
AD 03 TEXAS TECH UNIV LUBBOCK INST FOR ELECTRONIC SCIENCE rio 9/3
UCLASI E MAY 81 R - LIU. K NAKAJINA, P OLIVIERRRlllllffffff

mhhhhhhhhhl
mh4Mhhhhhhhhhhl

MENOuMONEEuu
l11MhOhhEhll1lllhhhhhhhhllMl



NONLINEAR FAULT DIAGNOSIS

R.-w, Liu

K. NAKAJIMA

P. OLIVIER

Quoc DING NGO

R. SAEKS

~~ A. SANGIOVANNI -VINCENTELLI

C.L. WEY

C.-c. Wu

DT1PC

d- Inst itute or .un imid.

f*L

~Electronic Science

'== TEXAS TECH UNIVERSITY
,, o..,.o . 0 1 Lubbock, Texas 79409

or= P.117;-: m,-' . ,ad sI;tm _



UNCLASSIF IED
SECURITY CLASSIFICATION OF THIS PAGE (16-n Date Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

I REPORT NUMBER 2. GOVT ACCESSION NO. 3 RECIPIENT'S CATALOG NUMBER

I -A
4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

Nonlinear Fault Diagnosis

N 6. PERFORMING ORG. REPORT NUMBER

"P *M g/-Fqq' . .. .i; CONTRACT OR GRANT NUMBER(&)R.-w.Liu, K.akajma; P/ 0livier ' Quoc Ding/Ng C

R./Saeksi A. Sanglvanni-Vincentelli, C.L. Wey,
- fd C.-c. Wu.

9. PeRFORMNG ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK
Texas Tech University AREA 4 0E0K UNIT juIStff

Dept. of Electrical Engineering I /

Lubbock, Texas 79409

11. CONTROLLING OFFICE NAME AND ADDRESS . ;EO3..JA.E

Office of Naval Research / IMay l!
800 N. Quincy Street , '3.91JIMBER OF PAGES

Arlington, VA. 22217 200
14. MONITORING AGENCY NAME & ADORESS(if different from Conlrollin Office) IS. SECURITY CLASS. (of this report)

UNCLASS I FI ED
ISa. DECLASSI FICATION/DOWNGRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for Public Release, distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

19 KEY WORDS (Continue on reverse side it necessary and identify by block number)

Fault Analysis, Automated Maintenance, Fault Diagnosis, Fault Isolation,
Test Points, Test Vectors

20," ABSTRACT (Continue on reverse aide if neceseery and Identify by block number)

A summary of several research projects in the nonlinear fault diagnosis is
given. Several alternative algorithms for the solution of the nonlinear
fault diagnosis problem are presented, together with a diagnosibility theory,
and a set of criteria which an OidealP fault diagnosis problem should strive
to meet.

DD J 1473 EDITION OF I NOV 6 IS OBSOLETE UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (*7ien Dore Entered)



NONLINEAR FAULT DIAGNOSIS

A 7*ssior For 1
MU3 CRA&T
IY'IC TAB

Ju-st i.cat IC-

P.U
A:



CONTENTS

Fault Diagnosis in Electronic Circuits,

R. Saeks and R.-w. Liu ........................................ 3

Fault Diagnosis - A Nonlinear Systems Problem,

R. Saeks ...................................................... 11

Criteria for Analog Fault Diagnosis,

R. Saeks ...................................................... 19

Analog Fault Diagnosis with Failure Bounds,

C.-c. Wu, K. Nakajima, C.-L. Wey and R. Saeks ................. 33

A Differential-Interpolative Approach to Analog Fault Simulation,

C.-c. Wu, A. Sangiovani-Vincentelli and R. Saeks .............. 61

Multitest Diagnosibility of Nonlinear Circuits and Systems,

A. Sangiovanni-Vincentelli and R. Saeks ....................... 79

A Data Base for Symbolic Network Analysis,

C.-c. Wu and R. Saeks ......................................... 93

On Large Nonlinear Perturbations of Linear Systems.,

P.D. Olivier and R. Saeks ..................................... 119

Nonlinear Observer's and Fault Analysis,

P.D. Olivier and R. Saeks ..................................... 133

A Dual-Mode Fault-Diagnosis Technique for Analog Non-Linear
Electronic Systems,

Quoc Dinh Ngo .............................................. 139

.i.....



FAULT DIAGNOSIS IN ELECTRONIC CIRCUITS

R. SAEKS AND R.-w, Liu

4

I | i II I I I I IN I L,- =- -- ' ' --l, : a ' l1



Fault Diagnosis in Electronic Circuits

R. Saeks R.-w. Liu
Department of Electrical Engineering Department of Electrical Engineering

Texas Tech University Notre Dame University
Lubbock, Texas 79409 Notre Dame, lI. 46556

During the past quarter century the engineering community has been

witness to tremendous strides in the art of electronics design. The graph-

ical algorithms of the previous generation have given way to the modern

CAD package, the breadboard has been subsumed by the simulator. Indeed,

even the universal building block has become a reality. To the contrary

electronics maintenance has changed little since the day of the vacumm

tube, remaining the responsibility of the experienced technician with

scope and multimeter. As such, our ability to design a complex electronic

circuit is quickly out-distancing our ability to maintain it. In turn,

the pri,:e reductions which have accompanied modern electronics technology

have been paralleled by increasing maintenance and operations costs. In-

deed, many industries are finding that the life cycle maintenance costs

for their electronic equipment now exceed their original capitol invest-

ment.

Given the above, it is quickly becoming apparent that the electronics

maintenance process, like the design process, must be automated. Un-

fortunately, the 50 years of progress in circuit theory, on which our

electronics design automation has been predicated, does not exist in the

maintenance area. As such, the past decade has witnessed the inauq'ration

of a basic research program to lay the foundations for a theory of electronic

maintenance and a parallel effort to develop operational electronic

maintenance codes.
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Thus far the greatest success has been achieved in the digital electronic

area, wherein the finite state nature of the UUT (unit under test) may be

exploited. 3Typically, one assumes that all failures manifest themselves in

the form of component outputs which are either "stuck-at-one" or "stuck-at-

zero" and/or shorts and opens. 5  Under such an assumption a theory for

digital system maintenance has been developed and practical fault diagnosis

algorithms are in the formative stages of development. Typically, one

hypothesizes some limit on the number of simultaneous faults and then simu-

lates the responses of the UUT to a family of test vectors for each allowed

combination of faults. The actual responses of the UUT are then compared with

the simulated responses to locate the failure. Although lacking in asthetic

appeal the above approach, termed 6au.Lt siniutation, is ideally suited for

the maintenance environment, wherein, the actual simulation process need only

be done once at the factory or a maintenance depot with the simulated

response data being distributed via magnetic tape to the various field loca-

tions where the actual test is conducted. As such, with the aid of some

sophisticated software engineering, this apparently "brute force" approach

to the fault diagnosis problem has slowly evolved into a workable concept. 
4

Indeed, at the present time a number of automatic test program generators

which classify faults, choose test vectors, and carry out the appropriate

simulation (often in a parallel processing mode), are commercially available

and, as such, the automated maintenance of digital electronic circuits is

becoming a reality. 
4

Unfortunately, the above described success in the digital world has

not been paralleled by progress in the analog world. Indeed, test engineers
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complain that while 80% of the boards are digital, 80% of their headaches

are analog and hybrid. This difficulty arises from a number of character-

istics of the analog problem which are not encountered in digital circuits.

Indeed, in an analog circuit:

(i) there is a continuum of possible failures,

(ii) a component may be "in tolerance" but not nominal,

(iii) complex feedback structures are encountered,

(iv) simulation is slow and costly,

(v) post-fault component characteristics may not be known,

I(vi) and a fault in one component may induce an apparent fault in

another.

Items (i) and (ii) imply that an extremely large number of simulations will

be required for analog testing. Items (iii) and (iv) suggest that these

simulations will be far more expensive than similar digital simulations.

Finally, items (v) and (vi) indicate that the simulation of a post-fault

circuit by itself may not be a tractable problem. As such, it is by no

means clear that the kind of "brute force" fault simulation algorithm

associated with the digital problem will be applicable to the analog or

hybrid case.

As an alternative to fault simulation, a number of academic researchers

have proposed a variety of "post test" fault diagnosis algorithms, wherein,

an "equation solving like" algorithm is used to locate the faulty component

given the test data from UUT. 2 ,8  Although these algorithms are, in some

sense, "smarter" than the simulation algorithms, most of the required com-

puting must be done in the field after the UUT has been tested. Moreover,

these computational requirements must be replicated each time a unit fails.
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As such, the success of such "post test" algorithms is contingent on re-

ducing their computational requirements to a bare minimum. Although no

system is yet operational, with the aid of the powerful linear circuit

theory developed over the past half century, a computationally efficient

solution to the fault diagnosis problem for linear analog circuits appears

to be within reach. 1,2 Unfortunately, no such light exists at the end of

the nonlinear tunnel, wherein progress appears to be limited by a

"computational complexity/test point" bound.

Not surprisingly, the computational cost of an analog fault diagnosis

algorithm is an inverse function of the number of test points at which

measurements of the UUT may be made. Indeed, if one lets n be a measure of

UUT complexity (which may loosely be taken to be the total number of

terminals for all of the circuit components), then if one has access to

0(n)( I) test points the fault diagnosis problem can be resolved using

linear algorithms. 7 ,10 Moreover, by combining such algorithms with the

above mentioned linear algorithms, acceptable computational efficiency can

be obtained with O(m) test points where m is a measure of the complexity

of the "nonlinear subsystem" of the UUT.6'7 Although such algorithms can

be effective on the typical academic example a "real world" PC (printed

circuit) board does not ;'ave terminal space for the 20 or 30 test points

which are required even for a routine board made up of discrete components

and/or SSI (Small Scale Integration). Although the problem can be partially

alleviated by making internal measurements with the aid of a "bed-of-nails"

tester it has been our experience that such testers cause as many failures

as they locate while their applicability to two-sided, multilayer, and

f(n) = 0(n) means f increases in the order of n; more precisely,
jf(n)IjcjnI for some c>O.
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coated boards is severly limited. As such, we would like to limit the

number of test points required by an analog fault diagnosis algorithm

should inc ease at a rate of no greater than O(n 112). A further study of

the possible tradeoff between test points and computational cost appears

in references 11 and 12.

Unfortunately, all comnputationally acceptable "post test" algorithms

which have thus far been proposed have test point requirements which grow

linearly with UUT complexity (assuming that m grows linearly with n). As

such, many researchers are looking at the classical fault simulation al-

gorithms with renewed vigor. Indeed, these algorithms have minimal on-

line computational costs, while the number of test points employed can

easily be kept below 0(n 2 1 ). The difficulty lies with the required number

of simulations and the development of decision algorithms which will allow

us to "interpolate" between simulated data points.

Thus, while the state-of-the-art in digital diagnosis is fast maturing,

a serious investigation of analog fault diagnosis problems is only just

beginning. Indeed, a satisfactory fault diagnosis code for linear analog

circuits has yet to be demonstrated while the nonlinear problem has yet to

progress beyond the basic research stage.
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Fault Diagnosis - A Nonlinear Systems Problem

R. Saeks

Department of Electrical Engineering

Texas Tech University

Lubbock, Texas 79409

SummarX

Conceptually, the fault analysis problem for an analog circuit or

system amounts to the measurement of a set of externally accessible para-

meters of the system from which one desires to determine the internal system

parameters or equivalently locate the failed components as illustrated in

Figure 1. Here, the

m 2 
r 4

m 4 m 5  r n r n_1 .

mm

mnl n

Figure 1. Conceptual Model of Fault Diagnosis Problem.

measurements, mi , may represent data taken at distinct test points or alter-

natively, data taken at a fixed test point under different stimuli.

Since the problem of determining the values of the failed components is usually
straightforward, once the failures have been located, the exact determination of
all internal component parameters is essentially equivalent to the problem of
"simply" locating the failed components.

HWIING IPA3 BLwM-NOT FUJ&D



Similarly, the r 1 represent parameters characterizing the various internal

system components. Here, a single parameter may characterize an entire

component, say a resistan ce, capacitance or inductance. Alternatively, a

component may be represented by several parameters: the h-parameters of a

transistor, the poles and gain of an op-amp, etc. In general , one models

a system component by the minimum number of parameters which will allow

the failure to be isolated up to a "shop replaceable assembly" with all

"allowed" system failures manifesting themselves in the form of some para-

meter change.

To solve the fault diagnosis problem, one then measures M = col(m.)

and solves a nonlinear algebraic equation

1. im = F(r)

for r = col(r.) to diagnose the fault. Note, the function, F, is nonlinear

even for linear systems, however, for linear time-invariant systems the

function, F, can be expressed analytically. More generally, in the nonlinear

case, one can evaluate F(r) for any given parameter vector, r, with a simu-

lator, and thus solve 1. numerically, even though F has no analytic expression.

Although one does not usually formulate the fault diagnosis problem in

terms of the above described equation solving notation, this formulation is

equivalent to the classical fault simulation concept. Indeed, fault simula-

tion is simply a search algorithm for solving 1. Here, one precomputes

m =f(r) for each allowable# faulty parameter vector r and then compares the

measured m with the simulated m's, stored in a fault dictionary, to solve

equation 1.

# By allowable faults we mean all possible parameter vectors, r, which satisfy a
specified set of fault hypotheses. These typically restrict the maximum number
of component parameters which are simultaneously out of tolerance and the type
of failure (open circuit, short circuit, small change, etc.)

12



Although the above described approach to fault simulation has been

successful when applied to digital system, there is considerable question

surrounding its applicability to analog circuits and systems. The problem

is two-fold. First, rather than simply failing as a one or zero, an analog

parameter has a continuum of possible failures. Secondly, unlike a digital

system wherein a component is either good or bad, in an analog system, a com-

ponent parameter is either in tolerance or out of tolerance. As such, for

each hypothesized failure, it may prove necessary to do an entire family

of Monte Carlo simulations in which the values of the good components are

randomly chosen within their tolerance limits. Although, at the present

time we have insufficient practical experience to determine the precise

number of fault simulations required for analog fault diagnosis, it is esti-

mated that the number of simulations required for an analog system will ex-

ceed the number of simulations required for a digital system of similar

complexity by a factor ranging between two and six order of magnitude. As

such, the fault simulation concept which has proven to be so successful for

a digital system may not be applicable in the analog case.

As an alternative to fault simulation, one may adopt one of the more

classical equation solving algorithms for the solution of 1. Here, one first

measures m and on the basis of this measurement, makes an initial guess r0

(usually taken to be nominal parameter vector) at the solution of the equations.

One then evaluates m0 = F(ro) and compares it with m. If mo = m, ro is the

solution to the fault diagnosis equation. If not, one makes a new "educated"

guess at the solution, r 1, (usually based on the deviation between m and in0)

Most industrial users of ATE obtain satisfactory fault detection in digital
circuits via fault simulation techniques but require guided probe techniques
in addition to the fault dictionary data for fault diagnosis (isolation).

13



and one repeats the process by evaluating mI = F(rI) and comparing it with

m. Hopefully, sequence of component parameter vectors, ri, simulated data

vectors, mi = F(ri), is obtained, which "quickly" converges to r and m,

respectively. Since the evaluation of F(ri) is essentially equivalent to the

simulation of the system with the faulty parameter values, ri, this technique

is really another form of fault simulation. In this case, however, one

simulates the system after the data vector has been measured and uses this

data to make an educated guess at a (hopefully) small number of parameter

vectors at which the system should be simulated. As such, the approach has

been termed simulation after test to distinguish it from the classical

approach, wherein all simulation is done before test.

At the time of this writing, both approaches are under study, neither

of which have been shown to be superior. Fault "simulation after test" requires

that one include an efficient simulator in the ATE itself, which can be used

for on-line computation of mi = F(ri) after the UUT has been measured. On the

ohter hand, simulation after test eliminates the requirement of searching a

large fault dictionary for the (approximate) data matches required by

"simulation before test". In addition, the complex ATPG requirement for

"simulation before test" is eliminated.

To make "simulation after test" feasible, however, an efficient equation

solving algorithm is required to obtain convergence of the ri sequence in a

reasonable amount of time. Moreover, since "real world" failures in analog

circuits and systems often take the form of open and short circuited components

or large parameter diviations from nominal, the classical perturbational

algorithms a-la Newton-Raphson are inapplicable. Fortunately, in the context

14



of the fault diagnosis problem, one can reasonably assume that relatively

few component parameters have failed. As such, even though it is not valid

to assume that r-r 0 (the deviation of r from nominal) is small in norm, it

is reasonable to assume that it is small in "rank".

15
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Criteria for Analog Fault Diagnosis*

R. Saeks
Department of Electrical Engineering

Texas Tech University
Lubbock, Texas 79409

Introduction

After a half century of neglect by the electronics community the

past decade has witnessed an expanding effort in the analog fault diagnosis

area. Indeed, the ever increasing complexity of electronic circuits com-

bined with the decreasing availability of trained maintenance technicians

has pushed computvt-aZded tating (CAT) to the forefront of electronics

research. Unfortunately, the tremendous strides which have been made in

digital test technology have not been paralleled by equal progress in the

analog area. As such, even though "80% of the boards are digital 80% of

the problems are analog".

The lack of progress in analog CAT vis-a-vis digital CAT may be

attributed to four factors:

i). the cost of analog circuit simulation,

ii). the continuous nature of analog failure phenomena,

iii). tolerances on the "good"' components in analog circuit,

iv). and the lack of viable models for the components in a faulty circuit.

Moreover, these difficulties have been exaggerated by the economics of the

maintenance environment which limits the degree to which many of the classical

tools of analog circuit design can be used in a CAT package.

The purpose of the present paper is to describe a set of criteria which

we believe a practical analog CAT algorithm should achieve and to indicate

the degree to which they are met by the various algorithms which have thus

';_This research supported in part by the Joint Services Electronic Program
at Texas Tech University under ONR Contract 76-C-1136.

19
76

R~3K~~OPLu aaaawdQ niJw



1!

far been proposed. These criteria include computational requirements,

numbers of test points and test vectors employed, robustness to tolerance

effects, availability of models, and the degree to which the algorithm is

amenable to parallel processing. Although many specific algorithms have

been proposed they may naturally be classified into three categories:

i). simulation-before-test,

ii). simulation-after-test with a single test vector,

iii). and simulation-after-test with multiple test vectors.

Each of these three approaches to the analog CAT problem is compared against

our criteria, and, interestingly, each approach fails to meet at least one

of the proposed criteria.

Criteria

A. Computational Requirements: Unlike a CAD algorithm which is used

only in the initial design of a circuit or system, a CAT algorithm lives in

an operarional environment and thus must be used repeatedly each time a

system fails. As such, a viable measure for the computational cost of a CAT

algorithm must distinguish between on-line computation which is done in the

field and must be repeated for each unit under test (UUT) and off-line compu-

tation which is independent of the unit under test and thus need only be done

once at the factory or a maintenance depot. Indeed, the distinction between

on-line and off-line computation is further exaggerated by high cost of

computing and the dearth of trained personnel in a field maintenance environ-

ment vis-a-vis that is available at a maintenance depot. Thus in a CAT al-

gorithm a gLealt pLouz.ty muzt be pFced on %educing the on-Zne computatonat

4equa~emet6 even at the cost of significantly increasing the off-line com-

putation. As such, an algorithm which is viable in a design environment might

not be acceptable in a maintenance environment and vice-versa. Indeed, in a
2O



CAT algorithm one would be happy to accept the cost of generating a complex

data base in an off-line environment to achieve a reduction in on-line

computational requirements.

B. Test Points: Historically, analog circuits have been tested with

the aid of a "bed of nails" tester which allows one to make use of test

data which is not accessible via the input and output terminals of the circuit

board. Unfortunately, modern circuit boards are often multilayered and/or

coated, thereby limiting the applicability of the "bed of nails" concept.

As such, a modern CAT algorithm must be designed to work with the test data

which is available at the externally accessible terminals of a printed

circuit board. In practice, this proves to be a dominating factor in the

design of a CAT package, which precludes the use of some of the more

attractive algorithms with test point requirements which grow linearly with

circuit complexity. In fact, circuit complexity is proportional to the

area of a printed circuit board (if not a power thereof) while the number

of accessible test points is proportional to the edge length of the board.

As such, in a practical CAT package it is reasonable to require that the

numbeA o6 teAt point6 grow wLth the 6qua&e Loot o6 cALcut compteity (or less).

C. Robustness: Unlike a digital system wherein a device is either good

or bad in an analog circuit a device is either "in-tolerance" or "out-of-

tolerance" and, as such, an analog CAT algorithm must be able to cope with

the effects of componentA which a e in-toLvttnce but not nominJZ. Although,

at the time of this writing, there is insufficient experimental data to

determine the import of robustness in an analog CAT algorithm it is, at

minimum, a factor of which one must be cognizent and may, in fact, prove to

be a dominating factor in the design of a viable CAT package.
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D. Models: Since most CAT algorithms presuppose some form of circuit

simulation in their operation and design of such an algorithm must consider

the type and availability of circuit models which are required and/or

available. In particular, does the algorithm use nominal circuit models or

6aulted cicuat modela? Indeed, even if nominal circuit models are used do

they operate in their normal range? Finally, one must consider whether or

not the algorithm is capable of dealing with "fuzzy" components which do not

admit viable simulation models.

E. Module vs. Parameter Testing: Most analog fault diagnosis algorithms

can be catagorized as either module oriented or parameter oriented. In the

former case the algorithm tests the input-output performance of the individual

modules or subsystems which make up the UUT while in the latter case the

algorithm estimates a set of parameter values which determine

the performance of a given circuit component. Although one can often

formulate a circuit model for a given module thereby permitting one to

use a parameter oriented algorithm to test modules, such a process may

unnecessarily complicate the test procedure. As such, a modute oizented

CAT atgo'ithm ,6 p'Ledvued over a parameter oriented algorithm if it can be

formulated without compromising other factors.

F. In-Situe Testing: Although secondary to the above considerations

the ideal CAT algorithm should allow for in-Aitue teAhtng. Since one cannot

control the input signals applied to the UUT in-situe such an algorithm

must work with an arbitrary input signal rather than a fixed set of test

vectors.

G. Parallel Processing: Since the CAT problem is inherently a large

scale systems problem it is essential to exploit whatever computational

22



power is available to reduce both on-line and off-line computational

requirements. In particular, digital CAT algorithns often use some degree

of parallel processing in their implementation. Given the additional

computational problems associated with an analog CAT algorithm the degree

to which an algorithm can be implemented in paratteZ becomea a igniLicant

factor% in determining its viability and should therefore be included among

our criteria for an analog CAT package.

In the above paragraphs we have described seven aspects of the CAT

problem which must be considered in judging an analog CAT algorithm.

Although we would ideally like to formulate an algorithm with minimal

computational requirements a moderate amount o6 oJ6-tne computation is

acceptable since the off-line computation need only be done once and is

carried out in a depot environment where good computational facilities and

high level personnel are available. On the other hand since the on-Zine

compu~tatn associated with a CAT algorithm is replicated for each UUT and

carried out in a field environment it must be kept to a minimum. Likewise

the test point requirements for an analog CAT algorithm must be kept to a

minimum. Although the requirement that the number of test points used by

a CAT algorithm grow with the square root of circuit complexity is open to

debate it is indicative of a fundamental limitation to the effect that the

number of test points should grow at less than a linear rate with circuit

complexity. Concerning the remaining criteria we want an algorithm that is

robust though the significance of this requirement is not fully understood

at this time. Similarly, the availability of circuit models to implement

an algorithm must be considered. Finally, but secondary to the above require-

ments, it would be desirable to have a module oriented algorithm which is

23



amenable to in-situe testing and parallel processing. These criteria are

summarized in table 1 along with a set of goals which one would wish to

achieve in an "ideal analog fault diagnosis algorithm".

CAT Algorithms

A. Simulation-Before-Test: Although it is essentially a brute force

search algorithm simulation-before-test is well suited to the depot/field

computational environment of the CAT problem and, as such, it predominates

in most state-of-the-art digital CAT packages.3 On the other hand its weak-

nesses become more pronounced in the analog problem wherein it has yet to

be successfully implemented. Basically, a simulation-before-test algorithm

is a search algorithm in which one simulates the expected test data which

would result from various hypothesized failures in an off-line environment.

Then when the actual test data is obtained in the field it is compared

with the simulated results to determine the failure. Needless to say the

technique requires immense amounts of off-line computer time to generate

the required data base but is extremely efficient on-line, wherein one need

only compare the test results with the simulated data base.

Unfortunately, the cost of an analog simulation is much greater than that

of a digital simulation. Moreover, one requires a much larger data base in

the analog problem than in the digital problem to cope with the continuous

nature of the analog failure phenomena and the robustness problem. As such,

there is considerable doubt about the applicability of the simulation-before-

test concept in an analog CAT package.

Vis-a-vis our criteria for analog fault diagnosis simulation-before-

test requires extremely large amounts of off-line computer time but only a

minimum of on-line computer time. Additionally, the test point requirements
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for the algorithm are minimal. On the other hand the technique has no

inherent robustness and uses faulted simulation models for all components.

With regard to the secondary factors the algorithm is module oriented and

amenable to parallel processing but not in-situe testing. These considerations

are summarized in Table 1.

B. Simulation-After-Test with a Single Test Vector: Rather than using

a search algorithm for fault diagnosis one can attempt to model the analog

fault diagnosis problem as a nonlinear equation in which one solves for

the internal variables or component parameters in terms of the test data.

Although this may, at first, seem to totally bypass the repetitive simu-

lation-before-test algorithm, a careful analysis will reveal that each itera-

tion of the required numerical equation solver amounts to a simulation of

the UUT. In this case, however, the particular simulations which one carries

out are based on known test data rather than a-priori fault hypotheses. As

such, the simulations are done on-line after the test data has been obtained

and the technique is thus termed simulation-after-test.
2

In the case where only a single test vector is employed the resultant

fault diagnosis equations are "almost linear" and may be solved with the aid

of a single (off-line) sparse matrix inversion.4'5 The test point require-

ments for the algorithm, however, grow linearly with circuit complexity.

Interestingly, this class of algorithms have been discovered independently

by a number of authors over the years, most of whom thought that they had

found the "ideal algorithm" until they fully appreciated the significance

of the test point requirement which severely limits its applicability.

From the point of view of our other criteria, however, the algorithm is,
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indeed, "ideal". Off-line computational requirements are moderate while

on-line computational requirements are minimal. Moreover, the algorithm

is inherently robust and requires no simulation models of any kind, it

tests modules, and it is amenable to in-situe testing. Finally, the

computational requirements associated with the algorithm are sufficiently

low so as to render the parallel processing question moot.

C. Simulation-After-Test with Multiple Test Vectors: One approach

to reducing the test point requirements of the simulation-after-test

algorithm is to use multiple test vectors to increase the number of

equations obtained from a given set of test points, thereby rendering the

fault diagnosis equation soluable with a restricted number of test points.

The most common form of the multiple test vector algorithm is the multi-

frequency algorithm used in linear fault diagnosis, though the concept

extends to the nonlinear case via the use of multiple test vectors of any

type.
1 ,2

The reduced test point requirement obtained via the use of multiple test

vectors is, however, achieved at the cost of greatly increasing the complex-

ity of the resultant fault diagnosis equations. Indeed, the "almost linear"

equations of the single test vector algorithm are replaced by an extremely

complex set of nonlinear equations (even for linear systems) in the multiple

test vector algorithm. Although these equations can be made trackable in

the linear case they appear to be totally untrackable in the nonlinear case

and, as such, most of the advantages of the simulation-after-test concept

are lost when multiple test vectors are employed.

With regard to our criteria the multiple test vector algorithms require

large amounts of on-line computer time though relatively little off-line
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computer time is required. In its most obvious form the technique is

robust, though this robustness is compromised by most of the "tricks" which

have been proposed to make the multiple test vector fault diagnosis

equations trackable. Faulted simulation models are required and the al-

gorithm is inherently parameter oriented. Finally, it is not suited to

either in-situe testing or parallel implementation.

Conclusions

The above concepts are summarized in Table 1, wherein the various

criteria, by which an analog CAT algorithm should be measured are tabulated,

the goals for an ideal algorithm are described, and the degree to which the

various algorithms achieve these goals is indicated. From the table it is

apparent that none of the algorithms is fully acceptable. Indeed, even if

one neglects the secondary considerations regarding modules vs. parameters,

in-situe testing, and parallel processing all three approaches fail to

meet one or more of the primary criteria (indicated by capital leters in

the table). As such, the proper approach to the solution of the analog

CAT problem remains an open question.
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Analog Fault Diagnosis with Failure Bounds*
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Department of Electrical Engineering
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Abstract

A simulation-after-test algorithm for the analog fault diagnosis problem

is proposed in which a bound on the maximum number of simultaneous failures

is used to minimize the number of test points required. The resultant al-

gorithm is applicable to both linear and nonlinear systems and can be used

to isolate a fault up to an arbitrarily specified "replaceable module".
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I. Introduction

Conceptually, analog fault diagnosis algorithms can be subdivided into

three classes; 3  simulation-before-test, simulation-after-test with a single

test vector, and simulation-after-test with multiple test vectors. The former

is commonly employed in digital testing and is characterized by minimal on-

line computational requirements. Unfortunately, the high cost of analog

circuit simulation coupled with the large number of potential fault modes

which must be simulated in an analog circuit limits the applicability of

simulation-before-test algorithms in an analog test environment. As an

alternative to simulation-before-test, a number of researchers have proposed

simulation-after-test algorithms, in which the internal system variables or

component parameters are computed from the test data via a "nonlinear

equation solver - like" algorithm. Indeed, in the case where sufficiently

many test points are available only a single test vector is required and the

fault diagnosis problem reduces to the solution of a linear equation.
8'9

Except for the large number of test points required, this approach is ideally

suited to the analog fault diagnosis problem and, as such, a considerable

research effort has been directed towards the problem of reducing its test

point requirements. 3 One such approach uses multiple test vectors to increase

the number of equations obtained from a given set of test points. Unfortunate-

ly, this is achieved at the cost of greatly complicating the set of simultan-

eous equations which must be solved and, as such, the applicability of the

approach is limited.

The purpose of the present paper is to describe an alternative simulation-

after-test algorithm in which a bound on the maximum number of simultaneous
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failures is used to reduce the test point requirements while still retaining

the computational simplicity inherent in a single test vector algorithm.

Indeed, even though a given circuit may contain several hundred components

it is reasonable to assume that at most two or three have failed simultaneous-

ly. As such, rather than solving a set of simultaneous equations in n-space

the solution to our fault diagnosis problem actually lies in a two or three

dimensional submanifold which should yield a coimmensurate reduction in test

point requirements. Unfortunately, even though we may assume that at most

two or three components have failed we do not know which two or three, und as

such, some type of search is still required. Fortunately, with the aid of

an appropriate decision algorithm the required seach can be implemented

quite simply.

Consider the circuit or system which is illustrated abstractly in figure 1.

Fiuei.rs agrth o asrctcrui rsytm
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Here, the individual circuit components or sub-systems are denoted by

circles indexed from a to n. These components are subdivided into two groups,

at each step of the test algorithm, as indicated by the dashed lines in

figure 1. At each step we assume that one group; say, d through n;

is composed of good components and we use the known characteristics of

these components together with the test data to determine whether or not the

remaining components; a, b and c in this case; are good. Of course, if

components d through n are actually good then the resultant test results for

components a, b and c will be reliable. On the other hand, if any one of the

components d through n is faulty the test data on a, b and c will be unreliable.

As such, we repeat the process at the next step of the test algorithm with a

different subdivision of components. For instance, we may assume that a

through d and h through n are good and use their characteristics to test

components, e, f and g. Finally, after a number of such repetitions the test

results obtained at the various steps are analyzed to determine the faulty

components.

Of course, the number of components which may be tested at any one step is

dependent on the number of test points available while the number of steps re-

quired is determined by the number of components which may be tested at any one

step and the bound on the maximum number of simultaneous failures. As such,

the procedure yields a natural set of tradeoffs between the numbers of test

points, simultaneous failures and steps required by the algorithm. Indeed,

since the computational cost associated with each step of the algorithm is

essentially the cost of a single system simulation the latter parameter is

a natural measure of the computational cost.

In the following section we describe the simulation model used to test



one set of components under the assumption that the remaining components

are good. The model is formulated in both the linear and nonlinear cases

and can be used as readily to test modules and subsystems as individual

components. Moreover, the requirement that an appropriate matrix be invertible

determines the maximum number of components which can be simultaneously tested

from a given set of test points as well as the allowable component sub-

divisions. In section three two decision algorithms for analyzing the resul-

tant test data are described. Indeed the required theory is reminiscent,

though not identical to, the t-diagnosibility theory developed for digital

system testing over the past decade. 4'6  In the context of our application

we give an exact decision algorithm for the case of a single failure together

with an analysis of the possible tradeoffs between test points and algorithm

steps (read computer costs). Although an exact decision algorithm for the

multifailure case has yet to be developed an heuristic algorithm which is

applicable to both the single and multifailure case is presented. The algorithm,

which is based on an inherently analog heuristic, to the effect that two

analog errors will never cancel, has proven to be highly reliable while

simultaneously reducing the number of steps required from that of the exact

(single failure) algorithm. Finally, section four is devoted to a number of

examples. These examples include linear circuits with 12 andi 22 components

which were run on a desktop calculator and a 16 bit mini, respectively.

Although we have yet to implement the algorithm in the nonlinear case

the nonlinear algorithm is identical to the linear algorithm except for the

requirement that a nonlinear simulator be used in lieu of the linear simulator.

As such, we believe that the increase in computational costs for the nonlinear

case vis-a-vis the linear case will be in proportion th the increased running

time for the nonlinear simulator.
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II. The Simulation Model

Although our test algorithm can be formulated in terms of any of the

standard system models for the purpose of this exposition we will assume

a component connection modet for the circuit or system under test. 2  In the

nonlinear case the uniLt unde te,6t is represented by a set of decoupled state

models characterizing its components and/or subsystems together with an

algebraic connection equation as follows.

xi= f.(xi,a.) ; 1 1 xi(0) = 0, i=l,2, ... ,n (2.1)

bi = gi(xi,ai)

and

a = L11b + L21u (2.2)

y = L21 b + L22u (2.3)

Here, a = col(a i) is the column vector composed of the component input vaAabtez,

b = col(b i) is the column vector composed of component output vaabte6, u is

the vector of extena teAt input applied to the system and y is the vector

of iatem reponaeA meahwLed at the vatiouA tut poi nt. Although the component

connection model is not universal it is quite general and subsumes most of the

classical topological connection models commonly used in circuit and system

theory. 2 Moreover, its inherently decoupled nature is ideally suited to the

test problem wherein we desire to distinguish between the characteristics

of the individual system components. Although these components may be taken

to be elementary RLC components and/or discrete semiconductor devices, in

practice the "components" are taken to be the "replaceable modules" within the

circuit or system, under test; say, an IC or a "throw-away" circuit board.
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At each step of the test algorithm we subdivide the "components" into

two groups denoted by "1" and "2" with the components in group "l" assumed

to be good and used together with the known values of u and y to compute the

component input and output variables, ai and bi, for the components in group

"2". Although computationally we prefer to work with the decoupled component

equations for notational brevity we combine the equations for the components

in each group into a single equation

x f (x ,a

; xI(0) 0 (2.4)

b g (x ,a

and
2 =f 2 (x2,a 2

; x2(0) = 0 (2.5)

b= g(x ,a )

Here, xI a1 and bI are the vectors of group "l" component state variables,

inputs and outputs; and similarly for x2 , a2 and b2. To retain notational

compatibility with 2.4 and 2.5 we reorder and partition the connection

equations of 2.2 and 2.3 to be conformable with 2.4 and 2.5 as follows

a I llb + L 12b 2 + L u (2.6)

a2 L2 1b1 + L 22 b 2 +L 2 u (2.7)

11 22 1

y L1 b1 + L 2 b L2 2 u (2.8)

Given equations 2.4 through 2.8 our goal is to compute the group "2"

component variables, a and b2, given the tes6t input, u, the mea.ued tes t

re.ponaes, y, and an azzumption to the e6fect that the grtoup "I" componet a/e
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,io't 6auIty. To this end we assume that L21 admits a left inverse, L2J-L

which, in turn, determines the allowable component subdivisions. Under

this assumption one may then formulate a component connection model for a

"peudo cA.tcuZVt composed of the group "1" components with external input

vector up  col(u , y) and external output vector yP = col(a 2 , b 2) in the

form

x f (x1,a"1 x1

x (0) = 0 (2.9)

b= g (x ,a)

aI = Klb l + K21uP (2.10)

y = K2 1bI + K22uP (2.11)

Indeed, some algebraic manipulation of equations 2.6 through 2.8 together with
2]-L

the assumption that CL2 1L exists will yield

K11  ll-LllEL 2 I-LL (2.12)

KI2  2 L " L2 1 LL L1IL2L21 (2.13)

L21_L 22EL2 1-L L1 " II 21 211

K 21 - (2.14)

21 21: 112
L12"LI L21 ] L22 L CL 21]

K22  --------------------------------. (2.15)

2 -L 2 L-21] 22 ,,[21]
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Since, in our test problem both u and y are known, the above equations

can be solved via any standard circuit analysis code to compute yP = 
a2 ,b2).

Now, under our assumption that the group "l" componenta sre not faulty yP =

2 2
(a ,b ) represents the inputs and outputs which actually appeared at the

terminals of the group "2" components during the test. As such, we may

determine which of the group "2" components are faulty by solving equation

2.5 with input a2 and checking to determine whether or not the resultant

output coincides with b2 . Of course, since our assumption to the effect that

the group "l" components are not faulty may not be valid the 'cuuzt6 o6

thLt test ate not teLiabie. As such, we repeat the process a number of

times with different choices for the subdivision of the components into

group "I" and group "2". Here, the only constraint on the choice of sub-

divisions is the requirement that 2 -L exist while the number of com-

binations employed is limited only by the cost of the required simulations.

The results of the several steps in the test algorithm are then analyzed

via the techniques described in the following section to determine those

components which are actually faulty. To this end the results of each step of

the test algorithms are tabulated as follows

" a b c ... k"2"' ,

0x

ly

0Oz

Here, a,b,c, ... k denote the group "1 components for a given step of the
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test algorithm, x,y, ... ,z denote the corresponding group "2" components

while the binary annotation associated with the group "2" components in-

dicates whether this step of the test algorithm indicated that they were

good (0) or bad (1). Although this tabular notation is somewhat cumbersome

we will eventually generate a binary array indexed by the group "1" and

group "2" components in the process of our decision algorithm in which case

the tabular notation probes to be convenient.

For linear systems one may formulate an identical algorithm in which

the co nponent equations 2.1 are modeled in the frequency domain via

ai = Zib i  ; i=l,2, ... n (2.16)

where we have suppressed the s-variable for notational brevity. Then upon

subdividing the components into two groups characterized by the equalities

bI1 = Za l and b = Z and solving the resultant equations under the assumption2]-L

that CL 1- exists one obtains an equation in the form yP = Mup. Specifically,

a2 = M11U + M12Y (2.17)

b2 =M 2 1U + M22Y (2.18)

where
21222 -L 1 IZ2CLI1 ,12CL2 122 -LMl:([Ll-LUlL2 l]{lZrll ]-L2 LLI)'Iz2 LI-L 1 L2 ] )

1 11 1 21 11 - 111221 21 21 11 21 22

2 2 2 2 (2.19)

L 12 -l L21 ] LU22

M ,2 1  22 2 -L,1 I 
1 1 1 L12  2 -11 -11 1 2 2 -L

12 ( LIIL 11 CL2 1 J L11 ]{l_z I11LI 2 L21  L 2 1 }'Il ZCL 1 1 CL2 1  )+ L 1 1 L 2 1 3 ]L

(2.20)

M =-( 2 LL  1_L 12 ,2 L 2 , 1 2  L2  LL 2 -L
21 L12L21]-LL 2 L.21-L 11 CL21- L 2 2 ) - L2 1  L2 2

(2.21)
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and

M2  -(EL 2 I- LLl1 (l-Z lC. 11 Ll12 CL2 3 L LlI1 VZIEL12CL 2 f I- [L 2 1- L (2.22)22 21 21 11 12 21 21 11 21 21

Although these expressions appear to be foreboding they may all be

computed with the aid of only a single matrix inversion. Moreover, since the

M jare independent of the test data and computed in terms of the nominal

values of the group "I"I components they may be computed off-line and stored in

a data base to be retreived at the time a test is conducted. Furthermore,

since only a single test vector is required, single frequency testing can be

employed in which case the M i need only be computed at a single frequency.

As such, the only on-line computation required for the fault diagnosis of a

linear system is the matrix-vector multiplication indicated by equations 2.17

and 2.18 together with the computation of Z a.

Unlike the linear case, if one is working with a nonlinear circuit or

system, the simulations required to compute a 2 and b.2require a-priori knowledge

of y and y and thus must be carried out on-line. In practice, however, relative-

ly few time steps are required by these simulations, thereby minimizing their

running time. Moreover, all simulations are carried out with nominal components

allowing one to use standard CAD circuit models. Indeed, since the group "2'

component models are only invoked at the final step of the analysis one can

avoid simulating "troublesome" components by always including them in group

"2" though this usually means that additional test points will be required.

As such, one can avoid simulating "fuzzy" components which do not admit a viable

simulation model and/or nonlinear components. Indeed, if sufficiently many

test points are available to permit all nonlinear components to be included in

group "2' a linear simulation model such as that of 2.17 and 2.18 may be

employed even for a nonlinear system.
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III. Decision Algorithms

Since the results of the tests described in the preceding section are

dependent on our assumption that the group "1" components are not faulty

they are not immediately applicable. Following the philosophy initiated by

Preparata, Metze, and Chein 6 in their study of self testing computer networks,

however, if one assumes a bound on the maximum number of faulty components

it is possible to determine the actual fault(s) from an analysis of the test

results obtained at the various steps in the algorithm. To this end we will

give a complete analysis of the theory required to locate a single fault

together with an heuristic which is applicable to the multiple fault case.

Let us assume that at most one circuit component is faulty and that the

test results obtained from a given step of the algorithm indicate that all

group "I2" components are good as indicated in the following table.

2111 a b c ... k

0 X

o y

0o

In this case we claim that the group "S21 components are, in fact, good. Indeed,

if a group two component were actually faulty then our test results are in-

correct, which could only happen if one of the group "I"' components was

faulty. As such, the system would have two faulty components contradicting

our assumption to the effect that at most one component is faulty.

Now, consider the case where the results from a given step of the test

algorithm indicate that exactly one group "2" component is faulty; say, x
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12a b c ... k

lx

o y

In this case the same argument we used above will guarantee that the components

which test good; say, y through z; are, in fact, good. On the other hand we

have no information about x. It may be faulty or, alternatively, the test

result may be due to a faulty group "l" component.

Finally, consider the case where two or more group ""components test

bad in a given step as indicated in the following table.

"12" a b c . .. k

1 y

0 z

Since, under our assumption of a single failure, it is impossible for two or

more group "2" components to be faulty, this test result implies that at least

one of the group "1" components is bad. On the other hand since we have assumed

that there is at most one faulty component the faulty group '1" component is

the only faulty component and, as such, the group "2" components are all good.

Consistent with the above, at each step of the test algorithm, either all

or all but one of the group "l" components are found to be good. As such, if we

choose our subdivisions so that the components which are found to be good at

one step of the algorithm are included in group '1" in all succeeding steps
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we will eventually arrive at a group 'T', all of whose components are known

to be good. As such, the test results obtained at that step will be reliable,

thereby allowing us to accurately determine the faulty components in group "12".

Although the number of components in group "I" and group "2" may vary from step

to step (especially if we work with multivariate components) if we assume that

group "I" contains n-rn components n-rn components and group "2" contains "in"

components at each step of the algorithm then the process will terminate in

approximately n/rn steps. Since the computational cost of the algorithm is

proportional to the number of steps (essentially the cost of one simulation

per step) while m is determined by the number of allowable test points the

ratio n/rn represents a natural measure of the possible tradeoffs between test

point and computer requirements when employing the algorithm in a single fault

made.

Unlike the single fault case, at the time of this writing, we do not yet

have an exact decision algorithm for the multiple fault case. Following Liu,

however, theproblem can be greatly simplified if one adopts an "analog

heuristic" to the effect that two independent analog failures will never

cancel. 5  Needless to say, this is an inherently analog heuristic since two

binary failures have a fifty-fifty chance of canceling one another. In the

analog case, however, two independent failures are highly unlikely to cancel

one and another (as long as one works with reasonably small tolerances).

Recall from our discussion of the single fault case that whenever a test

result indicates that a component is good then it is, in fact, good. Although

this is not rigorously true in the multiple failure case it is true under the
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assumption of our heuristic. For instance, consider the test results indicated

in the following table in which x is found to be good.

121 "lt a b c ... k

0Ox
1 y

O z

Now, if x is actually faulty there must be a faulty group "I" component whose

effect is to cancel the error in x as observed during this step of the test

algorithm. This is, however, forbidden by our heuristic and, as such, we

conclude that x is actually good.

Interestingly, our heuristic can be carried a step further than indicated

above since, under our heuristic, a bad group "1" component would normally

yield erroneous test results. An exception would, however, occur if some of

the group "l" components are totally decoupled from some of the group "2"

components. As such, if prior to our test we generate a coupling table (by

simulation or a sensitivity analysis) which indicates whether or not a faulty

group "l" component will effect the test results on a group "2" component, our

heuristic may be used to verify that certain group "l" components are good

whenever a good group "2" component is located. Consider for example the

following table

""a b c ... k

O x 1 0 1 1
1 y 1 1 0 0

0 z 0 1 1 0
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in which a "l" in the i-j position indicates that the test results for component

iare affected by component j while a "0ol in the i-j position indicates that

component j does not affect the test results for component i. Now, since

component x has been found zo be good in this test our heuristic implies that

those group "1" components which are coupled to x in this test shows that z is

good the heuristic implies that b and c are also good. This, with a single

test we have verified that x,z,a,b,c, and k are all good.

Since in any practical circuit the coupling table is composed mostly of

I's it has been our experience that relatively few steps of the algorithm will

yield a complete diagnosis. To implement the heuristic, however, one must

assume that the maximum number of faulty components is strictly less than

the number of group two components. If not, the test results at each step

may show that all group "2' components are faulty. in which case no reliable

test information is obtained. Moreover, the degree to which the number of

group "2" components exceeds the maximum number of faulty components determines

the number of algorithm steps which will be required to fully diagnose a

circuit.

Although no exact decision algorithm for the multiple failure case

presently exists it is noteworthy that the underlying combinatorial decision

problem is quite similar to the t-diagnosibility problem usually associated with

self testing computer networks, wherein the multiple fault problem has been

resolved. 5,6 In that problem, however, one computer tests another with the

rest of the network being decoupled, whereas in our problem a subset of

components test all remaining components since there exists no practical

mechanism for decoupling components in an analog circuit or system. In any
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event the problems are similar 
and, in fact, Amin

1 has already formulated

a generalization of the t-diagnosibility 
problem in which one subset of

computers on a network tests another. 
As such, we believe that an exact

decision algorithm for our problem 
can be formulated in the multiple 

failure

case.
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IV. Examples

To illustrate the exact decision algorithm for the single fault case

consider a system composed of eight components; a,b, ... ,h; in which any

five may test the remaining three, Initially, we let a through e represent

the group "I" components and f,g and h represent the group "2" components

and assume that the test results for this first step are as indicated in

the following table.

"2"X a b c d e

0of
o g
1 h

Employing our exact algorithm for the single fault case the above table in-

dicates that components f and g are good and, as such, we move them into

group "I" for the second step of the algorithm obtaining

"12"\ f g a b C

o d
1 e

lbh

Since this test indicates that two group "2" components are bad which contradicts

our single fault assumption the faulty component must be in group "I" implying

that d,e, and h are all good. We therefore move these components into group "1"

and implement the final step of our algorithm in the form

"12" 1 h e d f g

0 a
l bf0 c
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Since all group "I" components are known to be good this final test is

reliable and indicative of the fact that b is the faulty component.

Note, that the requirement that L be left invertible may make it im-
21

possible to use some component subdivisions in which case an alternative

sequence of steps may be required in the above process. For instance, if

h,e,d,f, and g is not an allowable subdivision the last step in the above

process might be replaced by

"2" " e d f g a

l b

0 c

0 h

indicating that c and h are good. Now, a final step in which c,e,d,f, and g

make up group "l' will be reliable as indicated below.

"2" c e d f g

0 a

lb

0h

Now, consider the same single fault example in which our heuristic algorithm

is applied using the coupling table indicated below

2" a b c d e

0 1 0 0 1 1

0 g 0 0 1 1 0

1 h 1 1 1 0 1

According to our heuristic f and g are good and, moreover, everything in group

"1" which is coupled to either f or g is good. As such, we conclude from this

52



first step that f,g,a,c,d, and e are all good. Thus, taking group "l" to be

e,d,f,g and a in the next step will yield a reliable test for b,d and h as

above.

Finally, consider the case where at most two failures are assumed with

the first step in our test algorithm yielding:

1 a b c d e

0 f 1 0 0 1 1

1 g 0 0 1 1 0

1 h 1 1 1 0 1

Consistent with our heuristic f,a,d, and e are found to be good in this step.

Incorporating these components into group "l" for the following step we obtain:

1"1"
"2" f a c d e

l b 0 1 1 1 0

1 g 1 0 1 1 0

1 h 1 1 1 0 "I

which gives us no information in the multiple failure case*. As such, we try

another allowable combination obtaining the following table
"l"

"2"1 f a d e

1 b 0 1 1 1 0

0 h 1 1 1 0 1

1 c 0 1 1 1 0

indicating that h,f,g,a, and e are good. Coupled with our previous knowledge

* Actually one can deduce that at least one of the group "1" components is

bad since all three group "2" components cannot be bad via our two fault
assumption. This, in turn, implies that at most one of the group "2"
components is bad.
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hat d is good this implies that all group "l" components are good and hence

this last step in our algorithm reliably indicates that b and c are the

faulty components.

To obtain more realistic examples the above techniques are applied to

the 12 and 22 component linear amplifier circuits shown in figure 2 using

simulated test data for various numbers of simultaneous failures, choices

of test point locations, and both decision algorithms. All analysis for the

12 component circuit was done on an HP 9825 desktop calculator while the 22

component examples were run on a TI 990/20 minicomputer. The results of

some 150 simulations of the algorithm are tabulated in table 1. where the

number of test points, simultaneous faults, and the decision algorithm employed

are inlicated. The results of the various simulations are indicated by the

ambiguity of the resultant diagnosis. For instance, in our simulation of the

12 component circuit with 3 test points, one failure and the exact algorithm

a)L
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b)

/ MA ,v~MA

Figure 2. a) 12 component amplifier and b) 22 component amplifier.
All stages of the amplifier circuits have nominal op-amp
gains of 1.6, nominal resistances of 10K ohms, and
nominal capacitance values of .Q01wf while the feedback
capacitors have nominal values of lOOpf.

12 runs were made (one with each component faulty). On 10 occasions the

fault was located exactly while the fault was located exactly while the fault

was located up to an ambiguity set composed of two components on 2 occasions.

Finally, we note that the 5th run of the 12 component circuit indicated by an

asterisk in the table represents a simulation in whitch the good components

were set at +/-201 off of nominal to test the robustness of the algorithm.

Circuit/Computer #Test Points #Faults Dec. Alg 1miut 2 s4 t

12 component 1 Exact 12
circuit simulated 4 2 Heuristic 12
on an HP 9825 31Eat1
desktop calculator 3 1 Hexastc 102

3 1 Exact 101 2*

22 component 8 1 Exact 22
circuit simulated 6 1 Exact 18 4
on a TI 990/20 5 1 Exact 16 6
minicomputer

5 1 Heuristic 22

Table 1. Simulated test data. *indicates a simulated test in which
the good components were taken to be + 2 off of nominal.
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V. Conclusions

Although the proposed algorithm is still new and we are just beginning to

investigate its performance in the nonlinear case the algorithm ptomises to

meet most of the criteria set in reference 7. Although the on-Zine computa-

tionaZ %equiAement6 for the algorithm do not compare with a simulation-before-

test algorithm they can be kept within reasonable bounds. Indeed, unlike

most simulation-after-test algorithms no iterative on-line computation is

required. Moreover, one can limit the on-line computation by restricting the

number of algorithm steps (at the price of increasing the ambiguity in the

resultant diagnosis). Furthermore, in the linear case and/or in the case where

there are sufficiently many test points available to permit all nonlinear and

fuzzy components to be included in group "2" the major part of the computation

required by the algorithm can be done off-line.

In general the proposed algorithm permits one to tradeoff between on-line

computational requirements and te,-t points. Indeed, as indicated in table 1.,

one can reduce the test point requiAement6 to quite reasonable levels though

this is usually achieved at the cost of increasing the number of steps in the

algorithm (and hence its on-line computational requirements). In particular,

our simulations indicate that the algorithm comes close to achieving the

test point goal set in reference 7.

With respect to the remainder of the criteria specified in reference 7

the algorithm "looks good". In particular, all simulations are carried out

using nominal component modeL6, it can test ZineaA and nontZnewt moduZe of

arbitrary size, and is amenable to in-siZue testing and paAa2e2 procezing

techniques (since several steps of the algorithm can be carried out simul-

taneously).
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At the present time the major open question with respect to the perform-

ance of the algorithm is its ,Lcbust s. Indeed, there is nothin in the

algorithm to make it inherently robust though our initial test for robustness

indicated by the asterisk in table 1. proved to be favorable.
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A Differential-Interpolative Approach to
Analog Fault Simulation

C.-c. Wu**, A. Sanqiovani-Vincentelli*, and R. Saeks**

I. Introduction

After a half centry of neglect by the circuits and systems community the

past decade has witnessed the emergence of a research effort in the analog

circuit maintenance area. The various algorithms which have been thus far

proposed for the analog fault diagnosis problem may naturally be subdivided

into two classes termed "simulation-before-test" and "simulation-after-test".

The former are commonly used in digital system test algorithms and require

an automatic test program generator (ATPG) which simulates the responses of

"all possible" failures. This is typically done at a maintenance depot with

the simulated responses being recorded and shipped to the field where the

response of the unit under test (UUT) is compared with the simulated responses

to determine the failure. The major advantage of simulation-before-test is

that it is ideally matched to the depot/field maintenance environment with the

largest part of the computation done only once. As such, the technique is

ideally suited for digital testing where the binary nature of the problem

keeps the number of failures to be simulated within bounds and eliminates

tolerence problems. Unfortunately, in the analog problem we must cope with

a continuum of possible failures and simultaneously deal with good components

which are in tolerance but not nominal. As such, a tremendous number of simu-

lations are required by a simulation-before-test algorithm, while some type

of decision algorithm is required to cope with the tolerance effects.

* Dept. of Elec. Engrg. and Comp. Science, Univ. of California at Berkeley,

Berkeley, CA 90024.
** Dept. of Elec. Engrg., Texas Tech Univ., Lubbock, TX 79409. This research

supported in part by the Joint Services Electronics Program at Texas Tech
University under ONR Contract 76-C-1136.
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Unlike simulation-before-test, simulation-after-test uses an "equation

solver-like" algorithm to compute the parameters of the UUT components in the

field. Since most such algorithms require iterative evaluation of the equation

to be solved, the UUT is effectively simulated at each iteration, though the

simulation is based on actual test data rather than hypothesized failure data.

The simulation process is, thus, carried out after testing the UUT and hence

the choice of terminology. The advantage to such an approach is that the

faulty component parameters are computed explicitly, thereby, eliminating the

ambiguity caused by the use of discrete simulation-before-test data and

tolerance effects. Although relatively few simulations are required for each

UUT, they must be carried out in the field rather than the depot and they must

be repeated for each UUT.

The purpose of the present paper is to describe a research effort directed

at alleviating some of the difficulties in developing a simulation-before-test

algorithm for analog fault diagnosis. The underlying philosophy and motivation

for our formulation is discussed in section 2, along with a derivation of the

required differential-interpolative fault diagnosis formula. Finally, section 3

is devoted to a number of illustrative examples of the approach. These include

both linear and nonlinear examples formulated in the frequency and time domains,

respectively.
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II. A Differential-Interpolative Algorithm

Although any practical fault diagnosis algorithm must be able to handle

systems with a hundred or more components, from an intuitive point of view

our algorithm is best illustrated in the two component cases where the

parameter space can be displayed graphically. Say, we are dealing with an

RC circuit for which the parameter space is illustrated in figure 1.

R

Figure 1: Parameter space for RC circuit.

Here, R and C represent normalized parameter values, wherein, the nominal

parameter values are transformed to the origin. In the most general simulation-

before-test algorithms one assumes that the faulty parameter values may lie

anywhere in the R-C plane and therefore carries out simulations along a two

dimensional discrete array spread over the entire plane.

Fortunately, in a "real world" testing environment one can assume that

only a "limited number of components" fail simultaneously. In our two component

example we may therefore assume that either R or C has failed with the other

remaining nominal in which case the circuit need only be simulated at a discrete
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set of points along the coordinate axes in the R-C plane denoted by x's in

figure 1. As such, the number of simulations required is significantly de-

creased. Indeed, this is one of the major advantages of the simulation-before-

test concept as compared to simulation-after-test algorithms which typically

fail to exploit a "limited number of failures" assumption.

While the above described approach has been used with considerable success

in digital system testing, wherein, the axes are binary and no tolerance problems

are encountered, it is not well suited to the analog test problem. First, an

analog failure may occur anywhere along the axis and hence some type of approx-

imation scheme is required to interpolate between the discrete simulations.

Secondly, a "good" component is assumed to be in-tolerance though it may not be

nominal. As such, in an analog environment the "limited number of failures"

assumption implies that the solution to our faul, diagnosis problem lies near,

but not necessarily on, the coordinate axes as indicated by the shaded regions

in figure 2a.
7,

a) b)

-- -- - -- -- - ----- ---. ,-

/ .."I *"--.

/ Cc 1  c c2  c C
/l

Figure 2: a) Solution space under a single failure assumption.
b) Illustration of the differential-interpolative

diagnosis algorithm.

While we might choose to simply fill the shaded region with additional

simulations, the cost of such a process may prove to be excessive. Rather, we
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exploit the fact that the deviations of good component parameters from

nominal are small and use a 1st order Taylor series approximation to approximate

the deviation. We note that such an approach cannot be used to locate the faulty

parameter values which may be far from nominal; indeed, it is often infinite

or zero; though it can be used to cope with the tolerance effects.

Our differential-interpolative approach thus uses a classical minimum distance

algorithim to locate the general region of the faulty parameter values indicated by

the circle in figure 2a (which is magnified in figure 2b). Now, it is assumed that

the simulated values of the system responses; fl, f2 0 and f3; corresponding to

the points; cl , c2, and c3 ; are available along with the associated inverse

sensitivity matrices; J 1, j2 and J I
. We then interpolate these data points

to approximate the system responses and the associated inverse sensitivity

matrice along the axis by functions f(c) and J(c) "1 . Although any interpolation

can be employed we have had our best results using a bilinear interpolation

for f (which gives exact results in the linear case)"and a second order poiynomic

interpolation of J-l. Now, if x denotes the faulty parameter vector and m de-

notes the measured system responses then a Ist order Taylor series approximation

combined with our interpolation will yield the (approximate) equality

m = f(c) + J(c)[x - c] 1.

for those values of c near x. Equivalently,

[x - c] = J(c) 1[m - f(c)] 2.

Interestingly, by invoking the Projection theorem one can reduce the above

vector equation to a scalar equation and simultaneously eliminate the requirement

for storing the inverse sensitivity matrices. Indeed, the vector [x-c] will be
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perpendicular to the axis at the point c which makes the closest approach to

the fault. As such, if e c denotes the unit vector in the direction of the

axis then

0=et E =et JC 1 m-f)]3
C c

which can be solved for the faulty parameter value, c. Note, our goal is to

solve for c, not x, since we are interested in locating the faulty parameter

value in the presence of the tolerance problem, but we really do not care to

compute the deviations from nominal in the good parameters.

To summarize, if rather than simply storing the simulated circuit responses,

f., we also store the vectors e t J-1 then the tolerance effects associated with
c1

the good components can be completely removed from our fault diagnosis

algorithm - at least up to the approximation error induced by the interpolation

process and Taylor series expansion. Since most good circuit simulation codes

include a package for generating sensitivity matrices at little additional

cost over and above that involved in simply simulating the circuit responses

the approach can be implemented with only a minimal increase in simulation

costs. As such, the major expense associated with the approach lies with the

storage requirements (for the f1 and e tJ - vectors) which are approximately

double that of a classical fault simulation algorithm.

Although the above derivation has been illustrated in the two dimensional

case with a single faulty parameter it can be readily extended to a general

setting, say with several hundred components and three or four simultaneous faults.

If one assumes p simultaneous faults then p inner products are required to apply

the Projection theorem yielding p equations and p unknowns to be solved for

the faulty parameter values. Otherwise the fotiiull-tion for the general case is

identical to the single fault case described above.

66



III. Examples

In this section, three examples are given, two of them for linear systems

and one for the nonlinear case. All of these examples were simulated on

an HP9825A programmable calculator, and yielded fairly good results.

Our first example is a second order low pass filter. The filter contains

five components, K, Rl, R2, C, and C2, while, the circuit diagram is shown in

figure 3-1

Cl

0 ~K0
R R2>

1 2Vi T 2 V0

Figure 3-1.

The transfer function for this circuit is given by

= K
f (r,s) = -- K

S2C 1C2R1R2 + s[R 2C2 + RIC 2 + R1Cl(l-K)]+l (3-1)

The partial derivatives of the transfer function with respect to each

parameter take the form

Sf D + SCI1R 1K

-f (r,s) = (3-2)6K D2

f = -K[S 2 CIC 2R2 + SC2 + SCl(l-K)] (3-3)R (r,s) =2

D2
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5f r -KC S2C1C2R1 + SC + SC2]
-72(, ,s) = D2 (3-4)

6f (Ks) = "K[S 2C1R2RI + SRI(1-K)]
6(r,s) =D (3-5)

f (r,s) = -K[S2C1R1R2 + SR2 + SR](3-6)

2D

where D = S2CIC 2RIR 2 + S[R2C2 + RIC 2 + R1Cl(l-K)] + 1

Since we have five parameters in the transfer function, five distinct test

frequencies are required to provide sufficient information for diagnosis. The

f(r) vector is then formed by the transfer functions corresponding to each

frequency,

f(r,sI )

f(;,S2 )

f(r) = f(r,S 3) (3-7)

f(r,S 4)

f(r,s 5 )

Similarly,the sensitivity matrix is given by

-6f f f ^ r

T T S l ( r ', S l  ""-2(r'Sl)

j( ) T ( ,$2 6R af TS(2s2 (3-8)
-• •(Kr2) IC2

6f (;,S5 6f (;,S5)5)
T) 5 6f (5) . . . (rs5)(38
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Next, we generate a data base in which f(r) and etJ(r) are evaluated at

selected points on each axis. Since the bilinear interpolation gives exact

results in the linear case, we need not choose too many points on each axis,

in fact, for this simulation example 15 points were selected along each axis.

Given the measured data for a faulty circuit, the processor searches the

data base, to locate the point a2 which minimizes llm-f(a)II. We then choose

the two points a,, a3 on both sides of a2 along the same axis, and use these

three points to evaluate the coefficients of the bilinear polynomial ar+br+c

in the interval (al, . 3) also, we use erJ 1(a,), er t ( 2 ) and erJ- (a 3 ) to

compute the coefficients of the second order polynomial 
approximate to etjl( )-

r
Finally, a golden section linear search is used to solve

t -1 (9
eJ (a)(f(a)-m) = 0 (3-9)

The faulty diagnosis results are listed in table 3-1. Here, the nominal

values of K, R1, R2, C1, C2 are 1.6, IKQ, 1Kg, 0.16jF and 0.16pF respectively and

the faulty parameter is underlined in the table

Table 3-1

1 2 3 4 5 6

K 0.6 1.62 1.62 1.58 1.62 4

R 11090 2500 1090 1070 1050 1050

R2  930 1040 10 930 930 1045

C1  0.163P 0.161u 0.157P 0.25P 0.157u 0.162P

C2  0.162P 0.162P 0.162P 0.157P 0.2 5P 0.162P

Result K RI R2  C1  C2  K

0.591 2492 19.4 0.239P 0.238 4.01
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in the first simulation, K is the faulty component with a value of 0.6,

the other four components are 5% or so off their nominal values, the simulation

result shows that K failed, and locates it at K=0.591. The same remarks apply

to the other five simulations.

Although the technique generally yields satisfactory results occasional

errors occur when the good components are too far out of tolerance. For instance,

the following parameter values K-1.62, R1 =1070, R 2=910, C 1 0.5pi, and C 2=0.172v~

led to an erroneous result. The simulation shows that C 2 is failed with the

value of 0.179p. However, the faulty component, in this simulation, is

actually C1. If we sketch a two dimensional representation of the C1, C 2 plane

the difficulty becomes clear. Figure 3-2 shows that C 2 is too far away from

its own nominal value, and thus instead of locating the error at ai we expect

the simulation result locates the failure at a, with the differential term still

pointing toward the actual failure denoted by x.

C 2

0. 7

Cl
---- --- --- 4_ -- - - -- - - -

Fiur 3-

Ou scndexmleisafort rdr o pssfltr comrsdo w

cascade~~~~~~~~~~ scnore lopasflesthcirci iga ssoni iue33
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Cl C3

IC2  I C4

Figure 3-3

The procedure for generating the data base is similar to the one described

above, except here, ten different frequencies are required. The fault diagnosis

results are described in table 3-2. Here, the nominal parameter values are

K1 = 1.6, R1 = R2 = IK, C1 = C2 = O.16u, K2 = 1.2, R3 = R4 = 1.5K, C3 = C4

= O.2u, while the faulty parameter is again underlined in the table.

Our final nonlinear example is composed of a diode loaded by a shunt RC

circuit as illustrated in Figure 3-4. The diode is modeled by the character-

istic function

I (e - 1) (3-10)

+ Vo - . V° = V c

0 -

Figure 3-4

Now, instead of working with frequency domain transfer functions, we work

in the time domain. A state equation for this circuit is given by

1 (Vi-V C)/V t  Vc
Vc = .( Ioc - 1) - c (3-11)
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Table 3-2

1 2 3 4 5 6

K 1.62 1.62 1.57 1.57 0.36 1.61

R1 1070 1070 1055 1050 1070 1043

R2  920 920 1030 300 930 1010

C1  0.162P 0.157 P 0.157P 0.162u O.161P O.ll1

C2  0.161P 0.16 2P 0.162P 0.15 7P 0.158P 0.157P

K2  1.17 3.45 1.22 1.22 1.21 1.18

R3  600 1550 1560 1430 1430 1535

R4  1560 1570 1450 1570 1590 1478

C3  0.21P 0.21u 0.195P 0.205v 0.195u 0.202u

C4  0.205P 0.195P 0.12P 0.203P 0.203P 0.198P

R3  K2 C4  R K C

Result

711 3.546 0.125u 339.7 0.357 0.118
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The goal is to integrate this differential equation so as to build a

V c(r) vector and f(r) vectors as in the previous examples.

Numerical techniques can be used to compute V c(t) at any instant t.^C

In this example, the V c(r) vector was elevated by applying the fourth order

Runge-Kutta method. Note that since there are four independent parameters,

R, C, Io , and VT; in equation (3-11) V v(r, t) should be evaluated at four

different time instants to build a Vc (r) vector.

The sensitivity matrix is generated via the linear differential equations

6Vc C e (vi- V c)/V t ) + V c  ( -2

V c  I (V i- VcIVT )V/

6V (V c -V i)e 6 (313
Vt VT CT

cVc tVc +EVc

- c + E 6T (3-14)
6R R2C R

V V

I (V.V- V )IVTc 
- (3-13)

t VC 2 6C

Where E 3 - 4Ie  ) 
RC-

6VcAgain, a fourth order Runge-Kutta method is applied to obtain 6,Tcr, t),6V 6V 6V V
ct), -- (r, t), and c--6 t at the four specified instants.

1V (V.-V1)/

The simulation results are summerized in table 3-3. The nominal values of

10 VT9 R, C are 0.2, 0.1, 1K, and 0.25 respectively.
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Table 3-3

1 2 3 4 5

10 0.035 0.21 0.2 0.22 0.002

V T 0.11 5.3 0.11 0.11 0.09

R 920 930 6250 1070 1090

C 0.23 0.27 0.255 2.4 0.23

Result 10 K 0

0.0312 5.449 6001 2.678 0.003
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IV. Conclusions

For the simulation-before-test approach to fault diagnosis, we gain

from the fact that most computation can be done by off-line computation, thus

greatly reducing the repetitive on-line computation associated with many

fault diagnosis algorithms. From a practical point of view, the economics of

such an approach are extremely attractive. Unfortunately, the simulation-before-

test approach is subject to a certain degree of ambigui' introduced by good

components which are in-tolerance but not nominal.

In this paper, we have proposed a simulation-before-test algorithm for

analog fault diagnosis, in which a differential-interpolative technique is

used to eliminate the ambiguity caused by tolerance effects. Our approach

has been tested with satisfactory results in both the linear and nonlinear

cases. In fact, for the linear case, the approach provides an exact inter-

polation for f(c) on the axes, and thus reduces the amount of simulation-before-

test data required on each axis. Although this is not true for nonlinear case,

the diagnosis results are still very attractive. Of course, occasional errors

may occur when the good components are too far out of tolerance. This phenomena

is, however, expected and well understood. Indeed, the difficulty occurs only

when the Ist order Taylor series approximation is too good. Because this

phenomena will rarely occur in the real world, we believe that it may be neg-

lected in a practical algorithm.
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Multitest Diagnosibility of Nonlinear Circuits and Systems

A. Sangiovanni-Vincentelli* and R. Saeks**

I. Introduction

During the past decade a considerable research effort has been devoted

to the analog fault diagnosis problem wherein one desires to locate faulty

circuit components given the overall circuit response to one or more test

vectors. Conceptually the process may be described by a nonlinear

equation

y - f(a,u) 1.

where y represents the measured response to the test vector u given the

faulty parameter vector, a. Since u is known and y is a measureable

quantity the fault diagnosis problem may be resolved by simply

solving 1. for a given u and y. Unfortunately, in practice, the dimension

of y is limited by the number of accessible test points in the circuit

and is typically smaller than the dimension of the parameter vector,

thereby precluding the direct solution of 1. To alleviate this difficulty

a set of test vectors; {ulu 22 ... Un}; is employed yielding the set of

simultaneous equations

Yi = f(aui) ; i=1,2, ... ,m 2.

Since the parameter vector, a, is independent of the choice of test vector

this process effectively increases the number of available equations without

*Dept. of Elec. Engrg. and Comp. Sci., Univ. of California at Berkeley,

Berkeley, Ca. 90024.
**Dept. of Elec. Engrg., Texas Tech Univ., Lubbock, TX. 79409. This research

supported in part by the Joint Services Electronics Program at Texas Tech
Univ. under ONR contract 76-C-1136.
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increasing the number of unknowns. More Concisely, if we let y = col(yi)

and F (a) = col(f(a,ui)) the "multitest" fault diagnosis problem

reduces to the solution of

y = F (a) 3.

Needless to say once equation 3. has been formulated its solution is

amenable to standard algorithms. The problem, however, is to determine

whether or not there exists a set of test vectors {ulu 2, ... ,um }I such that

3. is solvable in an appropriate sense. To this end we will formulate a

diagnosibility criterion directly in terms of the function f which determines

the degree to which the equation y = F (a) will be solvable, given an

"optimal" choice of test vectors. Since this criterion is a property of

the circuit rather than the test algorithm it can therefore be used as a

design aid with which to choose test points and/or to aid in designing

"testable circuits".

The authors have previously formulated such crfteria for linear circuits
3

1
and for memoryless nonlinear circuits, respectively. The present formulation

for dynamical nonlinear circuits is obtained by simply reformulating the

memoryless nonlinear theory in an infinite dimensional setting. Surprisingly,

however, since the parameter vector, r, remains finite dimensional the

infinite theory yields a finLte dimenzion ateut ma tix.

Let U denote a (topological) space of admissible test inputs and let Y

denote a Hilbert space of test outputs. We then model a general nonlinear

dynamical system as a function f:UxA - Y where y = f(u,a) denotes the response

of the system to an input u given the parameter vector a c A. He.e, A is an

open subset of Rk which defines our parameter space and f is assumed to be
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continuous in u and continuously (Frechet) differentiable in a2 . The problem

at hand is to solve for a given a set of input/output pairs (ui,Yi),

i=l,2, ... ,m. We say that the system is loc.Zy diagno.abte at a poiZnt a0 c A

if there exists an open neighborhood, V, of a such that for every a £ V

f(u,a) # f(u,a ) for some u e U. Similarly, we say that the system is

locally diagnosabte if it is locally diagnosable for almost all a0 c A (in

the sense of Lebesque measure). Finally, if M(a) is a matrix valued function

of a c A we say that a point ao is a AegutaA point if there exists an open

neighborhood, V, of a0 such that M(a) has constant rank in V.af

To define our test matrix we let J(u,a) = if(u,a) denote the Frechet

derivative 2 of f with respect to a evaluated at a fixed u and a. With u c U

fixed, f maps A to Y and hence J(u,a) is a linear transformation mapping from

Rk to Y. Moreover, for k = 1 such a mapping may be represented by an element

of Y hence B-f(u,a) may be identified with an element of Y and

J(u,a) = row [il (u,a)] c 4.
a.

Now let w denote a positive measure defined on the Borel sets of U such that
w(v) > 0 for every open set V contained in U.2 Finally, we introduce the test

matrix

Rw(a) = J*(u,a)J(u,a)dw(u) 5.

Recall that J(u,a) is a mapping for Rk to Y hence its adjoint is a mapping

from Y to Rk and thus Rw(a) is a matrix valued function even though U and Y
2

may be infinite dimensional.2 Also note that the self duality of Y is necessary

for Rw (a) to be well defined.
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Theorem 1: Let w be any admissible measure for which Rw(a) exists

for all a c A. Then the system is locally diagnosable at a regular

point a 0 A if and only if Rw(a) is nonsingular.

Proof: By invoking the integral form of the mean value theorem2 we have

1
f(u,o) - f(u,a ) Z f J(u,ta0 + (l-t)a)dt (a - a0]  6.

o 0

for any a in a neighborhood of 0 and u c U. Now, assume that the system is

not locally diagnosable at a in which case there exists a sequence {ai} A

approaching a0 for which

f(ua i) = f(u,a o) 7.

Letting a = ai in 6. yields

1
0 = f J(u,ta 0 + (l-t)ai)dt [ai " 0

]  8.
0

1

f f J(u,tCz0 + (l-t)a.)dt [ai] 9.
0

where ai = [a, -i j/Iaj - ao]1" Since ai is normalized to lie in the unit

sphere of Rk which is a compact set ai admits a convergent subsequence a.k

whose limit, a, also has unit norm. 2 Using the convergent subsequence in 9.

we have

1 1
0 = k -' J(u'tQo+(l-t)ai k)dt [ai ]  f = J(ua)dt [a] :J(u,ao)a 10.

Since a has unit norm it is non-zero while

a*Rw(ao)a = f a*J*(u,a 0)J(u,a)a dw(u) = 0 11.
U
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implying that R w(C ) is singular since it is a positive semidefinite matrix

which is not positive definite.
2

Conversely, if R w(a ) is singular it follows from the assumption that

a is a regular point and lemma 1 of reference 1 that there exists an open

neighborhood V of a0 and a continuous R
k valued function c(a) $ 0 defined on

V such that

0 = c*(a)Rw(ci)c(a) = I c*(a)J*(u,cL)J(u,a)c(a) dw(u) 12.
U

Since w(v) > 0 and J(u,a) is continuous in a this implies that

J(u,Ci)c(Ci) = 0 a C V 13.

Finally, we define a curve a(s) c V by the differential equation

a _ c(a) ; a(O) = a 14.

Substituting a(s) into f(u,a) and computing its derivative with respect to

s via the chain rule2 we obtain

-= (uci(s))!-. = J(uc(s))c()= 15.

showing that f(u,a(s)) is constant along a curve emanating from ao. Since

a(s) is independent of u this implies that the system is not locally

diagnosable at a0 thereby completing the proof. 0

Note, the proof uses the finite dimensionality of the parameter space but

does not require that U and Y be finite dimensional. As such, the theory

is equally valid for memoryless and dynamical systems. Furthermore, the

result is independent of the choice of the measure w.
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To use the theorem as a test for local diagnosability we may invoke

Theorem 2 of reference 1. Alternatively, one may make the mild assumption

that f(u,a) is (real) analytic in a in which case the hypotheses of that

theorem are automatically satisfied and the following result is obtained.

Theorem 2. Assume that f(u,a) is analytic in a and let w be any ad-

missable measure for which R w(a) exists for all a c A. Then the system

is locally diagnosable if and only if Rw (a ) is nonsingular for some

a 0 A.

Proof: Let

p = max {rankCRw (a)]) 16.
acA

which must be achieved, say at a, since rank[Rw (a)] takes on only finitely

many values. Now, let Ml(a) be a p by p submatrix of Rw (a) which has rank

p at a and consider det[M(a)]. Since rank[M(a)] = p det[M(a)] 0 verifying

that det[M(a)] is not identically zero. This function is, however, analytic

in a (since f(u,a) is analytic in a) and since it is not identically zero,

its zero set is nowhere dense in A.2 Letting

Bc = la c A, det[M(a)] 01 17.

denote the closure of the zero set and B denote the complement of Bc the

hypotheses of theorem 2 of reference 1 are satisfied. Indeed, since Bc is

the closure of a nowhere dense set it has Lebesque measure zero while the

fact that det M[(a)] 0 for a c B implies that

p > rank [Rw (a)] > rank[M(a)] = p ; a B 18.
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hence

rank [R w(a)) = p ; a C B 19.

Since the hypotheses of Theorem 2 of reference 1 are satisfied in our case

the conclusion of the theorem to the effect that the system is locally

diagnosable if and only if R w(a ) is nonsingular for some a0 follows.

Consistant with the proof of Theorem 2 rank[R w(a)] is a generic property

(i.e., constant almost everywhere) and hence we may refer to p as the geneLc

taLnk of Rw(a) when f(u,a) is analytic in a. As such, one may check the non-

singularity of Rw(a) with a randomly chosen a0 and the result of the theorem

may be restated via:

Corollary 1: Assume that f(u,a) is analytic in a and let w be any

admissible measure for which R w(a) exists for all a c A. Then the

system is locally diagnosable if and only if the generic rank of

R w(a) is k.

Once it has been verified that a system is locally diagnosable it still

remains to pick a set of test signals {ul,u 2, ...,um} and to solve the

resultant set of equations

Yl f(uIa)

Y2  f(u2,a)
= = 20.

Ym f(u ma)

for a c A. For this purpose we require that
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if afJ(Ul~ O  2-' (U ,(u ... if'aku

J(u 2 ' o ) 3- (u2 ,a o )

Hm  F(a) 21.
3aL 0

J 2f (Um ao .. f (

L M 1 CL'm 0aa~ m 0

have column rank k in which case a Newton-Rapson type of algorithm will be

assured of converging to a0 from a sufficiently good initial guess. More

generally, if this Jacobian matrix has a generic column rank of k such an

algorithm will converge to almost any solution of 17. given a sufficiently
af

good initial guess. Recall from equation 1. that each a (u.,a ) is an

element of Y and hence we are dealing with an m by k matrix whose entries

are elements of Y.

Theorem 3: Let w be an admissible measure for which Rw (a) exists for

all a c A and assume that R w(a ) is nonsingular at a regular point

a0  A. Then there exists a sequence ui c U; i=1,2, ... , m < k;
aF

for which _F(a ) has column rank k.
aa 0

Proof: If (u,a) = 0 for all u then the first column J(u, o ) is zero foract, 0 0

all u implying that the first row and the first column of R w(a ) is zero.

This, however, contradicts the assumption that R w(C ) is nonsingular and we
af

may therefore assume that there exists a u, E U for which if (ul,ao) 0. As
aal

such, there exists ul c U such that H, has a column rank of at least 1. Using

this fact as the starting point for an inductive hypothesis we assume that

there exists ui; i 1,2, ... n; such that the matrix Hn has column rank

p < k where n < p. We now desire to verify the existence of a vector un+l c U
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for which the corresponding matrix H n+l has column rank greater than or

equal to p + 1. To this end we let T be a nonsingular matrix of scalars

which operate on the columns of Hn in such a way that the (p + l)st column

through the kth column of HnT is zero. Since T is nonsingular Hn+l will

have column rank greater than, or equal to, p + 1 for some un+l if and only

if Hn+iT has column rank greater than, or equal to, p + 1. Because of the

special form of HnT, however, this will be the case if, an6 only if, the

bottom row of Hn+iT given by

(u ,ao)T = J(u )T 22.
Da n+l o n+l 'o

is non-zero in columns p + 1 through k for some un+l. If this is not the

case we may let t denote the (p+l)st column of T which is non-zero since T

is nonsingular, in which case we have

J(U,ao)t = 0 23.

for all u c U. This, however, implies that

t*Rw(ao)t = f t*J*(ua 0 )J(ua 0)t dw(u) = 0 24.
U

which contradicts the assumption that Rw(ao) is nonsingular. As such, there

must exist a un+1 for which Hn+l has column rank greater than, or equal to
aF

p + 1. Repeating the argument inductively until an H = -(a ) with columnm 3a, 0

rank k is obtained nov, completes the proof of the theorem. Note that since

n < p at each step,m < k.

Our purpose in the above has been to indicate a mechanism by which the

existing diagnosibility theory for linear systems 3 and memoryless nonlinear

systems can be extended to the general nonlinear dynamical case. Indeed, the
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same tools can be used to extend the theory in any number of directions. For

instance, one might use the rank of Rw as a measure of the degree to which

a circuit fails to be diagnosable. Indeed, the resultant meahuAe oj

t.tabitity is a natural generalization of the frequency domain measure of

testability introduced in reference 4. Moreover, the frequency domain

criterion for choosing test signals introduced by Priester and Clary 5 may

also be extended to the case of general nonlinear systems via the above

described formulation. Finally, a vector space criterion for diagnosability

similar to that of reference 3. may be formulated.
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A Data Base for Symbolic Network Analysis*

C.-C. Wu and R. Saeks
Texas Tech University
Lubbock, Texas 79409

I. Introduction

Historically, symbolic network analysis has been motivated by the prob-

lems of circuit design and, as such, the emphasis has been placed on

quickly and efficiently obtaining a symbolic transfer function from a

given set of circuit specifications. '3  In an operational or maintenance

environment, however, one is typically aiven a prescribed nominal circuit

and desires determine the effect of various (possibly large) perturbations

thereon. This is the case in a power system where one is given a fixed

network and desires to determine the effect of proposed modifications thereto.

Aiternatively, in the problem of analog circuit fault diagnosis one desires

to simulate the effect of a number of alternative failures to compare the

s*mulated data with the observed failure 
data.

in such an operational or maintenance environment numerous perturtitions

of tne nominal circuit are studied and, as such, sinnificant computational

efficiencies can be obtained if one first generates a data base in terms

cf the nominal circuit parameters and then extracts the aocrooriate s'pnbo'4c

transfer functicn from tne iata base each time a different s:mbolic transfer

is reauired. Of course the benefit to be achieved via such an approach 4s

dependent on the size of the data base and the ease with which a symbolic

transfer function may be retrieved therefrom.

*This research supported in part by the Joint Services Electronics Program

at Texas Tech University under ONR Contract 76-C-1136.
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The obvious manner in which to generate such a data base is to simply

pre-compute the coefficients of all required symbolic transfer functions

and store them in the data base. Retreival from such a data base is, of

course, immediate but the data base may become overly large. Indeed, the

number of transfer functions which must be stored is O(k) where k is the

total number of potentially variable circuit parameters and p is the maximum

number of circuit parameters which may vary simultaneously. An alternative

approach is to store the nominal transfer function information and then use

Householder's formula I to compute the required symbolic transfer functions.

In such a data base we need only store O(n 2) transfer functions where n is

the total number of component output terminals but retreival requires

O(n 3+p3 ) multiplications where p is the actual number of circuit parameters

4nich vary simultaneously. Since, in practice, n - p the retreival process

3,
-eauires approximately O(n ) multiplications and is dominated by the large

imenslonal matrix multiplication required by Householder's formula rather

than the low dimensional inverse.

In the present paper we will formulate an alternative data tase for

2.,:he symbolic transfer functions which also requires 0(n I entries, out for

4"ich retreival requires only O(p 3) multiplications. Since D is typically

small ths is tantamount to immediate retreival.

in the remainder of this introduction we will review the properties of

the component connection model for a large scale circuit or system which

serves as the starting point for our theory. The data base and retreival

formulae for the case where p < 2 are formulated in section 2. while the

general retreival formula is derived in section 3. Section 4. is devoted
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to the problem of retreiving sensitivity formulae from the data base while

section 5. deals with the problem of updating the data base when the nominal

circuit parameters are changed. Finally, section 6. is devoted to an example

illustrating the theory.

The component connection model is an algebraic model for an inter-

connected dynamical system which subsumes the classical topological models

but is more readily manipulated both analytically and computationally. The

motvation and justification of the model are discussed in detail in

reference 1 and will not be repeated here. The component connection model

takes the form of the set of simultaneous equations

b = Z(jw)a 1.1

a = Llb + L1 2u 1.2

and

y = L2 1b + L2 2u 1.3

Here, Z (=Z(>j)) is a frequency dependent matrix characterizinq the decoupled

system components with composite component input and output vectors a and b,

respectively. On the other hand the L.j; i,j - 1,2; matrices are frequency

indeoendent connection matrices characterizing the coupling between the

comoosite component vectors, a and b, and the composite system input and

output vectors, u and y, respectively.

A little algebra with the component connection equations will readily

reveal that

S = L22 + L2 1(l - ZLll)-IZL12  1.4
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where S (: S(jw)) is the composite system transfer function matrixi

characterizing the external behavior of the system via

y = S(jW)u 1.5

Often, rather than working with the entire S matrix we find it convenient

to work with its individual entries; sqv , q = 1,2, .... q and v = 1,2, .... :

which are related to the component connection model via

sqv = Lqv + Lql(l - ZL) 1.6

22 2 1
qvq

Here L22 is the q-v entry in L22 ; q = 1,2, .. , and v = 1,2, ...,v; L q is

the qth row of L21; q = 1,2, ... , ; and Ll2 is the vth column of L

v 1,2, ... , v.

Finally, since we are interested in analyzing the effects of perturbing

one or more components from their nominal values, we decompose Z into

nominal and perturbation terms in the form

Z -Z0 + Z1 1.7

where
P

Z " c k krk 1.8k= 1

Here, k = c k is a column vector, r k r k(jw)) is a row vector, and

K is the scalar perturbation for the kth potentially variable component

parameter. In a typical application one is given c k rk and 6k.

k = 1,2, ... ,k; characterizing I potentially variable component parameters

though at most p such parameters vary in any given analysis; p I D < k.

Indeed, p << k in most applications. Finally, we note that Z can be expressed

more concisely in the form
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Z = C R 1.9

where

C cI ' c 2 ' cp

r I 
1.1

R = l.1l

and

L 52 1.12

6p

The above described notation formulated for the component connection model

is summarized in table 1.
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,atrix Type Dimension Index

a composite component input m x 1 -

vector

b composite component output n x 1

vector

u composite system input vector v x 1 -

y composite system output vector qx 1 -

LII connection matrix m x n

L21  connection matrix x n

Ll qth row of L2 1  x n q= 1,2,

L12 connection matrix m x v -

L 2 vth column of L m x 1 v = 1,2, .

L2 2  connection matrix q x v -

L2 q-v entry in L22 1 x 1 q =1,2, , ; v=l,2, v

S composite system transfer a x v
function matrix

Sqv q-v entry in S I x 1 q=1,2, ; v=1,2,

Z composite component transfer n x m

Z nominal composite component n x m

Z composite component transfer n x m

function perturbation matrix

ck column vector characterizing n x 1 k = 1,2, k

perturbation of kth parameter

C array of the c
k vectors for the n x p -

parameters chich actual vary
row~ck])

rk row vector characterizing 1 x m k 1,2, k

R array of rk vectors for the p x m -

parameters Which actually
vary (col [r ] )

6 kth variable parameter I x 1 k = 1,2, k

array of 6k's for parameter p x p

which actually vary (diag[6 3)

Table 1. Summary of Component Connection Model
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II. The Data Base

Our data base is composed of the following family of (frequency

dependent) scalar transfer functions

sqv = L + L q(1 - ZoLl 2I1 ; q = 1,2, a; v = 1,2 v 2.1

0 22 21' o 11) o211,, v

bqJ L q(- ZoLl)1 cj  q = 1,2, .... ,q; j = 1,2, ... k 2.2

dkv = rk[I + Ll (1 ZoL Zo]L12 k = 1,2, ... , v = 1,2, .... v 2.3

and

ekj = rkL1l( - ZoLll) IcJ k,j = 1,2, ...,k 2.4

Here, q and v denote the number of external system inputs and outputs

which are typically few in number. As such, the ekj array composed of k
2

entries dominates the data base. Also note that all of the entries in the

data base are formulated in terms of the nominal component values and, as

such, the data base may be generated off-line without a priori knowledge

of the perturbations to be analyzed. Finally, the entire data base may be

generated with the aid of only a single n by a (sparse) matrix inverse.

Now, if we assume that only a single parameter is perturbed, i.e.

Z = ck6krk 2.5

for some fixed k = 1,2, ... ,k, to retrieve sqv from the data base we must

evaluate

sqv . L22qv + L2q( 1 _ [Z° + c kk r k]Ll)- [Z + ck S kr kL 2.6

in terms of the elements of our data base and the variable parameter, 8

To this end we invoke Householder's formula
1
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(1W + XY) "  W 1- - 1x(I + yW-IX)-YW"  2.7

with 1-1 (1 - ZLII), X -Ck6k, and Y rkL 11 obtaining

(- [Z 0 + ck. krk IL)-E l - zL + (-ck 6 k)(rkLll)-I

(1-ZoLII) + ( 0-ZoLIc ( 1-4kL1 1 ( 1-Z0LI) rk L (1-Zo LI

= (l-ZoLll)- ('ZoLLI)-lck 6krkL11(-Z 0LI)12=o1 - 6k ekk 2.8

ow, upon substitution of 2.8 into 2.6 we obtain

sqv = L" + L q(l-[Z +Ck krk]ll) I[Zo+ckkk L v
22 + 2 01(-o r LZ 0+k 6kr]Ll12

L qv+ L (1-Z L l 1 (Z +ckl6k rkk 1LV22 21 o 11' o L12

k1 1 k kk

6kbqkrkLll(l-ZoLl Z L 12 (; e
= sqV + 6kbqk r k k +Z 0  121 -- kek

0 12 1 6k ekk

!kb kdkkv k)2[ bqkekkrk v + bqkekkrkv L vk qkdkVqv + 1 (2] sqv + 5  kk 2.9
0So 1 - skekk 0 1 - 6kek2

which is the desired symbolic transfer function.

If we assume that two parameters are Derturbed; that is

ckkrk + c 6 rj  2.10

a similar formula can be obtained wherein Householder's formula is applied

twice. Since this formula is subsumed by the general retreival formula derived

in the following section, we simply state the result without proof. In

particular,
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4 qv = q + L ( 0+Ck 6k rk + ~r3 IZ0+ +c 6i. - rk IL 1

0 k ~kkk - J -6 j(e kk e3j'- ekjejk) 2.11
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III. Retreival Theorem

As is apparent from equation 2.11, our retreival formulas are quite

complex, even for the case p = 2 and, as such, a more compact notation is

required if they are to be tractable. To this end, we assume that

,k; k = 1,2, ... ,p: denote the potentially variable parameters and that

Z = I ck kr k = CAR 3.1

k~l

Of course, the same expression applies to any set of p potentially variable

parameters given an appropriate change of the index set. To obtain the re-

quired symbolic transfer function for

S = L2 2+L2 1(l-[Z+Zl]Lll [Zo+Zl]Ll 2  3.2

with the above specified ZI we now define the following matrices made uo of

elements from our data base

-11 12 Iv

0 . 0
21 22 s2v
S0  S0 . -

so :3.3

o 0 0

l 12  o
b b ... b

S b21 b22 ... 3.4

blb2 ... bp
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I,

11 1
d d12  ... d

d2 1 d2 2  ... 2

D : . 3.5

d p l  2 2  dP

11 12 ip-
el e ... e

21 22 2p
E e e ... e 3.6

eP1  p2  p
ep  e ... e

while a is defined as per equation 1.12.

THEOREM: Using the above notation

S = L22+L21(1-[ZoZ1 ]L l)-1 ZoZ 1]L12 = S0 + B(O - AE)-AD

Proof: First, we observe that

so = L22 + k21(lZoLil 2

is just the nominal system transfer function matrix while

B = L21 (1-ZoL 11)Ic 3.8

and

D = R[l + Lll(l-ZoLll) IZo]L12 = R(l-LIZo)-
1  3.9

via Householder's formula. Finally,

E = RL11(1-ZoL 11)-
1C

where R and C are as defined by equations 1.10 and 1.11. As such,
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(I AE) -  (1 - ARL11  (1-Zo L II C

[I + ARL1( - (1-ZoLII) I )-I1I-ZoL II C3

CE + ARL1 I(1 - ZoL - Z1L 1 1 C]

[I + ARLII(l-ZLII)-Ic] 3.10

where we have invoked Householder's formula with Z = 1, X = ARLII, and

Y = (I-ZoLI)-I C; and equation 1.9. As such,

S0 +B(l - AE)-1AD = S0 + L 2 1 (I- Z0L 0I  C[I +ARL 11 (I-ZL 1I) C]AR(I-L 1 1Z)
1 L1 2

+ 21 (l-Zo)L )[z I + Z (I-ZL )-1

=S0+ L)1( - I{o[L(I(-ZL 11)+ZI1L11 ](I-ZL l 1  1'I zI(I-L 11Z o0) -1L 2

So L2 1 (1-ZoLI 1 (1-ZL 1 ) ZL1 (1L 1 z L21

S o+L 21 (I-ZLII (-oLII 1 l Zo) 12
+)-

L L22 +L L21 (1-Z oL1 )1 Z oL12 + L 21 (l-ZL11 Y1Z1(l-L11Z0) L 12

S L21(-L z L+ L21(-ZL 1 Z1(-L 1 z0)L 12

L +LZL 1  + -1 Z)-Z((1-L ZF 1 L 1 Z= L2 2 +L 2 1(I0Z 1 )1- 0 L Z II ) 1 2

+ )- L 1 1 z0 + (-L 11Z)

L2 2+ L21 (I-ZL 1 I1 CZ - L1 I Z(-LI2

L22 +L2 1 ( I_-ZL I)-I 1 1z0](-L 1 1 zO)IL 12

L2 2 4 L21 (I-ZL 1 1 Z 12  2 S

t as required. 105////
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IV. Sensitivity Formulae

If one is working directly with the component connection model, it is

4 iwell known4 that the sensitivity of S with respect to a parameter, 6 , can be

computed via the formula

d1 LSL(I-ZLI - i 7 F l + LlL(I-zLII 12 4.1
L.ii 21 1 dj [ 114.

and hence it is appropriate to ask whether or not such a sensitivity matrix

can also be computed from our data base. Since the expression

S = S + B(l - aE)- AD 4.2

is formally identical to 1.4, if 1 < i < p we may write

. = B(1-AE) IMi[l + E(I-AE)-I]D 4.3

where

0

0

d6

0

L
with the one appearing in the ith diagonal entry. Clearly, the exnress,:,r

can be computed directly from the d.,ta base with the same " vp-'

effort as required for the retreival fornu'a,

in the case where is , . .
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deviate from nominal, i > p in our notation, we must first augment the B, E, D,

and matrices to include 6i and then apply equation 4.3 to the augmented

system. To this end we let

b b ... b2p  bl 4-

b 2 1  b 2 2  b. 2P  b 2 i

Bi  4.5

"dl dl 2  ... d

d2 1  d22  d2j

D= . 4.6

dp l dp 2  ... dPV

dil d i 2  ... d

e1 1  e
12  ... e1p eli

21 e22  e2p e 2 i

E i =4.7

pl p2  pp  p i

e e ... e e 1

il i2 ip iie e ... e e

and

~a = 4.8

The we obtain the retreival formulae

S = + Bi(l - DaEi)-I aDi 4.9

and

' Bi(l_aEi)-lM [l+Ei(l_aEi ) - I a I 4.10
p+1
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V. Updating the Data Base

In many applications one uses a data base such as that described above,

as a design tool to aid in simulating the effects of various proposed

modifications to the system. When such a modification is finally implemented

it is then necessary to update the data base to reflect the new nominal

parameter values

= Z0 + I = 6 Z + CaR 5.1
k=l

with the aid of Householder's formula we may compute

[(0 1 -ZoL CaRL 111
1 = (1-Z0Lll)

+ (lZoL) 1 c - RL l(lZL c] -lRL1l(1.ZoLll)- I

= (1-ZL ll) + (14oLll)-Ic(1-AE)-IARLll(l-ZoLll) 1  5.2

which upon substitution into equation 2.4 yields

kj = ekj + [ekl ek2 ... ekP](l_-E)-lA el1 5.3
e 2j

ePJ

Similarly,

6qj bqk  bql bq2  bqp](lE)l A el5.

i

ePJ

kv dkV +e e ... e P](l_ E)-l rlv 5.5
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and

-qv 5qv + l q2~ qp v
S b b .. b (-E-6d' 5.6

As such, the entries in our data base can be updated with a computational

effort which is commensurate with that required by the retreival formula.
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VI. Examples

Consider the simple RC op-amp circuit shown in figure 1. The component

connection

C

+ -- +A + +.,

Vi  V V2  Vo
10 o

Figure 1: RC Op-amp circuit.

model for this circuit takes the form

v r  0 R 0 i 6.1
r r

v c  0 -1 -1 1ic  1 v

i r 1 0 0 v r + 06.2

vI  0 l 0 v2 1

-7 6.2

v0  =[o 0 vri  + 6.3

Thus if all components taken to have nomin3l values of I we obtain

(l-ZoL1 1) = 16.4
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1 0 -

(1-ZoL 11 ) 1  F1  1 -s 
6

-I S

s 6.

O-oLl-zo s -s6.

-1  s i~
0 -

LI (1-ZoL11) = 1j - S* 6.7

and

L + LI(1-Z L1  'Zo = 12 6.8

Ntow, we may represent perturbations in the parameters 
C, R, and K via the

matrices

1101c0 6r 2 6.9

c2a2r2 1 
6.10

and
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c3S3r3  0 6.11

Combining the appropriate ck and matrices with the above expressions as

per equations 2.1 thru 2.4 we obtain the data base

so z 1 6.12

b= -s b -- 1 b =s+l 6.13

d1 = d2 = 0 d3 = 1 6.14

and

e11 =0 e12  0 e13 =-1

e21 =s e22 =0 e23 =-s
31 =-s e32 =-i e33 =s 6.15

where we have deleted the q and v indices since we are dealing with a single-

input single-output system.

Now, if one desires to compute the symbolic transfer function with respect

to perturbations in the op-amp gain we have

0 333 3

1-6 e 1 - 6 s

Recalling that a3 represents a perturbation from a nominal parameter value of

Ko X 1our actual gain is K = K 0 = l++ + which upon substitution into 6.16

yields
K

S(sK) (l-K)s +- 1 6.17
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which is the classical gain formula for such a circuit.

Finally, if we desire to update our data base to reflect a new nominal

value for the circuit parameters of C - 1. R a 1, and K x2 we invoke

3equations 5.3 thru 5.6 with a 1 yielding

0 0 1 3 33 3

ill -l ell 63e3 + 6.19

and similarly for the other elements of the data base.
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VII. Conclusions

The preceeding development has been motivated by operational and main-

tenance considerations rather than the design considerations. In such an

environment one typically deals with a fixed nominal system, but carries

out repeated analyses thereon. As such, the cost of generating the required

data base is secondary compared to the cost of storing the data base and

retreiving information therefrom. In these respects we believe that our

data base is near optimal. Since the number of system inputs and outputs

is typically small our data base contains approximately 2 elements

(actually k2 + k(v+a) + vq) where k is the total number of parameters

which are potentially variable. This data base, however, contains sufficient

information to permit one to retreive symbolic transfer functions for any

number p < k of variable parameters. Indeed, the number of variable para-

meters in a symbolic transfer function is reflected only in the cost of

retreival which is on the order of p3 multiplications (actually p3 + p2v +

pv(q+l)). Since p is typically small, say five or less, this is minimal.
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On Large Nonlinear Perturbations of Linear Systems
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Abstract

This paper generalizes the classical Householder's formula to certain

nonlinear operators. This class of nonlinear operators is shown to be

common in circuit theory. Several examples are provided that show where

these operators occur and the result is applied.
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I. INTRODUCTION

The purpose of this paper is to present a technique for analyzing

lumped analog systems with some linear and some nonlinear elements. It

is shown that such a system is described by an operator of the form

B+YoD (1.1)

where B and D are linear and Y is nonlinear. Since no assumptions are

made about the nature of the nonlinearities, it is impossible to view the

uperator YoD as small in any sense, hence, YoD has to be viewed as a large

nonlinear perturbation of the linear operator B.

The technique to be presented is based on a theorem that allows us to

invert (1.1) in two steps. First, invert the linear operator B. If there

are NL linear elements and NN nonlinear elements, B will be an (NL +NN)x

(NL+NN) matrix. Second, invert a nonlinear operator of rank NN. That such

a result exists, is not surprising. Those experienced in solving equations

involving such operators apply Gaussian elimination until there are NN

nonlinear equations in NN unknowns. Another way to see that this segregation

can be accomplished is to view the nonlinear elements as a "load" on an

appropriate linear circuit, in much the same way as a circuit where one

nonlinear element is analyzed by viewing that element as the load and

finding the Thevenin's Equivalent circuit that it sees.

The main result of this paper is obtained by generalizing to

operators the form B+YoD, a classical theorem concerning linear operators

known as Householder's Formula. This classical result and its generalization

are stated and proven in section 2. In section 3, we show such operators do,
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indeed, occur in circuit theory and then two examples are presented. The

results are summarized in section 4.

Section 2.

The classical Householder's formula [l] provides a means of calculating

the inverse of the matrix B+CD in terms of B l and (I+DB-1c -1 . If B-1 is

known and if the dimensions of C and Dare appropriate, then a great savings

in time and effort can be realized using this technique.

Theorem 1: (Classical Householder's Formula)

If B is an NxN matrix, C is an NxP matrix, and D is a PXN

matrix, then (B+CD)
-1 = 1 -B-1C(I+DB1IC)-IDB-I.

In the nonlinear extension, the linear operator C is replaced by the

nonlinear operator Y. The proof of this extension looks, at first glance,

like the proof of a linear rather than a nonlinear theorem. To see that

this is indeed a nonlinear result, the differences between the nonlinear

and linear operator algebra will be reviewed by giving two basic definitions.

Definition 1: (Operator Addition) Let f and g be two operators (linear or

nonlinear) with the same domain, then the operator f+g is

by the following

(f+g)(x)4f(x)+g(x) (2.1)
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Definition 2: (Linearity) an operator f is linear if for all x and y in

its domain and all scalars a and a

f(cx+ay) = f(ax)+f(By)

=-f(x)+Bf(y).

The argument distributes to the left for all operators, but the operator

distributes to the right only for linear operators. With this distinction

in mind, we are ready to state and prove our main result which is a closed

form expression for (B+YD)-1 in terms of B- and (I+DB- y)- l ((f course,

operator multiplication is to be interpreted as composition, i.e.,

YDYoD.

Theorem 2: If i)B and D are linear operators, ii)B-I exists, iii)y is an

arbitrary operator and iv)B+YD is defined, then

(B+YD) " = BI-B-Y(I+DBY)IDB1l . (2.3)

Proof: Consider the operator X+XYX where X is linear and Y is possibly

nonlinear.

X+XYX = X(I+YX) = I+XY)X.

If (I+YX) and (I+YX) are both invertible (it can be shown [2] that

one is invertible if and only if the other is) we have

(I+Xy)-1X = X(I+YX)-  (2.4)

Now consider the identity

I = (I+YX)(I+XY)-l = I(I+Yx)- +yx(I+Yx)-

= (I+Yx) 1+Y(i+Xy)-IX
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where we have used (4). Solving for (I+YX) - I yields

(5) (I+YX) -I = I-Y(I+xy)-IX.

Finally, consider the operator B+YD.

(B+YD)- = C(I+YDBI)BI
-' = B 1 (I+YDB )I

Letting X = DB l in (5) yields

(B+YD)- 1 = B-1 [i-Y(I+DB- 1y)-lDB -1

= B- BY(I+DB-Iy)-IDB 1.

To see how this result is useful, consider the case where B+YD is an

Nth order nonlinear operator, D a linear operator that maps IR NIR P,P<N

P- Nand Y a nonlinear operator that maps IR PIR . This result allows the

solution of N nonlinear equation in N unknowns to be replaced by the

solution of N linear equations in N unknowns and also the solution of P

(recall P<N) nonlinear equations in P unknowns. Thus, we have, via a

closed form expression, ordered our equations and unknowns properly to

make maximum use of linear techniques and minimum use of nonlinear techniques.

It should be noted that the proof of Theorem 2 relied on the fact that

B and D were linear operators and allowed Y to be arbitrary. B and D were

not assumed to be matrices and Y was not assumed to map IRP-IRN. Any or

all of the operators could be differential operators and the result would

still be valid. Regardless of whether the operators aredifferential or

functional, we have succeeded in breaking it up into a linear portion and

a nonlinear portion. If there are few nonlinear components in comparison

with the number of linear components, the nonlinearities can be viewed as

a perturbation on the linear system.

Section 3

The purpose of this section is to show that operators of the form
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B+YD occur in circuit analysis problems and to apply Theorem 2 to two

examples.

This type of operator arises naturally in nonlinear network analysis.

Consider the Node analysis of a network with reduced incidence matrix A,

[3]. Kirchoff's Laws are

(KCL) A_ = 0

(KVL) v = ATe.

The branch equations might be

= G + *-G 4 +f (v)

Where

jO the branch current vector;

v the branch voltage vector;

!SO the current source vector;

VS4 the voltage source vector;

e4 the mode-to-datum voltage vector;

G is assumed to be an "invertible" matrix of differential operators, f is a

nonlinear differential operator, and all branches are voltage controlled.

if

i.AGV-A'

(AGAT)e+Af(ATe) i. (3.1)

Letting AGAT=B, and Af(')=Y, we see that this operator is of the desired

form. The typical situation is for f to be a function of only a few (p<n)

linear combinations of the components of v then (3.1) can be rewritten in

the form
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B+Y(CA T ) ei (3.2)

which is precisely the type of operator that is amenable to the results of

Theorem 2.

We now apply Theorem 2 to the problem of solving two nonlinear

simultaneous equations in two unknowns. Consider the following nonlinear

equations

f(X) = Z = [- - 2[+'31]x = [3']

In order to apply Theorem 2, f(x) must be put into the form

(B+YD)(X)

where B is an invertible matrix. One way to do this is

f(X) = (B+YD)x = +Y([l,O]X)

where Y(3)

Theorem 2 says that

X = B- z-B-1 Y(I+DBIY) 1DB-lz = XL-XNL

where

XL=B z [ 1 231J [27j
and

XNL = By(l+DBI Y)-1DB-1Z

= B'1Y(I+DB' y)-IDBL

= B-12y(I+DB-6y)'127
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Now

(I+DB-1y)-1 27 = u

is equivalent to

(I+DB-1Y)y = 27.

(I+DB-1Y)u = u+[l,0 - 0 -u

u+[l 1] [3 0 j = u+u3-u=u3 =27

which implies

u=3

Now3
= B-Y(3) 21

XNL L l2

So

X = XL-L = L[21+21

The reason for choosing a functional example is that for large circuits

or systems, the differential equations are solved numerically so at each

iteration an operator of the form B+YD must be inverted. To see that this

is indeed the case, considr discretizing the differential equations obtained

from the component connection model [2] of a system. The component equations

are assumed (here) to be given in state form

X = f(X,a)

b = g(X,a).

where a is the vector of component inputs, b is the vector of component out-

puts, and x is the state vector of the components. The connection equations
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(KVL and KCL equations) are given by

JL 21  L 22JuJ

where u is the vector of system inputs and y is the vector of system outputs.

If we order the entries in all of the vectors correctly, we can partition

the vectors in the following manner

a= a  ,b= b  ,andx= = x

where the superscript N(L) denotes entries associated with the nonlinear

(linear) components. The discretized equations that the computer is to

solve have the form

r N NN N
Z di x f(xkak,
i=O

r
z diXL =AXL L+Ba

1=0 i k-i kk'

b kN=g N(X kN,akN)

bkL=Cx L +DaL

N .NN N LNL L N
k =Lllbk+Lllbk Ll2Uk ,

aLL .LN bN +LLL bL+.LL
ak=Ll1k+ 11bk 12U k ,

LN N LL L +L

YK=L 21 bk+L 22bk L22uk•

The last equation is just the output equation and is not used during the

iterations. These equations can be put in the following form
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TWk+Y(DWk) =

-Ido 0 0 0 -1 0 xN
k

N
0 0 0 0 0 0 akN

0 0 A-dol B 00 "kL
k

0 0 C D 0 -I aL

0 1 0 0 -L NN LNL bN

0 0 0 1 -LllNN bL

f N (x N N 
11 N

k' PI  =}ir-i

gN(x Na N  0g(k, ak) r dXL

0 i=

0 0

0 0

0 0

where D= 1,0 , and I is conformable with

4. Conclusion

The classical Householder's Formula has been generalized to certain

nonlinear operators. It was shown that these nonlinear operators occur in
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circuit theory, both in the differential equations that describe the circuit

and in the discretized equations that are used in the computer aided

analysis of these circuits. It is hoped that this result will be as useful

a tool in the fault analysis of nonlinear circuits as the classical result

turned out to be in the fault analysis of linear circuits.
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NONLINEAR OBSERVER'S AND FAULT ANALYSIS

P. D. Olivier and R. Saeks
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Abstract

A fault analysis algorithm appropriate for time varying and nonlinear

systems, is developed. The algorithm essentially constructs an observer

for a nonlinear system that is intimately related to the system under test.
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INTRODUCT ION

Given enough time and computing capability brute force searches will

identify possible fault sets. The real problem in fault analysis is to

construct algorithms that, in some sense, locate the fault sets "efficiently".

"Efficiently", in this context, means that the fault isolation must be

done relatively quickly and with limited on site computing. Such techniques

have been developed to handle linear time invariant and digital systems. 2'3 ,4

These, however, make heavy use of the defining properties for these systems,

and do not generalize. The purpose of this paper is to show that an observer

for an appropriate nonlinear differential equation can be utilized, on line,

to determine the values of the system parameters. A technique, based on

optimal control theory, for constructing such observers is also presented.

OBSERVERS AND FAULT ANALYSIS

Consider testing a system that is described by' the nonlinear state

equations

x f(x I a,u,t)

y =g(x 1)

where xIis the dynamical state vector, a is the vector of parameters to be

estimated (they are assumed constant over the test time), and u is the input

used in the test procedure. If we want to estimate a we need to include it

in the state vector, i.e., we want to build an observer for the augmented

differential equation

135



y = g(xl).

If it is possible to build an observer that will observe the subvector

a we have solved the fault analysis problem. It would then be necessary to

justify our solution in terms of time and computation requirements.

AN OBSERVER DESIGN

We chose to design an observer with the following structure

x f(x,a,u,t) + H(y - y) (H time invariant)

y 9 (x1).

we term such an observer as a Model reference linear time invariant observer.

The term "linear time invariant" is used because the residuals enter in a

linear time invariant fashion. The problem is now that of choosing H. To

avoid involved stability considerations (at least initially) we choose H so

that it minimizes the following function

t12 2
J(H) = I [(x1-x) +(a-a) 3 dt

to

and hope that the stability takes care of itself. The construction of H

can be done by solving the following optimal control problem1
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min J(H) J(H) f xTQxdt, Q = I -I

H R 2  tL

subject to the differential equations constraints

X1  f(xl,a,u,t) 0

a 0 + 0 (-Y)

xl f(xl,a,u,t) H

a 0

X(t0) = [xl(to)$a(to)T x(to )Ta(t ) T

Note. 1) H will be dependent on the X(t ) used in its construction, so when

it is used to estimate a (when a differs from a(t )) it has little chance

of being the optimal H. So even though we use optimization techniques to

construct H, it will not, in general, be optimal. 2) Several observers may

need to be constructed, each one convergent for a in a different region.

Experience indicates that only a few components fail at a time. Because

of this a reasonable approach is to construct an observer for each component,

(thereby minimizing the dimension of the augmented state vector) and estimate

the parameters for each component in parallel. Observers can also be built for

the common two and three element faults.
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CHAPTER I

INTRODUCTION

The advent of microelectronics, the ever-increasing complexity and
compactness of electronic circuits, together with a need for higher
reliability in space, military, and even commnercial projects, has
brought new problems to industry; test and diagnosis of electronic
circuits is one of them.

Presently, a printed circuit board may include several hundred
components; modular construction as well as small geometricil dimensions
make impractical, even infeasible, and certainly uneconomical, '-A
conventional test methods based on classical laboratory equipment such
as signal generators, meters, oscilloscopes, and probes.

In either the analog or digital case, fault detection and location
in electronic systems is generally performed via measurements at a
limited number of input and output connections. These measurements are
then executed by computer test programs to provide diagnosis.

Until now, algorithms for automatically generating test programs
have been concerned mainly with digital circuits. Analog circuits, on
the other hand, have received far less attention, due to several
reasons: Analog systems are frequently non-linear-, and the values of
the parameters of the elements exhibit large deviations £6]; analog

signals are inherently more complex than digital signals. They occur
continuously in time, rather than at discrete times, and their values
have infinite resolution, instead of being truncated into a finite

number of bits; most importantly, digital automatic test generation has
been successful due to the simplified modeling at the logic gate or
higher level, rather than the internal parameter level as in the case
of analog systems. As a result, most analog automatic test generation
and fault isolation techniques require a large computational capability

on the ATE or off-line computers £5].
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Several efforts have been made to attack the fault diagnosis
problem in analog circuits. The multi-frequency technique for fault

analysis in general linear dynamical systems was developed by N. Sen

and R. Saeks [1],7].[81,[9]J, was considered to be more efficient and

advanced in terms of output selection and reduction. By varying the

test frequency at the same test points, the number of test points can

be reduced significantly compared to the case of single frequency

measurements.

This technique has been generalized to non-linear analog systems

by linearization of the non-linear components. Unfortunately, the

linearization concept fails in many cases [10]. For example, consider-

ing a single-loop circuit consisting of a power supply, a resistor,

and a tunnel diode. At a given bias, the non-linear characteristic of
the tunnel diode has a particular slope. With the breakdown of the
bias resistor, the linearization of the non-linear characteristic of
the tunnel diode at the new biasing point will be different, and the

diode will appear to be faulty if one ignores the fact that the diode
is operating at a aifferent bias.

Recognizing the linearization problem in multi-frequency test,

the fault-diagnosis of non-linear analog systems in the D.C. case was

studied by V/. svanathan and A. Sangiovanni-Vincentelli 2 , and N.
David and A.N. Wilson [3] at the component parameter level. These tech-

niques have these disadvantages: the required number of test points is

more than required by the multiple frequency technique; the tremendous

amount of computer time is required to solve very complicated non-linear

equations. Since this is a D.C. test, these techniques can only be

applied to memoryless systems ( without reactive components such as

capacitors and inductors ).

The dual-mode technique for fault-diagnosis for non-linear analog

systems is introduced as a compromise between the above approaches.

Mode 1 (A.C. Test): utilizing the multi-frequency technique to
search for the faulty linear components, then the faulty linear component

values are calculated. The non-linear components of the circu'it under
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diagnosis are replaced by small signal A.C. or linearization equivalent

circuits. Therefore, this A.C. test is performed at the internal

parameter level for both linear and non-linear components.

Mode 2 (D.C. Test): this test is used to diagnose a reduced non-

linear problem after the linear components are determined in Mode 1.

The nominal values or the faulty values given by Mode 1 are used for

computations depending on whether the linear components are in tolerance

or not. A non-linear device or element is treated as a blackbox with

inputs and outputs. The task is to find the D.C. inputs and outputs or

the operating conditions of the blackbox, not the internal parameters

of the non-linear devices. This approach is compatible to previous

successful techniques in digital systems performed at the logic gate le-

vel or higher. The fault-diagnosis algorithm is shown in Figure 1.

The Mode 2 formulation and examples are presented in this thesis

together with a comparison with existing techniques in fault-diagnosis

for non-linear analog systems. Finally, an experiment on a four-transis-

tor amplifier circuit is conducted to verify the theorectical solutions

and to determine the sensitivity of the dual-mode approach.
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CHAPTER II

THEORETICAL DEVELOPMENT

The theoretical formulation of the D.C. test for the non-linear

problem is based on the component connection equations [4]

a M M11b + M 12 u

b M M21b + M 22 u

Where u and y represent the vectors of accessible inputs and outputs
which are available to the test systems, a and b represent the compo-
nent input and output vectors, respectively. The relationship between

a and b is:

b =Z a
Although the symbol Z is used, the components are not assumed to be
represented by an impedance matrix. Indeed, hybrid models are used
in most of our examples.

Before the circuit is analyzed in the D.C. test, the capacitors

and inductors, which are assumed to be linear components, are replaced

by open-circuits and short-circuits respectively.
The component vectors a and b are partitioned into:

[: b43

Where a L and b L are the linear component input and output vectors, and

a N and b N are the non-linear component input and output vectors.
Therefore:

b L a

------------------ ----------- ---

bN df N La ]
when a linearized model is employed.
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The component connection matrix is partitioned accordingly:

aL MLL MLN ML
L 11 11 12 bL

a M L MNN MN bI111 11 12
--- ----------- T-------- ----

y ML MNM21 21 M22 u

Equation (1) and (2) can be solved simultanously to yield:

bN [M2 LZ' LL) -1 M L MN -2 1 [Y_(M LZ- 1-MLL) '1M L+M2) (3)1 1 2 (ZL- Mi 11 1 21L 11 1222Lj

NL 1 LL) -1 LN +I1N 1 -[M Ll)1ML + M12 (4)aN  11ZL -Mli M11 111 N L 1

Thus the inputs and outputs of the non-linear devices can be

computed by a few simple matrix operations. These values are checked

against the operating characteristics of the corresponding functional

devices for fault isolation.

The coefficient matrices of (3) and (4) can be pre-computed if

the linear components are not faulty. The matrix Z should be changed

to incorporate the faulty values of the linear components, if any, to

avoid the computational errors caused by the use of nominal values of

the linear components.

For each pair of non-linear component input-output signals. one

test point is required. For instance, a bipolar transistor can be modeled

with two (2) input-output pairs:

B~V BEL::] bN = [
Therefore, two (2) measurements must be taken. Non-linear integrated

circuits can be modeled in the same manner. The number of test points

required in this mode goes up linearly with the number of non-linear

devices in systems.
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T mr (Z M LL )_IMLN +MN ]is singular if the test
The matrix IM21ZL - M11 )  11 + 21

points are not chosen properly. The selection of test points to make

the above matrix non-singular will be discussed in detail in the

Appendix.
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CHAPTER III

EXAMPLES

RA RC
C

V.i RB RL
JCE E L

Fig. 2(a) Single-Transistor Amplifier

C1 r xC VC2

Fig. 2(b) Small Signal A.C. Equivalent Circuit
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Multi-Frequency Test (Mode 1) [1], [12)

The small-signal A.C. equivalent circuit of the circuit of

Fig. 1(a) is shown in Fig. 1(b). The connection equations associated

with the A.C. or mode 1 test are as follows

IC1 0 0 0 0 0 1 1 0 1 0 1 1 0 VCI

Ir 0 0 0 0 0 0 1 0 1 0 i 0 Vrx
Ir 0 0 0 0 00 1 -I 1 -I 0 0 . Vr

IC 0 0 0 0 0 0 0 0 0 1 1 1 0 VC

IC2 oo oo o oo oo oo i o VC2
VRA -1 0 0 0 0 0 0 0 0 00 0 1 IRA
VRE -1 - -I 0 0 0 0 0 0 0 0 0 1 IRE

VC 0 0 1 0 0 0 0 0 0 0 0 0 0 IC

VCE -1 -1 -1 0 0 0 0 0 0 0 0 0 1 ICE

Vgm  0 0 1 -1 0 0 0 0 0 0 0 0 0 Ig
C -m

VRC -1 -1 0 -1 0 0 0 0 0 0 0 0 1 IRC

VRL -1 -1 0 -1 0 0 0 0 0 0 0 0 1 IRi

V 0 -1 -1 0 -1 -1 0 0 0 0 0 0 0~ 1 V.i
IC1 0 0 0 0 0 1 1 0101 1 0

VRA -1 0 0 0 0 0 0 0 0 0 0 0 1

IE 0 0 0 0 0 0 I 0 I 0 0 0 0

Here we initially allow V0 , ICl , VRA ,and IE to be taken

as test outputs. The measure of testability 6min is used to extract a

reduced set of test outputs from these options. According to table I

two (2) is the minimum number of test outputs in this example , which

suffices to yield 6min = 0 (perfect testability) or to provide locally

unique solutions for the fault-diagnosis equations

The test measurements are taken at the two output VRA and IE

at twelve (12 = n - Smin ) distinct frequencies , where n is the dimen-

sion of the parameter vector r .The faulty parameters can be identified

by using the Householder's Formula and the optimization algorithm[13]

Only the faulty parameter values for the linear components of the circuit

need to be calculated to be included in the calculations in mode 2.
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Table 1 Measure of Testability for the

Amplifier Circuit of Figure 1

OUTPUT 6 MIN.

V0  3

IC1 2

yR8  2

IE 3

VoIC1 0

V0 9VRA1

VOiE 0

IC1,VRa 2

ICI,IE 1

VRA,IE 0

V0 , IC ,VR/ 0

V 0 , IC1 IE 0

VO VR IE 0

IC1 , VR, IE 0

V0 , IC ,VR ,IE 0
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D.C. Analysis (Mode 2)

Assuming that the capacitors of the amplifier circuit are not

shorted. They are treated as open-circuits in D.C. test, and removed

from the circuit before Mode 2 analysis begins. The test point measure-

ments are chosen at the same test points used in the multi-frequency

test. The connection equations for this circuit in D.C. test are:

VRA 0 -1 0 0 0 0 IRA

IRB 1 0 0 0-1 0 0 VRB IRA 1/RA VRA
IRE 00001 1 0 VRE VRB RB IRB

IRC= 0 0 0 00 1 0 VRC and VRE RE IRE

VBE 0 -1 0 0 0 0 IB VRC RO. VRC

VCE 0 0 -1 -1 0 0 1 IC IB f VBE

VRB 0-1 0 0 0 0 0 V+ IC

IRE 0 0 0 0 1 1 0

The non-linear component input and output vectors aN and bN can be

found via (3) and (4):

[181 RA+RB 0 VRB [RB
bN = RAR. AV+

bAR NRERB VIICI RA+RB 1 IRE 10
SRA. RB

LVCEJ L -RE -RC-RE IC
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SQ 

1 +

v i RR VM

Fig. 3 Cascode Amplifier Circuit

The capacitors in the circuit are assumed to be good components.
They are removed from the circuit before Mode 2 diagnosis begins. The

connection equations for the circuit are:

VR1 0 0 _ -1 0 0 0 0 0 1 IRi
VRC 0 0 0 0 -1 0 0 -1 -1 1 IRC

IR2 1 0 0 0 0 -1 0 0 0 0 VR2

IR3 1 0 0 0 0 -1 -1 0 O 0 VR3

IRE 0 1 0 0 0 I 1 0 0 0 VRE

VBE2 0 0 1 1 -1 0 0 0 -1 0 IB2

VBE1 = 0 0 0 1 -1 0 0 0 0 0 IB1

IC2 0 1 0 0 0 0 00 0 0 VCE2

ICl 0 1 0 0 0 1 0 0 0 0 VCE1
-------------------------- --- ---

VRE 0 0 0 0 1 0 00 0 0 V+

IRI 1 0 0 0 0 0 0 0 0 0

IRC 0 1 0 0 0 0 00 0 0

VM 0 0 0 0 1 0 00 I 0
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IR1 1/Ri VR1

IRC I/RC VRC

VR2 R2 I1R2

VR3 R3 1R3

b RE =RE IRE
----------------------------------------- T----- --

182 aVBE2

181 dfN VBEI

VCE2 da N 1C2

LVCE1J ICI

The non-linear inputs and outputs are determined via (3) and (4):

F182 1f-R3 RE.R R3.RE 0 lrRE' 'RE/(RE+RC)1
IB I8 R3+R2 -RE.R -(R2+R3)RE 0 IIR1 I/R

VCE2 E.R2 0 0 -R2.RE.RC -R2.RE HIRC 1/(RE+RC) V+

VCE1 LR2.RE 0 0 R2.RE]LLVM J LRE/(RE+RC)JJ

VBE2 -R1(R2+R3)-K -E1.R3-K KL A B2 R2+R3 K
RCR RE RRC

VBE1 -R.R3 _K -R3(R1+R2) K K IB. R3 K__ __
1C2 -K -K -K -K VC2K

RRCRE.RC RE.RC C2 RE.RC

K -K -K -K K
Ici RRCRE.RC RE.RC VCEI R. RC~

where R R1 +R2 +R3

RE.RC
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+ + V

+ R? R4 C

C IN QQ2M

+ VB2 R5 R L V 0
LO R2 R

Fig. 4 Direct-Coupled Two-Stage Amplifier

The component-connection equations for Mode 2 analysis are:

VR1 0 0 0 0 0 -1 00 0 1 IRI

VR2 0 0 0 0 0 1 00 0 0 IR2

IR3 0 0 0 0 0 0 1 1 0 0 VR3

IR4 0 0 0 0 0 0 0 0 1 0 VR4

IR5 0 0 0 0 0 0 1 0 I 0 VR5

IBI 1-1 0 0 0 0 0 0 0 0 VBE1

VBE2 = 00 -1 0 0 0 0 0 0 1 IB2

VCE1 0 0 -1 0 0 0 00 I IC1

VCE2 00 0 -1-1 0 0 0 0 1 IC2
-T-

VM 0 0 0 -1 0 0 00 0 1 V+
1+ 1 0 0 0 0 0 1 1 1 0

VR5 0 0 0 0 1 0 00 0 0

VB2 0 0-1 0 0 0 00 0 1
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IRI I/RI VRI

IR2 1/R2 VR2

VR3 R3 IR3

VR4 R4 IR4
b VR5 = R5 IR5

----------------------- ---------------- ----- --

VBEI IB1

IB2 dfN VBE2

ICi daN VCEI

IC2 VCE2

The matrix (M21 (ZL _ 1M)- MlN + M 2) is non-singular:

-1/R1 0 0 0

-1/Ri 1 1 1

0 R5 0 R5

0 -R3 -R3 0
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R2 R

in Q A-Q

1 R3L
4R

Fig. 5 Video Amplifier Circuit

The same circuit is used as an example in [3]. In [3] ten (10)
test points are required besides the input terminals. The solutions
or the values of the parameters are obtained by solving eighteen (18)
non-linear equations. On the other hand, the dual-mode technique requires
eight (8) test points besides the input terminals and the solutions
can be obtained by straight-forward matrix manipulations.
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After the capacitors are removed, the connection equations are:

IRI 0 0 0 0 0 0 0 00 10 0 0 0 0 0 0 0 0 VR1

IR3 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 .0 0 VR3

IR2 00 00000 00 01100000 O 0 VR2

IR4 0 0 0 0 0 0 0 0 0 0 0 I 1-1 0-1 0 io 0 VR4

IR5 0000000000 000-1000 :00 VR5

IR6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0-1 0 :0 0 VR6

IR7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 :0 0 VR7

IR8 00000000000001100 0 0 VR8

IR9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 :0 0 VR9

VBE1 -1-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 :0-1 IB1

VCE1 0-1-i 0 0 0 0 0 0 0 0 0 0 0 0 0 0 :-1 IC

VBE2 0 0-1-1 0 0 0 0 0 0 0 0 0 0 0 0 0 :1 0 IB2

VCE2 000-1 000000000000 0 :1 IC2

VBE3 000 1000-100 00000000 0 IN2

VCE3 0 0 0 0 0 0-1-1 0 0 0 0 0 0 0 0 0 '1 0 IC3

VBE4 0001010 0-100000000:0 0 B4

VCE4 0 0 0 0 0 0 0 0-1 0 0 0 0 0 0 0 0 :1 0 IC4

VR2 0 0 10 000.60 00 00 0 0 00 0 V

VR3 0o1 o0oo0oo0oo0o00o00o00o0:0ooV
VR7 0 0 0 0 0 0 0 01 0 0 0 0 0 0 0 0 0 0 I

VR1 100000000 00000000 ,0 0 0

VR2 0 010000 00 00 00 00 00 ,00 V

VR3 0 I00 00 00 100 00 00 0 00 :00 V

VR7 0 0 0100 010 0 000 0 0 000 0O 0VR9 00000000 100000000 :Oo0
VR8 0000000 1000000000 ,00

VR4 00o100o0000000000100
1C4 00000000000000001 :o0
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The non-linear inputs and outputs can be found via (3) and (4):

IBI 0 R2 R2 0 0 0 0 0 - 1 VR2

ICI R3 R3 0 0 0 0 0 0 VR3

IB2 0 0 0 0 0 R7 0 0 VR7

b IC2 Ri 0 0 0 0 0 0 0 VR1

IB3 0 0 0 0 0 0 R9 R9 VR9

IC3 0 0 0 0 R8 R8 0 0 VR8

IB4 0 0 R4 R4-R4 0 -R4 0 VR4

.IC4 0 0 0 0 0 0 1 1C4

VBE1 -RI-R3 -R3 0 0 0 0 0 0

VCEl -R3 -R3-R2 -R2 0 0 0 0 0

VBE2 0 -R2 -R2-R4 -R4 R4 0 R4 0

VCE2 = 0 0 -R4 -R4 R4 0 R4 0 b.

VBE3 0 0 R4 R4 -R4-R5 -R8 -R4 0

VCE3 0 0 0 0 -' -R7-R8 0 0

VBE4 0 0 R4 R4 -R4 0 -R4-R6-R9 -R9

VCE4 0 0 0 0 0 0 -R9 -R9

0 -1
1 -1 /

1 0
1 0 V+

+ 0 0

1 0 V-

0 0

1 0
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CHAPTER IV

COMPARISON OF FAULT-DIAGNOSIS TECHNIQUES FOR NON-LINEAR SYSTEMS

Method of V. Visvanathan and A. Sangiovanni-Vincentelli [2]

Referring to the single-transistor amplifier circuit of Fig. 6(a)

and its equivalent circuit of Fig. 6(b) using Ebers-Moll Model [11].

V+V
Rc

1 c 1

Fig. 6(a) Fig. 6(b)
where R = R1//R2

2EF = Kl(exp(EV)-l)

ICF = K2(exp(X 2v2 )-l)

The node equations at C and B are

(V+/RC) - aIICF + IEF = (v1 - v2)/RC (5)

(V+/RI) + aNIEF - 'CF = vI/R (6)

Substitute IEF and ICF into (5) and (6) to obtain:

V+/RC - a IK2 (exp()'2v2 )-l) + K1(exp(xlvl)-1) = (vI - v2)/RC (7)

V+/R1 - aNK1(exp(xlv1 )-1) - K2 (exp( 2v2 )-l) = vl/R (8)

Suppose v1 is chosen to be the test point measurement, by

solving (7) and (8) simultanously, v1 can be expressed as

y = v1 = f (u,R,,R2 ,RC)

where u is the input voltage,V+ in this case
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The Jacobian matrix of y with respect to R, R2, and RCS which

is the basis of V. Visvanathan and A. Sangiovanni-Vincentelli formu-

lation, must be computed numerically. This example, on the most

simple circuit, has thus shown the impracticality of the above method.

Method of Nasrollah David and A. N. Wilson [3]

Referring to the single transistor amplifier circuit in [3]. This

circuit requires five (5) test points, excluding the input terminals.

Also, the parameter values can be obtained by solving eight (8) non-

linear equations.

Dual-Mode Fault-Diagnosis

Mode 1: referring to the single-transistor amplifier circuit in

[1], the set of test point measurements V'Ra and IE yields the perfect

testability (6min = 0) implying that the fault diagnosis equations

have locally unique solutions.

Mode 2: referring to the circuit in Figure 1 of Example 1 in the

previous sections, the same test points can be used to measure VRB

and IE* In general case, the set of test points for the two modes will

overlap each other.

Summary

Computationally, the dual-mode fault-diagnosis technique uses only

straightforward matrix manipulations. This is an advantage over sol-

ving non-linear equations. The required number of test points in the

dual-mode technique is much less than that of Wilson's technique.

Only one test point is required by Sangiovanni-Vincentelli's method

but the trade-off is to solve a very complicated set of non-linear

equations.
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CHAPTER V

FAULT-DIAGNOSIS ALGORITHM FOR TRANSISTORS

The calculations in Mode 2 of the dual-mode fault-diagnosis

technique are performed to provide the D.C. operating points of the

non-linear devices. In the case of bipolar transistors, the opera-

ting conditions can be determined by the collector current IC , the

base current 1B, the base-emitter voltage VBE, and the collector-

emitter voltage VCE. The fault-diagnosis algorithm for bipolar tran-

sistors is developed on the basis of their known operating charac

Table 2 Transistor Operating Modes

Modes IB  IC  VBE VCE

Active I B  BN.I B  .6 v VCE > VBE

Saturation I B  aS,.IB  .7 v VCE < VBE

Cut-off 0 0 < .45v VCE Vcc

where aN is the nominal current transfer ratio in active mode, 6S

is the saturated current transfer ratio, and VCC is the power supply

voltage connected to the collector.

The algorithm for field-effect transistors is even simpler

because the input or gate current IG is always zero. Field-effect

transistors are characterized by the gate voltage VG' the drain

voltage VD, and the drain current ID -

The fault-diagnosis algorithm for bipolar transistors shown

in Figure 7, is used to analyze the experimental results in the fol-

lowing section.
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Fig. 7 Fault Diagnosis Algorithm for N-P-N Bipolar Transistors

(Continued)
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CHAPTER VI

EXPERIMENTAL RESULTS

The video amplifier circuit of Example 4 was built and tested

at nominal operating conditions and at intentionally faulty condi-

tions. The measured values of the non-linear devicesloperating con-

ditions are compared to those obtained by calculation. The computation
in this particular example is simple enough to be carried out by a

programmable hand-held calculator. The computational error are inves-

tigated experimentally in the following cases.

Case I. Nominal Operating Conditions

The components of the circuit, which consist of four (4) tran-
sistors and nine (9) resistors, were carefully analyzed before the
experiment was started. The four transistors 2N2222A were checked on
a curve tracer. Their betas or current gains varied between one hun-
dred twenty (120) to two hundred sixty (260). Thus there is more than
one hundred percent (100%) variation among the various transistors.
Furthermore, these transistors are highly sensitive to temperature.
For example, a transistor that carries twice the-amount of collector
current than another will generate more heat and change its charac-
teristics. The temperature sensitivity has a major effect on the accu-
racy of the test results. All the resistors were within five percent
(5%) tolerance. The measured values and the nominal values of the
resistors are compared in Table 3. The experimental test-point mea
surements for all cases of the experiment is tabulated in Table 4.

The experiment was performed in a temperature-controlled environ-
ment at twenty degrees Celcius (200 C). The measurements at the test
points were taken and used to compute the transistors' operating con-
ditions with two (2) sets of the resistor or linear component values.
The two (2) sets of computed values for the transistors' operating

conditions are tabulated in Table 5.
The errors that are produced by using the manufacturer's claimed

values for the resistors are less than ten percent (10%) for the col-
lector currents, the base-emitter and the collector-emitter voltages.
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Table 3 Comparison of Measured and Nominal Values of Resistors

Resistor Measured values Claimed values Percent error

(Nominal)

R1 1.189 K 1.20 K -.90

R2 3.298 K 3.30 K -.06

R3 5.654 K 5.60 K .96

R4 1.173 K 1.2 K -2.25

R5 .316 K .33 K -4.24

R6 .325 K .33 K -1.50

R7 1.010 K 1.00 K -1.00

R8 1.461 K 1.50 K -2.60

R9 3.280 K 3.30 K -.61

Table 4 Test Point Measurement for All Cases of the Experiment at

V+= 26.2 Volts and V- = -28.0 Volts

Test Units Case I Case II Case III Case IV

point

VR2 volt 16.04 28.52 15.87 15.86

VR3 volt 27.31 25.66 27.32 27.32

VR7 volt 6.04 0.00 9.827 5.336

VR1 volt .0264 1.611 .0263 .0263

VR9 volt 8.83 0.00 0.00 0.00

VR8 volt 8.800 0.00 14.32 0.00

VR4 volt 9.492 0.00 15.04 16.44

IC4 mA 2.665 0.00 12.82 .00866
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Table 5 Transistor Operating Conditions of Case I

Computed operating points Measured operating % Error
Parameter based on points(ii) (i) vs.(ii)

Measured R Claimed R (i)

IB1 22.2 22.00 22.04 uA .18

IB2 56.76 70.33 56.33 uA 24.90

IB3 47.11 -169.3 41.75 uA -505.5

IB4 31.07 14.76 28.09 uA -47.50

ICi 4.808 4.855 4.805 mA 10.40

IC2 8.113 7.748 8.094 mA -4.27

IC3 5.978 6.038 5.993 mA .75

IC4 2.665 2.665 2.665 mA 0.00

VBE1 .6636 .6636 .656 v 1.16

VBE2 .6640 .6640 .655 v 1.30

VBE3 .6740 .7449 .674 v 10.50

VBE4 .6520 .6571 .649 v 1.17

VCE1 10.85 10.85 10.82 v .28

VCE2 16.71 16.71 16.70 v .06

VCE3 11.36 11.36 11.36 v 0.00

VCE4 17.37 17.37 17.36 v .06
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The errors are, however, worse for the base currents due to the fact
that the base currents are so small. Considering the transistor Q3
the base-emitter voltage is positive; therefore, the base current

cannot be negative or the transistor is not faulty. This is thus a

case of calculation error.

Case II. A Bad Linear Component in the Circuit

The resistor R2is increased from 3.3K to 8.9K. A set of measure-

ments is taken from the test points, and used to compute the transis-

tors' operating conditions with the faulty value of R2taken or not

taken into account. The results are tabulated in Table 6. The signi-
ficance is that the transistor Q 2 appears to be faulty if the faulty

value of R 2 is not taken into account. The base current, which is

4 equal to the collector current in magnitude, suggests that the base and

the collector of Q2are shorted together while the emitter is open.

On the other hand, if the faulty value of R2is used for computation

of the base and collector current of Q2' these currents are almost zero

(0), indicating that the transistor Q2is operating at the origin of

the characteristic curve.

Case III. A Bad Transistor in the Circuit

Transistor Q4is replaced by a known faulty transistor, whose

emitter is open-circuited and base to collector junction is almost

short-circuited. This is a commlon type of failure when the emitter to

base junction is forward-biased too much. The base-collector voltage-

current characteristics uf the above transistor is shown in Figure 8.

The transistors' operating points are calculated and tabulated in

Table 7.

Referring to the calculated operating paints based on the mea-

sured resistor values of Table 7, the value of 184 equals in mag-

nitude to IC4, and VBE4 is much greater than point six volts (0.6V).

These data indicate that the emitter-base junction is short-circuited,

therefore, the transistor Q4 is faulty.

179



Table 6 Transistor Operating Conditions for Case II

Transistor Parameter Faulty value of R2  Faulty value of R2

is used for operating not taken into

point calculations. account.

QI IB1 1.355 1.355 mA

ICI 3.183 3.183 mA

VBE1 .729 .729 v

VCE1 .020 .020 v

Q2 1B2 .001 5.464 mA

IC2 -.001 -5.464 mA

VBE2 -2.32 -2.32 v

VCE2 26.20 26.20 v

Q3 IB3 0.0 0.0 mA

IC3 0.0 0.0 mA

VBE3 0.0 -0.0 v

VCE3 26.20 26.20 v

Q4 IB4 0.0 0.0 mA

IC4 0.0 0.0 mA

VBE4 0.0 0.0 V

VCE4 26.20 26.20 v
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Fig. 8 Collector-Base I-V Characteristics of the Faulty Transistor

Used in Case III and IV of the Experiment
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Table 7 Calculated Operating Points and Fault-Diagnosis

for Case III

Q Parameter Calculated Diagnosis Calculated Diagnosis
value based value based
on measured on claimed
resistance. resistance

Q1 IB1 22.12 Good 21.92 uA Good

ICI 4.81 8=217 4.86 mA 8=222

VBEI .6540 .654 v

VCE1 11.01 11.01 v

Q2 IB2 2.15 At rest -47.56uA VBE>.5v

IC2 73.47 IB 1 0 -517.4 uA IB,IC must

VBE2 -4.71 IC . 0 -4.71 v be zero

VCE2 11.16 11.16 v Calculation
error

Q3 IB3 71.80 Good -280.3 uA VBE >.6v

IC3 9.73 8 = 136 9.83 mA I must> 0

VBE3 .6970 .813 v :Cal.error

VCE3 2.05 2.05 v

Q4 IB4 -12.82 Bad -12.82 mA Bad

IC4 12.82 IB1=-IC 12.82 mA IB= -IC

VBE4 19.21 VBE>>.6v 19.27 v VBE>>.6v

VCE4 26.20 :B-E opened 26.20 v

C-B short.
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Again, using the nominal values of the resistors for calculation
produces significant errors. Consider the transistor Q2,the base to
emitter voltage is negative, therefore, the transistor is operating
in the cut-off region or both the base and the collector currents have
to be close to zero (0). However, the calculations show a relatively
large negative value for both of these currents. The error also occurs

in the base current calculation for transistor Q1which causes an
ambiguous state for the above transistor.

Case IV. Transistors Q3 and Q4 are Faulty

Transistors Q3and Q4are replaced by known faulty transistors,
whose base-collector characteristics are shown in Figure 8. The tran-
sistors' operating points are calculated and tabulated in Table 8.

The calculation of operating points based on the measured resistor
values is accurate, while those based on the nominal resistor values

creates errors.
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Table 8 The Calculated Operating Points and Fault-

Diagnosis for Case IV

Q Parameter Calculated Diagnosis Calculated Diagnosis
value based value based
on measured on claimed
resistor resistor

values values

Q1 IB1 22.12 Good 21.92 uA Good

ICl 4.81 a = 217 4.86 mA 8 = 222

VBEl .654 .654 v

VCEI 11.02 11.02 v

Q2 IB2 -1.19 At rest -50.9 uA At rest

IC2 74.22 IB,LC 0 -244.3uA IB,IC - 0

VBE2 -6.10 VBE <0 -6.1 v VBE <0

VCE2 9.76 9.76 v

Q3 IB3 -5.28 Bad -5.34 mA Bad

IC3 5.28 18= -IC 5.34 mA IB=-IC

VBE3 18.11 VBE>>.6v 18.20 v VBE>>.6v

VCE3 20.86 20.86 v

Q4 IB4 -8.66 Bad -8.66 mA Bad

IC4 8.66 same as 8.66 mA same as

VBE4 19.25 Q3 19.30 v Q3

VCE4 26.20 26.20 v

18
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CHAPTER VII

CONCLUSION

The dual-mode fault-diagnosis technique for non-linear systems

has been formulated in the preceding sections via the component-
connection equations. Mode 2 or non-linear D.C. analysis is performed

at the device or element level rather than at the internal parameter

level of the corresponding non-linear devices, which is not only com-

patible to previous successful fault-diagnosis techniques in digital

systems, but also very practical in today's increasingly complex elec-

tronic systems.

Computation-wise, this technique is much more advantageous than
the other existing techniques in analog non-linear systems because of

the use of linear matrix manipulations rather than solving complex

non-linear equations. However, this technique requires a relatively

larger number of test points compared to the method of V. Visvanathan

and A. Sangiovani-Vincentelli [2].

The experimental results indicate that the D.C. or non-linear

fault-diagnosis techniques cannot be used to diagnose the tolerance

or soft-fault problems due to the significant errors introduced by

the use of the manufacturer's claimed component values. Howeverthese
errors can be eliminated by the dual-mode technique since the measured

values of the linear components can be computed in Mode 1 or the multi-
frequency test. Furthermore, for the Mode 2 analysis, the bad value of
a faulty linear component has to be calculated so that the more accu-

rate results and fault-diagnosis can be obtained.

PRzCMNo FAA BLaK-bWQ nuuMO
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APPENDIX

TEST POINT SELECTIONS

Analysis of the Singularity of the Matrix

F L (M2 1( '-M LL 1M LN+ MN21L -11 )  11 +  21

This analysis is intended to expose the readers to the problem

of the test point selection in the D.C. analysis of the dual-mode

fault-diagnosis technique. The matrix F can be arranged in the

following form:

F L (z-1i LL -_I M LN +M
M2

1 (ZL -MII) ll + M11 )

where: KM= (Z 1-MLL)- MLN

L L 11 11

I = identity matrix

The matrix M2 1 depends totally on output selections; therefore,

the singularity of matrix F is also determined by the test point or

output selections.

L 193 11M PMOT N
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Referring to Example 2 of Section III, the matrix K1 is:

R2+ R3  R3 0 0

R R

RE RE 1 1

RE+ RC RE+ RC RE + RC RE + RC

- IR2 R2R3 0 0

R R

-R1 R3  R3(R1+ R2) 0 0

R R

RERC RERC -RE -RE

RE + RC RE + RC RE + RC RE + RC

1

19
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If V1 IRI, IRC, VR3 are chosen as test measurements, where

V1 = V + VCE2 the matrix is:

0 0 0 0 1 0 0 1 1

1 0 0 0 0 0 0 0 0

21 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 1

The resulting matrix F is singular because row I and 3 are

linear dependent.

RERC RERC RC RC

RE+ RC RE+ RC RE+ RC RE+ RC

R2 + R3  R3 0 0

F= R R

-RE - RE -1 -1

RC+ RE RC+ RE RC+ RE RC+ RE

_R1R3  -R3 (Rl+ R2) 0 0

R R

1
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However, with a minor change in output selection, VMS IR1,

IRC, VR3 are chosen, the first row of M21 becomes:

CO000 1 0 00

and the first row of matrix F becomes:

RE RC RERC -RE RC

[RE+ RC R E+R C R E+RC R E+RC]

Therefore, F is non-singular.

Referring to the Example of Section III, the matrix K is:

1/R1 0 0 0

1/R2 0 0 0

0 R3 R3 0

0 0 0 R4

0 R5 0 R5

1

1
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If VM, I+, VBI, VB2 are chosen as test points, the matrices

M21 and F are:

0 0 0 -1 0 0 0 0 01

10000 
0 1 1 1

M21 =  0 0 0 0 0 1 0 0 0

00-100 0 0 0 0

F = I/R1 1 1 1

1 00 0j
0 -R3 -R30

The F matrix is singular because the columns 2 and 3 are

linearly dependent.

However, if VM S I+, VR5, VB2 are chosen, the matrix F is

non-singular:

[ 0 0-1 0 0 0 0 0]
1 0 0 0 0 0 1 1 1

0 0 0 0 1 0 0 0 0

0 0 -1 0 0 0 0 0 0

-1/R1 0 0 0

-1/Ri 1 1 1
F=

0 R5 0 R5

0 -R3 -R3 0
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Considering the second and third column of matrix K', the

differences between these two columns are the elements K' = R
152 5'

KI=0 and K' = 1, K1  1. A subset of M21  which consists of
two outputs, has to be chosen, in such a way that its product

with the second and third column of K ' is non-singular. This

condition is satisfied when one of the outputs contains VR5,

as in the third row of M21 of the preceding discussion, which
results a non-zero element at row 3 and column 2 of matrix F.

Referring to Example 4 of Section III, the matrix K1 is:

RI 00 00 0 00

R3 R3 0 00 00 0
0 R2 R2 0 0 0 0 0
0 0 R4 R4 -R4 0 -R4 0
0 0 0 0 -R5 0 0 0
0 0 0 0 0 0 -R6 0

0 0 0 0 0 R7 0 0
0 0 0 0 RB RB 0 0
0 0 0 0 0 0 R9 R9

1- - - - - - - -- - - - - - - -

1

1

1

1 1

1 _

198



Suppose VR2, VR3, VR7, VR9, VR8 and VR4 are chosen to be the

test points, the matrices M 21 and F are:

0 R2 R2 0 0 0 0 0

R3 R3 0 0 0 0 0 0

0 0 0 0 0 R7 0 0

F = MR12KI R1 0 0 0 0 0 0 0

0 0 0 0 0 0 R9 R9

0 0 0 0 R8 R8 0 0

0 0 R4 R4 -R4 0 -R4 0

0 1 1 1 0 1 0 1

The determinant of F is:

det(F) = -R1R3R2R7R8.det R4  -R4  0 0

L 0 1

because

det [4 -R4 0 = det [ R 4 + det[ 4=

0

R R4 R9+ R 4R9 = 0

[0 R9 R9 1
In order to make det R4 R4 0 0 0, one of the elements of

1 0 1

199



the third row of this matrix has 
to be changed to zero as follows:

0 R9 R9 ~ 0 R9 R9

-R4 0 or R4 -R4 0

0 
0 

Physically , this means one has 
to select the last output measure-

ment such that it does not contain 
both IC4 and IC3.
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