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ABSTRACT

The Command Center Network (CCN) is a computer network designed

to interconnect a diverse group of heterogeneous shipboard information

and Command and Control (C2) subsystems. This local network will

utilize a single, high-speed data bus installed on the individual platform.

As this network is envisioned, such subsystems as NTDS, NAVMACS,

CCIS, SSES, TSA, CV-TSC, and CV-IC will be interconnected in order

to correlate information to provide the best possible decision base for

the commander. The Tactical Flag Command Center (TFCC) concept,

which the CCN is essentially designed to support, is considered by the

Navy as the nerve center of future Command and Control. The CCN

is envisioned to be the backbone of the TFCC. This thesis examines

the system development of the CCN.
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I. INTRODUCTION

Command and Control (C2) may be defined as an iterative process

of resource allocation in which a recognized point of authority coordinates

human and machine generated information, as well as human perceptions,

in order to perform missions and validate results. Three key points

of the current Department of Defense position regarding Command and

Control are:

1) Command, control and communications (C3) are functions performed
through an arrangement of personnel, equipment, facilities,
and procedures which are employed in planning, coordinating,
and controlling the operational activity of military forces.

2) C3 system elements include facilities, warning systems, communi-
cations, data collection and processing systems, and procedures.

3) The systems approach to the development and improvement of
C3 capabilities is essential. Subsystems need to be interoperable
and mutually supporting.

In considering these key points of command and control, the Navy

perceives that one of the most critical elements of future C2 will be the

ability of the Navy Task Force Commander to maximize his use of

available information, and ensure that systems respond to his decisions.

Connectivity, interoperability, flexibility, and versatility among existing

and contemplated information and C2 subsystems are major goals of

future developments.

A. SYSTEMS TO SUPPORT A C2 GOAL

As the tactical arena expands with technological advances in weaponry,

such as Harpoon and the Cruise Missile, as well as contemplated develop-

ments in the area of Charged Particle Beam Weapons (CPBW), correlation,

8
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dissemination, and display of an accurate picture of the tactical environment

is absolutely essential. As weapon development advances from considera-

tions of ranges of 30 to 60 miles with weapons travelling the speed of

sound, to ranges of hundreds of miles with weapons travelling the speed

of light, the need for a coordinated tactical picture grows exponentially.

Therefore, the Navy has developed the concept of the Tactical Flag

Command Center (TFCC). The TFCC will replace the tactical commander's

"flag plot" area. In the past, an embarked commander might have a

designated area from which to assess the tactical situation, but the

platform sensors immediately available to that area were limited to what

can be accessed through an NTDS console. In the TFCC concept, the

embarked commander would have access to all shipboard C2 and information

subsystems through the use of two consoles. One of these would be

used for query of various data bases and disp'ays of charts, graphs,

and other pertinent information. The other console would be utilized

for an up-to-date tactical picture similar to that which is available through

NTDS. This TFCC is envisioned as the nerve center of the Task Force

Commander's ability to exercise command and control of forces, weapons,

and other assigned assets.

However, in order to correlate all the incoming data, provide an

historical data base, display the tactical picture, control forces and

weaponry, as well as providing general C2 functions such as reliability,

flexibility, versatility, and security, the TFCC nerve center requires a

system of transmission, correlation, and interchange of inputs. In a

manner similar to that which exists in the human nervous system, a C2

network is generally agreed upon as the best method to support the TFCC.

9 j
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Therefore, in 1978, the Advanced Command Control Architectural

Testbed (ACCAT) at the Naval Ocean Systems Center in San Diego,

California, initiated the Local Command Center Network (LCCN) project.

In essence, this project was designed to serve as the transmission

connector and correlator for the Tactical Flag Command Center utilizing

existing technology. In late 1979, the project name was changed to the

Command Center Network (CCN), but the goal to serve as the backbone

for the TFCC nerve center remained unchanged.

Initially, this program was designed to fulfill the goal of interconnect-

ing C2 and Navy Information subsystems to support the TFCC and produce

a working prototype at ACCAT in twenty months. Today, over three

years since project formulation, a working prototype at the ACCAT is

still in the developmental stage. Meanwhile, the TFCC concept has been

employed on the carrier USS Midway and is being implemented on the

carrier USS America.

B. SYSTEM CASE STUDY AND QUERIES

The balance of this thesis is designed to outline the complexity of

the undertaking that evolved over the course of CCN development.

As one progresses through this presentation of the development of

CCN, the following questions are addressed:

1) Can worthwhile programs with a mutually agreed upon goal,
lose sight of the need necessitating project development?

2) Is the Command Center Network project being developed to
respond to the perceived needs of the TFCC?

3) Is complexity of the CCN system and technology driving this
program, or are the system requirements the primary focus
of the endeavor?

10



In the succeeding chapters, particular developmental aspects of the

CCN project will be explored. Major questions like interoperability,

internetworking, and transmission control protocols will be discussed

to demonstrate the complexity of the project and to determine if the

project addresses these issues in a manner that lends the intended

support to the TFCC. In the next to last chapter, the views of the
project manager regarding future applications of the network are given.

These views suggest that the CCN project development may have

wandered away from the system requirements imposed by the TFCC

toward the development of new technologies and/or nice-to-have

accessories.

As this presentation progresses, one should remain aware of the

original goal of this project and the three major questions mentioned

earlier in this discussion. It is the author's belief that the CCN project

has succumbed to technological temptations. In essence, the light at

the end of the tunnel may no longer be interconnecting C2 and Navy

Information subsystems in support of the TFCC. The light at the end of

the tunnel may have become a runaway train of technological advances.

The attempts to make the system climb aboard this train may have created

a situation where interconnecting and supporting the TFCC can be

fulfilled without the CCN.

11



II. INTRODUCTION TO CCN

A. BACKGROUND

The multi-platform commander is currently faced with the dilemma

of an array of diverse, uncoordinated information systems designed to

assist him in the performance of Command and Control functions.

Therefore, the Navy has initiated the Command Center Network (CCN)

project to address the major issues of coordinating and providing user

access to a number of diverse subsystems which contain information of

interest to the commander.

B. NAVY C2 AND LOCAL NETWORKS

Previous efforts to integrate subsystems have been impeded by the

specificity of equipment development. Each subsystem can be charac-

terized by unique protocols and interfaces, fully committed memories and

central processing units, complex, expensive, system-specific software

and intelligent human operators specifically trained to perform on the

individual equipment.

The goals of the Command Center Network are based on fulfilling

three broad criteria:

1) Improvements to Navy command and control must be evolutionary.
That is, the present baseline of subsystems making up the Navy
C2 system can't be wholly replaced at a given point in time;
this is neither affordable nor is it practicable with respect to
overhaul cycles and modernization processes with operating
platforms and full-time operational use of shore-based command
centers;

2) Command and Control improvements, in order to be evolutionary
and useful, must be compatible not only with existing systems,
but also with expected and/or projected future installations; and

12
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3) Command and Control information needs must be satisfied first
from existing subsystem/sources (i.e. the concept of a baseline
of system operability). [Ref. 11

These three criteria seem to be consistent with the system goal to

support the TFCC. However, some debate as to whether or not a given

system can reasonably anticipate all future developments may arise. It

is important to note that a real danger exists if the CCN becomes too

4 conscious of future developments in C2 and Information subsystems

instead of concentrating on interconnecting existing subsystems.

C. ISSUES

Upon embarking on a discussion of the major issues the Command

Center Network is designed to address, it is important to comprehend

the context and scope of Command and Control. Command and Control

requires informed decisions by a commander of forces in order to carry

out assigned tasks. In that context, information becomes the essential

element required, operated on, and disseminated by the generic functions

of a command and control center (e.g. TFCC). The generic and inter-

acting C2 nodal functions are:

1) Tasking input/correlation;

2) Information input/correlation;

3) Situation assessment and decision making;

4) Report generation/output; and

5) Directive generation/output.

Furthermore, information input consists of numerous dynamic elements

from certain broad classes. These classes or categories of information

input include:

13
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1) own forces information (capabilities, readiness, position, etc.)

2) threat forces information (capabilities, readiness, position,
intentions, philosophy, etc.)

3) environmental information (weather, sea state, visibility,
propagation, bottom/beach/terrain characteristics, etc.), and

4) politico-military intelligence to include postulations regarding
force intentions based on assessment of activities.

.4 Within the context mentioned above, the ACCAT is developing the

Command Center Network (CCN) to address the following issues:

a. Can available local network technology, in combination with
gateways (links) giving access to long-haul networks, facilitate
the efficient and effective interconnecting of various existing
and newly developed automated fleet subsystems so that informa-
tion needed for command and control can be obtained from them
within a given ship platform or from among several platforms
and/or shore-based systems?

b. From among the various configurations of local networks now
known, is there one particular configuration or architecture
that is significantly "best" for the intended application?

c. Will application of local network technology enhance compatibility
- for expandability and evolutionary growth of the command and

control system and supporting subsystems; that is, will it en-
hance the ability to add and subtract subsystems as needed
to achieve changes in capabilities?

d. Will application of local network technology afford backward
compatibility?

e. What C2 nodal functions, in addition to information input, can
be enhanced by local data network technology?

f. What significant improvements in C2 functions can be realized
by capitalizing on the intrinsic high band-width of local network
technology?

g. How well can local network technology support the distribution
and exchange of graphic situation displays? Examples: high
resolution bit maps of radar images, real-time handling of NTDS
displays, real-time update of positions and identifications based
on formatted message inputs without human intervention.

h. What are the implied changes, if any, in C2 center procedures,
that would result from applying local network technology?

14
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i. What will comprise meaningful demonstrations of the utility of
the planned technology application?

j. Will connection to the network still allow for the independent

operation of subsystems in case of busline failures? [Ref. 2]

For the most part, these questions relate to such general C2 issues

as flexibility, interoperability, connectivity, and versatility. It would

seem that if these issues are addressed by and concentrated on in the

CCN, then the project could support the TFCC in a manner consistent

with project goals. As this presentation continues, it is important to

consider whether the project does in fact sufficiently consider these

issues in all aspects of system development.

D. C2 AND NAVY INFORMATION SYSTEMS

Figure 1 illustrates the function of the Command Center Network as

the universal communications medium between C2 modules and Navy

Information Systems. The acronyms used on the figure are explained

below:

KG - cyptological equipment

CV-IC - contemplated development of a carrier configured
information center subsystem

NTDS - Navy Tactical Data System

SSES - Ship's Signal Exploitation Space (handles processing of
Security Agency related information)

NAV - Navy navigation subsystems.

E. CCN TO SUPPO'RT THE MULTI-PLATFORM COMMANDER

If one can predict and control the crash landing of an orbiting

space vehicle, why can't installed computers provide data of interest

concerning ships in a task force? This question typifies a commonly

15
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vocalized frustration of multi-platform commanders (i.e. task group,

task force, fleet, etc.) and voices a problem with which the Navy

continues to wrestle. Ref. 31

Throughout the past fifteen years, technology has advanced the

capability of a single ship to attack a remote target utilizing a low-

flying missile which may have to find its way through an "obstacle

course" of intervening platforms. This type of capability necessitates

an extremely accurate picture of the situation. A multitude of new

systems, from NTDS to Outlaw Shark (AN/USQ-81(V)), have been de-

signed to improve the quality of the information and provide a data

bank for the commander. In this way, the commander is able to base

his decisions on accurate, up-to-date information. However, integration

and correlation of all available information to one or two displays has

been limited in applications to the Outlaw Shark program, where three

system installations on a single large platform has proved the most

acceptable application of totally correlated information. Figure 2

summarizes the functions a multi-platform commander must perform uti-

lizing this information. Some of the considerations related to this

information are:

1) There is a lot of data that is needed in order to properly
position platforms, control weapons and sensor emissions, and
diversify all other capabilities in order to maximize force
effectiveness.

2) Answers to queries of the information base are needed quickly
(typically between five and ten seconds).

3) The tactical environment must be displayed in a manner that is
useful and simple to comprehend.

4) Necessary data may change rapidly, dependent on the mission,
friendly and enemy force capabilities and the state of warfare. [Ref. 4]
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Figure 3 shows the traditional method being utilized to provide the

necessary information to the multi-platform commander. Typically,

responsibilities are divided in the following manner:

1) ASW (Anti-Submarine Warfare)

2) AAW (Anti-Air Warfare)

3) Surface Warfare

4) Intelligence, and

5) Electronic Warfare.

Other methods of assigning responsibilities are nominally at the discretion

of the commander. The commander's staff is faced with an exponential

growth of available data. Also, the complexity of the tactical situation

has resulted in more sophisticated queries by the commander and the

staff needing more timely information in order to provide quality respon-

ses. Therefore, the staff member's memory is tasked past its limit, and

the old grease pencil and status board approach does not lend itself to

presentation of information that may become "stale" minutes after plotting.

Within the next ten years, it is envisioned that the Tactical Flag

Command Center (TFCC) will become the backbone of the distributed

information base of the multi-platform commander. CCN is designed to

be the interface mechanism to correlate the crush of data into a simple,

straightforward series of displays. On a succeeding page, Figure 4

graphically shows the enormity of the tactical information and command,

control integration mission.

CCN is seen by its developers as intrinsic to tne correlation of

the entire local information data base. Succeeding chapters will discuss

how CCN will be designed and implemented to correlate the multitude of

19
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already employed "stand-alone" systems, which were dedicated to particular

functions while communicating principally with a human user. Further-

more, the set of interrogations these individual systems are designed

to answer is based on the premise that there exists a limited, standard

set of questions that a commander might ask. If these systems are

interconnected, will there be a standard set of queries? To date, no

standard set of inquiries has even been envisioned. This may imply that

the boundaries of possible questions may not be definable.

in essence, then, CCN must be capable of interfacing the independent

subsystems and providing a protocol system flexible enough to respond

to a large number and type of inquiries. [Ref. 51

22
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Ill. CCN AND RELATED TECHNOLOGY

A. SUBSYSTEMS CONNECTED TO CCN

Each Navy information and C2 system was developed to stand alone.

This and the absence of a standard set of queries by the multi-platform

commander affect CCN system design.

When consideration is given to interconnecting such systems, one

must consider the nature of systems designed to perform a unique set

of functions in a stand-alone mode. Some of the characteristics of such

stand-alone systems are as follows:

1) Computers "talk" only to devices which understand their language.
Since each subsystem was designed without a requirement to
exchange data with other systems, the designer wrote programs
which met individual subsystem needs. Thus, subsystems use
different word lengths to describe similar parameters, have
different symbology instructions, and employ varied protocols
for data exchange.

2) The cost of militarized hardware, coupled with a technology
lag typical in all military applications has resulted in computer
systems which generally run at or near full capacity. Typical
of this was the recent update of the Naval Tactical Data System
(NTDS) software which required some tradeoff considerations of
features to be removed in order to incorporate new capabilities.
There are severe limitations which restrict the modification of
software within a computer in order to provide "translation"
capabilities.

3) The independent subsystems were designed to provide data to
a human user. Since humans are quite adaptable, they can
understand interference or "noisy" data and displays and, if
necessary, repeat queries to the computer.

4) Each subsystem can only respond to the specific set of questions
which it is designed to answer. Each new question must, conse-
quently, be programmed into the computer by a specialist programmer
familiar with that particular subsystem. Current technological
developments provide a more flexible query capability which must
communicate in multiple "languages" in order to be used
effectively with the Navy systems. [Ref. 61

23
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These four major characteristics are presented to show some of the

problems which the CCN must deal with in order to interconnect existing I.

and contemplated equipments. Since the early 1970's, the Navy and

NOSC have undertaken two separate projects to provide the multi-

platform commander with a coordinated information bank and display.

Both of these projects fell short of the intended goal for two major

reasons. The first was the nonexistence of a demonstrated technology

of external query processing. The second reason was that "Command

and Control Requirements" were consta,,tly changing. The ever-changing

nature of C2 requirements resulted in stagnation of the individual pro-

jects. Therefore, incumbent on any technological effort, is the requirement

that the command center and any other network interconnection allow

for future additions and deletions of C2 and information subsystems.

The ideal solution, that the commander have access to all "relevant"

Navy subsystems, has necessitated consideration of current and future

C2 and information subsystems in a "modular" form.

However, in an effort to plan for the addition of future C2 and

Navy Information subsystem modules, the goal to interconnect existing

subsystems as a baseline to any future applications should remain

paramount. With the development and demonstration of a CCN capability,

standards and/or specifications can be promulgated for future subsystems,

including a proven interface capability with the network. Therefore,

in ascertaining whether the CCN project remains focused on its original

goal, one must be conscious as to whether the project is designed to

utilize existing technology to interconnect existing C2 and Navy Information

subsystems.

24



B. SUBSYSTEM INTERFACE REQUIREMENTS

Two distinct technologies have evolved during the past decade that

form the basis for the CCN system. The first is the development of the

high-speed (1-100 MBps) data bus for information transfer between

closely grouped elements. Such a system connection allows a number of

nodes (i.e. users and/or subsystems) to be connected through the

same physical "wire". This connection requires the utilization of proto-

cols so that the "wire" can transfer data between two or more users.

* Bus connections, such as that which is to be applied to the CCN, are

already in use in single computers to tie memory and processing units

together. They have been shown practical in systems such as SHINPADS

(Shipboard Integrated Processing and Display System), which is the

current Canadian Navy system for interconnecting shipboard sensors

and weapons.

The second technological development is the evolution of a computer

network to connect the diverse information subsystems, while meeting

the rigid interface requirements of the data bus. The ARPANET, a

partial solution to the single data bus interface problem, has succeeded

in connecting a variety of diverse computers, called "hosts". These

computers differ greatly in type, ranging from PDP-10's and Nova 800's

to Honeywe:l 6000's. Each host or node, characterized by different

speeds, word lengths, and other characteristics, has been connected by

a "common" language which allows them to communicate with one another.

In essence, any user with the proper code or password may communicate

with any of these host computers. This capability required the develop-

ment of standardized protocols to facilitate data exchange. Additionally,

25



special software is required for each host computer to provide a transla-

tion between computer specific protocols and the overall ARPANET

standard protocols. Thus, the task of interconnecting different subsystems

is technologically feasible. By substituting the high-speed data bus for

the telephone wire utilized in the ARPANET, one interface problem is

solved. However, in contrast to host systems in the ARPANET, existing

Navy systems allow for no modification to individual software. [Ref. 7]

The Command Center Network (CCN) must deal with this processing

problem in current systems and ensure that future subsystems can

interface with the network whether or not individual software is modified

to accomodate standard network protocols.

In order to demonstrate the complexity of the interfacing problem

within the CCN, two of the proposed connected subsystems are discussed.

The Naval Modular Automated Communications System (NAVMACS)

integrates currently employed message communications methods and

equipment into an automated system offering higher levels of communica-

tion capability. It is designed to increase the speed, efficiency, and

capability of all phases of Naval afloat and ashore communications, while

reducing manhours and error margins. The modular concept of NAVMACS

allows the system to be deployed according to requirements without the

installation of total packages. This modular concept is represented by

two major equipment configurations: NAVMACS A+ and NAVMACS V2.

This subsystem serves as an automated shipboard terminal for a satellite

link interfacing shore with the Common User Digital Information Exchange

System (CUDIXS) network. NAVMACS provides automated accountability

for all incoming and outgoing messages. Interconnection with the CCN

26



could allow the commander to determine when the last updated RAINFORM

message was received, what the last intelligence summary emphasized,

what time his message orders were sent, etc. One of the major functions

of integration necessary when connection of this subsystem occurs is

that of correlating locating data received from message traffic with

positions held by other sensors, whether they be own platform sensors

or from other resources available to the task force.

Another subsystem, NTDS, consists of shipboard computers linked

by wire to a ship's sensors and by radio data links to other ships in

a formation, as well as to aircraft such as the E-2. If two platforms have

-d. the NTDS system installed, the interconnection and exchange of tactical

information between the two is in the form of computer-to-computer

messages. The connection is known as Link 11. If an NTDS ship

transfers data to a non-NTDS platform, the format is via message traffic

conveyed by radio frequency. This is called Link 14. The exchange

of data between a ship and an aircraft like the E-2 is called Link 4A.

Essentially, NTDS is based on the concept that sensors aboard different

ships and/or aircraft will mutually reinforce, so that their effective

ranges will be greatly increased, and the task force commander's tacti-

cal picture will be enhanced and more accurate. The goal of the NTDS

system, which is essentially to allow multiple platforms to act in concert,

is similar to that of CCN. In order for ships to act in concert, informa-

tion must be consistent, accurate, and highly correlated.

Not only do the NAVMACS and NTDS subsystems provide necessary

information to the commander, but they also are networks or part of

other networks. The issue of interoperability must consider not only the
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interconnectivity of such subsystems as NTDS and NAVMACS, but also

whether or not the interconnected subsystems interfere with one another.

Therefore, the feasibility of interconnecting networks in a CCN configu-

ration must consider the interactions among subsystems.

C. SUBSYSTEM INTEROPERABILITY

Interoperability becomes a major consideration when connecting com-

plex subsystems. Interoperability is the ability of systems, units, or

forces to provide services to and accept services from other systems in

such a manner that these exchanged services can operate effectively

together. In order to be interoperable, the subsystems must operate

in a non-interfering manner.

Major interoperability issues are:

1) that each of the CCN subsystems must display backward mobility,
which means that individual subsystems may be disconnected
from the network and operate independently from a still functional
network, and

2) that the connected subsystems must possess an identifiable,
shared tactical goal or purpose.

It is important to note that the existence of interfaces does not

guarantee interoperability between the subsystems. Items exchanged

through interfaces might have a positive or negative impact on the

individual subsystems. If even some of the effects are negative, then

an interference exists.* Therefore, for the CCN to serve the purpose

it is designed to fulfill, the identification of all interfaces and possible

interferences is extremely important.

The ability to surface the aforemen' -ed interoperability issues in

a substantive manner as early as possible in the evolution of the CCN

*See NAVMACS discussion, p. 38.
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project is essential to system success. Even if all the necessary interfaces

and interferences cannot be identified either theoretically or during

prototype installation, the demonstration of the prototype should signifi-

cantly address and demonstrate solutions to interoperability concerns.

For example, some specific non-interference interoperability concerns

are:

1) Will the NAVMACS subsystem operate within its own network
simultaneous with connection in the Command Center Netvork?

2) Will the NTDS subsystem function efficiently as part of its own
independent network and provide the necessary information via
the CCN?

3) Will the actual performance of NAVMACS and/or NTDS, as well
as any other subsystem, be degraded in any manner due to
connection via the CCN?

These questions truly address the goal of CCN to interconnect C2

and Navy information systems to support the TFCC. To degrade the

performance of any subsystem by connecting it to the Command Center

Network could negate the advantages to the commander garnered from

such a system.
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IV. CCN PROTOCOLS AND SOFTWARE

A. INTRODUCTION TO CCN PROTOCOLS

The protocols necessary to carry out the functions of the CCN are

outlined in this section. Generally speaking, a set of rules and the

associated software to make subsystems interact (i.e. protocols), enable

systems to communicate with one another. Protocols provide a critical

service in any network. In the CCN, where "remote" (i.e. isolated)

subsystems are interconnected, protocols perform such basic functions

as the separation of various data streams, reliable sequenced message

delivery, and the provision of system-to-system (end-to-end) flow control.

For each C2 subsystem interfaced to the CCN, a set of programs

is defined as user and server interacting together. Figure 5 shows

the user and server processes as defined in the CCN. The server

process occurs through the Network Interface Unit adjacent to the CCN

and into the subsystem connected to that particular interface unit. The

user process is generally considered as the actions necessary to connect

a query into the CCN. For a given user process, there may be one

or more server processes necessary. Appendix A explains the user and

server process interaction in the NAVMACS subsystem.

The user and server programs will interface to the network via a

standard transmission control protocol (TCP). CCN utilizes TCP4, the

accepted DOD standard for TCP's. Appendix B outlines the required

set of user calls, commands, and user/server function codes required

in a TCP.
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In addition to the standard protocols mentioned previously, protocols

must be developed in order for the individual subsystems to be address-

ed. These protocols must be designed so that the functions of each of

the individual subsystems may be made available to the overall user pro-

cess. In Appendix C, a listing of the functions of the NTDS/DTS

subsystem is presented. In order to understand how these individual

functions can be made available to the user, Appendix D outlines a

typical user/server process for the NTDS/DTS subsystem. [Ref. 8]

B. TRANSMISSION CONTROL PROTOCOL INTERFACE ISSUES

The Transmission Control Protocol (TCP) is a protocol that has

been proposed and utilized for process-to-process communication across

connected computer networks. It sets up an association between two

processes and manages the flow of data between them on a byte-based

windowing principle. The first three major implementations of TCP

theory were made at Stanford University, Bolt, Beranek and Newman

(BBN) in Boston, and at University College, London. [Ref. 91

The use of a TCP approach stems from the fact that a critical service

that must be provided is an end-to-end protocol for communication

between two remote processes (i.e. subsystems in the CCN). Such a

protocol should provide standardization of mechanisms for performing

basic communications functions (i.e. the separation of various data

streams, reliable sequenced message delivery, and the provision of

end-to-end flow control). Normally, various services are built into

lower levels in a network and those which can be provided by an end-to-

end protocol need only be a subset of the ones necessary to communicate.

In the ARPANET, for example, a great deal of the end-to-end flow control
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is done by the subnet between the source and destination switching nodes

known as IMPs. Some sample activities in this vein are flow control

and the generation and control of various acknowledgements and error

conditions. The unique functions of the ARPANET normal host protocol

(NCP) are to manage the multiple connections, respond to inputs from

IMPs, and to provide host-to-host flow control. [Ref. 101

For communications across connected networks like the CCN, two

approaches to TCP may be undertaken. The first, which is utilized

most frequently with virtual circuit networks, is to provide mappings

between the end-to-end protocols of the various networks. Mappings

then are performed in the "gateways" which connect networks. The

alternative approach, which is utilized by the CCN, is the "Transport

Station" method. In this application of TCP, there is a universal

end-to-end protocol which generates and controls message flow in a

standard transmit format. Packets are thereby treated as data in each

network and are imbedded and formatted according to local network rules.

Therefore, gateways support the transnet protocol by packet transport

from one local net protocol to the next local net protocol.

TCP implementations have suffered from inefficiencies in past experi-

ments, particularly those conducted at University College, London (UCL).

The inefficiencies seem to reinforce the need for as much attention to

efficient implementation of communication drivers, such as TCP, as to

any other part of the system which is frequently utilized. A study of

the overhead of supporting ARPANET's normal host protocol (NCP) on

Tenex machines indicates that overhead was only 20% greater than that

for the same traffic to local devices. (Ref. 111
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One can analyze the costs of implementing TCP by examination of

the various functional areas associated with support of such a specifica-

tion. These areas include:

1) buffer manipu!ation,

2) table searches,

3) arithmetic computations, and

4) choice of language. [Ref. 121

A more detailed presentation of these functional areas is included in

Appendix E.

Implementation experience suggests that all these factors must be

taken into account. In essence, the design of TCP is one of a class of

end-to-end protocol designs which are based on a model of several

distinct layers of protocol. Each of these layers performs certain clearly

defined functions. The main advantage in this approach lies in the

simple network structure produced when all responsibility for acknowledge-

ment, sequencing, reliable delivery, flow control, and other features are

concentrated at one level. In order for layering to be applied successfully,

unnecessary duplication of protocol features in more than one layer must

be avoided. In the design of a single network, this may be possible if

the protocol designer can assume lower level functions as given. When

a protocol is designed for a system where internetworking occurs, this

assumption cannot be made. Duplication of function will almost inevitably

occur, leading to the possibility of mutual interference, which has been

observed in experiments at University College, London.

CCN addresses these problems by considering protocol requirements

at each C2 and information subsystem module. Layering of protocols
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suggests that once the user "opens" connection to a certain subsystem

(or subsystems), a "menu" of available commands particular to the module

will be displayed. Figure 6 shows the locations of the various protocols

in the CCN prototype.

Through the utilization of standard DOD transmission protocols and

the modular approach to protocols for the interconnected subsystems,

the CCN project has avoided many of the technological problems with

network protocols. If an attempt had been made to expand upon the

standard TCP or develop a new set of protocols, the CCN project might

have become embroiled in philosophical, as well as technical, disputes as

to how extensive a standard set of protocols should be. However, in

this complex area, CCN remained focused on considerations involved with

interconnecting C2 and Navy information subsystems.

C. INTRODUCTION TO CCN SOFTWARE

A functional description is presented for the set of programs necessary

to interface some of the subsystems (i.e. NAVMACS and NTDS/DTS) to

the CCN. These subsystems serve as a sample of the total program

development necessary to initiate the CCN prototype (XDM). C2 sub-

systems will be interfaced to the CCN by POP 11/03 microcomputers.

The 11/03's are also referred to as Network Interface Units or NIUs.

The NIUs consist of a DEC LSI-11 processor, 64k bytes of random access

memory (RAM), 4 asynchronous serial lines, a line time clock, and an

1822 communication interface. The 1822 interface can be used to connect

the LSI-11/03 to an ARPANET IMP in a direct memory access mode

operating at 50 kilobaud. Figure 7 is a cross-sectional diagram of a

Network Interface Unit.
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Existing software will be used as much as possible, especially for

the initial CCN prototype. The NIUs employ Stanford Research Institute's

(SRI) MOS operating system and the network protocols Telnet and TCP4.

The remaining software that needs to be developed consists of those

programs which interface the specific tasks associated with each sub-

system. Current planning calls for these programs to be written in a

higher order language called BLISS, which is somewhat similar to the

"C" programming language.

The following two sections outline the functions of the programs

necessary to interconnect the NAVMACS and NTDS/DTS subsystems to

the CCN.

1. NAVMACS Programs

NAVMACS messages consist of baudot characters and are, on

the average, 2100 characters long. The messages are delimited by a

SOM (start of message) and EOM (end of message). Since the NAVMACS

processor normally sends the messages to a printer, one way of control-

ling message flow is setting the printer's ready line to a low voltage.

Upon encountering the low voltage level, the NAVMACS processor stops

sending the current message. When the ready line is set to a high

voltage again, the processor sends the message in its entirety. Messages

arrive at the NAVMACS processor over a communications link operating

at 75 baud (100 words per minute). The NAVMACS processor sends

the characters serially to the printer at 2400 baud. This processor has

32k bytes of storage space available for incoming messages. If this

space becomes full, the processor is programmed to keep new messages

out of the system.
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The functional requirements of NAVMACS programs include:

- deliver NAVMACS messages to terminal users on the CCN and

to processes like TSA and IP

- allow a parameter indicating what kind of messages the user is

interested in receiving (the user, throughout this discussion,

could be a process, a terminal, or a printer)

-require a user to login or a process to authenticate itself

- signal a user when NAVMACS messages arrive

- allow a user to file messages for later retrieval

- allow a user to stop the process at any time

- inform the user of net errors which result in loss of messages

- convert baudot to ASCII

- employ a multi-addressing scheme to deliver the same NAVMACS

message to several users

- send, each NAVMACS message to the NAVMACS TT624 line

printer

- allow the NSM to have NAVMACS messages sent to third parties

(the NSM can arbitrarily decide that a process or terminal on

the CCN should receive certain NAVMACS messages)

- filter messages based on subject or headers

- allow the user to print out all message headers

- inform the user when the NAVMACS processor is being held

off (the processor is held off whenever buffer space is full

or hardware is malfunctioning)

- allow a terminal user to direct NAVMACS messages to a third

party
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- convert RAINFORM formatted messages to CCN format [Ref. 13]

The XDM prototype at the Naval Ocean Systems Center will

not be designed to perform all the aforementioned functions. In an

effort to produce a working prototype at the earliest possible date, the

initial CCN demonstration will perform only the following operations:

- deliver NAVMACS messages

- allow a parameter indicating the type of messages the user is

t interested in, but limited to all messages in RAINFORM format

- signal user when NAVMACS messages arrive

- allow the user to stop the process at any time

- convert baudot/ASCII

- employ a multi-addressing scheme to deliver the same NAVMACS

message to several users (the scheme used will be to send

the message once for each interested user, since the TCP

currently does not support multi-addressing) [Ref. 14]

It is apparent from the omissions in the above list that the origi-

nal installation of the CCN (i.e. the XDM prototype) will only touch

the edge of the iceberg involving message processing software.

2. NTDS/DTS Programs

Data from the DTS computer comes in binary form over a 30-bit

wide NTDS "slow line" to the NTDS computer. The data from/to the

DTS is binary, with a start/stop data word and a track number for

historical purposes. The NTDS control lines will appear to the LSI-11/03

(Network Interface Unit) as RS-232 control lines so that the existing

protocol (as described in NELC TM-119 Interface Design Specification)

can be employed in the LSI-11/03.
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DTS programs are designed to perform the following functions:

- deliver track data from the DTS computer to interested users

- deliver track data from users to the DTS computer

- require users to login and identify themselves

- prevent transmission over CCN of track reports containing

no change in data field

- deliver tracks based on content (air tracks to some users,

surface tracks to others, etc.)

- signal the user when tracks arrive from the DTS computer

- employ a multi-addressing scheme in order to deliver the

same tracks to several users

- inform users of success/failure of tracks sent to the DTS

computer

- convert track data from binary to ASCII

- store track data for later retrieval

- allow NSM to have tracks sent to a third party and filter on

subject or content, i.e. the NSM can change the addressee

list (for the purpose of insuring that certain processes on the

CCN get all air track information or surface track information

etc.)

- convert ASCII to binary

convert to/from CCN format

allow an option to disable the default of receiving all tracks

and receive only certain tracks based on some filter. [Ref. 15]

In order to demonstrate the feasibility of interconnecting DTS/NTDS

programs in a Command Center Network, the prototype will perform the

following operations:
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- deliver track data from the DTS computer to interested users

- prevent transmission over CCN of track reports containing no

change in data fields

- signal the user when tracks arrive from the DTS computer

- employ a multi-addressing scheme to deliver the same tracks

to several users

- convert track format from binary to ASCII, and

- convert to CCN format. [Ref. 161

The complexity of NTDS/DTS operations utilized on platforms

configured with this subsystem necessitates the development of software

to handle more operations than the XDM exhibits. In order for the

CCN to truly interconnect NTDS in a manner sufficient to support the

TFCC, the remainder of the program functions should be integrated in

the prototype.

4

42



V. CCN PROTOTYPE (XDM)

The architectural testbed for the Command Center Network, which

is called the XDM, is to be installed at the ACCAT facility located at

the C3 Site, Naval Ocean Systems Center (NOSC) in San Diego.

Figure 8 is a conceptual diagram of the XDM installation. It shows the

four major subsystems to be interconnected by the initial demonstration.

The arrows in the diagram represent the contemplated flow of informa-

tion in the XDM.

Within the XDM, there will exist a Data Communications Network

(DCN), which is composed of some transmission media. Access to the

DCN will be through one of several DCN access modules (DAMS) stillI-

within the CCN. A number of Network Interface Unites (NIUs) will also

be in the XDM. These NIUs provide connectivity between the XDM

and various C2 and information modules external to the XDM. Also, a

gateway (transmission connection link) to the ARPANET will be included.

This is to provide interconnection to other data networks not directly

connected by the XDM. The XDM will include a minimum of four DAMs,

four NIUs, one gateway, and associated transmission media.

Figure 9 shows the relationship of the aforementioned hardware in

the XDM.

A. XDM GOALS AND DEVELOPMENT

Design goals for the XDM fall into two major categories:

1) Initial Development: Goals which pertain largely to qualities
and functional capabilities of the XDM to be realized at the time
of installation at NOSC.
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2) Future Application: Goals which pertain to design characteristics
of the initial XDM that make it readily susceptible to changes,
modifications, or expansion of capabilities that can be expected
to occur during its use as a testbed or prototype in the ACCAT.
[Ref. 17]

Initially, the XDM will interconnect selected baseline C2 and informa-

tion subsystem modules. These modules, which perform well identified

and defined functions in support of a command center like the TFCC,

will be chosen from either already employed subsystems or those which

are in the final stages of development. In this way, it is felt that the

technology, capability, and the support of the CCN's overall goal can

be demonstrated in a meaningful way.

The XDM test facility is configured to accomodate integration and

interoperability testing within guidelines published by NOSC. NOSC

defines integration testing as that which is capable of verifying that the

appropriate medium has been chosen for the exchange of data between

interfaced subsystems, and that the data is appropriately merged as

interleaved by the overall system. Interoperability testing is that which

is capable nf verifying that each participat7 subsystem, as well as the

overall system, can successfully generate, transmit, receive, process,

interpret, and control the flow of messages either internal to the system

or those which originate from external sources. [Ref. 18]

Implicit to the CCN concept is the isolation of users from internal

controls, communications, and routing. Isolation of these functions

implies the need for a network manager and programmer for each network

installation. Those needs further complicate employment of CCN because

of training requirements and necessary qualifications. Furthermore,

from the developmental standpoint, the simplification of language into a
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series of fixed commands for the user has necessitated the development

of a higher-order language, BLISS, which ensures that communication

with the machine or assembler languages of each of the subsystems is

maintained. BLISS provides the interfacing language link so that the

user can be connected to all resources running in the network.

The distributed arrangements of many military command and control

systems, particularly the TFCC, require intersystem protocols, whereby

Aa process running on one C2 or information subsystem may have to task

' a process running on another system. The XDM must demonstrate this

2 ability without causing any interference in the processes being run on

the individual subsystems. In an employed CCN, an example of this

capability could be where an intelligence subsystem requires access to

messages resident in the communications subsystem message file, and

Iposition information resident in the navigational subsystem message file,

and position information resident in the navigational subsystem of the

tactical data system. Connection, data transformations, file transfers,

etc. that are necessary for such services should all be handled by CCN

without any need for intervention, direction, or control by the reques-

ter. This transparency should accrue from the judicious selection and

application of various levels and types of protocols, and is of prime

importance in the CCN design and implementation.

The prototype testing must also address the issues of survivability

and modularity. With respect to CCN, survivability is the ability to

provide network services in the event of internal failures or if subjected

to damage or electrical interference from external sources. Modularity

refers to the concept that separable network functions should be performed
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by separate modules. This characteristic is often most applicable to

software concerns, where functions are as well formed and as indepen-

dent of each other as feasible. However, modularity also applies to

hardware and it is intended to facilitate system changes.

It remains a challenge to the project managers to ensure that these

characteristics are specifically addressed in the initial demonstration

plan. If these concerns are adequately addressed, one may conclude

that the goal of interconnecting subsystems and supporting the TFCC

remains paramount. However, if these issues, and solutions to them,

are not part of the XDM demonstration, then one may conclude that a

simple demonstration of the ability to interconnect subsystems has become

the goal of CCN. In other words, the demonstration of technological

feasibility may have replaced part of the original project goal of sup-

porting the TFCC.

B. CCN DEMONSTRATION FUNCTIONS

The initial demonstration of the CCN will interconnect a mixture

of existing Navy systems and developmental C2 subsystems. Although

limited in scope, the XDM allows the demonstration of the following

functions:

1) Gathering of Data: A number of data sources are gathered
through the CCN. The first data source is that which is nor-
mally transmitted over LINK-11 and stored in the NTDS computers.
This data provides pertinent information on platforms which
have been detected by the aggregate of sensors on the various
task force platforms and thus provide a fairly extensive "local"

5. picture. A second data source is the message traffic which is
processed by the NAVMACS (Naval Modular Automated Communi-
cations System). Through this channel, data from remote sources,
such as shore sites and satellites, is received by the ship.
Effectively utilized, it can provide a larger picture of the
environment, beyond the sensors organic to the task force. A
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third data source included in the initial demonstration of the
CCN is the storage of static data such as platform characteris-
tics, rules of engagement, order of battle, etc. All three of
these data types (local, remote, static) are stored in a single
data base, the Data Processor of the Command Center Information
Subsystem.

2) Processing Data: Because of the large amount of data available,
some processing is required to reduce it to a manageable size.
Since the principal interest of the commander is in getting an
accurate view of his environment, a data fusion processor has
been implemented as part of XDM (TSA). This processor, not
a part of the CCN development itself, incorporates algorithms
which implement human reasoning in the fusion of data of
different types. It is particularly useful in the identification
of platforms which have been detected but not identified. For
example, this processor recognizes that a ship which goes out
of its way to stay in a storm does so to remain undetected and
is more likely to be a warship than a merchant. Here the auto-
mated application of human reasoning is applied to the "local"
data provided via the Data Terminal Set and the "remote" sensor
data provided via NAVMACS. A single, unifying picture is thus
available to the commander, uncluttered by the multiple sources
required to compose it.

3) Displaying the Data: Two types of display are available to the
user; a graphical display and an alphanumeric display. The
graphical display provides for the user a geographic presenta-
tion and identification of the platforms (surface, subsurface, air;
friendly, enemy, neutral) within his area of interest. This
geographic presentation includes a "zoom" capability which allows
the user to either focus on a small area or to get the picture of
a much larger surrounding area. The alphanumeric display
allows the user to request data which is stored in the Data
Processor. Such data can include characteristics (weapons,
sensors, radio call sign, number of screws, etc.) of platforms
of interest, or any other data stored in the data base. This
alphanumeric display of data is enhanced by a natural language
query capability which is inherent in the Query Processor of the
Command Center Information Subsystem. This allows the user
to ask questions in a "natural" way, eliminating the need for
the user to be intimately aware of the computer "language" in
order to ask questions. For example, the user may simply
type in the question, "Show me all ships within 150 miles of the
aircraft carrier". The response will be a listing of all such
ships on the display. Although not a part of the CCN develop-
ment itself, this query capability demonstrates in a powerful
way the diversity of capabilities which can be applied once
universal access to the data sources has been provided by the
CCN. A third method of displaying the data is provided by the
TT-624 printer which provides a hardcopy of any alphanumeric
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data of interest. A typical usage would be the listing of messages
received or some specific ship characteristics which are used
frequently.

4) Evaluating the Data: With the existence of the CCN (and appro-
priate C2 modules), the commander and staff are relieved of
the time-consuming process of accessing and manipulating data
and are free to perform in the areas where humans excel - evalu-
ation of data and decision-making. The decision-making process
is a long way from automation and so the CCN serves principally
to prepare the data in a way that the commander can make best
use of it in assessing his alternatives. Should such automated
techniques be developed and accepted by operational Navy person-
nel in the future, the CCN structure will already be in place
to easily implement it because of the basic design which support
the modular addition of such capabilities.

5) Disseminating Information and Orders: Through NAVMACS,
the user can prepare and send messages to participating units.
These messages may contain amplifying information as well as
information. They may be either free text or formatted such
as RAINFORM. The other capability provided by this initial
selection of equipments is the opportunity to inject into NTDS
a new or better track which has been determined by the data
fusion node. For example, if the data fusion identifies a parti-
cular ship for which only the position was previously known,
this information may be prepared in the Link-11 format and sent
out via the Data Terminal Set.

6) ARPANET Connectivity: The CCN will be connected to the secure
ARPANET. Other secure ARPANET facilities are located at the
Naval Postgraduate School, Fleet Numerical Weather Central
(Monterey), Naval Research Laboratory, CINCPACFLT, Acoustic
Research Center, and Mobile Access Terminals (MATs) which are
located on ships. Thus remote users can connect, via telephone
lines, directly to the CCN and thus have access to all of the
facilities and capabilities described above. For example, a
shipboari commander can transmit his data to the CCN and
subsequently query the data base remotely. [Ref. 19]

As outlined above, the demonstration of these six functional areas

in the XDM serve as the contemplated focus for further expansion of

the CCN to include total interconnection of all current and envisioned C2

and Navy Information subsystems. This initial demonstration is currently

scheduled for August or September of 1981.

50



The XDM is configured in such a manner as to adequately address

the issues of interconnectivity and modularity. Through the utilization

of existing technologies, the CCN prototype will demonstrate interconnec-

tion through the correlation of information from four different subsystems.

The modularity issue is effectively handled through the utilization of

NIUs, which can be connected and disconnected from the data bus.

These NIUs serve as the interface to connect subsystems to the CCN.

However, two other issues that should be addressed by XDM are survi-

vability and interoperability as it relates to non-interference.

If all of these issues are addressed by XDM. then the focus of the

CCN project remains interconnection of subsystems and support of the

TFCC.
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VI. CCN AND THE FUTURE

Given that the initial CCN demonstration proves successful, the

modular structure of the network will allow for future growth and modi-

fication. "Universal" access to various data bases provided by the CCN

allows for addition of other subsystems through the use of a "personality

module" and a standard interface (both of these additions are included in

a Network Interface Unit). C2 subsystems operating on the data bases

can be added by conforming to standardized CCN interfaces and protocols.

In fact, with the existence of a proven prototype of the network,

a host of new capabilities can be investigated. Figure 10 illustrates

some of the envisioned additions to the CCN prototype. These additions

include:

1) Voice to Natural Language Converter,

2) Natural Language Processor,

3) Text-to-Voice Synthesizer,

4) Sophisticated Graphics and Display Devices,

5) Multiple terminals,

6) Telephones,

7) Bulk Storage,

8) Data Base Management System,

9) Data Fusion,

10) Alerting Elements,

11) Microfilm Retrieval,

12) Decision Aids,
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13) Training/War Gaming,

14) Key Distribution Center,

15) Text Editing,

16) Detailed Plans/Orders Generator, and

17) Electronic Mail. [Ref. 20]

Appendix F addresses each of these additions in more detail.

This rather exhaustive list of possible applications involving the

CCN demonstrates the potential of the program. The CCN can be the

solution to many of the interoperability problems with current and

envisioned Navy C2 and information subsystems.

Dr. Glen Allgaier, the Project Manager of the CCN, envisions the

Command Center Network of the 1990's as it appears in Figure 11.

These ideas are, for the most part, technological subsystem additions

to the CCN. If these additions become the focus of CCN, then applica-

tion and employment of this system may become secondary to further

demonstrations of the capacity to interconnect subsystems.
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VII. SUMMARY, CONCLUSIONS, AND RECOMMENDATION

The Command Center Network (CCN) project is designed to provide

the vital linkage between Navy C2 and information subsystems. As

the "bus" connecting the various subsystems envisioned to encompass

the Task Force Command Center (TFCC), CCN should be proved compati-

ble with both shipboard and shore-based installations. Throughout this

thesis, the complexity of certain areas of the project, such as protocol

and software development, has been stressed in order that one can

appreciate the enormous task facing the project developers.

The Advanced Research Projects Administration (ARPA) has recog-

nized the multitude of current and future research and development issues

which must be confronted. This concern is reflected in the fact that

ARPA insisted on the simplification of the project. Some of the concerns

of ARPA are expressed in the following comments.

Since many of the R & D (research and development) issues will
surface in the future and because the total future requirements are
not totally predictable, this testbed must be designed with a number
of basic features. These are as follows:

a. Flexibility: It must be possible to modify various aspects
ORp of the testbed (XDM) to incorporate both hardware and soft-

ware changes. This requires that the design be modular
and well-layered, with clearly defined interfaces. In addition,
the software must be properly structured and well-documented;

b. Versatility: The testbed must be capable of providing as
broad a range of services as possible. This requires that
the full spectrum of capabilities be provided at all levels,
conditioned by cost and risk of development. Those features
which were either high risk or required excessive cost are
to be left for later investigation as R & D issues . . ..
[Ref. 211
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Within the ARPA community, debate continues as to whether the CCN

project is attempting to accomplish more than will ever be feasible.

There is little disagreement that interconnecting and ultimately internet-

working Navy C2 and information subsystems is necessary to support a

commander in a TFCC. However, serious, basic questions remain to be

answered by the CCN project. Some of these are expressed below.

1) Is CCN a network in the truest sense of the concept or is it
merely a modified tree-structure (i.e. if one of the portions of
the bus is disconnected or damaged, are the other nodes still

,,. interconnected and functional)?
*

2) If necessary, can the network be reconfigured at short notice
without losing capabilities?

* 3) Is CCN being developed to support a commander embarked on a
large platform (i.e. an aircraft carrier or large amphibious
assault platform), or can it be configured to adapt to smaller
platforms?

4) If CCN can be installed on smaller platforms, will one netwo '
installation be able to query another so that a commander caL.
maximize flexible command structure, as well as command mobili-
ty from platform to platform?

5) In the event of emergency, can communications external to the
locally installed CCN transfer sufficient data on request to al'ow
continuity of command and control?

6) If, as projected, the CCN intends to interconnect so many sub-
systems, what kind of access and security structure must be
built into the network?

7) What kind of training, maintenance and other support logistics
will be involved in a CCN installation?

These are but a few of the questions that arise concerning the

Command Center Network project. Some of these questions will be

answered during testing of the prototype installation at NOSC.

One must note that it is possible to sink all our technological advances

into a system that allows neither flexibility nor versatility. This possibility
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remains the challenge not only of the Command Center Network, but

also for all future C2 developments.

It is recommended that the CCN project re-examine the focus of

the XDM demonstration. Is the focus on the need for interconnecting

C2 and Navy information subsystems to support a tactical commander?

If this development is to maintain its credibility in relation to this goal,

then demonstration should be further simplified. Towards the goal of

simplification, the author recommends starting with the interconnection

of two existing subsystems, like NAVMACS and NTDS/DTS, and demon-

strating the following:

1) interconnection of all subsystem functions is feasible from a
technological standpoint,

2) while interconnection is made, there is no degradation of the
individual subsystem's ability to perform in their individual
networks, and

3) if part of the CCN is damaged or destroyed, the remainder

of the interconnection is still functional.

Once the above capabilities are demonstrated, subsystems should

be added one at a time and the testing or demonstration repeated with

the aforementioned attributes remaining principal concerns. In this

manner, the author feels that the goal to interconnect subsystems in

support of the tactical commander will remain the focus of this worth-

while project.
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APPENDIX A

NAVMACS USER/SERVER PROCESS

This Appendix traces the user/server process utilized in one of

the major subsystems connected by CCN. The NAVMACS user/server

process is presented in this manner to demonstrate and trace how these

processes interact in the CCN. It must be remembered that in the over-

all CCN configuration, one user process can address one or many server

processes. For the purpose of simplifying the discussion, the user

process will be discussed only in reference to the NAVMACS server

process.

The server process reads and distributes messages the NAVMACS

processor normally sends to its printer. The messages are distributed

to all interested users on the CCN and may be filtered on the basis of

message type of content (messages will not be filtered on content in the

initial CCN and the only types of messages allowed will be "all" or

"RAINFORM"). The messages are also sent to the NAVMACS printer.

Users connect to this process via the user program described in the

next section. The server program maintains a well known socket via a

LISTEN call to TCP. When TCP informs this process that an attempt has

beet made by a foreign process to connect to the NAVMACS processor,

this process will establish the type of traffic the user is interested in

seeing by awaiting a CONTROL function code from the user process.

If the NAVMACS processor is being held off due to lack of buffer space,

the server will return a function code to the user (this will not take
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place in the initial CCN). If the TYPE is acceptable, an entry will be

made in a connection table showing:

1. the user is connected;

2. the TCP connection name;

3. the type of traffic the user is interested in seeing; and

4. a parameter to filter on; for example, a subject or header;

5. an on/off indicator. [Ref. 221

An acknowledgement signal (ACK) will be returned once the connec-

tion entry is placed into the connection table.

As each message is received from NAVMACS, the server process will

do some preliminary manipulating before the message is distributed.

At first, the process will delimit the NAVMACS message by looking for

the start of message - end of message (SOM-EOM) characters. Once

these characters are found, the NAVMACS processor will be held off

by dropping the ready line to a low voltage. At this time, the server

process will convert the baudot characters to ASCII. After the conver-

sion, the server process will attempt to send the message to the printer.

The printer is shared so it may be busy with text from some other CCN

user. If the printer is busy, the server process will attempt to store

the message for the printer process to retrieve later. If no storage

device is available, the server process will hold the message with the

NAVMACS processor held off until the printer becomes available (in the

initial CCN there will be no mass storage capability). The user will

be informed via a CONTROL function code of the state of the NAVMACS

processor. The server process will start searching the connection table

for interested users. If the message is RAINFORM formatted, it will be
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converted to CCN format. The CCN format is a standard tactical data

format that makes information of this kind available to all CCN users.

This format will be defined so that users who want to make use of, for

example, DTS LINK-11 data can do so by recognizing the data format.

Each connection will be examined in turn to see which ones have interest

in the current message. If a connection is interested, the server process

will turn it on by making an entry into the connection table. Once

the connection table has been searched, the message processing is

finished.

The message will then be sent via TCP to each connection which is

turned on. TCP will indicate the success/failure of the sent text. If

a message cannot be delivered to a user, the user will be informed of

the missing message by a CONTROL function code. Once TCP has

accepted the message for transmission, the buffer space will be reused

by turning the NAVMACS processor back on (by raising the voltage on

the ready line high). The connection table will be reinitialized, i.e. all

connections will be turned off.

This process will respond to a CONTROL by updating the connection

table entry for this user and ACKing the CONTROL. If a CLOSE is

received from TCP, the connection table will be updated by deleting the

entry for that connection.

The user process will supply NAVMACS messages of a specified type

to a user process in the CCN. The user must supply a START command

to this process to initiate the connection to the server. The user must

supply a TYPE parameter indicating the type of messages it wants to

receive. The user will be able to have the messages filtered on subject
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or header. The user process should establish that the TYPE given is

valid. The user should supply a parameter indicating whether the

messages are to be delivered to a specified user buffer or filed on

mass storage. The buffer size at this time is to be on the order of

2K bytes allowing enough room for an average size NAVMACS message.

Once the server process responds to the attempt to connect (TCP will

signal open), this process will send a CONTROL (type) packet. This
I

, CONTROL will be ACKed. This process will keep a status indication

which reflects the state of the process at any given time (OPEN issued,

type sent, etc.). Once the connection is established (the CONTROL

was accepted), this process will inform the user and supply a buffer

for incoming messages.

Once messages arrive, they will be filed away or given to the user

if so indicated. In either case, the user will be signalled when the

messages arrive. The user process will delimit the messages by looking

for SOM and EOM. The user will also be informed if the server has

indicated that the NAVMACS processor is being held off or messages

were lost via CONTROL function codes. This process will handle error

messages sent by the server and will respond to a user command to

stop at which time it will issue a CLOSE to TCP.

The user process will also maintain a well known socket for foreign

processes to access for the purpose of allowing third party transfer.

Thus, the user process must be prepared to ask for login information

and process it. Once the login is processed, this process will expect

to receive a START command as if it were being controlled by a local

user.
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Terminal users will be asked to indicate what kind of NAVMACS

messages they are interested in. This process will establish that the

type is legitimate and that the user is authorized. If the type is not

legitimate, the user process will return an error indication to the user.

If the type is legitimate, this process will then connect to the server via

TCP. This process will keep a connection status indicating the succes-

sive states:

1. OPEN sent

2. TYPE sent

3. connection established

Once the connection is made, this process will establish the type of

messages desired. Once the connection is established, this process will

supply a buffer of 2K bytes for incoming messages. Once messages

arrive, the user will be signalled of a newly arrived message. The

terminal user can then ask for the following actions:

1) print the message on the terminal,

2) print the header on the terminal, and/or

3) file the message away.

The user will be given a time-out period in which to process the

message before it is lost. This is necessitated by the fact that the

user process must continually read the connection to process the header.

A new buffer will be allocated and a new NAVMACS message solicited.

The user may change the type of messages being delivered. The user

process will send CONTROL (type) with the new type to the server.

The server will return an ACK for the CONTROL. The user process

will inform the user if the NAVMACS processor is being held off or
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messages were lost. The terminal user can stop the process at any

time via the DONE command. [Ref. 23]
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APPENDIX B

TCP SPECIFICS

The following is a list of DOD required minimum user calls for any

TCP:

1. OPEN (local port, foreign socket, active/passive)
The terms port and socket are defined in the specification. If
the indication is passive, this call is equivalent to LISTEN.
If there is no foreign socket specified, the LISTEN would respond
to any attempt by a foreign process to connect.

2. SEND (local connection name, buffer address)
Here TCP is given the responsibility of delivering the named
buffer to the destination. All errors due to transmission over
the network are expected to be recovered by TCP.

3. RECEIVE (local connection name, buffer address)
Here TCP provides a buffer for data arriving over the network.

4. CLOSE (local connection name)

TCP will delete the connection.

In the initial CCN, SRI's TCP will run in the NIUs and TOPS20

TCP will run in the DEC 20/40.

For users on the CCN to take advantage of the services offered

by the CCN user processes, the following commands are defined:

1. START
This is the command that the user gives to the user process to
initiate the connection to the C2 subsystem. The START command
will allow for the following parameters:

- name of the C2 subsystem source and destination

- user name and password (for login purposes)

- file name (appropriate to the operating system being use':i).
This file name will provide the user process the necessary
information to store incoming data if the user so desires.

- filter filed: contains an indication to the user process
of data that will be used as a filter of incoming data. For
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example, the NSM might want to have LINK-11 data filtered
on content (i.e. all surface tracks and all air tracks).

-type filed: specifies the type of data the user is interested
in. For example, in NAVMACS this would be used to
indicate RAINFORM type messages only are desired.

2. DONE
When the user is finished with the C2 subsystem, it issues this
command to close the TCP connection and terminate the user
process and close all files.

3. CHANGE
This command allows the user to change the filter or type
specified in the START command.

4. TRANSMIT
This command will include a buffer address and byte count of
data to send to the C2 subsystem.

5. RECEIVE
Indicates that the user is ready to process input from the C2
subsystem. If data is available when this command is given,
the user process will give a buffer to the user, otherwise, the
request will be queued for processing when data does arrive.
[Ref. 24]

The user process will pass on to the user responses which TCP

gives to the user process: connection established, data on connection,

connection closed, etc. The exact nature of the responses depends

on the TCP interfaced. For example, SRI's TCP might give one of 12

responses to the user. These twelve responses are appropriate for the

commands: START, DONE, TRANSMIT and RECEIVE. The user process

will also return a success/failure indication for a CHANGE command.

The user and server communicate with the following function codes:

1. ACK
The C2 packet was accepted.

2. CONTROL
The control function code might be used to change filters or
to inform the user of changing events such as: printer OK or
DTS ready.
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3. ERROR
This can be sent at anytime and will contain a field with an
error code such as: printer down, DTS down, printer out of
paper.

4. EOF
This marks the end of a file (in the CCN, a NAVMACS message,
for example, is considered a file). [Ref. 251

6
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APPENDIX C

*; NTDS/DTS FUNCTIONS

The protocols contemplated for inclusion in the user process of

the CCN are designed to access the following subsystem functions:

- detiver track data from the DTS computer to interested users;

- (deliver track data from users to the DTS computer);

- (require users to login or processes to identify themselves);

- prevent transmission over CCN of track reports containing no
change in data fields;

- (deliver tracks based on content (air tracks to some users, surface

tracks to others, etc.));

- signal the user when tracks arrive from the DTS computer;

- employ a multi-addressing scheme in order to deliver the same
tracks to several users;

- (inform users of success/failure of tracks sent to the DTS computer);

- convert track data from binary to ASCII;

- (store track data for later retrieval);

- (allow NSM to have tracks sent to a third party and filter on
subject or content, i.e. the NSM can change the addressee list)
(for the purpose of insuring that certain processes on the CCN
get all air track information or surface track information etc.);

- (convert ASCII/binary);

- (convert to/from CCN format); and

- (allow an option to disable the default of receiving all tracks
and receive only certain tracks based on the same filter). [Ref. 26]

The functions in parentheses are those which will be implemented by

future protocol development. Those functions which are not in parentheses

will be demonstrated in the CCN prototype.
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APPENDIX D

NTDS/DTS USER/SERVER PROCESS

This Appendix outlines the user/server process as it relates to the

NTDS/DTS subsystem of the CCN.

The server process reads and distributes LINK-11 track data which

the DTS computer normally sends to a NTDS computer. The tracks

are sent to all interested CCN users and may be filtered on content

(in the initial CCN no content filtering of tracks will be performed).

Users connect to this process via the user process described in the next

section. The server process maintains a well known socket via a LISTEN

call to TCP. When the user process establishes a connection with this

socket, it will send a CONTROL packet to the server. Included in the

CONTROL message will be an indication of the user's desire to filter

tracks. The filter may be based on content or track number (in the

initial CCN, there will be no opportunity to filter tracks). If the

CONTROL is acceptable, an ACK will be returned by the user process.

A data structure will be maintained by the server consisting of one entry

per connection containing the following type of information:

1. user name

2. TCP connection name

3. filter/no filter indicator

4. parameter to filter on

5. on/off indicator

As tracks arrive from the DTS, the server process will record the track
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numbers (and other necessary information) in order that it may prevent

transmission over CCN of track reports containing no change in the data

fields. Due to the nature of the data receiving process, truncation of

track data may occur before the duplicate is detected. If the newly

arrived track is not a duplicate, a routine will be invoked to convert

the binary track data into a CCN ASCII format. This format will be

the standard CCN format for tactical data which will allow processes

anywhere on the CCN to recognize and make use of the information.

Once this conversion is done, the connection table will be scanned and

each connection turned on/off depending on the appropriateness of the

track. If a connection indicates some filter, the track will be analyzed

to see if the information is pertinent to that user (in the initial CCN,

this will not be done). The track will then be sent to all connections

that were turned on during the scan. The connections will then be

turned off and the process will repeat. If TCP closes the connection,

the entry in the connection table will be deleted.

While connected, the user will be able to send codes to the server

process. One code will be a CONTROL (filter) so the user can change

the filter information on its connection. The server process will respond

by inserting the new information into the appropriate entry in the connec-

tion table and ACKing the CONTROL. The user may also send new track

information to the DTS computer (in the initial CCN, this will not be

implemented). The track data will arrive in CCN ASCII format and the

server process will convert this data to the binary format required by

the DTS computer. The converted data will be sent to the DTS computer.

ACK will be returned to the user process to indicate the success of

delivering the data to the DTS.
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The user process will supply LINK-11 track data to users on the CCN

obtained from the DTS computer. The user must supply a START to

this process to initiate the connection to the server process.

Included with this command will be an indication of whether the user

wants the data delivered to a buffer or to mass storage (in the initial

CCN, only the KL-20/40 will have mass storage). The user can supply

data to filter the tracks on if he so desires (in the initial CCN, no filter

will be allowed). The user process will issue an OPEN to TCP and wait

for TCP to signal that the connection is open. The user process will

then send CONTROL with the filter parameters if there are any. The

server will ACK this CONTROL. When track data arrives, the user

process will store it in a file, if the user desires, or deliver the data

to a specified buffer. In either case, the user will be signalled that

LINK-11 track data has been delivered.

The user can supply commands to the user process by requesting

the following actions:

1. stop the process (DONE).

2. change the filter (CHANGE).

3. send track data to the DTS (TRANSMIT).

(in the initial CCN, only the DONE will be allowed)

If the user wishes to stop the process, the user process will issue

a CLOSE to TCP and await TCP's CLOSED response before exiting. If

the user wishes to change the filter, a CONTROL code will be sent

to the server process along with the new filter data. The CONTROL

will be ACKed by the server. If the user wishes to send track data,

it must issue a TRANSMIT along with the buffer address and byte count.
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It is the user's responsibility to insure that data is in CCN ASCII format.

Once data has been sent, the user process will keep an indication that

it is awaiting acknowledgement for that data. ACKs will come from the

server indicating the success of delivering the tracks to the DTS.

[Ref. 271

The user process will also maintain a well known socket for foreign

processes to access for the purpose of initiating third party transfer.

Thus, the user process must be prepared to ask for and process login

information.
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APPENDIX E

TCP FUNCTIONAL AREAS

The following is a presentation and description of the four major

functional areas associated with supporting TCP specifications:

I. Buffer Manipulation: To make the best use of available space,
system caters to varying message lengths by using dynamic

free pools of varying lengths, and the resultant frequent gar-
bage collection. Several free pools must be accessed using the
standard system calls (with attendant overheads) for every buffer
request, transfer, and return to free space. This overhead
has been found to be heavy for TCP and BBN has proposed
that fixed buffer sizes should be used for any particular asso-
ciation, together with reassembly direct into the user buffer.
This approach removes the need for dynamic pools of varying
length, and also reduces the number of transfers required.

2. Table Searches: Associated with multiplexing connections. As
TCP allows an association to be any unique source-destination
address combination, no short address or index conventions are
adapted for it. It is possible then to consume cycles in chaining
down the connection list for each incoming message. Some
intelligent hashing of addresses will reduce this overhead.

3. Arithmetic Computations: TCP employs a large sequence number
space to avoid the possibility of two letters in transit ever
having the same sequence number. This requires 32 bit arith-
metic to be performed both in generating a new sequence number
and in testing that an incoming letter lies within the current
window. Check-summing requires the same computational
support.

4. Choice of Lan uage: Although the desire for a clear implemen-
tation makes the use of a high level language attractive for
implementing TCP, known overhead of system implementation
languages is around 30-50% and can be much higher. Such
overhead can be quite bearable for many applications. For a
communications driver such as TCP, performing many actions
per message, and even a number of actions per character, the
cumulative effect is significant. [Ref. 271
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APPENDIX F

FUTURE CCN APPLICATIONS

This Appendix amplifies the information concerning contemplated

additions to the CCN system listed in Chapter VI.

a. Voice to Natural Language Convertor: This element would con-
vert voice to text replacing a keyboard with a microphone. It
may include the digital equivalent of a voiceprint which is
associated with each user for security purposes. All verbal
queries would be routed to this converter. The output of this
element would then go to a Natural Language Processor.

b. Natural Language Processor: This processor takes textual
queries which are structured much as one would pose them in a
1"natural" manner, parses these queries, and restructures them
in a format which is understood by a data base management sys-
tem. Development of a natural language processor is currently
being done at NOSC in the Command Center Information Subsystem
(CCIS) project. These structured queries are then routed to
the DBMS (Data Base Management System).

c. Text-to-Voice Synthesizer: This element converts text to voice,
providing the commander with verbal reports feedback to his
queries. It basically provides the inverse of items (a) and
(b) described above.

d. Sophisticated Graphics and Display Devices: These will provide
all of the advances in display technology which include: color,
conics, shading, etc., all with a very simple user interface,
responding to queries such as: "Show all enemy ships as a
flashing red light". They will include large screen displays for
purposes of briefing large groups. They will range from simple
alphanumeric displays to high resolution displays capable of
displaying maps and photographs with a zoom capability to show
increasing detail. Real-time video displays will be interconnected
via the CCN to provide conferencing and other capabilities
which require such a display capability.

e. Multiple Terminals: It is projected that between 100 and 200
user terminals will be interconnected via the CCN. Each termin-
al may have its own software and special purpose applications
programs for utilizing the information in the CCN-connected
data.
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f. Telephones: Each user will have a telephone, headset or micro-
phone for communications with other CCN users.

g. Bulk Storage: This would be a less expensive way of storing
vast quantities of data employing disks, tapes, or some other
suitable bulk storage media. Generally, the information stored
would be 3lowly changing in nature, not frequently accessed.
Examples of the data might be operations orders, ship charac-
teristics, photographs, maps, manuals, etc. The bulk storage
may be distributed across a number of machines and would have
a file management system for accessing and updating the stored
data.

h. Data Base Management System: This subsystem would manage
all of the stored data, including that in bulk storage and micro-
film retrieval. Capabilities of this subsystem would include:

1. Provision for significant changes in the structure of
the data which are transparent to the user applications
programs.

2. Adaptability to new data base technology.

3. Generalization of the interface which can be mapped into
various data base structures.

4. Adaptability to interactive queries.

5. Robustness in maintaining data base integrity.

6. Optimization of queries to minimize response time.

Thus, all queries for data from one of the C2 subsystems would
be processed by this DBMS which would manage the organiza-
tion of those data bases which can be managed, query the data
base, and return the response to the inquirer. The DBMS would
include a knowledge of the structure of the file management
system associated with bulk storage. The DBMS would also pro-
cess all queries to the data bases of other information systems
and route these queries to the appropriate system.

i. Data Fusion: This facility would take all pertinent data available
and provide an integrated picture of all platforms (friendly,
enemy, neutral) within the region of interest to the commander.
In addition to the sensor reports, this fusion would consider
such factors as political climate, positioning of platforms, personal-
ity of commanders, known fuel supplies, behavior of platforms,
etc. The Tactical Situation Assessment (TSA) project at NOSC is
currently developing such a subsystem. This element would be
highly interactive with the DBMS described in (b).
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j. Alerting: This element monitors the data traffic on the CCN as
well as the content of the data bases to determine if the comman-
der needs to be alerted. Sighting of a submarine that is a
threat to a high value unit, priority message traffic, low fuel
supplies, and limited defensive capability due to inoperable
aircraft are examples of alerting conditions.

k. Microfilm Retrieval: This element would provide access to data
which is stored on microfilm, and convert the microfilm image to
the proper format for transmission via the CCN.

1. Decision Aids: These may consist of a number of elements,
performing distinct tasks as aids to the commander. This sub-
system takes as an input the mission and objectives of the
commander and provides optional courses of action to achieve
them. An interactive capability will be provided, allowing the
commander to insert his own preferences, review the explanation
trace of the options suggested by the machine and insert his own
options. Once an option is selected, this element summarizes
the pros and cons, and provides a probability of success and
losses. Examples would include:

1. Optimum platform positioning to maximize sensor coverage.

2. Optimum platform position for detection of enemy subma-
rines attacking a high value unit.

3. Optimum weapon allocation against enemy target.

4. Optimum routing of aircraft to achieve a successful
strike mission.

m. Training/War Gaming: One of the significant benefits of the
CCN, given the subsystems described to this point, is that
it can be easily used (and learned to use) by a human while
simultaneously providing access to all of the pertinent data
affecting the mission of the ship. Software can thus be devel-
oped in conjunction with the decision aids of (f) to allow war
gaming within the actual environment of the ship. This element
thus performs in a manner similar to that currently available
in computer chess games of increasing complexity, and allows
a commander and his staff to exercise in preparation for the
real environment.

n. Key Distribution Center: Data exchanged between subsystems
will sometimes be of classification levels which should not be
made available to all users of the CCN. In some cases, the
commander may also desire to conference with certain staff mem-
bers without allowing access to the conversation by others.
There will thus be a facility which distributes a crypto "key"
to each qualified participant on a message by message basis.
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o. Text Editing: This element would contain all of those features
which assist the commander in preparing orders or directives
or reports which require a Textual format. The HERMES or
MSG systems developed for the ARPANET are examples of the
functions provided. Typical features would include addressee
lists, special formats, spelling correction and editing capabilities.

p. Detailed Plans/Orders Generator: This element will be used in
the generation of detailed plans for implementing a given option
selected in (f) above. In fact, a great deal of interaction is
expected between these two elements as the option generator
must understand the details of implementation in order to assess
the probability of success.

q. Electronic Mail: Similar to the Navy message system, it allows
for message exchange between intraship users.

Although all of the above functions are ones which can be imple-

mented within a single ship environment, the CCN also provides the

opportunity for the afloat commander to tap directly, via communications

systems, the data bases which may be resident on shore or in systems

which are connected to other networks such as AUTODIN-Il. [Ref. 281
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