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solution, there existed no limitation for the flow incidence angles or blade pro-
file shapes and thus the present solution would provide more accurate results than
those with the linearized theory.

The second problem treated here was the case in which c/R was of order of ¢ but

1./R and d/R were of order of unity. This was the case having long cavities behind
- the propeller blades so that even when the chord shrank to a line, the cavities were
j left behind the lifting lines. This portion of cavity sneets was called "source
sheets", the singularity strengths of which were obtained through the cavity sheet
matching,a totally different matching procedure from the reqular matching. The
first-order inner solution used a closure condition, i.e., the total source term Sj
: equal to zero. As the result of the cavity sheet matching, however, it was dis-

8- covered that the second-order inner solution had to use a finite Sg. the value of
which was determined through the matching. It seemed that the second-order matching
automatically corrected the overstretching assumption made in the first-order inner
solution.

Two other problems were posed, both having small blade spacings. The outer solu-
tions may be quite different from those in the above two cases since if one looks
at such a propeller from the far field, the blade elements will not be identified.
This may require the actuator disc concept for the outer solution, with a con-

- ventional pressure jump across the disc if the cavity is short but with a cavity

: pressure drop to be applied if the cavity is long, similar to the theory of Tulin ¢
(1965). These two problems have not been carried out here due to the enormous
amount of work required even for the first two problems.
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1.0 BACKGROUND

Solving the propeller flow problem is inherently difficult due
to its geometric complexity as well as the propeller rotational
motion. For fully wetted propellers, many different types of
theories have been developed to date, both for design and off-
design analyses. These include lifting line and lifting sur-
face theories, using the singularity distribution method. 1In
the performance prediction method the strengths of sources and
vortices represent the thickness and loading of blade, respec-
tively and are to be determined by satisfying the flow-tangency
condition on the propeller blade surface. The numerical analysis
using high speed computer is essential and sometimes encounters

the instability problem.

The problem of supercavitating (s/c) propeller flow is even

more difficult due to the additional feature, i.e., the existence
of the cavity on the suction side of the blade. The extent of
cavity varies significantly, depending upon the ship speed and/
or propeller rotational speed. At the design point, the super-
cavitating propeller usually operates with relatively short to
medium length cavities. However, as the flow speed or rotational
speed increases, the cavity becomes longer with increase in
thickness. The flow passage between blades is gradually blocked
and finally totally choked over the entire klade span. Although
the effect of the thick cavity may theoretically be represented
by the source distribution, a difficult problem exists in that
the location of the cavity is not known until the complete

supercavitating propeller flow is solved.

Three different types of concepts exist in accounting for this
thick and long cavity effect on the s/c »ropeller flow. When
the sectional loading used for propeller analysis is calculated

based on the single foil configuration, the 'retarding' flow

correction due to the cavity blocking by Tulin (1965) may be

necessary in addition to the conventional induced flow correction.




This concept is similar to that of the actuator disk theory,

except that the cavity pressure instead of fully recovered
pressure at downstream infinity is used in the momentum theory.
The effective incoming flow velocity, different from that of
the upstream infinity, is used as part of the correction to the
propeller flow diagram. This method was actually applied to
the recent Hydronautics design of a supercavitating propeiler,
designated as Model 7607.02 (see the report by Bohn and Altman
(1976D. Experimental results for the propeller obtained by
Bohn (1977) and Peck (1977) showed that the design method over-
predicted the thrust by about 10 percent.

Instead of correcting the effective incoming flow with the
retarding flow effect, the second category of the concept
utilizes the forces calculated from the cascade flow analysis
for the propeller sectional loading. This type of method is
widely used in the design and analysis for the pump and turbine
in which the flow is usually well confined in the circular
duct. The force coefficients obtained in this thecry are
generally much lower than those of single foil cases because
the pressure on the blade is substantially lowered by the
cavity attached to the adjacent blade. These forces are now
used for the induced flow corrections due to the free vortex
sheet. It must be noted that the retarding flow correction is
not necessary because it is considered that the cavity blockage
effect is already taken care of when obtaining the sectional
forces. The author recently developed such a theory based on
the above concept (see Furuya (1976, 1978))g The prediction
capability of the theory is good for low advance speed range

J where a strong cavity choking condition prevails. Inciden-
tally, an accurate prediction of the s/c propeller performance
at low J's is important since the high speed taking-off condi-
tion occurs under such conditions. However, for larger J's for
which the cavity has a shorter length, the theory substantially

deviates from the experimental data. It means that the super-

cavitating propeller theory based on the cascade data will be
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suitable for predicting the off-design performance at the same

as or lower J than Ja of design point but that the accuracy

for larger J's is gquestionable.

One of the major guestions arising from applying the two-
dimensional cascade flow to the three-dimensional propeller
flow is as to what flow incidence angle must be used for
determining the force. Since in the cascade flow, unlike the
single foil flow case, the flow field is completely separated
by the cascade blade, there exist two reference flow angles,
one at upstream infinity and the other at downstream infinity.
In the pump and turbine flow analysis it is conventional to
use the geometric mean flow angle. This may be understandable
since in such devices the upstream flow field is physically
separated from the downstream flow field. 1In the propeller
flow the flow field is so called "singly" connected like the
single foil case. The only difference is that the cascade
effect locally exists in the former. It is, therefore, not
quite clear which angle is to be used for the present propel-
ler analysis, the upstream flow angle or geometric mean flow
angle of cascade theory. The above propeller theory of Furuyva
(1978) used the former for the two~dimensional cascade flow
analysis. It is considered that an appropriate flow angle to

be used may be somewhere in between the above two extreme cases.

The third category is that of Yim (1978) who developed a design
method by combining the lifting surface theory with cavity
effects. The strength of source as well as that of doublet

is determined by satisfying the boundary conditions both on

the solid and cavity boundaries. However, the method was devel-
oped as a design tool, not applicable to the off-design per-

formance prediction of supercavitating propellers.

In the situation just described, it is considered useful to
investigate the problem from a different point of view, namely,
with the singular perturbation method (SPM). Brockett (1972)

AN ¢ et e e e s




first applied the metheod to the subcavitating propeller flow.
He used the linearized propeller theory for the "outer" solu-
tion and a two-dimensional linearized theory of the fully
wetted single foil flow for the "inner" solution. Through the
matching procedure the circulation distribution of the outer
solution was explicitly determined with the induced flow cor-
rections included. However, the scaling parameters used in the
work of Brockett were limited to two, i.e., chord and span
lengths, just like the finite span wing case, so that the blade
aspect ratio = was only the small parameter for expansions to
be made. It means that the results of Brockett can only be
applied to such propellers having large aspect ratio with small
number of blades, e.g., two to three.

The singular perturbation problem for the supercavitating pro-
peller is much more complex in that there exist four scaling
parameters. These include 1) span length, 2) chord length,

3) blade spacing and 4) cavity length. Although the blade
spacing must have been included even in the SPM of Brockett
(1972) for the conventional propeller, it was just omitted
there under the condition that the propeller blades be sparsely
distributed as mentioned above. Different combinations of

the above four parameters will provide various types of prob-
lems for the supercavitating propeller with SPM. In the
present study four most typical cases are identified, as will
be seen in Section 3 and the solution methods for the first

two problems among others will be presented herein.

We will start with the basic theories which will form the
basis for the inner and outer solutions (Section 2), which
will be followed by the classification of the problem (Section

3) and then its solution methods.




2.0 BASIC THEORIES

The singular perturbation method for supercavitating propellers
will employ various two-~ and three-dimensional flow theories as
inner and outer solutions. Most of these theories have been
well established and wil. be found much in literature. One
should study, however, on which theory is suitable for the

inner or outer solution and for the matching procedure. As a
preparatory work for the major part of the present study, the
basic two~ and three-dimensional theories to be used herein will
be described in the following.

P L - e o e e




2.1 LINEARIZED SUPERCAVITATING PROPELLER THEORY

There exist various ways of deriving the potential function :
for propeller flows but only a limited number of papers are
available for the supercavitating propeller flow. The paper
by Cox (1968) represents such a theory and this method will

be employed throughout the present work as the outer solution.

Figure 2.l1.1 shows a schematic diagram of a supercavitating pro-
peller blade rctating around the x-axis in the uniform flow of
velocity U approaching from the negative infinity of x. The
center of the propeller shaft is placed along *the x~axis.
Although the cylindrical coordinate system (x, r, 2) will be
used in the present propeller analysis, it will be transferred,
if necessary, into the cartesian coordinate system shown in
Figure 2.1.1. The velocity components in the x, r, 3 directions
are first written in terms of the perturbation guantities for

U as (U-#ux, u,, us ) where the subscript 0 is used for the
inertial cocordinate 2 in order to distinguish it from the

), the

rotating coordinate. Defining u as (uY, u_, u
: 0

r 2
linearized equation of motion can be written

|
(e P
=

= 4+ U =
3t X

which will be expressed in terms of the velocity potential 9
as follows

3b ED n

__jE.q. sz -p (2-1.1)
where

u = v (2.1.2)

p = P/g.

Solution for the partial differential equation (2.1.1) is obtained
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where the boundary condition of §==0 at x = -» has been used.

Applying the continuity equation 7:U=0 to Equations (2.1.1)

and (2.1.2), the Laplace equation is obtained for p
2 35<0 (2.1.4)
Use of the Green's identity for § will provide
L5 | "
N 3 . = - - 3 o, J
p(x,r,2,:t) = 472 // Plx,r',3';t) 5= (R.. )ds
k=1 0 v
Sp 0
ij[ = \3 [A(x',r',q',t%ds (2.1.5)
R, Jno
Sb+Sc 0
where
n = normal to linearized surface, positive from pressure
side to suction side 1
R, = [(x--x')2 + r'2-+r2 -2r'r cos ?0]2
0
i¢ = ! - = + 7
-0 0 o K
“:‘0 = 3' - ut
27
% = x koD
= number of blades
= moving surface consisting of propeller blade sur-
face Sb and cavity surface §
=] -
§b’§c = propeller blade and cavity surfaces, respectively.

The moving blade surface S is considered to be composed of

helical lines having varying pitch in the r-direction; i.e.,

S: x-9RM(r) =0
7\(1‘) =U(r)/U)R
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where  denotes the advance coefficient as a function of r.

The directional derivative for this surface is then given

3 , .9 3
ra—x-r(ao+ﬂt)R.\r¥ 3

_ 0
- 2 2 N
{r + (RA) T+ (r’:OR,\r) Jz

_RA
r

D

s
L

where \r = di/dr. Thus,

-x! ; in Y. - ' , p L
3 1 _ r{x -x')+RAr sin kN r(3 0 + wt) R\r (r r cosi0
3n R - 191 1
=0 =%, N TS S EY R u}t)R/\}z ZRr3
| 0 = ¥y
and 1
ds = [r2+ (Rk)2+ {r(9‘0+mt)RKr}2]2 das dr.

For the steady state problem presently investigated, time t is
set to zero in the above equations. It means that the rotating

axis and inertial axis coincide instantaneously, then

v (x,xr,9) = bv-+gs
where
bv = potential due to the vortex
1 5p X=9"'A
=-%Zk; /f Aé(r',sw[/ N—;dv}dE‘dr', (2.1.6)
k=1 ~w» R

Th 9L

bg = potential due to the source

X=3 "'\

1
k E 1
1 ' ' d : ' '
- _7k2=1ffsp(r 5 )[/; R_V]M? 48 'dr (2.1.7)

v
r'n 6,

r, = radial coordinate corresponding to the propeller hub




2 3 2. = angular coordinates at the blade leading edge, trail-
ing edge, and at the cavity end point, respectively

Ap = §+-§- (pressure doublet)
EN-
sp =35 " m (pressure source)
: Mo=rPen?eran?
" Nv=r'v+r.‘«Sin3-—-.If— (v‘—x)vr(r'-rcos 2)
. ~ .
. b= =5 {v-x) =3+7,

el
|

1
= [v2+r'2+r2 -2r'r cos ;]2
» = dummy variable for integrals.

It must be mentioned also that the normalization has been made

for all gquantities above as follows,

s (X, T, %', ', 9) =(x, r, x', r', »') /R
3 = 3/RU
9 = 2
: N, = N_/R
R') = R“)/R
Tr = 3/R
5 = s /270%/R
p p

2p = spr2c?

2 ’ where R is the propeller radius. After normalization, the
bar above each character has been deleted. Therefore, it should
be understood that all mathematical expressions in eqguations
hereafter, including Equations (2.1.6) and (2.1.7), are those

» which were normalized.

The potential t due to the source effect in Eguation (2.1.7) is

rather complex. A simpler form can be cbtained if the source

Dy 9




distribution is used instead of the pressure socurce Sp,

1 3
l K Es(rl “l)d"’dl
- - 1 , 3 3' dr
b = - > X // R (2.1.8)
k=17 ¢ g
h 7L
where
1
Ryr = [(x-%'\)2+r'2+r2—2r'rcos%Q,:lf
?s, = 3'- e+-3k.
In Equation (2.1.8), s(r',3') is the source term (not a pressure

source in this case) which represents the blade and cavity
thickness.




2.2 2-D NONLINEAR SUPERCAVITATING FOIL THEORY i

In order to provide a high accuracy of the results obtained from
the present SPM, a nonlinear theory for the supercavitating i
(s/c) foil will be used as an inner solution. Many flow models
having various cavity closure conditions are available. These
include the open wake model of Wu (1962), and single and

double spiral vortex models of Tulin (1964). Among others,

the single spiral vortex model of Tulin will be used, the reason

for this selection being explained later.

The single spiral vortex model was first employed by Larock and
Street (1965, 1968) in the nonlinear theory, but only applied |

for the calculation of the s/c flat-plate foil characteristics
and for the inverse specification cf foil profile. The theory !
and computer program were recently developed for general pro-

file cases by Furuya and Maekawa (1980) and compared with

experimental data. The key features of the theory necessary for

the singular perturbation method will be summarized here. The

flow configuration and boundary conditions are shown in Figure

2.2.1(a) in which the physical coordinate system employs (X, y)

in tune with that used in the inner region as will be seen later.

The physical flow £f£ield is mapped onto the potential plane W as

shown in Figure 2.2.1(b) which is then transformed onto the upper

half of a new plane 7 = § + in of Figure 2.2.1l(c) by a mapping
function
. W
7 = a 5, =W (2.2.1)
or
g 22
W=2——:—2" (22.2)
a +3¢ .

The cavity end point is mapped to infinity and the infinity

point in ¥ =X+ iy or W plane is now mapped onto a point 3 = ia.

A hodograph variable w is introduced

11




o g

= qge =qce (2.2.3)

where g and 9 are the magnitude and direction of the flow

velocity. Thus

w =89 + it , T = 2n (3—) ,

qC
and
pl_pc
qc‘—‘\/i.TO’ql,U:W
"1

where q and 4. denote the uniform flow velocity at the upstream
infinity and that on the cavity wall, respectively.

The boundary conditions on the real-axis % are now expressed

either in terms of 9 or 71;

(l) T =0 , - @ <€<_l and b <£ <x,
(ii) 8 = 3 , =l<¢ <0, 8= tan‘l{dY(X)/dx}
(iii) 9 = 7+ 3, 0 <% <

where y(x) denotes the foil profile shape of the wetted portion.
This is a typical mixed-type boundary value problem, and the

solution for w is readily written

b 2
+ Zii./[ 27 :?i', + P) . (2.2.4)
iWd+b-3n ° 7
0

We have a total of four unknown quantities, a, b, P, @L,
requiring four equations to determine them uniquely.
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The various boundary conditions will be applied;

(1) at infinity

wlia) = iln( L : 2 equations
\/l+ o]
(ii) length of arc = § arc: 1 eguation

(iii) body-cavity system closure condition (see Larock and
Street (1965)),

Re{J{:udW}= 0: 1 equation,

C

or

dw(z) | _
Re{ ac 1;:1‘3}—0'

The report of Furuya and Maekawa (1980) describes the method
of solving the above system of nonlinear integral equations

for the four solution parameters in detail.

It must be pointed out here that not all of the nonlinear theories
quoted before are applicable to the inner solution of the problem.
We should exclude those theories whose body-cavity systems do

not close in the potential plane W. This point will become clearer
if W(Y) is expanded as ¥ -x=. Let's use the double-spiral vortex
model as an example, the flow configuration of which is shown

in Figure 2.2.2(a). Mapping the potential plane W = :+ 1%

onto the upper half of the -plane, the hodograph solution .

g b
2 d:"l

can be obtained as

1 :
w(i) = = — -—/ e
v+ DG b)l TS TEITOB T T




F d -1
+znyl+3[/‘ 1 ag! _/‘ 1 g']
3 il V(:—’u FL(z" T 50 =z ‘/(c:' F 10, 7 30 =3

‘ ot - b) h £' -Db)
F 4
- (2.2.5)

» where
et ! -is —is

, g—Yyi = g™t =g e, (2.2.6)

thus
w = §+1 lnq/ql

! W = Acz ; A = solution parameter, yet to be known.

™

From Equation (2.2.6),

3

~ 1 ilwdw
9 dy = — e~ =— dz,
3 q dg

or ) ) 2
a7 Lelw(w)[l‘f'iu)'(m) ‘J§+ iu"(®) =w' (=) " 1 ---}-2A;d;
ql 2 _2
as I+ x>
(2.2.7) 1

Integration of both sides of Equation (2.2.7) provides

= L2 . . .
: ,~Ax0(/, +2Klg+2K22n,+---),as g+ ™ (2.2.8)
where
: k, = el®(=/ay
i 0
$
K, = iw'(»)




Ky ={is" (=) - u'<m)2} 2.

Inverting Equation (2.2.7), one obtains

W = A; ~ < —2Kl ﬂ-AK 2n7+---, as z - x>,

The first, second and third terms in expansion represent the
uniform flow, corner flow and source-circulation flows,
respectively. Each term, except for the second one, can pos-
sibly find its counterpart from the outer solution. However,
the second item, i.e., corner flow part, cannot be matched
with the outer solution. This illustrates the difficulty of
using any flow model which does not close in the downstream
infinity, particularly in the pote-tial plane. Note the dif-
ference of the potential planes in Figure 2.2.1(b) and Figure
! 2.2.2(b); one is closed and the other is open. It is for this
reason that we have chosen a single spiral vortex model for

the inner solution.




2.3 2-D LINEARIZED SUPERCAVITATING FLOW THEORY

We will utilize the results of the nonlinear theory as the
inner solution for the singular perturbation method. As will
be seen later, however, a linearized theory is necessary for
conveniently determining the source strength on the body-
cavity system. The most suitable linearized theory for deter-
mining such source strength is that of the singularity distri-
bution method. Since the first introduction of the method by
Tulin (1953), many researchers presented papers for various
types of problems. However, the basic concept is described in
the original paper by Tulin for the drag body case and in that
of Fahner and Spiegel (1966) for the lifting body case. The
linearized flow configuration is shown in Figure 2.3.1 and the
linearized boundary conditions for the perturbed velocities u

and v are given as follows:

toog 3 7 =
u =3 9, ' 0<x <1, v = 0+,
u o= 2 o l<x<2,y=0
2 l I CI ’
v = 1 f () , 0<x <1, y =0,
where
Py~ P¢
g =
2
%cqy

If the source sl(i)(0< x < 1), 52(§)(1<:§'< 7,) and dipole ¥ (X)
are distributed along the slit shown in Figure 2.3.1, i.e.,
for 0<x <Zc, the induced velocities due to these singularities

will be given

]

1 -
s, (x'
LEPURTR S SR B S X
u = = 3 J/. <% x! , 0<x <1 (2.3.1)

0
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s, (X) s
v+ - 12 . v o= - l2 , 0«
s, (X) s, (x)
+ 72 - _ _ -2 .
v o= > , v o= > , 1
+ _ y(X) - _ _y®
u = 5 , u = 5 , 0«
L
+ - I L Y(;') ]
v = v = 57 J/.E-E' d , 0¢<
0

The boundary conditions on the slit are

]
A
H

therefore

(2.3.3)

(2.3.4)

(2.3.5)

(2.3.6)

satisfied by

combining Equations (2.3.1) to (2.3.6), providing a system of

integral equations with respect to sl(§), sz(§) and v(x),

F s (%) o (")
S X s X
1 —l——— d;c-' + ~l--‘/‘ :2—._—'d§'
2w X=X
1

27 X- X'
0
l -— ‘lz’c —_
s, (X)) _ s, (X')
zi__ _l—_'dx'+ i-'/' ;,—dX'
: X-X 27 X - X
0 1
1

0

Applying the inversion formula given in

wiTey s, (%) _
f%'J/.%%§3% dx' - l2 =qgtf'(x), 0c¢

¥ (%)
2

+

b |

Appendix

(2.3.8), the following result will be obtained

1 1

3Gy 0<® <1

(2.3.7)
X <2
c
(2.3.8)
<1. (2.3.9)

A to Eguation

— (z-1\%) & L [ fom\3 5D
- {2 = S = c = '
SZ(X)_(I.C-E 2ql+w/(l-§') ST ax (2.3.10)
0
where a singularity at x = &c has been placed for representing

an abrupt termination of the cavity. sz(§) is now substituted

into Equation (2.3.7),

anstehinhon
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— .1 —
L= x"\53 s, (x") ‘L= x\5
c 2 71 =, - c
(1-3@) A%’ = g, - (B <1-§)2 (2.3.11)

Application of the inversion formula again to Equation (2.3.11)

yields an expression for sl(E) in terms of v (x);

1
= _ X \2 ‘ . 1 x' \2 =, d&x'
s, (x) = (}”c_§> 2-— qu+;/ (TC-—E'—> (=) (2.3.12)

Substitution of Sl(X) in Equation (2.3.12) into Eguation (2.3.9)

eliminates Sl(X)’ and results in the following integral eguation

for v (%) only;

1 - % -1
L o=-x\2 Lo~ x"\2 ] -
) - ()| e
T X X-X
0
_ L
- ?C— x\2 _
=5ql - 53 f'(X) ql (2 3 13)
Change of variable with

1 1
x \? = \2 :
-— ' — S
< = P S Py (2.3.14)
C C

will transform Equation (2.3.13) into the following form

e
N 1 [ q —
% (%' (< %l, dx - = 12 ;c<- f'(x(<DE 0<< <e (2.3.15)
(1+<'%) ¥~=¥ 1+«
0
where
.2 .2
,c< K
x(<) = , X'(x') =
1+ <2 1412
(2.3.16)
1
e = 1/(i - 1%,
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Finally, the dipole distripution of y(x) is obtained by invert-

ing Equation (2.3.15);

1 1
(X)) = 34, (cos #)° (e'<)2 (sin% 5 o<-cos 5)

1 1
q -\ 1 B} W ' A1
N } (l+ <2>(e< «)2J/'( f )'>2 £'(X (z )) /dk<' gc< <e
” / e < 1+ <t { -

(2.3.17)

o o

= tan-l(e)

and the leading edge singularity has been introduced above for
representing the stagnation flow within the framework of linearized
theory.

sl(§) and 52(2) will then be calculated by substituting Eguation
(2.3.17) into (2.3.12), followed by (2.3.12) into (2.3.10)

1
-~

1
sl(§(<)) = g—ql(cos 3) 2 (< : e)2 (sin% - < cos %)

. L e Lo
_ ~_1%(1_{_'(2) <-:e)2 / <")2 £(%' (<)) dK"
, \e-‘: 14 , 2 K+ <
0
~q, £ (%(<) (2.3.18;

and

-
RO

ro|we

. P
sz(x(<D =‘§ql(cosS) (Qi%fﬁ - GL;§> sin

N b

+ <\_ e) cos
<




0
4 € 1
N - ' ) T&YX ' -1
i (Te>/ <ef<->2 fRELO) A (2.3.19)
1+« ‘
¢ 0
' The yet unknown parameter, i.e., length of cavity izc in these
equations, can be determined by the cavity closure condition,
L 1 i
3 c
. /sl(‘i')dE' +/ s, (x")dx' = 0. (2.3.20)
ne 0 1
|

» e am
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3.0 SINGULAR PERTURBATION METHOD FOR SUPERCAVITATING
PROPELLERS

Application of the singular perturbation method to the super-
cavitating propeller flow will lead to multiple problems. Most

of the hydrodynamic problems solved with this method have only

fhtivnng e mabolys G ariad

two characteristic lengths in the flow field. Three-dimensional

e

fully wetted and cavitating single foil flows were solved by

X4

many researchers including Van Dyke (1964), Shen and Qgilvie
(1972), Leehey (1973), Furuya (1975) and James (1975). The

i two characteristic scales for such flows were chord and span

~ .

lengths with its ratio assumed to be small. The problem of
thin foils with rounded leading edges was also treated with

the singular perturbation method, for the fully wetted flow

*

by Van Dyke (1964) and for the supercavitating flow by Furuya

B ‘?“"

- and Acosta (1973). Again, two characteristic lengths, i.e.,

! chord and leading edge radius, existed.

A
5;\ For the supercavitating propeller flow, however, we have four
characteristic lengths. These are
i) propeller radius (R),
ii) blade chord length (c),
iii) cavity length (lc), and
iv) propeller blade spacing (4d).
With these four physical parameters, many combinations of
scaling can be considered and these are shown in Table 3.0.1.

Schematic flow configurations are also given in Figure 3.0.1.

»
-

Case I presents a problem which is exactly the same as that of

fully wetted propeller flows but with a difference existing in

the flow configuration of the inner solution. Instead of using

a fully wetted single foil flow, a supercavitating flow must be A
employed for the inner solution. In this case, the ratios of c to ‘e

and d to R are assumed to be all of the same order ¢ so that, as

the propeller hlade collapses to a line, all pertinent informa-
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tion for the propeller flow can be expressed around the lift-
ing line.

However, this is not the case for Case II in Table 3.0.1. Since
we have a long cavity behind each blade, even with the blade
shrinking to a lifting line, the cavity portion fails to col-
lapse to a line but remains as a finite length in the outer
flow. This portion cannot possibly be represented by any
guantities on the lifting line but requires the concept of
source sheet.

It will be readily understood that the strength of these source
distributions cannot be matched through the expansion of the
inner and outer solutions around the lifting line. The reason
is that the source strengths of such cavity sheet have nothing
to do with the scaling of c¢/R = O(e) but belong to the other
scaling, i.e., 1C/R. It is considered that the determination
of the source sheet characteristics requires a different

type of matching with the inner solution as will be seen later.

The type of problems associated with Cases III and IV are more
complex. As the chord shrinks to a line for the outer solution,
the spacings between the blades will become unrecognizable
since the spacing-to-radius ratio is assumeéd to be of the same
order as that of the chord-to-radius ratio. The outer solution
will have to be solved with the actuator disk concept. If the
line source term SO is equal to zero and no source sheet exists
(most likely in Case III), only a careful consideration for
choice of the inner flow configuration may be necessary. How-
ever, if SO is not zero followed by a source sheet, the
actuator disk will have to add a source disk as well as the
lower pressure region behind it. Thi:. 111 account for the
flow retardation effect in the heavily cavitating propeller
flow, first explained by Tulin (1965).

In the present work, due to the limited time available, only

the first two cases will be solved with the singular perturba-

22
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tion method, leaving the other two cases to the near future
effort when resources become available.




3.1 SHORT CAVITY PROPELLER CASE (CASE 1)

3.1.1 Outer Solution

An outer solution, valid in the ocuter region, will be obtained

as a limiting form of 9 when the blade shrinks to a lifting

line. First look at by in Equation (2.1.6). By defining the
third integral in (2.1.6),
x=8"'3
N
I(r',3") = 7 dv (3.1.1)
Rv ,

we can expand I(r',3') for small 8', i.e.,

I(r',3') = I(r',0) + ok 3' + H.O.T. (3.1.2)

3 8'=0

where H.O.T. stands for the neglected higher-order terms,
0(9'2), etc., and

X
Ny
I(r',0)=:/.——§ dv (3.1.3)
X=9'y . \ sin ¥
| N r'x+rlsinY
31 o A —Voay = <) —k (3.1.4)
33 a1=g 38 R 3 R >
T v 0
- Q0
1/2
2,..'2 2 . .
Ry = |x7+r “+r7-2rr cos(—c-+ok) (3.1.5)
Vk = -94—ok.
We now have v in expansion
a
1 77 X
1 R Nv r'x+ ri sin Wk
L D) Ap(r',3") —5 dv -39 —
k=1 Jo Rv RO
Ty GL
+ H.O.T.| dr'd=2". (3.1.6)
24
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Redefining some of the terms in this integral, i.e.,

1
2 2\ 2
. _ . 5 (25+29)
Ap(r,9) = (c(r,v) 5
I
Sx') = fc(r ,3')d8
‘L
I
\ ' = ~
rllx(r) AR' Ap(r',5")r' @9
a
L
8T
' = 2‘| 2 'oga '
uly(r ) A9 Ap(r',8') 4o,
L

where the normalization factor for I'(r), i.e., 27TRU, has been

used and Yc denotes the vortex distribution.

Equation (3.1.6) can be written as follows

1 X
1 a0
2y = -5 3 T(r")dr' 7 dv
k=1 R,
ry -
1
Xu, (r') + rsin(=-8+35,.)  u,. (")
_/ 1x - k¥ " ar'+m.o.T. (3.1.7)

r %o

h

It is seen from Equation (3.1.7) that the potential by is com-
posed of a line circulation as the lowest term, moment terms
having the axes in the direction of chord and that normal to
the blade, and H.O.T.




R e

Similarly, the potential P in Equation (2.1.8) will »e expanded
for small 3' with the present assumption of short cavity in
mind. As 2'-~0,

= =RL+_338,(_R ) ' +H.0.T. , (3.1.8)
s 0 95120
and ]
AX - rr' sin ¥
3 (1) . K (3.1.9)
36" {R,, 3 j
N 8'=0 0 !
therefore,
K ! ’E
D) [/ %i/ s(r',2') as’
k=1L 0 J
h L |
1 °p
dr' ooy ' N R Dy S 1
+ s(r',3")+3 +(-Ar'x+rasin?¥ ) d3'+ H.O.T. i
R 3/2 k i
r 0 8 ) :
h L (3.1.10)

With a new definition for the following integrals

E i
So(r') =/ s(rx',2")y ds' ,
%L
eE
' — ' 1 [ [} St
slx(r ) _J/. s{r',2")3'(-\r') d
2
L :
aE
' - [ | ' 3¢
sly(r ) -./f s{r',3")9"' 43 '
8
L

Equation (3.1.10) will be written as o

26




+ H.O.T.}. (3.1.11)

In this equation So,s and S,y can be interpreted as a line

1x
source, the first moment of source in the direction of x and

y, respectively.

For matching purposes, the asymptotic limit of the outer solu-

2

tion 9 as s, ~0 1s required where 502 = x" + yz. The first

term in Equgtion (3.1.7) represents the potential, denoted by
¢VF’ due to the vortex line and its free vortices. It is
rather difficult to expand this term directly and thus the
velocity components, u and Up-s will be used for this pur-

arl
pose, i.e., ;

30 3¢
vr 'A
u = u, . =
al = 3x ¢ 1A E (3.1.12)
where
1 X
1 X Nv
DV.— = -5 Z / (r )dr'/——3 dv (3.1.13)
k=1 s R, .
Th
Taking derivatives of DV“ with respect to x and 3, we find
Ur = Ug-p * U g (3.1.14)
Ug- = u -p+ U o {3.1.15) E

where 1




-
>

K r'(r'-rcos £)
- = - i gt 13 g
U F U o= -72 T{r')dr [3r'/ 3 d.]
k=1 £ Ry
h
{(3.1.17)
1
1 K -X cos 'Pk
Qrg = 3 2: M (r')dr 3 (3.1.18)
k=1 RO
Th
1
LT S
u_ = u_ .., = = r(rt)ydr!
t tI'F 2k=l
Th

3 A{r-r' cos ?T) +ix -r(1+ 9% r'sin?¥_
) - dt
ar 3

23 R

(3.1.19)

Pz t+o (3.1.20)

1/2

[(‘A 1)2 -2z cos '?T+r2+r'2]

o)
Il

and the subscripts B and F for the velocity components denote

"Bound" and "Free" vortices, respectively.

The dominating term in u of Equation (3.1.16) comes from

arB
k=1, the vortex line of its own, as 502 = x2+-y2—>0, therefore
1
r sin 6 F'{(r')dr'
U g~ 5 f 3 + H.O.T. (3.1.21)
Roo
h
where
Roo =
s L.
0 =

5
1]
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The integral in Equation (3.1.21) is singular as so-*O and
cannot be expanded easily as it is. One of the technigues,
among others, to resolve this type of situation is an appli-
00" the

method having been used by Ogilvie (1972) and James (1975) in

cation of the Fourier integral representation for 1/R

similar problems, i.e.,

3
1.1 3(1.)_ G 2+¥>2_
37 s, 3s,\R = o =
Ryo 0 0 \®o00
- -+ 3 i1 - _
ST 5, s, [WJ/.KO(im.so> exp(-ima) dm] (3.1.22)

where KO is the modified Bessel function and

a=|r-r'}. (3.1.23)

The expansion of KO(Emlso) can be made as so->0 (see Handbook

of Mathematical Functions by Abramowitz (1964)),

2 A
K (:m{so) ~ - 2n 504-0(50 in SO)' (2.1.24)

Substitution of (3.1.24) into (3.1.21) and (3.1.22) yields

1
r sin 2 - 1 1 5
U g~ - /‘(r [;/ S—a—(—LnSO+HOT)
rh b
-exp(-ima)dm]
l X0
~Lsiny Slnaeff(r')dr'/ exp(-ima) dm+ H.O.T.
278, o
0 r, -
- r
_Isin e/dm[:/ T(r')exp {-im(r-r')}-dr.
271s
0 == Ty




1
+J/.T(r')exp{—irn(r'—r)}-dr'] +H.0.T. (3.1.25)

r

Integration by parts is applied to Eguation (3.1.25),

x r

_rsins 27 (r) ar(r') exp{-im(r-r")} .,
Yars ) /dm [‘im :/ ar’ im dr
2750 7.
Th
1
_f dr(r') expi-im(r'-r)} .,
/ 35 —— dr'{ +H.O.T. (3.1.26)

r

Now the method of contour integral will be used by defining

exp(-iplZ)
Il =J/. —— dA = 0 (3.1.27)
12

C

where the contour C to be taken is shown in Figure 3.1.1 and
Py = r-r'>0. Thus,

20 -

m
exp(—iplm) exp(-ipl(Rcosa-kRisinS) i2
: dm+*r+/ — iRe™ 782 =10.
im Lo 173
iRe

-0 0

Since the last integral is zero as R+ x,

0

exp(—iplm)
/-—.————dm=-n, p,=r-r'>0 (3.1.28)
im 1
Similarly
. exp(-ip, m)
f - =+ 7, p2=r—r>0. (3.1.29)
u - in Equation (3.1.14) becomes




g 2
0 J
~T(r) —ZL + H.O.T. (3.1.20)
X +y2 J
where (1) = "(rh) = 0 and /;jf—t;n—)dm=0have been used.

-

In the similar manner, u in Eguation (3.1.18) can be expanded

t’B

u, o~ ()| —*— + H.0.T. (3.1.31)
tI'B [x2+y2 J

It is well known that the induced velocities due to the free

vortex sheets, Uy and U, in Equations (3.1.17) and (3.1.18), have

finite values as x2-+y2 - 0, i.e., on the lifting line itself.
The final forms of the expansions for U - and u - are there-
fore written

U .~ (r)=—=24—s + u_ + H.O.T. (3.1.32)
arl 2 2 a
x“+y
- -
u ~ —_—— . 1.3
. (r) 5 5+ u, o+ H.O.T. (3.1.23)
X" +y

3y using the following relationship

1 v _ % . -X
vl > 1+ 5 1 (3.1.34)

2 2
X +y X +vy

“tan

:.,~ becomes
AT

s ~T -1y . cy) 4
byr T(r)tan o+ (ua X+ u y) + H.O.T.,

as x2-+y2~*0. (3.1.33)




The moment term of ﬁv in Equation (3.1.7), i.e., Jyms can also

be expanded by using the method of Cgilvie (1970)

:/l xulx(r') +rsin(—~9)ulv(r')

‘v C 3 - ar
Ro
Th
gy (T)ex+ 0y (1) -y
~ ly + H.O.T. (3.1.36
2 2
X +Yy
where only k = 1 has been used for the leading :=rm of M
- For the potential due to the source, again the method of the

Fourier representation for l/RO and that of Ogilvie are used

for the expansion, which provides

%
‘ 2 5 % slx(r)-x+sl (r)-y
as-SO(r)Ln(x +y7) - > 2Y + H.O.T. (3.1.37)
- X" +y
5 !
\ Combining Dy QVM and g in Equations (3.1.35, 36 and 37),

the two-term expansions of the outer solution o can finally

¥

be written as

1
- -1 v s 2 2,2
>~y * T(r)tan -~ 4—SO(r)yn(x +yT)° o+ (ua(r)~x4-ut(r)-y)
u (r)ex+uy (r)y s, (r)ex+s, (r)-y
¢ Lx 1y - =X 1y + H.0.T. (3.1.38)
2 2 2 2
T +y T4y
- where 2 is the uniform flow part
-
bg = Ux-ruwy. (3.1.39)
g
3.1.2 Inner Solution
. The inner solution will be obtained by stretch:ng <he coordinates

with a suitable stretching factor, in this case the reverse of
the blade aspect ratio 2. The three-dimensional Laplace equa-
tion becomes the two-dimensional one with an accuracy %to the

second order of :z. The poundary conditions near and on the
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blade remain the same whereas those at infinity points lose
their meanings due to the stretching of the coordinates. Since
much literature has already described the detailed procedure
in similar problems, the formal coordinate expansions, etc.,

will be deleted herein.

Figure 3.1.2 shows a flow configuration for the inner solution
on the new coordinate system attached to the blade. The rela-
tionship between the o0ld and new coordinate systems is given

as follows

x = ¥sinB(r) -ycos B(r) l
(3.1.40)
y = -Xzos ?(r) -ysin 3(r) |
or
v o= -i7 et?
where _ _ - _ — -
= x+1iy , ¥ = x + iy , ¥* = x - 1iy. (2.1.41)

The selection of a ca ity closure model to be used for the
present singular perturhation problem needs particular atten-
tion. 1In this problem the assumption was made that the cavity
length be short and can collapse to a line in the coordinate
stretching procedure. This assumption immediately eliminates
the chance of wusing a cavity closure model in which the
information in the inner region carried over to the outer
region. The open wake mcdel and double spiral vortex model
are included in such category. The only feasible one is the
single spiral vortex model of Tulin (1964). In this model

the physical guantities on the upper and lower wakes are
assumed to be identical for the same velocity potential value
» so that the body-cavity streamlines are closed at the cavity

end point in the complex potential plane.

The nonlinear solution method for supercavitating flows with
the single spiral vortex model has already been described in

Section 2.2.
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In order to be able to match the inner solution with the outer
solution, the former must be expanded in terms of the velocity

potential . From Equation (2.2.3),

a7 = W tv e d 4 (3.1.42)
a, 3, &

but dW/dz can be calculated from Equation (2.2.2), thus

ay = & a®p ——s— ds (3.1.43)

Expansion will be carried out as |y|- »or ZI-ia in the Z-plane,

therefore.

. 282
olw(3) _ ei§w(ia)+<»'(iaﬂ; —ia)-+w"(ia)£:{%iél_ T
S LR P IR LV IS SPNIIE PRI (3.1.44)
where
!
K, =i w'(ia)
(3.1.45)

=
[
1]
[ ]
'_l
t
H.
2]
|
-
',.J.
(V1]
[ 8]
| E—
\
N

Il
1%
+
e
>
]

«{ia)

incoming flow angle and velocity, respectively, at
upstream infinity in the inner flow ragion.

i

410 491

It must be mentioned that £ and q; are guantities yet to be
known and thus should not be interpreted as those of the outer
flow region at this stage of the theory. They will shortly be
determined through the matching procedure. dY in Equation

{3.1.43) now becomes

2

-1 — lap’, K
qe 101 97 ~ - : [( 1 + 1. K, + O(Q-iaﬂ ag




% by integration
: ; iay
> ~lat o o _ | 1 , . [
3 q.e y > [ T - 1a + Kl in(z 1a)-+Ko-+K2(, ia)
g
+o{(;-ia)2}:l (3.1.46)
ﬁ where K, is an integration constant.
B
f: Inversion of Equation (3.1.46) vyields to
. -K.L_ +X
n l —_ —_ 2 <Ny l 0 2
. ~ - 3 - + ¥ -
il To1a " RoY Ky v (SK IR ARG Ky Rt T ALY
+ 0 {?Y
(‘(2 /
Ny where A, = qu-laﬁha:J/Z
“,r LO = -Kl ZnAO-KO
S which is substituted into W in Equation (2.2.2), providing
. aov ias
- —llIf 2 Vs - l“_. K . s '
W q;e (+ = w (ia) iny + 5 ' is' (ia) u1A0+KO‘
i (4 tar, 1 2ny a2 Kbg7K
{’4) (la)} p) r —— + : _
e-lJLI v 4 e-l:}LI v
91 91
+o<Q$2Y>, as Y- (3.1.47)
l . . .
3 Take the complex conjugate on both sides of Equation (3.1.47)
and express the guantities of complex conjugate by *,
& ixy—= av, * « 2n 7"
* . FT A | : *
W q;e T e (ia)* + Mg© + My =
. +M*L+o“7* (3.1.48)
52 T* 7* . - . )

ia¢2

. . \
- - ' -
where MO = 5 { iw (la)auAO KO{
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(3.1.49)

Substitution of Egquation (3.1.41l) into (3.1.48) will provide

ifag = 3+ —2) a2,
W*~qu I ) T 2“w’(ia)*i,n‘(
' v, Any ' _l_ iny
-+MO -le —7r—-+M2 7 +0 ( > ) (3.1.50)
Y
where ' . a¢i s
= ] w'(ia)* ini
MO MO 5w (ia)* inie
M, =M, * 1 (3.1.51)
1 1 -i3 ‘
ie
% x - . =18
M'=M2 +Ml nle
2 ie-lS
and W* is the complex conjugate of W, i.e., W* = > -iV}, The

real part of W* represents the velocity potential 3, then

»~qp jcos (aI-S+%) - x-sin {(x —S+%) -ys

I

N

ad
+TQ- ;Im[w' (ia)] -tan—l%:— + R, [w' (ia)] in (x2+y2)

) v {(x - iy)in(x +1iy)
+ Re [MO :I + Re [Ml p) > ]
x“+y

R[M ']-x+1 [M ']-y in v
sob 2] D 2 +o( 2>,asy=x+iy»w, (3.1.52)
X +vy Y

where Re[ﬁZ] and Im EWZJ denote the real and imaginary parts
of M2', respectively.
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3.1.3 Matching Procedure

The matching procedure for the singular perturbation method

is also explained in much literature. This includes the works
by Van Dyke (1964), Ogilvie (1970), Brockett (1972) and James
(1975). It is stated in the book by Van Dyke (1964) that the
asymptotic matching principle will be satisfied by "matching

the m-term inner expansion of the n-term outer exp=nsion with
the n-term outer expansion of the m-term inner expansion" where
m and n are any two integers. Due to the ample literature exist-
ing on the subject, the matching steps herein will be followed
without formal procedure. It was for the reason that the

inner and outer expansions of the outer and inner solutions

in the previous sections were made without expanding the co-
ordinate variables. However, in using such an informal approach,
care must be taken for the order of magnitude of each term in
matching. The matching will be carried out for the velocity
potentials » in Equations (3.1.38) and (3.1.52).

The zeroth order matching will determine the unknown velocity

amplitude and direction, 91 and o. of the inner flow field as

I
follows:
\ L
q;l)(r) = }U2+ (ru)?‘;2 + 0(2) (3.1.53)
and
(1) . T ri -1/~ -
tan (&, -¢+—§—) = —U“—’ = tan (5 - :)
or
ey = 0+ oo (3.1.54)
where
0{(c) <0(1l) and
s o=
- AR
AR = Propeller Blade Area

Propeller Radius
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It should be mentioned that the inner flow region has been
selected to have th . coordinate system, (x,y) in line with the
hydrodynamic flow direction made with U and wr (see Figure

3.1.2). The superscripts on qq and »_ denote the guantities

I
of first o:der matching.

The first order matching will further be carried out for deter-
mining the strength of circulation . As a result of the
zeroth order matching, the inner cavity flow problem can be
solved for the first time. The boundary conditions available
for the inner problem include the following:

i) At upstream infinity, i.e., at 7 = ia,

(1)
. (1 ., i1
wlia) = 2 +i2n 9, (3.1.55)

where w(3), Ars and q; are given in Equations (2.2.4),
(3.1.53) and (3.1.54), respectively and

- 5 D
q, = a; JI+9,

ii) The closure condition (see p. 173 of the paper by
Larock and Street (1965)) is given by

Re{/W(;)dW} =0 ’

c

where C denotes the contour enclosing the body-cavity

system, which is transformed into ¢-plane,

R, {fm(:) g—“g d;}= 0, (3.1.56)
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with the residue theorem employed, finally

R
e

w'(ia)$ = 0. (3.1.57)

where w' denotes the derivative of w with respect
to ¢. More detailed derivation of Equation (3.1.55)
from Equation (3.1.54) is discussed in the paper by
Furuya and Maekawa (1980).

The scaling condition between the physical and trans-
form plane states that the wetted portion of the body
calculated from the theory should be egual to §
specified in the physical plane. On the wetted part
of the streamline

N

dy _ _1iB
ds - €
or
s = e~ 33 & W 4 (3.1.58)
q, d¢

where 2 = tan_l(d§/d§) and y denotes the body coordinate.

For -1<§¢ <b, w«w(Z) can be written as follows:

ig(z) +3(03) , -1<g <0
w(g) = _
ig(g) +8(8) +m, 0<% <b
where

)

bu
( 21 Ya+ene™ o

El)

1 dg' (1)

5 ya+rznmt - g
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waere indicates a Cauchy principle integral and super-
script 1 denotes the first order guantities. By inte-
grating Equation (3.1.58) we obtain

b(l) )
—gis
s(Z) =/ sg (%) e—% az
- 1+0 >
where
(&) ' 2> 0
Sgrel = -1 I < 0.

The arc length condition 1s therefore satisfied by
the following equation:

S-s(-1) = 0. (3.1.59)

The four unknown parameters in the inner flow, i.e., a(u

bUJ, p'Y ang 3;1) will now be uniquely determined by using

’

the above four boundary conditions. It is, of course, under-
stood that these four equations are highly retarded, thus
reguiring a .wumerical method such as that introduced by
Furuya (1975) for a similar problem.

Once the inner problem is solved above, the first order match-

ing for T is readily achieved by comparing the corresponding
terms in $ for the inner and outer expansion of Equations
(3.1.38) and (3.1.52), i.e.,

all, (W
2 v (1a(l 2
— I, [w (ia )] + 0(e%) . (3.1.60)

ﬂlhr) =
It must be mentioned that the right-hand side of Equation
(3.1.60) is the totally known guantity obtained by solving
the inner solution. It is also important to notice for the
latter matching procedure that T(“(r), therefore ajp,/2-°

Im[y'(iaﬂ are quantities of order :.
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The source term So(r) in the inner expansion of the outer solu-
tion is matched with the corresponding term in the counterpart,
but it should be zero due to the closure condition applied to
the inner solution (i.e., Equation (3.1.57)),

(1) _ 2 s AN =
Sy (r) = —s— Rel:u) (ia )]- 0. (3.1.61)

In order to carry out the second order matching, the second

order inner solution must be considered. As has been mentioned
in the beginning of Section 3.1.2, the two-dimensional Laplace
equation still holds with exactly the same boundary conditions
and thus the expansion of the inner solution remains the same
as that of Equation (3.1.51). The difference in matching,
however, exists, particularly in the outer solution; the first

f(l)(

order matching has provided the value for r) in Eguation

{(3.1.38). Once the circulation distribution F(l)(r) on the

(1)
a

lifting line is known, the induced velocities u {ry and

ut“J(r) in Equation (3.1.38) will be readily calculated from
the formula given in Equations (3.1.17) and (3.1.19). Vari-
ous methods of computing these integrals are available. One
of the most popular and convenient methods will be that by
Lerb (1952) who applied Nicholson's asymptotic formula for
singular integrals. The second order matching will first be

made for the incoming flow velocity and direction;

1
2 212
(2) (1) (1) 2
qq =Btj+ua (r)} +{r»-ut (r)}] + 0(e") (3.1.62)
and
(1)
rw-u (r)
tan (aI(z) -3+ %) = %l) = tan (%-:‘ + ai)
U+u {r)
a
or

(2) X+ 0(e?) (3.1.63)

1)
n
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where

nu-uélkr)

N, = tan” - - 3) , (3.1.64)
HT(r) (2

U+u
a

and the induced flow angle oy is depicted in Figure 3.1.2.

The circulation matched to the second order will now be

written in the following form,

al?)y (2)

MCIN ; Im[w’(ia(Z))]+ 0(c3y (3.1.65)

where all gquantities of the right-hand side in Equation (3.1.65)
must be obtained with a new set of the upstream flow conditions,
i.e., g and 2 ) which are defined in Equations (3.1.62)
and (3.1.63). The matching for the source term remains the

same as before,
2 a b .
550 = b Re[w'(la(z))] = 0. (3.1.66)

The moment terms in Equation (3.1.38) will be matched with the
corresponding terms in Equation (3.1.50);

. . 3
glx(r)-slx(r) Re[Mz]-+ O (e7)
(3.1.67)

(r) ' h3
“ly - sly(r) = Im[Mz]-+ 0 (&™)

The result of this matching indicates that the moment due to
the circulation distribution or that due to the source distri-
bution cannot be distinguished within the framework of the
singularity distribution method. However, practically more
control for the circulation distribution can be possible than
that for the source distribution sc that the former will be

exercised in actual propeller design work.
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It can be realized now that the results of the matching pro-
cedure take a somewhat different form from that in other con-
ventional methods such as those of van Dyke (1964), Ogilvie
(1970), Brockett (1972) and James (1975). 1In those works,

-

the circulation was expanded as an ascending series of =,

~ (1)

. e

()

1
1
L]
—_—
[\
~—

2 +

where

o0(:,())-0(s . l(aﬂ .

This type of expansion was not possible in the present approach
~.nce the nonlinear theory was applied to the inner solution.

[Wat

Change of the circulation AT due to that of the upstream flow

condition is not additive to ?(l% Therefore, after each
matching procedure, I should be successively rewritten as
follows
- - (1) 2 ) .
(r) = {r) + O(g™) after the first order matching
S(r) = 7(‘)(r) + 0(63) after the second order matching

and so on.

Finally, it should be mentioned that the third term from the
last in Equation (3.1.50) was not left out for matching. It
is readily seen from Equations (3.1.49) and (3.1.51) that M’
is of an order ¢ so that the whole term has an order of

€2 inec. This is a higher order than that of the next term
and, as a matter of fact, the same order as that of the last
term. Matching for this term cannot be possible within the
second order matching but will require the higher order inner

and outer solutions.
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3.1.4 Propeller Performance

The thrust and torque coefficients of a propeller can be cal-
culated based on the circulation, flow velocity and angle.
The local lifting force AL is obtained from the Kutta-

Joukowski law

(3.1.68)

It should be mentioned that all gquantities in this eguation
are dimensional ones, whereas throughout the analysis in Section
3 the normalized ones were used. This point was mentioned in

Section 2 in which the nondimensional T was defined as

T M = w Py
TP = u P
T(r) = T/2 UR
r = r/R

but the bars above the letters had been dropped for convenience.

The thrust force T, and power Pw 0of the propeller are thus

h
written

R
T, = K./f AL(r) cos(2(r) +x,) dr
0

R
P = K/wr AL(r) sin(8(r) ¢ai) dr .
0
Conventional normalization provides the thrust and power coef-

ficients, CT and Cp’

o ——— e ——— -




Ax B

o]

4K/)‘(l+ua(l)

0

N}

\2
(r) + ) + (£ -(ut(l)<r>+...))

T(r) cos(2(r) + 11) dr,

$° (3.1.69)
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3.2 LONG CAVITY PROPELLER CASE (CASE 2)

This is the case in which the cavity length lc has the same
order of magnitude as that of the propeller radius R. As is

shown in Table 3.0.1, i.e.,

N

{‘C _
= - 0(1)

whereas the chord ¢ to the propeller radius ratio remains the

same as before,

= 0(g)

wlQ

L

AR

_ Propeller Blade Area
Propeller Radius
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It is interpreted that when the chord shrinks to a lifting line
with the propeller radius (or span) fixed, the cavity cannot
shrink to a line. The outer solution should therefore consist
of a lifting line followed by a cavity sheet as is shown in

Figure 3.2.1.(a).

The inrer solution obtained with x = =X, y = Y and z = Z as

2 >0 will be the one having the 2z.an length and cavity length

to be out of sight. Therefore, the formal singular perturbation
method would request the inner flow configuration to have an
infinite cavity. However, a difficult problem of using such a
flow configuration arises in the matching procedure. Since the

cavitation number 7 may be defined as

P. — P,
g = == — {3.2.1)
5oq,
where
P., P, = static pressures inside the cavity and at the

upstream infinity, respectively,
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g, = velocity at the upstream infinity,

the velocity on the cavity wall should be calculated by Bernoulli

equation
! q. = 9, ¢l-+j.

For the infinite cavity problem, the upstream flow velocity in

the inner region dp should be identical to de- As a result it

1s found that ?

q; = 4, = qw\/l-+c. (3.2.2)

As has been seen from the previous section, the first order

matching will provide

(3.2.3)

e

4
te]
3

which conilicts the precedent result obtained in Equation (3.2.3).

This problem apparently stemmed from the erroneous choice of

the inner flow configuration. The rule of the singular perturba-
tion method says that “he inner or outer flow solution shall not
carry any physical or flow information connecting the counter-
vart soclution. In the above discussion the cavitation number
which defines the physical relationship between the cavity of

the inner region pressure and the upstream-infinity -ressure

at the outer region also determined the upstream pressure or
velocity qq of the inner region. This overspecification for

the boundary conditions caused a problem of proper matching

for determining the unknown quantities.

Because of the reason just mentioned, the inner solution must
be obtained by solving a problem for the flow configuration
having a finite cavity length. Although the cavity treated

in the present case is assumed to be too long to be enclosed




in the inner region, the complete body-cavity system will have
to be sgueezed within the inner region. A guestion arises as

to what kind of closure condition is to be used. Due to over-
stretching the inner coordinate in the present case, one might
consider imposing a condition that the total source of the body-
cavity system be finite in order to represent the long cavity
not to be enclosed in this region. However, there is no way

at this stage to determine a guantitative number for the

finite total source strength. It is for this reason that the
first order inner solution will use SO = 0 and that, if there

is any correction, it should come from the matching procedure.

The first-order inner solution in this case is therefore iden-
tical to that used in the previous section. The outer expansion
of the inner solution in Equation (3.1.52) can be used for the

matching purpose.

As far as the inner expansion of the outer solution is concerned,

the lifting-line circulation and its free vortex have the same

expansion form as Case 1, i.e.,

ulx(r)-x-ru y(r)-y
2 2
T +y

z, (£)~ T(r) tan-l;\:-«# (u -x+ug-y) +

The difference in the present case, however, exists for the %
expansion of ¢ due to the source terms, ss and its matching |
with the inner solution. As has been mentioned in the beginning
of this section, when < -0 with the span length fixed, the
cavity fails to shrink to a line in the present case. The
cavity sheet is left over behind the lifting line. Any guan-
tities associated with this cavity sheet cannot be determined 1
by matching on the line because they do not belong to the same

stretching factor €. 1In order to determine s(r,3) in Equation

(2.1.8), the matching with a new scaling parameter J will be

necessary. The new scaling parameter ¢ will be defined as the
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maximum cavity thickness to the cavity length. In this sense

the present problem is categorized as a "multiple" scale problem

in the singular perturbation method as
by Van Dyke (1964).

The same potential function due to the
(Equation (2.1.8)) is used

is explained in the book

source singularity as before

1 kK A CE . .
R B 1 ds' ér
.S(x,r,‘) -5 E& J[J[ R ) ) (3.2.5)
Ty 3p
1
R, , =[x-xs ! 2-2r'rcos‘¥e,]2
1 (3.2.6)
=l:(x-->\8‘)2+(r‘—rcos“fa.)2+(rsin‘{/g.)z]2
Ui' = -—'-5+ck. (3.2.7)

The inner expansion of the outer solution for the new parameter
¢ will be made as follows. In Equation (3.2.5) -¢S(s,r,e) is

expanded as a point of (x,r,3) approaches the blade-cavity sur-

face in the direction normal to its surface element. By changing

the coordinate system from the cylindrical one to a local one

(x,y,r), attached to the cavity-body surface as is shown in

Figure 3.2.2, by can be written

L+Ar X+4X

. 1 s(r',x') dr' dx'

—~ O~ —

’s$ 2

where

s{r',3'(x")) =s(r',x") Jr'“+-

> _ni
r-ir ¥-3x [(x-x') +(r—r‘)"+y2]2




and consideration has been made that the major contribution for
’s3 arises from the nearest singularity with Y = 0. The subscript
§ for P has been used to distinguish the expansion in terms of

3 from that in =.

In order to expand >g; as y ~0, the Fourier transform method

used in Section 3.1.1 will again be emploved (see also page 23

of Ogilvie (1970)).

Define an integral 3_. as follows

_ __// '.,E) dr'd§' (3.2.9)
7
+y

N =

(x-—x + (r-r')

The Fourier transform of ?sé with respect to x, is given by

el el 0 0 . —
—  -ik¥ = _ 1 S(r', %) e H¥¥art ax ax
. € dx =-3
s3 2 - — 2 > 1
il 0w = = [(x-x') +(r-1r") +y]2
With a change of variables, t = x -x' and defining the Fourier
transform of TSR and s by 355* and s*, respectively,
_ _ —ik(t+§') T
Tt (kiriy) = -—f/fs‘r E_ o Sf
S° 2 -2]=
=™ —» = t +(r=-r') " +vy ]2

-ikt
=——/ *(r',k) dr’ de -
y2:|7
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P-4

x

_ | 2 -t
=-f5*(r',k)dr'-KO ;k'[(r-r') +y]2}

-0

where Ky, is the modified Bessel function (see page 9 of Fourier

Cosine Transforms Section of the book by Erdélyi (1954)) for
the half integral of the real part. The second Fourier trans-
form is taken with respect to r;

® » 1
- - -ir =212
_55‘:**(k,m;y) = —// s*(r',k) dr' e 1mr KO; k [(r-r')z +y ]2} ar

X0 0

-0 - OO

s*(r',k) drt e 7im(E+ T g ’ k(t24-§2)2}dt

» 1l
= - E**(k,m{/r e~imt KO{'kf(tzﬁ-gz)z}dt

-0

|l

S**(k,m) -‘§E(k2-+m2)2 (3.2.10)

= -7 e
k2-+m2

where the formula for the Fourier cosine transform of KO on page

56 of Erdélyi (1954) has been used and the double stars ** for

the superscripts denote the double Fourier transform of each
function.

Expansion of ®Sp** for small y can now be made;

1

bg st (k,miT) = -wi*iiﬁﬂ“il[l—m(kzmz)z ‘
(k2 +n?)2
132 (k2+m2)+0(§—/3)}. (3.2.11)

Inverting Equation (3.2.11) term by term,
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(X,r,0) +7 y

s(r,x)

l ;—’2 -
+ Eﬂly‘ [DSS(X'r’O)XX

= =3
+355(X,f,0)zz:l+0(y ) (3.2.12)

where bs_s(x,r,O)XX and psi(x’r'O)zz denote the second derivatives

of Lsg(x,o,z) with respect to x and z, respectively and

3 L,

. c S [ [
s (R,r,0) = -% s(r',x') dr’ dx (3.2.13)
s° 2 - — 2 2;
In 0 Bx-xW +(r-ﬂ)]2
There exists a problem in inverting the above equation: the
first term in Equation (3.2.12) ¢SS(§,r,O) cannot be expressed
directly in terms of s(r,x) due to the extra term in Eguation
1

(3.2.11), i.e., (k2-+m2)7. In order to determine s(r,x), the

second term must be used as will be seen shortly.

The inner solution to be matched with the outer solution expan-
sion in Equation (3.2.13) should be obtained from stretching
the coordinates based on the two parameters, ¢ and d. With

x = =X, ¥y = z2Y, z = Z and : = maximum cavity thickness/éc

as z and :~0, the flow configuration will become the one used
in a linearized supercavitating flow theory; the body-cavity
streamlines are mapped onto a thin slit as is shown in Figure
3.2.1(b). Although it may be possible to expand the nonlinear
solution around the y-axis, such expansion seems extremely com-
plicated due to the nature of the theory. The purpose of using
the linearized theory here is simply to determine the source
strength for the cavity thickness. The determination of all
other major characteristics still depends on the nonlinear
theory. The higher accuracv of the overall results will thus
be maintained with the major portion including the circulation
to be determined by the nonlinear theory.

As has been described in Section 2.3 for the 2-D linearized

supercavitating flow theory, the source distribution on the
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body-cavity slit can be obtained as a function of the cavita-
tion number and geometric foil profile. The velocity potential
due to the source distribution, expanded in terms of small vy,

will be expressed in the following form

:S~.vly? (3.2.14)
where _
sl(x) _
v = > , 0<x <1
(3.2.15)
s, (x)
2 , le<x <2
2 c

and sl(§) and s,(X) have been given in Equations (2.3.16) and

(2.3.17).

Matching between the inner and ocuter solutions will now deter-

mine the unknown source distribution function s(r,X);

L s, (%) _
s(r,x) = 5T . 0<x <1
— {3.2.16)
s, (x)
_3___ , 1<k <2 ,
2T c

l(E) in Equation (2.3.16),

s,(x) in Equation (2.3.17).

Once the source distribution is obtained, the outer solution
due to the souce singularity will be expanded now in terms of ¢.
As the blade chord shrinks to a line, dg is expressed in the
similar form to that in Equation (3.1.11),




1 g )
; s§,(x',s"'(x"
+/ dr' / 2 R ds¢' +H.0.T. (3.2.17)
h 0
Th 0

where .
) 'JT
§O(r) =/ sl(r',e'&')) ds (3.2.18)
9
I
1 = voan (3 g1 (=y! g L2,
S, (r") f sl(r LBT(RY) (=xr")d (3.2.19)
[
| L
3 °T
;T
sly(r ) =/ sl(r ,30(xY) 8" ds (3.2.20)
3
‘L
5 and sy and s, are given in Equations (2.3.16) and (2.3.17).

The last term in Equation (3.2.17) is the new term evolving

from the <xistence of the long cavity sheet.

Now the inner expansion of the outer solution as ¢ » 0 becomes

(r)*x+s, (r)-y
. .= 2, .2 1x ly - > i
l So(r)ln(x +yT)T - 3 5 + (uas Uy g Y

St
X +y

(TP

bi |
+ H.O.T. (3.2.21)

where




3
1 E

_ _l s (rl’ v(;v))
P2 = T3 & fdr'/ 2 FER (3.2.23)
k=1 - Ry .
“h

0

(§8)

The two-term inner expansion of the outer solution 3> is now

written
1
.. - -ly = L2 2,2 .
s~og* T(ritan "L+ § (0 in(x 4y T+ (u, (1) +u (1) x
ulx(r)-x4-uly'y
+(ut(r)+ uts(rD'y + >3
X" +y
s, (r)+x+s, (r)-y
S < 1y + H.O.T. (3.2.24)
2 2
x“+vy
where
@0 = Ux—rmy. (3.2.25)

The same matching procedure as in Case I can be applied here.
This will result in almost the identical solution as before
except for the incoming flow velocity dqv induced velocities

Uiy and the source strength S (2),

O ’
1
2 272
qéz) =[ U+-u;l)(r)-+u;é)(r)f + ;r - uél)(r)- uéi)(rd ]
2
+ 0(e™), (3.2.26)
aéz) = o, + 0(c?), (3.2.27)
(1) )
rw- u (r) - u_ ()
a, = tan 1 :1) ts - (%-—B) (3.2.28)
U+u, ) () +u_(r) 3 '
a(2)¢ (2)
Séz) = X ReEu'(ia(Z)ﬂ = 5, in Equation (3.2.18).

(3.2.29)




.

The result of the second order matching indicates that the

second order inner problem to be solved has the incoming flow
£2) £2) with the closure condition Séz) =S

finite. It means that (l) the upstream flow now has the

guantities g and a

0’
induced velocity correction not only due to the vortex wake
but also the source sheet and (2) the total source strength

is not equal to zero, but finite, given by Equation (3.2.18).
The latter condition is interpreted as a correction to the
assumption made for the first order inner solution, as has
been mentioned earlier. The matching for the circulation

of the second order provides exactly the same form as that in
Case I, i.e.,

(2),(2)

a

- (2) _ "2 (s (2)]
L (r) = —Z—Im[w (ia* %) ] (3.2.30)

Table 3.2.1 is provided to help clarify the present matching

stccedure in comparison with Case I.
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4.0 CONCLUSION AND RECOMMENDATION

Unlike finite span wings or subcavitating propellers, the
singular perturbation method for the supercavitating propeller
required careful classification of the problem due to the
existence of the multiple scaling parameters. The scaling
parameters here included 1) span length R, 2) chord length

c, 3) blade spacing d and 4) cavity length lc The span
length R was chosen to be the reference parameter for con-

structing various scaling parameters, namely c¢/R, d/R and LC/R.

The first problem solved here assumed that c¢/R and ZC/R

were of order ¢ but d/R was of order of unity. It turned

out that the nature of the singular perturbation problem

was similar to that for the subcavitating propeller solved

by Brockett (1972) except for the solution of the inner

region. The thrust and torgue coefficients were obtained
explicitly without solving the integral eguations. Since the
nonlinear supercavitating flow theory was employed in the
present work as the inner solution, there existed no limitation
for the flow incidence angles or blade profile shapes. Due

to the nature of the nonlinear theory, the loading ccoefficients
could not be expressed in ascending series of :, but were cal-
culated with new boundary conditions applied. It must be men-
tioned that the new calculation will not cause any difficulty
since the same formula for the boundary value problem can be
utilized with changing only the boundary conditions. It is
believed that the present solution obtained with the nonlinear
theory as the inner solution will provide more accurate results

than those with the linearized theory.

The second problem treated in this study was the case in which
c¢/R had an order of ¢ but ZC/R and d/R were of order of unity.
Physically, this was the case having long cavities behind the
propeller blades so that even when the chord shrank to a line,

the cavities were left behind the lifting lines. This portion
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of cavity sheets was called "source sheets", the singularity
strengths of which were obtained through the cavity sheet
matching. This matching was totally different f£rom the regular
matching carried out for the properties belonging to the lift-
ing line. It was considered that the present problem had to

be categorized as the multiple scale problem in the singular

perturbation method.

The first-order inner solution used a closure condition,
i.e., the total source term So equal to zero. It was con-
sidered that this assumption might not be totally correct,
at least physically, because the cavity length was too long
to be fully contained in the inner region. As the result of
the cavity sheet matching, however, it was discovered that
0’ the

value of which was determined through the matching procedure.

the second-order inner solution had to use a finite §

It seemed that the second~order matching automatically cor-

rected the overstretching assumption made in the first-order

\ inner solution.

In the section of problem classification, Section 2.0, two
other problems were posed, both having small blade spacings.

The outer solutions may be gquite different from those in

the above two cases since if one looks at such a propeller

from the far field, the blade elements will not be identified.
This may require the actuator disc concept for the outer solu-

tion, with a conventional pressure jump across the disc if the

A\ B

cavity is short but with a cavity pressure drop to be appliecd
if the cavity is long, similar to the theory of Tulin (1965).

These two problems have not been carried out here due to the

e

enormous amount of work required even for the first two problems.

-

% For the future study, therefore, the last two supercavitating

problems having a large number of blades are recommended to
be solved with the singular perturbation method. It is also

our regret that numerical computations have not been conducted
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for comparison of the present analytical results with experi-

mental data for the same reason above. Such comparison will

be interesting and is also recommended for further efforts.
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TABLE 3.2.1
MATCHING PROCEDURE AND RESULTS FOR CASE I AND CASE 1II
E
CASE I (Short Cavity) :
lst Orxder 2nd Order 1
(0) 1(O) -{1) g
Quter Solution E : %
| S(l) -0 ~-(2) i
< (2) _ !
| ,////////'a , So =0
\'4 \'4
\
Inner Solution q(l),z(l’ 3(2),L(2)
st = sl =0
CASE II (Long Cavit:y,
st rvier 2nd Order
Quter Solution : .
I /-— -(2)
A . N
/ / |
i ‘)\ ! i [ (l ]
Inner Solution g ’,x\]' 17, ) i
1 .
(0) (2) =
S =10 =
S ] Sy j[SI(X)dx
0 1

63 !




ik

LR s - Ay

g AL e 2
B

ar:

o

w3

FIGURE 2.1.1

E3

( _’) Direction of blade rotation

Path of integration

A schematic diagram for propeller

flow configuration in which the

propeller rotates at a fixed position

while the flow approaches with the

uniform velocity U
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A\ Single spiral
vortex model
9

v (a) Physical plane 7-= x = iy
i

(b) Potential plane W = % + iY¥

in
l
¢ ia
-1 b
-t am = am o - ] o o amn . o - -
— — -

(c) Transform plane 7 = £ + in

FIGURE 2.2.1 Flow configuration for a super-
cavitating flow with single spiral
vortex model in the physical plane
and transform planes
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) ) Double spiral
;- ‘—”,//’// ~ vortex model
!
% (a) Physical plane 7 = x + i;
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(b) Potential plane W = » + i¥
in
ia
C -1 0 b 4
e S e e — — — = S .

(¢) Transform plane ¢ = 3 + 1in

1 FIGURE 2.2.2 Flow configuration and transform planes
- for the same supercavitating flow as that
in Ficure 2.2.1 but with double spiral

x vortex model
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FIGURE 2.3.1

Linearized flow configuration
for a supercavitating flow
with boundary conditions
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3 FIGURE 3.1.1 Contour C for the integral

of Equation (3.1.25)




X

FIGURE 3.1.2 Local coordinate system (x,y)
attached to the blade and
incoming flow conditions




Lifting line

Cavity sheet or
source sheet

_ (a) Outer solution

Cavity-body slit

(b) Inner solution

FIGURE 3.2.1 Flow configuration for (a) the outer
and (b) inner solutions in Case II




Point of interest (;,;,r)
approaching to the
body-cavity plane

PP 4 v

FIGURE 3.2.2 Expansion of the source singularity around
the local coordinate system (X,V,r)
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APPENDIX A
INVERSION FORMULA OF SINGULAR INTEGRAL EQUATIONS

The inversion formula of the singular integral equation for
arcs is well described in the book of Muskhelishvili (1946).
In order to provide a brief insight into the derivation of the
formula the inversion method will be summarized herein. Let

the singular integral equation be defined by

Ry p(t)dt _
7i.J/P t- 1, = £(t;) on L (A-1)

L

where the contour L consists of smooth arcs I, to Lp, i.e.,

1

L = .« .. -2)
Ly+L,+ +Lp, (A=2)
f(t) is a given function and 3(t) 1is to be determined. The

functions £(t) and ¢(t) are considered to belong to the classes

Hl) and H*Z), respectively.

Note: 1) A function 7(t) will be said to satisfy a Holder condi-
tion (or H condition) on the arc L, if for any two points

tl’ t2 of L

: : u

P (Ey) = o () | ;A[tz—tll

where A and ¢ are positive constants. The function 3 (t)
will be said to belong to the class H on L, if it satisfies
the H(yu) condition for some u >0 on each of the closed

arcs Lj of L including the ends.

2) If the function %(t), given on L, satisfies the H(.)
condition on every closed part of L not containing ends,

and if near any end c it is of the form

*
i) = LB
(t -c¢)
where $*(t) belongs to the class H, then p{(t) will be

said to belong to the class H* on L.

3 <1

<
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Introducing a sectionally holomorphic function

_ 1 p(t)dt
2z) = 2::1/ t-z (A-3)
L
one has
.~ - - L »(t)dt
L

Therefore, the inversion of the singular integral egquation (A-1)
is equivalent to the problem

+ -
$ (to)-+® (to) = f(to) on L, and

(a-4)
b(=) = 0.

This is a well-known mixed-type boundary value problem, the
solution method for which requires first the homogeneous solu-
tion X(z) of ©+(to)-+©-(to) = 0. By choosing a function

1
X(2) =:R1(Z/R2(z)}f (A-5)

where
q
Rl(Z) = kEﬁZ-—Ck) (A-6)
2p
R2(Z) =k=g+fz-ck) (aA-7)

and the quantity of X(Z) is understood to refer to the branch
cut along L. It is readily found then that

+
[x(z>] -- [x(Z)] (A-8)

and therefore a solution to the problem for a new function Y (Z)

v(z) = “Z/xm (A-9)




)
2

is given by solving a boundary value problem

vt oy = [M]+ _ [ﬂﬁ_]' _ @l s )]

X(2Z) X(2Z) [X(Z)]+
= __giﬁl_: on L (A-10)
[x(t)]

The solution for Y(Z) is given

v(z) = ;i/ 2 2 s o) (a-11)
[x(t)] :
L
where Q(Z) is an arbitrary polynominal. The solution for 3(2)
is therefore obtained by substituting (A-11l) into (A=-9),
2(2) = x(2) Zfi/ Ee) 95 . g2) (A=12)
! ; [x(e)]" .

The arbitrary polynominal Q(Z) will be chosen in such a way

that ¢(») = 0 and other physical conditions of the problem

such as singularities be satisfied.







