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Error Probability Characteristics for Multiple Alternative
Communication With Diversity, but Without Fading

Introduction

The M-ary character error probability, P, for orthogonal multiple alternative
communication with D-fold diversity, was evaluated in reference | for a wide range
of parameter values, It was presumed there that the slow signal fading on the D
diversity chamnels was independent and that the reccived signal energy was
distributed exponentially (Rayleigh fading of received signal voliage).

s of interest here to reconsider the system performance for the case where,
although the receiver was designed for D-fold diversity, there is in fact no signal
fading. The fracuonalization of the received signal into the diversity channels then
results in poorer performance than had the signal been confined (o one channel and
processed cohierently. This situation can arise naturally in practice, as tor example,
as a result of multipath arrivals, or it can come about intentionally in the system
design. 1t can also be of interest in testing a muliiple alternative hardware design
under controlled laboratory conditions, where the time or cost of simulating actual
tading conditions is excessive.

The basic tramework and background for the communications technique con-
idered here have already been presented in reference 1 and will not be repeated, tor
e sitke of brevigy. The reader is presumed (o be familiar with the time-bandwidih
duration and separation constraints listed in the above reference, particularly pages
2-4 and appendix B,
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Definitions and Technical Results

The source selects one of M equi-probable symbols and transmits a signal on D
diversity channels (time and/or frequency) to a recciver. The D channels devoted to
cach of the M alternatives are disjoint {in time and/or frequency) with cach other
and with the channels for the other alternatives (sce reference 1). The receiver
employs matched filtering on cach of the totality of MD cells of interest. For cach
signal alternative, the corresponding D envelope-squared matched filter outputs are
sampled appropriately in time and summed. The largest of these M decision
variables is then declared to be the transmitted signal alternative.

The additive noise at the receiver is assumed to be white Gaussian over the total
band at the possible received signals, with a (single-sided) power density level of N |
watis/Hvz. 1t is shown in appendix A that the M-ary character error probability of
this communications technique is given by

2
exp(-d./2 © 2 M-1
Pe=1- —(D—}“) f ay Y 7 / ID-1(dTY)[BD-1(>’2/2)] -

d 0
T (h

Here “deflection”” statistic d | is given by

2
dT B Er . total received signal energy

-5 =

K noise power density level s (2)

where Eq is the total received signal energy on the D channels; I (x) is the modified
Bessel function of order n and argument x; auxiliary function B (x) is defined as

X " (-t)
Bn(x) Ef dt ——SXPL=T) _ | X en(x);
0

' 3)
and (reference 2, equation 6.5.11)
n
1 k
e (x) = Z — X
n =0 k! (4)

is the exponential power series through the term xn,

[Uis interesting and worthwhile to observe from (1) and (2) that the exact frac-
tionatization of the total received signal energy E - amongst the D diversity branches
is immaierial in so far as system performance is concerned. The available signal
energy B could be divided equally in the D branches, or it could be concentrated in
just one branch; in cither case, error probability P is identical (assuming M and D
are unchanged).

For M = 2, expression (1) can be evaluated in closed torm. Several alternative
representations for this binary error probability are given in appendix B, along with
an cfficient program for this special case. The program for evaluation of (1) in
general is given in appendix C,

S N




Graphical Results

For a particular value of M, the character error probability P_in (1) is a function
of the number of diversity channels, D, and the total energy-density ratio (signal-to-
noise ratio) E;/N . We have plotted P, on a normal probability ordinate versus
E /N, ona dB abscissa (i.c., 10 log E;/N,), with D as a parameter, in the range 10
to 10-) for P_. Figures 1-11 correspond, respectively, toM = 2,3, 4, 8, 16, 32, 64,
128, 256, 512, 1024. The curve for D = 1 in each figure corresponds 1o the NO
FADING resulis in reference 1, figures 1-7.

We have discovered no simple rule-of-thumb for the additonal signal energy
reguired to maimain a fixed P as D is increased, which covers the whole range of D
and M. Nor did we find a simple expression for P, when itis small (v 10 %), despite
considerable effort. The best we can do is (o observe that

Pez M- 13 Pe for small Pe , (5)

2

and then use resuly (B-10) for the binary error probability, P,. D is arbicrary in (5).
Further development of this approach appears in appendix B.
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Figure 1. M-ary Character Error Probability for M
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Correct Decision with a Threshold

The processing system above presumed that one of the M signal alternatives was
alwavs transmitted. A more general situation occurs when the additional case of no
signal present at all is allowed. Then the largest of the M decision variables is
compared with a threshold. There are three types of probabilities of interest tor
signal present (reference 3, pages 2-5); they are the probability of a missed decision,
the probability of an incorrect decision, and the probability of a correct decision,
The lastis given by a slight generalization of (1) to (reference 3, equation §)

2
exp|-d../2) ;0> 2 M-1
. T D -y“/2 ( 2 )
Peo = —7p-1 /;/ dy y e Tp-1 (49)] B \Y*/2 6

dr

where Vs the threshold value.

For signal absent, we then have false alarm probability (refercoce 3, equation 2)

P 1 - Prob

FA

]

max(yl, cee yM) < V for dT =0

v 2, P! 2, )"
1 -[fo dy y (yj/g)- T (-*/2)

1 - [BD_I(vz/z)]M . (7)

Here we used the limit of the integrand of (6) as d;—0 and (3). Result (7) agrees
with r2ference 3, equation 25, as it must, since both receivers are processing
identical noise-only channel outputs. No numerical results on this more general
situation, (6) and (7), are presented here.

Extension to Fading Signal

All the carlier results in this report have pertained 1o constant amplitude signal
components on the D diversity branches. Now we presume that there is slow <ignal
fading, meaning that the total received signal energy E| is a random vanable. in
particular, we let encergy-density ratio (signal-to-noise ratio)

2
d ET

Rp =5 = (®)
o)

have probability density funcrion

i R,\r) exp(-R.r/u)

P(Rp)= VT for Ry > 0

I'(v + 1) 9

Loy W e e e e
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with

R’l‘ _ ET/No

v ITys1 Vol (10

U=

Here ET is the average received total signal energy on the D branches, and v is a
constant, not necessarily an integer.

This very gencral model of fading was presented and utilized in reference 4, pages
11-12, in the investigation of a maximum likelihood detector. For example, the four
signal tading cases considered by Swerling (reference 5) are subsumed by (9) for
particular choices of v; see table 1.

Table 1. Particular Cases of General Fading

v 0 D-1 1 2D-1
Swerling Case 1 2 3 4

Cases 1 and 3 correspond (o common signal fading on al] D branches, whereas
cases 2 and 4 correspond 10 independent and identically disiributed signal fading on
cach of the D branches. In particular, case 2, v = D - 1, corresponds to ex-
ponential probability density function

——

1 R —
PR =5= exP(--fl) forR>0. K= 'Kﬁ[ ’ (1

for the received energy-density ratio, E|/N,, on one branch; 1his is Raylcigh fading
of the received signal voliage amplitude on each branch. Equation (9) is a D-fold
convoluion of (11) when v = D-1. Case 4, v = 2D - |, corresponds to
probability density function

|5

4 2 -—
pl(R) =-?—'2' R exp(-wﬁ:l- R) for R > 0, R1 =
1

for 1he received energy-density ratio, E,/N,, on onc branch. Equation (9) is a D-
fold convolution of (12) whenv = 2D - 1,

(12)

The average character error probability is evaluated in appendix D it is given by

-1
P =1- [(D 1) (u o+ 1)""1]

™ M-1 .
D-1 -t . n. u
. j(; dt ¢ e [BD_I(t)] 1F1(" + 10y oy t) )

This single integral can be evaluated numerically for any v of interest; of course, M,
D, and E/N  nced to be specified also for this numerical procedure.

As a special instance of fading (9), consider case 2 in more detail:

iy




-1,

RT _ ET/No
D D

<
"
o

= average energy-density ratio per branch. (14)

u:

Then, if we use reference 2, equation 13.6.12, and (3) above, (13) specializes 1o

0

Foet-f
0

> ool 1)
ql(t)= B* 1) fort >0

O-1! u+1)

t M-1
dt ql(t) '/;) dx qo(x) s (s

where

D-1
(x) = 2 _eXp(x) ¢ >0
B = T for x> 0, (16)

are the probability density functions of the decision variables formed by the sum of
D envelope-squared filier outputs for signaf-present and noise-only, respectively.
Result (15) 38 identical to reference 1, eguation C-1. 1t is what we would have gotien
had we averaged the signal probability density function in (1) — the function
multiplying the brachet — with respect to the signal strength, before expressing P
i integral form. In fact, a more general integral than (15} has already been en-
countered and evaluated in reference 3, equation 26, where a thresholding operation
was included in (the receiver processor for the fading signal.

For M = 2, general fading rvesult (13) can be evaluated in closed form; these
special cases are presented in appendix D, especially (D-5) and (D-8).

Discussion and Summary

Fhis report has addressed the problem of numerically assessing the additional
signal-to-noise ratio (i.c., energy-density ratio) required when a nonfading signal is
broken into D (unequal) components and combined incoherently. Some relared
studies into the cost of imperfections of receivers, or the cost of lack of knowledge
of the received signal structure, are presented and evaluated in references 6 and 7.

Since the performance of the processor considered here for the nontading signal
depends only on the total received signal energy, regardless of how fractionalized i
may be among the diversity channels, these results also apply (o a situation where
uncertaity in the time of arrival or the doppler shift of the received signal causes
the receiver o scarch over several channels, even though the particudar receined
signal alternative occupies only one channel. The D-fold scummation Tor cach M-
alternative leads 1o a loss in performance; stated alternatively, the cost of the un-
certaity is additional reccived signal encergy required in order to maintain the same
quality of performance, P

For a large signal-to-noise ratio, the M-ary character error probability is given

TR 64713
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approximately by (5) in terms of the binary error probability, P_,. The usual ap-
proach is then to use (A-3) with M = 2, or 1o use (B-4), to cvaluate P,. Howcever,
the situation frequently arises where the characteristic functions of the decision
variables can be cvaluated fairly easily, whereas the corresponding probability
density functions and/or cumulative distribution functions cannot. In that case, an
alternative represemation of P, directly in terms of the pertinent characteristic
functions would be useful. This problem is addressed in appendix E, with the
following results for the binary error probability:

[ o
Pez = Yz—w.[ T f 00

_cL g
- ‘i'z??_/(; T £, (-0£, (8

+

1,1 [T ag
_2_+_'/(.) € e, (£, (-0 . (1)

Here f (§) and f,(£) are the characteristic functions of the noise-only and signal-
plus-noise decision variables, respectively. C_ is a contour in the complex £-plane
along the real axis, with a small downward identation at & = 0; C_ is a similar
contour indented upward at £ = 0. The last form in (17) can be particularly useful
for numerical evaluation of P, for some characteristic functions.

Another aliernative 10 evaluation of M-ary error probabilities is to use bounds
which are simpler to compute than the exact result. This is attractive if the bounds
are tight, at least for the range of signal-to-noise ratios and error probabilities of
interest. Some general bounds on error probability (which were not used here) are
presented in appendix F tor a situation that includes interference as well as noisc,
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Appendix A
Derivation of M-ary Character Error Probability
To avoid duplication of cffort, we will rely heavily on reference 8, pages 2, 3, 8,9

and appendixes A and B, especially (B-7)-(B-12). We obtain directly the probability
density function of the signal decision variabte (sum of D filter outpuis) av*

D_-l. x + d
1
P00 = (2] 7 el Tty (4 x7) for x>0
dT (A-1)
and that for any onc of the M-1 neisc-only decision variables as
D-1
1 2
po(y) = ‘2—-%/*-)—1')_'_ exp (- 22'—) fory >0 . (A-2)

A correct deciston is yielded only if x is greater than all M-1 independent noise
variables: the probability of this eventis

< X M-1
= d .
P, fo dx p, (x) [fo y po(y)] o

But the integral on y in (A-3) and (A-2) is given by (3) as By ((x/2). Then by use of
(A-1) and the substitution x = v2, (A-3) becomes

2 M-1
exp|- d /2) o _ 2
Pe = - d"n(-'l . f ay 7 & /2 ID-l(dTy)[BD—l(yz/ 2)]

T 0 (A-4)

The M-ary characier error probability isP, = 1 - P

o

Several checks on (A-4) are available. First, for the trivial case M = 1, (A-4)
vields P = 1, which agrees with the fact that there are then no noise-only channels
to worry about at all, Sceond, as d =0, (A-4) reduces 1o P - 1/M; (his agrees with
the observation that we have a completely random sclection with zero signal-to-
noise ratio. Third, for D - 1, (A-4) agrees with reference 1, equation 9A (when the
larrer is corrected for 1he typographical omission of the factor exp(-E /N ).

A program for the evaluation of P, = | - P via (A-4) is given inappendix C.

‘_A‘\—-;‘clcflcclio;:}rn—(g;pr_e;;ion of d4 is available from reference 8, equations (B-10), (B-7),
(B-4), (A-4), and (B-9).

A-1-A2
Reverse Blank
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Appendix B
Binary Error Probability

This appendix will deal exclusively with the special case of M 2, a binan
decision. Then (1) becomes, with the identifications in (3) and (4),

2
exp!- dT/2> © D - 2 7
Poy = T 4 ‘/;) dy y- e ID_l(dTy) eD_l(y /2)
T

2
) exp(— dT/2> D-1 1 ; D+2Kk e_),2
= i 0 Yy

I d.y
aP-1 K=0 k!2 p-1(%1)
T
2
exp(~ d.r/4> D-1 (D), 2
= D X 1f 1\ -k3 D; -d/4
2 k=0 k!2 (B-1)

To evaluate the integral, we used reference 9, equation 6.631 1 the final trans-
formation 1o (B-1) employed reference 2, equation 13.1.27. An aliernative ¢x-
pression to (B-1) is available via reference 2, equation 13.6.9:

2
exp(-d../4) D-1
b - ( T )Z 1, (0-1) (‘df‘/")

e2 D kk

D
2 k=0 2 (B-2)

If we expand the polynomial in d3/4 that occurs in (B-1) and (B-2), and interchange
sums, we obtain

2 2, \"
exp(-d /4) D-1 gd /4) D-1-n (D + n),
Py, = TST 2 T _

€ 2 n=0 2" n! j=0 23 1 (B-3)

All three expressions above tfor P, are finite sums of positive quantities and are
reasonable for computer L\dllldll()l] even for fairly large D.

Another expression for P, = 1 - P, is available by recalling (A-1) and (A-2)
and changing (A-3) 0

Pcz=f0 dy py(y) fy ax p, (1) . -

But trom (A-1), upon making the substitution 12 and using reference 10,
cquation I, we find for the inner integral in (B-4),

B
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%\

t *dy
dx p,(x) = .[1/2 dt t(d—T—> exp\- —5— ID_l(d.rt)
y

n
o
AN
[=5
—J
v
[
~
~2

(B-5)

Then (B-4) yields

fm yo-! exp(-y/2) 1/2
Peo = dy - Qldr ¥
c? 0 2D(D Y D( T )

= [20'1 (0 - 1)!]‘1 ‘[0“, du uZD"1 exp(-u2/2> QD(dT’ U)- (B-6)

AL this point, we will use the new integral result

f dx XZN'I exp(—pzxz/z) QM(a, bx)
0

M+N-1 n
ZN-I(N - 1) b2 -A N-1/M+N-T RZ_
= 2N lA~5— e n 7) eno1on W
P p +b n=0 b
(B-7)
where
aZ 2
Az 5 Z_L—? . (B-8)
p-+b

This integral and several other new integrals of Q,, functions, along with their
derivations, will be presented fairly soon by this author in anether NUSC technical
report,

I'hie use of (B-7) and (B-8) in (B-6) yiclds

2
exp(-dT/4> D-1 2p-1 2
Pe2 = 52D-1 Z < > ®p-1-n (dT/4) ) (B-9)
n=0 \' n

Fapanding the partial exponential expansion in powers of df/4 according to (4,
and interchanging summations, we obtain for the binary error probability

k

2 2
. exp<-dT{.42 [)2-:1 (dT/4) D-zl:-k (20-1)
e2 ,2D-1 o K o n (B-10)

Fhis result is very similar 10 (B-3), and of course yiclds identical numerical values;
however, a direct verification of the transformation that would take the inner sum
M {B-10) (o the inner sum in (B-3), or vice versa, has not been discovered.

-




(B-10) is a very efficient form for numcrical evaluation, because the summand ot
the inner sum (on n) does not depend on the index (k) of the outer sum; this ad-
vantageous property is not true of (B-3). Thus for a given D, we can compuie the
partial sums on n in (B-10) by starting at k = D - 1 and merely adding once ad-
ditional term to the inner sum for each downward unit step in ki these D partial
sums are all stored and then used for the outer sum starting at k = 0. Thus, what
appears 1o be a double sum in (B-10) actually can be computed by means of two
single sums of D positive terms. Furthermore, the inner sum on n in (B-10) can be
done once for a value of D of interest, and then used repeatedly for different values
of di. A program incorporating these observations is listed at the end ot this ap-
pendin. All of the results thus far apply 1o arbitrary values of energy-densiny ratio
E,/N,.

One reason for dwelling on the evaluation of the binary crror probabitity is tha
for large signal-to-noise ratio, i.c., large energy-density ratio E/N o the M-any
character error probability is given approximately by

Pe ~M-1) Pe2 for small Pe . (B-11)

This result may be seen to be valid when it is realized that the probability of any
particular noisc-alone decision variable exceeding the signal decision variable is a
rare event when P is small. Thus the probability of two or more noise variables
eveeeding the signal variable is very rare indeed, and we need only account for the
single noise variable case. Since these events are disjoint and there are M-1 such
variables, (B-11) follows immedialely.

For targe d3/72 = E{/N
(B-10); cxpress

exp (-d,?./tt) (d,f./4>
Pe2 = 20-1 (0 - D!

an asymptotic form for P can be developed from

o

D-1

20-1),0-1) ®-2 @ -p+1),
D . N
dp/4 (d§/4) (B-12)

Therefore, asymplotically,

D-1
2 2
exp(-dT/4) (dT/4)
P2~ 201 -y 24”7 (B-13)

But reference 1o (B-12) reveals that in order Tor (B-13) 1o be a good approsimation
to P, rather than just an asymptotic result, the requirenmient dy >> D must be
satisfied. This requirement, however, is typically too large a signal-to-noise ratio
requirement Lo be practically useful. We have found it necessary (o resort to (B-10)
for the binary error probability for the range of values of interest here.
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LU Brirarw Pe for D-fold drversite, but no fading., TR 2472

10 =12 U (e NUMEER OF DIWERSITY CHAMMELSZ
iy Etn@=28 I Evn@>o TOTAHL SIGHARL EMERGYV-SIMGLE-ZTIDEL HOIZE DEMSITY
3@ D1=D-1
40 De=h*z
Sa H=EtnB.- 2
0 DIM SC1@g.
T REDIM ScD1X
1) SiDta=T=1

o] FOF J=1 T0 D

108 T=T«(h2-J3-3

11w SiD1-Jr=30D-J0+7

o0 HEXT T

15e S=5730

194 T=1

154 FOF D1

1 T=T

17a S=feTaGl

159 HEXT K

198 Fe=EAF - #5352 (DZ-12

st FRINT L ="3D0,"Etn® ="jE1n®,"Pe =";Fe
214 EMD

vo- 1z Etnd = 2@ Fe = Z.49131333127E~-03
B-4

— -

A program for the binary error probability P, in BASIC for the Hewlen-
Packard 9845 is presented below. Tt utilizes (B-10) ¢t seq., as discussed above. The
variables are sclf-explanatory and consistent with the carlier text.




e e — Y

TR 6473

Appendix C
Program for M-ary Character Error Probability

The expression for P is given by (1). Since we cannol integrate 10 @, we lerminate
theintegralaty = L. The ervor incurred in doing this is given by

exp ‘ -d,?./Z’

© 2 M-1
D-1 _/[: ay y* &V /2 ID-l(dTy) [BD-1<"2/2)]

T !

2
exp -dT/2> L] D - 2 2
s _l—f ay e/ Iy.1(4rY)
L

d

- D-1
dT

1 2
1 f‘” ay P °"P{‘ ?(" - d'r)]
L

Er

1
D-— - 2
L 2 1 f d [ _l; -d ]
= y exp|- y
<3T> (21‘_)172 L 2( T)

1
z/L>D_? exp[- %(L - dT)z]
dy 2m1/? (L - 47 . (1)

We used: the fact that B (¥) is upper-bounded by 1, as may be scen from (3); the
asymptotic behavior of 1 (x) for large x as given by reference 2, equation 9.7.1; and
an integration by parts 1o yicld the final form. For given values of D and d; (M has
dropped out of this error bound), we step ! up by units of | from the value dy + 1
until (C-1) is sufficiently small.

We chose error 10712 in the enclosed program. The reason that the integral in (1)
must be evaluated very accurately is that we must subtract the integral result from
in order to get the error probability. It we want to evaluate P, accurately in the
range of 10-5, then we need the integral 1o 8 or 9 decimal places 1o counteract the
effect of subtraction from | required by form (1).
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We numerically integrate (1) for y in the interval (0, L) via the Trapezoidal rule,
with automatic halving of the interval, until a stable result occurs. 1t is shown in
reference 11, pages 55 and 58, that the Trapezoidal rule is excellent for integrands
w hose odd derivatives at the end points of integration are equal. For the application
here, the integrand of (1) may be shown to behave as y2PM as y—=0+ . Thus a high
number of odd derivatives are zeroaty = 0+ and virwually zeroaty = L for large
DM, meaning that the correction terms to the Trapezoidal rule vanish. In fact, (1)
was also integrated via Simpson’s rule and via Simpson’s rule with end correction
(reterence 12, pages 414-418); neither performed as well as the Trapezoidal rule,
which is incorporated in the program for P, below. Because of the very small values
for the exponentials and the very large values for the Bessel function, it was found
necessary to first evaluate the logarithm of the integrand of (1) and then ex-
ponenniate it prior to its use in the Trapezoidal rule.

ary Fe ror D-rold diversite, but no fxding, TR 47D
M= bt NUMEBEFR OF SIGHAL RLTERMRTIVES
=iz U (R NUMEER OF DIMERSITY CHAMHELS

Etng=z0 ! ErrBlo TOTAL SIGHAL EHERGY.
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Ut =20F 22ELna ' TOTAL “DEFLECTIOH® STRTISTIC
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Appendix D
Average Error Probability for Fading Signal
The encrgy-density ratio variable Ry was defined in (8), and its probability

density was given in (9) for a fading signal. From (1), the error probability expressed
in terms of R is given by

M-1

(D-1)

The average error probability is

P, - fo Ry p(Rp) Po(Rp) - (D-2)

Substitution of (9) and (D-1) in (D-2) and interchange of integrals lcad to

o 2 M-1
— D _-y/2 <2 )]
Pe—1~fo dy y~ e / [BD_ly/Z

,f°° w220 N eXP( RT/“)

_2_ IJ\“ Vel o + 1)
(ZRT) (D-3)

In the inner integral, let Ry = 12/2 and use reference 9, equation 6.631 1. Sim-
plification leads to

1 1-1 ® 2p-1 2/2
P =1-[z°' ®-1:! m+ 1Y f dy yo e
0

€
M-1 2
2 o, M
" [Bn-l(" /2)] 1F1<" + 130 o %) - (D-4)

Use of the variablet = y2/2 in (D-4) yields the result already quoted in (13). Resulis
(D-4) and (13) hold for general v and M. When v is chosen as the special value D-1,
the resulting average error probability is given by (15) and (16).

SpecializationtoM = 2

Now we let parameter vin (9) be general, but weset M = 2, Thus we will develop
the average binary error probability for a genoral signal fading model. Upon use of
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() and (4), (13) yields forM = 2,

v, - [(D S (ue 1)"*’].1

s~
|

o1 7. D1k -2t
. ——-f dt t e lFl(\)+l; D;-_—-“lt)

ko K Jo Mo

D-1-v D- k .
(u+1) Z(Dl+k)<u+;>F(D-l-\),D+k;D; -u)
(U*Z) o N U + u+ 2

(D-5)

This finite sum of Gaussian hypergeometric functions is not 100 useful in general.
Howcever, Tor the special case v = D - 1 considered in (14)-(16), (D-5) immediately

vields

k

—_— D= D-14+K u+l>
P . = (—-—— for v=>D-1;
2 .20 kg < ) W2 (D-6)

this last result can also be derived directly from (15) and (16) tor M = 2, by
reference to (3) and (4).

A much more appealing result than (D-5) for average binary error probability P
for general v is attained if we start with the binary no-fading result in (B-9) and usc
identification (8):
k

exp (-Rp 2) D-1 /on4 D-1-n , (R'I‘>
n_=_—2-2£[_):TLZ(n> ZFT ’ (D-7)

N n=0 k=0

Then the average binary error probability is, by use of (D-7) and (9),

P, =j; dR,, p(RT) P
-1 D-1

D-1-n
i [220-1 el 1)] 5 (2Dn-1) kzo 1

n=0 k! 2
© R
* 'fo dR-r RT\)+k exp < - EJ_ _ 71)

-1
) 2D-1 u v+l D-1 2D-1 D-1-n (v + 1)k /2 )k
- [2 <1 * f) n ) X i T+ n/2

= k=0

D-2




-1 ~ k
_ 220_1 A +£\)+1 DZI (v + 1)k< w2 ) Dzl:k<2D 1>
2 o k! 1+ u/2 = n
(D-8)

This closed form result is a finite sum of positive quantities and holds Tor gencral
values of v(>-1). The summations are very similar 1o those encountered in non-
fading binary crror probability (B-10). A program for the cvaluation of (D-8),
which takes advantage of the observations made under (B-10), is given below. For
v = D - 1, (D-8) must reduce to (D-6); we have not discovered the transformation
thar accomplishes this corroboration, but we have confirmed the cqualin
numerically forv = D - 1, as well as for the alternative, more general result (1)-5).
No numerical resulis for (D-8) have been presented here.,
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Appendix E
Binary Error Probability Via Characteristic Functions

Let p(y) and p(x) be the general probability density functions of a noisc-only
dcecision variable and a signal-plus-noise decision variable, respectively. The binary
probability of error is then

+00

4+
P, = Prob(x < y) = L dx p, (x) L dy p, (¥ - (E-1)

Now by reference 13, equation 6, the exceedance probability in (E-1) is given in
terms of the characteristic function f (&) according to

dy p.(y) = 1-P (x)
f, o, :
+oo
Sp g & )[ G £,(8) exp(-i&x)
1 dg .
= o _4-——5-— fo(F,) exp(-igx) . (E-2)

The integral with a slash on it is a principal value integral; the contour C_ is a
contour on the real axis of the complex £-plane except for a small downward
identation at § = 0. Employment of (E-2) in (E-1) yields

+00
P, _/; dx p (x) T;-’?-[c % £ (€) exp(-iEx)

"
'l

1 dg
{_ F £,(8) £,(-)

_ -1 dg
T 12w [ T 508 5@ (E-3)
Cs
where C | is indented upward at & = 0. Both contours C | start at § = -0 and go

toé = 400,

Expression (E-3) gives binary error probability P, directly in terms of charac-
teristic functions f_(£) and f,(¢), by means of a contour integral. Since characteristic
functions satisfy the relation

f(-£) = £*(£) for real § , (1:-d)

E-1
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an alternative real integral form for (E-3) is

P

EN

1 ¥ dg
R ]{') E Iml£ (©) £,(-0))

E-2

(E-5)




Appendix F
Bounds on Error Probability

We consider the situation where there are three different variables upon which a
decision as to the transmitted multiple signal alternative must be made. They are,
respectively, the signal, noise, and interference variables. In particular, let random
decision variable S denote the output of the signal channcel; S may itself be the sum
of sceveral diversity branch outputs. Let N be the output of the maxinm of the
noise channcels outputs, of which there may be many; cach noise channel ourpu
may itself be the sum of several diversity branch outputs. And let 1 be the output of
the maximum of the interference-plus-noise channel outpuis, of which there may be
many; cach interference channel output may itself be the sum of several diversin
branch outputs.

For independent signal, noise, and interference channcel outpuis, the probabilin
of a correct deciston is

Pc = Prob(I < S, N < 8§) =fdx ps(x) Pi(x) Pn(x) , (+--1)

where p,(x) is the probability density function of random variable a, and P () is s
corresponding cumulative distribution function. We also express

Pi(x) Prob(I < x) =1 - Qi(x) ,

Pn(x) Prob(N < x) =1 - Qn(x) , (1-2)
where Q,(x) is the exceedance probability of random variable a.

The probability of character error is

"
—

)
o

1]

fdx p (x) [1 - {1 - Qi(x)}{l - Qn(x)}]

Sax 000,00 + Q0 - @0 ¢, 0]

Prob(I > S) + Prob(N > S) - Prob(I >S, N >8S) .
(-3

The last quantity in (F-3) is generally gquite small For practical cases ot interest. Bul
inany event, we have the upper bound

Pe < Prob(I > S) + Prob(N > S) (and Pe < 1) . (I--4)

In addition, since
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jdx ps(x) Qi(x) Qn(x) gfdx ps(x) min{Qi(x), Qn(x)}

< minzfdx p (x) ;(x), fdx P (x) Qn(x)z

= min{Prob(I > S), Prob(N > S}} (-5
we have the lower bound
P, > max{Prob(I > S), Prob(N > S)} . (F-6)

An alternative to (F-4) is obrained as follows:
Prob(I > S, N > 8) = Prob(I > S) Prob(N > S[I > §)

> Prob(I > S) Prob(N > §) (F-7)

Fheretore (F-3) vields upper bound
Pe < Prob(I > S) + Prob(N > S) - Prob(I > S) Prob(N > S} . (F-8)

This is a tighter upper bound than (F-4), and is also probably a good approximation
in many practical cases. The bound has a maximum value of 1 when cither
Prob(1>>S) - 1 or Prob(N>S) = 1.

Hwelet

a = min{Prob(I > S), Prob(N > S)} ,

b = max{Prob(I > S), Prob(N > S)}} , (F-9)

then the ratio of upper and lower bounds in (F-8) and (F-6) is

upper bound _ (a + b) - ab _ a :
Tower bound b =l+g-3. . (F-10

Fhisis largest when b = a << §, in which case

upper bound

Tower bound 2-am2 (E-1h)

thus the ratio of bounds is never greatey than 2.

k-2
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