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IMPORTANCE SAMPLING FOR ESTIMATION
OF SMALL PROBABILITIES

INTRODUCTION

One method of describing the capability of a signal processing system is through
its false alarm and detection probabilities for detection applications, or in terms of
its error probabilities for communication applications. When these probabilities are
not analytically available, simulation can often be employed to estimate them.
However, for very small false alarm or error probabilities, it may not be possible,
via direct simulation, to conduct enough independent trials to realize reliable
estimates with sufficient siability.

This apparent shortcoming is not an inherent limitation of estimation, but is due
instead to the discrete counting procedure often adopted in direct simulation. It is
possible to remedy this situation by using a ‘‘continuous’ counting procedure,
whereby the result of each individual trial can take on a continuum of values, the
range of which can include arbitrarily small probabilities. in addition, the variance
of the resultant estimate can be reduced to arbitrarily-small values, even for a
limited number of independent trials, provided that the proper data-generation
method is used.

This technique, known as importance sampling (reference 1), will be explained
and explored here by means of a particular signal-processing example presented by
Hansen (reference 2). In addition, the fundamental variance-reducing capability
will be investigated and used to derive a better data-generation technique.
Guidelines for choosing good data-generation algorithms will also be presented.

SIGNAL DETECTION EXAMPLE

The importance sampling technique will be explained by means of the following
signal detection example. Suppose that we observe N+1 samples {x } of some
random process. Let the probability density function (PDF) of the observation
vector

X = (xl, XZ, ees 3 xN+1) M

for noise-only be denoted by

N+1 b 4
P, (X) = m {-;— exp(sﬂ)} for all x_ >0 ,

n=1 (2)

where B is unknown; that is, the power level of all samples is identical but is
unknown. Also, let the PDF of X for signal present be




N X X
pl(x) = TI; {% exp(—%)} %—exp(- NY+1> for all x, > o,
n= 3)

where y is unknown, but y > #; that is, the power level of the potential-signal sample
Xn4g 18 larger, butis also unknown.

The generalized likelihood ratio is derived in appendix A and leads 1o the
threshold comparison test

Hl
< -

% (xl tXp e xN) H

o

The false alarm probability is given by the probability that the left side of (4) ex-
ceeds V when p, in (2) is the prevalent PDF of X. This is the example considered in
reference 2, equations (4)-(7).

Analytic evaluation of the false alarm probability for test (4) and PDF (2) is
readily accomplished in equations (A-9)-(A-11) of appendix A:
1
PeA =T - 5
FA v vl
The exact value of fin (2) is irrelevant in test (4), since the left side of (4) is in-
dependent of absolute levels; hence Py, depends only on the number N of noise-
only samples and the threshold V. This is called a constant false alarm receiver,
since the absolute noise level need not be known in order to realize a specified false
alarm probability. In fact, (5) can be solved directly for the threshold required as

= -1/N
V=N (pFA - ) : (6)

in terms of the specified or desired Pg, and the number of samples N. Since the
value of B is irrelevant in test (4), we will set § = 1, henceforth, without loss of
generality.

DEFINITION OF PROBLEM

The general situation of interest is depicted in figure 1. X is an observation vector
of M components, with known PDF p(X). The processor takes this collection of M
samples, X, and emits a single quantity, z, according to transformation

z = g(X) , (7)

which is compared with threshold V. The known quantities here are the input PDF
p(X), the (nonlinear) transformation g(X), and the threshold V. There may be
statistical dependence between the components {x,} of the observation. Also, the
input PDF and the transformation are arbitrary but fixed. (In the example of the
previous section, g(X) is given by the left side of (4), and p(X) is given by (2).)




X=(x1,x2,...,xM) PROCESSOR 2= g(X)

g(X)

Figure 1. General Processor of Observation X

We want to evaluate the threshold-crossing probability (exceedance probability)

]

PzProb{z>V}=prob {2(X) >v} = fdx p(X)
R

v 8)

where R, is defined as the region of X space where g(X) > V. If p(X) is the PDF
p(X) for noise-alone at the processor input, then P is the false alarm probability,
whereas if p(X) is the PDF p,(X) for signal-present, then P is the detection
probability. We shall be concerned with the former case where the false alarm
probability is very small.

There are at least two major analytical difficulties with the problem statement in
(8): (a) explicit determination of the region R, may be very difficult to achieve,
especially for large M; (b) evaluation of P via the integral in (8) may be very difficult
to carry out, even if R is explicitly specified. For large M, these analytical dif-
ficulties are virtually always insurmountable, except for special regions R and
special PDFs. Accordingly, it is frequently necessary to resort to a simulation to
estimate P. In this report, we will consider the performance of: a direct simulation;
a modified simulation indicated by importance sampling; and some additional
simulations indicated by the optimum PDF for importance sampling.

R




DIRECT SIMULATION

Since the PDF of observation X is known, we presume that we can generate data
subject to these statistics. In particular, suppose we generate, according to PDF p,
the i-th observation vector X', statistically independent of X4 for j # i, for a total
of T trials; i.e., 1 £ 1< T. Now define the unit step function

1 fory >0
u(y) = .
0 for y < 0 9

Then we define our counting function on the i-th trial as

' (i)
ot B

0 for X(i) £ Rv

That is, the result of the i-th trial is 1 or 0, depending on whether the threshold V is
exceeded or not, respectively. Finally, the estimate of the desired probability P is
furnished by the average of the counting function over the T independent trials:

T
_1 (i) an
o ST L m(x®) .

Observe that we use the known quantities p(X), g(X), and \  cach trial (10).

This estimate is unbiased, because

E{al} = E{hl(X)} = IdX p(X) hl(X) = [! dX p(X) =P
%

Here we used the facts that each observation X'V was generated according to PDF p,
that h, is given by (10), and relation (8).

(12)

The PDFs of random variables h, and a, are depicted in figure 2. The values for
the areas of the impulses in the PDF for a, are given by the binomial quantity

Q = <:> a-»T*pkarq -

=] >

» for 0 <k <T , (13)

since all T trials are independent. The mean value of each of the random variables is
also indicated in the figure, and serves to point out the fundamental limitation of
such a direct simulation. Specifically, the result h, of a (rial can never equal the
desired quantity P, but can only take on the values 0 and 1. The averaging of T trials
helps considerably, but if P is significantly less than 1/T, the estimate vielded by
random variable a, is inadequate since it is either too small (0) or too large (1/T,
2/T,..0.
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Figure 2. Probability Density Functions for h, and a,

The result of a simulation by means of counting function h, in (10), for the signal
detection example in (4),

xN+1

g(X) =7 v,

N—(x1+x2+...+xN) (14)
with N = 32 and T = 1000, is presented in figure 3. The exact result in figure 3 is
that already given by (5) and appendix A. The simulation via h; was conducted only
at the integer values of V, and is observed to limit at 1/N = 10-3 before jumping to
0. None of the values of P for V > 8 can be accurately estimated via this direct
stmulation.

The variance of h, is P(1-P), and that of a,is P(1-P)/T, since the T trials are
independent. The ratio of the standard deviation of a, to its mean is ((1-P)/(PT)) "+,
which is small only if T is significantly larger than 1/P. As a comparison case
against which future estimates will be compared, we find that for

N=32, V=8, 8=1, T = 1000,
(15)

we have statistics
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\\ N =32

\\\ T= 1000 ]
\

AN EXACT RESULT (14 V/N)~ N
\//

1

10-3 AN

SIMULATION \

VIA h, \

10-4 N\

10—2

10-5 \

10-6 \

<
\\

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
THRESHOLD V

10-7

Figure 3. Direct Simulation Result




0.0281, ;

E(hl} 0.000792, SD{hl}

0.000890,

E{al} 0.000792, SD{al}

P = 0.000792, Q_ = 0.453, Q, = 0.359, Q, = 0.142, Qg = 0.038,...
(16)

Here, SD denotes the standard deviation. Thus, the standard deviation of estimate
a is stll greater than its mean value, even though an average of 1000 trials has been
employed. The reason for this behavior is because hy is such a poor indicator of its
mean value; in fact, its standard deviation is 35.5 times greater than its mean value,
An alternative counting function to h; that is more closely peaked around its
average value must be found.

IMPORTANCE SAMPLING

Suppose we generate observation X according to alternative PDF p*(X), instead
of the originally specified p(X). Also let us use counting function

hexy = B g -
p*(X)-
instead of (10). Observe that the same known quantities, p(X), g(X), and V are
involved in (17), in addition 10 the yet-to-be-specified PDF p*(X). Also, h is no
longer restricted to just the values 0 or 1, as (10) was, due to the scaling p/p*. The
transformation of interest, g(X), and the threshold V are not changed in any way.

a7

The estimate of P is obtained by performing T independent trials as earlier, and
averaging the results:

T
| (1)
[ I E h(x ) >

T Ko | (18)
where the i-th observation X' is generated according to alternative PDF p*(X), not
p(X).

The random variables h and a are unbiased estimators of P, since 1
E(h(X)} = ] dX p*(X) h(X)

= [dx p(X) U(g(X) - V) = fdx pxX) =P . (19)
R
Vv

Observe in the first line of (19) that the average of h must be performed according to

PDF p*(X), not p(X), since the data X was generated according to p*(X): we then ;
employed (17), (10), and (12). The general nature of the PDF of counting function h
in (17) is displayed in figure 4. There could still be a non-zero probability of getting }1




! TR 6449

h = 0, depending on the choice of p*(X) in (17); however, this probability can be
made much less than for a direct simulation. Also there is a distributed portion of
the PDF, hopetully peaked near E{fh} = P,

DISTRIBUTED
#~ PORTION

E'{h}=P

Figure 4. Probability Density Function for h

Since the T trials leading to estimate a in (18), of the probability P, are
statistically independent, the variance of a is given by

Via} = 1 V{h} = -:T[E{hz} - £%(h} ]

N ' (20)

We have already evaluated E {h} in (19). The remaining average required in (20) is

Eth’} = [ax proo w2 - fdxu’E—U(g(x) v,
p*(X) (2h)

which depends on p* as well as p, g, and V; we have again averaged h? according to
p* in (21), and used (17). Selection of p* for a minimum of (21) will be considered
later.

SCALING OF POTENTIAL-SIGNAL SAMPLE

The first example of importance sampling that we consider is the one in reference
2, pp. 548-550. The alternative PDF, p*, is chosen so that inputs X, for which a
large output z results in figure 1, are generated with an increased probability i
(reference 2, p. 546). Specifically, instead of the original PDF (withf§ = 1)

N+1

p(X) = ;E'; {p(xn)} with p(x) = e for x > 0 , 22)

we use, for data generation, the alternative PDF
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p*(X) = Tr {plx, )} 3 % CN”) with K > 1 . 25

Thus the potential-signal sample, xy,,, has been scaled by K and will more often
lead to satistaction of the threshold crossing in (4). Use of (22), (23), and (14) in (17)
leads 10 counting function

- 1 v
hp(X) = K exp <"‘N+1 (1 } i))u("nu TN "’) ’
(24)
where
N
sz Y X
n=1 (25)
(If K = 1, (24) reduces 1o (10), the direct simulation case.) The corresponding
estimate of P is given according to (18) as
T
21 ( (1)
o = 7 2 n,(x) (26)

The result of a simulation via h, and a, in (24) and (26) is given in figure 5 for the
comparison case cited in (15), with scaling factor K = 6. The contrast between
figures 3 and 5 is very pronounced. Now estimates of P all the way down to 10-7 are
possible via use of h,, whereas previously, the direct simulation could not yield
estimates less than 1/T = 10-3, Also, the standard deviation of the estimates in
figure S is observed to be very small for the smaller values of V, although it gets
larger as V increases. The program for figure 5 is given in appendix B; when K is set
equal to 1, the results given in figure 3 occurred.

In order to determine the performance of this importance sampling procedure,
and to ascertain if there is an optimum value of scaling K, we evaluate the variances
of h, and a,. In appendix C, the v-th moment of h, is evaluated. In particular, there
follows from (C-5),

E{hg}"' I(1 - N
2 - = Y 1
‘ [“ﬁ(z'f)] @n
Since
19 S
. 2§ ( VN
1+—)
N

(28)

is independent of K (as expected), the variance of h, is minimized when (27) is
minimized. There follows for the optimum value of scaling K, from (C-9),

1/2
K=1+V+——+(1+—-+(V ))

’ (1 ‘ N (29)
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10-3
P yemcr
104 R\
SIMULATION ‘
VIA hy
10-3
10-6 &::&
10-7
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A
Figure S. Simulation for Scaled Potential-Signal Sample
10




”* ’ '"""!lllIlllIIlllll!!!l!---..-..!......,,_,,.__,_______‘

TR 6449

A table of the optimum scaling K is given below, along with the mean and
minimum standard deviation of estimate a, defined in (26), for N = 32 and T = :
1000. For V = 8, the minimum standard deviation of @, is 5.9 times smaller than its
mean value, for example. This is far better than the sitwation in (16) for direct
simulation, where the standard deviation of a was greater than its mean. For larger
V,i.e,,low probability P, the minimum standard deviation is seen 10 become larger
than the mean value P. Specifically this occurs for V 2 18. Thus estimation of very
low probabilities P via this particular importance sampling procedure is subject to
significant error, even when scaling K is optimally selected. Of course, in practice,
the optimum value of K will not be known, and a singie value would likely be used
for a range of values of V,

Table 1. Statistics of a, for N = 32, T = 1000

\' K, P=E{a,} MinSD{a,}
2 2.45 1.44E-1 7.30E-3
4 3.86 2.31E-2 1.88E-3
6 5.04 4.09E-3 4.86E-4
8 6.03 7.92E-4 1.34E-4

10 6.87 1.66E-4 4.02E-5

12 7.59 3.75E-5 1.30E-5

14 8.22 9.05E-6 4.48E-6

16 8.77 2.32E-6 1.65E-6

18 9.25 6.28E-7 6.43E-7

20 9.68 1.79E-7 2.64E-7

Other important measures cf the quality of counting function h, are furnished by
its PDF and exceedance probability. These quantities are derived in appendix D. We

find
\Y ~N -Al
Prob{hz > H} = (1 + ﬁ) [1 -e eN-l(Al)
~exp (- %) [1 - eh2 eN_l(Az)] , (30)
where
K\ K N 1 __N
R T T |
' 30 1
1
and the partial exponential series is (reference 3, eq. 6.5.11)
M
- 1 m
eM(x) = 2 ET X
m=0 (32)

A limiting procedure on (30) shows that

Il i
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/ v -N
Prob {hz > 0} = (‘1 + T(ﬁ) 33)

and therefore that

v\N
Probh=0}=1-(1+—-> .
{ 2 KN (34)

This is the probability that counting function h, gives a zero output for observation
X, as noted in the PDF in figure 4.

The PDF of h, is given in (D-11);

where a is still given by (31). A plot of this PDF is presented in figure 6 for N = 32,
V = 8, and K = 6. Observe that the ordinate is a logarithmic scale. The area of the
impulse at H = 0 is available from (34) as .729; this is far less than the impulse at
h; = 9 in figure 2(a) with area 1-P = .999208 (see (16)). However, .729 is still a
substantial probability to be associated with outputting a zero from the counting
function h,. The PDF in figure 6 is very skewed; in addition to the large impulse at
H = 0, there is an integrable singularity at H = 0+. Although figure 5 indicates
significant improvement over figure 3, the very skewed PDF in figure 6 indicates
that a great deal more improvement should be possible through proper choice of
alternative PDF p*.

Although we could calculate the PDF of a, explicitly (see figure 2 and eq. 13), this
is not the case for a, here, as given by (26). We can easily calculate the cumulants of
a,, by means of (C-4), but calculation of the PDF would require the following
numerical procedure: (a) take the Fourier transform of PDF (35), thereby obtaining
the characteristic function of h,; (b) raise this complex function to the N-th power;
(c) take the inverse Fourier transform, thereby obtaining the PDF of «,. Some
relevant observations on this procedure are as follows: the cuspof (35)atH = 0+
should be subtracted out and transformed analytically; the Fourier transforms
should be accomplished by employing FFTs; the cumulative distribution of @, could
be found directly instead of its PDF (see references 4 and 5). We have not pursued
this particular PDF, but rather have tried to improve on the counting function h,
instead.

OPTIMUM DATA GENERATION

The fundamental idea behind importance sampling was presented carlier in (17)-
(21). 1t was pointed out that minimization of the variance of the estimate e in (18)
requires minimization of (21) by choice of the aliernative PDF p*. This problem is
undertaken in appendix E, with the result that the optimum PDF to use for data
generation is

p(X)/P for Xe(RAR )
po(x) = ,
0 otherwise (36)
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102
V=8
N = 32
1 K=6
AREA =.729 = Prob(h,=0)
101.5
p(H)

103

E{hy} = .000792

/

100L—— ;
0 002 004 006 008 01

Figure 6. Probability Density Function for h,
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where the regions in X-space are described as

R:p(X) > 0;
R, : g(X) >V . (37)

The form (36) for the optimum PDF is very illuminating. It says: generate X
values only for which g(X) > V, and do it with a frequency proportional 10 the given
PDF p(X). Furthermore, it says not to generate data X which feads (o zero values
for h, and not to generate data X which would not have been generated by the
original PDF, p(X). Unfortunately, the value of the proportionality constant in (36)
is P, the very quantity we are trying to estimate, In addition, determination of the
region RN R, could be a very difficult analytical task,

The optimum counting function is shown in appendix E to be given by

P for Xe(RﬂRv)
ho(X) = .

0 otherwise (38)

That is, every trial X generated according to (36) yields exactly the same value for
the counting function; the value 0 in (38) is never encountered because p (X) is zero
for such daia values X.

It follows that the variance of h  (and the corresponding estimate a  of P) is zero.
Thus by proper choice of aliernative PDF p*(X), we can reduce the variance of the
estimation error to zero, for any fixed number of trials T. If instead of choosing p*
exactly equal to p,, we come reasonably close, then we shall realize the variance-
reducing capability inherent in imporiance sampling (references 1, 2). Since the
direct simulation approach always yields a zero output and is far from optimum, a
significant improvement in estimation capability is often achieved with a minor
change in the data-generating PDF; witness the results of the previous section which
simply used a scaled version of the potential-signal sample and made no use of the
optimum PDF for importance sampling. Even though direct usage of the optimum
PDF in (36) is not feasible, it does furnish some good guidelines, as noted under
(37). We shall use these guidelines in the next section to select some modified daia-
generation PDFs for the processor g(X) in (14) of interest here.

SOME ALTERNATIVE DATA GENERATION STRATEGIES

The original PDF p(X) is given in (22). Since the PDF and the test of interest,
(14), involve {x_}} only through their sum s defined in (25), we can rewrite this PDF
as

N-1 «-s
S e
p(s' x‘N..'l) = IN - 15! exp(-xN+1) fOT S > 0 » xNQ-l > 0 ’(39)
and the test as
)
> 2
xN+1< N s - (40)
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A Shifted PDF

In keeping with the guidelines presented in the previous section, we take a shified
function for the conditional PDF:

P*(s, xy,1) = P*(s) * p*(xy,|9)

N-1 -s
< S e . \ Vv
S (N -1 exp[- <xN+1 - ﬁS)] for s> 0, XN+1 > R G2

This PDF is non-zero only in R, N R, as desired; however, it does not match the
shape of (39) for all s, Xy, as (36) suggests. Then (17) yields counting function

Vv v
hs(X) = exp(- N s) for x ;>5gs>0 - .

Furthermore, there is no need to generate Xy, since it is not involved in h,.
Therefore we use (42) with the PDF for p*(s) as given in (41).

The exceedance probability of h, is immediately found from (42), (41), and (32):

Prob {h3 > H} = Prob’exp(— % s) > H‘ = Prob{s < A3}

A3 ‘
1S A3 43)
= ds—(N—_-—l)—!F 1 - e eN_1 (A3) for0<_H<_1,
0
where
_ N
A3 = - V In H

(44)
The PDF of h, is available from (43) by taking a derivative with respect to H:

N
V-l N-1

N N
p(H) SV(T-_TT!-H (—Vln H) fOI'O<H§1 . 45)

The range (0,1) for h, is immediately obvious from (42). We observe there is no
impulse at H = 0 in the PDF (45) for h,; in fact, (43) yields Prob{h,> 0} = 1. A plot
of (45) is given in figure 7; although not peaked at E{h,} = P = .000792, it is con-
siderably better than figures 2 and 6 for h, and h,, respectively.

The result of a simulation via counting function (42) for N = 32 and T = 1000
trials is given in figure 8. As done earlier, the simulation was conducted only at the
integer values of V, and straight lines were drawn between these estimates. However,
if the same random numbers constitute the set of observations { XM} for all the
different threshold values V, as done in figure 8(a), a very misleading result and
conclusion is possible; namely, it appears that there is a very small systematic error in
the estimate a, of P. However, when different random numbers are used for the
simulation at each value of V, the result in figure 8(b) correctly indicates an alter-
nating but growing estimation error at the lower probabilities. Since in practice, the

Is
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Figure 7. Probability Density Function for h,
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1

10-1 N
\ N = 32

2 \ T = 1000
10~ \
10-3 \T\
10-4 \\
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Figure 8. Simulation for a Shifted PDF
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solid (exact) curve in figures 8(a) and 8(b) would not be available, the dashed curve in
figure 8(a) would give no indication of how reliable the result was, whereas the
fluctuating result in 8(b) would give a rough idea of the reliability of the estimate,
since each plotted point is independent of its neighbor. The “‘in-breeding’ of the
same data in figure 8(a) saves time but can be a dangerous and misleading procedure.
A program tor the simulation result of figure 8(b) is given in appendix F.

A measure of the stability of the results in figure 8 is afforded by the variance of a;.
To determine this quantity, we first need v-th moment
© N-1 =-s
toof +efoat o)f- ] s gy e ¥ )
E%hS(X)i = E;exp(-N sv)i- o ds N1 XP - § sV

v N (46)
= 1 + v -ﬂ- ,
where we have used (42) and (41). Then the variance of h, is
-N -2N
\'} v
V = <1 + ZN-> - (1 + 'ﬁ) >
47

4

and that for a, is T times smaller, for T independent trials. A table of the mean and
standard deviation of a, follows below. These standard deviations are 3-4 times
smaller than those given in table 1, which were for the optimum scaling.

Table 2. Statistics of a;for N = 32, T = 1000

V. P=Ele,  SD{a,}
2 1.44E-1 1.56E-3
4 2.31E-2 5.10E-4
6 4.09E-3 1.44E-4
8 7.92E-4 4.11E-5

10 1.66E-4 1.23E-5

12 3.76E-S 3.91E-6

14 9.05E-6 1.32E-6

16 2.32E-6 4.77E-7

18 6.28E-7 1.82E-7

20 1.79E-7 7.31E-8

A Gated Conditional PDF

The result in the previous subsection was obtained by modifying conditional PDF
P(Xn.4,19): here we take the opposite tack by modifying p(sixy,). First define a gate
function

1l fora<s<b
Us(a, b) = .

0 otherwise
(48)

18
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Then define aliernative PDF
p*(s, XN"'].) = p*<XN+1) - p* <S,XN+1>
-s

N-1
- e XN+1 . 5 __ e N (H 49)
e N - 1)1 Us(”’ v XN+1)/DN V Xne1) For xg,q 20,

where denominator Dy must be determined so that the conditional PDF has unit
volume; that is, by use of (48) and (32),

N

N V N+l N-1 -s
D. .= =I ds 5 ¢
NV *N+1 0 wW-10°

N N
1 - exp(— v xN+1) eN—l(V ﬁhl) for X041 > 0. (50)

The unit gated function U _in (49) keeps p* > 0 only in the region R, where x| >—\Ls,
as was indicated desirable in the previous section. The use of (17), (39), (49), and r(\!50)
leads to counting function

hy (X = h4(5’ "N+1) = DN(% Xa1) 0T Xy >0 (s1)

Since random variable s is not used in (51), there is no need to generate it; we use (51)
with the PDF p*(xy, ;) = exp(-xy4,) for x4, > 0.

The exceedance probability of h, may be found as follows:

_ N _ Va~
Prob{h4 > H} = Prob{DN<V de) > H} = Prob{xN+1 > N DN(H)}

= I de+1 exp <— xN+1) = exp(— %EN(H)) for 0 <H<1 ,
V-
PN (52)

where D is the inverse function to Dy, i.e.,
Dy () =y . (53)

The PDF of h, is available through differentiation with respect to H:

V =
V= Vg _Vv exP(‘ﬁ DN(H))

v\ ~
e 1-—D(H)]N-1!
XP[( N> N ( ) for 0 <H <1

[BN (”)]W-l | (54)

Here we used the result of differentiating (53) with respect to v and the derivative of
(50}, namely,

=Y
N
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20

ﬁr\:(DN(y)) DY) =1 ,

yN-l ey

= L > .

DY) = Gr—y7 forvy > 0 (55)
The numerical calculation of (52) and (54) can be achieved without the need of
calculating the inverse funcuon DN(H) We employ a parametric approach by

choosing a value fora = DN(H), then from (52) through (54), we can compute

H = D (a), Problh, > H} = exp (-% ) , p(H) = exP[l - —)f]

('\'h)
all in terms of the parameter a. The function

Dy(@) = 1 - exp(-a) e _;(a) (57)

defined in (50) and (32) must, of course, still be evaluated.

The exceedance probability (52) and PDF (54) are presented in figure 9 for V = 8,
N = 32. There is a large undesirable cusp in the PDF at H = 0+, and a lesser one at
H = 1-. This choice of alternative PDF in (49) gives results reminiscent of the PDF
for h, in the direct simulation, and is not expected to be very useful. A simulation
result in figure 10 confirms this. The simulation run in figure 10a employed the same
random numbers at all V, for each of the 1000 trials. Although a very smooth
estimation curve results in figure 10a, it is totally misleading; for example, it indicates
probabilities at V = 14 which are two orders of magnitude too small. If the exact
answer were not available, which is the practical situation, the smoothness of the
estimate might give a false sense of reliability; in reality, the smoothness of the
estimated curve is no measure of the accuracy of the result when the data are so
strongly inbred by being used repeatedly. For contrast, the simulation in figure 10b
was run with different random numbers for all V, for each of the 1000 trials. The
extremely large fluctuations in the estimates for the lower values of probability are
indicative of the unreliability of this importance sampling procedure.

The variance of h, can be evaluated as follows from (51) and (50):

N+1 N-1 -s
h, = f ds s i
47 ) wW-D" (58)

where r = N/V. Then using (49), we obtain the mean value as

E{h}-I dx e I dsTbT_——l—)—?

f ds f e X = (l + Y-)-N
iN - 15' N ' (59)
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Figure 9. Distribution and Density Functions for h,
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Figure 10. Simulation for a Gated Conditional PDF
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in agreement with (5) as expected. Also, letting p () denote the PDF of s, and P () its
cumulative distribution, we have

°® r
E{hi} =I dx e"‘f 7 ds dt p_(s) p(t)
0 0

o rX 3 o X
=I dx e™X 2 ds p (s)[ dt p (t) = 2[ dx e™* ds p_(s) P_(s)
0 0 s o s 0 ',; s s

oo N-1 -s S N-1 -t

> . -X S e -s/r t e
2‘[0 ds PS(S) ps(S)I dx e = ZIO ds W e ]; dt -(m

s/t

L) sN-l e-sq -s N-1 1 n
2 dsT——rN_l! 1-e 2()};5

n=
=2L_NE-1(N-I+n) 1 ]
qN n=o n (1 + q)Nm
-N -N N-1 -n
\'/ '/ N-1+n \'s
=2(1+- -2(2+-— ( )(2+—) ,
N) N) ngo n N

(60)

where we temporarily let @ = 1+1/r = 1 + V/N. The variance of h, is equal to (60)
minus the square of (59).

The mean and standard deviation of

T
1 (1)
= = E h,.(X

are given in table 3 for N = 32, T = 1000. Comparison with tables 1 and 2 for a, and
aj, respectively, reveals that the performance results in table 3 are much poorer. In
fact, the resuits for SD{e,} are only 2-3 times better than for the direct simulation
case a,; this is in keeping with the observation made under (§7) regarding the PDF of
hyin figure 9.

23
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Table 3. Statistics of a,for N = 32, T = 1000

\% P = E{a,} SD{a,}
2 1.44E-1 9.78E-3
4 2.31E-2 3.77E-3
6 4.09E-3 1.42E-3
8 7.92E-4 S5.44E-4

10 1.66E-4 2.15E-4

12 3.75E-5 8.78E-5

14 9.05E-6 3.68E-5

16 2.32E-6 1.58E-§

18 6.28E-7 6.93E-6

20 1.79E-7 3.11E-6

A Combined Scaled and Shifted PDF

(41), we tried

24

when the denominator terms are positive. Forv = 1,
independently of K. For K 2 1, (64) is minimized by the choice of scaling K = 1,
regardless of the values of V, N, and v(>1). Thus the minimum variance of h¢ is at-
tained by not scaling at all, and just using the shifted PDF, as done with h,. Ac-
cordingly this alternative PDF was not studied any further.

Since counting functions h, and h; performed rather well, an attempt at combining
their features was attempted. Instead of the alternative conditional PDF considered in

1
P (xN+1|s) —exp[ i(de -T"q’—-s)T for Xyl >V N S K>1 .
i (62)
The counting function is now a generalization of (42):
- Iy VvV ¢ v
hS =K exp[ xN+1(1 - ) ™ for X1 TN S 0 ©63)
The v-th moment of hg is given by
[ .}
E{hY} =I dsr dx p*(s, x) hY
5 0 0 5
f 1 X - sV/N K-1 v
rdsmsv/ndx exp[ ]K exp[ X -\)ms]
N 1
-+_\)(K_-—lj_ I ds T__T_ exp [- S(l + \)V/N)]
v
= K . (64)
[1 + V(K - 1)] (1 . "r‘qi)

this equals (5) a~ it should,
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CONCLUSIONS

The importance sampling procedure is an important and usctful tool for
estimating small probabilities. Not only can it estimate probabilities considerably
less than 1/T, where T is the number of independent rials, but it can do so with
arbitrarily small variance.

However, the major flaw is that the exact alternative PDF to use for data
generation is not known. Some guidebines for choosing good PDFs have been
derived. They indicate that the new PDF should mimic the given PDF in the region
where the original PDF is positive and where the test under consideration vields
threshold crossings. In fact, one should use a PDF which never generates data that
lead to processor outputs less than the threshold value(s) under investigation. The
difficulty of satisfying these goals makes selection of an alternative PDF more of an
art than a science. Several procedures were investigated here, and at least one gave
remarkably good estimations of probabilitics in the 10-7 range, by means of only
1000 trials. Some other choices yielded poorer results. It may be necessary to try
several different guesses for the alternative PDF, and then select the best.

The danger of being deceived by a smooth estimation curve, of the exceedance
probability versus threshold, is great if one employs the same data for all the
threshold values considered. Rather, it is recommended that different random
numbers be used for each threshold considered. Then the width of the independent
fluctuations at different thresholds serves as a measure of the reliability of the
results obtained. Of course, this additional feature is achieved at the expense of
more computer processing time, since new data must be generated each time the
threshold is changed.

‘Since the region of data space where the threshold is exceeded depends on the
threshold value itself, it may be necessary 1o make different choices of the alter-
native PDF for each threshold value of interest. This drawback is one of the
compensating features that must be accepted for the ability to estimate smal!
probabilities with vanishingly small error. Importance sampling is not a panacea.

25/26
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Appendix A

GENERALIZED LIKELIHOOD RATIO

The PDF for noisc-only is given by (2). For a given observation X, (2) is
maximized by the choice of fas
1 N+1
B = o b SN
o N +1 r§1 n (A-1)

The corresponding maximum value of (2) is

~ exp(- N - 1)
B = =Er— - 9
B, (A-2) ,

8 al x Y, = x
1 Nn; Rt TN (A-3)

N

provided that y, 2 . If x| <l—N ‘len, then we cannot accept y; and f3; as given
e
by (A-3), because then we would have y, < f3,, which is inconsistent with the

precondition stated with (3) that y > 8. Instead we would set y = f§ and maximize

(3), getting
~ ~ 1 N+1 1 N
Y, =B, = x =g if x < = > SN
H 1 N+1 nz--:l' n o N+1 N K (A-4)

Thus the maximum value of (3) is given by

N
exp(- N - 1) 1
=Pm 22 for x zNZx

N N+1 n
6 B1 xN+1 n=1
x) =
1 N
exp(- N - 1) 1 :
g1 for Xy, % 2 % (A-5) j
o n=l y
The generalized likelihood ratio is given by the ratio of (A-5) to (A-2): .3
|
N+1
B N+1
GIR = 0 = NN (1 + r) for r > L )
BN (N + 1)N+1 T - N ’
1 *N+1 (A-6) ,
and GLR = | forr<1/N, where '
r = XN+l ;
Xy s X e v Xy (A7) ‘
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A-2

But the generalized likelihood ratio in (A-6) is a monotonically increasing function
of r for r 2 1/N. Therefore the gencralized likelihood ratio test is equivalent to
comparing r with a threshold; i.¢.,using (A-7), the detection statistic is

xN+1 >1 v
1 < ’
o CRRIE SOP xn) H (A-8)

where threshold V 2 1.

In order to evaluate the false alarm probability of test (A-8), we let

1 (A-9)
Then from (2), the PDF of s is
sN-l &S
P(S) =(T.—TT!- for s >0
(A-10)
where we have let § = [, since absolute scale is irrelevant to test (A-8). Then
P_,, = Problx > s-! H
FA N+1 N [To
oo o
N-1 -s
= I ds SN -el ; f dx e'x=—1—-——ﬁ . (A-ID)
0 * sV/N (1 + V/N)




PROGRAM FOR SCALING OF POTENTIAL-SIGNAL SAMPLE
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20
3@
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1)
e
8e

100
110
1z0
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196
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259
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Appendix B

N=32

T=1000

K=6

DIM R{2B>

Kisl-1/K
Random=SQR(.&2
RANDOMIZE Random

FOR I=1 TO T

X=RND

FOR J=2 TO N

K2 #RND

NEXT J

S=-LOG (XD I EQ@ 25
RK=-K%#LOG(RND)> ! EQ 23
E=EXP(-X¥K1)
Ve=INT(N#X/S)
Ve=MIN(Yec,20)

FOR v=0 TO V¢
ACYI=ACVYI+E

NEXT ¥

NEXT I

R=K~T

FOR v=0 TO 20
ACYI=LGTC(AVI*R)

NEKXT V

PLOTTER IS “GRAFHICS"
GRAPHICS

SCALE 0,20,-7,0

GRID 2,1

PENUP

LINE TYPE 9

FOR V=0 TO 20

PLOT V,ACY) I SIMULATION
NEXT V¥

PENUP

LINE TYPE 1

FOR V=0 TO 20

PLOT V,~N#LGTC1+V/N> | EXRCT
NEXT V

PENUP

END
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Appendix C
MOMENTS OF h,

Counting functio : i, is given by (24), where s is given by (25). By reference to
(22), it can be seen tha the PDF of s is

N-1 -s
P(S) = ‘?N'-_—';T!' for s >0 , (C-1)
while that for x, ., is
p(xN+1’» * °"P("‘N+1) for XN+ >0 . (C-2)

Since only the PDF of random variable xy , , is changed in alternative PDF p* in
(23), we have

N-1 -5, XNl
X

S
P*(ss Xyyy) = W-TT K P ) for 520, x>0

(C-3)

Since h, in (24) is non-zero only if xy , ; > sV/N, then the v-th moment of h, is given
by

E{h‘; }

w-7

fds S:"i e 3 fdx .e_’.‘P.(_l'(.’l‘.(_)_ K exp(-vx(l - %—))
0 sV/N

Y] . N-1
_ K s vV {1 \%
TT+VK-1D fds‘(—n-ljze"P[‘S{I“ﬁ(i*‘"?)}]
0

v-1
K 1
= vV - 1 (C-4)
VoI |, !(\) v-l)N
N\ "X
Forv = 1, this reduces to (28).
The mean square value of hy is given by substitutingv = 2 in (C-4):
E{hz} I 1 .
2} .1 [ v e (C-5)
Koy (-2)

We want to minimize this expression by choice of scaling K. To do this, lett = 1/K,
and consider the reciprocal of (C-5):

Ret2-t)(a-b)%, where az1+2 bzX . (4

o -

C-1
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Setting dR/dt 1o zero, we must solve the equation

| (2-t)(a-bt) -t(a-bt) -NbE(2-1) =0 . o
If we simplify and put t = 1/K,, there follows

2aK§-2(a+b+Nb) K, + N+ 2)b=0 <8

Solving this quadratic, and substituting the values for a and b in (C-6), we find for
the optimum value of scaling,

21/2
1+V+§-!+(1+3!+(V+-Y-)
K = N 212_ N
| o v
# 2 (1+ %) (C-9)

The negative square root is discarded because it leads to values of K < I, which are
disallowed.




Appendix D

DISTRIBUTION AND DENSITY OF h,

Distribution

We repeat from (24)
K-~-1 \'i
h2 = K exp <'XN+1 < )U (xN+1 “N s)

Now h, = Hwhenxy,, = a, where

Kexp(-aKl'(l)=H; a=1n<%)x—-]_(—-i-.

Also h, > H when xy , ; lies in region R, in figure D-1.

TR 6449

(D-1)

(D-2)

Figure D-1. Region R, where h, > H
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Theretore, using (C-3) and figure D-1, we have

aN/V N-1 a
s\ e’3 I d 1 x
PrOb{hz > H} = I ds m X -E exp (- E-)
0 sV/N
aN/Vv

N-1 =-s

[ a5 o [ (- ) - o (- 3)]
0

- (1 + EVN—)-N [1 -eM eN_l(Al)]

a ~A
- exp( - f) [1 -e 2 eN-l(AZ)] > (D-3)

where a is given in {D-2),

= (N .1 - _N
* A1‘3<V*i)' Ay=ay » (D-4)

and (reference 3, eq. 6.5.11)

ZM: 1 m
i e (x) = — X
L M m=0 ™ (D-5)

is the leading terms, through xM, of the power series expansion of e*.

AsH—~0+,a—> + o from(D-2). Then A, = +%and A, =~ + % from (D-4), and
eN-I(Aj) ~ A_iN*'/(N—l)!. However, the exponential exp(—Aj) dominates this latter
behavior, and (D-3) yields

v -N
Prob{h2 >0} = (1 + 'K—N') . (D-6)

We see, directly from (D-1), that h, can never exceed K. When we substitute
H = K in (D-2), we get a = 0, and (D-3)-(D-5) then yield Prob{h, > K} = 0, as

expected.
Density
An alternative way of expressing (D-3) is as follows; by reference to figure D-1,
: 1 x' A A
rrobihy >} = [axgew (- %) [ 4 v
0 0

a

= I dx % exp (- %)[1 - exp (- %x) eN-l(% x)] . D

0




where the integrand of (D-7) is independent of H. But by definition,

<o

Prob{h2 > H} = I dh2 p(hz) ,
i (D-R)

where pth.) is the PDF of h,. Setting the right-hand sides of (D-7) and (D-8) cqual to
cach other, and ditferentiating with respect to H, we obtain

3

200 = Bper (Do (39 Y] oo

But from (D-2),

da K 1
- TT1H
oH K H (D-10)
Therefore the PDF of h, is given by
_ exp(~a/K) _ _N N
p(H) = ﬁ(PT_ﬁr [l exp < v a) eN-l(V a)] for 0 <H S‘K'(D-ll)

As H~ 0+, the bracketed term in (D-11) tends to 1 since a = + %, Theretore,

)-1
as H - 0+

This infinite cusp at the origin is integrable. For the simulation result in figure 5 for
K = 6, this yields p(H) ~ .14/H-¥8as H -0 +.

=
M)

1
p(H) ~ <(K - 1) k&1 k-

(o

(D-12)

D-3/D-4
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Appendix E
DERIVATION OF OPTIMUM DENSITY FOR p*
Itis convenient to define three regions in X-space; namely,

. >
Rv : g(X) \

R :pX) >0 . (E-1)
R* : p*(X) > 0
Now we define counting function (more precisely than (17)) as
ﬂ%ucgm - V) for XeR*
P* (X
h(X) = 0 otherwise ) (E-2)
Then the mean value of h is obtained by averaging over p*:
E(h(X)} = ‘[ dX p*(X) h(X) = j'dx p(X) UCE(X) - V)
(E-3)

R* R*

The integrand of (E-3) is non-zero in region RNR . In order to keep h unbiased, we
henceforth assume that R*>(RNR); for then E{h(X)} = P, according to (8).

According to (20) and (21), we now want to minimize

2
2 = » 25y = (X
E(h2(0} = R[ ax p*(X) (K = R{ ax Bl uign - )

(E-4)
by choice of p*(X). If we let
AX) = p2(X) U(g(X) - V) for Xer*
(E-5)
then (E-4) can be expressed as
2, _ AX)
E{h“} I dX m
R* (E-6)

A(X) combines all the given known quantities in one expression.
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We have the constraint that the volume under p* must be unity for a legal PDF. If
we let p (X) be the optimum value of p*(X), and perform a perturbation en(X) of
P(X), using a Lagrange multiplier for the constraint, the perturbed value of (E-6)
becomes

A(X)
]dx o0 e~ fdx [po(X) . en(X)] .
R* R* (E-7)

Differentiating with respect 10 g, and setting ¢ = 0, we must obtain a zero quantity
for all variations n(X), in order for p (X) to be the optimum. There follows for the
optimum PDF

p, (0 = c(A))? = ¢ p(X) U(g(X) - V) for Xer* ,
(E-8)

where ¢ is a positive constant and we used (E-5). The right-hand side of (E-8) is non-
negative, as it must be for a legal PDF. An alternative statement of (E-8) is ob-
viously
¢ p(X) for Xe(RﬂRv)
P, (X) =
0 otherwise (E-9)

The constant in (E-9) is determined by satisfying the constraint of unit volume for
a PDF:

1=Ipro(X)=cI dX p(X) =c P ,
R* RnRv (E-10)

using (8). Thus ¢ = 1/P, giving for the optimum PDF

p(X)/P for Xe(ROR )
P, (X) =
0 otherwise (E-11)

The minimum mean square value of h follows from (E-4) as

min E{h2(X)} = P fdx p(X) U(g(X) - V)

R*
2
-p [ axp = . i
ROR, (=12
There follows for the variance of the optimum h, namely h ,
vin} = E(h2} - E*(n ) = P? - 7 - 0
(E-13)
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Use of (E-11) in (E-2) shows that the optimum counting function is
p for Xe(RnRV) 1
ho(X) = ‘ .
0 otherwise (E-14)

That is, every trial generated according to optimum PDF p (X) yields the same
value for h,, namely P. The value 0 is never generated because p(X) is zero for such
data values X.

E-3/E-4
Reverse Blank
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Appendix F

PROGRAM FOR A SHIFTED PDF

19 N=32

20 T=1800

30 DIM RC2@>

40 Rardom=SAR .5

1) RANDOMIZE Random

6@ FOR I=1 TO T

70 FOR V=0 TO 28

80 ¥=RMD

90 FOR J=2 TO N

199 X=X *RND

119 NEXT J

129 S=-LOG (XD I E@ 41
130 HCVYI=RC(VIHEXP(-V*S-N) | EQ 42
140 NEXT V¥

159 NEXT 1

1€0 R=1-T

170 FOR v=0 TO 20

180 R(VI=LGTCR(Y) *R>

190 NEXT ¥

200 PLOTTER IS “GRAPHICS"®
219 GRAPHICS

220 SCALE o,20,-7,0

230 GRID 2,1

240 PENUP

250 LINE TYPE 9

260 FOR ¥=0 TO 20

278 PLOT VY,ACY¥) ! SIMULATION
2¢0 NEXT V¥
299 PENUP

300 LINE TYPE 1

310 FOR ¥=@ TO 20

3z8 PLOT V,-N#LGT(1+V-N) | EXRACT
330 HEXT ¥

340 PEHUP

3% END

F-1/F-2 1
Reverse Blank
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