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IMPORTANCE SAMPLING FOR ESTIMATION
OF SMALL PROBABILITIES

INTRODUCTION

One method of describing the capability of a signal processing system is through
its false alarm and detection probabilities for detection applications, or in terms of
its error probabilities for communication applications. When these probabilities are
not analytically available, simulation can often be employed to estimate them.
However, for very small false alarm or error probabilities, it may not be possible,
via direct simulation, to conduct enough independent trials to realize reliable
estimates with sufficient stability.

This apparent shortcoming is not an inherent limitation of estimation, but is due
instead to the discrete counting procedure often adopted in direct simulation. It is
possible to remedy this situation by using a "continuous" counting procedure,
whereby the result of each individual trial can take on a continuum of values, the
range of which can include arbitrarily small probabilities. In addition, the variance
of the resultant estimate can be reduced to arbitrarily-small values, even for a
limited number of independent trials, provided that the proper data-generation
method is used.

This technique, known as importance sampling (reference I), will be explained
and explored here by means of a particular signal-processing example presented by
Hansen (reference 2). In addition, the fundamental variance-reducing capability
will be investigated and used to derive a better data-generation technique.
Guidelines for choosing good data-generation algorithms will also be presented.

SIGNAL DETECTION EXAMPLE

The importance sampling technique will be explained by means of the following
signal detection example. Suppose that we observe N+I samples {xj of some
random process. Let the probability density function (PDF) of the observation
vector

X = (x 1 , x2 , ... , NI)

for noise-only be denoted by

PX) = T exp for all x > 0
nul (2)

where 01 is unknown; that is, the power level of all samples is identical but is
unknown. Also, let the PDF of X for signal present be
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1P(X) = T exp n) exp -N1J for all x > 0

=l (3)

%where y is unknown, but y > 3; that is, the power level of the potential-signal sample
XN+t is larger, but is also unknown.

The generalized likelihood ratio is derived in appendix A and leads to the
threshold comparison test

XN+ 1  (4)<
+X 2 + +xN) H 0

The false alarm probability is given by the probability that the left side of (4) ex-
ceeds V when p,, in (2) is the prevalent PDF of X. This is the example considered in
reference 2, equations (4)-(7).

Analytic evaluation of the false alarm probability for test (4) and PDF (2) is
readily accomplished in equations (A-9)-(A-I 1) of appendix A: -

FA 51

(1 + V/N)N (5)

The exact value of 3 in (2) is irrelevant in test (4), since the left side of (4) is in-
dependent of absolute levels; hence P1-, depends only on the number N of noise-
only samples and the threshold V. This is called a constant false alarm receiver,
since the absolute noise level need not be known in order to realize a specified false
alarm probability. In fact, (5) can be solved directly for the threshold required as

V = N P FA - (6)

in terms of the specified or desired PFA and the number of samples N. Since the
value of /3 is irrelevant in test (4), we will set /3 = 1, henceforth, without loss of
generality.

DEFINITION OF PROBLEM

The general situation of interest is depicted in figure 1. X is an observation vector
of M components, with known PDF p(X). The processor takes this collection of M
samples, X, and emits a single quantity, z, according to transformation

z g(x) , (7)

which is compared with threshold V. The known quantities here are the input PDF
p(X), the (nonlinear) transformation g(X), and the threshold V. There may be
statistical dependence between the components {x} of the observation. Also, the
input PDF and the transformation are arbitrary but fixed. (In the example of the
previous section, g(X) is given by the left side of (4), and p(X) is given by (2).)

2
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X -x1, x2 . XM) PROCESSOR z =g(X) >

g(x)

Figure 1. General Processor of Observation X

We want to evaluate the threshold-crossing probability (exceedance probability)

P E Prob I z > V1 = Prob fg(X) >V = J dX p(X)
(8)

where R, is defined as the region of X space where g(X) > V. If p(X) is the PDF
p,(X) for noise-alone at the processor input, then P is the false alarm probability,
whereas if p(X) is the PDF p,(X) for signal-present, then P is the detection
probability. We shall be concerned with the former case where the false alarm
probability is very small.

There are at least two major analytical difficulties with the problem statement in
(8): (a) explicit determination of the region R, may be very difficult to achieve,
especially for large M; (b) evaluation of P via the integral in (8) may be very difficult
to carry out, even if R, is explicitly specified. For large M, these analytical dif-
ficulties are virtually always insurmountable, except for special regions R, and
special PDFs. Accordingly, it is frequently necessary to resort to a simulation to
estimate P. In this report, we will consider the performance of: a direct simulation;
a modified simulation indicated by importance sampling; and some additional
simulations indicated by the optimum PDF for importance sampling.

3



TR 6449

DIRECT SIMULATION

Since the PDF of observation X is known, we presume that we can generate data
subject to these statistics. In particular, suppose we generate, according to PDF p,
the i-th observation vector XWii, statistically independent of Xii) for j # i, for a total
of T trials; i.e., I K< i < T. Now define the unit step function

1 1 for y > 0
U~y) = 9

0 for y < 0 (9)

Then we define our counting function on the i-th trial as

h1 (X(i))= U(g(x~i)) - V) =1 for XM cR (10)
0 for X i  R I

That is, the result of the i-th trial is I or 0, depending on whether the threshold V is
exceeded or not, respectively. Finally, the estimate of the desired probability P is
furnished by the average of the counting function over the T independent trials:

J.1

Observe that we use the known quantities p(X), g(X), and \ each trial (10).

This estimate is unbiased, because

Efa1 Elh 1 (X) I fdX p(X) h(X) f dX p(X) = P

R (12)
V

Here we used the facts that each observation XW' was generated according to PDF p,
that h, is given by (10), and relation (8).

The PDFs of random variables h, and a, are depicted in figure 2. The values for
the areas of the impulses in the PDF for a, are given by the binomial quantity

Q (T) ( -p)T-k pk at a for

Qk =k at 1  T-fr ~ < (13)

since all T trials are independent. The mean value of each of the random variables is
also indicated in the figure, and serves to point out the fundamental limitation of
such a direct simulation. Specifically, the result h, of a trial can never equal the
desired quantity P, but can only take on the values 0 and I. The averaging of T trials
helps considerably, but if P is significantly less than I/T, the estimate yielded by
random variable a, is inadequate since it is either too small (0) or too large (l/T,
2/T....
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1-P

a0

02

P 0 3
O'IhllP

1 -T

EJ a1 = P

(a) h, DENSITY (b)a 1 DENSITY

Figure 2. Probability Density Functions for bh and a,

The result of a simulation by means of counting function h, in (10), for the signal
detection example in (4),

gx) = 1 N1
S (xi + x2 + "'" + XN) (14)

with N = 32 and T = 1000, is presented in figure 3. The exact result in figure 3 is
that already given by (5) and appendix A. The simulation via h, was conducted only
at the integer values of V, and is observed to limit at I/N = 10-3 before jumping to
0. None of the values of P for V > 8 can be accurately estimated via this direct
simulation.

The variance of h, is P(I-P), and that of alis P(I-P)/T, since the T trials are
independent. The ratio of the standard deviation of a, to its mean is ((I-P)/(PT))' ,

which is small only if T is significantly larger than I/P. As a comparison case
against which future estimates will be compared, we find that for

N = 32, V = 8, 8 = 1, T = 1000,

we have statistics

5j
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10-2

EXACT RESULT (1 + V/ N) 'Io _I I I I

SI ,ULATION

VIA h1

10I

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
THRESHOLD V

Figure 3. Direct Simulation Result

6
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E~h 0.000792, SD{h1 } = 0.0281,

Eta 1 } = 0.000792, SD{a 1 } = 0.000890,

P = 0.000792, Q0 = 0.4S3, Q1 = 0.359, Q2 = 0.142, Q3 = 0.038,...
(16)

Here, SD denotes the standard deviation. Thus, the standard deviation of estimate
al i% still greater than its mean value, even though an average of 1000 trials has been
employed. The reason for this behavior is because 11 is such a poor indicator of its
mean value; in fact, its standard deviation is 35.5 times greater than its mean value.
An alternative counting function to h, that is more closely peaked around its
average value must be found.

IMPORTANCE SAMPLING

Suppose we generate observation X according to alternative PDF p*(X), instead
of the originally specified p(X). Also let us use counting function

h(X) p(X) J(g(X) - V) (17)
p* (X)"

instead of (10). Observe that the same known quantities, p(X), g(X), and V are
involved in (17), in addition to the yet-to-be-specified PDF p*(X). Also, h is no
longer restricted to just the values 0 or 1, as (10) was, due to the scaling p/p*. The
transformation of interest, g(X), and the threshold V are not changed in any way.

The estimate of P is obtained by performing T independent trials as earlier, and
averaging the results:

1 T

i=l (18)

where the i-th observation XI is generated according to alternative PDF p*(X), not
p(X).

The random variables h and a are unbiased estimators of P, since

Eh(X)}= f dX p*(X) h(X)

f dX p(X) U(g(X) - V) = I dX p(X) = P . (19)
RV

Observe in the first line of (19) that the average of h must be performed according to
PDI- p*(X), not p(X), since the data X was generated according to p*(X); we then
employed (17), (10), and (12). The general nature of the PDF of counting function h1
in (17) is displayed in figure 4. There could still be a non-zero probability of getting

7
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h = 0, depending on the choice of p*(X) in (17); however, this probability can be
made much tless than for a direct simulation. Also ihere is a distributed portion of
tile PDF, hopelull. peaked near E h = P.

DISTRIBUTED

o h
Ejh}=P

Figure 4. Probability Density Function for h

Since the T trials leading to estimate a in (18), of the probability P, are
statistically independent, the variance of a is given by

1 12V{%= V{h} = E{h - E W
N (20)

We have already evaluated E {h} in (19). The remaining average required in (20) is
x2} p*(X) h2(X) = /d X U(g(X) - V)

juX p*(X) (21)

which depends on p* as well as p, g, and V; we have again averaged h2 according to
p* in (21), and used (17). Selection of p* for a minimum of (21) will be considered

later.

SCALING OF POTENTIAL-SIGNAL SAMPLE

The first example of importance sampling that we consider is the one in reference
2, pp. 548-550. The alternative PDF, p*, is chosen so that inputs X, for which a
large output z results in figure I, are generated with an increased probability
(reference 2, p. 546). Specifically, instead of the original PDF (with 3 = I)

N+1

p(X) = - {P(X)) with p(x) = e-x for x > 0nal n(22)

we use, for data generation, the alternative PDF

8
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N 1 IXN+l 1p*(X) = p f(X) P with K > 1
n=1 (23)

Thus the potential-signal sample, xN+* , has been scaled by K and will more often
lead to satisfaction of fie threshold crossing in (4). Use of (22), (23), and (14)in (17)
leads to counting function

h2(X x ~ ( i U (UxN +I - NY-)(24)

where
N

$ E F," X

n=1 (25)

(If K = 1, (24) reduces to (10), the direct simulation case.) The corresponding
estimate of P is given according to (18) as

1T

a2 = T i12( (26)

The result of a simulation via h, and a, in (24) and (26) is given in figure 5 for the
comparison case cited in (15), with scaling factor K = 6. The contrast between
figures 3 and 5 is very pronounced. Now estimates of P all the way down to 10-7 are
possible via use of h,, whereas previously, the direct simulation could not yield
estimates less than I/T = 10-3. Also, the standard deviation of the estimates in
figure 5 is observed to be very small for the smaller values of V, although it gets
larger as V increases. The program for figure 5 is given in appendix B; when K is set
equal to I, the results given in figure 3 occurred.

In order to determine the performance of this importance sampling procedure,
and to ascertain if there is an optimum value of scaling K, we evaluate the variances
of h, and a, In appendix C, the v-th moment of h, is evaluated. In particular, there
follows from (C-5),

E h 2 -K 1
2 -1 N

2- + Y 2 - (27)

Since

1E h 1=P N

(28)

is independent of K (as expected), the variance of h, is minimized %%hen (27) is
minimized. There follows for the optimum value of scaling K, from (C-9),

+ +3V + +V+ (v V)2) 1 / 2

0o 2(, + 2V)
N z(29)

9
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10- 1

N =32

T = 1000

K=610-2

10-3

p EXACT

10-4
SIMULATION

VIA h2

10-6

10-7
0 2 4 6 8 -10 12 14 16 18 20

V

Figure S. Simulation for Sealed Potential-Signal Sample
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A table of the optimum scaling K, is given below, along with the mean and
minimum standard deviation of estimate a, defined in (26), for N = 32 and T =
1000. For V = 8, the minimum standard deviation of a, is 5.9 times smaller than its
mean value, for example. This is far better than the situation in (16) for direct
simulation, where the standard deviation of a, was greater than its mean. For larger
V, i.e.,low probability P, the minimum standard deviation is seen to become larger
than the mean value P. Specifically this occurs for V > 18. Thus estimation of very
low probabilities P via this particular importance sampling procedure is subject to
significant error, even when scaling K is optimally selected. Of course, in practice,
the optimum value of K will not be known, and a single value would likely be used
for a range of values of V.

Table 1. Statistics of a2 for N = 32, T = 1000

V K,, P = E{a, Min SD{a, }

2 2.45 1.44E-1 7.30E-3
4 3.86 2.3 1 E-2 1.88E-3
6 5.04 4.09E-3 4.86E-4
8 6.03 7.92E-4 1.34E-4

10 6.87 1.66E-4 4.02E-5
12 7.59 3.75E-5 1.30E-5
14 8.22 9.05E-6 4.48E-6
16 8.77 2.32E-6 1.65E-6
18 9.25 6.28E-7 6.43E-7
20 9.68 1.79E-7 2.64E-7

Other important measures of the quality of counting function h, are furnished by
its PDF and exceedance probability. These quantities are derived in appendix D. We
find

Probvh > H 1 [+ W- eAl

exp e , (30)

where

a = In / A = a( A = A N
S Ka(31)

and the partial exponential series is (reference 3, eq. 6.5.11)
M

e(x) - mx
m=O (32)

A limiting procedure on (30) shows that

iI

' -. ...... ..... li l I -.L 3 .--. ....ll i, .. .. .. _ i .-. - ' 1 1 t ... ...
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Prob h > 0 = \1 V1 2 KN133)

and therefore that

Prob h2 = 0 = 1 - + 4)

This is the probability that counting function h, gives a zero output for observation
X, as noted in the PDF in figure 4.

The PDF of h, is given in (D- I):

p(H) = ( 1 exp a) eN1a) ffor 0 < H < K ,

where a is still given by (31). A plot of this PDF is presented in figure 6 for N = 32,
V = 8, and K = 6. Observe that the ordinate is a logarithmic scale. The area of the
impulse at H = 0 is available from (34) as .729; this is far less than the impulse at
hl = 9 in figure 2(a) with area I-P = .999208 (see (16)). However, .729 is still a
substantial probability to be associated with outputting a zero from the counting
function h2. The PDF in figure 6 is very skewed; in addition to the large impulse at
H = 0, there is an integrable singularity at H = 0+. Although figure 5 indicates
significant improvement over figure 3, the very skewed PDF in figure 6 indicates
that a great deal more improvement should be possible through proper choice of
alternative PDF p*.

Although we could calculate the PDF of a, explicitly (see figure 2 and eq. 13), this
is not the case for a2 here, as given by (26). We can easily calculate the cumulants of
a2, by means of (C-4), but calculation of the PDF would require the following
numerical procedure: (a) take the Fourier transform of PDF (35), thereby obtaining
the characteristic function of h2; (b) raise this complex function to the N-th power;
(c) take the inverse Fourier transform, thereby obtaining the PDF of a2. Some
relevant observations on this procedure are as follows: the cusp of (35) at H = 0 +
should be subtracted out and transformed analytically; the Fourier transforms
should be accomplished by employing FFTs; the cumulative distribution of a2 could
be found directly instead of its PDF (see references 4 and 5). We have not pursued
this particular PDF, but rather have tried to improve on the counting function h2
instead.

OPTIMUM DATA GENERATION

The fundamental idea behind importance sampling was presented earlier in (17)-
(21). It was pointed out that minimization of the variance of the estimate a in (18)
requires minimization of (21) by choice of the alternative PDF p*. This problem is
undertaken in appendix E, with the result that the optimum PDF to use for data
generation is

p(X)/P for XE(R n Rv)

Po(X) -i=

0 otherwise (36)

12
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102
V 8

N =32
K=6

AREA .729= Prob (h 2 0)

101.5 ,

p(H)

101

E1h20- .000792

.002 .004 .006 .008 .01
H

Figure 6. Probobility Density Function for h2
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where the regions in X-space are described as

R p(X) > 0;

Rv :g(X) > V (37)

The form (36) for the optimum PDF is very illuminating. It says: generate X
values only for which g(X) > V, and do it with a frequency proportional to the given
PDF p(X). Furthermore, it says not to generate data X which leads to zero values
for h, and not to generate data X which would not have been generated by the
original PDF, p(X). Unfortunately, the value of the proportionality constant in (36)
is P, the very quantity we are trying to estimate. In addition, determination of the
region R nl R, could be a very difficult analytical task.

The optimum counting function is shown in appendix E to be given by

IP for X(RnR)'1 V
h0 (X) 0 otherwise (38)

That is, every trial X generated according to (36) yields exactly the same value for
the counting function; the value 0 in (38) is never encountered because p,(X) is zero
for such data values X.

It follows that the variance of h,, (and the corresponding estimate a, of P) is zero.
Thus by proper choice of alternative PDF p*(X), we can reduce the variance of the
estimation error to zero, for any fixed number of trials T. If instead of choosing p*
exactly equal to p, we come reasonably close, then we shall realize the variance-
reducing capability inherent in importance sampling (references 1, 2). Since the
direct simulation approach always yields a zero output and is far from optimum, a
significant improvement in estimation capability is often achieved with a minor
change in the data-generating PDF; witness the results of the previous section which
simply used a scaled version of the potential-signal sample and made no use of the
optimum PDF for importance sampling. Even though direct usage of the optimum
PDF in (36) is not feasible, it does furnish some good guidelines, as noted under
(37). We shall use these guidelines in the next section to select some modified data-
generation PDFs for the processor g(X) in (14) of interest here.

SOME ALTERNATIVE DATA GENERATION STRATEGIES

The original PDF p(X) is given in (22). Since the PDF and the test of interest,
(14), involve {xj}N only through their sum s defined in (25), we can rewrite this PDF
as

N-I -s
N_) N 1) exp(-x ) for s > 0 XN+ I > 0P\' NNl1= ( -0)! -N>l

(39)

and the test as

N N (40)

14
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A Shifted PDF

In keeping with the guidelines presented in the previous section, we take a ,hifted
function for the conditional PDF:

p*(s, x = p*(s) • p*(xN Is)

N-I e_S v V
(N-e) • ep[XN+1  Ys for s > 0, XN+ 1  N 41(N - ( X)+ N.'

This PDF is non-zero only in R, n R, as desired; however, it does not match the
shape of (39) for all s, xN+t, as (36) suggests. Then (17) yields counting function

(_V) V
h3 (X) = exp . s for xN 1 > Is > 0S) (42)

Furthermore, there is no need to generate XN+I since it is not involved in h.

Therefore we use (42) with the PDF for p*(s) as given in (41).

The exceedance probability of h, is immediately found from (42), (41), and (32):

Prob {h3 > H} = Prob exp(- ) > H1 = Prob{s < A3

3 N-I e -s -A3  (43)
ds 1'= - e e (A3) for 0 < H < 1,f (N - 1)3

0

where
N

A - - In H
3 V

(44)

The PDF of h3 is available from (43) by taking a derivative with respect to H:

N H)1 N-1
p(H) ) V(N - 1)I in H for 0 < H < 1 (45)

The range (0,I) for h3 is immediately obvious from (42). We observe there is no
impulse at H = 0 in the PDF (45) for h3 ; in fact, (43) yields Prob h3 > 0} = I. A plot
of (45) is given in figure 7; although not peaked at E{h 3 } = P = .000792, it is con-
siderably better than figures 2 and 6 for h, and h2, respectively.

The result of a simulation via counting function (42) for N = 32 and T = 1000
trials is given in figure 8. As done earlier, the simulation was conducted only at the
integer values of V, and straight lines were drawn between these estimates. However,
if the same random numbers constitute the set of observations {X(')}r for all the
different threshold values V, as done in figure 8(a), a very misleading result and
conclusion is possible; namely, it appears that there is a very small systematic error in
the estimate a. of P. However, when different random numbers are used for the
simulation at each value of V, the result in figure 8(b) correctly indicates an alter-
nating but growing estimation error at the lower probabilities. Since in practice, the
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Figure 7. Probability Density Function for h3
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10-1_ _ _ _ _ _ _

N 32
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(b) DIFFERENT RANDOM NUMBERS FOR EACH V

Figure 8. Simulation for a Shifted PDF
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solid (exact) curve in figures 8(a) and 8(b) "'ould not be available, thle dashed curve in
figure 8(a) would give no indication of how reliable thle result wNas, whereas thle

fluctuating result in 8(b) would giea rough idea of the reliability of' the estimate,
since each plotted point is independent of' its neighbor. The "in-breeding' of' thle
same data inl figure 8()sav'es tiebut canl be a dangerous and mlisleading procedure.
A program for thle simulation result of figure 8(b) is given inl appendix F.

A measure of thle stability of the results inl figure 8 is afforded by t Ile variance of a,.
To determine t his quant ity, we first need v-th moment

"0 N-1 -s
E~h~X)~= Eexp(sV!2 d s (N - 17' exp- sv)

= i-~N (46)

w here we have used (42) and (41) Then the variance of It, is

10 (47)

and that for a., is T times smaller, for T independent trials. A table of the mean and
standard deviation of a3 follows below. These standard deviations are 3-4 times
smaller than those given in table 1, which were for the optimum scaling.

Table 2. Statisics of a3 for N =32, T =1000

V P = Eja3) SID~al)

2 1.44E-1 1.56E-3
4 2.3 1E-2 5. 1OE-4
6 4.09E-3 1 .44E-4
8 7.92E-4 4.11 E-5

10 1.66E-4 1.23E-5
12 3.76E-5 3.91 E-6
14 9.05E-6 1.32E-6
16 2.32E-6 4.77E-7
18 6.28E-7 1.82E-7
20 1.79E-7 7.31 E-8

A Gated Conditional PDF

The result in the previous subsection %%as obtained by modifying conditional PDF
P(XNIIIS); here we take the opposite tack Oy modifying p(sjxN.,,). First define a gate
function

1 for a < s < b

U5~ ~1 (a ) otherwise (8
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Then define alternative PDF

P* (S' N-) P* (xNl ).(s XNi )

N-1 -s > )/9)
SeXN+ S(N - e)! Us(O, v XN+l DQN -XN+ 1) for XN+ >0, (49)

where denominator DN must be determined so that the conditional PDF has unit
volume; that is, by use of (48) and (32),

N

IN v N+1 N-i -s
D- xN f ds s e
N\V XN+ (N ):

- ex( 7-N+ eN-l(V xN+ 1) for xN+1 > 0. (50)

The unit gated function U, in (49) keeps p* > 0 only in the region R, where x , >--A
as was indicated desirable in the previous section. The use of (17), (39), (49), and (50)
leads to counting function

h 4 (X) = h4 s, xN+1) = D N xN+) for X N, > 0 (51)

Since random variable s is not used in (51), there is no need to generate it; we use (5 1)
with the PDF p*(xN+ ) = exp(-xN+I) for XN+I > 0.

The exceedance probability of h4 may be found as follows:
V

Prob{h 4 > H} = ProbilDNV xNi1) > Hf Pro+xN+1 >KDN(H

f dxN+1 exp X( N+1) = exp(- (H)) for 0 < H < 1

LNON(H) (52)

where )N is the inverse function to DN, i.e.,

D N(DN(Y)) = Y (53)

The PDF of h4 is available through differentiation with respect to H:

p(H) = VN -- /V=- V( N(H))

N DN(H) e N ",) DN(DN(H))

vexp - D) (H (N-1)N [-N) N-1 for 0 < H < I
DN(H)(54)

Here we used the result of differentiating (53) with respect to y and the derivative of
(50), namely,

19
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S(DN(Y)) D(y) = 1

N-1 e-y
N'(y) =N - 1)! 55)

The numerical calculation of (52) and (54) can be achieved without the need of
calculating the inverse function I (H). We employ a parametric approach by
choosing a value for a = N(H); then from (52) through (54), we can compute

H = D (a) Prob h > H} = exp (-VKa) , p(H) = Vexp[(1 N)aN ' 4 N N aN-1 (56)

all in terms of the parameter a. The function

DN(a) = 1 - exp(-a) eN-l(a) (57)

defined in (50) and (32) must, of course, still be evaluated.

The exceedance probability (52) and PDF (54) are presented in figure 9 for V = 8,
N = 32. There is a large undesirable cusp in the PDF at H = 0 +, and a lesser one at
H = 1-. This choice of alternative PDF in (49) gives results reminiscent of the PDF
for h, in the direct simulation, and is not expected to be very useful. A simulation
result in figure 10 confirms this. The simulation run in figure 10a employed the same
random numbers at all V, for each of the 1000 trials. Although a very smooth
estimation curve results in figure 10a, it is totally misleading; for example, it indicates
probabilities at V = 14 which are two orders of magnitude too small. If the exact
answer were not available, which is the practical situation, the smoothness of the
estimate might give a false sense of reliability; in reality, the smoothness of the
estimated curve is no measure of the accuracy of the result when the data are so
strongly inbred by being used repeatedly. For contrast, the simulation in figure 10b
was run with different random numbers for all V, for each of the 1000 trials. The
extremely large fluctuations in the estimates for the lower values of probability are
indicative of the unreliability of this importance sampling procedure.

The variance of h4 can be evaluated as follows from (51) and (50):

rxN+l N-1 -s
h = '0 ds s e

h4  CfN - 1)! (58)

where r N/V. Then using (49), %%e obtain the mean value as

O irx N-i -s

E{h 41 -- dx e-X ds S e
4 o (N-I)

Go N-1i -= ds e -x

20 1! dx N (59)

20
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(a) DISTRIBUTION OF h4
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(b) DENSITY OF h4

Figure 9. Distribution and Density Functions for h4
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10-1 N = 321
10-2'INST 

= 1000
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10- 7
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(a) SAME RANDOM NUMBERS FOR EACH V

10-1 N = 32

1-2 T = 1000
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(b) DIFFERENT RANDOM NUMBERS FOR EACH V

Figure 10. Simulation for a Gated Conditional PDF
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in agreement %%it1 (5) as expccted. Also, letting p,( ) denote the PDF of s, and P,( ) its
cunmulative distribution, %%e have

Elh} 2 0 dx e xfj) ds dt p ( ) M
0 0

O rx S 00 fX

f dx e-X 2f ds Ps(S) dt Ps(t) = 2 dx e-x  ds PS(S) PS(S)

o s- Po-(s-
00Go3N-i - -s/ rS t N-1 e-t

= 2f ds ps(s) Ps(s)f dx ex = 2f ds eSir dt
(N e) fJdt1)

s/r 0

N e- sq rNe- i 1 Nn
= 2 ds[(N - - n

n=O

n=O (1 + q)N+n

=2 I1 -7N  (2 v)-N N-1 N + n) -n

=2 2 + ( n) 22+ (26+ I
n=O (60)

where we temporarily let q = l+l/r = I + V/N. The variance of h4 is equal to (60)
minus the square of (59).

The mean and standard deviation of

1' T 4

4 T i=hI(61)

are given in table 3 for N = 32, T = 1000. Comparison with tables I and 2 for a, and
a,, respectively, reveals that the performance results in table 3 are much poorer. In
fact, the results for SD{a 4 } are only 2-3 times better than for the direct simulation
case a,; this is in keeping with the observation made under (57) regarding the PDF of
h4 in figure 9.

23
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Table 3. Statistics of 04 for N = 32, T = 1000

V P = E{a 4} SD{a 4}

2 1.44E-I 9.78E-3
4 2.31E-2 3.77E-3
6 4.09E-3 1.42E-3
8 7.92E-4 5.44E-4

10 1.66E-4 2.15E-4
12 3.75E-5 8.78E-5
14 9.05E-6 3.68E-5
16 2.32E-6 1.58E-5
18 6.28E-7 6.93E-6
20 1.79E-7 3.1 IE-6

A Combined Scaled and Shifted PDF

Since counting functions h, and h3 performed rather well, an attempt at combining
their features was attempted. Instead of the alternative conditional PDF considered in
(41), we tried

p* = .exp - XN1  - sj for XN+ 1 > K s, K > 1
L(Nls '' IC!"X- ) (62)

The counting function is now a generalization of (42):

h = K exp- xN1 - - for Xs > 0
10 JN1 C N+1 N (63)

The v-th moment of h, is given by

E{h") s dx p*(s, x) h]

ds sNI e-f dx Iexp N sVi - 1 VTNT -). 71l_ - K s

0vV/N)]
( -1) ds (N- - 1-T, exp - s(l + V/N)]

1 + v(K - INT) f

K N, (64)

11 + v(K - 1)] (1 + V N)N

when the denominator terms are positive. For v = I, this equals (5) a,, it should.
independently of K. For K > 1, (64) is minimized by the choice of scalii.g K = I,
regardless of the values of V, N, and v(>l). Thus the minimum variance of h, is at-
tained by not scaling at all, and just using the shifted PDF, as done with hl. Ac-
cordingly this alternative PDF was not studied any further.

24
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CONCLUSIONS

Tile importance sampling procedure is an important and useful tool for
estimating small probabilities. Not only can it estimate probabilities considerably
less than I/T, where T is the number of independent trials, but it can do so with
arbitrarily small variance.

However, the major flaw is that the exact alternative PDF to use for data
generation is not known. Some guidelines for choosing good PDFs have been
derived. They indicate that the new PDF should mimic the given PDF ill the region
where the original PDF is positive and where the test under consideration yields
threshold crossings. In fact, one should use a PDF which never generates data that
lead to processor outputs less than the threshold value(s) under investigation. The
difficulty of satisfying these goals makes selection of an alternative PDF more of an
art than a science. Several procedures were investigated here, and at least one gave
remarkably good estimations of probabilities in the 10-1 range, by means of only
1000 trials. Some other choices yielded poorer results. It may be necessary to try
several different guesses for the alternative PDF, and then select the best.

The danger of being deceived by a smooth estimation curve, of the exceedance
probability versus threshold, is great if one employs the same data for all the
threshold values considered. Rather, it is recommended that different random
numbers be used for each threshold considered. Then the width of the independent
fluctuations at different thresholds serves as a measure of the reliability of the
results obtained. Of course, this additional feature is achieved at the expense of
more computer processing time, since new data must be generated each time the
threshold is changed.

Since the region of data space where the threshold is exceeded depends on the
threshold value itself, it may be necessary to make different choices of the alter-
native PDF for each threshold value of' interest. This drawback is one of the
compensating features that must be accepted for the ability to estimate small
probabilities with vanishingly small error. Importance sampling is not a panacea.

25/26
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Appendix A

GENERALIZED LIKELIHOOD RATIO

The PDF for noise-only is given by (2). For a given observation X, (2) i,
maximized by the choice of P as

N+1
80=N +T 1n,l nn= 1 (A-I)

The corresponding maximum value of (2) is

P X) = exp(-N - 1)
N+1 (A-2)

The PDF for signal-plus-noise is given by (3); it is maximized by the choices

N I =
by (A-3), because then we would have y, < P1,, which is inconsistent with the
precondition stated with (3) that y > f.Instead we would set y = 3and maximize
(3), getting

SN+1 N

-. = aT X ifXF1 n=1 h 0 (A-4)

Thus the maximum value of (3) is given by

N .1 for xl ? I : EA-5
N____ N a n

^ ^ 1 xN+ IIN

exp(- N - 1) for > -- < "
N+ fr N+I Xn (A5

The generalized likelihood ratio is given by the ratio of (A-5) to (A-2):

N1N
(= 0 N (1+r) for

GL N l )N+l r -N
e * ( N + 1) (A-6)

andGLR =I forr< I/N, where

r .N+1
x + x 2 +... XN (A-7)

A-I
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But the generalied likelihood ratio in (A-6) is a monotonically increasing function
of r for r > I/N. Therefore the generalized likelihood ratio test is equivalent to
comparing r with a threshold; i.e.,using (A-7), the detecuioni statistic is

x ~ H1
XN+I V

i N" 1 + x2 + XN) H0  (A-8)

where threshold V >, I.

In order to evaluate the false alarm probability of test (A-8), we let

s=X1  2 +...+xN (A-9)

Then from (2), the PDF of s is

N-1 e-S
S ep(s) = (N-i)! for s > 0

(A-1O)

where we have let/3 = 1, since absolute scale is irrelevant to test (A-8). Then

P ProbV JHO
PFA =ProbxN > s- o

f ds f dx e N (A-I1)
0 sVN (1 + V/N)N

A-2
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Appendix B

PROGRAM FOR SCALING OF POTENTIAL-SIGNAL SAMPLE

10 N-32
20 T=1000
30 K=6
40 DIM R(20
5 50 K1=1-1/K

60 Random=SQR(.6)
70 RANDOMIZE Random
s0 FOR 1=1 TO T
90 X=RND
Joe FOR J=2 TO N
110 XuX*RND
120 NEXT J
130 S=-LOG(X) I EQ 25
140 X--K*LOG(RND) I EQ 23
150 E=EXP(-X*K1)
160 Vc=INT(N*X/S)
170 VctMIN(Vc,20)
180 FOR V-0 TO Vc
190 " A(V)=R(V)+E
200 NEXT V
210 NEXT I
220 R=K'T
230 FOR V-0 TO 20
240 R(V)=LGT(R(V)*R)
250 NEXT V
260 PLOTTER IS "GRAPHICS"
270 GRAPHICS
280 SCALE 0,20,-7,B
290 GRID 2,1
300 PENUP
310 LINE TYPE 9
320 FOR VzO TO 20
330 PLOT V,A(V) I SIMULATION
340 NEXT V
350 PENUP
360 LINE TYPE 1
370 FOR V-O TO 20

390 PLOT V,-N*LGT(I+V/N) I EXACT
S390 NEXT V

400 PENUP

410 END

B-I/B-2
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Appendix C

MOMENTS OF h2

Counting lunctio! h, is given by (24), wshere s is given by (25). By reference to
(22), it can be ,een thai the PDF ofs is

p(s) 3 N-1 e 5  for s > 0 (C-1)

while that for x., iis

P( = exp(-xN+ 1) for xN+1 > 0 (C-2)

Since only the PDF of random variable xN +I is changed in alternative PDF p* in
(23), we have

S e AN+ 1,I>p* (S, X + )  = IN K ) x for S > 0 , N 1 >0
(C-3)

Since h2 in (24) is non-zero only if XN I I > sV/N, then the v-th moment of h, is given
by

s(N -1)! K K
+V)~ f dsTN-i eS * dx exp(-X/K') ex(-vV

0 sV/N

= V ds N-1 exp s 1 + + V -

-v (K -1) f N -i1)NKK
0

KY-l  1
= v-i (C-4)

v -V

For v I, this reduces to (28).

The mean square value of h2 is given by substituting v = 2 in (C-4):

h2  _ 1 ,
2 - y[1 +1 (2(C-5)

We want to minimize this expression by choice of scaling K. To do this, let t = I /K,
and consider the reciprocal of (C-5):

R = t(2 - t)(a - bt)N where a = 1 +V bz V

Nw (C -6)

C(-1
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Setting dR/dt to zero, we must solve the equation

(2 - t)(a - bt) - t(a - bt) - Nbt(2 - t) = 0 (C-7)

I f we simplify and put t = !/K, there follows

2a K2 -2(a + b + Nb) K + (N + 2)b = 0
0 0 (C-8)

Solving this quadratic, and substituting the values for a and b in (C-6), we find for
the optimum value of scaling,

3VV1 + V +. I

N (C-9)

The negative square root is discarded because it leads to values of K,, < i, which are
disallowed.

C-2
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Appendix D

DISTRIBUTION AND DENSITY OF h2

Disiribution

We repeat from (24)

Now h, = H when xN +I= a, where

K ex(P a ) H ; a =1 n ffH KT (D-2)

Also h2 > H when x N + Ilies in region Ra in figure D-1.

X N + 1

a X N+1'- N

R a

0 N

FlIgure D-11. Region R. where h2 > H
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Therefore, uSing (C-3) and figure D-1, we have

aN/V N-i -s a

Prob{h 2 > H} = ds s  f dx exp2f (N f K) K x -

0 sV/N

aN/V N-i -s

= ds s e [ea 1 .x(N - 1)! [ -s epK-)
0

= ( + V)LN 1 - Ai e l(Ai

- exp( . [ - -A2 eN _,,(A ,

where a is given in D-2),

A I~,' N
A1 - VK A2  a (D-4)

and (reference 3, eq. 6.5.11)
M Mm:0 1 xmm-

eM(x) -=0 (D-5)

is the leading terms, through xM, of the power series expansion of e'.

As H 0 +, a - + o from (D-2). Then A, - + o and A, - + o from (D-4), and
eN-I(Aj) , A.-'/(N-I)!. However, the exponential exp(-A.) dominates this latter
behavior, and (D-3) yields

Prob{h 2 > 0} =I + (D-6)

We see, directly from (D-I), that h, can never exceed K. When we substitute
H = K in (D-2), we get a = 0, and (D5-3)-(D-5) then yield ProbIh, > K} = 0, as
expected.

Density

An alternative way of expressing (D-3) is as follows; by reference to figure D-1,

a xN/V N-1 -s

Prob{h 2 >H} = dx exp f ds N - e

0 0

a dx 1,exp [.) - exp x) eNl(V.x (D-7)

0

D-2



where the inlegrand of (D-7) is independent of H. But by definition,

Prob{h2 > HI f dh2 p(h2 ) ,

H

where p(b.) is the PDF of h,. Selling the right-hand sides of (D-7) and (D-8) equal to
each olher, and different iaing \\ilh respect to H, we obtain

-p (H) 1- ~exp- - exp La eN1 a

But from (D-2),

aa K I
3H K - 1H (D-)O)

Therefore the PDF of h, is given by

p(H) = (Kp-a) I - exp ja eN(Na)] for 0 < H <K.(DlI)

As H - 0, the bracketed term in (D-I 1) tends to I since a + 00. Therefore,

p(H) 1(K ) K -- H K as H 0+ (D-12)

This infinite cusp at the origin is integrable. For the simulation result in figure 5 for
K = 6, this yields p(H)"- .14/H.8 as H -0+.

D-3/D-4
Reverse Blank



TR 6449

Appendix E

DERIVATION OF OPTIMUM DENSITY FOR p*

It is convenient to define three regions in X-space; namely,

R : g(X) > VV

R p(X) > 0 (E-l)

R* :p*(X) > 0

Now we define counting ftunction (more precisely than (17)) as

S-5 U(g (X) - V) for XER*

h(X) 0 otherwise (E-2)

Then the mean value of h is obtained by averaging over p*:

Eh(X)} dX p*(X) h(X) = JdX p(X) U(g(X) - V)

R* R* (E-3)

The integrand of (E-3) is non-zero in region RnR,. In order to keep h unbiased, wre
henceforth assume that R*D(RnR,); for then E{h(X)} = P, according to (8).

According to (20) and (21), we now want to minimize

E{h 2 (X)} = dX p*(X) hX) = f dX p{X) U(g(X) - V)

R* R* (E-4)

by choice of p*(X). If we let

A(X) p2 (X) U(g(X) - V) for XER*
(E-5)

then (E-4) can be expressed as

E{h 2 } - dX A(X)

R* (E-6)

A(X) combines all the given known quantities in one expression.

E-i



TR 6449

We hasc the constraint that the volume under p* must be unit% for a legal PDF. If
%% e let p,,(X) be the optimum value of p*(X), and perform a perturbation FrI(X) of
p,(X), using a Lagrange multiplier for the constraint, the perturbed value of (E-6)
becomes

fdx A(X) x dX[P(X + en(X)]

R* X* (E-7)

Differentiating with respect to E, and setting £ = 0, we must obtain a zero quantity
for all variations tj(X), in order for p,,(X) to be the optimum. There follow" for the
optimum PDF

Po(X) (ACX)1/2
P =(X) c(A(X)) = c p(X) U (g(X) - V) for XcR*

(E-8)

where c is a positive constant and we used (E-5). The right-hand side of (E-8) is non-
negative, as it must be for a legal PDF. An alternative statement of (E-8) is ob-
viously

c p(X) for Xs(RlR v )

0 otherwise (E-9)

The constant in (E-9) is determined by satisfying the constraint of unit volume for
a PDF:

Sf dxpo = c dX p(X) c P

R* RLR v  (E-10)

using (8). Thus c = /P, giving for the optimum PDF

P( p(X)/P for XE(RflRv)

P (X)

0 otherwise (E-11)

The minimum mean square value of h follows from (E-4) as

min E{h 2 (x)} = P fdX p(X) U(g(X) - V)
R*

P f dX p(X)=P (E-12)

V
There follows for the variance of the optimum h, namely h,,

V{ho} = E{h 21 " E2{hoI = p2 _ P2 = 0
0 0 0

(E-13)

E-2



TR 6449

Use of (E-1 I) in (E-2) shows that the optimum counting function is

P for XeCRIR v )

h o(X) =

0 otherwise (E-14)

Thai is, every trial generated according to optimum PDF p,,(X) yields the same
value for h,,, namely P. The value 0 is never generated because p0(X) is zero for such
data values X.

E-3/E4
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Appendix F

PROGRAM FOR A SHIFTED PDF

10 N=32
20 T=1000
30 DIM A(20)
40 Random=SQR(.6)
50 RANDOMIZE Random
60 FOR I=1 TO T
70 FOR V=O TO 20
80 X=RND
90 FOR J=2 TO N
100 X=X*RND
110 NEXT J
120 S=-LOG(X) 1 EQ 41
130 A(V)=R(V)+EXP(-V*S/iN) EQ 42
140 NEXT V
150 NEXT I
160 R=I/T
170 FOR V=O TO 20
180 R(V)=LGT(A(V)*R)
190 NEXT V
200 PLOTTER IS "GRAPHICS"
210 GRAPHICS
220 SCALE 0,20,-7,0
230 GRID 2,1
240 PENUP
250 LINE TYPE 9
260 FOR V=O TO 20
270 PLOT V,A(V) I SIMULATION
280 NEXT V
290 PENUP
300 LINE TYPE 1
310 FOR V-0 TO 20
320 PLOT V,-N*LGT(I+V/N) I EXACT
330 NEXT V
340 PENUP
350 END
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