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The singular perturbation method for the supercavitating propeller had four scaling
parameters; 1) span iiigth R, 2) chord length c, 3) blade spacing d and 4) cavity
length ;.. The first problem solved here assumed that c/R and Zc/R were of order
but d/R was of order of unity. The nature of the singular perturbation problem for
such a case was similar to that for the subcavitating propeller solved by Brockett
except for the solution of the inner region. The thrust and torque coefficients
were obtained explicitly without solving the integral equations. Since the non-
linear supercavitating flow theory was employed in the present work as the inner
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solution, there existed no limitation for the flow incidence angles or blade pro-
file shapes and thus the present solution would provide more accurate results than
those with the linearized theory.

The second problem treated here was the case in which c/R was of order of E but
Zc/R and d/R were of order of unity. This was the case having long cavities behind
the propeller blades so that even when the chord shrank to a line, the cavities were
left behind the lifting lines. This portion of cavity sneets was called "source
sheets", the singularity strengths of which were obtained through the cavity sheet
matching,a totally different matching procedure from the regular matching. The
first-order inner solution used a closure condition, i.e., the total source term So
equal to zero. As the result of the cavity sheet matching, however, it was dis-
covered that the second-order inner solution had to use a finite So , the value of
which was determined through the matching. It seemed that the second-order matching
automatically corrected the overstretching assumption made in the first-order inner
solution.

Two other problems were posed, both having small blade spacings. The outer solu-
tions may be quite different from those in the above two cases since if one looks
at such a propeller from the far field, the blade elements will not be identified.
This may require the actuator disc concept for the outer solution, with a con-
ventional pressure jump across the disc if the cavity is short but with a cavity
pressure drop to be applied if the cavity is long, similar to the theory of Tulin
(1965). These two problems have not been carried out here due to the enormous
amount of work required even for the first two problems.
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1.0 BACKGROUND

Solving the propeller flow problem is inherently difficult due

to its geometric complexity as well as the propeller rotational

motion. For fully wetted propellers, many different types of

theories have been developed to date, both for design and off-

design analyses. These include lifting line and lifting sur-

face theories, using the singularity distribution method. In

the performance prediction method the strengths of sources and

vortices represent the thickness and loading of blade, respec-

tively and are to be determined by satisfying the flow-tangency

condition on the propeller blade surface. The numerical analysis

using high speed computer is essential and sometimes encounters

the instability problem.

The problem of supercavitating (s/c) propeller flow is even

more difficult due to the additional feature, i.e., the existence

of the cavity on the suction side of the blade. The extent of
cavity varies significantly, depending upon the ship speed and/

or propeller rotational speed. At the design point, the super-

cavitating propeller usually operates with relatively short to

medium length cavities. However, as the flow speed or rotational

speed increases, the cavity becomes longer with increase in

thickness. The flow passage between blades is gradually blocked

and finally totally choked over the entire blade span. Although

the effect of the thick cavity may theoretically be represented

by the source distribution, a difficult problem exists in that

the location of the cavity is not known until the complete

supercavitating propeller flow is solved.

Three different types of concepts exist in accounting for this

thick and long cavity effect on the s/c propeller flow. When

the sectional loading used for propeller analysis is calculated

based on the single foil configuration, the 'retarding' flow

correction due to the cavity blocking by Tulin (1965) may be

necessary in addition to the conventional induced flow correction.



This concept is similar to that of the actuator disk theory,

except that the cavity pressure instead of fully recovered

pressure at downstream infinity is used in the momentum theory.

The effective incoming flow velocity, different from that of

the upstream infinity, is used as part of the correction to the

propeller flow diagram. This method was actually applied to

the recent Hydronautics design of a supercavitating propeller,

designated as Model 7607.02 (see the report by Bohn and Altman

(1976)). Experimental results for the propeller obtained by

Bohn (1977) and Peck (1977) showed that the design method over-

predicted the thrust by about 10 percent.

Instead of correcting the effective incoming flow with the

retarding flow effect, the second category of the concept

utilizes the forces calculated from the cascade flow analysis

for the propeller sectional loading. This type of method is
widely used in the design and analysis for the pump and turbine

in which the flow is usually well confined in the circular
duct. The force coefficients obtained in this theory are

generally much lower than those of single foil cases because

the pressure on the blade is substantially lowered by the

cavity attached to the adjacent blade. These forces are now

used for the induced flow corrections due to the free vortex

sheet. It must be noted that the retarding flow correction is

not necessary because it is considered that the cavity blockage

effect is already taken care of when obtaining the sectional

P forces. The author recently developed such a theory based on

the above concept (see Furuya (1976, 1978)) , The prediction

capability of the theory is good for low advance speed range

J where a strong cavity choking condition prevails. Inciden-

tally, an accurate prediction of the s/c propeller performance

at low J's is important since the high speed taking-off condi-

tion occurs under such conditions. However, for larger J's for
which the cavity has a shorter length, the theory substantially

deviates from the experimental data. It means that the super-

cavitating propeller theory based on the cascade data will be

2



suitable for predicting the off-design performance at the same

as or lower J than Jd of design point but that the accuracy

for larger J's is questionable.

One of the major questions arising from applying the two-

dimensional cascade flow to the three-dimensional propeller

flow is as to what flow incidence angle must be used for

determining the force. Since in the cascade flow, unlike the

single foil flow case, the flow field is completely separated

by the cascade blade, there exist two reference flow angles,

one at upstream infinity and the other at downstream infinity.

In the pump and turbine flow analysis it is conventional to

use the geometric mean flow angle. This may be understandable

since in such devices the upstream flow field is physically

separated from the downstream flow field. In the propeller

flow the flow field is so called "singly" connected like the

single foil case. The only difference is that the cascade

effect locally exists in the former. It is, therefore, not

quite clear which angle is to be used for the present propel-

ler analysis, the upstream flow angle or geometric mean flow

angle of cascade theory. The above propeller theory of Furuya

(1978) used the former for the two-dimensional cascade flow

analysis. It is considered that an appropriate flow angle to

be used may be somewhere in between the above two extreme cases.

The third category is that of Yim (1978) who developed a design

method by combining the lifting surface theory with cavity

effects. The strength of source as well as that of doublet

is determined by satisfying the boundary conditions both on

the solid and cavity boundaries. However, the method was devel-

oped as a design tool, not applicable to the off-design per-

formance prediction of supercavitating propellers.

In the situation just described, it is considered useful to

investigate the problem from a different point of view, namely,

with the singular perturbation method (SPM). Brockett (1972)

3



first applied the method to the subcavitating propeller flow.

He used the linearized propeller theory for the "outer" solu-

tion and a two-dimensional linearized theory of the fully

wetted single foil flow for the "inner" solution. Through the

matching procedure the circulation distribution of the outer

solution was explicitly determined with the induced flow cor-

rections included. However, the scaling parameters used in the

work of Brockett were limited to two, i.e., chord and span
A lengths, just like the finite span wing case, so that the blade

aspect ratio £ was only the small parameter for expansions to

be made. It means that the results of Brockett can only be

applied to such propellers having large aspect ratio with small

number of blades, e.g., two to three.

The singular perturbation problem for the supercavitating pro-

peller is much more complex in that there exist four scaling

parameters. These include 1) span length, 2) chord length,

3) blade spacing and 4) cavity length. Although the blade

spacing must have been included even in the SPM of Brockett

(1972) for the conventional propeller, it was just omitted

there under the condition that the propeller blades be sparsely

distributed as mentioned above. Different combinations of

the above four parameters will provide various types of prob-

lems for the supercavitating propeller with SPM. in the

present study four most typical cases are identified, as will

be seen in Section 3 and the solution methods for the first

two problems among others will be presented herein.

We will start with the basic theories which will form the

basis for the inner and outer solutions (Section 2), which

will be followed by the classification of the problem (Section

3) and then its solution methods.

4



2.0 BASIC THEORIES

The singular perturbation method for supercavitating propellers

will employ various two- and three-dimensional flow theories as
inner and outer solutions. Most of these theories have been

well established and wil be found much in literature. One

should study, however, on which theory is suitable for the

inner or outer solution and for the matching procedure. As a

tpreparatory work for the major part of the present study, the

basic two- and three-dimensional theories to be used herein will

be described in the following.

5
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2.1 LINEARIZED SUPERCAVITATING PROPELLER THEORY

There exist various ways of deriving the potential function

for propeller flows but only a limited number of papers are

available for the supercavitating propeller flow. The paper

by Cox (1968) represents such a theory and this method will

be employed throughout the present work as the outer solution.

Figure 2.1.1 shows a schematic diagram of a supercavitating pro-

peller blade rotating around the x-axis in the uniform flow of

velocity U approaching from the negative infinity of x. The

center of the propeller shaft is placed along the x-axis.

Although the cylindrical coordinate system (x, r, E) will be

used in the present propeller analysis, it will be transferred,

if necessary, into the cartesian coordinate system shown in

Figure 2.1.1. The velocity components in the x, r, 4 directions

are first written in terms of the perturbation quantities for

U as (U +u , ur, u- ) where the subscript 0 is used for the

inertial coordinate in order to distinguish it from the

rotating coordinate. Defining u as (ux, ur, u- ), the

linearized equation of motion can be written 0

+ -)x

which will be expressed in terms of the velocity potential *

as follows

+ U -- = -p (2.1.1)

where

u = 7(2.1.2)

p= /Q

Solution for the partial differential equation (2.1 .1) is obtained

6



X- X'

xr' 0 ;t) = U r(v+ x''r+ 0 ;t x-( + x) d ' (2.1.3)

where the boundary condition of p = 0 at x -- has been used.

Applying the continuity equation 7.U=0 to Equations (2.1.1)

and (2.1.2), the Laplace equation is obtained for

pm = 0. (2.1.4)

Use of the Green's identity for p will provide

S(xr -t) = - kL p(x,r',S';t) 1! 1 dS- ' 0' 4-, - I n0

• _SS
,, R,, 3no

(sf 00

- Sb+S c "0

where

n = normal to linearized surface, positive from pressure
side to suction side

R.. x [- X')2 + r'2 + r -2r'r cos0

-0 0 0 +
k

0t
27 (k - 1)

k K

K = number of blades

S = moving surface consisting of propeller blade sur-
face Sb and cavity surface S

SbS c = propeller blade and cavity surfaces, respectively.

The moving blade surface S is considered to be composed of

phelical lines having varying pitch in the r-direction; i.e.,

S: x- eR \(r) = 0

S(r) = U(r)/,,R

7



where , denotes the advance coefficient as a function of r.

The directional derivative for this surface is then given

33 RA 3r -- r( 0 + wt)R. '\x 0 r r r e0
)n0  r2  2 2]1

-0 + (Rx) + (r'oRXr ) 2

where r = d,/dr. Thus,

r(x- x')+Rir sin0 - r (31 + wt) RX r (r -r cos.)

0 rSR 0  + (Rik) + r(9 0 + wt)RX R ?R
-- f0

and

dS = [r2+ (RX)2+ r(9 0 +wt) Rr2]2 dedr.

For the steady state problem presently investigated, time t is

set to zero in the above equations. It means that the rotating

axis and inertial axis coincide instantaneously, then

(x,r,9) = + S

where

V= potential due to the vortex
1 9T  x-a <

k N
- - 21 RJ[ 3 dv de'dr' (2.1.6)

rh 9L

= potential due to the source

1 akfSE
I (r',9') M1  de 'dr' (2.1.7)=eL S -I

r h 8L

r h = radial coordinate corresponding to the propeller hub

8



L' T' E = angular coordinates at the blade leading edge, trail-
ing edge, and at the cavity end point, respectively

-p =- p+-p (pressure doublet)

s + (pressure source)

p 3n -n

M = r 2 + \2 + (r , ,Xr )2
r

N - r' + rl sin -A-- ( - x) C r' - rcos :)

D (V-X) - +
'k

1

R 2 + -r'2 +r 2 2r'r cosjT

dummy variable for integrals.

It must be mentioned also that the normalization has been made

for all quantities above as follows,

(x , r . x ' f 'r , v ) -- (x , r , x ' , r ' , / R

7 = v/RU

N2

R R )/R
R, = /R

r

s = s p/,U/R
p p

_p ,p/27EU2

where R is the propeller radius. After normalization, the

bar above each character has been deleted. Therefore, it should

be understood that all mathematical expressions in equations%n

hereafter, including Equations (2.1.6) and (2.1.7), are those
which were normalized.

The potential t due to the source effect in Equation (2.1.7) is

rather complex. A simpler form can be obtained if the source

S..9



distribution is used instead of the pressure source S

KE
= sCr',9') d:"- dr'S - R. '  2..4

k = l r h
rh L

where

R, = x - 9 + r 2 + - 2r'r cos 2]

9' e +jk.

In Equation (2.1.8), s(r',e') is the source term (not a pressure
source in this case) which represents the blade and cavity

thickness.

1' 0



2.2 2-D NONLINEAR SUPERCAVITATING FOIL THEORY

In order to provide a high accuracy of the results obtained from

the present SPM, a nonlinear theory for the supercavitating

(s/c) foil will be used as an inner solution. Many flow models

having various cavity closure conditions are available. These

include the open wake model of Wu (1962), and single and

double spiral vortex models of Tulin (1964). Among others,

the single spiral vortex model of Tulin will be used, the reason

for this selection being explained later.

The single spiral vortex model was first employed by Larock and

Street (1965, 1968) in the nonlinear theory, but only applied

for the calculation of the s/c flat-plate foil characteristics

and for the inverse specification of foil profile. The theory

and computer program were recently developed for general pro-

file zases by Furuya and Maekawa (1980) and compared with

experimental data. The key features of the theory necessary for

the singular perturbation method will be summarized here. The

flow configuration and boundary conditions are shown in Figure

2.2.1(a) in which the physical coordinate system employs (x, y)

in tune with that used in the inner region as will be seen later.

The physical flow field is mapped onto the potential plane W as

shown in Figure 2.2.1(b) which is then transformed onto the upper

half of a new plane ; = + in of Figure 2.2.1(c) by a mapping

function

a W (2.2.1)

or

W 2 2 (2.2.2)
a + ;

The cavity end point is mapped to infinity and the infinity

point in y=X+i or W plane is now mapped onto a point ; = ia.

A hodograph variable w is introduced

11



dW q qe = qc e - . (2.2.3)

where q and 8 are the magnitude and direction of the flow

velocity. Thus

W= + iT , T = Zn (-q )

and
Pl-Pc

qc =@'-"ql, Caq 1

where ql and qc denote the uniform flow velocity at the upstream
infinity and that on the cavity wall, respectively.

The boundary conditions on the real-axis . are now expressed

either in terms of 9 or T;

(i) T 0 , < < -1 and b < <=,

o(ii) ,-1 < < 0, =tan- iyx/x

(iii) a = - + 3 , 0 < <

where y(x) denotes the foil profile shape of the wetted portion.

This is a typical mixed-type boundary value problem, and the

solution for w is readily written

b
1 f 2 d '

)= C;+ 1)(; b) 21 i l b ' )  -

-1

1 b 2r d' (2.2.4)

+ 0 i iV (l + -;- )(b - ;- ) I' -

We have a total of four unknown quantities, a, b, P,

requiring four equations to determine them uniquely.

12



The various boundary conditions will be applied;

(i) at infinity

w ia) = i n: 2 equations

(ii) length of arc = S arc: 1 equation

(iii) body-cavity system closure condition (see Larock and

Street (1965)),

Re fwdW= 0: 1 equation,

c

or

Re dw 0

The report of Furuya and Maekawa (1980) describes the method

of solving the above system of nonlinear integral equations

for the four solution parameters in detail.

It must be pointed out here that not all of the nonlinear theories

quoted before are applicable to the inner solution of the problem.

We should exclude those theories whose body-cavity systems do

not close in the potentia! plane W. This point will become clearer

if W() is expanded as 7-. Let's use the double-spiral vortex

model as an example, the flow configuration of which is shown

in Figure 2.2.2(a). Mapping the potential plane W = + i -
onto the upper half of the ;-plane, the hodograph solution

can be obtained as

b

C( + C)(C b) f -'b- -'

13



b
_FI d; '

+ ')(b- )

d fI

b ~c+

(2.2.5)

where

dW qe =q e -, (2.2.6)

thus

= + i Zn q/ql.

W = AC2 ; A = solution parameter, yet to be known.

From Equation (2.2.6),

1 iwdW dC,
q d

+ '1 (iw (-)) i"( ) - )0 ( )2 1 +
ql 2 +.- .2A2d;

as ;-.

(2.2.7)

Integration of both sides of Equation (2.2.7) provides

-, AK (.2 + 2K + 2 K2 Zn + -- ) , as ; - (2.2.8)

where i

K = i '(-)

14
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K2 =

Inverting Equation (2.2.7), one obtains

2 + A

=A ---- -2 K AK Zny+*.., as z- .K 0 1VK 0 2K00

The first, second and third terms in expansion represent the

uniform flow, corner flow and source-circulation flows,

respectively. Each term, except for the second one, can pos-

sibly find its counterpart from the outer solution. However,

the second item, i.e., corner flow part, cannot be matched

with the outer solution. This illustrates the difficulty of

using any flow model which does not close in the downstream

infinity, particularly in the pote-tial plane. Note the dif-

ference of the potential planes in Figure 2.2.1(b) and Figure

2.2.2(b); one is closed and the other is open. It is for this

reason that we have chosen a single spiral vortex model for

the inner solution.

15



2.3 2-D LINEARIZED SUPERCAVITATING FLOW THEORY

We will utilize the results of the nonlinear theory as the

inner solution for the singular perturbation method. As will

be seen later, however, a linearized theory is necessary for

conveniently determining the source strength on the body-

cavity system. The most suitable linearized theory for deter-

mining such source strength is that of the singularity distri-

bution method. Since the first introduction of the method by

Tulin (1953), many researchers presented papers for various

types of problems. However, the basic concept is described in

the original paper by Tulin for the drag body case and in that

of Fahner and Spiegel (1966) for the lifting body case. The

linearized flow configuration is shown in Figure 2.3.1 and the

linearized boundary conditions for the perturbed velocities u

and v are given as follows:

+ G
u 0 < x < 1, 0+,

U< x < C y 02 c

v = ql'f'(X) 0 <x < 1, y = 0,

where
Pl - PC

22

O P ql 2

If the source sl1(X) (0 < x < 1) , s2 (x) (1i< x < ),c ) and dipole ),(x)

are distributed along the slit shown in Figure 2.3.1, i.e.,

for 0 < x <Zc , the induced velocities due to these singularities

will be given

1

= u- = -f - ; d ' 0 < x <1 (2.3.1)

t 02.ci
c

u =u =-Jf dx' , < x <2 (2.3.2)

16



+ s!(x) Sl()
V = 2V = 0 < X < 1 (2.3.3)

s (x) s (x)

- 2 , - 2 , 1 <l< (2.3.5)

U+ " (x) - Y (x) 0 < x < 1 (2. 3. 5)
u 2 , u = 2 '

L
+ 1 _ ( ' dx' 0 < x < 1. (2.3.6)v = V- - 2- - '..

0

The boundary conditions on the slit are therefore satisfied by

combining Equations (2.3.1) to (2.3.6), providing a system of

integral equations with respect to s1 (X), s2 (x) and y(x),

1c -

f dx' + dx' + q - < 0x <.. .. .2 -,' f< _R 1

0 1 (2.3.7)

1

dx'x+ - ql' 1< x < Z
7j-xR 27r f x c

0 1 (2.3.8)

2 ) dx- q 1 f' (x) , 0 x <1. (2.3.9)

0

Applying the inversion formula given in Appendix A to Equation

(2.3.8), the following result will be obtained

s 2 (x) = x- dx' (2. 3.10)

where a singularity at x = c has been placed for representingc
an abrupt termination of the cavity. s2(x) is now substituted

into Equation (2.3.7),

17



J(i -c s x-) dx' = 3qF - " ix) )2 (2. 3.11)
0

Application of the inversion formula again to Equation (2.3.11)

yields an expression for s1 (x) in terms of C,(x);

2, 1

=1 
(x )  .- ql + 7 c - '  (2.3.12)\(o- xjx-x, -

Substitution of s (x) in Equation (2.3.12) into Equation (2.3.9)

eliminates s (x), and results in the following integral equation

for y(x) only;

J / Q c ) 2 + I , 2 ~ x V _
2-- + x' d- g

q 1 f'(x)"ql. (2.3.13)

Change of variable with
1 1

= (-- X)- 'T 
(2 .3 .14)

will transform Equation (2.3.13) into the following form

e2
1i f,2 d2 < f' (x( )) 0 < <e (2. 3.15)
7J (l + <, ) <+ < 2
0

where
<2 . 2

x(<) = 2 X' ) 2

(2.3.16)
1

e = i/( , -1I)
e ~ c -

18
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Finally, the dipole distribution of y(x) is obtained b-y invert-

ing Equation (2.3.15);

111

y(C)= q co )(e <)2 sn + <.cos)

(1 + <2xeff (<) d<' 0 < <ee -+ l + r, - <

0 (2.3.17)

where

= tan (e)

and the leading edge singularity has been introduced above for

representing the stagnation flow within the framework of 1-nearized

theory.

S1 (x) and s2(x) will then be calculated by substituting Equation

(2.3.17) into (2.3.12), followed by (2.3.12) into (2.3.10)

1 (x(<)) q(Cos) 2(esin - <COS

I e 1

i )) e)f s , ) (x (<f)) f < d<_(1+ <+<'

0

t -ql f '(-x(<)) (2.3.18)

and

1 1

s2( ( l Cr (Cos S) 2 < +e e i

( e) + cos

_ 19



q2 2 f' (')) d<'- (l+<
7<+<,12 <+<

+ e f f" -'(') d,, (2 3.19)1 + -< -2 < <

The yet unknown parameter, i.e., length of cavity c in these

equations, can be determined by the cavity closure condition,

1 c

fsl(x')dx' +f s 2 (x')dx'= 0. (2.3.20)

0 1
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3.0 SINGULAR PERTURBATION METHOD FOR SUPERCAVITATING
PROPELLERS

Application of the singular perturbation method to the super-

cavitating propeller flow will lead to multiple problems. Most

of the hydrodynamic problems solved with this method have only

two characteristic lengths in the flow field. Three-dimensional

fully wetted and cavitating single foil flows were solved by

many researchers including Van Dyke (1964), Shen and Ogilvie

(1972), Leehey (1973), Furuya (1975) and James (1975). The

-,two characteristic scales for such flows were chord and span

lengths with its ratio assumed to be small. The problem of

thin foils with rounded leading edges was also treated with

the singular perturbation method, for the fully wetted flow

by Van Dyke (1964) and for the supercavitating flow by Furuya

and Acosta (1973). Again, two characteristic lengths, i.e.,

chord and leading edge radius, existed.

For the supercavitating propeller flow, however, we have four

characteristic lengths. These are

i) propeller radius (R),

ii) blade chord length (c),

iii) cavity length (Z c), and

iv) propeller blade spacing (d).

With these four physical parameters, many combinations of

scaling can be considered and these are shown in Table 3.0.1.

Schematic flow configurations are also given in Figure 3.0.1.

Case I presents a problem which is exactly the same as that of

fully wetted propeller flows but with a difference existing in

the flow configuration of the inner solution. Instead of using

a fully wetted single foil flow, a supercavitating flow must be

employed for the inner solution. In this case, the ratios of c to c
and d to R are assumed to be all of the same order Z so that, as

the propeller blade collapses to a line, all pertinent informa-
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tion for the propeller flow can be expressed around the lift-

ing line.

However, this is not the case for Case II in Table 3.0.1. Since

we have a long cavity behind each blade, even with the blade

shrinking to a lifting line, the cavity portion fails to col-

lapse to a line but remains as a finite length in the outer

flow. This portion cannot possibly be represented by any

quantities on the lifting line but requires the concept of

source sheet.

It will be readily understood that the strength of these source

distributions cannot be matched through the expansion of the

inner and outer solutions around the lifting line. The reason

is that the source strengths of such cavity sheet have nothing

to do with the scaling of c/R = O(E) but belong to the other

scaling, i.e., c/R. It is considered that the determination

of the source sheet characteristics requires a different

type of matching with the inner solution as will be seen later.

The type of problems associated with Cases III and IV are more

complex. As the chord shrinks to a line for the outer solution,

the spacings between the blades will become unrecognizable

since the spacing-to-radius ratio is assumed to be of the same

order as that of the chord-to-radius ratio. The outer solution

will have to be solved with the actuator disk concept. If the

line source term S0 is equal to zero and no source sheet exists

(most likely in Case III), only a careful consideration for

choice of the inner flow configuration may be necessary. How-

b ever, if SO is not zero followed by a source sheet, the
actuator disk will have to add a source disk as well as the

lower pressure region behind it. Thiz ill account for the

flow retardation effect in the heavily cavitating propeller

flow, first explained by Tulin (1965).

In the present work, due to the limited time available, only

the first two cases will be solved with the singular perturba-

22



tion method, leaving the other two cases to the near future

effort when resources become available.

I.
*
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3.1 SHORT CAVITY PROPELLER CASE (CASE 1)

3.1.1 Outer Solution

An outer solution, valid in the outer region, will be obtained

as a limiting form of when the blade shrinks to a lifting

line. First look at V in Equation (2.1.6). By defining the

third integral in (2.1.6),

x-e 't N

- N dv (3.1.1)
R 

,

we can expand I(r',9') for small e', i.e.,

I(r', ) = I(r',O) + i e' + H.O.T. (3.1.2)e '=0

where H.O.T. stands for the neglected higher-order terms,

O(3'), etc., and
x
/N

I(r',0) d, (3.1.3)

X-'v-- i I = _9 / _Nx)r'x + rX sin *,
)e' 3 dv = -\ (3.1.4)

-00

1/2
F2 '2 21R0  L +r +r -2rr' cos (-a + akJ (3.1.5)

'yk= -  +  
Tk"

We now have ;V in expansion

1 ~T
1 r N r 'x+ r sin Yk1 f d= -(r',')F - d I -' kDv Eff 3  

30

k= r h L .

+ H.O.T.J dr'de'. (3.1.6)
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Redefining some of the terms in this integral, i.e.,

1

(r2 + A2)2

iT
-(r') _ c r',0 ) A

l'L

• 9T4C 
5)'r')de'

L
eT

(l~r') -/X9

uly r') =/2A (r',e) de'

IL

where the normalization factor for F(r), i.e., 27RU, has been

used and y denotes the vortex distribution.

Equation (3.1.6) can be written as follows

1 X N ,N
-_ 1 I (r')dr' V dv

h 2 Rk=lf
r h

1

-, r" + d r ' + H .O .T . ( 3 .1 .7 )

r h

It is seen from Equation (3.1.7) that the potential V is com-

posed of a line circulation as the lowest term, moment terms
having the axes in the direction of chord and that normal to

the blade, and H.O.T.

25



Similarly, the potential in Equation (2.1.8) will b-e expanded

for small ' with the present assumption of short cavity in

mind. As e'-O,

1 a '+ H.O.T. ,(3.1.8)
Re, R 0  9a'\Re1 _a =

and

I\I x x- rr' sin T,,
(3.1.9)

therefore,

11=-~ k-f~ E Lf s (r',C' d e'

IL L

1E

s1r3,/21' +rA i d H.O.T.
k

rh 0 L (3.1.10)

With a new definition for the following integrals

S1x (r) s (r' , "I I \r) d

eCE

s y(r') =f s rW, e ) ' d'r) r

aL

Equation (3.1.10) will be written as

26



1 1

SSo(r') dr' xSlx(r') + r sin ?k s (r')s E0 drh 3/2 k=l r  
R 03/2

+ H.O.T.. 
(3.1.11)

In this equation Sot sx and s 2x can be interpreted as a line

source, the first moment of source in the direction of x and

y, respectively.

For matching purposes, the asymptotic limit of the outer solu-2 2 2
tion as so - 0 is required where s0  = x + y . The first

term in Equation (3.1.7) represents the potential, denoted by

V"' due to the vortex line and its free vortices. It is

rather difficult to expand this term directly and thus the

velocity components, uaF and u t., will be used for this pur-

pose, i.e.,

U - Vx ur -  (3.1.12)
al7 )x t: )-

wh --ze
1 x

=- f?(r')dr' d(1
k l 2 fd3 (3.1.13)

rh J

Taking derivatives of DV_ with respect to x and A, we find

u u aB + ua:F  (3.1.14)a, a.

u =u t-B + ut-F  (3.1.15)

where

1K 1 sin 'Pk

uaFB 1 f 7(r')dr' k (3.1.16)

k=l rh 0
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U 2U 7 I(r')dr' 3-
a aFk=1 ffR

rhT

(3.1.17)

u r r'- o (3.1.18)
UtTB 2 f 3~'dr

rh 0

1

Ut U ~ J1rW) drl.

rh

'QI
AS +rr cos + -+ r sin Yd

f~' R 3  T

(3.1. 19)

L+

= (3.1.20)
k

RT = [ ( _ 2 'co + r 2+ r 2]11

and the subscripts B and F for the velocity components denote

"Bound" and "Free" vortices, respectively.

The dominating term in U arB of Equation (3.1.16) comes from

k=1, the vortex line of its own, as s~ = x 2+ y 2-0, therefore

uaP r sine 8 F(r')dr' + H.O.T. (3.1.21)
a IB 2 fJ R 3

rh 00

where

R0 [2 + (r-r)2]

s02 x2 +y2

y r rsin 19.
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The integral in Equation (3.1.21) is singular as s0 -0 and

cannot be expanded easily as it is. One of the techniques,

among others, to resolve this type of situation is an appli-
3

cation of the Fourier integral representation for 1/R the

method having been used by Ogilvie (1972) and James (1975) in

similar problems, i.e.,
3

1 _ 1 3(S 2 a 2 2

R00 0 0 001
0 0 [7•f

where K is the modified Bessel function and
0

a Ir-r'!. (3.1.23)

The expansion of K0 (mIs 0 ) can be made as so -0 (see Handbook

of Mathematical Functions by Abramowitz (1964)),

K0 (!mIs 0 ) - n s0 0 +O(s 0
2 Zn s0 ). (3.1.24)

Substitution of (3.1.24) into (3.1.21) and (3.1.22) yields
1

sin r / I_ 1 )
UaB r sin (r')drS (-Zn s +H.O.T.)•

rh

• exp (-ima) dm]

1

r s 2 J F(r')dr exp(-ima) dm+ H.O.T.
2 0  _o

rh r

00 r

r sin fdmFW)exp 1-im (r-r'),-dr'

0 _ r h

29
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1

+J (r')exp -im(r'-r).dr'J + H.O.T. (3.1.25)

r

Integration by parts is applied to Equation (3.1.25),

r

N sin interal dil) exp-im(r-r'db driU a?-B 2 2 dm mdr' i m

0 rh

_/ d7(r')dr expj-im(r'-r)1-m dr I + H.O.T. (3126)

Now the method of contour integral will be used by defining

I = exp-ip1 Z) dA = 0 (3.1.27)

C

where the contour C to be taken is shown in Figure 3.1.1 and

P1 = r-r'>O. Thus,

exp(-ip1 m) exp (-ipl (R cos s + Ri sin n)f im dm + - +f i Rei de 0.

-M 0

Since the last integral is zero as R-* ,
oo

f exp(-iplm)
im dm p-, p1  r-r' > 0 (3.1.28)

OO

SimilarlyJexp(-ip2 m)

expm - + P , p2 = r'-r > 0. (3.1.29)

U 00

UaB in Equation (3.1.14) becomes

30
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u r sin [ d.r') (-,) dr' fd- r dr] + H.O.T.
aB arS0  r r r r

rhr

- -(r) [ rsin +H.OT]

-7 Cr) 2y2+ H.O.T] (3. 1. 30)

where -(l) = 7(rh) =O0andf(r) dm 0 have been used.
h f i

In the similar manner, u tTB in Equation (3.1.18) can be expanded

Ut 3 - - (r)Lx + H.O.Tj (3.1 1

It is well known that the induced velocities due to the free

vortex sheets, u a and u t in Equations (3.1.17) and (3.1.18), have

finite values as x 2+ y 2 "0, i.e., on the lifting line itself.

The final forms of the expansions for u a.- and u t-are there-

fore written

u7 - + u a + H.O.T. (3.1.32)
x+

u t- ~(r) 2 x2+ u t+ H.O.T. (3.1.33)
M x +

By using the following relationship

,tanl 2 2 (3.1.34)
x 2+2 x +y

becomes

I- (r) ta n- ..XY + (U ~x+ U y) + H.O.T.,

2 2as x + v 0. (3.1.35)

31



The moment term of in Equation (3.1.7), i.e., :VM' can also

be expanded by using the method of Ogilvie (1970)

1 lx (r') + r sin(-),uv (r')
oVM f - x

rh

j x(r)-x + ;ly(r) 3y2 2 + H.O.T.

x +y

where only k = 1 has been used for the eadng trnof VM"

For the potential due to the source, again the method of the

Fourier representation for 1/R0 and that of Ogilvie are used

for the expansion, which provides

1 S2(r) . x+ sy(r).y
-S 0 (r)Zn(x 2 +y ) 2 2 + H.O.T. (3.1.37)

x +y

Combining pV-' bVM and $S in Equations (3.1.35, 36 and 37),

the two-term expansions of the outer solution $ can finally

be written as
1

D - + (r) tan- 1 v_ + S0 (r) 'n (x 2 +y 2 ) 2 + (ua(r).x+u(r) v0x (r .a +t~r y

Ul (r ) -x + , (r ) y s . (r ) .x + s ly (r ) y
+ x ly x H.O.T. (3.. 38)

2 2 2 2x +y x -4-

where D 0 is the uniform flow part

0 =  Ux- r y. (3.1.39)

3.1.2 Inner Solution

The inner solution will be obtained by stretc:ng t'he coordinates

with a suitable stretching factor, in this case tne reverse of

the blade aspect ratio {. The three-dimensional Laplace equa-

tion becomes the two-dimensional one with an accuracy to the

second order of :. The boundary conditions near and on the
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r

blade remain the same whereas those at infinity points lose

their meanings due to the stretching of the coordinates. Since

much literature has already described the detailed procedure

in similar problems, the formal coordinate expansions, etc.,

will be deleted herein.

Figure 3.1.2 shows a flow configuration for the inner solution

on the new coordinate system attached to the blade. The rela-

tionship between the old and new coordinate systems is given

as follows

x = sin (r) - cos S(r)
'(3.1.40)

y = -x :os (r) - y sin (r)

or
yl -iy{ e

where
= x + iy , x = iy , 7* = x - iy. (3.1.41)

The selection of a ca ity closure model to be used for the

present singular perturbation problem needs particular atten-

tion. In this problem the assumption was made that the cavity

length be short and can collapse to a line in the coordinate

stretching procedure. This assumption immediately eliminates

the chance of using a cavity closure model in which the

information in the inner region carried over to the outer

region. The open wake model and double spiral vortex model

are included in such category. The only feasible one is the

single spiral vortex model of Tulin (1964). In this model

the physical quantities on the upper and lower wakes are

assumed to be identical for the same velocity potential value

so that the body-cavity streamlines are closed at the cavity

end point in the complex potential plane.

The nonlinear solution method for supercavitating flows with

the single spiral vortex model has already been described in

Section 2.2.
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In order to be able to match the inner solution with the outer

solution, the former must be expanded in terms of the velocity

potential z. From Equation (2.2.3),

dW iw ei w dW

dy=- e - -. d, (3.1.42)d q qoa d

but dW/d; can be calculated from Equation (2.2.2), thus

d =e 2 2_____
a 2 2 2 d (3.1.43)

U (( + a)

Expansion will be carried out as ;7i- -or ;-ia in the --plane,

therefore.

2
eiw( ) - ei w(ia) + w' (ia)( - ia) + w (ia) ( 2 ia) +

ei (ia) 1i + Kl (; - ia) + K2 (; - ia) 2 +-. (3.1.44)

where

K 1 = i w'(ia)
(3.1.45)

K 2 = [i (' (ia) -V' (ia)i2/2.

.(ia) = LI +i n-
qj

, i' qI = incoming flow angle and velocity, respectively, at
upstream infinity in the inner flow region.

It must be mentioned that iI and qI are quantities yet to be

known and thus should not be interpreted as those of the outer

flow region at this stage of the theory. They will shortly be

determined through the matching procedure. dy in Equation

(3.1.43) now becomesia [
qde y-- 2 ia) 2 +  a + K2 + O(- ia)1 d;

as - ia,
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by integration

-i _ lau 1ia

qe 2 L -ia + K1 2n-ia) + K0 + K2 (-ia)

of0(, - ia (3.1.46)

where K0 is an integration constant.

Inversion of Equation (3.1.46) yields to

1 2 -K L 0+K2

-; ia -AoY -K 1 Zny+ (-K 4n A0 +K 0 ) K 1  A +

+ 0 'n(
(2

where A, = qi e  a:,/2

L0 = -K 1 Zn 0 - K0

which is substituted into W in Equation (2.2.2), providing

Wqe I+ a (ia) -ia' Ii (ia) nA0+KWny+ 2 -- A 0' 0a

2 ian, y a 2 9 2 KL -K 2 1
2 q- 4 q-lI "a

/Zn T
+ 0 (-2 as y o (3.1.47)

Take the complex conjugate on both sides of Equation (3.1.47)

and express the quantities of complex conjugate by *,

W* - eiI7* + (ia)* + M +M Zn
2 0 1

+ M + 0 (3.1.48

2

where M 1-i,' (ia) 2,n A0 - K0i
0  2
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2 ia:.
= '(ia) 2

(3.1.49)

2 2
a , KL 0 - K2

2= 4 -ia i

Substitution of Equation (3.1.41) into (3.1.48) will provide

W* qi(e 2 ( -- + 2 (ia) * Zn y

M + M n +M + - + 0 (3.1.50)

0. 1 2 2 Z;SY Y

where ap
, * aZ - i

M0  = 0* + 2 a)* n i e,2
M M 1 1i (3.1.51)

M M2* + MI1* 7,n i e-

'2 ie i

and W* is the complex conjugate of W, i.e., W* = - The

real part of W* represents the velocity potential , then

-q, cos (aI - S + ) " x- sin (aI  S + • y

+ I L(ia •tan' l-y + R ['(ia Zn 2+ y2)1

+OFR ' + R (x iy)n (x +yl
e e [ I 2 +2

S2 2 + 0 -m - , as y = x + iy -, (3.1.52)
x +y

where Re[M 2 '] and I [M ' denote the real and imaginary parts

of M2 , respectively.
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3.1.3 Matching Procedure

The matching procedure for the singular perturbation method

is also explained in much literature. This includes the works

by Van Dyke (1964), Ogilvie (1970), Brockett (1972) and James

(1975). It is stated in the book by Van Dyke (1964) that the

asymptotic matching principle will be satisfied by "matching

the m-term inner expansion of the n-term outer exp-nsion with

the n-term outer expansion of the m-term inner expansion" where

m and n are any two integers. Due to the ample literature exist-

ing on the subject, the matching steps herein will be followed

without formal procedure. It was for the reason that the

inner and outer expansions of the outer and inner solutions

in the previous sections were made without expanding the co-

ordinate variables. However, in using such an informal approach,

care must be taken for the order of magnitude of each term in

matching. The matching will be carried out for the velocity

potentials: in Equations (3.1.38) and (3.1.52).

The zeroth order matching will determine the unknown velocity

amplitude and direction, qI and aI of the inner flow field as

follows:

1(1) 2 2 +O (..3
(r)= 'U + (r)2 + O() (3.1.53)

and_tan ta-1f z= - = tan-( --

or

( (r) = 0 + O(E) (3.1. 54)

where

O(E) < O(i) and
* 1

, AR

AR Propeller Blade Area
Propeller Radius
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It should be mentioned that the inner flow region has been

selected to have th coordinate system, (x,y) in line with the

hydrodynamic flow direction made with U and wr (see Figure

3.1.2). The superscripts on qI and aI denote the quantities

of first o.der matching.

The first order matching will further be carried out for deter-

mining the strength of circulation 7. As a result of the

zeroth order matching, the inner cavity flow problem can be

solved for the first time. The boundary conditions available

for the inner problem include the following:

i) At upstream infinity, i.e., at ; = ia,

_ Iia) = -aI1+ i n (/q (3.1.55)

where w(;), :i, and qI are given in Equations (2.2.4),

(3.1.53) and (3.1.54), respectively and

q qI (

Pl -PU

ii) The closure condition (see p. 173 of the paper by

Larock and Street (1965)) is given by

Re  (;)dW = 0

C

where C denotes the contour enclosing the body-cavity

system, which is transformed into c-plane,

Re ) dW d J= 0 (3.1.56)Re ( )d--,

C
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with the residue theorem employed, finally

Re I '(ia) = 0. (3.1.57)

where w' denotes the derivative of w with respect

to . More detailed derivation of Equation (3.1.55)

from Equation (3.1.54) is discussed in the paper by

Furuya and Maekawa (1980).

iii) The scaling condition between the physical and trans-

form plane states that the wetted portion of the body

calculated from the theory should be equal to S

specified in the physical plane. On the wetted part

of the streamline

dy i
ds

or

ds= e- e dW dE. (3.1.58)

where 3 = tan- 1 (dy/di) and y denotes the body coordi.nate.

For -1<C <b, ,C() can be written as follows:

ig( + ( ) ,- < <0
w(j) =

ig( ) + ( ) + T , 0< < b

where

1 ' +d(bg( )= (1+ )(b (' ) - 0) - ~

-~ 1 (1 + _)_(b_ __,)

b(1)

[ + dh-' + P(1)0 ( + - b )  ,
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wieref indicates a Cauchy principle integral and super-

script 1 denotes the first order quantities. By inte-

grating Equation (3.1.58) we obtain

where

sg(C') 1< .

The arc length condition is therefore satisfied by

b ( I 1)

the folowing equation

Ss (- = 0.g(.159

The four unknown parameters in the inner flow, i.e., a

b P(l and :) (1 will now be uniquely determined by using

the above four boundary conditions. It is, of course, under-

stood that these four equations are highly retarded, thus

requiring a ,umerical method such as that in+-roduced by

Furuya (1975) for a similar problem.

Once the inner problem is solved above, the first order match-

ing for 7' is readily achieved by comparing the corresponding

terms in t for the inner and outer expansion of Equations

(3.1.38) and (3.1.52), i.e.,

b(1),p(1) nd $() wilnwbeuiul1)triedb sn

2 1+ w (a1) (3.1.60)

It must be mentioned that the right-hand side of Equation

(3.1.60) is the totally known quantity obtained by solving

the inner solution. It is also important to notice for the

Ims (a)J are quantities of order ex
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The source term S (r) in the inner expansion of the outer solu-
0tion is matched with the corresponding term in the counterpart,

but it should be zero due to the closure condition applied to

the inner solution (i.e., Equation (3.1.57)),

S(1 )(r) =- , R[a(ia(() 0. (3.1.61)0 )r 2 Re U

In order to carry out the second order matching, the second

order inner solution must be considered. As has been mentioned

in the beginning of Section 3.1.2, the two-dimensional Laplace

equation still holds with exactly the same boundary conditions

and thus the expansion of the inner solution remains the same

as that of Equation (3.1.51). The difference in matching,

however, exists, particularly in the outer solution; the first

order matching has provided the value for (r) in Equation

(3.1.38). Once the circulation distribution (r) on the
lifting line is known, the induced velocities u (1)(r) and(1) a
ut'(1Cr) in Equation (3.1.38) will be readily calculated from

the formula given in Equations (3.1.17) and (3.1.19). Vari-

ous methods of computing these integrals are available. One
of the most popular and convenient methods will be that by

Lerb (1952) who applied Nicholson's asymptotic formula for

singular integrals. The second order matching will first be

made for the incoming flow velocity and direction;

1

q 1 2) U+ua( 1 ) (r) + {ro - u t (r) + O() (3.1.62)

and

(2) rw -u~ C 1 r)
tan(',2 -3+-) = tan - + 3i2 I U +au( (r) (2

or
(2) a + 0(C2) (3.1.63)

= 2= . 4

I'2
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where

-i tan-1 U+ u (1)(r) - ' (3. 1.64)
a

and the induced flow angle .i is depicted in Figure 3.1.2.

The circulation matched to the second order will now be

written in the following form,

(2) (2)
a b,

C(2)(r) =+ 0( 3  (3.1.65)

where all quantities of the right-hand side in Equation (3.1.65)

must be obtained with a new set of the upstream flow conditions,
e (2) and ai(2) which are defined in Equations (3.1.62)i.e., q

and (3.1.63). The matching for the source term remains the

same as before,

(2) (2)
S0(2) a ( 2) e[" 0. (3.1.66)

The moment terms in Equation (3.1.38) will be matched with the

corresponding terms in Equation (3.1.50);

xCr) - s1 (r) = RM 2 + 0 (:3)
(3.1.67)

(r) _1y (r) = ImM 2 '] + 0 (E 3

The result of this matching indicates that the moment due to

the circulation distribution or that due to the source distri-

bution cannot be distinguished within the framework of the

singularity distribution method. However, practically more

control for the circulation distribution can be possible than

that for the source distribution sc that the former will be

exercised in actual propeller design work.
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It can be realized now that the results of the matching pro-

cedure take a somewhat different form from that in other con-

ventional methods such as those of Van Dyke (1964), Ogilvie

(1970), Brockett (1972) and James (1975). In those works,

the circulation 7 was expanded as an ascending series of &,

= j () (1) +a 2 ()7 (2 ) +

where

n n +

Tlis type of expansion was not possible in the present approach

-nce the nonlinear theory was applied to the inner solution.

Change of the circulation '7 due to that of the upstream flow

condition is not additive to 7(i) Therefore, after each

matching procedure, - should be successively rewritten as

follows

= -(1)(r) + O( 2 after the first order matching

_(2) 3(r) = (Cr) + O(£ ) after the second order matching

and so on.

Finally, it should be mentioned that the third term from the

last in Equation (3.1.50) was not left out for matching. It
is readily seen from Equations (3.1.49) and (3.1.51) that M'

is of an order 6 so that the whole term has an order of

E2 n £. This is a higher order than that of the next term

and, as a matter of fact, the same order as that of the last

term. Matching for this term cannot be possible within the

second order matching but will require the higher order inner

and outer solutions.
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3.1.4 Propeller Performance

The thrust and torque coefficients of a propeller can be cal-

culated based on the circulation, flow velocity and angle.

The local lifting force -L is obtained from the Kutta-

Joukowski law

2 1
U+u' (-) (r) ' . - (1) + 2

aL(r) = (U ) ..... 7(r).

(3.1.68)

It should be mentioned that all quantities in this equation

are dimensional ones, whereas throughout the analysis in Section

3 the normalized ones were used. This point was mentioned in

Section 2 in which the nondimensional 7 was defined as

uI(r) = u (r)/U
a a

u t  (r) = ut  (r)/U

T(rh = r/2 UR

r= r/R

but the bars above the letters had been dropped for convenience.

The thrust force T and power P of the propeller are thus
h h

written

R

Th = K AL(r) cos(2(r) + ai) dr

0

R

Pw = KJf r AL(r) sin(S(r) - ai) dr.

0

Conventional normalization provides the thrust and power coef-

ficients, CT and Cp
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c ~T hCT - Th
fIU27R2

1 + 1
4K] (l+ua(1)Cr) + .. + ( r+...) • (3.1.69)

0

7(r) cos(, (r) + :i) dr,

Pn

1  3 2

owl
4 K 1 r 1+ C r) + .. + . (r) + r,)

0
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3.2 LONG CAVITY PROPELLER CASE (CASE 2)

This is the case in which the cavity length Z has the same

order of magnitude as that of the propeller radius R. As is

shown in Table 3.0.1, i.e.,

R

whereas the chord c to the propeller radius ratio remains the

same as before,

C

R AR

AR - Propeller Blade Area
Propeller Radius

It is interoreted that when the chord shrinks to a lifting line

with the propeller radius (or span) fixed, the cavity cannot

shrink to a line. The outer solution should therefore consist

of a lifting line followed by a cavity sheet as is shown in

Figure 3.2.1.(a).

The inner solution obtained with x = :-X, y = cY and z = Z as

- 0 will be the one having the Y' an length and cavity length

to be out of sight. Therefore, the formal singular perturbation

method would request the inner flow configuration to have an

infinite cavity. However, a difficult problem of using such a

flow configuration arises in the matching procedure. Since the

cavitation number 3 may be defined as

P C = 2(3 .2 .1 )
2

where

PC p, static pressures inside the cavity and at the
upstream infinity, respectively,
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q = velocity at the upstream infinity,

the velocity on the cavity wall should be calculated by Bernoulli

equation

qc q

For the infinite cavity problem, the upstream flow velocity in

the inner region qI should be identical to qc" As a result it

is found that

q= q= qlVT + . (3.2.2)

As has been seen from the previous section, the first order

matching will provide

q, = q, (3.2.3)

which conflicts the orecedent result obtained in Equation (3.2.3)

This problem apparently stemmed from the erroneous choice of

the inner flow configuration. The rule of the singular perturba-

tion method says that the inner or outer flow solution shall not
carry any physical or flow information connecting the counter-

part solution. In the above discussion the cavitation number

which defines the physical relationship between the cavity of

the inner region pressure and the upstream-infinity 7ressure

at the outer region also determined the upstream pressure or

velocity qI of the inner region. This overspecification for

the boundary conditions caused a problem of proper matching

for determining the unknown quantities.

Because of the reason just mentioned, the inner solution must

be obtained by solving a problem for the flow configuration

having a finite cavity length. Although the cavity treated

in the present case is assumed to be too long to be enclosed
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in the inner region, the complete body-cavity system will have

to be squeezed within the inner region. A question arises as

to what kind of closure condition is to be used. Due to over-

stretching the inner coordinate in the present case, one might

consider imposing a condition that the total source of the body-

cavity system be finite in order to represent the long cavity
not to be enclosed in this region. However, there is no way
at this stage to determine a quantitative number for the

finite total source strength. It is for this reason that the

first order inner solution will use S = 0 and that, if there0

is any correction, it should come from the matching procedure.

The first-order inner solution in this case is therefore iden-

tical to that used in the previous section. The outer expansion

of the inner solution in Equation (3.1.52) can be used for the
matching purpose.

As far as the inner expansion of the outer solution is concerned,

the lifting-line circulation and its free vortex have the same

expansion form as Case 1, i.e.,

.~~(r) a x + (r)-)
(r) -(r) tan-lY+ (u a .x+ utY) + lx r ' x + H.O.T.x 2 2x +V

(3.2.4)

The difference in the present case, however, exists for the

expansion of + due to the source terms, I and its matchings
with the inner solution. As has been mentioned in the beginning

of this section, when £ -0 with the span length fixed, the

cavity fails to shrink to a line in the present case. The

cavity sheet is left over behind the lifting line. Any quan-

tities associated with this cavity sheet cannot be determined

by matching on the line because they do not belong to the same

stretching factor E. In order to determine s(r,e) in Equation

(2.1.8), the matching with a new scaling parameter 5 will be

necessary. The new scaling parameter S will be defined as the
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maximum cavity thickness to the cavity length. In this sense

the present problem is categorized as a "multiple" scale problem
in the singular perturbation method as Js explained in the book

by Van Dyke (1964).

The same potential function due to the source singularity as before

(Equation (2.1.8)) is used

1 t fi s(r',-') d9' dr's-R , (3.2.5)
k=1

r h 9L
=[(x_ i ,2 + r, 2 23

Ra ,= + -2r'r cos 'P ,

1 (3.2.6)
.x- )2 + (r- r cos T,)2 + (r sin Y",)23 2

+-a (3.2.7)

The inner expansion of the outer solution for the new parameter
6 will be made as follows. In Equation (3.2.5) * (s,r,6) is

expanded as a point of (x,r,e) approaches the blade-cavity sur-

face in the direction normal to its surface element. By changing
the coordinate system from the cylindrical one to a local one

(x,y,r), attached to the cavity-body surface as is shown in

Figure 3.2.2, ts can be written

r+Ar x+Ix

1/ s(r' ,x') dr' dx'
s6 2 .... i 1 4H.O.T. (3.2.3)

r-r 
+_. (r-' y

where

. ( - V/7 2
r','(x')) =s(r',x') r' + 2

S=/wR,
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and consideration has been made that the major contribution for

arises from the nearest singularity with 7 0. The subscript

5 for s has been used to distinguish the expansion in terms of

5 from that in

In order to expand s as y -0, the Fourier transform method

used in Section 3.1.1 will again be employed (see also page 23

of Ogilvie (1970)).

Define an integral s as follows

0

k.1 f s(r'.,,x)dr I dx '  (3.2.9)fs 2 2 J -2]
... x-x )+ (r -r')2+ y 2

where

s(r',x) = 0 for r'-r > r

,x' -x.

The Fourier transform of :s3 with respect to x, is given by

i~e~i] / -ikx
Xdx = ! f s(r',x')e dr' dx' dx

f s -2 )r [r, -)2 ) 2 +-2j1
_0 -c _ 00 .. .. x -x,)2+ r +

With a change of variables, t = x-x' and defining the Fourier

transform of D, and s by * and s*, respectively,
s so

*(k;r;y) = _I e ik(t+x) dr' dx' dt
s2 -t2 2 1

L-+ (r-r') 2-2

- ,) de dtS*( ',k t.f 2  e 2 2] 1

It + (r r') + Y
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fs*(rt,k)drt.K 0 {k[ (r - r I)+V 200

where K0 is the modified Bessel function (see page 9 of Fourier

Cosine Transforms Section of the book by Erdelyi (1954)) for

the half integral of the real part. The second Fourier trans-

form is taken with respect to r;

-- **(k,m;y) = f s*(r' ,k) dr' e - i m r KI k [(r- r') 2+ y2 r

us * (r',k) dr' e- im (t + r') K (t2+y2)2t
_a3

=2 2 2

-7 s*(m 2- 2! (k + m (3.2.10)
k 2+ m2

where the formula for the Fourier cosine transform of K0 on page

56 of Erd6lyi (1954) has been used and the double stars ** for

the superscripts denote the double Fourier transform of each

function.

Expansion of for small y can now be made;
5.

1
(k m; S** (k,m) 1 - (k2 +2)2 +

* m 2
(k +m )2

1-2 (k 2 +m) + 0(y3)j . (3.2.11)

Inverting Equation (3.2.11) term by term,
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%s CX~r~y) ,(x,r,0) + T yls(r,x)I
+ TYr'ys(Xr0) + + 0( 3) (3.2.12)

2 Ls 5  xx s:ZZ j

where s(x,r,0) and s.(X,r,0) denote the second derivatives

of : (x,0,z) with respect to x and z, respectively and

*A,
hfi// s(r',x') dr' dx'*' :sAx,r,0) 1 l (3.2.13)

rh 0 P-)+( )2

I

There exists a problem in inverting the above equation: the

first term in Equation (3.2.12) S. (x,r,0) cannot be expressed

directly in terms of s(r,x) due to the extra term in Equation

2 1
(3.2.11), i.e., (k2  m )2. In order to determine s(r,-x), the

second term must be used as will be seen shortly.

The inner solution to be matched with the outer solution expan-

sion in Equation (3.2.13) should be obtained from stretching

the coordinates based on the two parameters, & and 6. With

x = LX, y = Y, z = Z and 3 maximum cavity thickness/ c

as £ and - 0, the flow configuration will become the one used

in a linearized supercavitating flow theory; the body-cavity

streamlines are mapped onto a thin slit as is shown in Figure

3.2.1(b). Although it may be possible to expand the nonlinear

solution around the y7-axis, such expansion seems extremely com-

plicated due to the nature of the theory. The purpose of using

the linearized theory here is simply to determine the source

strength for the cavity thickness. The determination of all

other major characteristics still depends on the nonlinear

theory. The higher accuracy of the overall results will thus

be maintained with the major portion including the circulation

to be determined by the nonlinear theory.

As has been described in Section 2.3 for the 2-D linearized

supercavitating flow theory, the source distribution on the
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body-cavity slit can be obtained as a function of the cavita-

tion number and geometric foil profile. The velocity potential

due to the source distribution, expanded in terms of small y,

will be expressed in the following form

-vIy (3.2.14)
S

where

V v= - 0< xiV2 '

(3.2.15)s 2(x)

2 lx <c

and s (x) and s 2(x) have been given in Equations (2.3.16) and

(2.3.17).

Matching between the inner and outer solutions will now deter-

mine the unknown source distribution function s(r,x);

s 1(x)
s(r,x) = 27 0 0<x <1

(3.2.16)
2 (x 1 < < e.c

s (X) in Equation (2.3.16),

s 2 ('x) in Equation (2.3.17).

Once the source distribution is obtained, the outer solution

due to the souce singularity will be expanded now in terms of E.

As the blade chord shrinks to a line, s is expressed in the

similar form to that in Equation (3.1.11),
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1 K f x Slx(r')- + rsin'Sl s r') dr
3s R) dr' + dr'

k=1 0r
hh

1 9

+ dr' f s2(r x)) d' + H.O.T (3.2.17)

rh 0

where

(0 r) s~ s(r',e' (i')) d'j' (3.2.18)
T

s1 Cr') =f sl(r',e'(x')) e' (-Xr')d' (3.2.19)

9L

T

.Slx(r') =f s 1(r', '(x') ) el (- de )d '3.2.20)

and s1and s2are given in Equations (2.3.16) and (2.3.17).

The last term in Equation (3.2.17) is the new term evolving

from the cxistence of the long cavity sheet.

Now the inner expansion of the outer solution as E: - 0 becomes

-s (r)?Zn(x 2y2  2 s lx ( ) -x + S (r)y

SE0y + y2 (u .4 ut s Y)

+ H-.O.T. (3.2.21)

where

s2 .)
U as 7x

ly r' l(3.2.22)

s2

U)
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KE s 2(r' ' (x'

s2 2 dr/ d' (3.2.23)
k~l R0

rh  0

The two-term inner expansion of the outer solution D is now

written
1

- 0
+ ( r ) t an - l y + S0(r) Zn(x2+y )+ (uar) + ua(r)).x

+(ut(r) +u ts(r)) y + lx (r)2 x+ 2 Y

x +y

s lx (r)-x + s ly(r).y
2 2 + H.O.T. (3.2.24)2 2"" "

x +y

where

0 = Ux- rwy. (3.2.25)

The same matching procedure as in Case I can be applied here.

This will result in almost the identical solution as before

except for the incoming flow velocity qI, induced velocities

a and the source strength S0 (2)

q(2) [FU + u ( 1 ) (r) + u ( r) + r l (r) (1 r) /2 2
I a r- u - Uts

+ O(E ) , (3.2.26)

a (2) = 2. + 0(E 2  (3.2.27)

rl - u(1) (r) - (r)
a. = tan- uts - (3.2.28)

-u (i)Cr) +2u r)
a as

(2) (2)

2 Re[w'(ia (2))] = S0 in Equation (3.2.18).

(3.2.29)
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The result of the second order matching indicates that the

second order inner problem to be solved has the incoming flow

quantities q I and with the closure condition S02) =0

finite. It means that (1) the upstream flow now has the

induced velocity correction not only due to the vortex wake

but also the source sheet and (2) the total source strength

is not equal to zero, but finite, given by Equation (3.2.18).

The latter condition is interpreted as a correction to the

assumption made for the first order inner solution, as has

been mentioned earlier. The matching for the circulation

of the second order provides exactly the same form as that in

Case I, i.e.,

a(2) (2)
(2 (r)_=_ (2)](2) (r) a 2  I [w' (ia)] (3.2.30)

Table 3.2.1 is provided to help clarify the present matching

Llicedure in comparison with Case I.
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4.0 CONCLUSION AND RECOMMENDATION

Unlike finite span wings or subcavitating propellers, the

singular perturbation method for the supercavitating propeller

required careful classification of the problem due to the

existence of the multiple scaling parameters. The scaling

parameters here included 1) span length R, 2) chord length

C, 3) blade spacing d and 4) cavity length Zc . The span
c"

length R was chosen to be the reference parameter for con-

structing various scaling parameters, namely c/R, d/R and Z c/R.

The first problem solved here assumed that c/R and Z c/R

were of order Z but d/R was of order of unity. It turned
out that the nature of the singular perturbation problem

was similar to that for the subcavitating propeller solved

by Brockett (1972) except for the solution of the inner

region. The thrust and torque coefficients were obtained

explicitly without solving the integral equations. Since the

nonlinear supercavitating flow theory was employed in the

present work as the inner solution, there existed no limitation

for the flow incidence angles or blade profile shapes. Due

to the nature of the nonlinear theory, the loading coefficients

could not be expressed in ascending series of £, but were cal-

culated with new boundary conditions applied. It must be men-

tioned that the new calculation will not cause any difficulty

since the same formula for the boundary value problem can be

utilized with changing only the boundary conditions. It is

believed that the present solution obtained with the nonlinear

theory as the inner solution will provide more accurate results

than those with the linearized theory.

The second problem treated in this study was the case in which

c/R had an order of c but c/R and d/R were of order of unity.

Physically, this was the case having long cavities behind the

propeller blades so that even when the chord shrank to a line,

the cavities were left behind the lifting lines. This portion
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of cavity sheets was called "source sheets", the singularity

strengths of which were obtained through the cavity sheet

matching. This matching was totally different from the regular

matching carried out for the properties belonging to the lift-

ing line. It was considered that the present problem had to

be categorized as the multiple scale problem in the singular

perturbation method.

The first-order inner solution used a closure condition,

i.e., the total source term S0 equal to zero. It was con-

sidered that this assumption might not be totally correct,

at least physically, because the cavity length was too long

to be fully contained in the inner region. As the result of

the cavity sheet matching, however, it was discovered that

the second-order inner solution had to use a finite Sol the

value of which was determined through the matching procedure.

It seemed that the second-order matching automatically cor-

rected the overstretching assumption made in the first-order

inner solution.

In the section of problem classification, Section 3.0, two

other problems were posed, both having small blade spacings.

The outer solutions may be quite different from those in

the above two cases since if one looks at such a propeller

from the far field, the blade elements will not be identified.

This may require the actuator disc concept for the outer solu-

tion, with a conventional pressure jump across the disc if the
cavity is short but with a cavity pressure drop to be applied

if the cavity is long, similar to the theory of Tulin (1965).

These two problems have not been carried out here due to the

enormous amount of work required even for the first two problems.

For the future study, therefore, the last two supercavitating

problems having a large number of blades are recommended to

be solved with the singular perturbation method. It is also

our regret that numerical computations have not been conducted
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for comparison of the present analytical results with experi-

mental data for the same reason above. Such comparison will

be interesting and is also recommended for further efforts.
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rA

TABLE 3.2.1

MATCHING PROCEDURE AND RESULTS FOR CASE I AND CASE II

CASE I (Short Cavity)i st Order 2nd order

(0) (0)

Outer Solution q
=0 -(2)

0 =0
00

Inner Solution () (22 (2) (2)

2' = , - = 0

CASE II (Long Cav:it
_______- :2nd Order

Outer 3oit::.

. = s x, 7(2)s I

Inner Solution q , , (1

(0) ( 0 502) =fSl(X)dx

0
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X

Direction of blade rotation

.I.

N -4

L.E.

Path of integration

FIGURE 2.1.1 A schematic diagram for propeller
flow configuration in which the
propeller rotates at a fixed position
while the flow approaches with the
uniform velocity U
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0x

~~Single spiral -
r ql ivortex model

(a) Physical plane y = x = iy

S _ _

(b) Potential plane W = + iY

in

4 ia

-1 b

(c) Transform plane + in

FIGURE 2.2.1 Flow configuration for a super-
cavitating flow with single spiral
vortex model in the physical plane
and transform planes
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iy

Double spiral
vortex model

(a) Physical plane 7 = x + iy

(b) Potential plane W = ) + i?

ia

2a

c -l b d
--- ----

(c) Transform plane = + in

FIGURE 2.2.2 Flow configuration and transform planes
for the same supercavitating flow as that
in Ficure 2.2.1 but with double spiral
vortex model
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v=f'(x)-q u - q
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FIGURE 2.3.1 Linearized flow configuration
for a supercavitating flow
with boundary conditions
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FIGURE 3.1.1 Contour C for the integral
of Equation (3.1.25)
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I. y

Uqua rw\

(2)

FIGURE 3.1.2 Local coordinate system (x,y)
attached to the blade and
incoming flow conditions
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Lifting line

Cavity sheet or

source sheet

(a) Outer solution

Ki

L Cavity-body slit

(b) Inner solutionLi

FIGURE 3.2.1 Flow configuration for Ca) the outer
and (b) inner solutions in Case II
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X

Point of interest (x,y,r)

approaching to the
body-cavity plane

-

r r

y

FIGURE 3.2.2 Expansion of the source singularity around
the local coordinate system ( , ,r)
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APPENDIX A

INVERSION FORMULA OF SINGULAR INTEGRAL EQUATIONS

The inversion formula of the singular integral equation for

arcs is well described in the book of Muskhelishvili (1946).

In order to provide a brief insight into the derivation of the

formula the inversion method will be summarized herein. Let

the singular integral equation be defined by

If ( t) dt_ = t f(t0) on L (A-l)7.1 t - t o 0

L

where the contour L consists of smooth arcs 1 to Lp i.e.,

+*, +L = LI+L2 +  +L, (A-2)

f(t) is a given function and t(t) is to be determined. The

functions f(t) and D(t) are considered to belong to the classes
HI ) ad . 2 )

H and H* respectively.

Note: 1) A function (t) will be said to satisfy a H6der condi-

tion (or H condition) on the arc L, if for any two points

t i , t2 of L

(t -  (t I  <a'r 2t l

where A and u are positive constants. The function :(t)

will be said to belong to the class H on L, if it satisfies

the H(H) condition for some u > 0 on each of the closed

arcs L. of L including the ends.3

2) If the function (t), given on L, satisfies the H( j)

condition on every closed part of L not containing ends,

and if near any end c it is of the form

(t*= < <i 1
(c -c) -

where t*(t) belongs to the class H, then (t) will be

said to belong to the class H* on L.
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Introducing a sectionally holomorphic function

(Z) if 1 t (A-3)
27i f t-z(A3

L

one has
- 1 / (t) dt

+(to) + C(to) = -J t-t o

L

Therefore, the inversion of the singular integral equation (A-1)

is equivalent to the problem

+(t 0) + -(t 0) f(t0 ) on L, and
(A-4)

= 0.

This is a well-known mixed-type boundary value problem, the

solution method for which requires first the homogeneous solu-

tion X(Z) of '+ (t 0) + D-(t 0 ) = 0. By choosing a function

X(z) = 1 (/R (Z) ( CA-5)

where
q

R1 (Z) = H (Z - Ck) (A-6)
k=l

2p

R 2(Z) = T1 (Z -C ) (A-7)
k=q+l

and the quantity of X(Z) is understood to refer to the branch

cut along L. It is readily found then that

+

[X(Z I+=- [X(ZI 
(A-8)

and therefore a solution to the problem for a new function Y(Z)

Y(Z) = (Z/x(z) (A-9)
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is given by solving a boundary value problem

[ Y(z)] [ (z)]- [(z] + [ (z)]-Y+ -Y- LxzJ - J [X(7)] +

f Ct)

(t)] on L (A-10)

The solution for Y(Z) is given

Y(Z) 1 f f(t) dt (A-11)
2-ri [x(t)] -Z + Q(Z)

where Q(Z) is an arbitrary polynominal. The solution for :(Z)

is therefore obtained by substituting (A-11) into (A-9),

4(Z) = X(Z) f(t) dt + Q(Z) (A-12)
f x (t) I+ - Q()

L

The arbitrary polynominal Q(Z) will be chosen in such a way

that (-) = 0 and other physical conditions of the problem

such as singularities be satisfied.
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