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h FOREWORD l ,
Wi

Properties of the space charge waves in a solid relativistic electron beam

propagating in a cylindrical waveguide is investigated, including the important
influence of arbitrary wall jmpedance. The stability analysis is carried out
within the framework of the linearized Vlasov-Maxwell equations. In order to
examine the influence of the axial momentum spread on the stability behavior, it
is assumed that all electrons have a Lorentzian distribution in the axial

canonical momentum. One of the most important features of the analysis is that,

for short axial wavelength perturbations, the eigenfunction can be described by
a Bessel function. Moreover, the condition for zero phase velocity of the space
charge wave is also obtained, in connection with collective jon acceleration.
Space charge wave properties for a dielectric loaded waveguide are also
investigated. For appropriate choice of dielectric constant ¢ and thickness of

the dielectric material, it is shown that a strong mode coupling occurs,

exhibiting the growth rate of instability comparable to the beam plasma
frequency. The physical mechanism of instability is the Cherenkov radiation.
This research was supported by the Independent Research Fund at the
Naval Surface Weapons Center. .
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I. INTRODUCTION

( In recent years, there has been a growing interest in the space

1-4 . .
charge waves in a relativistic electron beam, in connection with

7-10

collective ion acceleration3_6 and intense microwave generation.
For the most part, previous theoretical analysesl-a of the space
charge waves are limited and incomplete. Iliowever, a complete analysis
of the space charge wave is required to optimize the collective ion J
acceleration and microwave generation. In this regard, in the

present article, we develop a unified theory of the space charge
wave in a relativistic electron beam, including the important

influence of an arbitrary wall impedance on the stability behavior.

Equilibrium and stability properties are calculated for the choice

of electron distribution function [Eq. (3)]

- . ~ 2
nbA §(H - wbPe - ymec™)

2 2
2n Yy (Pz - meBbc) + A

0
l =
fb(H, Pe, Pz) 7

where H is the energy, P_ is the canonical angular momentum, Pz is

2.-1/2 . .
b) / » s B, and 4 are

constants. The stability analysis of the space charge wave is carried 4

6

the axial canonical momentum, and Yp = (1 -8

' out within the framework of the linearized Vlasov-Maxwell equations, :
assuming that v/yb << 1, where v is Budker's parameter. The formal
dispersion relation (20) of the space charge wave for azimuthally
symmetric electromagnetic perturbation (3/36 = 0) is obtained in Sec. II,
including the important influence of finite wall impedance Z, which is
generally an arbitrary function of the eigenfrequency w and axial
wavenumber k. Particularly, we emphasize that Eq. (20) is derived with

- no a priori assumption that the beam radius R, is much less than the wall

0

radius Rw' In this regard, the dispersion relation in Eq. {(20) can be

used to investigate properties of the space charge wave for a broad

9
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range of system parameters.

In Sec. III, the resistive wall instability10 with an arbitrary
impedance is investigated in general, assuming that all electrons lhave
the same value of axial canonical momentum (A = 0). It is shown that
an inductive impedance wall is most unstable. Particularly, the maximum
growth rate of the general resistive wall instability occurs at the
axial wavenumber k satisfying 2k2 g = yi(gi - 53), where the parameter
£ = Cr + i&i is the root of &Jl(ﬁ)/JO(ﬁ) = F, JQ(X) is the Lessel
function of the first kind of order % and F is the wave admittance at
the beam surface [Eq. (19)].

Properties of the space charge wave in a perfactly conducting
waveguide is investigated in Sec. IV, in connection with intense
microwave generation7_lo and collective ion acceleration.‘a_6 It is
found that the wave admittance F in a perfectly conducting waveguide is
purely capacitive, thereby indicating a stable propagation of the
space charge wave. However, for short axial wavelength perturbation
satisfying kRo/Yb 2 10 [which is typical in the free electron laser
application7’8], the electrostatic eigenfuﬁction of the space charge
wave can be accurately represented by a B;ssel function. 1In the present
exper::l.ments“—6 of collective ion acceleration, the phase velocity
of the space charge wave is initially required to be zero, in order to

trap and accelerate ions. In this regard, in Sec. IV, we also obtain

the condition for the phase velocity w/k = 0. That is [Eq. (42)],

4v 2
- (Yb

2 2.2
- 1)(&r + k Ro).
b
We therefore find from Eq. (42) that the typical Budker's parameter for

the zero phase velocity is order of unity in a practical range of

physical parameters for collective ion acceleration.

10
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Space charge wave properties for a dielectric loaded waveguide
are investigated in Sec. V, assuming that the impedance of the dielectfic
material is purely reactive (i.e., the dielectric constant is perfectly
real). In a range of physical parameters, it is shown that the phase
velocity of the vacuum dielectric waveguide mode is less than the beam
velocity, exhibiting possibilities of a Cherenkov radiation.g’11
In fact, a strong mode coupling between the vacuum dielectric waveguide
mode and the beam streaming mode occurs at the axial wavenumber
satisfying ZkZRg - yi({i - £i). We therefore conclude that the Cherenkov

radiation in a dielectric loaded waveguide is a typical example of the ?

inductive impedance (Sec. 111). Several points are noteworthy in the

analysis of Sec. V. First, the maximum growth rate of instability is
order of the beam plasma frequency. In this regard, the Cherenkov
radiation can be utilized to produce high power microwave. However,
the growth rate of instability decreases substantially with increasing

value of the axial momentum spread. Second, the wavelength of the

microwave radiation generated by this instability can be less than a
centimeter for a subcentimeter beam radius RO. Finally, we note that
the growth rate and bandwidth of instability increase rapidly as the

surface of dielectric material approaches to the beam surface (RO/Rw - 1).

p
i

1112
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11. THEORETICAL MODEL

The equilibrium configuration consists of a relativistic electron
beam column that is infinite in axial extent and aligned parallel to a
uniform aprlied magnetic field Boéz' The electron beam radius is
denoted by RO’ and a finite-impedance wall is located at radius r = Rw.

Cylindrical polar coordinates (r,0,z) are introduced. Moreover, in the

present analysis, we assume

vivg << 1, (1)

where v = Nbez/mc2 is Budker's parameter,

Rw 0
N, = 27 J dr r nb(r) ,

is the number of electrons per unit axial length, ng(r) is the equilibrium

electron density, c is the specd of light in vacuo, -e and m are the

2 .
electron charge and rest mass, respectively, and ypyme is the
characteristic electron energy in the laboratory frame. Consistent with

the low-intensity assumption in Eq. (1), we also assume
2,2
mpb/u)cb << l, (2)

where o

2 2, ; =
ob hne nb/me is the plasma frequency-squared and Gep T

eBO/ybmc is the electron cyclotron frequency. 4
In the present analysis, we investigate stability properties for
the choice of equilibrium distribution function

. L2
fpd 6(L = o P = §me)

0

= 3
fb(H’Pe’Pz) ) 2 I c)2 ) A2 s (3)
mp™ Py T vpMhy
where H = (mzc4 + czgz)l/2 - e¢0(r) is the total energy, P8 = r[pe - (e/2c)rBO] d

is the canonical angular momentum, Pz =p, - (e/c)Ai(r) is the axial

canonical momentum, ¢0(r) and Az(r) are the equilibrium electrostatic , 1
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2,-1/2
07,

and axial component of vector potentials, respectively, Yy T (1 -8
Y, ﬁb’ and A are constants.

In the subsequent perturbation analysis, use is made of the linearized
Vlasov-Maxwell equations for azimuthally symmetric perturbacion; (3/36 = 0)

about a solid electron beam described by Eq. (3). We adopt a normal-

mode approach in which all perturbations are assumed to vary according to

80(x,t) = v(r)expli(kz - wt)] ,

where Imw > Q. Here, w is the complex eigenfrequency and k is the axial

wavenumber . The Maxwell equations for the perturbed electric and

magnetic field amplitudes can be expressed as

g x é(*) = i(w/c)é(&) s

1)
Y x (l/u)é(g) = (4"/C)é(§) - i(w/c)cé(%) ,

where ¢ and u are the dielectric constant and permeability, respectively,

%(E) and é(é) are the perturbed electric and magnetic fields, and

é(%) = —efd3p Y Eb(k'R) ) (5)

is the perturbed current density. Note that ¢ = y = 1 in vacuo.

In Eq. (5),
0 v' x B(x")
P . sy b R 3 0
: £ (xR) = ef-m dt exp(-iwt) {E(x') + - TS £ (6)
L is the perturbed distribution function, 1 = t' - t, and the particle
f trajectories ﬁ'(t') and R'(t') satisfy d¥‘/dt' = x' and dE'/dt' = -ex' x
E g:/c, with "initial" conditions %'(t' =t) = x and X'(t' =t) =y.

14
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NPTV

In general, the permeability v of a dielectric material even in the
wall differs from unity by only a few parts in 105. Therefore, we
approximate y = 1 in the remainder of this paper. Making use of

Eq. (4),1it is straightforward to show that ]

ir<r) - (kc/wc)ﬁe(r) ,

(7)
By(r) = iluc/e(w’e/c? - K))DE () nr)
and
/1 3 ) wz 2\ ¢ - w7
(;g?ra_1‘-+—26 - k )Ez(r) = 4uik p(r) —T'Jz(r) ’
c ¢k
(8)

where Be is the azimuthal component of the perturled magnetic field,
and Er and Ez are the radial and axial components, respectively,
of the perturbed electric field, §(r) is the perturbed charge density

and jz(r) is the axial component of the perturbed current density.

To lowest order, the axial motion of the particle orbit is free-

streaming

P,
z2' =z 4+ —= (t' -t) . (9)
. ym
Moreover, within the context of Eq. (2), we neglect the terms proportional
to gl(r) on the right-hand side of Eq. (6), where gl(r) is the transverse
component of the perturbed electric field. Finally we assume a slow

rotational equilibrium characterized by

2 /2
- “cb zwgb 10 ]
) W *up g (11T ’ (19) ;
Yp¥ch

thereby approximating12

r' =r, (11) : 4
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in the arguments of the perturbation amplitudes on the right-hand side

of Eq. (6).
Substituting Eqs. (9) and (11) into Eq. (g), we obtain the perturbed

distribution function

%(r)--—‘ai——&(r)a—f—g (12)
b TR w - kpz/ym z dp, ’ 12

Carrying out the momentum integration with Egs. (3) and (12), the

differential equation (8) can be expressed as

(-:'Ta—ra—-+ Tz)fiz(r) =

f
(=]
<
A
L ]

A
x

ar Jr 0’
(13)
13 s - _ . .
(r 5t T3z TP ) E,(n) =0, Ry <17 <R,
where
2 2 o’ wrh
T=k——2[2 P 32‘1,
c yb(w - kac + ikA/me)
(14)
2
2 2
p='w_2-k’
c
and the beam radius R0 is defined by
2 2, 2 2 2
Ry = 2¢7 (¥ Yb)/vb(wbwcb i “pbleb) . (15)
For the convenience in the future analysis, we define the
wave impedance Z(w,k) of the wall as
E_(R)
Z(w,k) = -1(wR /c) ———, (16)
Y B_(R)
0w

where Rw is the radius of the finite impedance wall. Evidently, the

golutions to Lq. (13) are given by

AJO(Tr) . 0 <r < RO .

éz(r) - (17)
BJO(pr) + CNO(pr) , R0 <r <R _,

16
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where Jl(x) and NQ(X) are Bessel functions of the first and second kind,
respectively, of order 2. Making use of Eqs. (7) and (16), and the
boundary conditions of iz(r) at r = RO’ we olrtain the dispersion relation,

£3,(8)

—EETET = Fw,k) , (18>

where F(w,k) is the wave admittance at the beam surface defined by

J PRy + g(®R )N, (PR,)

F(uw,k) = pRO Jo(pRo) T g(pr)No(pRo) , (19
and
£ = TR, . (20)
In Eq. (19),
J, (x) xJ (%)
1 YARS 0 (1)

g(x) = - - !
xNo(x) ZNl(x) Jl(x)
and p is defined in Eq. (14). In the remainder of this art cle, we

make use of Eq. (18) to investigate properties of the space charge

wave for various values of wall impedance Z in Eq. (16).
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II1. INFLUENCE OF WAVE ADMITTANCE ON THE SPACE CHARGE VAVLS

For convenience in the subsequent analysis, we denote the root of

Eq. (18) by

E= g (wk) + 15;(w,k) (22)
for a specified value of wave admittance

F = fexp(i¢) = F_+ iF, , (23)

where Er and Ei are the real and imaginary parts of £, and f and ¢ are

; the magnitude and phase angle, respectively, of the general wave

. admittance F at the beam surface. From Eq. (18) with Eq. (23), we note .1l
E Kok |
£79,(¢) |
————— = f exp(-i4) , (24)
SN
* * i
where £ 1s the complex conjugate of { defined by £ = Er - i&i. :

Shown in Fig. 1 are contours of constant phase angle ¢ and modulus
f of the function F = EJl(g)/JO(C) in the complex plane § = &r + iEi.
We note from Fig. 1 that the root £ of Eq. (18) approaches zero or %00
as the magnitude of the wave admittance is reduced to zero, f - 0.

On the other hand, ¢ approaches B8 as f increases to infinity.

On
Here %0 and BOn are the nth root of Jl(aon) = 0 and JO(BOn) =0,
respectively. For specified values of f and ¢, we note that the root
£= ¢ +1g4 can be determined from Fig. 1.

Within the context of Eq. (1, it is very useful in the subsequent

analysis to note that

lw - kac[ << ke . (25)
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In the remainder of this section, we investigate the resistive wall

instabilitylo in general, assuming that all electrons have the same value

of axial camonical momentum, i.e.,

A=0, (26)

Making use of Egqs. (14), (20), and (2g), we obtain,

2 1 2 1/2
q] = 5 {(y[[(y +6)° + 1] /2 _ y(y + ¢)} ,
2[(y + 6)° + 1]

(27
for the resistive wall instability in genmeral. 1In Eq. (27), Q is the
normalized growth rate defined by

Im(w - kac)
G, = - ——, (28)
i wpb/Yb
and the parameters y and § are given by
_0.2.2,,.2
v==k Ro/zybgrgi , (29)
and
_ 2 _ ;2
6= (o - €D/26 L, (30)

respectively. In obtaining Eq. (27), use has been made of Eq. (25).

(a) Inductive impedance with Ei > Ei. Shown in Fig. 2 are plots of

the normalized growth rate Qi versus y obtained from Eq. (27) for

Ei > Ei and several different values of 6. As shown in Fig. 2, Q?
is the maximum growth rate for a given value of parameter &, and yI
is the corresponding value of y. Obviously from Fig. 2, the maximum

growth rate increases rapidly with the increasing value of |[§| in the
inductive impedance case. In Fig; 3, we plot the parameter y;

corresponding to the maximum growth rate versus ¢ (solid line)

obtained from Eq. (27) and y; = -¢ (dashed line). Evidently, we note

20
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I
from Fig. 3 that the maximum growth rate Q? and the corresponding Ym

can be approximated by

n? = (lél/2)1/2 , (31)
and
yo = =5 (32)

for |6] > 1. Substituting Eqs. (29) and (30) into Eq. (32), we
conclude for the inductive impedance that the maximum growth rate of
the resistive wall instability occurs at the axial wavenumber k
satisfying szg

(b) Capacitive impedance with Qi > &i. Presented in Fig. 4 are

2,2 2
= yb(gi - gr) for [§] > 1.

plots of the normalized growth rate Qi versus y obtained from Eq. (27)
for ii > Ci and several values of parameter ¢. As shown in Fig. 4,
we again define the maximum growth rate MT and corresponding y; for a
given value of §. 1In order to illustrate the stability dependence
on the parameter 6, in Fig. 5, we plot the maximum growth rate Q?

2

and corresponding y: versus 8 obtained fror Eq. (27) for 53 > gi. The

growth rate increases rapidly with the decreasing value of |§] for the

capacitive impedance case.

(c) Perfectly resistive with gi = L?. For the perfactly resistive

]
impedance case characterized by

b, =65 (33)
Eq. (27) can be simplified as
Qf = 21 ~— (] 6+ oyt (34)
2(y" + 1)

which gives the maximum growth rate
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at y = 0.577. We therefore conclude that the induct'!ve impedance
case 1s most unstable. In the following sections, we investigate
properties of the space charge waves in perfectly capacitive and

inductive impedances.

LA et e GRPED M= et g - i

22
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IV. SPACE CHARGE WAVES IN A PERFECTLY CONDUCTING WAVEGUIDL

In this section, we investigate pronerties of the space charge
waves in a relativistic electron beam assuming that the wall impedance

is zero, 1i.e.,

Z2=0, (36)
and that all electrons have the same value of axial canonical momentun
(&6 = 0). Substituting Eqs. (21) and (36) into Lq. (19) and defining

= 0l - WPhHRe a7)

we obtain

. I, (KH(R g/Ry) + I5(R g/RK, (q) (38)
IO(qu/Ro)KO(q) = Ip(@Ky(Rya/Ry) °

F(q) =

where Il(x) and Kl(x) are tie modified Bessel functions of the first
and seéond kind, respectively, of order 2. For a real value of q, the
wave admittance F(q) in Eq. (38) is a positive real value (Fi = 0),
thereby giving the phase angle ¢ = 0 in Eq. (23). In this regard, the
space charge wave admittance F in a perfectly conducting waveguide is a
perfactly capacitive, corresponding to the horizontal line £, = 0 in
Fig. 1. Without further analysis, we therefore conclude from Fig. 4
that the space charge mode in a perfectly conducting waveguide is
stable [6§ = » in Eq. (27)].

Figure 6 shows plots of the admittance F = Fr versus ¢ = g
(dashed curves) obtained from Eq. (18) and Fr versus q (solid curves)
obtained from Eq. (38) for RO/Rw = 0.1, 0.5 and 0.9. The horizontal
scale in Fig. 6 represents both £, and q. In Fig. 6, n =1, 2, and 3

denote tne radial mode number of the space charge wave. MNote that

23
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for specified values of q and RW/RO’ the parameter gr is determined from
Fig. 6. Shown in Fig. 7 is plot of Er versus q determined from Fig. 6
for RO/Rw = 0.5. Obviously, the root &, approaches BOn as the parameter
q increases to infinity. This is similar to Fig. 1, since the wave
admittance Ft is monotonically increasing with the increasing value of q.
In order to illustrate the influence of the parameter q on the
space charge mode, we present in Fig. 8 plots of the eigenfunction éz(r)
versus r/R0 obtained from Eq. (17) for (a) n=1, (b)) n = 2, RO/Rw = 0.5
and several values of q. The perturbed axial electric field éz(r) in

Fig. 8 is normalized by

Rw .
j dr r E (r) = 1.
0 z

Sl

It is obvious from Fig. 8 that the axial electric field ﬁz(r) in Eq. (17)
can be approximated by

Aly(By t/R) , 0 <t <Ry,

ﬁz(r) = (39)

o, otherwise ,

for q 2 10. We therefore conclude that inside the beam, the electro-
static eigenfunction of the large axial wavenumber perturbations is
represented by a Bessel function. TFor example, Eq. (39) is an excellent

approximation for the electrostatic eigenfunction of the free electron

laser instability.7’8
Making use of Eq. (20) and (37), Eq. (14) can be expressed as
2 q2
2 “ob
(w - kaC) = 2 [ (40)
b

where the root gr(q) is determined from Fig. 7 for given values of

(Ci + qz)

RO/Rw and n, and use has been made of A = 0. Theeigenfrequency w

and axial wavenumber k are obtained from the simultaneo.:s solution of

24
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Eqs. (37) and (40). Shown in Fig. 9 is a plot of the dispersion curve

in the (w,k) parameter space for n = 1], ROIRw = 0.5, v, = 3, and

b
v/yb = wibRg/4c2 = 0.1. Simultaneously solving Eqs. (37) and (40) for

q and gr(q) give two distinct dispersion curves. The fast wave
mode in Fig. 9 corresponds to the phase velocity Vph = w/k > Bbc

c. ]

< Bb ]

and the slow wave mode corresponds to Vph

After some straightforward algebraic manipulation with the
definition v/Yb = wibkgldcz we can rewrite Eq. (40) by

2 4 1 - w2/k2c2
£ _ 3 ) - 2V
( ke b 3
Yy

, (a1)
2,22 2Ré

= w/k of the space charge

2+ a- W

which determines the phase velocity Vph

wave in terms of the normalized axial wavenumber kRo, the Budker's

parameter v and energy v, of the electron team. In recent years,

there has been a considerable increase in interest in collective ion

acceleration by a slow space-charge wave " in a relativistiz electron
beam. However, the phase velocity of the space charge wave is initially
required to be zero, in order to trap and accelerate ions. In this regard,

we derive the condition for V = y/k = 0 from Eqo. (41). That is,

ph

4y 2 2 2.2
;; = (Yb - 1)[£t(kR0) + k RO] , 42)

where the root Er is determined in terms of the normalized axial wave-
number kRo. For given values of ROIRw and n, the root &r required in
Eq. (42) can be found from Fig. 7 where the horizontal scale q is
replaced by kRO.

Figure 10 is plots of ;r versus RO/Rw for n = 1 and several values
of kR,. The root £ is monotonically increasing to 01 = 2.4 as the

0
ratio ROIRw increases from gzero to unity. Making use of Fig. 10,

' e ST ST ’ Rt ———
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the necessary value of Budker's parameter for the zero phase velocity
' of space charge wave is found from Eq. (42). For example, for kRO =1, y

. Ry/R, = 0.5 and Y = 1.2, we find 4v/yb = 1.46 for V.. = w/k = 0.

ph

' Typical Budker's parameter for the zero phase velocity is order of unity

in a practical range of physical parameters for collective ion acceleration.
Finally, for a small phase velocity satisfying |w/kc| << Bb’ Eq. (41)

can be approximated by

2
2
£ oo () ()]

which is identical to Eq. (42). lowever, from Eq. (43), the Budker's
, parameter is determined in terms of the oscillation frequency w and the

phase velocity vph = w/k required to ion accelerations.
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V. SPACE CHARGE WAVES FOR A DIELECTRIC LOADED WAVEGUIDE

In this section, we investigate properties of the space charge

waves for a solid electron beam in a dielectric loaded waveguide.

The solid electron beam with radius RO propagates through a cylindrical
waveguide loaded with dielectric material in the range Rw <r < Rc'

A grounded cylindrical conducting wall is located at radius Rc'

We approximate the permeability of a dielectric material y = 1. 1In
this regard, the perturbed axial electric field éz(r) and azimuthal
magnetic field ée(r) are continuous across the dielectric boundary at

r = Rw' From Eq. (8), we obtain

13 J AW
(r ar Far T pz)Ez(r) =0, 44)

inside the dielectric material (Rw -r :’RC). Here Py is defined ty
p§ PO @s)
The solution to Eq. (44) can be expressed as
Ep(r) = AJG(p1) = J(p,RN) (p,1) /Np(PyR )] Ge)

where A is an arbitrary constant. Substituting Eq. (46) into Eq. (7),
and making use of the boundary conditions at r = Rw and Eq. (16), we
obtain the impedance

n Jo(MIN (R /R ) =~ J (nR /R IN,(n)
27 T T (N (R TR Y = I (R TR N, ()

47)

at the surface of dielectric material (r = Rw)' In Eq. (47), the

parameter n is defined by -
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Equation (18), when combined with Eqs. (19), (21), and (47), yields a .
closed dispersion relation for tihe space charge wave mode in a dielectric |
loaded waveguide.
Haking use of Eqs. (14), (19), and (20), it can be shown that

in the vacuum dielectric waveguide characterized by w2 = 0 in Eq. (14),

pb
the dispersion relation in Eq. (18) is simplified as

g(PR ) = 0, (49)

where p = (mz/c2 - k2)1/2‘ Substituting Eqs. (21) and (47) into Eq. (49),

we obtain the vacuum transverse magnetic (ITM) mode dispersion relation,

] prJo(pr) 1 JO(”)NO(”RC/RW) - JO(”Rc/Ru)No(”)

- , (50) .
Jl(pr) € Jl(n)NO(ch/Rw) - JO(I]RC/RW)Nl(n)
where the parameter pr is defined by
2.2 2,2,2 2
P Rw = Rw(“ /e” - k7). (51)
! It is instructive to examine Eq. (50) in the limit ¢ - 1.
hw |
4
£y Making use of pr = n, we obtain
Jp(nR /R ) = 0, (52
from Eq. (50) for ¢ = 1. Equation (52) gives the familiar vacuum T™
mode dispersion relation,
2 2 Bgn
w—z' - k==, (53)
c R
: c
) in a perfectly conducting waveguide. Moreover, we can suow that in
the limit of both Rw -> RC and Rv -+ 0, Eq. (50) gives the dispersion
relation in Eq. (53) and,
2 2 Bgn
25 e - b= =, (54)
c RC
28 !
1

’ e e Ve
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respectively. Note that the case Rw + 0 corresponds to a completely
filled dielectric waveguide.

For given values of the dielectric constant ¢ and the ratio Rw/RC,
the parameter PR, is determined from Eq. (50) in terms of n. The
oscillation frequency w and axial wavenumber k in a vacuum dielectric
loaded waveguide are obtained from the simultaneous solution of
Eqs. (48) and (51) for specified n and pr. Figure 11 is plots of the
vacuum TM mode dispersion relation in the (w,k) parameter space for
(a) Rw/Rc = (0.8 and several values of the dielectric constant ¢, and
(b) £ = 4 and several values of tue ratio Rw/RC. We remind the reader
that the thickness of dielectric material increases from zero to Rc
as the ratio Rw/Rc decreases from unity to zero. All plots in Fig. 11
correspond to the first radial mode number ( n = 1). The dispersion

curve for Rw/Rc = 0 in Fig. 11(b) represents tne dispersion relation

of a completely filled dielectric waveguide [Eq. (54)]. On the other

hand, the curves for ¢ = 1 in Fig. 11(a) and for F@/RC = 1 in Fig. 11(b)
correspond to the ordinary dispersjon relation in Eq. (53) where the

phase velocity Vph = w/k is\always faster than the speed of light (w/k > ¢).
However, the phase velocity of the dispersion relation in a dielectric
loaded waveguide is sometimes less than the speed of light (w/k <c).

For example, for Rw/Rc = 0.8 and € = 4 in Fig. 11(a), we find w/k > ¢

for kR <3.3 and w/k <c for ch > 3.3,
It is evident from Eq. (14) and (20) that in the vacuum dielectric
waveguide (w§b = 0), we can equivalently express the combination

of Eqs. (48), (50), and (51) as,

2

w
5 k

SN ORSY) (s5)
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where £(w,k) is determined from Eq. (18) in terms of the wave
admittance F at r = RO. Equation (55) is a compact form of

the vacuum TM mode dispersion relation in a dielectric loaded

waveguide. Shown in Fig. 12 is a plot of w = (k2c2 + Bgncz/kz)l/z

versus k corresponding to a perfectly conducting waveguide and

o = (k2c2 + E2c2/R(2))1/2

waveguide. The straight line w = kac represents the free-streaming

versus k corresponding to a dielectric loaded

mode. In a range of physical parameters, the mode w = k&bc intersects

w = (kzc2 /Rz)l/2 at k = kp’ indicating a possible mode coupling.

In fact, for k > kp in Fig. 12, the phase velocity of the vacuum
dielectric mode is less than the beam velocity. 1In this regard,

10,11 near the intersection

we expect a strong Cherenkov radiation
point of these two modes.

In order to investigate stability properties of the space charge

wave in a dielectric loaded waveguide, it is necessary to numerically

solve Eq. (18) with no a priori assumption that the beam is very tenuous.

However, use is made of the fact that the Doppler-shifted eigenfrequency
w - kac is well removed from the free-streaming mode, i.e., ]w - kbbcl
kac. Evaluating the parameter‘n in Eq. (47) and the wave admittance

F in Eq. (19) at w = wg = kac, the dispersion relation in Eq. (18)

can be approximated by

(g + 8603, (6 + 65)

where
Fo = F(mo,k) . (s7)
the parameter go = E(wo) is defined by
J1€Q)
=3 J,Cy  fo (s8)

and
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8¢ = £ - Co . (59)

Taylor expanding the left-hand side of Eq. (56) about ¢ = & and
making use of Eq. (58), we approximate Eq. (56) by
£ = 60 {1 + ZE—:—;E (3F/3w)w0(w - kaC) s (60)
0 0
where use has been made of the assumption that the term proportional

to (aF/aw)w in Eq. (60) is much less than unity. Substituting
0

Eqs. (14) and (20) into LEq. (60), we finally have the dispersion relation,
2
! [ “pb -1 [i® - o RS
lyz(m - kB, c + ikA/Y3m)2 2/ 0
b b b
(61)
=2 |14 52— GFhw (- k6, o)
0 2, 2 Wy b’ |
50 + FO 0

for the space charge wave in a dielectric loaded waveguide.
Defining the normalized Doppler-shifted eigenfrequency @ by

w - kac

Q= N (62)

wpb/Yb
the dispersion relation in Eq. (61) is numerically investigated for

a broad range of physical parameters. For present purposes, to
illustrate the mode coupling of the space charge wave (w = kac) with
the vacuum dielectric mode, shown in Fig. 13 are plots of (a) FO (solid

curve) and 52 (dashed curve), (b) the normalized growth rate o, = 1mQ
0

i
and (c) Doppler-shifted real oscillation frequency @ = ReQ versus kR

0
obtained from Eqs. (57), (58), and (6l1l), for Ty = 2, ¢ =8, RO/Rw = 0.8,
R.w/Rc = 0.8, and v = 0,0025, The real oscillation frequency in Fig.
13(c) is obtained for zero-axial momentum spread (A = 0). 1In Fig. 13(c),

the solid curve represents the unstable mode and the dashed curves

correspond to stable oscillations. Several points are noteworthy in

3
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Fig. 13. First, the maximum growth rate for instabjlity occurs at

kR, = v, (-e5) 12

corresponding to the mode coupling point kp in Fig. 12.
This is consistent with the inductive impedance in Sec. III. For

example, in Fig. 13, the maximum coupling occurs at kR, = 2 and

0
Eg = -1. Second, the maximum growth rate is order of the beam plasma
frequency, indicating a strong instability. 1n this regard, this
instability can be utilized to generate high power microwave. Third,
wavelength of the microwave radiation generated by this instability can
be less than a centimeter for a subcentimeter beam radius. Fourth,
from Fig. 13(c), we note that the Doppler-shifted real frequency Qr
for instability is negative, thereby implying that the phase velocity
of unstable mode is less than the beam velocity. We therefore conclude
that the instability mechanism is a typical Cherenkov radiation.l1
Finally, the growth rate and bandwidth of instability decrease with
increasing value of the axial momentum spread.

The dependence of stability properties on the ratio Rg/R,, is

further illustrated in Fig. 14, where the normalized growth rate f, = 1lmQ

i
is plotted versus kRO for A = 0, several values of RO/Rw’ and parameters
otherwise identical to Fig. 13. Obviously from Fig. 14, we note that

the growth rate and bandwidth of instability increase rapidly as the
surface of dielectric material approaches to the beam surface (RO/Rw + 1)
for a given beam radius. Shown in Fig. 15 is plots of the normalized

growth rate versus kR  obtained from Eq. (61) for Yy = 1.1547, ¢ = 25,

(0]
and parameters otherwise identical to Fig. 13(b). Even for a moderate
beam energy, the growth rate of instability is also order of the beam

plasma frequency. However, the maximum growth rate of instability is

rapidly decreasing with increasing value of the axial monentum spread.

32
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' Finally, we conclude this section by pointing out that from Figs.
E 13(a) and (b), the maximum coupling of instability occurs when the wave
‘ admittance Fo is negative [the phase angle ¢ = n in Eq. (23)].

In this regard, the root £ can be a pure imaginary value (the Er = 0

1 ’ vertical line in Fig. 1). We therefore emphasize that the wave

admittance F in a dielectric loaded waveguide can be perfectly

inductive in & range of the axial wavenumber k corresponding to instability -
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VI. CONCLUSIONS

In this paper we have investigated properties of the space charge
wave in a solid relativistic electron beam propagating in a cylindrical
l \ . waveguide with an arbitrary impedance Z. The perturbation analysis
l was carried out within the framework of the linearized Vlasov-Maxwell
equations, assuming that v/yb << 1. The formal dispersion relation of k
the space charge wave for azimuthally symmetric electromagnetic
perturbations (3/96 = 0) was carried out in Sec. II, including the important
influence of finite wall impedance Z. In Sec. III, the resistive wall
instability with an arbitrary impedance was investigated, showing that ]
an inductive impedance wall is most unstable. Particularly, the maximum
growth rate of the general resistive wall instability occurs at the

2 2

axial wavenumber k satisfying 2k2R0 = yi(gi - gr). Properties of the

space charge wave in a perfectly conducting waveguide was investigated

in Sec. iV. It was found that the space charge wave admittance

in a perfactly conducting waveguide is purely capacitive, thereby
indicating a stable propagation of the electromagnetic wave. Moreover,
we obtained the condition for the zero phase velocity (w/k = 0), in

connection with collective ion acceleration. Furthermore, it was also

shown in Sec. IV that for short axial wavelength perturbations (kRO/yb 2 10),
the eigenfunction can be represented by a Bessel function. Space
charge wave properties for a dielectric loaded waveguide were investigated

in Sec. V. It was found that a strong mode coupling between the

vacuum dielectric waveguide and beam streaming modes occurs in a range

of physical parameters, exhibiting possibilities of a strong Cherenkov

radiation. The maximum growth rate of instability is order of the

fpvorry

beam plasma frequency. 1In this regard, the Cherenkov radiation can

T

35
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also be an effective means to produce intense high power microwave.

The wavelength of the microwave radiation can be less than a centimeter.
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FIGURE 1

CONTOURS OF CONSTANT PHASE ANGLE ¢ AND MODULUS f [EQ. (18)]
IN THE COMPLEX PLANE ¢ =(§&,, &;) FORn=1RADIAL MODE NUMBER.
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INDUCTIVE IMPEDANCE
2

FIGURE 2 PLOT OF THE NORMALIZED GROWTH RATE £; VERSUS y [EQ. (27)]
FOR ¢ |2 > 52 AND SEVERAL VALUESOF 4.
r
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0 -5 -10 -15

FIGURE3  PLOT OF THE PARAMETER y :“ VERSUS § (SOLID CURVE) OBTAINED
FROM EQ. (27) FOR £2 > £ 2. THE DASHED STRAIGHT LINE IS y:w = -5.
] r
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CAPACITIVE IMPEDANCE

FIGURE4  PLOT OF THE NORMALIZED GROWTH RATE 2; VERSUS y [EQ. (27)]
FOR ¢ rz >t :" AND SEVERAL VALUES OF &.
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CAPACITIVE IMPEDANCE

03

0.1

20

FIGURE5  PLOT OF THE NORMALIZED MAXIMUM GROWTH RATE £, AND |
CORRESPONDING y© VERSUS 5 [EQ. (27)} FOR srz > ¢ f
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12

/
~“Ro/Rw=0.1/ K

0 5 10
q OR &,

FIGURE 6 PLOT OF THE ADMITTANCE F = F. VERSUS ¢ = & (DASHED CURVES)
OBTAINED FROM EQ. (18) AND F, VERSUS q (SOLID CURVES) OBTAINED
FROM EQ. (38) FOR Rg/R,, = 0.1, 0.5, AND 0.9. THE HORIZONTAL SCALE
REPRESENTS BOTH &, AND q.
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FIGURE 7 PLOT OF &£, VERSUS q DETERMINED FROM FIGURE 6 FOR RO/RW = 0.5.
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FIGURE 8a PLOT OF THE EIGENFUNCTION /E\z (r) VERSUS /R [EQ. (17)] FOR
n =1, Rg/R,, = 0.5, AND SEVERAL VALUES OF q.
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FIGURE 8 PLOT OF THE EIGENFUNCTION /E\z (r) VERSUS r/Rq [EQ. (17)] FORn = 2, i
Rg/R,, = 0.5, AND SEVERAL VALUES OF q.
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v/Yp=0.1. Ry/R ,;=0.5.n=1

FIGURE 9 PLOT OF THE DISPERSION CURVE IN THE PARAMETER SPACE (w k) FOR
n=1,Ry/R,, =05, v, =3 AND v/yp=0.1. THE DASHED STRAIGHT LINE
w =k B,c IS THE FREE-STREAMING MODE.
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FIGURE 10 PLOT OF ¢ [REQUIRED IN EQ. (42)] VERSUS Ro/Ry FORn=1AND
SEVERAL VALUES OF kR,
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! A\

FIGURE 11a PLOT OF THE VACUUM TM MODE DISPERSION RELATION IN THE PARAMETER
SPACE (w ,k) OBTAINED FROM EQS. (48), (50), AND (51) FOR R, /R = 0.8 AND
SEVERAL VALUES OF THE DIELECTRIC CONSTANT €.
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FIGURE 11b PLOT OF THE VACUUM TM MODE DISPERSION RELATION IN THE }
PARAMETER SPACE (w.k) OBTAINED F’XOM EQS. (48), (50), AND (51) :
FOR € =4 AND SEVERAL VALUES OF THE RATIO R,/R,. '
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FIGURE 12 SKETCH OF w = (k2c2+ 82 ¢2/R" VERSUS k (CORRESPONDING TO
PERFECTLY CONDUCTING WAVEGUIDE) AND w = (k2¢2 + & 2c2/R(")’)‘/2

VERSUS k (CORRESPONDING TO AN ARBITRARY WALL IMPEDANCE

Z). THE STRAIGHT LINE w =k By,c IS THE FREE-STREAMING MODE.
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T (a) Y,=2. <=8, R /R, =08, R /R .=0.8

1 2 /—
| Gt 0

FIGURE 13a PLOTS OF F (SOLID CURVE) AND £ 2 (DASHED CURVE), [EQS. (57), (58), AND
(61)] FOR v, =2, € =8, Ry/R,, = 0.8, R, /R =0.8, AND v =0.0025. THE REAL
OSCILLATION FREQUENCY IS OBTAINED FOR A =0. ’
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i (b) ‘1b=2, €=§, Ro/Rw=0.8, Rw/ R.=0.8,
v=0.0025

15

FIGURE 13b PLOTS OF THE NORMALIZED GROWTH RATE Q; = ImQ [EQS. (57), (8),
AND (61)] FOR 7, =2, € =8, Ro/R,, = 0.8, R,,/R_ = 0.8, AND v = 0.0025.
THE REAL OSCILLATION FREQUENCY IS OBTAINED FOR A = 0.
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FIGURE 13c PLOTS OF DOPPLER-SHIFTED REAL OSCILLATION FREQUENCY &, = Ref2
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(¢) Y,=2, =8, Ry/R,,=0.8, A=0.R,,/R =0.8,
=0.0025

- ~
’/’/ \\\
- = —
-
- | 1
1 2
kRo //"—

VERSUS kR [EQS. (57), (58), AND (61)] FOR vy, =2, € =8, Rg/R,, = 0.8,
Ry/R¢ = 0.8, AND v =0.0025. THE REAL OSCILLATION FREQUENCY IS
OBTAINED FOR A = 0.
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15 Y4=2. A/Ypme=0, R,/R=0.8, ¢=8 v=0.0025
Ro/Ry=0.8

' R,/Rw=0.6

FIGURE 14 PLOT OF THE NORMALIZED GROWTH RATE Q;=1mQ VERSUS kR [EQ. (61)]
FOR A =0, SEVERAL VALUES OF Ry/R,,, AND PARAMETERS OTHERWISE
IDENTICAL TO FIGURE 13.
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Y,=1.1547, €=25, R/R,,=0.8,

0.6 R,/R.=0.8,v=0.0025

FIGURE 156 PLOT OF THE NORMALIZED GROWTH RATE VERSUS kR [EQ. (61)] FOR
Tp = 1.1547, € =25, AND PARAMETERS OTHERWISE IDENTICAL TO
FIGURE 13.
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