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FORE WORD

Properties of the space charge waves in a solid relativistic electron beam

propagating in a cylindrical waveguide is investigated, including the important

influence of arbitrary wall impedance. The stability analysis is carried out

within the framework of the linearized Vlasov-Maxwell equations. In order to

examine the influence of the axial momentum spread on the stability behavior, it

is assumed that all electrons have a Lorentzian distribution in the axial

canonical momentum. One of the most important features of the analysis is that,

for short axial wavelength perturbations, the eigerfunction can be described by

a Bessel function. Moreover, the condition for zero phase velocity of the space

charge wave is also obtained, in connection with collective ion acceleration.

Space charge wave properties for a dielectric loaded waveguide are also

investigated. For appropriate choice of dielectric constant E and thickness of

the dielectric material, it is shown that a strong mode coupling occurs,

exhibiting the growth rate of instability comparable to the beam plasma

frequency. The physical mechanism of instability is the Cherenkov radiation.

This research was supported by the Independent Research Fund at the

Naval Surface Weapons Center.
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I. INTRODUCTION

In recent years, there has been a growing interest in the space

charge waves1- 4 in a relativistic electron bear., in connection with

collective ion acceleration 3-6 and intense microwave generation.
7- 10

For the most part, previous theoretical analyses1-4 of the space

charge waves are limited and incomplete. However, a complete analysis

of the space charge wave is required to optimize the collective ion

acceleration and microwave generation. In this regard, in the

present article, we develop a unified theory of the space charge

wave in a relativistic electron beam, including the important

influence of an arbitrary wall impedance on the stability behavior.

Equilibrium and stability properties are calculated for the choice

of electron distribution function [Eq. (3)]

0 nbL 6 (H - wbPa - mc2 )f H, PO' Pz) = 22 2
2 72Ybm (Pz - Ybm b c )2 + A2

where H is the energy, P is the canonical angular momentum, Pz is

2 -1/2
the axial canonical momentum, and yb = (1 - bb , y, nb' and A are

constants. The stability analysis of the space charge wave is carried

* out within the framework of the linearized Vlasov-Maxwell equations,

* assuming that V/Yb << 1, where v is Budker's parameter. The formal

dispersion relation (20) of the space charge wave for azimuthally

symmetric electromagnetic perturbation (a/a = 0) is obtained in Sec. II,

including the important influence of finite wall impedance Z, which is

generally an arbitrary function of the eigenfrequency w and axial

wavenumber k. Particularly, we emphasize that Eq. (20) is derived with

no a priori assumption that the beam radius R0 is much less than the wall

radius R . In this regard, the dispersion relation in Eq. (20) can bew

used to investigate properties of the space charge wave for a broad

____ ___ ____ ___ ____ ___ ____'~- -~ .- - -~* 9
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range of system parameters.

In Sec. III, the resistive wall instability1 0 with an arbitrary

impedance is investigated in general, assuming that all electrons have

the same value of axial canonical momentum (A = 0). It is shown that

an inductive impedance wall is most unstable. Particularly, the maximum

growth rate of the general resistive wall instability occurs at the

axial wavenumber k satisfying 2k2R = ( - r) , where the parameter

= r + i&i is the root of Jl()/Jo) = F, Jk(x) is the Bessel

function of the first kind of order X and F is the wave admittance at

the beam surface [Eq. (19)].

Properties of the space charge wave in a perfactly conducting

waveguide is investigated in Sec. IV, in connection with intense

microwave generation 7- 10 and collective ion acceleration. 3- 6  It is

found that the wave admittance F in a perfectly conducting waveguide is

purely capacitive, thereby indicating a stable propagation of the

space charge wave. However, for short axial wavelength perturbation

satisfying kR /Y > 10 [which is typical in the free electron laser
0 b 11

application 7'8], the electrostatic eigenfunction of the space charge

wave can be accurately represented by a Bessel function. In the present

experiments4- 6 of collective ion acceleration, the phase velocity

of the space charge wave is initially required to be zero, in order to

trap and accelerate ions. In this regard, in Sec. IV, we also obtain

the condition for the phase velocity w/k = 0. That is [Eq. (42)],

4v_. Y 2 _ 2 k22 R

Yb  b r 0

We therefore find from Eq. (42) that the typical Budker's parameter for

the zero phase velocity is order of unity in a practical range of

physical parameters for collective ion acceleration.

10
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Space charge wave properties for a dielectric loaded waveguide

are investigated in Sec. V, assuming that the impedance of the dielectric

material is purely reactive (i.e., the dielectric constant is perfectly

real). In a range of physical parameters, it is shown that the phase

velocity of the vacuum dielectric waveguide mode is less than the beam

velocity, exhibiting possibilities of a Cherenkov radiation.
9'1 1

In fact, a strong mode coupling between the vacuum dielectric waveguide

mode and the beam streaming mode occurs at the axial wavenumber

satisfying 2R 2 . ). We therefore conclude that the Cherenkov

radiation in a dielectric loaded waveguide is a typical example of the

inductive impedance (Sec. III). Several points are noteworthy in the

analysis of Sec. V. First, the maximum growth rate of instability is

order of the beam plasma frequency. In this regard, the Cherenkov

radiation can be utilized to produce high power microwave. However,

the growth rate of instability decreases substantially with increasing

value of the axial momentum spread. Second, the wavelength of the

microwave radiation generated by this instability can be less than a

centimeter for a subcentimeter beam radius R0 . Finally, we note that

the growth rate and bandwidth of instability increase rapidly as the

surface of dielectric material approaches to the beam surface (R0 /Rw  1 1).

1
11/12
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11. THEORETICAL MODEL

The equilibrium configuration consists of a relativistic electron

beam column that is infinite in axial extent and aligned parallel to a

uniform applied magnetic field B 0 z . The electron beam radius is

denoted by R0 , and a finite-impedance wall is located at radius r - R .w

Cylindrical polar coordinates (r,O,z) are introduced. Moreover, in the

present analysis, we assume

V/Yb 1 , ()

where v = Nbe 2/mc2 is Budker's parameter,

Nb = 2 W dr r nb (r)

is the number of electrons per unit axial length, n (r) is the equilibrium
b

electron density, c is the speed of light in vacuo, -e and m are the
2

electron charge and rest mass, respectively, and ybmc is the

characteristic electron energy in the laboratory frame. Consistent with

the low-intensity assumption in Eq. (1), we also assume

W 2 2 1) (2)
PL) c «

where w = 4 ,e 2 b/ym is the plasma frequency-squared and =
pb b/bms cb

eBO/Ybmc is the electron cyclotron frequency.

In the present analysis, we investigate stability properties for

the choice of equilibrium distribution function

fibA (it - WbP - jmc 2 )fO(H,P ,P ) = WP

b22yb M (Pz - Yb M 2 b c 2 (3)

where H- (m 2c 4 + c22)1/2 - e4 0 (r) is the total energy, P. = r[p - (e/2c)rBo]

is the canonical angular momentum, P = p - (e/c)AS(r) is the axial

canonical momentum, 0O(r) and A'(r) are the equilibrium electrostatic

13 A

- .."
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and axial component of vector potentials, respectively, yb = (1 -b)

y, n , and A are constants.

In the subsequent perturbation analysis, use is made of the linearized

Vlasov-Maxwell equations for azimuthally symmetric perturbations (/'ae - 0)

about a solid electron beam described by Eq. (3). We adopt a normal-

mode approach in which all perturbations are assumed to vary according to

6,P(x-t) = 4(r)exp[i(kz - wt)]

where Imw > 0. Here, w is the complex eigenfrequency and k is the axial

wavenumber. The Maxwell equations for the perturbed electric and

magnetic field amplitudes can be expressed as

=( i(W/ck(; )

(4)

where E and o are the dielectric constant and permeability, respectively,

and k( ) are the perturbed electric and magnetic fields, and

S-e fd P k f 5

is the perturbed current density. Note that c = I in vacuo.

In Eq. (5),

f e - d exp(-iT)+ " -- b (6)

is the perturbed distribution function, T t' - t, and the particle

trajectories '(t') and k'(t') satisfy dx'/dt' = v' and dk'/dt' - -ev'

BO/C ,  with "initial" conditions x'(t' = t) = and v'(t' = t) = v.

14
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In general, the permeability w of a dielectric material even in the

wall differs from unity by only a few parts in l0S. Therefore, we

approximate v = 1 in the remainder of this paper. MAking use of

Eq. (4),it is straightforward to show that

Er (r) = (kc/wc)B(r)

(7)

Be(r) - i[w/c(w 2/c 2 
- k2)]E z(r)/Dr,

and

r 3r 5r 2 (8)

(a)

where Be is the azimuthal component of the perturbed magnetic field,

and Er and E are the radial and axial components, respectively,

of the perturbed electric field, 5(r) is the perturbed charge density

and Jz (r) is the axial component of the perturbed current density.

To lowest order, the axial motion of the particle orbit is free-

streaming

Z' = z + LZ (t' -0t (9)
ym

Moreover, within the context of Eq. (2), we neglect the terms proportional

to k.(r) on the right-hand side of Eq. (6), where L1 (r) is the transverse

component of the perturbed electric field. Finally we assume a slow

rotational equilibrium characterized by

- 'cb 1 -(1 - (10)

Wb Wb 2 (10Ybwcb

thereby approximating
12

r' =r, (11)

15., _ 1 I
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in the arguments of the perturbation amplitudes on the right-hand side

of Eq. (6).

Substituting Eqs. (9) and (1i) into Eq. (6), we obtain the perturbed

distribution function

0

fb~r)= ei E (r) fb (12)b w - kpz/YM ap "

Carrying out the momentum integration with Eqs. (3) and (12), the

differential equation (8) can be expressed as

(I a r r+ Ez(r) = 0 , 0 .< r <R 0

(13)

r - + 2) E(r) = 0 , Ro I r < R

where 2

c 2 2 (W - kbc + ik6/yb m)2 1

b b (14)

22 w k 2

P= 2
c

and the beam radius R0 is defined by

R2 = 2c2 (0 _ Y -(- b 2 2 2 (15)
0  b b bcb b

For the convenience in the future analysis, we define the

wave impedance Z(w,k) of the wall as

Ez (R W)
Z(w,k) = -i(wR/C) , (16)

Be6(R w)

where Rw is the radius of the finite impedance wall. Evidently, the

solutions to Lq. (13) are given by
( AJ0 (Tr) , 0 -r < R0

E z(r) (17)

BJo (pr) + CN0 (pr) , R0 - r -Rw

16
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where J Lx) and N Cx) are Bessel functions of the first and second kind,

respectively, of order 9. Making use of Eqs. (7) and (16), and the

boundary conditions of E z(r) at r R0 , we obtain the dispersion relation,

0( F(w,k) , (18)

where F(w,k) is the wave admittance at the beam surface defined by

JlipR O ) + g(pR w)NI(pKO )

F(w,k) = pRo j1 pRo) + g(PRw)No0(po) 0 (19)

and

= TR 0  (20)

In Eq. (19),

gx)X) xJ 0 (x) 21)
g x No(x) - ZNI(X) 1J(X) (

and p is defined in Eq. (14). In the remainder of this article, we

make use of Eq. (18) to investigate properties of the space charge

wave for various values of wall impedance Z in Eq. (16).

17/18
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III. INFLUENCE OF WAVE ADMITTANCE ON THE SPACE CHARGE WAVES

For convenience in the subsequent analysis, we denote the root of

Eq. (18) by

S&r (,k) + ii(w,k) , (22)

for a specified value of wave admittance

F fexp(i¢) = Fr + iF. (23)

where &r and . are the real and imaginary parts of 6, and f and 0 are
r

the magnitude and phase angle, respectively, of the general wave

admittance F at the beam surface. From Eq. (18) with Eq. (23), we note

* = f exp(-iO) , (24)
J o( )

where ; is the complex conjugate of E defined by = r -

Shown in Fig. 1 are contours of constant phase angle 0 and modulus

f of the function F - &J1 (&)/J 0 ( ) in the corplex plane r + i i"

We note from Fig. I that the root E of Eq. (18) approaches zero or a0n

as the magnitude of the wave admittance is reduced to zero, f - 0.

On the other hand, C approaches BOn as f increases to infinity.

Here aOn and 0 On are the nth root of Jl(aOn) = 0 and JO0nUn) = 0,

respectively. For specified values of f and 4, we note that the root

& r + i i can be determined from Fig. 1.
Ir

Within the context of Eq. (1), it is very useful in the subsequent

analysis to note that

I- k6bcI <, kc . (25)

19
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In the remainder of this section, we investigate the resistive wall

instability I0 in general, assuming that all electrons have the same value

of axial camonical momentum, i.e.,

6 = 0. (26)

Making use of Eqs. (14), (20), and (26), we obtain,

2 1 IYI[(y + 6)2 + -]/2 y(y +
2 [(y + 6) + 1]

(27)

for the resistive wall instability in general. In Eq. (27), 2 is the

normalized growth rate defined by

lm(w - kBbc)
- = ,(28)

1 pb/ b

and the parameters y and 6 are given by

y = k R2/2y2 C& i , (29)
U b r

and

6, ( 42)/2C (30)

respectively. In obtaining Eq. (27), use has been made of Eq. (25).

2 2(a) Inductive impedance with 4 > C . Shown in Fig. 2 are plots of1 r
the normalized growth rate Q. versus y obtained from Eq. (27) for

1
2 2 T2 > 4r and several different values of 6. As shown in Fig. 2, QmI

is the maximum growth rate for a given value of parameter 6, and y

is the corresponding value of y. Obviously from Fig. 2, the maximum

growth rate increases rapidly with the increasing value of 161 in the

inductive impedance case. In Fig. 3, we plot the parameter yI

corresponding to the maximum growth rate versus 6 (solid line)

obtained from Eq. (27) and y = -6 (dashed line). Evidently, we note

20obinedfro
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from Fig. 3 that the maximum growth rate m and the corresponding y
i m

can be approximated by

(16112)1/2 , (31)

and

-6, (32)

for 161 > 1. Substituting Eqs. (29) and (30) into Eq. (32), we

conclude for the inductive impedance that the maximum growth rate of

the resistive wall instability occurs at the axial wavenumber k
2 2 =2(2 _2)fr1[>i

satisfying k 2 R 2 ) for 16 > 1.

2 2
(b) Capacitive impedance with > Presented in Fig. 4 are

plots of the normalized growth rate Q2. versus y obtained from Eq. (27)
1

2 2
for C i and several values of parameter 6. As shown in Fig. 4,
we again define the maximum growth rate 2 and corresponding yC for a

1 m

given value of 6. In order to illustrate the stability dependence

on the parameter 6, in Fig. 5, we plot the maximum growth rate Sm

and corresponding yc versus 6 obtained frotr Eq. (27) for &> 2 .. The
m r i

growth rate increases rapidly with the decreasing value of 161 for the

Pcapacitive impedance case.

(c) Perfectly resistive with 2 2_ For the perfactly resistive

impedance case characterized by

2 2
2 2 ' (33)

Eq. (27) can be simplified as

2 1 [[ {(2 + )1/2 2]
Q 2 1 2) (34)

1 2

which gives the maximum growth rate

1  = 0.3536 , (35)

21
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at y - 0.577. We therefore conclude that the induct.!ve impedance

case is most unstable. In the following sections, we investigate

properties of the space charge waves in perfectly capacitive and

inductive impedances.

22
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IV. SPACE CHARGE WAVES IN A PERFECTLY CONDUCTING WAVEGUIDE

In this section, we investigate pronerties of the space charge

waves in a relativistic electron beam assuming that the wall impedance

is zero, i.e.,

zu ,(36)

and that all electrons have the same value of axial canonical momentum

(A = 0). Substituting Eqs. (21) and (36) into Eq. (19) and defining

2 2 2/2)2
q =(k -,wc)R, (37)

we obtain

II(q)K 0 (Rwq/R0 ) + 0 (Rwq/R0 )KI(q)
F(q) = q - W/rK) 9 (38)F~ =q10 (R wq/Ro)K 0(q ) _ 1 0(q)K0O(p~q/R 0),(8

where I (x) and K (x) are the modified Bessel functions of the first

and second kind, respectively, of order k. For a real value of q, the

wave admittance F(q) in Eq. (38) is a positive real value (F. 0),

thereby giving the phase angle 0 - 0 in Eq. (23). In this regard, the

space charge wave admittance F in a perfectly conducting waveguide is a

perfactly capacitive, corresponding to the horizontal line &i . 0 in

Fig. 1. Without further analysis, we therefore conclude from Fig. 4

that the space charge mode in a perfectly conducting waveguide is

stable [6 - in Eq. (27)].

Figure 6 shows plots of the admittance F = Fr versus r

(dashed curves) obtained from Eq. (18) and Fr versus q (solid curves)

obtained from Eq. (38) for R0/Rw 0.1, 0.5 and 0.9. The horizontal

scale in Fig. 6 represents both and q. In Fig. 6, n = 1, 2, and 3

denote t2e radial mode number of the space charge wave. Note that

23
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for specified values of q and R /Rog the parameter C r is determined from

Fig. 6. Shown in Fig. 7 is plot of Cr versus q determined from Fig. 6

for R /R - 0.5. Obviously, the root Cr approaches 60n as the parameter

q increases to infinity. This is similar to Fig. 1, since the wave

admittance Fr is monotonically increasing with the increasing value of q.

In order to illustrate the influence of the parameter q on the

space charge mode, we present in Fig. 8 plots of the eigenfunction E z(r)

versus r/R0 obtained from Eq. (17) for (a) n -I, (b) n - 2, R /Rw - 0.5

and several values of q. The perturbed axial electric field E (r) in

Fig. 8 is normalized by

Jwd r E (r) = 1.R 0 20 z

It is obvious from Fig. 8 that the axial electric field E (r) in Eq. (17)z

can be approximated by

AJ0( 0nr/R0 ) , 0 < r < R0

E(r) - J( 0 rR < ~ 0  (39)

Ezr) 0 , otherwise ,(9

for q >U 10. We therefore conclude that inside the beam, the electro-

static eigenfunction of the large axial wavenumber perturbations is

represented by a Bessel function. For example, Eq. (39) is an excellent

approximation for the electrostatic eigenfunction of the free electron

laser instability.
7'8

Making use of Eq. (20) and (37), Eq. (14) can be expressed as

2 2
2 wpb q 

(40)_(w- k c) 2 ( 2 + (C (40)
Yb ( r

where the root r(q) is determined from Fig. 7 for given values of

R /R and n, and use has been made of A - 0. Theeigenfrequency w

and axial wavenumber k are obtained from the simultaneoq solution of
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Eqs. (37) and (40). Shown in Fig. 9 is a plot of the dispersion curve

in the (w,k) parameter space for n 1 1, R /R = 0.5, Yb = 3, and20 w

V/Yb = WpbRO/R c - 0.1. Simultaneously solving Eqs. (37) and (40) for

q and F (q) give two distinct dispersion curves. The fast wave
r

mode in Fig. 9 corresponds to the phase velocity Vh wk > B C

and the slow wave mode corresponds to Vph < b c.

After some straightforward algebraic manipulation with the
22 _2

definition v 2y = 2 / C we can rewrite Eq. (40) byvb =pb 0

2  4 1- w/k c22

32 2 )k2 R2 (41)
Yb r + (0 - 2/k c2 k

which determines the phase velocity V = u/k of the space charge

wave in terms of the normalized axial wavenumber kR0, the Budker's

parameter v and energy Yb of the electron beam. In recent years,

there has been a considerable increase in interest in collective ion
3-6

acceleration by a slow space-charge wave in a relativistic electron

beam. However, the phase velocity of the space charge wave is initially

required to be zero, in order to trap and accelerate ions. In this regard,

we derive the condition for V - w/k = 0 from Ev. (41). That is,
,ph

4_ - (-2 l)[r(kR0) + k R2] , (42)

where the root Fr is determined in terms of the normalized axial wave-r[
number kR0 . For given values of R0 /R and n, the root Er required in

Eq. (42) can be found from Fig. 7 where the horizontal scale q is

replaced by kRO .

Figure 10 is plots of r versus R 0/Rw for n I and several values

of kR . The root Er is monotonically increasing to 01 - 2.4 as the

ratio R /Rw increases from zero to unity. Naking use of Fig. 10,

25
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the necessary value of Budker's parameter for the zero phase velocity

of space charge wave is found from Eq. (42). For example, for kR0 - 1,

Ro/Rw - 0.3 and yb 1.2, we find 4V/yb = 1.46 for V W/k = 0.
0 b v/yb =ph 01

Typical Budker's parameter for the zero phase velocity is order of unity

in a practical range of physical parameters for collective ion acceleration.

Finally, for a small phase velocity satisfying iu/kcl a b' Eq. (41)

can be approximated by
2

4v 2 1 r2 + (uROIC 2 (43)=b (Y W
Yb -'r c J) J)

which is identical to Eq. (42). however, from Eq. (43), the Budker's

parameter is determined in terms of the oscillation frequency w and the

phase velocity Vh - u/k required to ion accelerations.
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V. SPACE CHARGE WAVES FOR A DIELECTRIC LOADED WAVEGUIDE

In this section, we investigate properties of the space charge

waves for a solid electron beam in a dielectric loaded waveguide.

The solid electron beam with radius R0 propagates through a cylindrical

waveguide loaded with dielectric material in the range Rw < r < R .

A grounded cylindrical conducting wall is located at radius R .c

We approximate the permeability of a dielectric material u - 1. In

this regard, the perturbed axial electric field E z(r) and azimuthal

magnetic field B e(r) are continuous across the dielectric boundary at

r - R . From Eq. (8), we obtainw

"rr =- + 2 (r) 0 , (44)

inside the dielectric material (Rw r R c). Here P2 is defined by

2 = 2 2 2 (45)P 2

The solution to Eq. (44) can be expressed as

Ez(r) = A[J 0 (p2 r) - J (p 2 Rc)N 1 (P 2 r)/N0 (P)] , (46)

where A is an arbitrary constant. Substituting Eq. (46) into Eq. (7),

and making use of the boundary conditions at r = Rw and Eq. (16), we

obtain the impedance

r J 0 (r)N 0 (nRC/Rw) - J 0 (nRc/Rw)N 0 (n)
- 1(l)N0 (nRc/R w ) - J0 (nRc/Rw)N1 (n) (

at the surface of dielectric material (r = R). In Eq. (47), the

parameter n is defined by

n2 2 2 R2 (w 2/c 2 
- k ) (49)

2w W
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Equation (18), when combined with Eqs. (19), (21), and (47), yields a

closed dispersion relation for tile space charge wave mode in a dielectric

loaded waveguide.

faking use of Eqs. (14), (19), and (20), it can be shown that

2
in the vacuum dielectric waveguide characterized by w b - 0 in Eq. (14),

the dispersion relation in Eq. (18) is simplified as

g(pRW) = 0 , (49)

2 2 2 1/2
where p - (w /C - k). Substituting Eqs. (21) and (47) into Eq. (49),

we obtain the vacuum transverse magnetic (TM1) mode dispersion relation,

pRwJ 0 (PR) J0()N(n /R W) - J 0(nR c/R %,)N0 (,)

PR) CJ(T)40(nRc/R w ) - J 0 (uiRc/Pw)Nl(,) (

where the parameter pRw is defined by

p2R2 R2 (W2 /c2 - k) ( 51)w w

It is instructive to examine Eq. (50) in the limit E - 1.

Making use of PR = n, we obtain

J 0 (IRc/Rw) = 0 , (52)

from Eq. (50) for £ 1. Equation (52) gives the familiar vacuum TM

mode dispersion relation,

22
W k2  n (53)
c2  R2

c

in a perfectly conducting waveguide. Moreover, we can show that in

the limit of both R -- R and R -* 0, Eq. (50) gives the dispersionw c b

relation in Eq. (53) and,

22

L' -On
2 (54)

c RC
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respectively. Note that the case R w- 0 corresponds to a completelyw

filled dielectric waveguide.

For given values of the dielectric constant c and the ratio Rw/Rc,

the parameter pP is determined from Eq. (50) in terms of n. The

oscillation frequency w and axial wavenumber k in a vacuum dielectric

loaded waveguide are obtained from the simultaneous solution of

Eqs. (48) and (51) for specified n and pR w . Figure 11 is plots of the

vacuum 1.1 mode dispersion relation in the (w,k) parameter space for

(a) R /R - 0.8 and several values of the dielectric constant c, and

(b) e - 4 and several values of the ratio R /R . We remind the reader

that the thickness of dielectric material increases from zero to Rc

as the ratio RW/Rc decreases from unity to zero. All plots in Fig. 11

correspond to the first radial mode number ( n = 1). The dispersion

curve for R /R = 0 in Fig. 11(b) represents tile dispersion relationw c

of a completely filled dielectric waveguide [Eq. (54)]. On the other

hand, the curves for c - 1 in Fig. 11(a) and for Pw/Rc = 1 in Fig. 11(b)

correspond to the ordinary dispersion relation in Eq. (53) where the

phase velocity Vph = w/k is always faster than the speed of light (w/k > c).

However, the phase velocity of the dispersion relation in a dielectric

loaded waveguide is sometimes less than the speed of light (u/k < c).

For example, for R /R = 0.8 and c = 4 in Fig. 11(a), we find w/k > c

for kRc <3.3 and w/k < c for kR > 3.3.

It is evident from Eq. (14) and (20) that in the vacuum dielectric

waveguide (wb 0), we can equivalently express the combination

of Eqs. (48), (50), and (51) as,

2
- k2  2 22- k (w,k)/R , (55)

c
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where (w,k) is determined from Eq. (18) in terms of the wave

admittance F at r - RO0. Equation (55) is a compact form of

the vacuum T mode dispersion relation in a dielectric loaded
2 2 2 2 2 1/2

waveguide. Shown in Fig. 12 is a plot of w - (k2c 2 + Onc /R2)

versus k corresponding to a perfectly conducting waveguide and

=(k
2c2 + 2c2/R21/2

W= c c /R) versus k corresponding to a dielectric loaded

waveguide. The straight line w - ka bc represents the free-streaming

mode. In a range of physical parameters, the mode w = k6bc intersects

w . (k2c2 + 2 c2/R2)i/2 at k = kp, indicating a possible mode coupling.

In fact, for k > k in Fig. 12, the phase velocity of the vacuum
p

dielectric mode is less than the beam velocity. In this regard,

we expect a strong Cherenkov radiation 10 '
I near the intersection

point of these two modes.

In order to investigate stability properties of the space charge

wave in a dielectric loaded waveguide, it is necessary to numerically

solve Eq. (18) with no a priori assumption that the beam is very tenuous.

However, use is made of the fact that the Doppler-shifted eigenfrequency

- kfbc is well removed from the free-streaming mode, i.e., 1w - kb cI <<

lUbC. Evaluating the parameter n in Eq. (47) and the wave admittance

F in Eq. (19) at w - O = U bc, the dispersion relation in Eq. (18)

can be approximated by

(C 0 + 6&)Jl( U + 60)
J 0oU 0 + 6r , F0 + (DF/3w) W  -( bc ) ' (56)

where

FO F(uok) (57)

the parameter &0 &(WO0) is defined by

0 O l(EO
)

o(- = FO (58)
0 0

and
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64 - O" (59)

Taylor expanding the left-hand side of Eq. (56) about 4 0 and

making use of Eq. (58), we approximate Eq. (56) by

42 2(1+ 2 (aF/u)( 0  k6) (60)
0 E+ 2 2 b

0 F0

where use has been made of the assumption that the term proportional

to (aF/aw) in Eq. (60) is muci, less than unity. Substituting

Eqs. (14) and (20) into Eq. (60), we finally have the dispersion relation,

I pb 1 2 2 232 2j 
( 2 )

Y2 - - kebc + ikA/y3m) 2  - 4 R0
(61)

2 2

+ 42 +F 2 (F/aw) 0( - kbC)}

0 + 0

for the space charge wave in a dielectric loaded waveguide.

Defining the normalized Doppler-shifted eigenfrequency S2 by

- kBb c (62)

W pb/yb

the dispersion relation in Eq. (61) is numerically investigated for
i

a broad range of physical parameters. For present purposes, to

illustrate the mode coupling of the space charge wave (w - 1,B bc) with

the vacuum dielectric mode, shown in Fig. 13 are plots of (a) F0 (solid

2curve) and &0 (dashed curve), (b) the normalized growth rate Qi a IMP

and (c) Doppler-shifted real oscillation frequency CQ = ReQ versus kR0

obtained from Eqs. (57), (58), and (61), for Yb = 2, E 8, R0/Rw = 0.8,

R w/Rc = 0.8, and v = 0.0025. The real oscillation frequency in Fig.

13(c) is obtained for zero axial momentur spread (A = 0). In Fig. 13(c),

the solid curve represents the unstable ,ode and the dashed curves

correspond to stable oscillations. Severai points are noteworthy in
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Fig. 13. First, the maximum growth rate for instability occurs at

kR 2 1/2corresponding to the mode coupling point k in Fig. 12.

This is consistent with the inductive impedance in Sec. III. For

example, in Fig. 13, the maximum coupling occurs at kRO 2 and

00

frequency, indicating a strong instability, in this regard, this

instability can be utilized to generate high power microwave. Third,

wavelength of the microwave radiation generated by this instability can

be less than a centimeter for a subcentimeter beam radius. Fourth,

from Fig. 13(c), we note that the Doppler-shifted real frequency S

for instability is negative, thereby implying that the phase velocity

of unstable mode is less than the beam velocity. We therefore conclude

that the instability mechanism is a typical Cherenkov radiation.

Finally, the growth rate and bandwidth of instability decrease with

increasing Value of the axial momentum spread.

The dependence of stability properties on the ratio RO/Rw, is

further illustrated in Fig. 14, where the normalized growth rate Q~ l mQ

is plotted versus kR 0for A = 0, several values of R 0/R w, and parameters

otherwise identical to Fig. 13. Obviously from Fig. 14, we note that

the growth rate and bandwidth of instability increase rapidly as the

surface of dielectric material approaches to the beam surface (R 0/R w +1

for a given beam radius. Shown in Fig. 15 is plots of the normalized

growth rate versus kR 0obtained from Eq. (61) for Yb = 1.1547, c - 25,

and parameters otherwise identical to Fig. 13(b). Even for a moderate

beam energy, the growth rate of instability is also order of the beam

plasma frequency. However, the maximum growth rate of instability is

rapidly decreasing with increasing value of the axial momentum spread.
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Finally, we conclude this section by pointing out that from Figs.

13(a) and (b), the maximum coupling of instability occurs when the wave

admittance F0 is negative [the phase angle * - i in Eq. (23)).

In this regard, the root & can be a pure imaginary value (the & r a 0

vertical line in Fig. 1). We therefore emphasize that the wave

admittance F in a dielectric loaded waveguide can be perfectly

inductive in a range of the axial wavenumber k corresponding to instability.

33/34
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VI. CONCLUSIONS

In this paper we have investigated properties of the space charge

wave in a solid relativistic electron beam propagating in a cylindrical

waveguide with an arbitrary impedance Z. The perturbation analysis

was carried out within the framework of the linearized Vlasov-Maxwell

equations, assuming that V/Yb < 1. The formal dispersion relation of

the space charge wave for azimuthally symmetric electromagnetic

perturbations (3/30 - 0) was carried out in Sec. II, including the important

influence of finite wall impedance Z. In Sec. III, the resistive wall

instability with an arbitrary impedance was investigated, showing that

an inductive impedance wall is most unstable. Particularly, the maximum

growth rate of the general resistive wall instability occurs at the

axial wavenumber k satisfying 2k = yb( 2 ). Properties of the

space charge wave in a perfectly conducting waveguide was investigated

in Sec. IV. It was found that the space charge wave admittance

in a perfactly conducting waveguide is purely capacitive, thereby

indicating a stable propagation of the electromagnetic wave. Moreover,

we obtained the condition for the zero phase velocity (w/k - 0), in

connection with collective ion acceleration. Furthermore, it was also

shown in Sec. IV that for short axial wavelength perturbations (kRo/yb 10),

the eigenfunction can be represented by a Bessel function. Space

charge wave properties for a dielectric loaded waveguide were investigated

in Sec. V. It was found that a strong mode coupling between the

vacuum dielectric waveguide and beam streaming modes occurs in a range

of physical parameters, exhibiting possibilities of a strong Cherenkov

radiation. The maximum growth rate of instability is order of the

beam plasma frequency. In this regard, the Cherenkov radiation can
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also be an effective means to produce intense high power microwave.

The wavelength of the microwave radiation can be less than a centimeter.
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FIGURE 1 CONTOURS OF CONSTANT PHASE ANGLE 0 AND MODULUS f [EQ. (18)1
IN THE COMPLEX PLANE j ) FOR n =1 RADIAL MODE NUMBER.
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FIGURE 2 PLOT OF THE NORMALIZED GROWTH RATE E2 VERSUSy [EQ. (27)]

FOR 2 > 2 AND SEVERAL VALUES OF .
, r
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FIGURE 3 PLOT OF THE PARAMETER y I VERSUS 6 (SOLID CURVE) OBTAINED
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CAPACITIVE IMPEDANCE
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FIGURE 4 PLOT OF THE NORMALIZED GROWTH RATE 92 VERSUSy [EQ. (27)]
FOR ~2 >O2AND SEVERAL VALUES OF 6.
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CAPACITIVE IMPEDANCE8
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FIGURE 5 PLOT OF THE NORMALIZED MAXIMUM GROWTH RATE E2AND
CORRESPONDING yc VERSUS 8 [EQ. (27)] FOR 2 > 2

m r I
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12-

8-

F ;

4-

0 R o/R W=0. 9 5 10

q OR Er

FIGURE 6 PLOT OF THE ADMITTANCE F = Fr VERSUS = r (DASHED CURVES)
OBTAINED FROM EQ. (18) AND Fr VERSUS q (SOLID CURVES) OBTAINED
FROM EQ. (38) FOR Ro/Rw = 0.1, 0.5. AND 0.9. THE HORIZONTAL SCALE
REPRESENTS BOTH r AND q.
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RO/RW=O.5

4

q01

0 4 8 12
q

FIGURE 7 PLOT OFt r VERSUS q DETERMINED FROM FIGURE 6 FOR RoIRw =0.5.
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6 (a) n=

R /R =0.5

E(r)
q I

r/ R 0

FIGURE 8a PLOT OF THE EIGEN FUNCTION Ez (r) VERSUS r/R0 [EQ. (17)] FOR

n =1, Ro/Rw 0.5, AND SEVERAL VALUES OF q.
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16- (b) n=2
16-q=1O R0/Rw=O.5

8 q=2

0=

-8-

FIGURE 8b PLOT OF THE EIGENI-UNCTION Ez (r) VERSUS r/R0 [EQ. (17)] FOR n 2

Ro/Rw 0.5, AND SEVERAL VALUES OF q.
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v//yb=O-1, RO/RW=0.5,n=1

10-

(A/Wpb

5 
4

0 5 10
kc/wb

FIGURE 9 PLOT OF THE DISPERSION CURVE IN THE PARAMETER SPACE (w,k) FOR

n =1, Ro/Rw = 0.5, _yb = 3, AND v/_Yb = 0.1. THE DASHED STRAIGHT LINE
wo k 9cIS THE FREE-STREAMING MODE.
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n1l

2

0 0.5 1.0
RD/RW

FIGURE 10 PLOT OF r [REQUIRED IN EQ. (42)] VERSUS Ro/Rw FOR nl 1 AND
SEVERAL VALUES OF kR0.
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10(a) Rw/Rc=0.8

wRc/c

______________________CIA_

0 5 10
kRc

FIGURElla PLOT OF THE VACUUM TM MODE DISPERSION RELATION IN THE PARAMETER

SPACE (wo,k) OBTAINED FROM EQS. (48), (50), AND (51) FOR RW/Rc 0.8 AND

SEVERAL VALUES OF THE DIELECTRIC CONSTANT c.
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10(b) =4

w& Rc/cR/R O6

0 510

kR~
*c

FIGURE lib PLOT OF THE VACUUM TM MODE DISPERSION RELATION IN THE

PARAMETER SPACE (w,k) OBTAINED FROM EQS. (48), (50). AND (51)
FORe 4 AND SEVERAL VALUES OF THE RATIO R /R.
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FIGURE 12 SKETCH OF w (k2c2 + g32 c2 /R24'A VERSUS k (CORRESPONDING TO

PERFECTLY CONDUCTING WAVEGUIDE) AND w ~= (k2c2 + t c/R)

VERSUS k (CORRESPONDING TO AN ARBITRARY WALL IMPEDANCE

Z). THE STRAIGHT LINE w =k O3bc IS THE FREE-STREAMING MODE.
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5
1(a) 'Yb2 , e=8, R /R =0.8, R~, /R=.

0 120
F0 kR0  2

-12 -5

-2 0 F

-10

FIGURE 13a PLOTS OF F0 (SOLID CURVE) AND 2 (DASHED CURVE), [EQS. (57), (58), AND
0

(61)] FOR lb= 2, e =8, ROIRw = 0.8, RW/Rc 0.8, AND v 0.0025. THE REAL
OSCILLATION FREQUENCY IS OBTAINED FOR A= =0.
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15 (b) Ilb= 2 , c=8, R 0/R =0.8, R w/R =0.8,
11=0.0025

A =0.02

0.5- =0.04

0 12
kR 0

FIGURE 13b PLOTS OF THE NORMALIZED GROWTH RATE n ImfZ [EQS. (57), (58),
AND (61)] FOR yb= 2, c = 8, Ro/Rw = 0.8, Rw/Rc 0.8, AND v = 0.0025.
THE REAL OSCILLATION FREQUENCY IS OBTAINED FORA =0.
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4 (c) -yb=2 , c=8, Ro/RW=O.8, L=ORw/R =O .8,

V=0.0025

o21-

kR0

-2 UNSTABLE MODE

-4 __ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _

FIGURE 13c PLOTS OF DOPPLER-SHIFTED REAL OSCILLATION FREQUENCY ni r =Re&2

VERSUS k R0 [ EQS. (57), (58), AND (61)] FOR 'yb =2, e = 8, Ro/Rw = 0.8,
Rw/Rc = 0.8, AND u = 0.0025. THE REAL OSCILLATION FREQUENCY IS
OBTAINED FOR A =0.
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1.5 - 1 b=2 , A/Ybmc=O, R./RC=O.8, c=8 Y=0.0025

R0/Rw=O.8

1 R0/Rw=0.6

R0/Rw=O.4
0.5

0 12

kR0

FIGURE 14 PLOT OF THE NORMALIZED GROWTH RATE E1 mE2 VERSUS kR0 [EQ. (61)]
FOR A = 0, SEVERAL VALUES OF Ro/Rw, AND PARAMETERS OTHERWISE
IDENTICAL TO FIGURE 13.
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Yb=1.1547, c=25, Ro/Rw=0.8,

0.6 - Rw/Rc=0.8, v=0.0025

0.3-

1.9 2.1 kR 2.3

FIGURE 15 PLOT OF THE NORMALIZED GROWTH RATE VERSUS kR 0 [EQ. (61)] FOR

tb = 1.1547, e = 25, AND PARAMETERS OTHERWISE IDENTICAL TO

FIGURE 13.
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