070

T T T T T T T T T Y

3149 INOYI LK pue
3U31341330) Juduoy Pue 20403 uasmiag $33U34ag4 10 “chhwhw “$9 3unbyg

1UBLI43320) 80404 |euuioy [ejuswausuy e

x> &
[
!
= ) ..
‘.‘\
2
b
"W
iy
o e #
e’ - r————
) hu B
- D« v ; =iz
. p oo
ON WOV 2

I MOy ZaEw
M SAV3I2T 213D
FUIIN X

213




AFWAL-TR-80-3070

(Panut3uo)) g oanbyy
JUBIDL34B0) AU0H (Rixy [BIUBMILOU] 'q

oS oF o gz a/

’ N —
le Q.V- (Uq N. Ill”..llu'
£° —— e e
oV Hovlw
J! HOMH 2aEN

S1o3443 L3O
3est xiN

<
-—
~N




b ey g A r—— s et i

2
3
&
8
&
2
&

(psnuijuo)) g aunbiy
UB1D13390) 90404 apyg {RIuawasouy >

g

wy
—
o~

SIHWIUAQ 13Q0 KOOI :

2 HOIH zasy
S193433 219

INssiN X

TR TR e et A, f|,,v.J<, LS TRl Do




PN SR BPREER P TR 17t

(Papn{ouo)) 49 3unbiy .
3JUBED}14490) Jusuoy Guymep |ejudwaadu]  'p ‘
05 a 0F 0z as 0
pi- wm
v 0
.h 74 - B
..M +
: ol -
i
¢
©
r.v o
]
vy
' 2
g bt | -2 « Yoy o
{3
g /
38 i 8’
P -
“l... Sotymha 300 HDIk 3% HoIH I .
m S473333 ula9

INSSIW XN

S R Nt AR N . 8 SN T 1§ S 8 1 ST AT PR STt PR o 8 T i bty i T g o s i'nd




T Vs N P e o VA 4 e NN 2 € AN Y

APWAL-TR-80-307C
M X
CRIT EFFECTS
M2BI M=4 X=0
RUN CR'T
- CEJ ;3 oor: -STA =5 :
3

26

Figure 65. Grit Effect on Pressure Distribuifon at x = 3.5
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on a balance designed for very large loads. The large Reynolds number
effects discussed in another section indicates that the wind tunnel testing
should be done at the highest possible Reynolds number and that grit,

at jeast of this size and patterns, will not improve Reynolds number
simulation. Leland Jorgensen (Reference 22) also conducted tests with a
ring of glass spheres about the nose. These tests also show negligible
effects of small-type grit on aerodynamics at high Reynolds numbers.

9.  STRUT/STING EFFECTS

The use of a large model with resulting large aerodynamic loads
imposed large bending loads on the knuckle joint of the support system.
The strut was swept forward to reduce the bending loads but this
increased strut support interference, causing some compromise of the very
high angle-of-attack data.

Plotted data show sizeable offsets between strut angle-of-attack
range sectors as well as between sting-to-strut data. Figures 69 and 70
show the N3B2 force and moment data for angles-of-attack of from 0 to
180 degrees at M = 0.4 and 0.6 respectively. Obvious mismatches are
shown, particularly at 45- and 90-degree overlap points. These data
results are typical of other plotted results. The low Mach number dip in
normal force coefficient at about 70 degrees angle-of-attuck (shown in
Figure 69(a)) occurred in both integrated pressure and force plotted data.

Figure 71 shows integrated pressure data and force data for the N3B2
configuration at Mach number 0.6 for the 5- to 80-degree angle-of-attack
range. Again some mismatch is apparent. The same types of data are shown
in Figures 72 and 73 for the N2B1 configuration at Mach numbers 0.4 and
0.6. The normal force coefficient overlap agreement is better, but the
side force coefficients are quite different. It is difficult to deter-
mine which differences are due to sting or strut and which are due to the
unpredictability of the asymmetric forces, since they are functions of
many variables, e.g., roughness, model asyrmetries, Mach number, angle-
of-attack and ro!l angle.
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Figure 74 shows the percentage difference in normal force coefficient
at angles-of-attack of 40 and 45 degrees between the sting- and strut-
mounted N3B2 configuration. The difference is seen to decrease with
increasing Mach number.

10. ROCKET EXHAUST EFFECTS

Simulation of exhaust in these wind tunnel tests is based on using
high-pressure rocm temperature ajr with the scaling of several matching
parameters. For the MX test program the primary objective was to obtain
as high a Reynolds number as possible, which meant testing as iarge a
model as feasible. The model scale selected, combined with the MX rocket
characteristics, prevented full simulation of the desired parameters, i.e.
momentum flux (PeVezAc/P.v.zAr) and the ratio of exit static pressure to
freestream static pressure. Calculations of the free-flight values of
these parameters were based on engine specifications and system performances
analysis data provided by SAMSO/TRW. A flight Mach number of 0.74 at
29,600-foot altitude for the MX = 3/80 missile was used to calculate
freestream free-flight conditions. An exit Mach number of 3.0 was
selected for model scaling as compared to a full-scale exit Mach number
of 4.38. Even though the maximum weight flow, 40 #/sec, available for tests
in the PWT 16T facility and geometric scaling of the exit area was used,
neither of the desired parameters could be matched without a tremendous
increase in weight flow rates (Figure 75). Even with the mismatch
between parameters it was felt that the simulation wouid still give some
indications of the effects of the plume on the MX missile and wes ebviously
better than no simulation 2t all, Data from the Air Slew Missile tests
with jet “cn” and "of¢" showed large jet effects at high angles-of-attack
(o = 45) but also showsd that Ptc vatues of 1/2 matching conditions gave
about the same incremerts in forces.

It was originzlly planned that Jet-on testing for angles-of-attack
grexter than 45 degrees would be conducted during both pressure test
entries and a “orce data entry. [uring the early runs of the first
prassure antry, severe model dynamics were encountered at Macn numdber 0.6
and a Reynolds number of 5.6 x 106, resulting in reduced Reynolds number
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testing for lator entrias. After the first ealry was completed, cracks
were found in the weld joints in the leading aud traiiizig edges cf the
strut high-pressure air plenum. The let-on data fer the first entry is,
therefore, questionable due to what may have been considerable leakuge
of high pressure air from the strut, The strut could not be properly
repaired in time for the sudsequent force testing, thus no jet-cn

force data was obtained. Aftsr the force data testing, the model strut
was electron-beam welded and successfully used in the second pressure
entry in testing of the N382 (MX 3/15C) rodel.

Figure 76 chows the pressure distribution about the N3B2 configuration
at 90-degree angles-of-attack and Mach number 0.6, starting al the mest
aft station forward to station 23,58 for jet-off, jet-on, and jet-or
deflected 15 degrees. The positive pressure is only affected at the
most rearward station; whercas the negative pressure coefficients are
still effected at X = 23.58. The deflected jet-cn added only a small
effect to the non-deflected jet-on pressure increment. The jet-on
increased the negative pressures at all of the stations shown.

Figures 77 and 78 show the integrated pressure data of N3BZ at
Mach numbers 0.6 and 0.8, respectively, for jet-off, jet-on and deflected
jet-on for angles-of-attack of from 40 to 90 degrees. For angles-of-attack
above 60 degrees the effects of the rocket exhaust plume on missile
aerodynamics become increasingly important. The impact of what was shown
in the pressure coefficient plots is reflectad in the integrated forces,
i.e., increasingly negative pressure coefficients as proximity to nozzle
increases, gives a normal force coefficient increment (ACN) which increases
and a pitching moment coefficient increment (Acm) increasingly negative as
angle-of-attack increased. The deflected nozzle integrated data show only
a small additional increment in CN and cm. Note that the pressure data

was integrated using the nose (X = 0) station as the roment reference
center.

Figu-e 79 shows the integrated pressure normal force coefficient
for the N2B1 configuration from the first pressure entry. The increments
are about the same as N3B2 with Jet-on, which indicates that the strut
leaks were efther small or had little influence en the pressure measurenents.
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Reynolds number effect on jet-on integrated coefficients were
similar to let-off at lower angles-of-attack; but in the 130- o
180-degree angle-of-attack range, the increments in coetficients for the
jet-on were much lest than for jet-off, ingicating that the piume is one
of thz deminating factors for very high angles-of-attack secodynemics.
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SECTION V
EXPERIMENTAL FLOW FIELD RESULTS

To gatn additional fnsight into the data characteristics from SECTION
IV, attention was focused on the N2Bi configuration previously described.
For this configuration the experimental test results from References 43
through 45 were supplemented with experimental wake flow data obtained
in the 16T wind tunnel at AEDC. The data are representative of fiight
conditions where the maximum out-of-plane (side) forces were cbserved to
occur,

In the following paragraphs the crossflow velocity data will be shown
for all of the test conditions. A limited analysis of the data will be
made for the Mach C.4 data at alpha 40 and 45 degrees. No analysis was
made for the Mach 0.6 data however because cf its unsteady nmature. In
a later section a nore detailed analysis is made using presently avai’ -
able analytical procedures. In the more detailed analysis, rowever, only
the Mach 9.4 data at 45 degrees alpha were usad because it is representa-
tive of maximun side force conditions. Experimental results from other
references were used to aid the anaivsis.

1. CROSS FLOW VELOCITY
fhe velocity field in the body axis system may -be written

U=y cosatu
V=yv

WeU sina+w (4)

where U is the freectream velocity and u, v and w are the induced or
"perturbation® velocity components. In the present test. the 9-cone
probe rake was positioned parallel to the tunnel centerline and the
missile was pitched to angle-of-attack. Thus the rake measured the
perturbation compensnts. Figures 80 through 82 show the crossfiow
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“perturbation” velocity component measurements in the crossflow plane
and have been nondimensionalized by the freestream velocity, i.e.

> u - W -
Ve —=j+— &k (5)
[} U

@ 3

Note also, that the Z/D = 0.5 location for the velocity plots correspands
to the top of the model surface. For the Mach 0.4 data at 45-degree
angle-of-attack (Figure 80} the only discernible vortex « nter is the

one at X/D = 7.4 appearing on the ieft {looking upstream from the rear

of the mcdel) at about 1.5 diameters above the model centerline. The
absence of distinct vortex centers near the model nose {X/D = 3.78) is
probably a result of not obtaining data close to the model surface {due
to time limitations for the test). This conclusion is also supported for
example in References 15, 46, and 47 which indicate that near the nose
bady juncture the vortices lie very close to the model surface. The lack
of distinct voertex cores in the remaining data at Mach 0.4 and 45-degree
angle-of-attack indicates the presence of a shear layer. which results

in diffused velocity distributions with no clearly defined vortex centars
eyident.

As previously mentioned, the selected roll angle at 40-degree angle-
of-actack at Mach 0.4 and 0.6 did not result in maximum side force loads.
It is instructive, however, to observe the data at these conditions. The
velocity vectors at X/D = 7.4 indicate the presence of nearly two symmetri-
cal vortex cores. At Mach 0.4 and 40-degree angle-of-attack, the vortex
center on the left at station X/D = 7.4 iies approximately 1.1 diameters
above the model centerline, and the vortex center on the right is at 0.8
diamet :rs above the medel centerline. At Mach 0.6, two symmetrical vor-
tices appear at approximately 1.1 diameters above the model centerline.

The absence of data in the center regions of flow tield (i.e. in the
neighborhood of the X/D = 0 axis) is the result of the total flow angu-
larity exceeding the probe calibration lim®ts. This unfortunate loss of
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data precludes the determination of the vortex strengths from this set
of data. Estimates of the vortex shedding locations may be daducsd as
descrited in the following piragraphs.

2. SCPARATION LOCATICNS

The data from the present tast oaly nrovided visible vortex cores
at one axizl location, X/D = 7.4. To estimate the position where the
vortices leave the body {i.e. the separation locaticns), fi becomes
necessary te rely on the results of previcus experimants as well as
engineering judgement. MNearly all experiments where data were obtained
very close to the model surface {refer far example {0 References 15. 4%
and 47) indicated that the first vortex shad was nueav the nose tip.
Furthermcre, Reference 15 indicates that the asymmetric vortices shed
at parallel lines and that the vertica! distance beiween vsrtices of
unlike sign correlate as:

tang 0.5
z/d =

tara $ (6)

where § = Angle between the vortex lines and the body axis, and S =
Strouhal number.

References 15, 46 and 47 show that the Strouhal fumber is a function
of crossflow Mach number and, for the present test condition, is approxi-
mately 0.2. 1If it is assumed that the vortex center farthest from the
missile centerline at station X/D = 7.4 (the one on th2 left for the
present set of data) is the one shed from the nose tip, then Equation
6 yields the apparent location of successive vortex centers. This can-
not be verified from the present set of flowfield data because ct the
diffused nature of the crossflow velocities downstream of X/D = 7.4.
Referring to Figure 83, the circle symbol denoted the measured vortex
at statfon X/D = 7.4 that was clearly visible in the experiment and was
assumed to be the one shed vrrom the nose tip. An additional simplifs-
cation was to assume that vortex centers can be extrapolated back to the
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body in a straight-line fashion tc locate the apparent separation
Incatiens. Thus the deduced location of the vortex on the right was
obtained from Equation 6, and the apparent separaticn location was
deduced by extrapoiating back to the body aiong a vertex line garallel
to the cne originating at the nose tip and cannacteg with the asasured
vortex core evidant in the experiment,

3.  SIDE FORCE COEFFICIEN{ DISTRIBUTIGN

The Tocal side force coeffi{cient distribution alony the missile
axis was vbiztned oy ‘ntegrating the misstle surface pressure data. The
iesults are presented in Figure 84. It is of fnterest to compare the
estimated vortex separation lozations as determined from the previous
section with the local side force coefficisnt distribution. Hote that
the sinusoidal peaks in the side ferce coefficients occur in the vicin-~
ity of the estimated vortex separation focation., due t5 the uncertainty
in determining the vortex separation iccation, ro direct correlation
with maximum local side ferce can be firmly estzblished. Howevsr, ip
Section VI of this report 2 more det2ilcd analysis gave the same result;
i.e., the maximu local side ferce coefficients correspond to the
separation Tocatios of the shed vortices from the mcdei surface.

4.  UNSTEADY WAKE-PRESSURE DATA

A second phase of the test program was 26 measure the unsteady
pressure data in the missile wake near the model surface. This was
accomplished with a2 S-probe rake of identical dimensicons as the cone
used for the static pressure wake data. Each probe on the rake was
instrumented with Kulite transducers. The rake w2s positioned approxi-
mately 0.5 diameters above the missile surface and was traversed
parallel to the model centerline in the axial! diraction  The most
forward position was limited by the test hardware for a given angle-
of-attack, byt d2ts were generpiiy obtained at axiz! Iccations in the
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neighborhood of the peak side forces. The pressure coefficient based
on RMS pressure of each probe is defined 2s:

Payis = Prrus © fu
e, (7
where PTRHS = RMS total pressure of the unsteady Kulite probe dsta

P, = Tunnel static pressure

q,® Tunnel static dynamic pressure

The results n2ar the missile centerline is presented in Figure 85.
tio correlation with the deduced separation from the previous section
could be established. At alpha 45 degrees a minimum occurs in Crpus
at the estimated vortex separation location (X/D = 4.8). However,
at 2lpha 40 degrees a maximum occurs 1n ¢

ppug 2t the estimated vortex
separaticn locatfon (X/D = 6.9).
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SECTION V!

ANALYSIS GF THE WAKE FLOW FIELD AND MISSILE
AERCDYNAMICS USING DISCRETE VORTEX THEORY

This section presents additional analysis of the experimental flow
field data from Section V, in conjunctire with the model surrace pressure
data trom Reference 44. Certain acpects of a currently existing discrete
vortex theoretical model developed by Wardlaw (Reference 48) was utilized.
The analysis method was extended to include the determination of the
detailed model surface pressures. Vortex strengths from previous experi-
mental studies were used in the theoretical model, and the vortex paths
were determined empirically to result in reasonable comparisons with
detailed model surface pressure data and flow field data.

Earlier examinations (Reference 49) using the analysis of Reference
48 showed that the calculated vortex paths did not provide good compari-
sons with the local normal and side force coefficients distributed along
the missile axis. To improve on the results from Reference 49, the
present investigation used the shed vortex strengths as a function of
crossflow Mach number (which varies with angle-of-attack) as reported
in Reference 15. The vortex paths were deduced from the measured wake
data at Mach 0.4 and 45-degree zngie-of-attack {as discussed in Section
V.2 (se2 Figure 83}). At other Mach numbers and angles-of-attack, the
vortex paths were determined in an iterative procedure by comparing the
experimental pressure data with the calculated values. The vortex paths
that resulted in reasonable comparisons with the experimental pressure
data were selected as the representative paths in the analytical study.
The calculations used concentrated vortex theory to model the waka.
Betails of the theoretical model and comparisons with tnhe wake flow
measurements and model surface pressure distributicns are descrided
in the fellowing sections.

1.  THEORETICAL MODEL

The three-dimensional vortex wake which dayelops due to separated
fiow over a missile at high angles-of-attack s the result of a complex
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interaction between the inviscid vortex flow in the wake and the boundary
layer on the lee siae of the m’ssile surface. At very low Reynolds num-
bers the flow Is characterized by a nearly pure Von Karman fdealization
with nearly constant periodic shedding of constant strength vortices in

a laminar wake. The basic parameter for describing the period of the
vortex shedding is Strouhal number §, which is defined as:

S = nd/U (s)

where n is the frequency of “hedding of vortices of Tike sign, ¢ is the
diameler of the cylinder and U is the norwal compcuent of free stream
velocity (Reference 15). As the crossfiow Reynolds number increases
teyond *he critical range of 105 < Re <3.5x 106, the wake narrows
and becomes turbulent while the flow ahead of separation on the missile
surface is stiii laminar. Further increases in Reynolds number beyond
3.8 x !35 resulte in transition to turbulent flow on the front face of
the missila cross section and generally an unsteady wake. A rigorous
mocedure to describe the flow field above the critical Reynolds number
has not been deveioped. It was decided, therefore, to rely on a pre-
dictive technique which had been develcpad using Karman vortex street
theory with the sweepback principle employed as used by Wardlaw (Refer-
ence 48). In this methed, the crossflow ficid is swept dewn the length
of the body at the rate U_ cos a.

At each axial station the flow field is taken to be analogous to
flow about a circular cylinder whose velocity s U sir a, and whose
radfus is eqeal to the body radius at that axial location. The wake
is nodeled by ccncentrated vortices trafling from the body. The necessary
parameters to calculate the ficw field velocitfes, and thus the pressures
on the missile surface, are the concentrated vortex strengths and their
tocations in the wake. Figure 86 shows a schematic illustrating the flow
field model. A typical side force distritution resulting from the
experiments is also illustrated. The calculated pressure disiributions
in the present study relied on the measured and deduced vortex strengths
and positions as a function of both Mach number and angle-of-zttack.
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in this sense the analysis is not rigorous and depends entirely on
§ntuitive interpretation of the scatter and at times lacks empirical
evidence.
2. Yelocity Pelationships
The coordinate system for the following analysis {s defined
in Figures 86 and 87. The analysis relies on the complex velocity

potential developed by Wardlaw (Reference 48) for concentrated vortices
which is:

K
o=u[—t(s—r_’_)-_i_zrjgn i-ﬁi | rg_r_zns](g)
£ 2y ja? g—rz/gj ; tang dx

where U = U sina and § = y + iz

The real part of the complex velocity potential is:

X
REAL|4|= U [z(‘l v+ )+ 3 LTy {m‘l (*35)- tan™ (”z/'zjzj)}
Y42 2ny 3=t ¥-¥5 y-r’/rf‘.yj
+ 1 dr 2o YT ]
tana dx (10)

The velocity components u, v and i are obtained through the
partial differentiation of the real part of the complex potential with
respect to x, y and z.

Letting” fj = 2-2
Ej e X'yj
Ty= i, Ry =

-

r
r

&

= . opz
gj ykjyj
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ya2? e

u/U = err' + 1 K [ rl { tan-l-_fl ~tan-! ‘f_j__ §

Sl

93

=,

Ty { St Iy [ Rjy:1+2¥jr/rj(rlk‘1r3)] -3 [ Rjzji»szr/r;(r-Rjrj)] }]

2 52 - -
gJ*fj g3+f§
il (SR m)
tana
where the prime notation denotes differenation with respect to x.
The differenation of the above terms with respect to x is obtained
in the following manner:
From ry = /y_Jsz-}_
dy dz
Y E
dx JyTezl
3%
d d dt _ v dt
ok ik R T
dx dt dx dx (12)
From trossflow theory t = _x » dt = 1
Uecosx dx  Uxcosa
&ry,)-_‘. =_ Y '~tana=:1~tanu
dz gesa Usina U
sietiarly 3355 %1 . tam
3% 1]
Y 3
s tarm + 2, & tam
Thas 1 - 11 E i
dx r; (13)
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In & 1ike manner,

X -
Wis2ae_ v 1T rj[_'&_+_i_]+_r¢_y_
(y2422)° 20 = g§+f3 '§3+'f'} tana y2+2?

(14)

and,

wiU =1+ r3(y?-22) + 1 g‘ l‘j[ 95 -5 }_IL'_ 2z (15)
(y422) 2y 7 93+fz ] tang yre2?
J 33

The preceding velocity terms are inviscid; thus the velocities
in the above formulation become excessive in magnitude for points
rear the vortex center. This problem is corrected as shown in Refer-
ence 50 by assuming a vortex having a ®solid” core. For values of
r less than Teore the vortex velocity termms in Eqs. 11, 14 and 15
(i.e., the terms within the summation sign) are multiplied, as in
Reference 50, by a correction term

12 fp2
(!-e v/ core)
where r_ = v'\z-zj)z ¥ (y-yjf’ (16)

Furthermore the correction term can be expanded in a power series

to yield
2 2
-r, /r ;
v fleore} x> 2 /a2
(1 € ) v / Feore

= (2-2,)" ¢ (y-y) L £+ g
bl o L I (7
<ore rCDl’L‘

~ny
~d
w
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Application of the above correction for r less than Teore TEROVES the

singularity from Eqs. 11, 14 and 15 when r = T For the present appli-

cation Tcore ¥2S selected to be 0.5a where a is the cylinder radius. R
The selectfon of this value for Teore is strictly arbitrary and for the
present calculations ensured that the pertubation velocity components

did not exceed the magnitude of the freestream ve.scity.

Y. Vortex Strengths and Calculated Vortex Paths

The vortex strengths are a function of crossflow Mach number
which varies with angle-of-attack (Reference 15, Figure 21). For the
present theoretical model this relationship is shown in Figure 83. From
the experimental wake data that are representative of maximum local side
forces, the vortex paths in the wake and the separation location were
determinad from data described previously {Section V.2 and Figure 83)
for Mach 0.4 and 45-degree angle-of-attack. For the Mach numbers and
angles-of-attack for which no experimental wake data were available or
was not representative of maximum side force conditions (as discussed 3
in Section 11I.3.b}. the apparent vortex locations were determined by an E:
fterative procedure where reasonable comparisons between the measured ’
and calculated local pressure coefficients on the body were used as a
basis for selecting the paths. The results of this study are shown in
Figure 89 for angles-of-attack between 25 and 45 degrees and Mach num-
bers between 0.4 and 0.8. For the Mach 0.4 and 0.6 cases, the first
pair of vortices wera of equai strength and opposite sign as obtafned
from Figure 88 for the appropriate crossflow Mach number. In the
calculations it became necessary to reduce the trailing vortex strength
near the base by approximately 23 percent to give reasomble agragnent
hetween the theoretical and experimental pressure coefficients. This
obvious breakdown in the mathematicat model fn the reighborhood ot the
base may be due to the influerce of the base przssuce.

FETRN)

Fradbdi

AT TR

At Mach 0.8, the simelalinn reguired aa eatirely diffarent
distribytion, At thic Mach nusber th2 Tozal force distributions ara K
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characterfzed by a high normal force coefficient distribution, requiring
somewhat strong vortex strengths (as also evidenced by Figure 88). As
will be shown later, huwever, the asymmetrical side force coefficfent
distribution is 6211 in magnitude. This suggests that the vortices are
shed in vortex pairs, only slightly displaced, and each pafr nearly equal
in vortex strength. The results of the iterative procedure that compared
favorably with toth the normal force and side force coefficient distribu-
tions are shown in Figure 89(c). The first two vortices shed are not of
equal strength (compared for example, with the Mach 0.4 and 0.6 simula-
tions). However, the first two vortices form a nearly symmetric pair,
one lying only slightly below the other. The second pair of symmetrical
vortices that follow are reduced in average strength by approximately

23 percent (as was the case with the Mach 0.4 and 0.6 calculations).

They were followed by 2 third set of symmetrical vortices reduced in
strength by 42 percent from the second pair. These reductions in vortex
strength gave no experimental verification from the flowfield data of
the present study but were necessary in the theoretical model to produce
reasonable calculated pressure distribution: near the model base. In the
crossflow plane, the vortex paths as deduced from the available wake data
are shown in Figure 90.

2.  THEQRY/DATA COMPARISONS

The comparisons in this section are a result of the simulated vortex
paths and strengths developed ir the previous section as a function of
Mach number and angles-of-attact. The results are for the N2Bl configura-
tion.

a. Crossflow Velocity
The crossflow velocity calculaticns resulting from cquations
14 and 15 with vortex strengths and positions extracted from Figures 88

through 90 are compared to the experimenta) woke data in Figure 91. One
general observation is that while the theory predicts a clearly distinct
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vortex centers, the data indicate that the experimental velocity distri-
butions are diffused, with no clearly defined vortex centers evident.
One exception was the vortex cn the left for the experimental data shown
in Figure 80(b). In this case a vortex center is clearly evident at 1.5
diameters above the model surface.

b. Pressure Coefficfent Distribution

After the velocities have been caiculated from Equations 11, 14

and 15, the pressure coefficient can be obtained by employing the full
Bernoulli equation:

~_
vy -1
2 Toy-l K (u+u’ +vi +w) -1 (18)
T, 2 U vs

The results of these calculations, along with available data comparisons,
are presented in Figure 92. In general, the theory and data compare
quite favorably for Mack 0.4 and 0.6, but not at Mach 0.8. The theory
consistently experienced overshoots and undershoots around the model
periphery in the vicinity of the vortex cores lying near the body sur-
face. This suggests that the theoretical vortex distributfons, as shown

in Figure 89(c), for Mach 0.8, are lacking in authenticity and require
further development.

Cp =

¢. Normal Force and Side Force; Coefficient Distributions

The local normal force and side force coefficient along the
Tcrigitudinal axis was obtained by integrating the pressure coefficient,
Eq. 18, arcund the model periphery as shown below.

dCy 1 ‘¢ Loy Cp(o) cos¢é rdé {19)
d(x/d) ma® 0
285

IR

R

a1k

. R R = AT AN

TR ST Ao




P,

%
?
3
¥
3
+
%
>
@
M
4

AFWAL-TR-80-3070

; de, m (
2 Y -1 '¢ -Cp(0) sine rds 20
i d(x/d) ma o (20)

where the periphery angle, ¢, is defined in Figure 87.

AV Dot

o

The results of the above calculations are presented in Figure
93. While the characteristic behavior of the data is predicted, the
theory in general unde-predicted the local normal force coefficient on
the cylindriral portion of the model at Mach 0.4 and 0.6. The reverse
was true for Mach 0.8, where the theoretical results overpredicted the
Tocal normal force coefficient on the cylindrical part of the model.
Note that at Mach 0.8, the large local normal force coefficient distri-
bution is fairly well estimated for the ogive nose. However, the pre-
dictions of Cp, as noted in Figure 92(c) did not follow the data trends
sufficiently well. The good agreement between the local loads in Figure

L
¥,

A

g,

Bk ettty

: 93(c) are thus a result of the averaging that occurs in the integration
5 process and does not reflect a true modeling of the flow phenomena, as
indicated by the iccal pressure distribution in Figure 92(c).
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SECTION VII

DEVELOPMENT OF AN EMPIRICAL - CORRELATION
TECHNIQUE USING PRESSURE DATA

The large amount of pressure data which was generated in the MX
program allowed the aerodynamic characteristics to be studied in detail.
One unexpected observation was the general lack ¢f repeatability in the
out-of-plane forces. This feature of the test data introduced severe
difficulties in trying to use existing analytic correlations. A semi-
empirical analysis was developed using the test data. The methed does not
describe a particular value of the side force or yawing moment coefficient
that would be developed at a given angie of attack and freestream
condition; rather, the analysis describes the upper and iower bounds of
regions within which the induced forces are contained.

The characteristic shape of the local side load coefficient per unit
length is better illustrated if the vatues are normalized with respect to :
the maximum C_ of the particular data set. The maximum is denoted by C k. K
The period of the function is easily identified and compared with other
runs at different angles-of-attack and with different maximum values.
Figure 94 is a typical example of the normalized plots.

1. EXPERIMENTAL OBSERVATIONS

The pressure coefficient distribution for a repeat run of the same
conditions is shown in Figure 95. Both are the N2B! configuration at
the same Mach number, Reynolds number and angle-of-attack; yet the
degree of asymmetry and the magnitude of the side force is markedly
different. This was observed frequently, and the implications on the .
deveiopment of a correlation of the data will be considered. The
magnitude of the side force loading was calculated at each station by
integrating the surface pressure around the cross section.
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- This local side force loading usually varied along the length of

& the missile in a regular pattern. Figure 96 shows the side force loading

E for a typical test condition. The ordinate of these graphs is evaluated

k. by an integration of the surface pressures using the trapezoidal rule. The

g nondimensionalizing factors were selected so that

3 /D .
N = fy €, 4 (xD) (21) :

3 Tne local side load coefficient per unit length, Cy, is much the same as 3

& 3 section 1ift coefficient. The area under the curve, when presented as

shown in Figure 96, is the value of the total side force coefficient for
the nissile at that particular condition. A characteristic of the data
2 is the resemblance to a sinusoidal variation along the length of the

s missile. The measured side loads were therefore described in terms of

3 the period and the amplitude of the side load function.

PRI OV

S e s

Throughout the test program the data followed gensral trends, but
enough variance was aiways present to prevent absolute statements from
being made. The origin of these variations is very difficult to identify,
although the body of research on the subject strongly suggests the most
probable cause is the influence of small disturbances in the freestream
flow and nose surface irregularities on the growth and subsequent
separation of the boundary layer.
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2.  CORRELATION DEVELOPMENT

The correlation of the period and amplitude of the Yoad function was
related to 2 flow model for vortax separation from a missile at angle-of-
attack. The fiow model is depicted in Figure 86. The figure illustrates
a concept for relating the experimental data with the assumed vortex
functions. The vortices. which are generated by the boundary layer,
separate from the missile in alternating positions. The flow model assumes
the vortex pattern is fixed in time and space for the wind tunnel case,
following the model described in Reference 15.
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Re = 5.0 X 10%/¢1,

Figure 96. Local Side Fforce Coefficient Distribution, N2B1
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The vortices begin as an attached asymmetric pair of equal strength
and cpposite sign on the forward part cf the missile. Some disturbance in
the freestream or on the forward surface of thc missile creates an
asymmetry in the boundary layer growth and vortex strength. The ultimate
result is separation of one vortex before the other. At this point the
Tocal side load begins to diverge from zero.

There exists some maximum value of attached vortex strength, beyond
which the vortex cannot remain attached to the model. The separation point
of the second vortex corresponds to that value; it is the separation point
of the vortex which has remained attached the longest. The first maximum
of the side load appears at that statfon. Succeeding separation locations
occur at equally spaced intervals. At each of these separations a maximum
in the local side 1oad also occurs. It was also observed that the side load
tends toward zero at the base of the model.

The data correlation uses the Strouhal number as a nondimensional
parvameter for descridbing the pariod of the side load maxima. The flow model
assumes the pericd of the sfde load is also the period of vortex separation
along the same side of the missile. The Strouhal number was originally
developed for application to vortex separation from cylinders normal to
the flow.

=M
$=3 (22)

By relating the shedding frequency, n, to the vortex locaticn in space,
and by using the velocity component in the crossflow plane, the Strouhal
number can be described as

S (23)

“gtana

where g i3 the distance between the vortex separation locations along the
length of the missile, as shown in Figure 86.
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The separated and attached vortices induce a circulation about the
missile. The induced circulation about the missile can be thought of as
being represented by a single equivalent vortex, ro. The local side force
is depicted as the result of the equivalent vortex centered at the center
of the missile cross section. Anmalytical efforts directed at evaluating
this circuiation about the missile through calculaticns invelving the
strength and location of the vortices in the wake were discussed in the
previous sections. Accurate results pioved particularly ¢ifficult using
this approach. The experimental data from the MX program were used o
develop an alternative semi-empirical prediction method.

A lift force in the Y direction is generated by the circulation about
the missile and the Z velocity component, normal to the missile centerline.

Side force per unit length = Fy = p (V= sin a) r, (23)
The force may be converted to a force coefficient and the length
dimension expressed as X/D, whereupon the expression for local side force
coefficient per unit length becomes

3 r . 2
c.=[2 c ] sin“ a (25)
Y °7 (Wesina) 0

The side load coefficient varies along the length of the missile, and

in this exprecsion is therefore a function of X/D. The maximum side

Toad, Cy corresponding to the amplitude of the trigonometric function,

is assumed to be an empirical function multiplied by the sine squared of
the angie-of-attack. The rigor of this description is of the same order

as the use of a crossflow drag coefficient to estimate the normal force
coefficient, such as the method of Reference 2. Using the same terminology,
the factor in brackets will be called the crossflow 1ift coefficient, ¢ -
The period and amplitude of the side load function are described by ¢
the Strouhal number and the maximum crossflow 1ift coefficient.

The test data from four nose configurations, N1, N2, N3 and N4, were
used to evaluate these correlation parameters. The maximum nusber of test
points was cbtained for the ogive nase with & radius of 7 body diameters,
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N2B1, at a treestream Mach number of 0.6. This nose shape and test
condition will be used to illustrate the correlation of experimental
results. For each angle-of-attack and Mach aumber - Revnolds number
combination a value of the Strouhal number and maxinum crossflow 1ift
coefficient was determined.

The maximum crossflow 1ift coefficient is shown in Figure 97 as a
function of the angle-of-attack. A line was defined which represented
the maximum values observed in the tests. The maximum was approximately
2.5 for the N2 nose at Mach 0.6. At all angles-of-attack the average
values are approximately equal to 0.5.

The Strouhal number was graphed as a function of the maximum
crossflow 1ift coefficient. At low values of the crossflow 1ift
coefficient the Strouhal number did not have a definite value. At large
values of the crossflow 1ift coefficient the Strouhal number was very
close to 0.25. In the crossflow analogy the Strouhal number would be 0.22
if the fiow about a cylinder were fully duplicated. The work of Thomson
and Morrison, Reference 15, showed a Strouhal number of approximately 0.20
for freestream Mach numbers less than 0.6.

The significance of the correlation shown in these data is that the
period of the induced side load is well defined when the crossflow 1ift
coefficient is large. At smaller values of the maximum crossflow 1ift
coefficient the data does not show a clearly defined period, althcugh the
range of value is bounded.

The direction of the side force load, to the right or left of the
missile, was considered to be completely random. The correlation method
does not take it into account.

3.  PREDICTION METHOD

The characteristics of the aerodynamic side force coefficients, which
are the period and amplitude of the function, have been correlated using
the results from a large experimental program. These correlations can be
used as the basis for a semi-empirical prediction method which defines the
envelopes of the side force and yawing moment coefficients on a missile
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at angle-of-attack. The predictior method assumes the crossflow 1ift
coefficient is developed along the length of the missile in a regular
fashion. There exists some length from the ncte, where the vortices are
attached and develop initially as a symmetrical pair. An induced force
does not develop along that part of the missile length. The side force
begins to be impressed when the vortices develop an asymmetry. The cross-
Tlow 1ift coefficient grows to a maximum in a sine wave pattern, which is
repeated along the length of the missile until a station-one diameter
from the base of the missile is reached. From that station to the base
the crossflow 1ift coefficient is depicted as a linear decrease to zero
at the base.

Having established the loading pattern in the side force direction,
it is an elementary procedure to integrate the loading to obtain the
side force coefficient and the yawing moment coefficient. In this section
the yawing moment is always shown about the nose of the missile. The
direction sense of the force and moment coefficient, right or left, is
not treated and is shown as absolute magnitude only.

When the average, or most probable, value of the side force and
yawing moment coefficient is to be determined, the Strouhal number mey
have any value in the range of 0.15 and 0.45, while the crossflow 1ift is
taken as 0.5. Since the period of the sine wave loading pattern is not
fixed in this case, the locus of maxima produce a simpie bound which
defines the most probable values of the side force and yawing moment
coefficient.

The maximum value of the side force and yawing moment coefficient is
determined by a vaiue of the crossflow lift coefficient which is different
from that used in the average calculations. A unique value of the
Strouhal number is used. For the example case it was fixed at .20.

Figure 98 is a graph of the predicted envelope of the side force
coefficient and yawing moment coefficient for 2 missile 10 diameters long
at angle-of-attack from 20 to 45 degrees. Data from the force and moment
tests of the N2B1 configuration at Mach 0.6 are also shown to evaluate the
appropriateness of the prediction scheme. The force and moment data were
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obtained in a separate test from the pressure experiments and constitute
an independent set of data. The force and moment data are within the
bounds described by the correlation method.

4.  FREESTREAM AND CONFIGURATION EFFECTS

The crossflow drag coefficient is often depicted as a function of the
crossflow Reynolds number. The maximum crossflow 1ift coefficient was
plotted versus the crossflow Reynolds number, as shown in Figure 99.

The graph illustrates the range of crossflow lift coefficient experienced
in these tests. The lack of correlation may be only a reflection of the
scarcity of data. A general observation seems to be that the largest
values of the crossflow 1ift coefficient occur at the highest values of
the crossflow Reynolds number,

Mach number and nose effects are shown in Figure 100. In the range
of 0.4 to 0.6 the Mach number effects are small. lhe values of the
crossflow 1ift coefficient indicates that the maximun side force at
Mach numbers greater than 0.7 is no longer different from the most
probable level of the side force.

Among the nose shabes tested, there were three configurations,
which comprise a regular variation in nose length. The longest
nose shape, with a profile radius equal to 7 nose diameters, was used
for the developments of the previous sections. A nose profile radius
of 3 and 5 body diameters was also tested. The three nose shapes all
had the same bluntness. There were not as many runs in the test sequence
for these shapes. Cenclusions are therefore limited to the possibility
that more data may produce a greater upper bound on the maximum cross-
flow 1ift coefficient. In this body of data it appears tha* a shorter
nose produces both a lower maximum value of the crossflow 1ift coefficient
and a lower value of the corresponding Strouhai number.

A nose with a sharp tip was also fabricated for the 7-bedy-diameter
tangent ogive nose. The sharp nose configuration, N1, produced data which
are very similar to the more blunt nose with the same profile. A graph of
the correlation parameters which resuited from the tests of the sharp ncse
is also shown in Figure 100.
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SECTION VIII
CONCLUSIONS AND RECOMMENDATIONS

This study has provided considerable insight into the aerodynamic
forces developed on a missile at large angles-of-attack in subsonic flow.
The conclusions reached herein fall into two categories: the observations
of our experimental investigation and the results of attempts to predict
the phenomena associated with asymmetric vortex shedding.

1. PRESSURE ARD FORCE 1ESTS

1) The pressure data provided an excellent insight into the
developzent of asymmetric forces. The pressure patterns can be related
to the vortex separation location. The pressures could be integrated to
produce force coefficients which match the force balance measurements.

2) The subsonic tests of the MX model at length Reynolds number of
over 30 million represen: some of the highest Reynolds number tests at
high angles-of-attack. Within the range of the tests, there was little
effect of Reynolds number at angles-of-attack below 35 degrees. At
higher angles-of-attack the trends are not completely consistent. In
general though, increasing Reynolds number increased the magnitude of
sice force and yawing moment coefficients and increased the normal force
coefficient.

3) The large side force and yawing moment coefficients are
essentially associated with subscnic Mach numbers. As Mach number
increases above 0.8 these forces greatly decrease. The general trend
of the axial and normal force coefficient show no special change at
Mach 1.0; "he increase in value is smooth from subsonic to supersonic
speeds.

4) Thirteen different nose configurations were tested at various
conditions. The 3-caliber ogive rose had the lowest values of induced
side force and yawing moment coefficients. The fineness ratio strongly
influences the magnitude of the out of plane forces. The triconic nose of
comparable fineness ratio to the ogive nose has as large or larger
asymretric forces.
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5) Body length effects were not subsequently determined in this
test series. The limited data from this study and previously reported :

data indicate that length alone does not change the aerodynamic flow
3 field.

LA A

6) Grit ring effects were small and inconclusive at the high
Reynolds numbers. The grit ring/strio ccmbination effects on the
asymeetric forces were pronounced but not with the same trends as
3 increasing Reynolds number.

7) The model mounting system affects the aerodynamic data. The
sting-mounted data is considered to be the most reliable. A strut mcunt
was required to achieve angles-of-attack above 45 degrees, but there was
an offset in the data when strut and sting measurements were compared
at the same angles-of-attack. A data offset was also noted when the
preset angle of the strut was changed.

O A

ey

i

8) Rocket exhaust effects were significant at angles-of-attack
greater than 60 degrees. The rccket exhaust jet produced a decrease in
pressure on the leeside of the missile, which in turr was reflected in an
increased normal force coefficient and more negative pitching moment

coefficients. Exhaust jet deflections of +15 degrees produced only a small
change from the 0° deflection case.

N TRNR (et A P
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9) The asymmetric forces and moments show a strong dependence on
missile roll angle. To assure measurement of the maximum values, the
model being tested should be rolled at small intervals to 180 degrees.

The continuous-roll technique used in these experiments provides reliable
data in a cost effective manner.

"
!

eans

2. FLOW FIELD TEST

=g EaR MMy 1}

E The key conclusions from the present flow field data are summarized
‘ as follows:
1

1) The only visible vortex centers were at station X/D = 7.4 and
were very close to the model (maximum vertical lecation observed was
approximately 1.5 diameters from the model centerline at this statfon).

L
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A M)

2) The shed vortices aft of station X/D = 7.4 were very diffused in
E nature, but vortex centers could not be clearly identified.

3} By use of the observed vortex centers at station X/D = 7.4, the
E: apparent vortex separation locations from the model surface were deduced
with aid of test results by previous investigations (Reference 15}.

4) The estimated vortex separation locations thus determined
correlated with the sinusoidal peaks in the side force coefficients
3 obtained from integrating the model surface pressure data from the i
present test. s

3. FLOW FIELD ANALYSIS

The following conclusions have been drawn from the present study:

R ¢ Pttt 5 11 8

1) In the analysis it was assumed that the vorticity field could
3 be represented by discrete vortices trailing from the body. This
assumption is not entirely valid since the experimental data shows
diffused vorticity in the wake.

53

33

2) For the one condition at Mach 0.4 and 45-degree angle-of-attack
where experimental data at observed maximum side force conditions were
available to deduce the vortex paths, the calculated pressure distributions,
and thus the integrated results for local normal force and side force
coefficients, compared reasonably well with the experimental data.
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3) For the remaining Mach numbers and angles-cf-attack in this
study the apparent vortex lccations were determined by an iterative
procedure where reasonable agreement between the measured and calculated
local pressure coefficients on the body were used as a basis for selecting

the trailing vortex paths. These results require verification with
experimentai data.

F AN ¢
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4) As Mach number increases beyond subsonic values, the local side
force values decrease. An attempt to model this result was made at Mach
0.8 by allowing the vortices to trail off the body in nearly symmetrical
pairs. Although this did result in reasonable integrated normal force
end side force distributions along the body, the comparisons of the
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experimental data suggest that the theoretical model is not entirely valid.
Perhaps the decrease in the side force is associated with other flow
characteristics, such as embedded shocks, at the higher Mach numbers.

5) A1l of the analytical models used in this study required a
significant reduction in vortex strength near the modei base to provide
reasonable agreement between the calculated and experimental pressure
distributions. This is not justified by the present data, and suggests
that the concentrated vortex theory is not valid in this region.

4.  CORRELATION TECHNIQUE

1) The correlation of the asymmetric aerodynamic data revealed
the essential characteristics of the induced loads. based on the concepts
contained in the Flow medel. The correlation was then used to construct
a prediction scheme for the effects of vortex separation on which the
bounds of a region for the cut-of-plane force and moment are described.
The method is proposed as an analysis tool for the preliminary design of
maneuvering missiles. It is easily applied, and appears appropriate for
the range of varijables covered in the subject.

2) The use of force and moment data alone to describe the effects
of asymmetric vortex separation does not previde the information
necessary to develop a correlation that completely defines the variable
in the flow model. One may measure a particular value of force
coefficient; yet not be able to define the particular axial distribution
and magnitude of the impressed side load.

5.  RECOMMENDATIONS

1) The prediction method assumes that the maximum crossflow 1ift
coefficient is well defined in the angle-of-attack range of from 0 to 35
degrees. Additional tests specifically designed to obtain the maximum
crossflow 1ift coefficient, such as rolling the model at each angle-of-
attack, are needed to determine if the empirical function is overly
conservative.
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2) In view of the existing questions about flow unsteadiness, it is
recommended that the available microphone data from the MX missile tests
be very carefully analyzed. Particular attention should be given to the
implications of the results on the aerodynamics of the physical model.

3) Finally, this study and others show that considerable detailed
wake data must be obtained to properly develop and verify analysis
techniques. Probe investigations are not adequate because they are not
practical to obtain the tremendous amount of information required to
covar the entire three-dimensional wake. New developments in flow field
investigations such as laser doppler velocimetry and holography appear
to be much more promising.

316

Sen aaant et {0 % witan il

o .

-




AFWAL-TR-80-3070

10.

1.

12.

13.

REFERENCES

Maskell, E.C., “Flow Separation in Three Dimensions," RAE Rept.
AERO 2565, Nov. 1955.

Allen, J.K., “Estimation of the Forces and Moments Acting on
Inclined Bodies of Revolution of High Fineness Ratio,” NACA TM A9I26.

Perkins, E.W. and Jorgensen, L.H., “Comparison of Experimental and
Theoretical Normal-Force Distributions (Including Reynolds Number
E;{ects) on an Ogive-Cylinder Body at Mach Number of 1.98," NACA TR
3716, 1956.

Jorgensen, L.H. and Perkins, E.N., “Investigation of Some Wake Yortex
Characteristics of an Inclined Ogive-Cylinder Body at Mach Number 2,"
NACA Report 1372, 1958.

Tialing, B.E. and Allen, C.Q., “An Investigation of the Normal-Force
and Vortex-Wake Characteristics of an Ogive-Cylinder Body at Subsonic
Speeds," NASA TN D-1297, 1962.

Perxins, E.W. and Kuehn, D.M., *Comparison of the experimental and
Theoretical Distributions of Lift on a Slender Inclined Body of
Revolution at M = 2," NACA RM AS3EQ1, 1953.

Gowen, F.E. and Perkins, E.W., "A Study of the Effects of Body Shape
on the Vortex Wakes of Inclined Bodies at a Mach Number of 2,"
NACA RM 53117, 1953.

Allen, J.H., “Pressure Distribution and Some Effects of Viscosity on
Slender Inclined Bodies of Revolution," NACA TN 2044, 1950.

Allen, J.H., and Perkins, E.W., "A Study of Effects of Viscosity on
Flow Over Slender Inclined Bodies of Revolution," NACA Report 1048,
1951.

Allen, J.H. and Perkins, E.W., “Characteristics of Flow Over Inclined
Bodies of Revolution," NACA RM A50L07, 195).

Grosche, F.R., "Wind Tunnel Investigaticn of the Vortex System Near
an Inclined Body of Revolution With and Without Wings," AGARD C.P.
No. 71, Aerodynamic Interference Conference, September 1970,

pp. 2-1 to 2-13.

Rodgers, E.J., "Vorticity Generation of a Body of Revolution at an

Angle of Attack,” J. of Basic Eng., Trans of ASME, Vol. 86, Series
D, No. 4, December 1964, pp. 845-850.

Atraghji, E.G., “Surface Flow Visualization, Surface Pressure and
Surface Preston Tube Pitot Pressure Measurement Over a 6.1 Ellipsoid
at Incidence at M = 0.3 and 0.74," Report No. 5 x 5/0032, NEA - High
Speed Aerodynamics Section, NCR, Canada, 1968.

17

% IR R ¥




A~

o sty Reatiw

AFWAL-TR-80-3070

14,

15.

16.

17.

18.

19.

20.

21.

22.

REFERENCES {Continued)

Letko, W., "A Low-Speed Experimental Study of the Directional
Characteristics of a Sharp-Nosed Fuselage Through a Large Angie-
Attack Range at Zero Angle of Sideslip," HACA TN 2911, 1553.

Thomson, R.D., and Horrison, D.F., “The Spacing, Position, and
Strength of Vortices in the Wake of Slender Cylindrical Bodies at
Large Incidence,” J. Fluid Mech, Vol, 50, Part 4, pp. 751-783, 1971.

Pick, G.S., "Investigation of Side Forces On Ogive-Cylinder Bodies
at High Angles of Attack in the M = 0.5 to 1.) Range," AIAA Paper

No. 71-570, AIAA 4th Fluid and Plasma Dynamics Conference, Palo Alto,
Calif., June 1971 (also J. of Spacecraft and Rockets, Vol. 9, No. 6
June 1972, pp. 389-390.)

Coe, P.L., Jr., Chambers, J.R. and Letko, W., "Asymmetric Lateral-
Directionai Characteristics of Pointed Bodies of Revolution at High
Angles of Attack," NASA TN D-7095, November 1972.

Clark, W.H., Peoples, J.R. and Briggs, M.M., "Occurence and

Inhibition of Large Yawing Moments During High-Incidence Flight of
Slender Missile Configurations," AIAA Paper No. 72-968, AIAA 2nd
Atmospheric Flight Mechanicc Conference, Palo Alto, Calif., Sept. 1972
(also J. of Spacecraft and Rockets, Vol. 10, No. 8, August 1973,

pp. 510-519.

Lamont, P.J., "The Out-of-Plane Force on an Ogive-Nosed Cylinder at
Large Angles of Inclination to a Uniform Stream," Ph.D Thesis,
University of Bristol, 1973.

Keener, E.R. and Chapman, G.T., "Onset of Aerodynamic Side Force at
Zero Sideslip on Symmetric Forebodies at High Angles of Attack,"

AIAA Paper No. 74-770, AIAA Mechanics and Coentrol of Flight Conference,
Anaheim, Calif., August 1974.

Fleeman, E.L. and Nelson, R.C., “Aerodynamic Forces and Moments on a
Slender Body With a Jet Plume for Angles of Attack up to 180 Degrees,”
AIRA Paper No. 74-11C, AIAA 12th Aerospace Sciences Mtg.,

Washington, D.C., February 1974.

Jorgensen, L.H. and Nelson, £.R., "Experimental Aerodynamic Character-
istics for a Cylindrical Body of Revolution With Various Noses at
Angles of Attack from 0° to 58° and Mach humbers from 0.6 to 2.0,"
NASA TM X-3128, December 1974.

Jorgensen, L.H. and Nelson, E.R., “Experimental Aerodynamic
Characteristics for Bodies of El1liptic Cross Section at Angles of
Attack from 0° to 58° and Mach numbers from 0.6 to 2.0," NASA T™
X-3129, February 1975.

318

:
£




AFWAL-TR~80-3070

24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

REFERENCES (Continued)

Jorgensen, L.H. and Nelson, E.R., "Experimental Aerodynamic
Characteristics for a Cylindrical Body of Revolution With Side
Strakes and Various Noses at Angles of Attack From 0° to 58° and
#Mach numbers from 0.6 to 2.0," NASA TM X-3130, March 1975.

Smith, L.H. and Nunn, R.H., "Aerodynamic Characteristics of an
Axisymmetric Body Undergoing a Uniform Pitching Motion,"

J. of Spacecraft and Rockets, Yol. 13, No. 1, January 1976,
pp. 3-14,

Clark, W.H. and Nelson, R.C., "Body Vortex Formation on Missiles
at High Angles of Attack," AIAA Paper No. 76-65, AIAA 14th Aerospace
Sciences Meeting, Washington D.C., January 1976.

Keener, E.R., Chapman, G.T. and Kruse, R.L., "Effects of Mach
Number and Afterbody Length on Onset of Asyrmetric Forces on Bodies
at Zero Sideslip and High Angles of Attack,” AIAA Paper No. 76-66,
AIAA 14th Aerospace Sciences Mtg., Washington, D.C. January 1976.

Baker, D.C. and Reichenau, D.E.A., "Aerodynamic Characteristics of
an MX Missile at Free-Stream Mach Numbers From 0.3 %o 1.3 and Angles
of Attack up to 180 Degrees,” AEDC-TR-75-3%, April 1975.

Deffenbaugh, F.D. and Koerner, W.5., "A<ymmetric Wake Development and
Associated Side Force on Missiles at High Angles of Attack," AIAA
Paper No. 76-364, AIAA 9th Fluid and Plasma Dynamics Conference,

San Diego, Calif., July 1976.

Bursnall, W.J. and Loftin, L.K., Jr., “Experimental Investigation of
the Pressure Distribution About a Yawed Cylinder in the Critical
Reynolds Number Range," NACA TN 2463, 1951.

Lamont, P.J. and Hunt, B.L., "Out-0f-Plane Force on a Circular
Cylinder at Large Angles of Inclination to a Uniform Stream,"
Aero. J. of the Ray. Soc., Vol. 77, No. 1, January 1373, pp. 41-45.

Wardlaw, A.B., Jr., "Prediction of Yawing Force at High Angle of
Attack,” AIAA J., Vol. 12, No. 8, August 1974, pp. 1142-1144.

Lamont, P.J. and Hunt, B.L., "The Out-0f-Plane Force on a Circular
Cylinder at Large Angles of Inclination to a Uniform Stream,"
unpublished manuscript.

Tunstall, M.J. and Harvey, J.K., “On the Effect of a Sharp Bend in
a rfully Developed Turbulent Pipe Flow," J.F.M., Yol. 34, pt. 3,
1968, pp. 595-608.

Smith. L.H. and Nunn, R.H., “Aerodynamic Characteristics of an
Axisymmetric Body Undergoing a Uniform Pitching Motion," AIAA Paper
No. 75-838, AIAA 8th Fluid and Plasma Dynamics Conference,
Hartford, Connecticut, June 1975.

319

(b sl el aeNayry Ve hclr‘ij
PR . .o Sy ey 4

A gt

2

¥ s

ot 2 AR s Y,

4

SRS T LR PETIT ICON L P NE U WIS

v,

faumy fed




mane SRR

AFWAL-TR-80-3070

36.

37.

38.

39.

40.

a1,

42.

43.

4a.

45.

46.

47.

REFERENCES (Continued)

Drescher, H., "Messung Der Auf Querange-Str'démte Zylinder Ausgeubten
Zeitlich Verdnderten Druck," Z.F. Flugwiss, Vol. 4, No. 1/2, 1956,
pp. 17-21.

Haumann, Von A. and Pfeiffer, H., "Uber Die Grenzschichtablosung
am Zylinder Bei Hohen Geschwindegkeiten," Advances in Aeronautical
Sciences, Vol. 3, 1962, pp. 185-206.

Naumann, Yon A., Morsbach, M. and Kramer, C., “The Conditions of
Separation and Vortex Fermation Past Cyiinders," AGARD C.P. No. 4,
Separated Flows, Pt. 2, May 1966, pp. 547-574.

Gerrard, J.H., "An Experimental Investigation of the Oscillating
Lift and Drag of a Circular Cylinder Shedding Turbulent Vortices,"
J.F.M., Vol. 11, Pt. 1, 1961, pp. 244-256.

Gerrard, J.H., "The Mechanics of the Formation Region of Vortices
Behind Bluff Bodies," J.F.M., Vol. 25, Pt. 2, 1966, pp. 401-413.

Bloor, M.S. and Gerrard, J.H.. “Measurements on Turbulent Vortices
in a Cylinder Wake," Proc. of Roy. Soc., A, Voi. 254, 1966, pp. 319-
342.

Test Facilitre- Handbook (Tenth Edition) “Propulsion Wind Tunnel
Facility, Vo.. 4." Ammold Engineering Development Center, May 1974.

Burchfield, C.6., "Asymmetric Vortex-Induced Side Force on an MX
Missile at Roll Angles From -10 to 190 Degrees at Free-Stream Mach
Numbers From 0.4 to 1.5," AEDC-TR-76-169, December 1976.

Baker, D.C. and Reichenau, D.E.A., "Aerodynamic Characteristics of
an MX Missile at Free-Stream Mach Numbers From 0.3 to 1.3 and Angles
of Attack up to 180 Degrees," AEDC~-TR-75-34, April 1975.

Baker, D.C., MX Missile Pressure Data at Free-Stream Mach Numbers
From 0.3 to 1.3 and Angles of Attack From 5 to 55 Degrees,”
AEDC-DR-75-99, September 1975.

Schwind, R.G. and Mullen, J. “Laser Yelocimeter Measurements of
Slender Body Wake Vortices," Proceedings From AIAA 17th Aercspace
Science Meeting, Paper No. 79-0302, January 1379.

Owen, F.K. and Johnson, D.A., "Wake Vortex Measurements of Bodies
at High Angle of Attack,™ Proceedings From AIRA 16th Aerospace
Sciences Meeting, Paper Wo. 78-32, January 1578.




AFYAL-TR-80-3070

48.

49.

50.

51.

52.

53.

REFERENCES (Concluded)

Wardlaw, A.B., Jr., "Prediction of Normal Force, Pitching Moment,
and Yawing Force on Bodies of Revolution at Angles of Attack up to
50 Degrees Using a Concentrated Vortex Flow-Field Model," NOLTR
73-209, October 1973.

Flaherty, ¢.1., "Experimental and Analytical Invastigation of
High Angle of Attack Missile Aerodynamics,” Proceedings From AIAA
Atmospheric Flight Mechanics Conference, August 1978, Paper Ko.
77-1156, pp. 311-317.

Jorgensen, L.H., "Investigation of Some Wake Vortex Characteristics
of an Inclined Ogive-Cylindrical Bedy at Mach,” NACA Report 1371,
May 195

Wardlaw, A.B., Jr., "Multivortex Model of Asymmetric Shedding on
Slender Bodies at High Angles of Attack," AIAA Paper 75-123,
presented at the AIAA 13th Aerospace Sciences Meeting, January 1975.

Bolds, Phyllis G., "Analysis of Unsteady Pressures From Missile
Model Wind Tunnel Tests," AFFDL-TR-76-109, December 1976.

Przirembel, C.E.G., and Skereda, D.E., "Aerodynamics of Slender
Bodies at High Angles of Attack,” Journal of Spacecraft and Reckets,
January - February 1979.

321

v e as




' .

 Seomld
'
'

AFWAL-TR-80-3070

2 i et by

BIBLIOGRAPHY

v

(Additional Reports Not Reviewed)

Saffell, B.F., Jr., Howard, M.L., and Brooks, E.N., Jr., "A Method
for Predicting the Static Aerodynamic Characteristics of Typical
Missile Configurations for Angles of Attack to 180 Degrees,"

R & E Report 3645, 1971, Naval Ship Research and Development :
Center, Washington, D.C. . L

XSyl
—_

Atraghji, E.G., "The Influence of Mach Number, Reynolds Number,
Semi-Nose Angle, and Roll Rate on the Development of Forces and
Moments QOver a Series of Long Slender Bodies of Revolution at
Incidence,” NAE Data Report & x 5/00200, 1967, NCR of Canada.

st
~

3. Atraghjf, E.G., "Pressure Distribution Over a Family of Inclined
Long Slender Bodies of Revolution at M = 0.5, 2.0 and 3.5," MAE
Data 5 x 5/0029 1968, NCR of Canada.

A
:.

A

k>

4, Maltby, R.L. and Peckman, D.H., "Low Speed Flow Studies on the
Vortex Patterns Above Inclined Slender Bodies Using a New Smoke
Technique," RKoyal Aircraft Estabiishment, TN Ho. AERQ 2482, 1956.

5. Crabbe, R.S., "Flow Separation About Elliptic Cones at Incidence,"
National Research Council of Canada, Aero. Report LR-435, August

e

1965.
4
6. Rainbird, W.J., Crabbe, R.5. and Jurewiz, L.5., "A ¥ater Tunnel ]
Investigation of the Flow Separation About Carcular Cones at 1
Incidence,” Nationa! Research Council ot Canada, Aero. Report k

LR-385, September 1963.

7. Rainbird, W.J., "Turbulent Boundary layer Growth and Separation
on a Yawed Cone," AIAA J., Vol. 6, Ho. i2, December 1968, pp. 2410- 3
2416, %

8. Rainbird, W.J., "The External Flow Field About Yawed Circular Cones,"
KGARD CP. Ho. 30, May 1968.

9. Washington, D.W., "Correlation of Viscous Effects and Comparison
Between Experimental and Theoretical Distribution of Potential
Normal Force and Pitching Moment fcr Bodies of Revolution at
Supersonfc Speeds," Ui.S.A.M.C. Redstone Arsenal, Rept. RD-TR-12-
67, 1967.

10. Jones, G.W., Cincolta, J.J. and Walker, R.W., "Aerodynamic Forces
. On a Stationary and Osciliating Circular Cylinder at High Reynoulds
Rumber,* NASA TR R-300, 1369.

n. Fiechter, M., "Uber Wirbelsysteme An Schlanken Retations Korpern

Und Ihren Einfluss Auf Die Aerodynamischen Beiwerte," Deutsch-
Franzosisches Forchungs Institute Saint Louis, Report 16/66, 1966.

322

" AW i -




AFHAL-TR-80-3070

12.

13.

14.

15.

16.

17.

18,

14

20.

21,

BIBLIOGRAPHY (Continued)

Carlyle, J.E., "Body Alone Characteristics at Angles of Attack,”
LMSC, Independent Development Yactical Missile Maneuverability
Study, Section 3.3 (T¥-55-21-92 LMSC/ 806605), 1967.

Carlyle, J.E., *Side Forces on Non-Spinning Sodies of Revolution
flyfag at Incidences,” LMSC, Independent Development Tactical
Missile Maneuverability Study, Section 3.4 (TM-55-21-92 LMSC/
806605), May 1967.

Krouse, J.R., "Induced Side Forces on Slender Bodies at High
Angles of Attack and Mach Numbers of 0.55 and 0.80," NSRDC
Test Rept., March 1971,

Barth, H., “Datemblatter Zur Ermittlung Aerodynamischer Beiwerte
Schlanker Bug Zulinder-Konfigurationen In Transconischen
Geschwindigkeitsbereich" (Data Sheets for Determining the
Aerodynamic Coefficients of Slender Nose-Cylinder Configurations
in the Transonic Speed Range), Messerschmitt-Bolkow-Biohm, GMSH,
TN WE 12-88/70, December 1970.

Barth, H., "Datenblatter Zur Ermittlung Von Normalkraft, Momenten
and Tangentialkraft Characteristiken Schianker Bug Zylinder-
Konfigurationen In Transsonischen Geschwindigkeitsbherefch,"

(Data Sheets for Determining the Normal Force, Moments and

Axial Force Characteristics of Slender Nose-Cylinder-Configura-
tfons in the Transonic Speed Range), Messerschmitt-Bolkow-Blohm,
GMBY, TN WE2~97/69, December 1969.

Keener, £.R., and Taleghani, J., "Wind Tunnel Investigation of

the Aerodynamic Characteristics of Five Forebody Models at High
Angles of Attack at Mach Numbers from 0.25 to 2.0," NASA TM X-

73-076, 1975,

Dunn, E.L., "A Low-Speed Experimental Study of Yaw Forces on
Bodies of Revolution at Large Angles of Pitch and Zero Side-Slip,"
Ballistics Division, Aerodynamics Branch, U.S. Naval Ordinance
Test Station, TM-1588, 1954.

Gapeynski, J.P., "An Experimental Investigation of the Flow
Phenomena Over Bodies at High Angles of Attack at a Mach Number
of 2.01," NACA RM L55H29, 1955,

Hartmann, K., "Aerodynamische Unter Suchungen an Flugkorpern In
Transsonischen Geschwindigkeftsbereich," Teil II: Systematische
Druckverteilungsmessungen, AVA Bericht 69A 06, 1969.

Head, M.H., “Observations of Unsteady Flow Phenomena for an In-
clined Body Fitted With Stabflizing Fins," NACA TM A51K05, 1952.

323




AFWAL-TR-80-3070

22.

23.

24.

25.

26.

27.

28.

29.

3.

32.

33.

BIBLIOGRAPHY (Continued)

Swith, L.H4. and Nunn, R.H., "Flow Studies of Axisymmetric Bodies
at Extreme Angles of Attack,” Naval Postgraduate School, NPS 59
NN 72082A, 1972.

Kubin, J.5., "An Analysis of Steady Asymmetric Vortex Shedding
From a Missile at High Angles of Attack," M.S. Thesis, Air Force
Institute of Technology, November 1973.

Baker, W.B., Jr., "Static Aercdynamic Characteristics of a Series
of Generalized Slender Bodies With and Without Fins at Mach Num-
bers From 0.6 to 3.0 and Angles of Attack From 0 to 180 Degrees,"
AEDC-TR-75-124, Vol. I, II, May 1976.

Kellock, R.E. and Miller, P.H., "Aerodynamic Characteristics of
Basic Nose-Cyiinder Bodies for Large Ranges of Angle of Attack,”
Louisiana State University, 1571.

Munk, K.M., "The Aerodynamic Forces on Airship Hulls", NACA Report
184, 1924,

Ashley, H. and Landahl, M., Aerodynamics of Wings and Bodies,
Addison Wesley Publishing Co., Inc., New York, 1965.

Teien, H.S., "Supersonic Flow Over an Inclined Body of Revolution,"
J. of Aero. Sci., Vol. 5, No. 12, Oct. 1938, pp. 480-483.

Perkins, E.N. and Jorgensen, L.H., "Comparison of Experimentaj and
Theoretical Normal-Force Distributions (Including Reynolds Nusmber
Effects) on an Ogive-Cylinder Body at Mach Number 1.98," MACA RM
AS54H23, 1954.

Jorgensen, L.H., "A Method for Estimating Static Aerodynamic
Characteristics for Slender Bodies of Circular and Non-Circular
Cross Section Alone and With Lifting Surfaces at a = 0 to 90°,"
NASR TN D-7228, 1973.

Jorgensen, L.H., "Estirmation of Aerodynamics for Slender Bodies
Alone and With Lifting Surfaces at « = 0 to 90°.“ AlAA J., Yol.
17, No. 3, March 1973, pp. 409-412.

Jorgensen, L.H., "Prediction of Static Aerodynamic Characteristics
for Space-Shuttle-Like and Other Bodies at Angles of Attack from
0° to 180°," NASA TN D-6996, 1973.

Mello, J.F., “Investigation of Normal Force Distributions and

Wake Characteristics of Bodies of Revolution at Supersonic Speeds,”
J. of Aerp. Sci., Vol. 26, No. 3, March 1959, pp. 155-168.

324




AFWAL-TR-80-3070

34.

35.

36.

37.

33,

40.

4.

42.

43,

44,

45.

a6,

BIBLIOGRAPHY (Continued)

Goldman, 2.S. and Briggs, M.M., "Distribution Airload Analysis
Final Report,” McDonnell Douglas Astronautics Co., MDAC Rept.
MDC G4S41, March 1973.

Kelly, H.R., "The Estimation of Normal Force, Drag, and Pitching
Moment Coefficients for Blunt-Based Bodies of Revolution at Large
Angles of Attack,” J. of Aero. Sci., Vol. 21, No. 8, August 1954,
pp 549-555.

Schwabe, M., "Pressure Distribution in Non-Uniform Two-Dimensional
Flow," NACA TM 1039, 1943.

Sarokaya, T., “"Separated Flow About Lifting Bodies and Impulsive
Flow About Cylinders," AIAA J., Vol. 4, No. 3, March 1966, pp.
414-420.

Thomson, K.D., "The Estimation of Viscous Normal Force, Pitching
Moment, Side Force and Yawing Moment on Bcdies of Revolution at
Incidence Up to 60°,° Australian WRE-Report-782, October 1972.

Edwards, R.H., "Leading Edge Separation From Delta Wings", J. of

Aero. Sci., Yol. 21, No. 2, February 1954, pp. 134-135.

Hi11, J.A.F., “A Non-Linear Theory of the Lift on Slender Bodies
of Revolution,” NAYORD Report 5338. Proceedings U.5. Navy Sympo-
sium on Aeroballistics, 1954.

Bryson, A.E., “Symmetric Yortex Separatior on Circular Cylinders
and Cones," J. of Appl. ¥ech., Vol. 26, No. 4, December 1959,
pp. 643-648.

Sarpkaya, T. and Garrison, C.J., "Vortex Formation and Resistance
in Unsteady Flow," J. Appl. Mech., Trans. of ASME, Serfes £, %o.
1, Vol. 30, 1963, pp. 16-24.

Schindel, L.H., "Effects of Vortex Separation on the Lift Distri-
bution on Bodies of Elliptic Cross Section,” J. of Aircraft,
Voi. 6, No. 6, Noveaber 1959, pp. 537-543.

Gerrard, J.H., "Numerical Computation of the Magnitude and Fre-
quency of Lift on a Circular Cylinder,” Phil. Trans. Roy. Sot.,
Yol, 261, January 1967, pp. 157-162.

Sarpkaya, T., "An Analytical Study of Separated ¥low About Circu-
lar Cylinders,” J. Basic £ng., Trans. of ASME, Series B, Vol. 90,
Ho. 4, December 1968, pp. 511-520.

Laird, A.D.X., "Eddy Formation Behind Circylar Cylinders.," J, cf
Hydraulics Div., Proc. of the ASCE, Vel. 97, No. H¥S, June 1977,

pp. 763775,

325

oo

L FINEA ALY L LN




AFWAL-TR-80-307C

47.

48.

49,

50.

51.

52.

55.

56.

57.

BIBLIOGRAPHY (Concluded)

Clements, R.R., "An Inviscid Model of Two-Dimensional Vortex Shed-
ding,"* J.F.M., Vol. 57, Pt. 2, 1973, pp. 321-336.

Angelucci, S.B., “A Multi-Vortex Method for Axisymmetric Bodies
at Angle of Attack,” J. of Aircraft, Vol. 8, No. 12, December 1971,
pp. 959-966.

Marshall, F.J. and Deffenbaugh, F.D., “Separated Flow Over a Body
of Revolution," J. of Aircraft, Vel. 12, No. 2, February 1975,
pp. 78-85.

Wardlaw, A.B., Jr., "Multivortex Model of Asymmetric Shedding on
Slender Bodies at High Angle of Attack,” AIAA Paper No. 75-123,
AIAA 13th Aerospace Science Mtg. R-9 Pasadena, Calif., January
1975.

Stratford, B.S., “"The Prediction of Separation of the Turbulent
Boundary Layer,"_J.F.M., Yol. 5, Pt. 1, January 1959, pp. 1-16.

Nelson, R.C. and Fleeman, E.L., “High Angle-of-Attack Aerodynamics
on a Slender Body With a Jet Plume,” J. of Spacecraft and Rockets,
Vol. 12 No. 1, January 1975, pp. 12-16.

Kao, H.C., "Side Force on Unyawed Slender Inclined Aerodynamic
Bodies,” J. of Aircraft, Vol. 12, No. 3, March 1975, pp. 142-150.

Fidler, J.E. and Bateman, M.C., "Asymuetric Vortex Effects on
Missile Configurations,” J. of Spacecraft and Rockets, Vol. 12,
No. 11, November 1975, pp. 674-681.

Schmidt, L.V., "Measurement of Fluctuating Air Loads on a Circular
Cylinder," J. of Pircraft, Vol. 2, No. 1, January 1965, pp. 49-55.

Peake, D.J., Rainbird, W.J. and Atraghji, E.G., “Three-Dimensional
Flow Separations on Aircraft and Missiles,” AIAA J., Vol. 10, No.
5, May 1972, pp. 567-580.

Chambers, J.R., Anglin, E.L. and Bowman, J.5., Jr., "Effects of
a Pointed Nose on Spin Characteristics of a Fighter Airplane Model

Including Correlation With Theoretical Calculations,” NASA TN D-
5921, 1970.

326

*U.S.Governmaent Printing Otfxce 1931 =~ 757-002/349

4

i

i IO




