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Viscous-Inviscid Interaction in Transonic Flow

by

Laurence B. Wigton

Abstract

The aim of this thesis is to couple an inviscid two

dimensional steady transonic flow calculation with a

boundary layer calculation. This interaction is especially

important in transonic problems since the boundary layer

has a significant effect on the inviscid portion of the

flow. Here, the inviscid solution is obtained by an

algorithm developed for the full potential equation by

Holst and Ballhaus while the attached and separated

turbulent boundary layer calculations are performed by

Green's lag entrainment method.

Guided by a model problem suggested by Le Balleur,

a viscous-inviscid coupling algorithm is developed.

Theoretical analysis indicates that it coverges rapidly

for attached flows and also performs well for separated

flows. These conclusions are confirmed through a series

of challenging transonic calculations involving both

attached and separated flows. The coupling algorithm

is remarkably stable and allows computation of coupled
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1. Introduction

The aim of this thesis is to couple an inviscid two

dimensional steady transonic flow calculation with a

boundary layer calculation. This interaction is

especially important in transonic problems since the

boundary layer can have a significant effect on the

inviscid portion of the flow. An example of a purely

inviscid pressure distribution and that computed as the

result of coupling with the boundary layer is shown in

Fig. 8.21. As can be seen, the change in the pressure

distribution is quite dramatic. The viscous effects

smooth out the pressure near the trailing edge and

weaken the shock driving it upstream. The shock jump

conditions appear to be affected as well. Indeed for the

purely inviscid solution, the critical pressure coefficient

C shown as a tick mark on the C axis, nearly splits the
p P

shock profile. For the coupled solution, on the other

hand, C is much closer to C downstream of the shockp p

than it is to C upstream of the shock. An intuitive
p

understanding of this phenomenon is provided by the

following argument.

For the purely inviscid case, the flow must be

tangential to the airfoil, both upstream and downstream

of the shock. Therefore, the shock must not deflect the

flow, which forces the shock to be normal to the airfoil.

In the viscous case, on the other hand, the shock subjects
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the boundary layer to a strongly unfavorable pressure

gradient. The boundary layer responds by thickening and

forming a wedge as can be seen in Fig. 8.22. The wedge,

in turn, forces the inviscid flow to deflect. In order

to accommodate the deflecting flow the shock must be

oblique. Hence the difference in the shock jump conditions

observed in Fig. 8.21 is caused by the change from a

normal to an oblique shock.

There are two programs in common use for computing

coupled viscous-inviscid transonic flows. One is the

viscous Garabedian and Korn (VGK) program developed by

Collyer and Lock (see Collyer and Lock [1979] and Lock

[1980]). The other is GRUMFOIL, developed by Melnik, Chow,

Mead and Jameson (see Melnik [1980]). Both programs are

capable of predicting flows around airfoils far more

accurately than is possible with purely inviscid codes.

Each employs the classical iteration procedure to couple

the boundary layer with the outer inviscid flow. This is

set out below.

CLASSICAL ITERATION

Given Geometry Calculate

Inviscid Flow

Given Inviscid Velocity
Calculate Boundary Layer

Use Result of Boundary Layer
Calculation to Update Geometry
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Unfortunately, as is well known, 
the classical iteration

breaks down when the boundary layer separates or approaches

separation. (The precise reasons for this failure 
will be

explained below.) Accordingly, the authors of the VGK

program and of GRUMFOIL expressed 
the need for alternative

coupling procedures to handle separated 
flows more effec-

tively. Such a coupling algorithm is developed 
in this

thesis. The method is a modification of that 
proposed by

Le Balleur [1978]. The modified method converges very

rapidly in regions of attached flow and is 
also capable of

handling regions of separated flow. 
Before describing

this modification of Le Balleur's 
coupling algorithm, we

will first discuss the boundary layer 
calculation and the

inviscid flow calculation.
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2. Green's Lag-Entrainment Method

In the present study the boundary layer is calculated

using Green's lag-entrainment method (see Green et al.

[1977] and East et al. [1977]). This is an integral

method composed of a coupled system of first order ordinary

differential equations. The turbulence modeling is derived

from the Bradshaw-Ferriss [1971] turbulent energy equation.

A useful feature of the method is the provision for per-

forming wake calculations. The method has proven to be

very fast and reliable, making it an ideal candidate for

use in a viscous-inviscid coupling procedure. The method

is in fact used by the VGK and GRUMFOIL programs.
,

When using the displacement thickness (6 ) concept to

represent the influence of the boundary layer on the outer

inviscid flow, it is important to note that all integral

boundary layer methods can be written in the form

A d6 = B - du + C (2.1)
dx u dx

If A=0, then it is impossible to use (2.1) to solve for

d6 /dx in terms of du/dx. In this case it is not appropri-

ate to integrate the boundary layer equations using a

prescribed value of du/dx. This is referred to as the

Goldstein or separation singularity. The separation

singularity can be avoided by integrating the boundary
,

layer equations with a prescribed value of d /dx and

solving for du/dx. This is the so-called inverse mode of
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calculating the boundary layer flow. On the other hand,

if B= 0 somewhere in the interval of integration, then it

becomes impossible to use (2.1) to solve for du/dx in
,

terms of d6 /dx. In this case it becomes inappropriate

to integrate the boundary layer equations with prescribed

values of d6 /dx. This situation is referred to as the

Crocco-Lees singularity.

A sharper criterion for deciding whether to prescribe

d6 /dx or du/dx along the boundary layer edge is provided

by considerations of numerical accuracy. If one is inte-

grating numerically a differential equation of the form

dy = Dy (2.2)dx

then the accuracy of the result depends on the size of Dh

where h is the step size. To ensure numerical accuracy

we would like to grrange for D to be as small as possible.

Equation (2.1) can be rewritten in either of the forms

dbS 1 Bdu *" Cdx = -) + - (2.3)

du =A 1 d )u C
x- *Bdx - B(2.4)6

Comparing the coefficient of 6 in Eq. (2.3) with the

coefficient of u in Eq. (2.4) we see that from the view-

point of numerical accuracy, it is better to prescribe

du/dx at the boundary layer edge when

A 1 V B 1 du
(2.5)

> - - -
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otherwise it is better to prescribe d6 /dx.

It is shown by East [1977] that Green's lag-entrainment

equations imply that
* F2 __*_

dU 8 du F26du
+F - -F F + du- (2.6)

dx 1 2 u dx 1 H u dx

where 6 is the momentum thickness. The third expression

in Eq. (2.6) merely serves to define H = 6 /6. A plot of

F2/H versus a shape parameter H for both the standard

Green's lag-entrainment method and for a modified method

due to East is shown in Fig. 2.1. Separation normally

occurs for H > 2.4 (approximately). For H < 1.6 the

modified and standard method are identical. The modified

method was introduced by East to improve the results

based on Green's method for separated flows. As can be

seen from Fig. 2.1, for separated flows this modification

makes the value of IF2 /HI larger than its corresponding

value yielded by the standard method. For Mach numbers

in the range of transonic interest, F2 /H is never 0 or .

In fact F 2/H is always a well-defined negative number.

The Crocco-Lees singularity which corresponds to F2 /H = 0

does not occur until the Mach number exceeds 1.5. The

separation singularity which corresponds to F2/H 
= - never

occurs. However, in view of the analysis given above, if

we are to expect accurate results when integrating the

boundary layer equations with a prescribed velocity

gradient, we must have

F2  U h l << 1 (2.7)

H u dx
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where h is again the step size. This criterion is dif-

ficult to meet for separated flows because IF2 /Hj attains

such large values. This is all the more true for shock

induced separation because then Idu/dxl is also large.

Since the classical coupling procedure depends on inte-

grating the boundary layer equations with a prescribed

value of du/dx, the inequality (2.7) explains why trouble

can be expected for separated flows even though there is

no separation singularity. This demonstrates the need to

develop coupling procedures which allow one to integrate
,

the boundary layer equations with a prescribed d6 /dx.

An additional reason for the failure of the classical

iteration will be given when we discuss Le Balleur's

method.

Using the same reasoning which led L_ inequality

(2.5) we see that we would prefer to integrate Green's
*

boundary layer equations with a prescribed d6 /dx whenever

HF 2 d1 du
IHd5 < I 2iilIdu 1  (2.8)F2 6"* dx[ u dx I  28

For typical airfoil calculations Eq. (2.8) usually

indicates that Green's lag-entrainment equations should be

integrated with a prescribed value for d6 /dx everywhere

except in the far wake region.

In both the VGK and GRUMFOIL programs the effect of

the boundary layer on the inviscid flow is represented

through a surface transpiration condition

_ 1 d *Pu6 29

Vn Pe d(PUe ) (2.9)

S1
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In this formula

v n= normal velocity

Pe = density

u = tangential velocity

d = derivative in tangential direction

According to the analysis presented by Le Balleur

[1977], use of Eq. (2.9) avoids the Crocco-Lees singularity;

that is, if we define m = PeueS and use the integral

boundary layer equations to derive an equation of the

form

A' _ B' M u + C' (2.10)
dx u dx

then the coefficient B' never vanishes (regardless of

Mach number). This fact is easily verified for Green's

lag-entrainment method by numerical computation.

Another advantage of the surface transpiration

condition (2.9) is that it does not require the regenera-

tion of a mesh after each iteration, as would be necessary

if the displacement thickness concept were implemented

exactly.

In the present study, both the displacement thickness

and the surface transpiration concepts are implemented.

0_
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3.0 Inviscid Analysis

Calculation of steady inviscid transonic flows is a

formidable task. The equations governing transonic flow

are inherently nonlinear and change type within the solu-

tion domain, from elliptic in subsonic regions to hyper-

bolic in supersonic regions. Moreover, one must provide

for embedded shocks, the positions of which are to be

calculated as part of the solution. The most successful

numerical methods for calculating inviscid transonic flow

on a routine basis use finite difference schemes. There-

fore, only these methods were considered for use in the

viscous-inviscid coupling problem.

Magnus and Yoshihara [1970] solved the unsteady Euler

equations using an explicit second-order difference scheme

similar to that developed by Lax and Wendroff (see Lax

[19541). The unsteady equations are always hyperbolic.

Thus the problem of dealing with equations of mixed type

was circumvented. The difference scheme effectively added

a numerical viscosity which allowed shocks to appear as

rapid but continuous changes in the flow. This allowed

shocks to be captured as a natural part of the solution.

The disadvantages of the method of Magnus and Yoshihara

are two-fold. Firstly, the equations were solved in

Cartesian coordinates which forced them to employ a

cumbersome set of embedded meshes to enforce the boundary

conditions on the airfoil. Secondly, the rate at which

0i
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the unsteady solution approaches the desired steady state

solution is very slow. Therefore, the method is computa-

tionally expensive. Of course, considerable progress has

since been made in solving the Euler equations (see for

example Beam and Warming [1976]). However the calcula-

tions are still very expensive. Therefore it was

decided not to solve the Euler equations as part of our

viscous-inviscid coupling problem, but to rely on the full

potential equations.

A significant forerunner to modern methods for solving

the latter was provided by Murman and Cole [1971]. In

this the small disturbance eq-ations were solved with cor-

responding boundary conditions. Type dependent differencing

was introduced. Centered differences were used in elliptic

regions while upwind differences were employed in hyper-

bolic regions. A special shock point operator was incor-

porated to preserve the conservative nature of the scheme.

The difference equations were solved by successive line

over-relaxation (SLOR). The resulting calculation is

faster than the methods for solving the Euler equations

by several orders of magnitude.

Encouraged by the success of Murman and Cole, Jameson

[1974] developed methods for solving the non-conservative

form of the full potential equation:

(a 2 _D xx- 2¢ D c +(a - 1 _D = 0 (3.1)x x x y xy y yy

(see for example Shapiro [1953]). A circle plane mapping

I{
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which transformed the exterior of the airfoil to the

interior of the unit circle was employed. This allowed

the exact boundary conditions at the airfoil to be easily

enforced. Upwind differencing in the direction of the

flow was used. Also artificial time terms guaranteed the

stability of the method. The difference equations were

also solved using SLOR.

Later Jameson [1975] extended his method to the

conservative form of the full potential equations:

(pDx)x +(p y)y = 0 (3.2)

This conservative form is to be preferred over the non-

conservative form because it assures the proper jump con-

ditions across shocks. If the non-conservative form (3.1)

is used, then the shock location is mesh dependent.

In an attempt to improve the rate of convergence to

the solution of inviscid transonic flows, Ballhaus,

Jameson and Albert [1978] developed an implicit approxi-

mate factorization (AF) algorithm. The method was applied

to the steady state transonic small disturbance equation

and enjoyed a rate of convergence 5-7 times as great as

that achievable by the SLOR algorithm. Holst and Ballhaus

[1979] followed up on this success by applying the (AF)

algorithm to the conservative full potential equation in

Cartesian coordinates. Holst [1979] later extended the

method to a numerically generated body fitted coordinate

system, which allows the exact boundary conditions at the
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airfoil to be implemented easily.

The fastest method for solving the full potential

equation numerically was developed by Jameson [1979]. In

this a multiple grid method developed by Achi Brandt [1979]

is combined with an Alternating Directions Implicit (ADI)

scheme similar to the (AF) scheme developed by Holst and

Ballhaus. The ADI scheme acts as the smoothing algorithm

necessary for the success of the Multiple Grid method. The

resulting Multigrid Alternating Direction (MAD) method con-

verges very rapidly indeed. A typical calculation requires

only about 10 iterations to achieve convergence.

For the purpose of calculating a coupled viscous-

inviscid flow it was decided not to use Jameson's MAD

method. This decision was based on the difficulty in

implementing multigrid methods. More importantly, it is

difficult to construct a coupling algorithm which is suf-

ficiently rapid to take advantage of the speed with which

MAD calculates the inviscid flow. Thus using MAD would not

necessarily improve the rate at which a coupled viscous-

inviscid calculation can be carried out. Accordingly, it

was decided to use the (AF) scheme developed by Holst.

This method is also very fast and reliable. Moreover, it

is well documented allowing it to be easily implemented on

the computer.

3.1 Motivation for Approximate Factorization Schemes

An intuitive motivation for approximate factorization

(AF) schemes is provided by the following considerations.
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Suppose that it is required to solve a problem of

the form

L = 0 (3.3)

where L is an operator. Given an approximation 4n to 4

and an approximation N to L, we might be able to find a

better approximation to 4 by solving

N(n+l n L n (3.4)

Indeed, in the case where L is linear and N=L, then

solving Eq. (3.4) for )n+1 yields the exact solution to

Eq. (3.3). We can introduce over-relaxation into the

algorithm indicated by Eq. (3.4) by solving for

0 n+l* - 4n+l + (lw)O n (3.5)

which implies that

0 n+l n _ n (3.6)

If N is linear, then Eqs. (3.4) and (3.6) yield

N((n+l) n -)n ) = wN(n -n ) =-L n  (3.7)

Thus the version of Eq. (3.4) which includes over-relaxa-

tion can be written

N( n+l _,n) =_-Lon (3.8)

In this formula, LO n is the residual which is a measure of

thhow well the operator is satisfied by the n level solution
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n . is the relaxation parameter and c = n+l n is the

correction. The iteration given by Eq. (3.8) can be

regarded as an iteration in pseudo-time, where the super-

script n indicates the time level of the iteration. In

the approximate factorization scheme, N is chosen to be

the product of two or more factors indicated by

N = N1N2 (3.9)

The factors N 1 and N2 are chosen so that they are easily

invertible, their product is an approximation to L, and

the iteration indicated by Eq. (3.8) is stable.

3.2 Artificial Density

When solving the full potential equations in conserva-

tion form Eq. (3.2), the shock jump conditions are

[ptx]nx+ [py ]ny = 0 (3.10)

In this formula (nx ny) is normal to the shock and [ ]

denotes the change in a quantity when crossing the shock.

Unfortunately, Eq. (3.10) is not enough to ensure unique-

ness of solutions. Non-admissible expansion shocks, for

example, are not excluded by Eq. (3.10).

One iethod to ensure uniqueness is to add viscous

terms. Yiscous terms occur naturally in the Navier-Stokes

equations. They guarantee that shocks are regions of rapid

but continuous change and exclude the possibility of expan-

sion shocks. When solving the inviscid flow equations

involving shocks, it is customary to add numerically
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convenient viscous terms which smear shocks over three to

four mesh points and also exclude physically unrealistic

solutions.

In earlier attempts to solve the inviscid transonic

flow equations, artificial viscosity was explicitly added

through type dependent difference schemes. Centered dif-

ferences were used in elliptic regions and upwind dif-

ferences were used in hyperbolic regions. Recently it has

been discovered that it is more convenient to add artificial

viscosity by retarding the density. The method used in the

present study is to use p given by

P : P- 1 s As (3.11)

where:

= derivative of p in the streamwise direction (3.12)Ds

As = mesh width (3.13)

Min[C(M2-1),I M > (
= (3.14)

0 M < 1

M = Mach number (3.15)

C = bias coefficient, usually 1.5 (3.16)

For completeness we mention that

2 = 2+2
x y (3.17)

p = (1-V 2 ) 1 / ( - I ) (3.18)
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12  T7_ V2 /(l-V2 ) (3.19)y-i

y = ratio of specific heats = 1.4 for air (3.20)

where the velocity V is normalized by the maximum velocity
Vm and the density p is normalized by the stagnation

density.

Numerical experiments reveal that in order to main-

tain stability, ;p/Ds must be calculated using upwind

differencing. Also pressure overshoots upstream of the

shock can be avoided by using the Mach number M computed

one mesh point upstream in Eq. (3.14).

From the above formulas it is evident that

p= p when M < 1 (3.21)

while for supersonic flow p is retarded in the upstream

direction by an amount which increases with Mach number.

Formula (3.14) ensures that p is never retarded for more

than one mesh point. In place of Eq. (3.2) we now solve

(px)x +(pPy)y = 0 (3.22)

The new jump conditions become

[P xInx + [PeDy ]ny = 0 (3.23)

From Eq. (3.11) we see that as As- 0, p -p. Thus by

comparing Eq. (3.23) with Eq. (3.10) we see that the exact

shock jump conditions are enforced as the mesh width tends

to 0.

4



17

The artificial density method is a convenient way of

introducing artificial viscosity which preserves the

proper shock jump conditions. Moreover, as we shall see,

it permits the full potential equations to be solved

using an approximate factorization scheme.

3.3 Approximate Factorization Applied to the Full

Potential Equation

In order to solve Eq. (3.22) we introduce the finite

difference analog:

4-4. 4- -

L = (6x "i+i,j 6x +6 y pi,j+j 6y ) ij (3.24)

The first factorization introduced by Ballhaus, Jameson

and Albert (1978] referred to as AFl corresponds to

aN =- (a-x i+ 6 X )(a - 6 y Pj+i 6y) (3.25)

where a is a positive number which is part of a parameter

sequence chosen so as to optimize the rate of convergence

of the algorithm (3.8). In general large values of a

reduce high frequency errors while small values of a

reduce low frequency errors. The best sequence of

parameters to use for any particular problem must be

determined experimentally since the problem is non-linear.

However, Ballhaus et al. [1978] do provide rough guide-

lines based on a linear analysis. Fortunately, almost any

reasonable choice of parameter s ,ence leads to an algo-

rithm which converges much faster than SLOR.

The AFl scheme indicated in Eq. (3.25) performs very
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well for subsonic flows but not for supersonic flows. A

heuristic argument explaining this behavior will now be

presented.

If we regard 0 n+l n to be Ot, then the left-hand

side of Eq. (3.8) with N given by Eq. (3.25) contains a

t term. In regions of subsonic flow the right-hand side

of Eq. (3.8) is an elliptic operator, whereas in regions

of supersonic flow it is hyperbolic. In subsonic regions

we can model the AFI algorithm with the equation

Ot =  xx + 0 yy (3.26)

while for supersonic flow we use the model equation

t xx yy (3.27)

Assume solutions of the form

eat+i(ax+by) (3.28)

where a and b are real constants. Substitute Eq. (3.28)

into Eqs. (3.26) and (3.27) and solve for a. We find

1(a2+b2) for subsonic flow
2_= (3.29)

Sa 2  for supersonic flow

In'the subsonic case we see that always remains bounded

with time but this is not true in the supersonic case.

This explains the behavior of the AFI scheme. The t

term, which is implicitly introduced, is compatible with

subsonic flows but not with supersonic flows.
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Time dependent terms of the form xt or yt' on the

other hand, are compatible with both subsonic and super-

sonic flows. Indeed, if we consider

Oxt = xx + yy (3.30)

xt =  xx-yy (3.31)

and assume solutions of the form given in Eq. (3.28), then,

in both cases, we find that a is purely imaginary so that

is bounded with time.

Accordingly, Ballhaus et al. [1978] developed a second

approximate factorization scheme called AF2 which intro-

duces the proper time dependent terms. The version of AF2

used in the present study is given by

aN = (a + y Pj+1)(a6y+ 6 x "i+ 6x) (3.32)

In order to enhance further the stability of AF2, a term

of the form

Sa 6 x (3.33)

is added to the second factor for N given in Eq. (3.32).

For subsonic regions a is usually assigned the value 0.3.

For supersonic regions 8 is a user defined constant

attaining values as large as 9.0 for particularly chal-

lenging flows. The double arrow notation indicates that

the difference is always upwind and the sign is chosen so

as to increase the magnitude of the diagonal terms in the

matrix for the second factor of N. The first factor for N



20

is a bidiagonal matrix while the second is a tridiagonal

matrix. Thus both factors are easily inverted. Moreover,

AF2 has proven to converge rapidly and reliably for many

challenging inviscid flow calculations.

3.4 Extension to a General Coordinate System

In order to apply the boundary conditions accurately

at the airfoil surface, we must use a body fitted co-

ordinate system. The transformation of the full potential

equation (3.2) to a general coordinate system will now be

derived.

If we invoke the summation convention, then the

conservative form of the full potential equation is

6 (P 0 (3.34)

where:

0 if i j

ij 1 if (3.35)

Let the general coordinates be denoted by Yi" The Jacobian

matrix of the transformation is given by

J = (axi/ay j ) (3.36)

Define the matrix (g ij) by

(xg
k axk(gij j jj = ( _-i - (3.37)

The inverse matrix (gj) of (gij) is then
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(giJ) j -l(jT)-i ( y (3.38)

axk axk

Also set

g = det(gij) = (det J)2  (3.39)

An element of volume dV will be denoted by dx in the

Cartesian coordinate system and will become /g dy in y

coordinates. If w is any infinitely differentiable func-

tion with compact support then we have:

a i (p -)w dx
[ ij Dx ( axj d

;d (integration by parts)=- ij P x. ax i d

a t 6YJ k ;w a3y

= i P - -a y idy

at 2. k

3 Yk aYk g V g dy

P ,ggk t) dy

a- 1 k. )w

-g zY aYk

Comparing the first and last expressions we conclude that

in y coordinates, the full potential equation is given by

a(p gkk at 0 (3.40)

Once a mesh has been generated, the x coordinates are

known in terms of the y coordinates. This allows us to

If
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compute (g ij) from Eq. (3.37) and hence (g1 3 ) from Eq.

(3.38) and g from Eq. (3.39). This provides us with the

metric coefficients required in Eq. (3.40). Also in y

coordinates we have

V2 = = 2ij a( a(
ij ax i ax (3.41)

2
allowing us to compute p and M

Naturally, in solving Eq. (3.40) we replace p with p

and use the finite difference analog of Eq. (3.40). The

precise algebraic details may be found in Holst [1979].

The AF2 scheme used in the present study was the finite

difference version of

aN = 22a +-+- g g, (3.42)
dy 2  a2 1y Iy

The finite difference operators were chosen so as to make

the diagonal terms as large as possible in absolute value.

Two versions of the code exist. The first uses

Cartesian coordinates and applies the boundary conditions

according to

d6*
/x = f' + a at y = 0 (3.43)

y xdx

where f' is the slope of the airfoil and d6 /dx is the

slope of the boundary layer displacement thickness. This

version of the code is intended for testing various viscous-

inviscid coupling techniques.

The more exact version of the code uses Eisman's

[1979] method to generate a body fitted mesh and imposes
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the boundary condition

1 *
Vn = ue  s (3.44)

at the airfoil surface and along the wake centerline.

Eisman's method was chosen to generate the mesh because

it is very fast and gives excellent control. A typical

mesh is shown in Figs. 3.1 and 3.2. Note that the mesh is

designed to conform with both the symmetric airfoil and

the wake at the centerline. This makes it easy to

implement the boundary conditions nenessary to solve the

viscous-inviscid coupling problem.
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4. Le Balleur's Model Problem

Although Le Balleur's [1978] method for analysing

viscous-inviscid coupling algorithms is relatively easy, it

has not yet received the recognition in this country that

it deserves. Therefore, some aspects of his theory will be

presented in detail.

In order to gain insight into coupling algorithms,

Le Balleur considers a model problem. The inviscid flow

is assumed to be governed, over the half plane y>O, by

the linearized small disturbance equation

(1-M 2 +4 = 0 , (4.1)

where the Mach number M is constant and the full potential

is given by

'D= u (x+4) (4.2)

so that the inviscid velocity u is given by

U = (Dx = u (l +¢ x) (4.3)

du =- x (4.4)

The boundary layer is assumed to be governed by the equation

U_ - A+B du (4.5)
dx dx

where A and B are constants. For convenience we introduce

C V- (4.6)
dx
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and rewrite the boundary layer equation as

a = A+ B du (47)

The boundary conditions for the inviscid flow are applied

in a small disturbance fashion so that

y = f' +a at y = 0 (4.8)

where f' is the slope of the body about which we are com-

puting the flow.

We will have a coupled viscous-inviscid solution if we

can determine a so that the inviscid velocity gradient

(evaluated at y=0) agrees with the velocity gradient com-

puted from the boundary layer equation. Suppose that such

a distribution of a is given to us. In order to analyse a

particular algorithm for calculating a coupled solution,

ivxLe Balleur perturbs the exact a by Aa = ce He then

applies the coupling algorithm to see if the error in a is

increased or decreased. The analysis of the classical

iteration, for example, is now described.

ivx
If we perturb the exact a by an amount Aa = e i

, it

follows from Eqs. (4.1) and (4.8) that the exact ¢ will be

perturbed by A4 governed by

(l-M 2)( A)xx +(A)yy = 0 (4.9)

where

(A)y Ee at y= 0 (4.10)

Introduce
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= 1-M 2 I (4.11)

If the inviscid flow is subsonic, then Eq. (4.9) may be

rewritten as

2 (As)xx+ (A,)yy = 0 (4.12)

The solution to Eq. (4.12), subject to the boundary con-

dition (4.10), is

ivx - Vy
A = -e (4.13)

The solution involving e+ 8Ny is discarded because it is not

well behaved for y--. Now, using Eq. (4.4), we see that

this perturbation of d causes the inviscid velocity gradient

(at y=O) to be changed by the amount

A()du _ i x  (4.14)

The velocity gradient which the inviscid flow imposes on the

boundary layer differs from the exact velocity gradient by

the amount shown in Eq. (4.14). Thus, by Eq. (4.7), the

boundary layer is forced to respond by giving a value of a

which is in error by

vBu

Act = Le (4.15)

Thus in the subsonic case, the classical iteration mutliplies

ivxthe original error in a, namely Aa =Ee , by a factor

,vBu.
- for M < 1 (4.16)

Similarly for the supersonic case we find
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2
-2 (A¢)xx +(A)yy = 0 (4.17)

iVx -i6vy
e ve (4.18)

Only the right running wave is considered in Eq. (4.18).

Following the same steps as those used to derive Eq. (4.16)

we find

-ivBu
= for M > 1 (4.19)

The classical iteration will converge only if jip < 1

for all possible values of v. The latter lie in the

approximate range

7T <  V 4Ax--(4.20)

where Ax is the mesh width and L is the size of the computa-

tional domain. Also we should note that for separated flows,

Bu becomes large. Thus, for separated flows computed on

fine grids, we can easily expect that IpI > 1 in either the

subsonic or supersonic case. This provides the second

reason for expecting the classical iteration to fail for

separated flows. If we refine the mesh sufficiently so that

we can accurately integrate the boundary layer equations

with a prescribed velocity gradient when the flow separates,

we can easily force vij >1, so that the viscous-inviscid

coupling will diverge.

It is of interest to see how the classical iteration

operates when under-relaxation is employed. For this

purpose it is useful to note that, according to the above

analysis, the classical iteration can be viewed as a
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ivx
linear operator £ with eigenfunctions e

£(e i xx ) = vie i N)x  (4.21)

where the eigenvalue p is given by

6 for M < 1

ivBu, for M > 1

When relaxation is employed with relaxation factor w the

linear operator £ is replaced by

£ = £L + (1-W)I (4.23)

where I is the identity operator. Note

LO = I (4.24)

LI = £ (4.25)

From (4.21) and (4.23) we see that

L (e iVx [t + (1-w)e i \ x  (4.26)

Thus elVx is also an eigenfunction of £ with corresponding

eigenvalue

= + (l- ) (4.27)

Note that

P0 = 1 (4.28)

= (4.29)
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As w decreases from 1 to 0, p varies from p to 1.

Geometrically, if 0 w < 1, then the relationship between

1j, 11 and 1 is as shown in Fig. 4.1. We can guarantee

the convergence of the classical iteration if we can choose

w so that a(£ ), the set of eigenvalues of X , lies within

the unit cir'cle. From (4.22) we see that if M> 1 then con-

ditions are as shown in Fig. 4.2. It is geometrically

clear that if -.e make w sufficiently small, we can arrange

for a(£ ) to lie within the unit circle and thus ensure

the convergence of the classical iteration in this case.

Similar remarks apply when M> 1 and B> 0. When the flow is

subsonic, conditions are as shown in one or other of Figs.

4.3 and 4.4.

In the first case we can choose w so that o(£ ) lies

within the unit circle, but in the second case thus is not

possible.

Summarizing these results we see that for supersonic

flow the classical iteration can always be stabilized by

under-relaxation. For subsonic flow the classical itera-

tion can be stabilized by under-relaxation when B < 0 but

not necessarily if B> 0.

For Green's lag-entrainment method we always have

B < 0, so that the classical iteration can always be stabi-

lized by under-relaxation. However, it is still not a good

idea to use the classical iteration when the flow separates

because in this case we cannot integrate the boundary layer

equations accurately with a prescribed velocity gradient.

Moreover, the under-relaxation parameter can become so
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small that this method is rendered too slow for practical

use. We really must search for a coupling algorithm which

allows us to integrate the boundary layer equations with a

prescribed value of d /dx.

Perhaps the most natural coupling algorithm which

allows one to integrate the boundary layer equations with

a prescribed value of d6 /dx is the so-called inverse

method:

Inverse Iteration

Given d6 /dx calculate the
boundary layer

Given du/dx from the boundary
layer, calculate the inviscid
flow

Use the results of the inviscid
flow calculation to update
d */dx

Since we can associate a linear operator £ with the

classical iteration, we can associate the inverse operator

£-i with the inverse iteration. If we apply £-1 to both

sides of Eq.(4.21)., we find that

-leivx =i x (4.30)

Ie e)(4.30

where

I
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* for M < I

o> (4.31)

B- for N1 > 1
vBu.

Thus X-1 has the same eigenfunctions as £ with corresponding

eigenvalues which are the reciprocals of those of £. The

largest values for 11iI occur for low frequencies. In view

of Eqs. (4.20) and (4.31) it follows that

max 11i = -uL (4.32)

Thus max 11iI is proportional to the size of the computa-

tional domain L. In cases where max 1111 >> 1, the size of

the relaxation parameter w required to produce convergence

should vary inversely with L.

Confirmation of this result is provided by a calcula-

tion performed by Melnik [1976]. In this the boundary

layer equations are integrated using a prescribed value

of d6 /dx to yield du/dx. Since the flow considered by

Melnik is incompressible, the inviscid flow can be solved

with a prescribed distribution of du/dx using a Hilbert

integral. Convergence of this inverse iteration scheme was

first achieved over a computational domain [0,3] using

w= .15. When the size of the computational domain was

increased to [0,20.791] Melnik found it necessary to

reduce w to the value .02. Hence a seven-fold increase in

the size of the computational domain did indeed require

roughly a seven-fold decrease in the size of w.
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In general the size of the relaxation parameter

required to stabilize the inverse iteration over a reason-

able sized computation domain is disappointingly small.

Also the inverse iteration requires that the inviscid flow

be computed with a prescribed value of du/dx. This

requires performing a design calculation which is

particularly difficult in transonic flow involving shock

waves. Accordingly, Le Balleur develops a semi-inverse

method which allows one to calculate the boundary layer

with a prescribed d /dx (inverse mode for the boundary

layer) but also allows the inviscid flow to be calculated

with a prescribed geometry (direct mode for the inviscid

flow).
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5. Semi-Inverse Method

Our derivation of the semi-inverse method differs

from that given by Le Balleur. Moreover, as we shall see

the formula we derive for use in supersonic regions dif-

fers from his.

Let a e denote the value of a which is the solution

of the viscous-inviscid coupling problem. The corresponding

velocity gradient will be denoted by due /dx. Then it fol-

lows from Eq. (4.7) that

e due

ae A + B due (5.1)

Suppose as in our previous analysis

a = ae +A = ae +eeiX (5.2)

The corresponding velocity gradient du/dx calculated from

the boundary layer equation satisfies

= A + B dii (5.3)

dx

Subtract Eq. (5.1) from Eq. (5.3) and use Eq. (5.2). Then

Le =
x du due
Sdx d (5.4)

For M< 1, it follows from Eq. (4.14) that

u ce ivx . du due (5.5)
8 dx dx

where du/dx is the velocity gradient calculated from the

inviscid flow (at y=0). Now subtract Eq. (5.5) from
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Eq. (5.4). Then
U V9

1 )UEeV ix du -du
(B dx dx (5.6)

which can be written as

Aa = ce aivx du du (5.7)
B uB x du

th n tIf at the n iteration a= a , then the (n+l)th

iteration provides the required solution if an+l = a e

According to Eqs. (5.7) and (5.2) this will be the case

if

n+l -n - B _____ du du (5.8)
uwBv- dx dx

where M <1.

Similarly if we start with Eq. (4.18) and use Eq.

(4.4), we find that for M> 1

iu i eix = du due
B - ---x-(5.9)

-dx djx

Subtract Eq. (5.9) from Eq. (5.4)

iuV(+ _ )se ix_ du du
x= dx (5.10)

In order to eliminate the annoying imaginary term

iu v/e we first differentiate Eq. (5.10) with respect

to x:

ivx 2 2
i2(1 +du d u (5.11)

B a e =dx2  dx 2

Multiply Eq. (5.11) by u.B/5 and subtract from Eq. (5.10).

Then
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2 2
+ u2,B2 ivx du du

B 2 dx dx

, I dx d d] (5.12)

We now use the same reasoning which led to Eq. (5.8) to

obtain

n+l n Ba (uB [d2 d2ul
u!B 2 v2 +6 dx dx

- [du - du (5.13)

where M >1.
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6. Analysis of Semi-Inverse Method

When the error in a is simple harmonic with frequency

v, it can be eliminated, with use of formulas (5.8) and

(5.13), for our model problem, in one iteration. Unfor-

tunately, however, the error in a will actually be a super-

position of harmonics with frequencies v' limited only by

the mesh width and the size of the computational domain.

Accordingly it behooves us to investigate the performance

of Eqs. (5.8) and (5.13) when

S= e + e (6.1)

where v' can be any frequency in the range

2. < V (6.2)
L Ax

Consider the subsonic case first. Since M< 1 it

follows from Eq. (5.7) that

Ee - uBv' d- (6.3)

If we substitute Eqs. (6.1) and (6.3) in Eq. (5.8) we

obtain

n+l e 8-Bu 0' ivx
a a + -Bu )Ee (6.4)

Thus, the error in a due to a frequency v' is multiplied

by the factor

8-Buy,'

) 1 -- Bu v (6.5)

U
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Since B< 0 for Green's lag-entrainment method, it is

apparent that I(v')I < 1 for all possible v' if we ciloose

to be the maximum possible frequency:

= V max m T/Ax (6.6)

With this substitution Eq. (6.5) becomes

- Bu v'j (v') = 1 - 8-Bu ma (6.7)
BOvmax

For attached flows it is usually found that IBu,v <<

for all possible v unless a very fine mesh is used. From

Eq. (6.7) we see that for attached flows we would expect

1(,') - 0 (6.8)

indicating that Eq. (5.8) works very well in this case.

For separated flows, on the other hand, we can expect

I Bu,,v maxi so that

Bu' -
W)= 1 Bucvmax (6.9)

For high values of the frequency v' this becomes

1(v') = 1-,'/Vmax  (6.10)

while for low frequencies

1 + (6.11)

Bu vmax

(We recall that B<0 so that I(v')i < 1.) Hence in the

separated case high frequency errors are reduced sub-

stantially with each iteration, while low frequency errors
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are also reduced but only slowly. Experimental verifica-

tion of these results will be given later.

Now consider the performance of the supersonic itera-

tion formula (5.13) when a n is given by Eq. (6.1). It

follows from (5.12) that

1 uB( ,)2"__

+ B2 )EelV'

du du uOOB d2- d2u
-dx dx dx 2  dx 2  (6.12)

Substitute Eqs. (6.1) and (6.12) into Eq. (5.13). Then

2 + 2B(2 W) 2
( n+ 22 2  )-e X (6.13)

S+uB V

Again it follows that if we choose v=vmax' then errors of

all frequencies will be reduced. Moreover, just as in the

subsonic case, high frequency errors are always substantially

reduced, while low frequency errors are reduced only slowly

when separation occurs.

When actually implementing formulas (5.8) and (5.13)

we use

V = I/Ax , u = u , 11 = II-M2 I (6.14)

where Ax is the local mesh width, u is the local inviscid

velocity and M is the local Mach number. Formula (5.8) can

be written in a form which agrees with that of Le Balleur

[1980] if we introduce the non-dimensional parameter B

B - B (6.15)
u
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Substitute Eqs. (6.14) and (6.15) into Eq. (5.8). Then

n+l n 6 B$u 1 du 1 du
-s A = ,, - - - ] ( 6 . 1 6 )

u6 B r/Ax-8u U U

As convergence is achieved, uu. Therefore, Eq. (6.16)

is equivalent to using

an+l _ an 6*1 d d (627)-a Z--d u X.
6 Bv/Ax-8 u

which is precisely Le Balleur's result.

For supersonic flow, on the other hand, Le Balleur

gives a formula which is equivalent to

n+l n B6du d (6 18)a -a = u2B2 2 + 2 fu dx _2 d 2 } (618

u B dx: dx

That is, the term involving

du du (6.19)dx dx (.9

is omitted. Le Balleur's formula (6.18) can be analysed

in the same manner as Eqs. (5.8) and (5.13). Indeed if we

assume that an is given by Eq. (6.1), then from Eq. (5.11)

we have

iu i' 2- 2iv,(. 1 + --- )ce iv'x . d u d u (.0

B------ (6.20)dx d

If we substitute Eqs. (6.1) and (6.20) into Eq. (6.18) we

find that the error in a , namely e is multiplied

by the factor

i8Bu,' - (Buy' )2

= 1 + 2 2 (6.21)

82 +(u Bvj ma)

If IBu v'l >>$ for all possible v' (this is
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characteristic of separated flows) then Eq. (6.21) yields:

11W) = 1 - (V'/max)2  (6.22)

In this case I(v')I <1 and we would expect convergence.

If, however, for some frequency v' we have IBuv1'I <<8

(which is characteristic of attached flows), then Eq.

(6.21) gives

i8Bu 't

(V) 1 + + (uBv )max2 (6.23)

In this case Ip(v') > 1 so that we would not expect

convergence.

In summary we would expect Le Balleur's formula

Eq. (6.18) to converge for separated or nearly separated

flows, but note that it may fail to converge when the

boundary layer is attached.

Naturally, both Eqs. (5.13) and (6.18) were tested

numerically in a transonic calculation. In the super-

sonic region ahead of the shock, where the boundary layer

is firmly attached, formula (5.13) converged very quickly.

On the other hand, (6.18) failed to converge. This

numerical test confirms the theoretical analysis given

above.
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7. Connection with the Carter Algorithm

At the 1979 AIAA Conference held in Williamsburg,

Carter [1979] proposed a simple coupling algorithm of

the form

* n+l *i

(6 ) = (6 n (7.1)u

Multiply Eq. (7.1) by u and differentiate. Then

n+l du *)n+l n-+()n du

cx-u (6.= dx*n (7.2)-

As convergence is achieved u-u and (6*)n+l -(6*)n.

Accordingly Eq. (7.2) is equivalent to using

n+l n _ 6 du - du (73)
- u d-x d-x(

If we compare Eq. (7.3) with Eq. (5.8) we see that we would

expect the Carter algorithm to be valid for subsonic flows

if

B (7.4)

u u.Bvmax-(

In cases where Eq. (7.4) is satisfied strongly we would

expect the Carter algorithm to work even when over-

relaxation is employed.

If we compare Eq. (7.3) with Eq. (5.13) we see that,

for supersonic flow, the Carter algorithm omits the term

containing the expression

2- 2
du d u (7.5)
dx2 dx 2
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Accordingly it is of interest to analyse Eq. (5.13) with

this term deleted. Then

+2 n -B du u(7.6)a -a 2 2 2  d u(
8 B u.v -E

If we assume that an is given by Eq. (6.1) it follows from

Eq. (5.10) that

1 _____ iv'x _ du du (7.7)

If we substitute Eqs. (6.1) and (7.7) into Eq. (7.6) we

find that the original error in an is multiplied by the

factor

82 + i~uBv'
W = 1 2 2 2 (7.8)

od max

If Iu.BvI<< for all possible v (which is characteristic

of attached flows) then

P ') - 0 (7.9)

so that the Carter algorithm is simulating a convergent

algorithm. On the other hand if ju BvI >> a (which is

characteristic of separated flows) then

1 1 iBVf (7.10)u v2u00 ma x

In this case Iv(,')l >1 so that we would not expect

convergence.

In summary, we would expect the Carter algorithm to

converge for attached supersonic flows but not for separated

supersonic flows.

LI
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A coupling procedure employing Eqs. (5.8) and (5.13)

is to be preferred over the Carter algorithm in any case

because it has a sounder theoretical basis.

I
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8.0 Numerical Tests

In order to assess the performance of Eqs. (5.8) and

(5.13), transonic calculations about an 18% thick

circular arc airfoil at zero degrees angle of attack were

carried out. A Cartesian computational grid of size

110 x 30 was used for the inviscid analysis. In the x-

direction 50 equally spaced mesh points were placed on

the airfoil, while 30 mesh points were placed both up-

stream and downstream of the airfoil, exponentially

stretched to a distance of five chord lengths away from

the airfoil in each direction. The mesh was also expo-

nentially stretched in the y-direction to a distance of

five chord lengths from the airfoil. The size of the mesh

in the y-direction near the airfoil was 1% of chord. Free

stream conditions were assumed to prevail at the far field

boundaries, while the boundary condition at y = 0 was

imposed in accordance with Eq. (3.42).

Equations (5.8) and (5.13) were implemented in their

integrated forms. Given the local inviscid velocity u and

the velocity u calculated from the boundary layer, we

updated 5 using the following equations. For M< 1

( n+l (6* n B [u-u] (8.1)
u Bfo-$ 1

While for M > 1
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* _ B_ __u__ Bdu du
)n+l {u _22 B[---]

S2 +62  dx dx

[- - u]} (8.2)

We point out for emphasis that v, u00 and 6 are given in

Eq. (6.14) and B is the coefficient of du/dx occurring

in the boundary layer equation. Green's lag entrainment

method yields

B = F2 6 /(Hu) (8.3)

The boundary layer was calculated in the inverse mode

(prescribed dV /dx) everywhere using the same mesh as

used by the inviscid code. Equation (2.8) indicated that

for the sake of numerical accuracy in integrating the

boundary layer equations, the inverse mode was to be pre-

ferred over the direct mode everywhere except in the far

wake region.

Once ( is updated using Eqs. (8.1) and (8.2) it is

important to calculate dM /dx required by the boundary

layer equations in the appropriate manner. Usually for

M< 1 we used a centered scheme

d(5 i+i i-I (8.4)-dx-i = xi+ 1 - i_1

However, at the trailing edge, 6 suffers a slope discon-

tinuity necessitating the use of one-sided differences.

To calculate the boundary layer upstream of the trailing

edge (occurring at i = ITE) we used
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* 6. -.
d6 ___i__l

d6 1 i-i (8.5)dx i=ITE x. - x.i-

While for the wake calculation downstream of the trailing

edge we used

--X =6 Xi+l i (8.6)

The boundary layer equations were integrated up to the

trailing edge using Eq. (8.5) to supply d /dx at the

trailing edge. The boundary layer calculation was then

restarted using (8.6) to give d6 /dx at the trailing edge.

This procedure also allows us to deal with the slope

discontinuities due to switching from the boundary layer

mode to the wake mode in Green's method.

For M> 1 it was found best to calculate d6 /dx using

a difference scheme with upwind bias. Consider the

formula
* *i+l

= i -xi1 l + (l-X)[ _xi] (8.7)

Using X = .75 to introduce upwind bias gave much better

convergence in the supersonic zone upstream of the shock

than did the centered scheme indicated in Eq. (8.4). On

the other hand, using A = .25 which introduced a downwind

bias produced very poor results.

A series of plots relating to test calculations appear

at the end of the paper. The first sequence covers the

case where MO = .7425 and the Reynolds number based on chord
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6
length is 4.106. The standard Green's lag entrainment

method was used for this calculation. Figure 8.11 shows

the pressure distribution which arises from a purely

inviscid calculation. Figure 8.12 shows the pressure

distribution which arises from viscous-inviscid coupling.

Figures 8.11 and 8.12 are superimposed in Fig. 8.13. As

can te seen, the boundary layer drives the shock a small

distance upstream and slightly lowers the maximum Mach

number which is obtained. Also it smooths out the pressure

distribution at the trailing edge. A plot of 6 appears

in Fig. 8.14. Note that 6 rises dramatically in response

to the strongly unfavorable pressure gradient supplied by

the shock wave. This wedging effect accounts for the

weakening of the shock and its upstream displacement.

Also note the cusp in 6 which occurs at the trailing

edge. A graph of the skin friction coefficient appears in

Fig. 8.15. This drops dramatically in response to the

shock wave and actually becomes negative (indicating

separated flow) near the trailing edge. Downstream of the

trailing edge, Green's method is applied to a wake calcula-

tion which demands that the skin friction coefficient vanish.

Figure 8.16 compares the pressure calculated by the boundary

layer code with that determined by the inviscid code.

Ideally of course our coupling algorithm should ensure that

these are identical. However, as might be expected some

trouble is experienced within the shock profile and to a

minor extent near the trailing edge. Despite this dif-

ficulty, the pressure distribution as calculated by the
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boundary layer is in excellent agreement with the solu-

tions to the Navier-Stokes equations presented by Deiwert

[1976]. Wind tunnel interference corrections were not

applied to the experimental data. As a consequence, there

is a small discrepancy between the calculated and observed

results (Mehta and Lomax [1981]).

It should be pointed out that for this example the

original Le Balleur algorithm given by equation (6.18)

fails to converge in the supersonic region ahead of the

shock. Le Balleur overcomes this problem by resorting to

the classical iteration (suitably under-relaxed in

accordance with his theory presented in section 4) in

regions of attached flow. The modified method on the

other hand, is rapidly convergent in this region of

attached supersonic flow. The decision as to when one

should switch to the classical iteration can now be made

on the basis of numerical accuracy in computing the

boundary layer and need not be influenced by considera-

tions of coupling algorithm convergence.

As a more severe test of our coupling procedures we

also considered the case M = .788. The Reynolds number

6based on chord was again taken to be 4.106. The standard

Green's lag entrainment method was used. Figure 8.21 shows

the purely inviscid pressure distribution together with the

pressure calculated from the viscous-inviscid coupling.

In this case the boundary layer has quite a profound effect

on the outer inviscid flow. The corresponding 6 and skin

friction coefficient are plotted in Figs. 8.22 and 8.23.
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Note that we have shock induced separation, which accounts

for the strong influence of the boundary layer. A con-

vergence history of the coupling algorithm is presented in

Figs. (8.24) through (8.28). As predicted by the theory

presented in section 6, the algorithm does converge quite

rapidly in regions of attached flow and the rate of con-

vergence is slower in regions of separated flow. Con-

siderable difficulty is experienced within the shock pro-

file. However the graceful recovery downstream of the

shock is a tribute to the basic stability of the coupling

algorithm. In order to achieve convergence for this case

it was found necessary to under-relax the coupling

algorithm in the supersonic region. A relaxation factor

of w = .5 was used, although a larger value probably would

have sufficed. In the subsonic region a slight amount

of over-relaxation, say w =1.2, is generally helpful,

although none was employed in this calculation.

The pressure distribution downstream of the shock

predicted by this calculation does not agree well with

experiment. The experimental data indicate that there is

a supersonic plateau downstream of the shock. This example

was recalculated using the modified Green's lag entrain-

ment method due to East [1977]. The results are presented

in Figs. 8.31 through 8.34. As can be seen, the Cp dis-

tribution downstream of the shock is augmented and the

shock is moved further upstream. The calculated shock

location is in excellent agreement with experiment, but

the supersonic plateau downstream of the shock is still
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not predicted. The Navier-Stokes solutions presented by

Deiwert [1976] experienced the same difficulty. It is

currently believed that the only way to overcome this

problem is to prescribe the experimentally measured

pressures at the downstream boundary (Mehta and Lomax

[1981]).

Each of the three calculations presented here was

run for 200 iterations, although the final answer was

obtained, for all practical purposes, after 100 itera-

tions. The computer time required for each case was

approximately 18 seconds on the CDC 7600. Only about

20% of this time was devoted to the boundary layer

calculation. Thus the total time required to compute a

coupled viscous-inviscid solution is comparable to that

required to compute the inviscid flow alone.

8.1 Remarks Concerning Numerical Tests

In the above numerical tests the coupling algorithm

permits us to adjust 6* in such a way that u, calculated

from the inviscid code, agrees with u, calculated from the

boundary layer equations. As we have seen there is a

small discrepancy at the trailing edge and sometimes a

rather large discrepancy on the downstream side of the

shock. It should be pointed out, however, that in these

regions the coefficient B in the boundary layer equation

d6 = A+B u (8.8)
dx dx

becomes large. Rewrite Eq. (8.8) as
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du 1 dS* A
dx B dx B (8.9)

Errors in d6 /dx are ameliorated by the small factor 1/B.

Hence even though the coupling algorithm introduces errors

in d6 /dx, the value of du/dx is still close to that which

would be calculated from the exact value of 6 This

explains why the pressure coefficients, calculated by the

boundary layer, always appear to be so reasonable, even

though the inviscid pressure coefficients do not.

It may be desirable to introduce more sophisticated

procedures in the regions around the shock and the trailing

edge, such as triple deck theory (see Inger [1981] and

Melnik [1980]). In this case our coupling algorithm pro-

vides a stable framework in which to embed these more

sophisticated techniques.
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9. Calculations with the Exact Code

Encouraged by the success of our numerical tests in

section 8, we now perform calculations using the exact

code. The effect of the boundary layer on the inviscid

flow is represented through the surface transpiration

condition

1 d
vn =e (PeUe6 ) (9.1)

(see Eq. (2.9)). In order to apply the semi-inverse

method for this case we cast the boundary layer equations

in the form

-- A +Bm dudx = A du (9.2)

where m= peU 6  We define

dm

am d (9.3)

It is then easily shown that formulae (5.8) and (5.13)

apply, provided that:

a is replaced by a m

B is replaced by Bm

8 is replaced by $p eUe

As in section 8, the algorithm was implemented in its

integrated form. In Eqs. (8.1) and (8.2) we make the

replacements mentioned above and also note that
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" is replaced by m

A series of calculations were carried out for an

NACA 0012 airfoil at zero angle of attack. A body-fitted

mesh of size 110 x30 generated by Eisman's method [1979]

was used. This mesh is finer than the mesh displayed in

Figs. 3.1 and 3.2. Eighty mesh points were placed on the

airfoil. The mesh was concentrated near the leading edge

but the largest mesh width, which occurred near the

trailing edge, was only 1.8% of chord. Thirty mesh points

were used in the wake, exponentially stretched to a

distance of five chord lengths away from the airfoil. The

mesh was also exponentially stretched in the pseudo radial

direction to a distance of five chord lengths away from

the airfoil. The size of the mesh in the pseudo radial

direction near the airfoil and wake centerline is 1% of

chord. Free stream conditions were assumed to prevail at

the far field boundaries.

Five sets of calculations with corresponding experi-

mentally measured pressure distributions are presented in

Figs. 9.11 through 9.55. The experiments were carried out

at the National Aeronautical Establishment (NAE) facility

in Ontario, Canada (see Thibert, Grandjacques and Ohman

[19791). The pressure coefficients measured on the lower

surface of the airfoil are plotted as O's while those per-

taining to the upper surface are plotted with V's. The

experiments were conducted at high Reynolds numbers, so

in the calculations it was assumed that the boundary layer
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was in a fully developed turbulent state at 5% of chord.

The first set of data corresponded to M =.490. The

flow is strictly subsonic so that potential theory should

be valid. Indeed the purely inviscid calculation is in

excellent agreement with experiment. The effect of the

boundary layer is totally negligible except very close

to the trailing edge.

The second set of data was run for M = .693. The

flow still remains subsonic with the maximum experimentally

measured Mach number being .932. Thus, once again, po-

tential theory should be valid for the inviscid portion of

the flow. In this case, however, there is a small dis-

crepancy between calculated and measured pressures near

the leading edge. The effect of the boundary layer is

predicted to be negligible in this region. Therefore, the

coupled solution is in only slightly better agreement with

experiment than is the purely inviscid calculation.

A possible explanation for the discrepancy between

theory and experiment is that the boundary layer remains

laminar. In the experiment the transition to turbulence

was left free and, unfortunately, the position of the free

transition was not established. If the boundary layer

managed to remain laminar over, say, the first 20% of chord

then the viscous effects would be more profound than

those calculated assuming the boundary layer to be turbulent.

Evidence supporting this conjecture is provided by the third

set of data run at M = .776. In this case the flow becones
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supercritical and we have a weak shock near the leading

edge. However, the calculated shock position is 10% of

chord aft of the experimentally measured position. More-

over, the experiments show that the pressure coefficient

C just downstream of the shock is nearly equal to Cp.
p p

This indicates that viscous effects are seriously affecting

the shock. The calculations based on the turbulent boundary

layer assumption show that the shock is too weak to produce

a substantial wedging effect (see Fig. 9.32). Therefore,

a turbulent boundary layer should not cause a dramatic

change in the shock jump conditions. Thus, we conclude

that the boundary layer may still be laminar when it

interacts with the shock.

In the last two data sets run at M = .814 and M =

.835, respectively, the boundary layer is certainly

turbulent by the time it interacts with the shock.

However, the shock locations are still not properly

predicted by the calculations. For the Mo. = .835 case, for

example, the purely inviscid solution predicts the shock

location to be at 20% of chord aft of that measured experi-

mentally (see Fig. 9.51). The coupled solution drives the

shock forward 5% of chord (see Fig. 9.54) so the difference

between theoretical and observed positions is still 15% of

the chord length.

The most likely cause of this discrepancy is explained

by Fig. 9.60 taken from Lock [19801. Here we see that for

M = .85, the shock location predicted by the conservative

form of the full potential equation does in fact lie 15%
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of chord downstream of that predicted by the Euler equa-

tions. Thus it appears that if we are to expect the

coupled viscous-inviscid calculation to agree with experi-

mental data for all flows of transonic interest we really

must solve the Euler equations.
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10. Conclusion

A viscous-inviscid coupling procedure, which is a

modification of that proposed by Le Balleur, has been

presented. Using a model problem suggested by Le Balleur,

we showed that the modified algorithm converges rapidly

for attached flows and also works well for separated

flows. This theoretical analysis was confirmed by

numerical tests for a series of challenging transonic

calculations involving attached and separated flows. The

calculations attest to the remarkable stability of the

coupling algorithm, but also point out problems which

occur near the shock and the trailing edge. Nevertheless,

the method developed in this thesis to compute coupled

viscous-inviscid flows should provide a suitable vehicle

in which to incorporate more sophisticated treatments of

these regions.
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