

1 P

SUSQUEHANNA RIVER BASIN

UNNAMED TRIBUTARY OF EAST BRANCH OF LACKAWANNA RIVER WAYNE COUNTY, PENNSYLVANIA

ORSON POND DAM

NDI No. PA 00136 PennDER No. 64-25

Dam Owner: Clyde Howell

PHASE I INSPECTION REPORT

NATIONAL DAM INSPECTION PROGRAM

prepared for

DEPARTMENT OF THE ARMY

Baltimore District, Corps of Engineers

Baltimore, Maryland 21203

prepared by

MICHAEL BAKER, JR., INC.

Consulting Engineers 4301 Dutch Ridge Road Beaver, Pennsylvania 15009

FILE COPY Ë

April 1981

81

DISTRIEUTION STATFISHED A Approved for public release; **Distribution Unlimited**

"Original contains color plotes: All DUIC reproductions will be in black and white" 046

10

SUSQUEHANNA RIVER BASIN ORSCN POND DAM WAYNE COUNTY, COMMONWEATH OF PENNSYLVANIA NDI No. PA 00136 PennDER No. 64-25 (Apr) #1 (27)9 Green Continual DAM INSPECTION REPORT Guland Susquerana Nili The Renormer. Ways Country Changes and Prove I Since Repert. Prepared for: DEPARTMENT OF THE ARMY Baltimore District, Corps of Engineers Baltimore, Maryland 21203 Prepared by: MICHAEL BAKER, JR., INC. Consulting Engineers 4301 Dutch Ridge Road Beaver, Pennsylvania 15009 Contract/DACW31-81-C-0011 / Accession For NTIS GRA&I X DTIC TAB Unannounced Justification BYREY DTIC Form 50 Distribution/on file Availability Codes Avail and/or Special Dist *Original contains color DISTRIBUTION STATEMENT A 110 COS pt plates: All DTIC reproduct-Approved for public release: ions will be in black and Distribution Unlimited white"

PREFACE

This report is prepared under guidance contained in the "Recommended Guidelines for Safety Inspection of Dams," for Phase I Investigations. Copies of these guidelines may be obtained from the Office of Chief of Engineers, Washington, D.C. 20314. The purpose of a Phase I Investigation is to identify expeditiously those dams which may pose hazards to human life or property. The assessment of the general condition of the dam is based upon available data and visual inspections. Detailed investigation, and analyses involving topographic mapping, subsurface investigations, testing, and detailed computational evaluations are beyond the scope of a Phase I Investigation; however, the investigation is intended to identify any need for such studies.

In reviewing this report, it should be realized that the reported condition of the dam is based on observations of field conditions at the time of inspection along with data available to the inspection team. In cases where the reservoir was lowered or drained prior to inspection, such action, while improving the stability and safety of the dam, removes the normal load on the structure and may obscure certain conditions which might otherwise be detectable if inspected under the normal operating environment of the structure.

It is important to note that the condition of a dam depends on numerous and constantly changing internal and external conditions, and is evolutionary in nature. It would be incorrect to assume that the present condition of the dam will continue to represent the condition of the dam at some point in the future. Only through frequent inspections can unsafe conditions be detected and only through continued care and maintenance can these conditions be prevented or corrected.

Phase I Inspections are not intended to provide detailed hydrologic and hydraulic analyses. In accordance with the established guidelines, the spillway design flood is based on the estimated "Probable Maximum Flood" for the region (greatest reasonably possible storm runoff), or fractions thereof. The spillway design flood provides a measure of relative spillway capacity and serves as an aid in determining the need for more detailed hydrologic and hydraulic studies, considering the size of the dam, its general condition and the downstream damage potential.

PHASE I REPORT NATIONAL DAM INSPECTION PROGRAM

Orson Pond Dam, Wayne County, Pennsylvania NDI No. PA 00136, PennDER No. 64-25 Unnamed Tributary of East Branch of Lackawanna River Inspected 30 October 1980

ASSESSMENT OF GENERAL CONDITIONS

Orson Pond Dam is owned by Clyde Howell and is classified as a "Significant" hazard - "Small" size dam. The dam was found to be in fair overall condition at the time of inspection.

Hydraulic/hydrologic evaluations, performed in accordance with procedures established by the Baltimore District, Corps of Engineers, for Phase I Inspection Reports, revealed that the spillway will not pass the 100-year flood without overtopping the dam. A spillway design flood (SDF) in the range of the 100-year flood to the 1/2 Probable Maximum Flood (1/2 PMF) is required for Orson Pond Dam. Because the dam is on the low end of the "Small" size category in terms of storage capacity and height, the 100-year flood was chosen as the SDF. During the 100-year flood, the dam is overtopped by a maximum depth of 1.79 feet for a total duration of 9.33 hours. The spillway is therefore considered "Inadequate." It is recommended that the owner immediately develop recommendations for remedial measures to reduce the overtopping potential of the dam.

Several items of remedial work should be immediately initiated by the owner. Item 1 below should be completed under the guidance of a qualified professional engineer experienced in the design of hydraulic structures for dams. These include:

- Develop remedial measures to ensure that the dam will not be overtopped by the 100-year flood.
- 2) Repair the outlet conduit or fill it with concrete.
- 3) Cut the apple tree and the brush on the dam and below the toe of the dam.
- 4) Remove the debris and cut the vegetation in the downstream channel.

ii

ORSON POND DAM

÷.,

• - {

È.

ſ

In addition, the following operational measures are recommended to be undertaken by the owner:

- 1) Develop a detailed emergency operation and warning system.
- 2) During periods of unusually heavy rain, provide around-the-clock surveillance of the dam.
- 3) When warning of a storm of major proportions is given by the National Weather Service, activate the emergency operation and warning system.

It is further recommended that formal inspection, maintenance, and operation procedures and records be developed and implemented. An emergency drawdown plan should be developed in case an emergency drawdown of the pond should become necessary. These should be included in a formal maintenance and operations manual for the dam.

Submitted by:

MICHAEL BAKER, JR., INC.

John A. Dziubek, P.E. Engineering Manager-Geotechnical

Date: 24 April 1981

Approved by:

DEPARTMENT OF THE ARMY BALTIMORE DISTRICT, CORPS OF ENGINEERS

MES W. PECK

Colonel, Sorps of Engineers District Engineers

Date: 11 MAY 8/

ORSON POND DAM

Overall View of Dam from Right Abutment

TABLE OF CONTENTS

Page

Section	1	-	Project Information	1
			Engineering Data	5
Section	3	-	Visual Inspection	6
			Operational Procedures	7
			Hydraulic/Hydrologic	8
			Structural Stability	10
			Assessment, Recommendations/Remedial	
			Measures	11

3

;

APPENDICES

Appendix	A	- Visual Inspection Check List, Field Sketch,
		Top of Dam Profile, and Typical Cross-Section
Appendix	в	- Engineering Data Check List
Appendix	С	- Photograph Location Plan and Photographs
		- Hydrologic and Hydraulic Computations
Appendix		
Appendix	F	- Regional Geology

PHASE I INSPECTION REPORT NATIONAL DAM INSPECTION PROGRAM ORSON POND DAM NDI No. PA 00136, PennDER No. 64-25

SECTION 1 - PROJECT INFORMATION

1.1 GENERAL

54

L.

FI

- a. <u>Authority</u> The Dam Inspection Act, Public Law 92-367, authorized the Secretary of the Army, through the Corps of Engineers, to initiate a program of inspection of dams throughout the United States.
- b. <u>Purpose of Inspection</u> The purpose of the inspection is to determine if the dam constitutes a hazard to human life or property.

1.2 DESCRIPTION OF PROJECT

Description of Dam and Appurtenances - Orson Pond а. Dam is an earthfill dam with a dry masonry downstream face. There appears to be a concrete core wall located along the upstream edge of the crest, however, no plans are available for the dam which show the extent of this core wall. The dam is approximately 116 feet long and 13.5 feet high. The embankment has a minimum crest elevation of 2019.8 feet Mean Sea Level (ft. M.S.L.) and a crest width of about 12 feet. The upstream face of the embankment has a slope of 2H:1V (Horizontal to Vertical) and is protected by stone riprap. The downstream face of the dam is a dry-laid masonry wall with a slope of 1H:2V.

The spillway, located on the right side of the embankment, has a broad crested concrete weir. The spillway is 9 feet wide perpendicular to the direction of flow, has a crest width of 12 feet, and a crest elevation of 2017.0 feet M.S.L. Concrete spillway training walls extend from the spillway crest to the top of the dam. The spillway approach has a slope of 6H:1V. The spillway discharges over a vertical drop at the downstream edge of the crest. The downstream channel has a mild slope and contains some vegetation and a large amount of debris. The outlet works for the dam consist of a 32 inch riveted and welded steel plate pipe that was sealed and plugged by the owner after the gate valve at the upstream end began leaking extensively.

- b. Location Orson Pond Dam is located on an unnamed tributary of the East Branch of the Lackawanna River approximately one-tenth of a mile southeast of Orson, Pennsylvania. The structure is located in Preston Township, Wayne County, Pennsylvania. The coordinates for the dam are N 41° 48.8' and W 75° 26.8'. The dam and reservoir are shown on the USGS 7.5 minute topographic quadrangle, Orson, Pennsylvania.
- c. <u>Size Classification</u> The height of the dam is 13.5 feet. Storage at the top of the dam (elevation 2019.8 ft. M.S.L.) is 200 acre-feet. The dam is therefore in the "Small" size category.
- d. <u>Hazard Classification</u> There are two houses, one barn and one shed located 450 to 700 feet downstream from the dam in Orson, Pennsylvania, which may suffer economic damage if the dam were to fail; however, no loss of life is believed likely to occur. These structures are located from 5 to 10 feet above the streambed. Therefore, Orson Pond Dam is considered to be in the "Significant" hazard category.
- e. <u>Ownership</u> The dam is owned by Clyde Howell, P.O. Box 254, Waymart, Pennsylvania 18474.
- f. <u>Purpose of Dam</u> The reservoir is used for recreation.
- g. <u>Design and Construction History</u> According to the owner, the dam was built in 1849 to be used with a saw mill. No other information is available.
- h. <u>Normal Operational Procedures</u> The dam is normally maintained at or near the spillway crest, elevation 2017.0 ft. M.S.L.

1.3 PERTINENT DATA

4

- Mar

F

51

CTLL TUNE

-1

ĥ

Ŋ

- a. Drainage Area (square miles) 1.30
- b. Discharge at Dam Site (c.f.s.) -

Maximum Known Flood (1969) -	100
Spillway Capacity at Maximum Pool	
(El. 2019.8 ft. M.S.L.) -	130

2

c.	Elevation* (feet above Mean Sea Level [ft. M	<u>I.S.L.])</u> -
	Design Top of Dam - Minimum Top of Dam - Maximum Design Pool - Spillway Crest - Streambed at Toe of Dam - Maximum Tailwater of Record -	Unknown 2019.8 Unknown 2017.0 2006.3 Unknown
d.	<u>Reservoir (feet)</u> -	
	Length of Maximum Pool (El. 2019.8 ft. M.S.L.) - Length of Normal Pool (El. 2017.0 ft. M.S.L.) -	2700 2000
e.	<u>Storage (acre-feet)</u> -	
	Top of Dam (El. 2019.8 ft. M.S.L.) - Normal Pool (El. 2017.0 ft. M.S.L.) -	200 130
f.	<u>Reservoir Surface (acres)</u> -	
	Top of Dam (El. 2019.8 ft. M.S.L.) - Normal Pool (El. 2017.0 ft. M.S.L.) -	29 20
g.	Dam -	
	Type - Earthfill with dry masonry downstream Total Length Including Spillway (feet) - Height (feet) - Design - Field - Top Width (feet) - Side Slopes - Upstream - Downstream - Zoning - Impervious Core - The top of a concrete wall observed at the upstream e the crest. No information about the depth of the wal	116 Unknown 13.5 12 2H:1V 1H:2V None was dge of is known
	Cut-off - Drains -	Unknown None
h.	Diversion and Regulating Tunnel -	None

-

f

*All elevations are referenced to the spillway crest of the dam, El. 2017.0 ft. M.S.L., as estimated from the USGS 7.5 topographic quadrangle, Orson, Pennsylvania.

i. Spillway -

€

Type - Broad-crested concrete weir Location - Left end of embankment Width of Crest Parallel to Flow (feet) - 12 Length of Crest Perpendicular to Flow (feet) - 9 Crest Elevation (ft. M.S.L.) - 2017.0 Gates - None Downstream Channel - The downstream channel has a mild slope with some vegetation and debris restricting the channel.

j. <u>Outlet Works</u> - The 32 inch riveted and welded steel plate outlet conduit has been sealed and plugged. No other outlets are in the dam.

SECTION 2 - ENGINEERING DATA

2.1 DESIGN

There are no design data available for review concerning the Orson Pond Dam. The only information available is File No. 64-25 of the Pennsylvania Department of Environmental Resources (PennDER). This file included:

- 1) Information survey sheet of the dam, dated 1914.
- 2) Various photos and post-construction inspection reports. The latest, dated 14 July 1974, was filed by a representative of the United States Bureau of Reclamation. Other than brush growing on the upstream face of the dam, no serious problem were found and the dam was said to be in fair to good condition during that inspection. The latest PennDER report is dated 14 April 1965 and reported the dam to be in need of extensive repairs.
- 3) Various correspondence concerning the inspections and the ownership of the dam.

2.2 CONSTRUCTION

A survey of the

The owner indicated the dam was built in 1849 for a saw mill. No other information is available.

2.3 CPERATION

No formal records are available for operation of the dam and reservoir. The spillway is uncontrolled and the owner reported that the reservoir does not fluctuate very much from the spillway crest level.

2.4 EVALUATION

- a. <u>Availability</u> The information used is readily available from PennDER's File No. 64-25.
- b. <u>Adequacy</u> The information available combined with the visual inspection measurements and observations is adequate for a Phase I Inspection of this dam.
- c. <u>Validity</u> There is no reason at the present time to doubt the validity of the available engineering data.

3.1 FINDINGS

A second s

- a. <u>General</u> The dam was found to be in fair overall condition at the time of inspection on 30 October 1980. No unusual weather conditions were experienced during the inspection. Noteworthy deficiencies observed during the visual inspection are described briefly in the following paragraphs. The complete visual inspection checklist, field sketch, top of dam profile, and typical crosssection are given in Appendix A.
- b. <u>Dam</u> A 7 inch diameter apple tree is located on the crest of the dam near the left abutment. Some brush is located on the right side of the dam and below the toe at the center of the dam.
- c. <u>Appurtemant Structures</u> The outlet conduit intake has been sealed and plugged. The pipe, near the end, has rusted through and some of the rockfill is protruding through the pipe. The conduit should either be repaired or filled with concrete.

No significant problems concerning the spillway were observed.

- d. <u>Reservoir Area</u> An abandoned railroad grade is located along the right shoreline. The left reservoir shoreline is moderately sloped. Located approximately one mile upstream from Orson Pond Dam is a natural lake named Lake Lorain (PennDER I.D. No. 64-NL25). No significant problems were observed in the reservoir area.
- e. <u>Downstream Channel</u> The downstream channel contains debris from general dumping. The downstream channel is rock-lined, overgrown with vegetation, and mildly sloping. Twin stone box culverts (4 feet by 4 feet) carry the flow under an abandoned railroad line located approximately 200 feet downstream. PA Routes 370 and 690 are respectively located 450 feet and 700 feet downstream. There are two houses, one barn, and one shed located in Orson, Pennsylvania, which may be damaged in the event of a dam failure.

SECTION 4 - OPERATIONAL PROCEDURES

4.1 PROCEDURES

- 1

• •

£

There are no formal written instructions for lowering the reservoir or evacuating the downstream area in case of an impending dam failure. It is recommended that formal emergency procedures be adopted.

4.2 MAINTENANCE OF DAM

There are no formal records of maintenance or formal procedures for evaluating the necessity of maintenance for the structure. It is recommended that formal inspection procedures be developed.

4.3 MAINTENANCE OF OPERATING FACILITIES

There are no operating facilities at the dam. An emergency drawdown plan should be developed in case an emergency drawdown of the pond should become necessary.

4.4 DESCRIPTION OF ANY WARNING SYSTEM

There are no warning procedures in the event of a dam failure. An emergency warning procedure should be developed.

4.5 EVALUATION OF OPERATIONAL ADEQUACY

The current operational features are adequate for the purpose they serve. However, it is recommended that a formal maintenance and operations manual be prepared for the dam.

SECTION 5 - HYDRAULIC/HYDROLOGIC

5.1 EVALUATION OF FEATURES

- a. <u>Design Data</u> No hydrologic or hydraulic design calculations are available for Orson Pond Dam.
- b. Experience Data The owner reported that the maximum flood of record at the site occurred during 1969. During the flood, the reservoir level was approximately 29 inches above the spillway crest. This corresponds to a flow of approximately 100 c.f.s.
- c. <u>Visual Observations</u> During the visual inspection, no problems were observed which would indicate that the dam and appurtenant facilities could not perform satisfactorily during a flood event.

Lake Lorain, located 4400 feet upstream from Orson Pond, is a natural lake.

d. <u>Overtopping Potential</u> - Orson Pond Dam is a "Small" size - "Significant" hazard dam requiring evaluation for a spillway design flood (SDF) in the range of the 100-year flood to the 1/2 Probable Maximum Flood (1/2 PMF). Because the dam is on the low end of the "Small" size category in terms of storage capacity and height, the 100-year flood was chosen as the SDF.

Using material from "The Hydrologic Study - Tropical Storm Agnes" prepared by the Special Studies Branch, Planning Division, North Atlantic Division, Corps of Engineers, in New York City, December 1975, the peak inflow to the impoundment for the 100-year flood was calculated to be 915 c.f.s. The hydrologic characteristics of the basin, specifically, the Snyder's Unit Hydrograph Parameters, were obtained from a regionalized analysis conducted by the Baltimore District of the U.S. Army Corps of Engineers. Using the Snyder's unit hydrograph coefficients for this drainage area, an initial rainfall loss of 1.0 inch, and a constant loss rate of 0.05 inch per hour thereafter, a peak inflow of 878 c.f.s. was obtained. This peak inflow is within 6 percent of the peak inflow computed previously; therefore, this hydrograph was used for the hydrologic analysis.

The hydraulic capabilities of the dam, reservoir, and spillway were evaluated with the aid of the U.S. Army Corps of Engineers' Flood Hydrograph Package, HEC-1 DB. The 100-year flood was routed through Lake Lorain, downstream to Orson Pond where the hydrograph from Lake Lorain was combined with the runoff hydrograph for Orson Pond. The combined hydrograph was then routed through Orson Pond Dam.

The analyses revealed that during the 100-year flood, the dam would be overtopped by a maximum depth of 1.79 feet for a total duration of 9.33 hours.

e. <u>Spillway Adequacy</u> - As outlined in the above analyses, the spillway will not pass the SDF without overtopping the dam; therefore, the spillway is considered "Inadequate."

SECTION 6 - STRUCTURAL STABILITY

6.1 EVALUATION OF STRUCTURAL STABILITY

- a. <u>Visual Observations</u> The outlet conduit has rusted considerably near the end of the conduit and some of the rockfill is protruding through the pipe. It is recommended that either this portion of the pipe be repaired or the pipe be filled with concrete to prevent a partial collapse of the pipe.
- b. Design and Construction Data - No design or construction data were available for review. Generally, for this type of dam, if the ratio of the width of the stonewall portion of the dam is greater than 0.5 times the height of the dam (0.5 w/h), then stability of the dam due to overturning or sliding is not a problem. (Reference: "Evaluation and Repair of Stonewall-earth Dams," by Kent A. Healy, Proceedings of "Safety of Small Dams" conference, New England College, Henniker, New Hampshire, August 4-9, 1974, pp. 149-178). The w/h ratio for this dam is estimated at slightly less than one and, except for the outlet pipe discussed in paragraph 6.1.a., no signs of instability were observed during the visual inspection. Therefore, further assessments of the structural stability are not considered necessary.
- c. <u>Operating Records</u> No operating records are available. Nothing in the procedures described by the owner's representative indicates concern for the structural stability of the dam.
- d. <u>Post-Construction Changes</u> No changes adversely affecting the structural stability of the dam have been performed.
- e. <u>Seismic Stability</u> The dam is located in Seismic Zone 1 of the "Seismic Zone Map of the Contiguous United States," Figure 1, page D-30, "Recommended Guidelines for Safety Inspection of Dams." This is a zone of minor seismic activity. Therefore, further consideration of the seismic stability is not warranted.

SECTION 7 - ASSESSMENT, RECOMMENDATIONS/REMEDIAL MEASURES

7.1 DAM ASSESSMENT

- a. <u>Safety</u> Orson Pond Dam was found to be in fair overall condition at the time of inspection. Orson Pond Dam is a "Significant" hazard - "Small" size dam requiring a spillway capacity in the range of the 100-year flood to the 1/2 PMF. Because the dam is on the low end of the "Small" size category in terms of storage capacity and height, the 100-year flood was chosen as the SDF. As presented in Section 5, the spillway and reservoir are not capable of passing the 100-year flood without overtopping the dam. During the 100-year flood, the dam is overtopped by a maximum depth of 1.79 feet for a total duration of 9.33 hours. Therefore, the spillway is considered "Inadequate."
- b. <u>Adequacy of Information</u> The information available and the observations made during the visual inspection are considered sufficient for a Phase I Inspection Report.
- c. <u>Urgency</u> The owner should immediately initiate the further evaluation discussed in paragraph 7.1.d.
- d. <u>Necessity for Additional Data/Evaluation</u> The hydraulic/hydrologic analysis performed in connection with this Phase I Inspection Report has indicated the need for additional spillway capacity. It is recommended that the owner, under the guidance of a professional engineer experienced in the design of hydraulic structures for dams, develop remedial measures to ensure that the dam will not be overtopped by the 100-year flood.

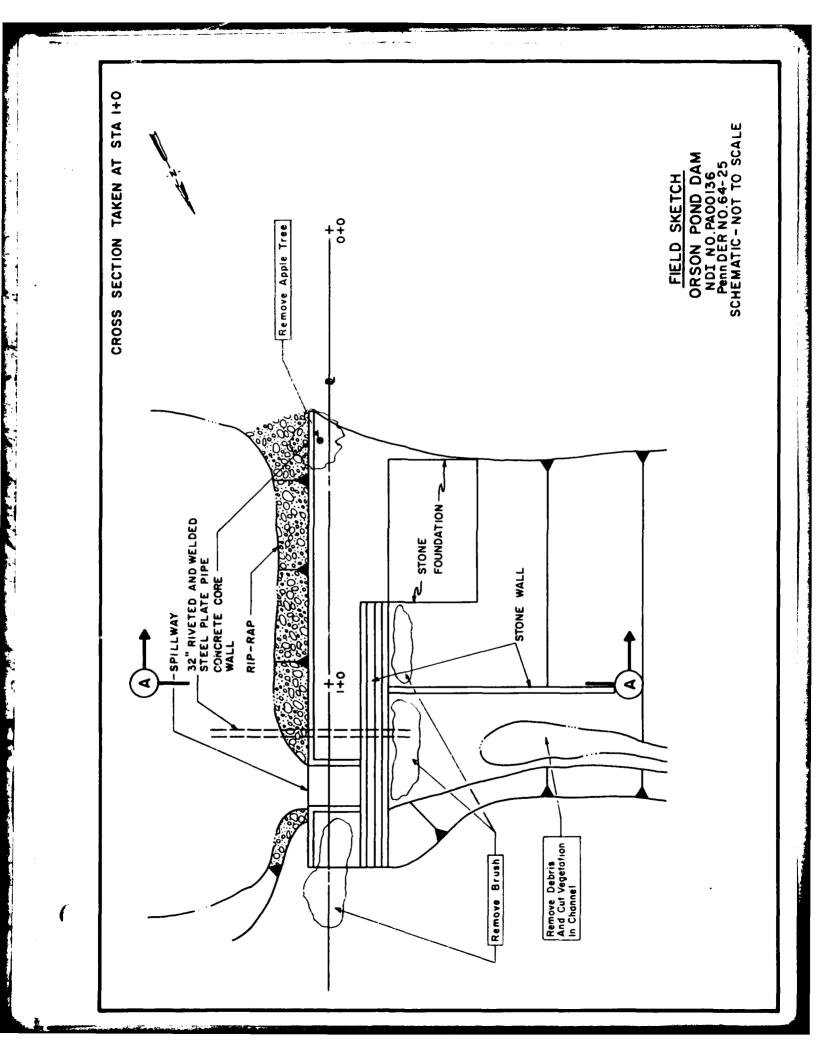
7.2 RECOMMENDATIONS/REMEDIAL MEASURES

The inspection revealed certain items of remedial work which should be performed by the owner without delay. Item 1 below should be completed under the guidance of a qualified professional engineer experienced in the design of hydraulic structures for dams. These include:

1) Develop remedial measures to ensure that the dam will not be overtopped by the 100-year flood.

- 2) Repair the outlet conduit or fill it with concrete.
- 3) Cut the apple tree and the brush on the dam and below the toe of the dam.
- 4) Remove the debris and cut the vegetation in the downstream channel.
- 5) Provide means to draw down reservoir during an emergency.

In addition, the following operational measures are recommended to be undertaken by the owner:


1

K-1

K

- 1) Develop a detailed emergency operation and warning system.
- During periods of unusually heavy rain, provide around-the-clock surveillance of the dam.
- 3) When warning of a storm of major proportions is given by the National Weather Service, activate the emergency operation and warning system.

It is further recommended the formal inspection, maintenance, and operation procedures and records be developed and implemented. An emergency drawdown plan should be developed in case an emergency drawdown of the pond should become necessary. These should be included in a formal maintenance and operations manual for the dam.

APPENDIX A

Ċ

VISUAL INSPECTION CHECK LIST, FIELD SKETCH, TOP OF DAM PROFILE, AND TYPICAL CROSS-SECTION

T-V	PA Coordinates Lat. N 41°48.8' Long.W 75°26.8'	Overcast Temperature 40° F.	.S.L.* Tailwater at Time of Inspection None M.S.L. elt /ation 2017.00 ft. M.S.L. assumed from U.S.G.S.	Owner's Representatives:	Mr. Clyde Howell	ki Recorder
Check List Visual Inspection Phase 1	Name of Dam <u>Orson Pond Dam</u> County <u>Wayne</u> State NDI # PA 00136 PennDER # 64-25	Date of Inspection 30 October 1980 Weather	<pre>Pool Elevation at Time of Inspection ft. M.S.L.* *All elevations referenced to spillway crest el. /atio 7.5 minute topographic guadrangle, Orson, PA.</pre>	Inspection Personnel: <u>Michael Baker, Jr., Inc.</u>	James G. Ulinski Wayne D. Lasch Jeffrey S. Maze	James G. Ulinski

i

1

-

•...

	N-2
	MASONRY DAMS
Name of Dam: ORSON POND NDI # PA 00136	DAM
VISUAL EXAMINATION OF	OBSERVATIONS REMARKS OR RECOMMENDATIONS
LEAKAGE	None observed
STRUCTURE TO ABUTMENT/EMBANKMENT JUNCTIONS	Good condition
DRAINS	None observed
WATER PASSAGES	Not Applicable
FOUNDATION	No problems observed.

ļ

C

No free co

MASONRY DAMS

Name of Dam: ORSON POND DAM

NDI # PA 00136

REMARKS OR RECOMMENDATIONS **OBSERVATIONS** VISUAL EXAMINATION OF

CONCRETE SURFACES SURFACE CRACKS

None observed

STRUCTURAL CRACKING

None observed

Good condition VERTICAL AND HORIZONTAL ALIGNMENT

Not Applicable MONOLITH JOINTS

•

Not Applicable CONSTRUCTION JOINTS

VEGETATION

Cut the brush and the apple tree. A 7 in. diameter apple tree is located brush is located on the right side of Some the dam and below the toe near the on the left end of the crest. center of the dam.

A-3

•

i.

C

EMBANKMENT - Not Applicable

Name of Dam ORSON POND DAM

NDI # PA 00136

REMARKS OR RECOMMENDATIONS OBSERVATIONS VISUAL EXAMINATION OF

SURFACE CRACKS

UNUSUAL MOVEMENT OR CRACKING AT OR BEYOND THE TOE SLOUGHING OR EROSION OF EMBANKMENT AND ABUTMENT SLOPES -----

Λ-4

1

and the second s

*- | | |

(_`

A-5 Able	REMARKS OR RECOMMENDATIONS			
EMBANKMENT - Not Applicable	OBSERVATIONS			
	Name of Dam ORSON POND DAM NDI # PA 00136 VISUAL EXAMINATION OF	VERTICAL AND HORIZONTAL ALIGNMENT OF THE CREST	RIPRAP FAILURES	

	1	1	1	[1	1
A-6	ремарус ОВ весомменионно	NEMARKS OK RECOMMENDALIONS				
БМВАNVМБИТ — Мон Алогі (2006)	ORSERVATTONS	CUNTTUANTERA				
C	Name of Dam <u>ORSON POND DAM</u> NDI # PA 00136 VISUAL EXAMINATION OF	JUNCTION OF EMBANKMENT AND ABUTMENT, SPILLWAY AND DAM	ANY NOTICEABLE SEEPAGE	STAFF GAGE AND RECORDER	DRAINS	

VISUAL EXAMINATION OF		
	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
CRACKING AND SPALLING OF Near CONCRETE SURFACES IN pipe OUTLET CONDUIT poin some	Near the end of the outlet conduit the pipe has rusted considerably. At this point the pipe has become sheared and some rockfill is protruding into the pipe (see right side of Photo 6).	Repair damaged portion of the pipe or fill the pipe with concrete.
INTAKE STRUCTURE In in	Intake was submerged at time of inspection. Owner reports sealing and plugging the intake structure.	
OUTLET STRUCTURE GO	Good condition	
OUTLET CHANNEL GO	Good condition	
EMERGENCY GATE NO	None	

{

С .		. .
Name of Dam: ORSON POND DAM NDI # PA 00136	UND DAM UNGATED SPILLWAY	Λ-8
VISUAL EXAMINATION OF	OBSERVATIONS REMI	REMARKS OR RECOMMENDATIONS
CONCRETE WEIR	Good condition	
APPROACH CHANNEL	Good condition	
DISCHARGE CUANNEL	Good condition	
BRIDGE AND PIERS	None	

-

ŝ

Name of Dam: ORSON POND DAM NDI # PA 00136	GATED SPILLWAY - Not Applicable	
VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
CONCRETE SILL		
APPROACH CHANNEL		
DISCHARGE CHANNEL		
BRIDGE AND PIERS		
GATES AND OPERATION EQUIPMENT		

(

	A-10	REMARKS OR RECOMMENDATIONS						
		OBSERVATIONS	None observed	None observed	None observed	None observed	·	
C	Name of Dam: ORSON POND DAM NDI # PA 00136	VISUAL EXAMINATION	MONUMENTATION/SURVEYS	OBSERVATION WELLS	WEIRS	PIEZOMETERS	OTHER	

and a second second

Name of Dam: ORSON POND DAM	ND DAM	
NDI # PA 00136 VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
SLOPES	An abandoned railroad grade is located along the right shoreline. The left reservoir shoreline is moderately (5° - 15°) sloped.	
SEDIMENTATION	Average depth of the reservoir is 5 ft. The greatest depth is 12 ft. Sedi- mentation is not a serious problem in the reservoir.	
UPSTREAM DAMS	Located approximately l mi. upstream from Orson Pond Dam is a natural lake named Lake Lorain (PennDER No. 64-NL25).	

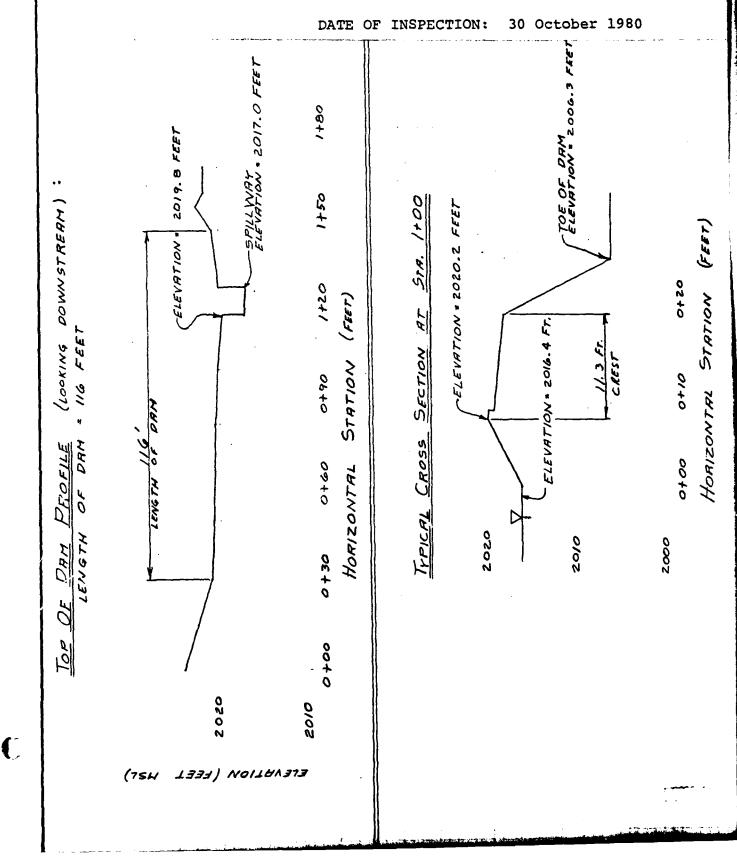
C

.

1

C

THE BAKER ENGINEERS


Box 280

1

Beaver, Pa. 15009

ORSON POND DAM

TOP OF DAM PROFILE TYPICAL CROSS-SECTION

A-14

APPENDIX B

. .

100 A. 100

C

ENGINEERING DATA CHECK LIST

C	
Name of Dam: ORSON POND DAM NDI # PA 00136	CHECK LIST ENGINEERING DATA DESIGN, CONSTRUCTION, OPERATION M
ITEM	REMARKS
PLAN OF DAM	None available, see Plate 3 for Field Sketch.
REGIONAL VICINITY MAP	A USGS 7.5 minute topographic quadrangle, Orson, Pennsylvania, was used to prepare the vicinity map which is enclosed in this report as the Location Plan (Plate 1).
CONSTRUCTION HISTORY	The dam was constructed in 1849 to be used as a sawmill. No other information is available.
TYPICAL SECTIONS OF DAM	None available, see Plate 4 for inspection Cross Section.
HYDROLOGIC/HYDRAULIC DATA	None available
OUTLETS - PLAN	None available
- DETAILS	None available
- CONSTRAINTS	None available
- DISCHARGE RATINGS	None available
RAINFALL/RESERVOIR RECORDS	None available

ŗ

• | |

1

A CONTRACT OF A CONTRACT.

•••

DESIGN REPORTS	
DESIGN REPORTS	
	None available
GEOLOGY REPORTS	No geology reports are available for the dam. See Appendix F for Regional Geology.
DESIGN COMPUTATIONS HYDROLOGY & HYDRAULICS DAM STABILITY SEEPAGE STUDIES	No design computations are available.
MATERIALS INVESTIGATIONS BORING RECORDS LABORATORY FIELD	No information available
POST-CONSTRUCTION SURVEYS OF DAM	None performed
BORROW SOURCES	No information available

Name of Dam: ORSON POND DAM NDT # PA 00136	. B-3
	REMARKS
MONITORING SYSTEMS	None observed
MODIFICATIONS	According to the current owner, after he obtained the dam in 1965, the following repairs were performed:
	1) Repaired back wall of the spillway, November 1965
	 Rebuilt walls and installed 12 in. thick spillway apron, June 1966
	3) Placed riprap on right upstream face of dam (right of the spillway), June 1974
	4) Built cofferdam in front of outlet pipe with 2 layers of 2 in. thick oak and 3 layers of blue clay in front of the stop logs, summer of 1976
	5) Placed riprap in the spillway stilling basin, August 1977
HIGH POOL RECORDS	The 14 July 1972 inspection reported 12 in. above the spillway crest for Hurricane Agnes. It also reported a high water 3 years earlier of 29 in. above spillway crest. No other information available.
POST-CONSTRUCTION ENGINEERING STUDIES AND REPORTS	A representative of the United States Bureau of Reclamation performed the last inspection on 14 July 1972. An inspect on was performed by a PennDER representative on 14 April 1965. These and a few earlier reports are available in the PennDER file.
PRIOR ACCIDENTS OR FAILURE OF DAM DESCRIPTION REPORTS	None reported in the available information.

€

14

of Da	DND DAM B-4
TTRM	DRWA BKC
MAINTENANCE OPERATION RECORDS	No formal records of maintenance are kept.
SPILLWAY PLAN,	
SECTIONS, and DETAILS	No information available
OPERATING EQUIPMENT PLANS & DETAILS	No information available

•

1

CHECK LIST HYDROLOGIC AND HYDRAULIC DATA ENGINEERING DATA

DRAINAGE AREA CHARACTERISTICS: 1.30 sq. mi., gentle wooded slopes

ELEVATION TOP NORMAL POOL (STORAGE CAPACITY): 2017.0 ft. M.S.L. (130 ac.-ft.)

ELEVATION TOP FLOOD CONTROL POOL (STORAGE CAPACITY): 2019.8 ft. M.S.L.

(200 ac.-ft.)

ELEVATION MAXIMUM DESIGN POOL: Unknown

ELEVATION TOP DAM: 2019.8 ft. M.S.L. (minimum top of dam)

SPILLWAY: Broad-crested concrete weir

a. Crest Elevation 2017.0 ft. M.S.L.

b. Type <u>Broad-crested concrete weir</u>
c. Width of Crest Parallel to Flow <u>12 ft.</u>

d. Length of Crest Perpendicular to Flow 9.0 ft.

e. Location Spillover Right side of embankment

f. Number and Type of Gates None

OUTLET WORKS: None - 32 in. riveted and welded steel plate pipe, sealed and plugged

a. Type

and the second se

- b. Location Near center of dam
- c. Entrance Inverts Sealed and plugged
- d. Exit Inverts 2009.57 ft. M.S.L.

e. Emergency Drawdown Facilities None

 HYDROMETEOROLOGICAL GAGES:
 None

 a.
 Type

 b.
 Location

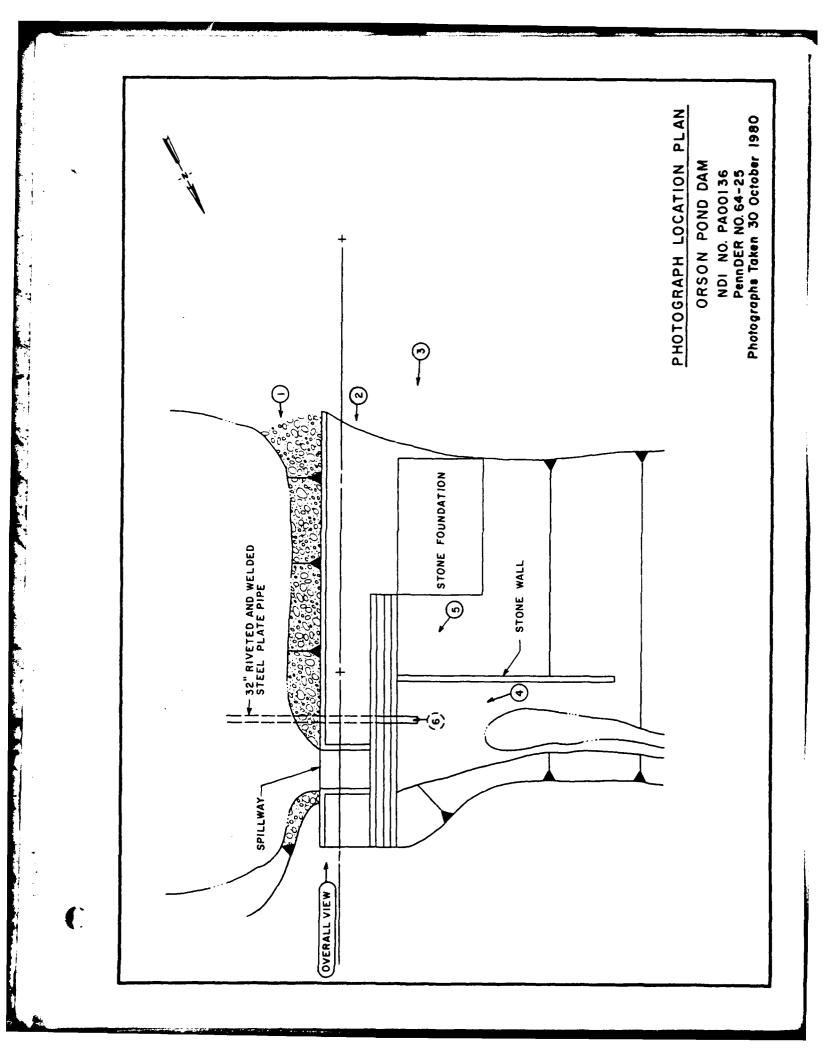
 c.
 Records

MAXIMUM NON-DAMAGING DISCHARGE 100 c.f.s. (1969)

5-5

APPENDIX C

PHOTOGRAPH LOCATION PLAN AND PHOTOGRAPHS


1

C

DETAILED PHOTOGRAPH DESCRIPTIONS

Overall View of Dam - Overall View of Dam from Right Abutment Photograph Location Plan Photo 1 - View of Upstream Slope from Left Abutment Photo 2 - View of Dam Crest from Left Abutment Photo 3 - View of Downstream Face of Dam from Left Abutment Fhoto 4 - View of Downstream End of Spillway Photo 5 - View of Downstream Face of Dam Showing Location of Outlet Conduit

Note: Photographs were taken on 30 October 1980.

ORSON POND DAM

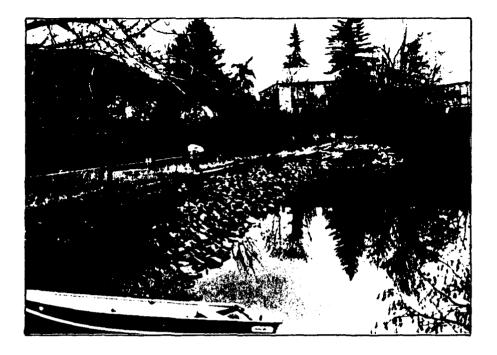


PHOTO 1. View of Upstream Slope from Left Abutment

and the second sec

1

£

PHOTO 2. View of Dam Crest from Left Abutment

ORSON POND DAM

PHOTO 3. View of Downstream Face of Dam from Left Abutment

(

PHOTO 4. View of Downstream End of Splilway

ORSON POND DAM

PHOTO 5. View of Downstream Face of Dam Showing Location of Outlet Conduit

PHOTO 6. View Inside Outlet Conduit

APPENDIX D

HYDROLOGIC AND HYDRAULIC COMPUTATIONS

Survey of an and the

C

1

Later D

MICHAEL BAKER, JR., INC. THE BAKER ENGINEERS

Box 280 Beaver, Pa. 15009

C

Subject ORSO	X POND	DAM	 S.O. No
			Sheer No of
			Drawing No.
			Date

. . .

SUBJECT PAGE PREFACE i HYDROLOGY AND HYDRAULIC DATA BASE 1 HYDRAULIC DATA 2 DRAINAGE AREA AND CENTROID MAP 3 4 TOP OF DAM PROFILE AND CROSS SECTION SPILLWAY DISCHARGE RATING 5 100-YEAR STORM DISTRIBUTION 7 100-TEAR DISCHARGE CALCULATION 8 HEC-1 CAPACITY ANALYSIS 11

• • •

PREFACE

HYDROLOGIC AND HYDRAULIC COMPUTATIONS

The hydrologic determinations presented in this Phase I Inspection Report are based on the use of a Snyder's unit hydrograph developed by the U.S. Army Corps of Engineers. Due to the limited number of gaging stations available in this hydrologic region and the wide variations of watershed slopes, the Snyder's coefficients may yield results of limited accuracy for this watershed. As directed, however, a further refinement of these coefficients is beyond the scope of this Phase I Investigation.

In addition, the conclusions presented pertain to present conditions, and the effect of future development on the hydrology has not been considered.

Salara de Securación en en

ſ

HYDROLOGY AND HYDRAULIC ANALYSIS DATA BASE

NAME OF DAM: ORSON POND DAM	<u></u>				
100-YEAR STORM = 6.4 INCHES/24	HOURS ⁽¹⁾				
STATION	1	2	3	4	5
Station Description	LAKE LORAIN	ORSON POND DAM			
Drainage Area (square miles)	0.37	0.93			
Cumulative Drainage Area (square miles)	0.37	1.30			
Adjustment of PMP for Drainage Ares (2) (1)	<u>, , , , , , , , , , , , , , , , , , , </u>				
6 Hours 12 Hours 24 Hours 48 Hours 72 Hours	100-YEAR STORM DISTRIBUTION ON SHEET 7	100-YEAR STORM DISTRIBUTION ON SHEET 7			
Snyder Hydrograph Parameters					
Zone ⁽²⁾	11	11			
c _p /c _t ⁽³⁾	0.62/1.50	0.62/1.50			
L (miles) ⁽⁴⁾	0.62	1.71			
L _{ca} (miles) ⁽⁴⁾	0.20	0.62			
$t_p = C_t (L \cdot L_{ca})^{0.3} \text{ (hours)}$	0.80	1.53			
Spiilway Data Crest Longth (ft) Freeboard (ft) Discharge Coefficient Exponent	3.0 0.5 2.70 1.5	9.0 2.8 DISCHARGE RATING DEVELOPED ON SHEET	5		

(1) Technical Paper No. 40, Cooperative Studies Section, U.S. Weather Bureau, Washington, D.C., 1961.

(2) Pydrological zone defined by Corps of Engineers, Baltimore District, for determining Snyder's Coefficients
 (C_p and C_t).

(3) Snyder's Coefficients.

12

C

 $\binom{(4)}{L}$ = Length of longest water course from outlet to basin divide. L = Length of water course from outlet to point opposite the centroid of drainage area.

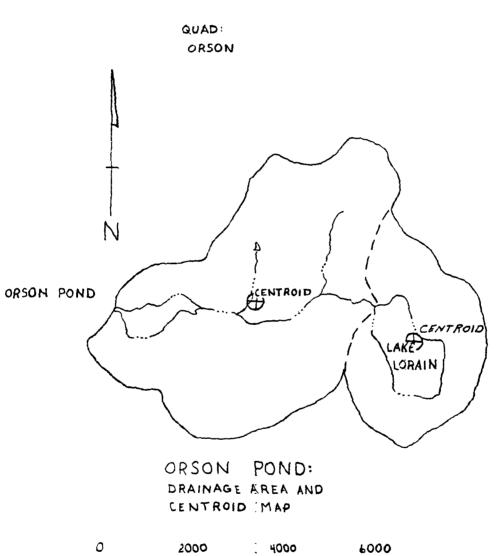
MICHAEL BAKER, JR., INC.	Subject OKSON POND PAM	S.O. No
THE BAKER ENGINEERS	HYPPFYLIC PATA	Sheet No of
Box 280		Drawing No
Beaver, Pa. 15009	Computed by <u>GUT</u> Checked by <u>WAL</u>	Date <u>12-3-80</u>

STORAGE CALCULATIONS

AREA VS. ELEVATION (MEASURED FROM QUAD)

ELEVATION (Fr)	SURFACE AREA (ACRES)
2017	20.20
2020	29.38
2040	153.35

NORMAL POOL STORAGE


C

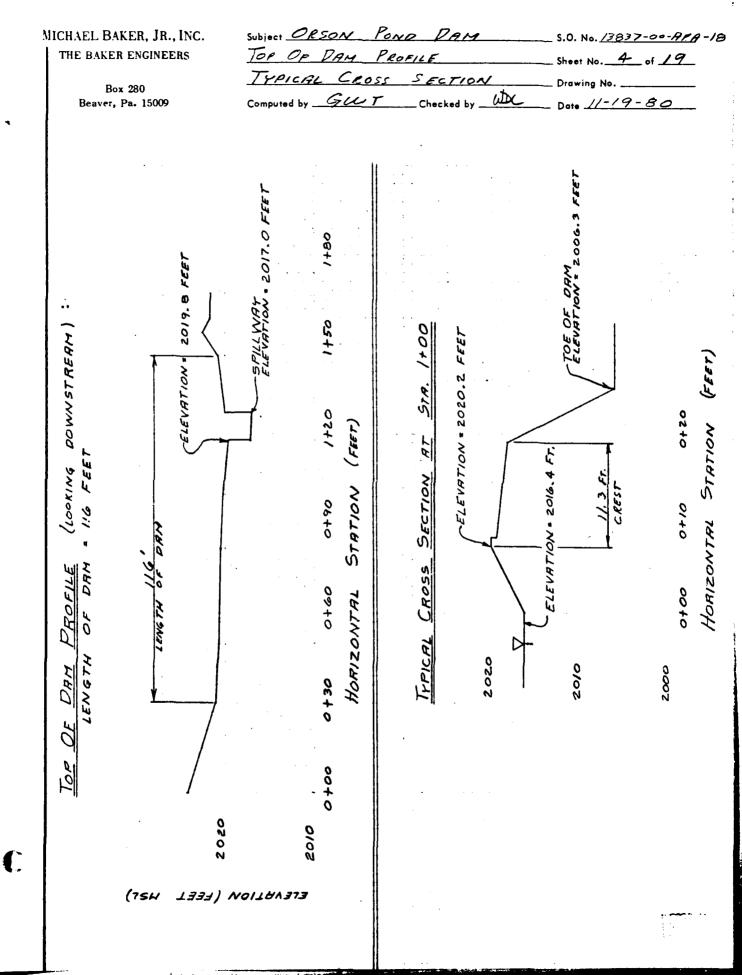
STORAGE VOLUME = VNP = 3 (A, + R2 + VP, R2) h = ESTIMATED AVERAGE DEPTH = 7.6 FT. H, = SURFACE AREA OF NORMAL POOL = 20.20 AC. H2 = SURFACE AREA OF RESERVOIR BOTTOM = 15.21 AC. [ESTIMATED FROM AVERAGE DEPTH AND RESERVOIR SIDE SLOPES]

NORMAL POOL STORAGE = VN = 7.6/3 (20.20 + 15.21 + J(20.20)(15.21)) VNP = 134.11 Ac. - Fr.

TOP OF PAM STORAGE 202 AC.- FT. (FROM HEC-1 ANALYSIS)

SHEET 3 of 19

SCALE: 1" = 2000'


Γ

€

-

The Participant of the Participa

£_

	R, JR., INC.	Subjec	ORSON	1 Pc	NO I	An_	S.O. N	0. <u>13837-00-ARA</u>
INE BAKER E	NGINEERS	<u>_>p</u>	ILL WHY	Pisco	NRGE	RATINO	Sheet	No. <u>5</u> of <u>19</u>
Box 2	00					<u>-</u>	Drawin	g No
Beaver, Pa.	-	Compu	ted by	ut	Checke	by WOL	Date _	11/24/90
								<i>·</i> ·
• • • • • • • • • • • •			ILL WAY	Pp	75175		• • • • •	· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·					• • • • • • • • • • • • •	·····	· · · · · · · · · · · · · · · · · · ·
		• • • • • • • •			~5	PILLWAY T	RAINING	WALL
	· · · · · · · · · · · · · · · · · · ·					ELEV. =	2019.8	Fr.
						STILLWAY	CREST	
	6:1 5	OFE		-4 -+ + 1		ELEV.	2017,0	F.T.
ELEVATION;		L. K	· · · · · · · · · · · · · · · · · · ·		++++			
Ft. MSL	I	ـــــــــــــــــــــــــــــــــــــ	منتقد والمستقد . محمو المراجعين	مليم ميدورية. منه مراجدية				······································
· ····	;		· · · · · · · · · · · · · · · · · · ·	با بسمانیک با بلانیه با با		┊╌╡╌┯╾╬╴╋╴┱╶╪╧╧╴┙ ╡╌┊╴┯╴╦╍╣═┨╼┯╴┛╼╍		a i sura se ce ce ce ce ane de la cere en esta se
2010				nanananan nini nina				
میت به میت تدریم و در بیست. ایور میمیدید در مهرد مراجع این	•	4.23	ang	ىرىدى ئىسەرىر م يىس ھىيە مىر بىر	. 2	ni ji ni i ji k in nemeri hang ing ing kanganan pina		······································
		• {				Ofzo	· • • • • • • • • • • •	ana a sa ang sa ang ang ang ang ang ang ang ang ang an
، میشند و هیدید و د ، مصبوده موسوده م د				STATION	; Feet		· · · · · · · · · · · · · · · · · · ·	n ny si si kao minina minin
Deve	Rot		ince Bo		UPON C	BITICOT E	and Or	ER SPILLWAY
PEYEL					and a stranger	a an an tao a sa t	· · · · ·	ex
ا بیا در میشان به م است م اینان از میشان ا	V= J90	CHOW.	OPEN C	ANNE	HYDRA	NULIZS , 1	43	
• • • • • • • •	· · · ·	•				FLOW	4	A
a la companya provinsiana		32.2 F	T/SEC	+	7	REE SURFA	CE TOP	WIPTH T
· • • • • • • • • • • • • • • • • • • •	V=	MEAN	FLOW V	ELOGI	7-4			· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·								
	P = HV					· · · · · · · · · · · · ·		
SPILLWAY ELEV., Fr.	FLOW DEPTH FT.	AREA,	TOP WIDTH	RI4	V, Fr/SEC	Q, CAS	V724.	RESERVOIR SURFACE, FT.
2017.0	0	0	0.0	0	1:0	0	0	
				1				1 2017,00
	0,2		9.0	0.1	1 1 1 1 1 1 1	1.61		2017:00
2017.2	0, 2	0.9	9.0 9.0	0.1 0.4	1.79	1.61	0. 05	2017.25
2017.2	0, 2	0.9	9.0	0:4	1.79.	12,92	0.05	2017.25
2017.2 2017.5 2018.0	0, 2 0, 5 1.0	0.9 3.6 8.1	9.0	0.4	1, 79 3, 59 5, 38	12,92 43,58	0. 05	2017.25
2017.2 2017.5 2018.0 2018.5	0, 2 0, 5 1, 0 1, 5	0.9 3.6 8.1 12.6	9.0 9.0 9.0	0:4	1,79 3,59 5,38 6,71	12,92	0. 05 0. 20 0. 45 0. 70	2017.25 2017.70 2018.45
2017.2 2017.5 2018.0 2018.5 2018.5	0, 2 0, 5 1, 0 1, 5 2, 0	0.9 3.6 8.1 12.6 17.1	9.0 9.0 9.0 9.0	0.4 0.9 1.4 1.9	1,79 3,59 5,38 4,71 7.82	12, 92 43, 58 84, 55 133, 72	0.05 0.20 0.45 0.70 0.95	2017.25 2017.70 2018.45 2019,20 2019,95
2017.2 2017.5 2018.0 2018.5 2019.5 2019.5	0, 2 0, 5 1.0 1.5 2.0 2.5	0.9 3.6 8.1 12.6 17.1 21.6	9.0 9.0 9.0 9.0 9.0	0.4 0.9 1.4. 1.9 2.4	1,79 3,59 5,38 6,71 7.82 8,79	12, 92 43, 58 84, 55 133, 72 189, 86	0.05 0.20 0.45 0.70 0.95 1.20	2017.25 2017.70 2018.45 2019.20 2019.95 2020.70
2017.2 2017.5 2018.0 2018.5 2018.5 2019.5 2019.5 2019.5	0, 2 0, 5 1,0 1,5 2,0 2,5 3,0	0.9 3.6 8.1 12.6 17.1 21.6 26.1	9.0 9.0 9.0 9.0 9.0 9.0	0.4 0.9 1.4 1.9 2.4 2.9	1.79 3.59 5.38 6.71 7.82 8.79 9.66	12, 92 43, 58 84, 55 133, 72 189, 86 252, 13	0.05 0.20 0.45 0.70 0.95 1.20 1.45	2017.25 2017.70 2018.45 2019.20 2019.95 2020.70 2021.45
2017.2 2017.5 2018.0 2018.5 2019.5 2019.5 2020.0 2020.0	0, 2 0, 5 1,0 1,5 2,0 2,5 3,0 3,5	0.9 3.6 8.1 12.6 17.1 21.6 26.1 30.6	9.0 9.0 9.0 9.0 9.0 9.0 9.0	0.4 0.9 1.4. 1.9 2.4 2.9 3.4	1,79 3,59 5,38 6,71 7.82 8,79 9,66 10,46	12, 92 43, 58 84, 55 133, 72 189, 86 252, 13 320, 08	0. 05 0. 20 0. 45 0. 70 0. 95 1. 20 1. 45 1. 70	2017.25 2017.70 2018.45 2019.20 2019.95 2020.70 2021.45 2022.20
2017.2 2017.5 2018.0 2018.5 2019.5 2019.5 2019.5 2020.0 2020.5 2020.5	0, 2 0, 5 1,0 1,5 2,0 2,5 3,0 3,5 4,0	0;9 3.6 8.1 12.6 17.1 21.6 26.1 30.6 35.1	9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	0.4 0.9 1.4 1.9 2.4 2.9 3.4 3.9	1,79 3,59 5,38 6,71 7.82 8,79 9.66 10,46 11,21	12, 92 43, 58 84, 55 133, 72 189, 86 252, 13 320, 08 393, 47	0.05 0.20 0.45 0.70 0.95 1.20 1.45 1.70 1.95	2017.25 2017.70 2018.45 2019.20 2019.95 2020.70 2021.45 2022.95
2017.2 2017.5 2018.0 2018.5 2018.6 2018.5 2018.6 2019.5 2020.0 2020.0 2020.5 2021.0 2022.0	0, 2 0, 5 1,0 1,5 2,0 2,5 3,0 3,5 4,0 5,0	0.9 3.6 8.1 12.6 17.1 21.6 26.1 30.6 35.1 44.1	9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	0.4 0.9 1.4 1.9 2.4 2.9 3.4 3.9 4.9	1.79 3.59 5.38 6.71 7.82 8.79 9.66 10.46 11.21 12.56	12, 92 43, 58 84, 55 133, 72 189, 86 252, 13 320, 08 393, 47 553, 89	0.05 0.20 0.45 0.70 0.95 1.20 1.45 1.70 1.95 2.45	2017.25 2017.70 2018.45 2019.20 2019.95 2020.70 2021.45 2022.20 2022.95 2024.45
2017.2 2017.5 2018.0 2018.5 2019.5 2019.5 2019.5 2020.0 2020.5 2020.5	0, 2 0, 5 1,0 1,5 2,0 2,5 3,0 3,5 4,0	0;9 3.6 8.1 12.6 17.1 21.6 26.1 30.6 35.1	9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	0.4 0.9 1.4 1.9 2.4 2.9 3.4 3.9	1,79 3,59 5,38 6,71 7.82 8,79 9.66 10,46 11,21	12, 92 43, 58 84, 55 133, 72 189, 86 252, 13 320, 08 393, 47	0.05 0.20 0.45 0.70 0.95 1.20 1.45 1.70 1.95	2017.25 2017.70 2018.45 2019.20 2019.95 2020.70 2021.45 2022.95
2017.2 2017.5 2018.0 2018.5 2018.6 2018.5 2018.6 2019.5 2020.0 2020.0 2020.5 2021.0 2022.0	0, 2 0, 5 1,0 1,5 2,0 2,5 3,0 3,5 4,0 5,0	0.9 3.6 8.1 12.6 17.1 21.6 26.1 30.6 35.1 44.1	9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	0.4 0.9 1.4 1.9 2.4 2.9 3.4 3.9 4.9	1.79 3.59 5.38 6.71 7.82 8.79 9.66 10.46 11.21 12.56	12, 92 43, 58 84, 55 133, 72 189, 86 252, 13 320, 08 393, 47 553, 89	0.05 0.20 0.45 0.70 0.95 1.20 1.45 1.70 1.95 2.45	2017.25 2017.70 2018.45 2019.20 2019.95 2020.70 2021.45 2022.20 2022.95 2024.45
2017.2 2017.5 2018.0 2018.5 2018.6 2018.5 2018.6 2019.5 2020.0 2020.0 2020.5 2021.0 2022.0	0, 2 0, 5 1,0 1,5 2,0 2,5 3,0 3,5 4,0 5,0	0.9 3.6 8.1 12.6 17.1 21.6 26.1 30.6 35.1 44.1	9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	0.4 0.9 1.4 1.9 2.4 2.9 3.4 3.9 4.9	1.79 3.59 5.38 6.71 7.82 8.79 9.66 10.46 11.21 12.56	12, 92 43, 58 84, 55 133, 72 189, 86 252, 13 320, 08 393, 47 553, 89	0.05 0.20 0.45 0.70 0.95 1.20 1.45 1.70 1.95 2.45	2017.25 2017.70 2018.45 2019.20 2019.95 2020.70 2021.45 2022.20 2022.95 2024.45
2017.2 2017.5 2018.0 2018.5 2018.6 2018.5 2018.6 2019.5 2020.0 2020.0 2020.5 2021.0 2022.0	0, 2 0, 5 1,0 1,5 2,0 2,5 3,0 3,5 4,0 5,0	0.9 3.6 8.1 12.6 17.1 21.6 26.1 30.6 35.1 44.1	9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	0.4 0.9 1.4 1.9 2.4 2.9 3.4 3.9 4.9	1.79 3.59 5.38 6.71 7.82 8.79 9.66 10.46 11.21 12.56	12, 92 43, 58 84, 55 133, 72 189, 86 252, 13 320, 08 393, 47 553, 89	0.05 0.20 0.45 0.70 0.95 1.20 1.45 1.70 1.95 2.45	2017.25 2017.70 2018.45 2019.20 2019.95 2020.70 2021.45 2022.20 2022.95 2024.45
2017.2 2017.5 2018.0 2018.5 2018.6 2018.5 2018.6 2019.5 2020.0 2020.0 2020.5 2021.0 2022.0	0, 2 0, 5 1,0 1,5 2,0 2,5 3,0 3,5 4,0 5,0	0.9 3.6 8.1 12.6 17.1 21.6 26.1 30.6 35.1 44.1	9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	0.4 0.9 1.4 1.9 2.4 2.9 3.4 3.9 4.9	1.79 3.59 5.38 6.71 7.82 8.79 9.66 10.46 11.21 12.56	12, 92 43, 58 84, 55 133, 72 189, 86 252, 13 320, 08 393, 47 553, 89	0.05 0.20 0.45 0.70 0.95 1.20 1.45 1.70 1.95 2.45	2017.25 2017.70 2018.45 2019.20 2019.95 2020.70 2021.45 2022.20 2022.95 2024.45
2017.2 2017.5 2018.0 2018.5 2018.6 2018.5 2018.6 2019.5 2020.0 2020.0 2020.5 2021.0 2022.0	0, 2 0, 5 1,0 1,5 2,0 2,5 3,0 3,5 4,0 5,0	0.9 3.6 8.1 12.6 17.1 21.6 26.1 30.6 35.1 44.1	9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	0.4 0.9 1.4 1.9 2.4 2.9 3.4 3.9 4.9	1.79 3.59 5.38 6.71 7.82 8.79 9.66 10.46 11.21 12.56	12, 92 43, 58 84, 55 133, 72 189, 86 252, 13 320, 08 393, 47 553, 89	0.05 0.20 0.45 0.70 0.95 1.20 1.45 1.70 1.95 2.45	2017.25 2017.70 2018.45 2019.20 2019.95 2020.70 2021.45 2022.20 2022.95 2024.45
2017.2 2017.5 2018.0 2018.5 2018.6 2018.5 2018.6 2019.5 2020.0 2020.0 2020.5 2021.0 2022.0	0, 2 0, 5 1,0 1,5 2,0 2,5 3,0 3,5 4,0 5,0	0.9 3.6 8.1 12.6 17.1 21.6 26.1 30.6 35.1 44.1	9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	0.4 0.9 1.4 1.9 2.4 2.9 3.4 3.9 4.9	1.79 3.59 5.38 6.71 7.82 8.79 9.66 10.46 11.21 12.56	12, 92 43, 58 84, 55 133, 72 189, 86 252, 13 320, 08 393, 47 553, 89	0.05 0.20 0.45 0.70 0.95 1.20 1.45 1.70 1.95 2.45	2017.25 2017.70 2018.45 2019.20 2019.95 2020.70 2021.45 2022.20 2022.95 2024.45
2017.2 2017.5 2018.0 2018.5 2018.6 2018.5 2018.6 2019.5 2020.0 2020.0 2020.5 2021.0 2022.0	0, 2 0, 5 1,0 1,5 2,0 2,5 3,0 3,5 4,0 5,0	0.9 3.6 8.1 12.6 17.1 21.6 26.1 30.6 35.1 44.1	9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	0.4 0.9 1.4 1.9 2.4 2.9 3.4 3.9 4.9	1.79 3.59 5.38 6.71 7.82 8.79 9.66 10.46 11.21 12.56	12, 92 43, 58 84, 55 133, 72 189, 86 252, 13 320, 08 393, 47 553, 89	0.05 0.20 0.45 0.70 0.95 1.20 1.45 1.70 1.95 2.45	2017.25 2017.70 2018.45 2019.20 2019.95 2020.70 2021.45 2022.20 2022.95 2024.45
2017.2 2017.5 2018.0 2018.5 2019.5 2019.5 2020.0 2020.0 2020.5 2021.0 2022.0	0, 2 0, 5 1,0 1,5 2,0 2,5 3,0 3,5 4,0 5,0	0.9 3.6 8.1 12.6 17.1 21.6 26.1 30.6 35.1 44.1	9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	0.4 0.9 1.4 1.9 2.4 2.9 3.4 3.9 4.9	1.79 3.59 5.38 6.71 7.82 8.79 9.66 10.46 11.21 12.56	12, 92 43, 58 84, 55 133, 72 189, 86 252, 13 320, 08 393, 47 553, 89	0.05 0.20 0.45 0.70 0.95 1.20 1.45 1.70 1.95 2.45	2017.25 2017.70 2018.45 2019.20 2019.95 2020.70 2021.45 2022.20 2022.95 2024.45

ł

Subject OLSON POND DART S.O. No. MICHAEL BAKER, JR., INC. LAKE LORAIN ASSUMPTIONS Sheet No. 6 of 19 THE BAKER ENGINEERS __ Drawing No. ____ Box 280 Computed by <u>GWT</u> Checked by ____ Date <u>1-20-81</u> Beaver, Pa. 15009 ROUTING FOR LALLE LORAIN WAS ACCOMPLISHED BY TREATING THE NATURAL OUTLET CHANNEL AS A "NATURAL" DAM AND SPILLWAY. MODELLING ASSUMPTIONS FOR LAILE LORAW ARE AS FOLLOWS :: SPILLWAY ELEVATION = 2050 FT SPILLWAY DISCHARGE RATING. Q= CLH " مهر به منه المحمود المحمود المراجع المحمود المحمود المحمود المحمود المحمود المحمود المحمود المحمود المحمود الم المحمود المحمو C= 2.70 2 = WEIR CREST WIPTH - 3FT TOP OF DAM ELEVATION = 2050:5 FT. LENGTH OF DAN = 300 FT. TYPICAL DOWN STREAM ROUTING CHANNEL 2040 ELEVATION , FEMSL 2030 1+00 2+00 3+00 4100 0 \$ 100 HORIZONTAL STATION , SA 1

Subject Ofson POND DAM S.O. No. MICHAEL BAKER, JR., INC. 100-YEAR STORM DISTRIBUTION Shoet No. 7 of 19 THE BAKER ENGINEERS _ Drawing No. ____ Box 280 Computed by _____ Checked by __ WDL - Date 11-25-80 Beaver, Pa. 15009 2.0 100 - YR RAINFALL AMOUNTS FROM TP-40: 30_MIN_ 2.1 10 1.5 I.H. = 2.6 IN. 2. HR. 3.3 IN. 3.6 14. 3 HR. 4,5 TN. 6 HR · · · · · IL HL 5.5 10. 24 HK____ 5.4 IN. 1.0 0.5 0.5 0.35 0.15 -0:13 0.083 0.037 0---8 -1 .4 -10 --- 14-18 22 - 2 12 20 24 HRS TIME RAINFALL DISTRIBUTION (30 MINUTE INTERVALS) % TOTAL RE OCCURING IN EACH INTERVAL INTERVAL NUMBERS 0.6 1-17 18-25 1.3 _2.3 26-29 30 2.3 5.4 37 TOTAL = 100 %. 7.B 32 75 32.8 5.4 34 2.3 35 76-37 2.4 1.3 38-41 42-48 0.6

THE BAKER ENGINEERS	100-YEAR DISCHARGE	Sheet No of
	CALCULATION	Drawing No
Box 280	Computed by Checked by W	-
Beaver, Pa. 15009	Computed by Checked by	Dote <u>/</u> <u>0 0</u>
τ		
	OW TO THE IMPOUNDMENT FOR	
	CULATED USING MATERIAL FROM	•
	ROPICAL STORM AGNES" PREPA	•
•	STUPIES BRANCH, PLANNING D	
	DIVISION, CORPS OF ENGINEE	RS, IN NEW
YORK CI	Γ.Υ	· · · · ·
		•
PRHINAGE	AREA - 0.93 Sq. Mi.	
O COMPUTE THE	E MERN LOGARITHM	· · · ·
109 (9-)	= C_ +0.75 LOGA	• • • •
	LOG (Q) = MEAN LOGARITHM OF AN	INUAL FLOOD PERKS
	A = DRAINAGE AREA, Se. Mi. = 1.	
	C. = MAP COEFFICIENT FOR MEAN	
	PEAKS FROM FIG. 21 . 211	
		· · · · · ·
$LOG(P_m)$	= 2.11 + 0.75(20G0.93)	· · · ·
• • •	$= \mathcal{L}.\mathcal{PBG4}$	
-	ANDARO DEVIATION	e e e e e e e e e e e e e e e e e e e
	0.05 (LOG A)	
	ANDARD DEVIATION OF THE LOG	ANIATS OF THE
	NUAL PERKS	
	PP COEFFICIENT FOR STANDARD	DEVIATION FROM
1 · · ·	22 = 0.344	
•	AINAGE AREA, SQ. Mi. = 0.93 SQ.	<i>1</i> 4 <i>i</i> .
-	OS(LOGR)	•
	- 0.05 (L04 0.9 <u>3)</u>	•
: 0, 342		
3 SELECT SKE	W COEFFICIENT FROM FIG. 23	• 0.16
· · · ·	$F(o_m) + \kappa(P,g) =$	• .
K (P,g)	: STRNOARD DEVIATE FOR A GIV FREQUENCY PERCENTAGE (P) AN	
	COEFFICIENT (9) FROM EXHIBIT	
	"STATISTICAL METHODS IN HYDR	
10010 1 00		ULUGT = 2, 45
	864 + Z. 45 (· 3426)	•
	9258	
9100 = B		•

Ť

ICHAEL BAKER, JR., INC. THE BAKER ENGINEERS	100-YEAR DISCHARGE CA	
THE DAKER ENGINEERS	TOU-TEAR VISCHARGE CA	<u>/////////////////////////////////////</u>
Box 280		Drewing No
Beaver, Pa. 15009	Computed by <u>GUT</u> Checked by _	Date 4/15/81
THE INFLO	W TO THE IMPOUNDMENT FOR	THE 100-YEAR FLOOD
WAS CALCO	VLATED USING MATERIAL	FROM "THE HYDROLOG
STUDY - T	ROPICAL STORM AGNES" F	PREPARED BY THE
	STUDIES BRANCH, PLANNI	
	DIVISION, CORPS OF E.	NGINEERS, IN NEW
YORK CI	- <i>Y</i> .	
DRRINAGE	RREA - 0.37	
•	E MERN LOG PRITHM	
204 (Qm)	= C + 0.75 LOGR	• • • • • • • • • • • • • • • • • • • •
	LOG (Q_) = MERN LOGARITHM	
	A . DRAINAGE AREA, Sq. Mi,	-
C.	= MAP COEFFICIENTS FOR	
LOG (P)	PEAKS FROM FIG. 21 = 2 = 2.11 + 0.75 (LOG 0.37)	
	= 1.7862	· · · · · · · · · ·
2 COMPUTE S	TANDARD DEVIATION	
-	0.05 (LOG A)	
	S = STANDARD DEVIATION	OF THE LOGARITHMS
	OF THE ANNUAL PEAK	
	Cs - MAP COEFFICIENT FOR	STANDARD DEL ATIO
	FROM FIG. 22 = 0.341	, <u>-</u>
	R = DRRINAGE AREA, 59.	Mi., = 0.37 59.17;
5 = 0.34/	- 0.05 (LOG 0.37)	
= 0,36		· · · · · · · · · · · · · · · · · · ·
3 select ske	W COEFFICIENT FROM FIG	; .23 = 0.16
∉ LOG (9,00) =	20G (q_) + K(P,g) 5	· .
	K (P, g) = STRNDARD DEVIATE	FOR A GIVEN EXCEEDED
	FREQUENCY PERCENTAGE (P)	
	9) FROM EXHIBIT 39 OF B	
	METHODS IN HYDROLOGY	
	: 1,7862 + 2.45(0.3626)	• • •
9,00 =	470 CFS	
	•	
		· .

.

t

-1

(

.

ł

	BAKER, JR., INC.	Subject ORSON PONO DADA S.O. No.
THE BA	KER ENGINEERS	100 - YEAR DISCHARGE CALCULATION No. 10 of 19
	Box 280	TOTAL DRAINAGE AREA Drawing No.
Beav	Ner, Pa. 15009	Computed by GUT Checked by Date 4/15/81
		N TO THE IMPOUNDMENT FOR THE 100-YEAR FLOOD
		VLATED USING MATERIAL FROM "THE HYDROLOGIC
		ROPICAL STORM AGNES" PREPARED BY THE
		STUDIES BRANCH, PLANNING DIVISION, NORTH
	HTLANTIC YORK CIT	DIVISION, CORPS OF ENGINEERS, IN NEW
	•	· · · · · · · · · · · · · · · · · · ·
	DRRINAGE	RREA - 1.30 Sq. Mi.
\oslash	COMPUTE TH	E MERN LOGARITHM
Ċ,		= C_ + 0.75 LOGA
	-	LOG (Q_) = MEAN LOGARITHM OF ANNUAL FLOOD PERKS
		LOG (4.) = ITEAN IOGARITAN OF ANNOAL FLOOD FEARS A * DRAINAGE AREA, S9. Mi. \$1.30 S9. 17.
		T = MAP COEFFICIENTS FOR MEAN LOG OF ANNUAL
	-	PERKS FROM FIG. 21 = 2,11
	204 (Qm)	= 2, 11 + 0.75 (LOG 7.30)
	• • • •	= 2,1955
2		TANDARD DEVIATION
~		0.05 (LOG R)
		S = STANDARD DEVIATION OF THE LOGARITHMS
		OF THE ANNUAL PEAKS.
		CS = MAP LOEFFICIENT FOR STANDARD DEVIATION
		FROM FIG. 22 = 0.341
		R = DRAINAGE AREA, 59. Mi., = 1.30 Sq. Mi.
	-	-0.05 (L04 1.30)
କ	= .335	3 W COEFFICIENT FROM FIG. 23 = 0.16
3	-	
Ð	· · · ·	20G (Q_) + K(P,g) 5
		K (P, g) = STRNDARD DEVIRTE FOR A GIVEN EXCEEDENCE
		FREQUENCY PERCENTAGE (P) AND SKEW COEFFICIENT
		9) FROM EXHIBIT 39 OF BEARD'S "STRTISTICAL
		METHODS IN HYDROLOGY "
		x 2,1955 + 2,45 (0,3353) 1035 GFS,
	4100 -	10 >> 45.>,
		F 100 - YEAR FWD , A PEAK INFLOW TO ORSON POND
	DAM FROM	A THE TOTAL DRAWAGE AREA WAS CALCULATED TO BE
		451NG THE HEC-I DB PROJEAM. THIS IS WITHIN
	~ <u>~</u>	and from a second ARANE WHILE IS AN ARADAR

• •

15% of the flow calculated ABONE, which is AN ACCEPTABLE DIFFERENCE FOR THIS PHASE I INSPECTION REPORT ACCORDING TO THE BALTMORE DISTRICT, WARS OF ENGINEERS.

	HAJ UPDATE 1411UN 20 TED HAJ UPDATE 04 JUN	67 9 1 79	Xx 3X - 001	NA STORM	M. ROUTING	1N.G				Alley Martin de Mandredor de La Constante de La Calance		
1 2	42 42	NATIO	NATIONAL PRUGRAM FOR INSPECTION UF NUN-FEUERAL DANS Hydrologic and hydraulic Amalysis uf Unsun Pond Dan	AM FUR INS HYDRAULIC	PECTIUN U	F NUN-FE	UERAL UAN	SH M				
بي خ بر ا	6 8 8 9 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	m	HYDKOGRAPH	H BY SNYDE	KAS HETHOD	0	Э	0	1	ð		. ! : *
		: ! 	-	1								7.23
- 9	5 ¥	• -	1									::
с. ,	7,	ā.	F HYDRUGR	APH TO LAK	E LORAIN							1
11	E 3	1	1 0.37	31								: :
71		1	0.06 0.006	06 0.006	0.000		0-000	0-006	0.000	U.U.0		12 2
5 9	01 0°017		012 0.01	12 0-012	0.012	u.u24	u. 024	0.024	470*0	210.0		: :
	1		1.041 0.3	1	0.025	0.024	0-024	2-012	0-012	0-012		ļ
17	1 0.012			06 0.006		0.00	0.000	0.000		0-217		
	ы х -1-5	i i	0.62 -0.05 2.	2.0			-					
	N N	RULT INC	N .	FOR LAKE A DAIN								
22	. .											1
23	1						-2050	•				<u>,</u>
24 25 26	5A 35 5E 2045 55 2053		51.4 82.6 205U 2060 3.U 2.10									
21	\$02050-5		•									1
28 29	512050.3	ļ	2051 2051-5	5 2052	2052-5							
15	~ 2,	L ROJEING	~ "	HKU CHANNEL TO	ORSCN PUNU	-	-					:::
25				1	-		2					Ť
	40°0 47		0.04 0.06	2017		0044	0-0175			6 E V E		1
16		325		i	- <u>600</u>	1602				4014		
37	× 2	J HILLIFF	4 F HYDRUGKA	VPH TO DAM			-					
<u>6</u>	E	2	1 0.5									Ī
40 41	F* 0 50 00 10		6.2 0.00	2 5 0.006 0.006	0.006	0,0046	0-006	0-006	0-006	0.00		;;;
••••••••••••••••••••••••••••••••••••••		·	0.0 0.0	16 0.000		0.006	0.006	0.012	3.0.0	0.012	5	F
43 AA	01 0.012		J.012 0.012 J.041 0.424	12 0-012	0-012	0-024	0-024	0-024	470-0	0=U<5 0-012	<i>v 2</i> -2	
	1	ł	i			0.00	0.00	0.000				
46 47												1]]
		1		2.0								:
49 50	_	TPMO		HYURUGRAPHS FRUM STATLUNS 3 ANU	STATLUNS	3 ANU 4	1				0.	
												Ĩ

t

1 4

(

<u> </u>			•===	FIE		101	<u>,</u>		<u> 1111</u>	12 2 2 2				::::	<u>,</u> .	::::		::::	
																SNEET	12	0-	19
	5-2702	6.68c																	
1	2-2202	120.1																	
	2024.4	252.1																	
-2017.0	2020.1	149.9		130 2022-5															
	2019-9	1-661		121 2022.0														•	
_	2019-2	84-6		114												i ; ;			
UR URSUN POND DAM	2018-4	43.6	153.35	116 103 2021-0												; ; ; ; ;			
M UKSUN	2017.7	12.9	29-34	1.5												;		i - F	
	2017.3	1.167	20.20	80.6 11 1.20.02						-) - 						1	
	Y42024-4	Y5 553.4	\$A 15.21 \$E2009.4 \$\$ 2017	\$U2019.4 \$L U \$V2019.8	X) } }	•					
								-		 ; 								J 	1
53	55	57 58		2 Q Q	65					· · · · · ·		9 1 9 7				, , , 1			-
								1		-									
-		••;			<u> </u>	<u>14</u>	1: 1:			<u>trj</u>	:::	211	12 2 2	11			<u>.</u>		11

ς.

(``

		ns i an C		49 4 8 4 4 4 4 9 4 4 4 4 4 4 4 4 4 4 4 4	- 151 Ave - 1407 U	11410 11411	кі інр 0.22	SNEE		EXCS LUGP 2	
	AL PROGRAM FON INSPECTIUN UF NUN-FEUERAL VAMS Ugic and hydraulic Analysis uf Ursun Punu vam Yorggraph by Snyvers nethud	Т 1641 0 -4	MULII-PLAN ANALYSES TU BE PERFURMED APLANE 1 NATIUE 1 LATIUE 1 1.00	SUB-AREA RUNUFF LUMPUTATIUN	PE JPLT	G TAREA SNAP HYGRUGRAPH UATA HATIU ISNUM ISAME 1 0.37 0.0 0.37 0.0 0.0 0	ULTKR RTIOL ERAIN SIMKS KTIUK STATL CNSTL ALSMX ULTKR RTIOL ERAIN SIMKS KTIUK STATL CNSTL ALSMX U.O. 1.00 0.0 0.0 0.0 1.00 1.00 0.0	UNIT HYDRUGRAPH WATA 0.80 LV=0.62 NTA= 0 DEFECTION UNTA	- 51414=	V EXCS LUSS CUMP Q HU.UA +W. NW PERILU KAIN	
FLUOD HYDRUGRAPH PACKAGE (HEC-1) Day Safety Versium July 1974 Last Modificatium 26 fea 79 MbJ UPUATE 04 Jun 79 MbJ UPUATE 12/23/40 Time 12/23/40 Time 12/53		Nen 00 00	R11US-		RUYUFF HY	1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	LROPT STRKR UL		UNLT HYORUUKAPH 41. 132.	MO.DA HR.WN PERIUJ HAIN	

()

(

HYURUGAAPH AUUTING IELUN LIAPE JPL IELUN UALA LUL IRE 15 15 ME LUP LAG ANSK JOO LAG ANSK JOO 11.5 0.0 10.0 0.0 0.0 11.5 0.0 150. 2022.5 2052.U 2052.5 150. 2022.5 150. 2010. LAP 150. 2012.5 150. 2015.5 150. 2015.5 150.5 150. 2015.5 150. 2015.5 150			
FUR LAKE LONA [51 ÅU LAKE LONA [51 ÅU LUSS 2 LON USTP5 NSTD NSTP5 NSTD NSTP5 NSTD 0.0 0.0 20. 2060. 20. 2060. 20. 100 0.0 HOURS 15.0 2051. 16.14.00 HOURS 15.14 LONNEL 15.13 1CO ¹	0+0 1 1 1 0 0 NSIDL LAG AMSKK X TSK STURA 45 0 0-0 0-0 0-0 0-0 0-0	MORMAL DEPTH CHANNEL ROUTLAG	QN(1) 4N(2) 4N(3) ELNVT ELMAX RLNFH SEL 0.0600 0.0400 2017.0 2040.0 4400. 0.00750

-

(

CRUSS SECTIUM LUUAJINATES--STA.ELEV.STA.ELEV--ETC 0.0 2040.00 144.40 2437.00 280.40 2034.00 300.00 2432.00 325.00 2434.00 500.40 2436.00 600.00 2437.00

(

1

- |

OUTFLOW	000	77.0	000	0-0 14-42	0.0	0-0 682-28	0.0 2030.68	0-0	78-2104 0 * 0	U.0 14046-70
STAGE	2017.U0 2029.10	12.8102 16.06CS	2019-42 2031-53	22	2021-84	2023-05 2035-16	2024-26 2036-31	2025-47 2037-58	2020-08 2036-19	202.1-89
FLUM	0*0	r*0	0.0	U.O 14-42	0.0	0.0 682.28	0.0	0-0 4745-99	0-0	0-0 14648-7U
MAXIMUM STAGE	i£ 15 2033.	133								
	******	•	*****	•		****		••••••		
•	1 1 1 1			SUB-AREA RUN	SUB-AREA RUNUFF CUMPUTATION	z				
		"RUNOFF HYJRO	JADGRAPH T	IGRAPH TO DAM (Ocsee,)	x Powe)					
1			ISTAU IC	ICOMP LECUN	11AE JPLT 0 0	1941 U	INAME ISTAGE	1100		
	H	THŸĎĠ" TĽĨHĠ 0 1	TAREA	HYDRUGRA SNAP TRSDA 0-0 0-93	PH_UATA TASPC 0+0	MATIU ISNUA 0+0 0	ISANE LU	LUCAL 0	*	
	L R O P T 0	STRKR UL	ULTKR RT10L 0.0 1.00	EKAIN U.O	LOSS DÀTA STAKS RTIUK 0.0 1.00	SIATL CNSTL 0.0 U.0	IL ALSMX	RT 1 MP 0.0		
					UNIT HYDRUGRAPH UATA 1.53	0 =				
1	-		SIRIQ=	1.5	RECESSION VATA GRCSN= -4.05	ki 10k= 2.00				
	UNIT	I.	്കി		• LAG=	1.54 HUURS, CP=	0.63 VUL	1.00	90.	
	.11.	51.	+2	36.	- 28 22. 3. 2.	16.		-11	.6	
0 0 0 V	HR.MN	PERIOU MAIN	EXCS	LOSS LUMP Q	ENU-OF-PEALUD FLUN LUMP Q MU.UA	HK.MN PERIUU	NIAN	באנ ג נטגא	n uhuu	
			1			3	5UM 0-20 11-121-11	6-20 0-0 157-11 0-11	14586.	
									n	
			• • • • • • • •		LUMBINE HYJRUGRAPHS	***	•			
		COMJINE H	COMJINE HYDROGRAPHS FRUM		5 3 ANU 4					

,

14

. . . . : ----19 05-E2E 16 2022-90 0¢ SHEE 2120-242 11-025 252-10 2021-10 IAUTU ********* I SIAUE LSIR LAG ANSKK K 15K SLUNA 15PKAT 0 0.0 0.0 0.0 -2017. -1 189-90 2020-10 6.0 U INAME 130. 2022.5 ********* CUUM 4XPM ELEVL COUL CANEA 040 040 040 040 040 2019-90 133.74 UAN DATA CUUU EXPU UANHID 3.1 1.5 116. INGR 1 PHP 121. 2022-0 LUPT JPLI 84-60 2019.20 HYDROGRAPH RUUTING 114. 2021.5 RULTING DATA I I APE ********* i, 2018-40 43.60 2021.0 101 10PEL 2019-8 1EC UN 2040-153. 1874. RUUTING FUR ORSUN PUND UAN 131.10 12.90 2020.5 ISTAU ICUMP JLUSS CLOSS AVG O I ISIN 44 658. AI TIME 13.33 HOURS 2020. 2017.30 2017.70 2325.90 29-208. LREL SPAID 2017-0 0-0 2020.0 10. 2017. - 50-134. 2019.8 Ì 2.309. 5 15. ********* 2024.40 553.90 CREST LENGTH AT DR BELOW ELEVATION ELEVATION= CAPACITY= OUTFLOW IS SURFACE AREA-**** FLOW STAGE PEAK ł Tim -19 .

_

.

.

			~ ~		~			<u>, , , , , , , , , , , , , , , , , , , </u>	-	::::	::::				1:1		
						و و و و و و و و و و و و و و و و و و و								SHEET		0#	14
the second secon	IUNS														-		
	IL ELUNUMIL CUMPUTATIUNS I SELUNUJ								a na an								
	LE PLAN-KATIU EI L HETERS PER SEI KILUMETERS]	RATIUS APPLIED TU FLUNS			a an far to an in the state of the state of the state												
	UD) SUMMARY FUR MULIPLE PLAN-KATIU Feet Per Seconu iluail meters per S Suŭârë milës isguarë kilumeferst	RAFIUS A								a - Andrew Contra a substant a su	-		nan gang alam a lan gan dalam a san dipa a sa				
	UF PEKI In Cubic Akeà in	RATIO 1 1.00	512.	83.1	2.3211	858- 24-30) (878. 1 24.8611	658. 18.63)(and a second				
	FLUNS I	PLAN	-	-	1	7	7	~						1			
	ANU STUAAG	AKEA	1.94 1.961	100.0	16.C	0.93 2.411		116.6				-				- - - - -	
	PEAK FLUN ANU STUAACE I FLU	STATION	1 1			• • • • • •	- <mark>1</mark>	¢									
		OPERATION	HYDAOGRAPH AT	ROUTED TO	ROUTED TU	HYJROGRAPH AT	2 COMBINED	ROUTED TO		1							
						1 1 1 1 1		x x x 7		1							

- {

(

	LEVATION	141114 VALUE 2050-00		57111447 CKES1 2050-00	-	JP UF DAM 2050.50			
	STURAGE UUTFLON	71		216.		242. 3.			
RATIO OF	MAXIMUM Reservoir	MAX IMUM DEPTH	NAA! HUH STORAGE	MAXINUM UUTFLOW	UVER 10P	TIME UP MAX UUTELUN	IIME UF FAILUNE HILLE		
1.00	2051.48	0.98	246.	•68	64-61	14.00	0-0		
- 7 6 PK - 1 1 100 K-	ok_ Koutine.	Ĩ	PLAN L	STALLUN	-				
		RATIO	MAXINUN FLUM.CFS	MAKIMUM SIAGE . FI	T LME HUURS				
		1-00	62.	E-EEU2					<u>~ ^ N N </u>
							na mar mar attac		
-					and a second				+
									•••
									• • • •
									- <u></u>
	• •				- An and a second and a second			Shee	<u> </u>
								18	
•	: !							OF	1
								19	

SUMMARY UF UAM SAFETY AMALYSIS

• 1

-

Ì

(

<u></u>			* <u>*j: 27</u>		::::	<u>; ; ; ;</u> ;	::::			<u></u>		<u>; : : ;</u>	ľ
										SHEET	- 19		
	TIME UF FAILUNE HUUNS	0-0											
TUP UF BAN 2019-80 202- 127-	TIME OF MAX UUTFLUM HUUKS	<u> </u>	ite we 'n 'n 'n derfag vier skoen										
	DUKATICN UVER JUP HUURS	9.33	ander viller - one over - vie overer - e o									ne a mana i ser data danga danga danga ser s	
SPILLMAY CREST 2017-00 134-	MAX49UM UJIFLUM LFS	• 94 •										· • •	
	MAXIMUM STURAGE AL-FT	260.		4								r 1 1 2	
INITIAL VALUE 2017-00 134. 0.	MAXIMUM DEPTH Over Dam	1.79	9							an Anna an Anna an Anna an Anna		۹ •	-
DATT ELEVATION STURAGE OUTFLUM	MAXI YUM MESERVUIR M-S-ELEV	2021.59	F100P ROUTINE							4 7 7 4 4 4 4 7 7 7			1
	RATIO OF PMF	1 • 00	100-YEAR F	· · · · · · · · · · · · · · · · · · ·								· · · · · · · · · · · · · · · · · · ·	
PLAN 1						1 4 1 1 1		1		 			
				ł	1	* - -			1	 		1	

ł

(

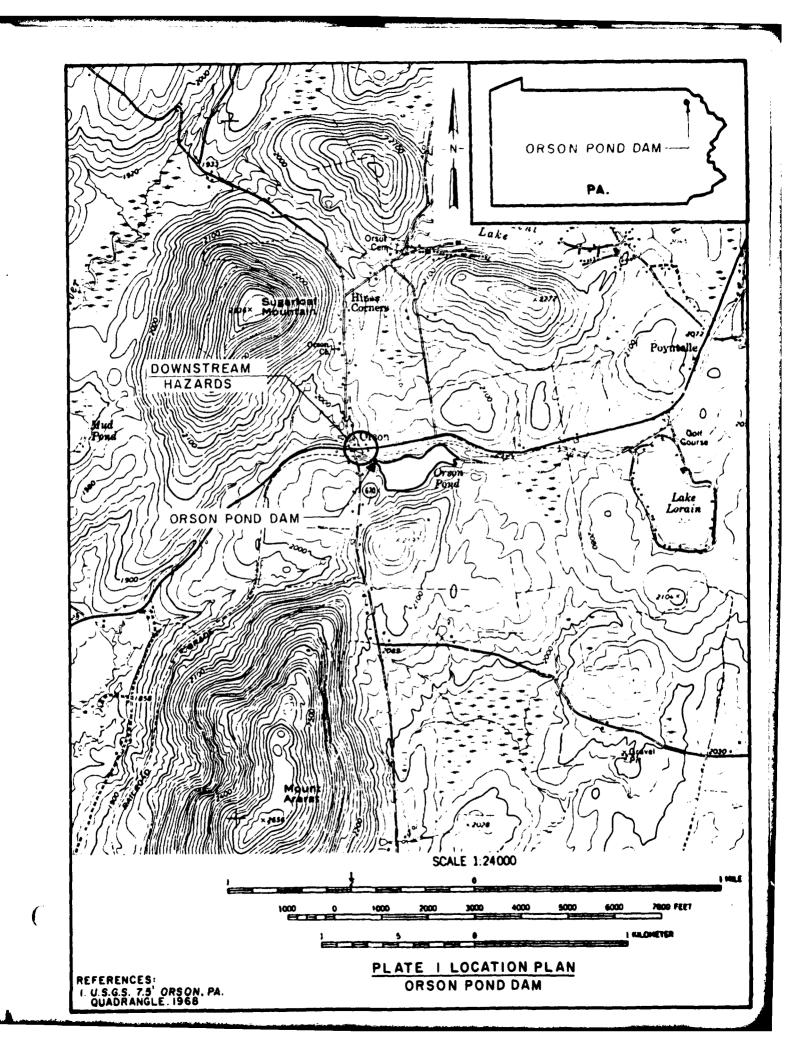
APPENDIX E

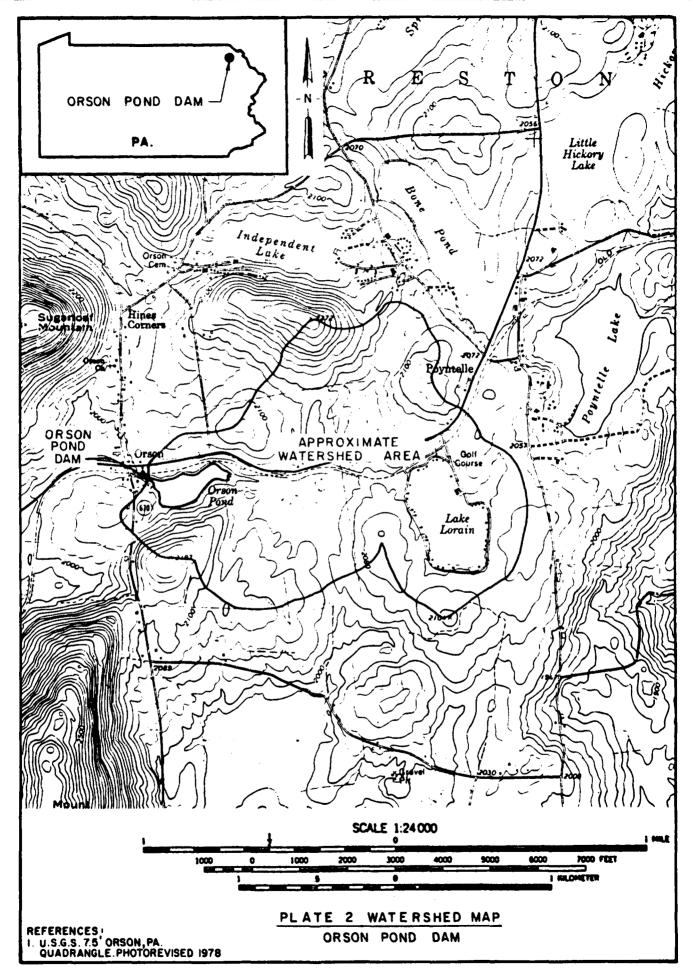
1

(

PLATES

CONTENTS


Plate 1 - Location Plan


Plate 2 - Watershed Map

A 1

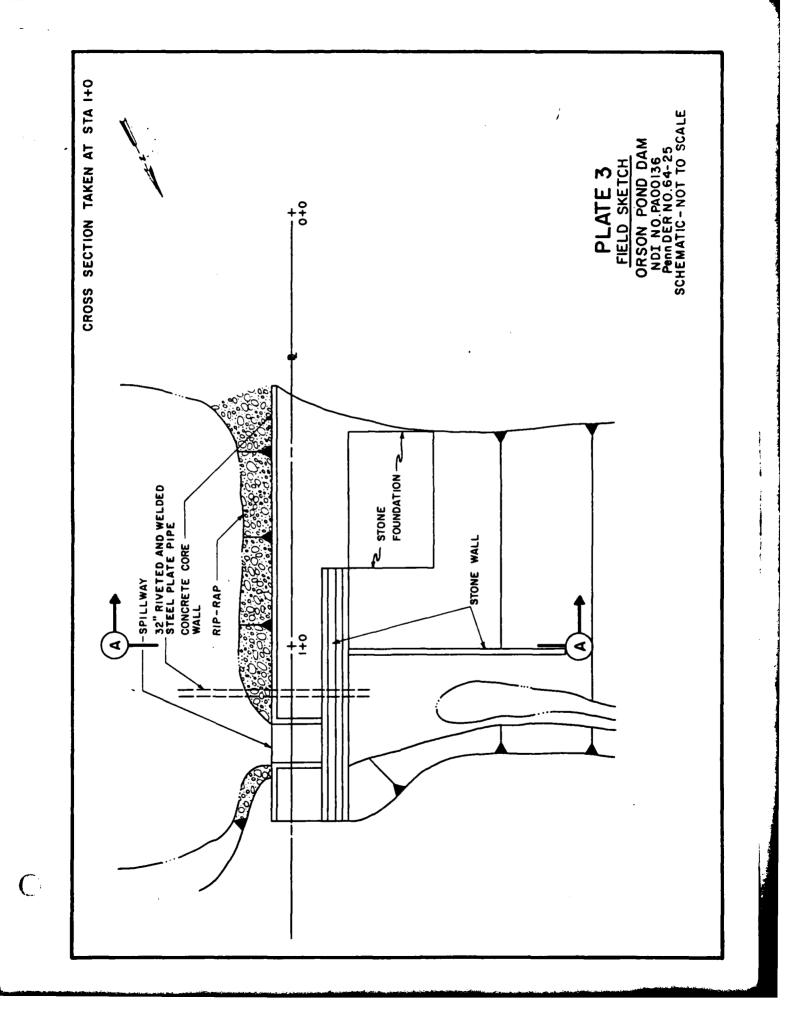
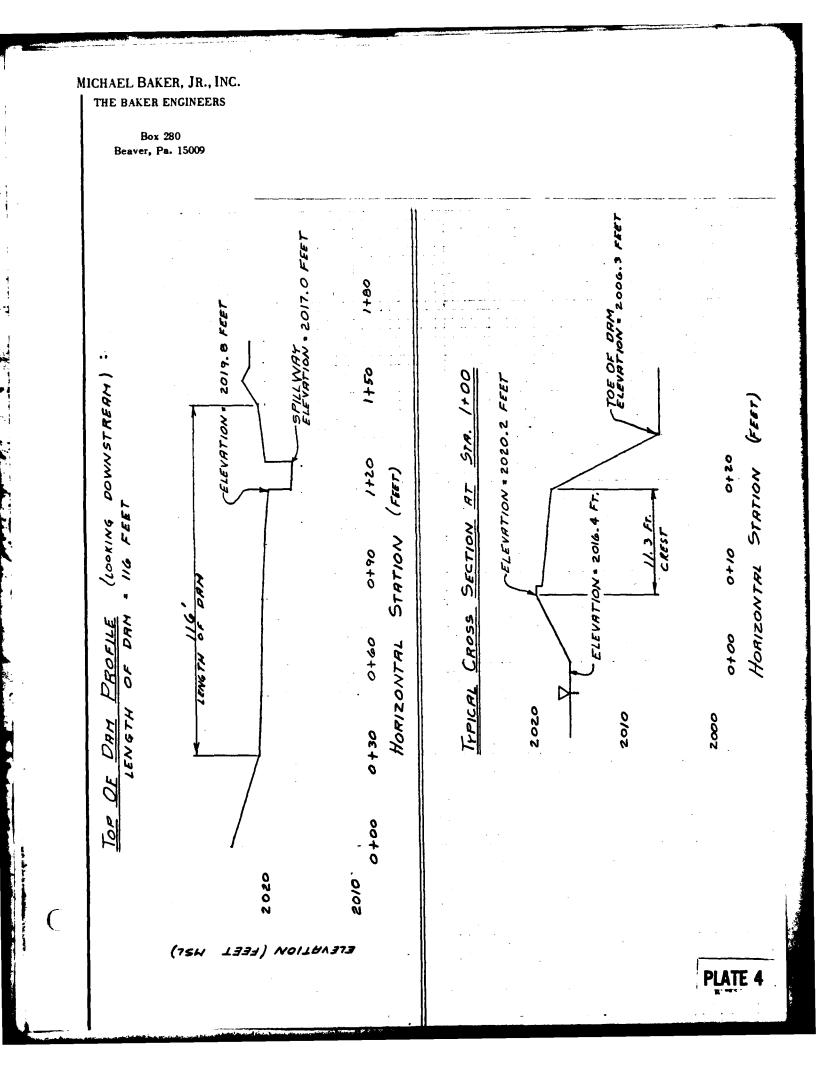

Plate 3 - Field Sketch from Visual Inspection

Plate 4 - Top of Dam Profile and Typical Cross-Section from Visual Inspection



C

.

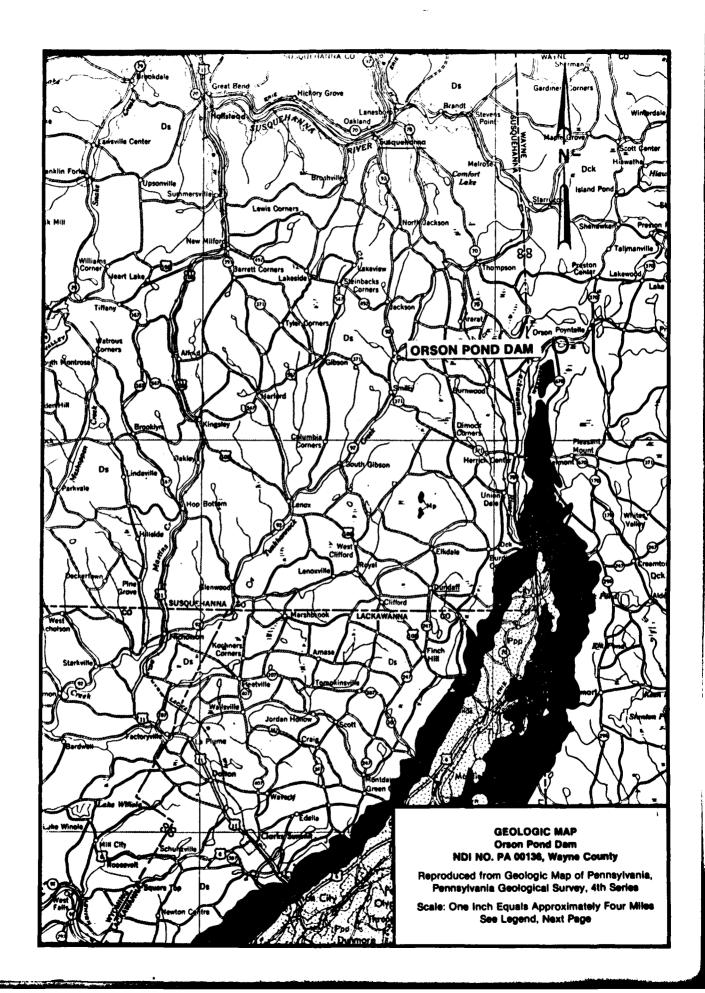
Ş

APPENDIX F

ALL SUPPLY AND DESCRIPTION OF ALL OF

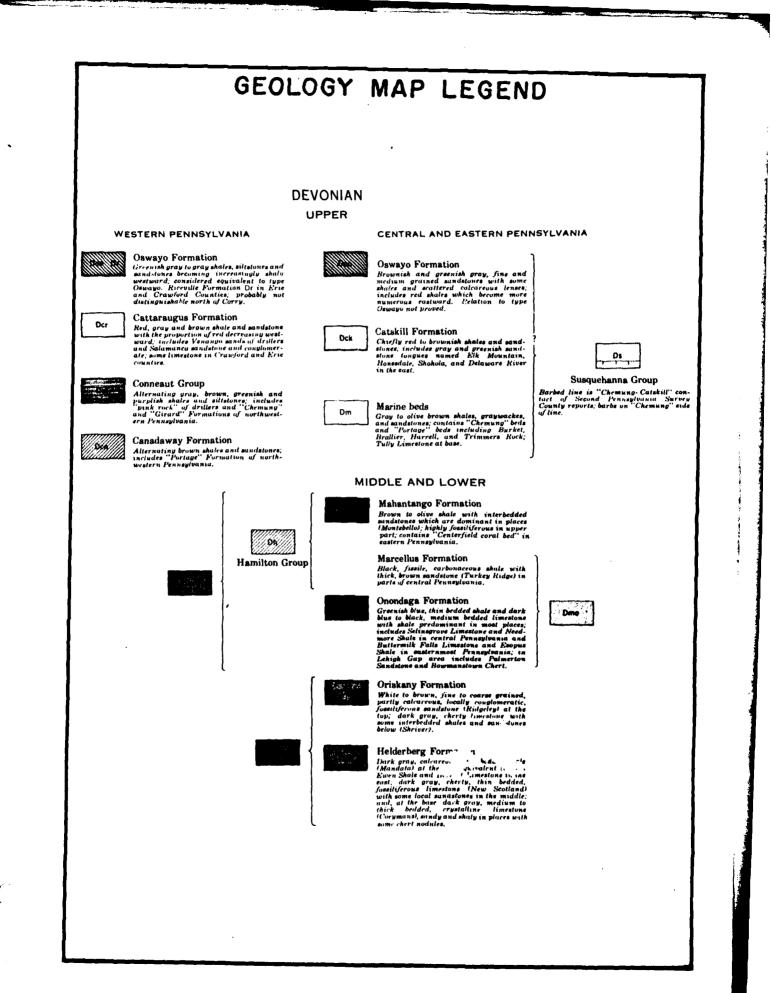
C

REGIONAL GEOLOGY


ORSON POND DAM NDI No. PA 00136, PennDER No. 64-25

REGIONAL GEOLOGY

Orson Pond Dam is located in the Glaciated Low Plateaus section of the Appalachian Plateaus physiographic province. Drainage is to the south via the Lackawanna River and relief in the area averages 600 feet. The area has been glaciated at least three times and, with the exception of Mount Ararat 1.5 miles southwest of the dam and Sugarloaf Mountain 0.75 miles northwest of the dam, is presently covered with Wisconsin Stage glacial deposits. According to the Soil Conservation Service's Soil Survey for Wayne County, the surface soils consist primarily of stoney, sandy silt loams of the Wellsboro-Morris association. No test borings were available for review; thus, the thickness of the overburden is difficult to ascertain.


Geologic references indicate that the bedrock in the vicinity of the dam consists of members of the Catskill Formation of the Susquehanna Group. Members of the Pocono Group of Mississippian age outcrop on the upper slopes of Sugarloaf Mountain and Mount Ararat. The Catskill is composed of bay and delta front, red and gray shales and sandstones but may also contain widely scattered, thin coal seams and scattered fish remains. The dam is situated at the northern extremity of the Lackawanna Syncline. This syncline is a gentle trough near the dam but deepens rapidly to the south.

C

C

ľ

-

ĥ.