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Fault Diagnosis in Electronic Circuits

R. Saeks R.-w. Liu
Department of Electricai Engineering Department of Electrical Engineering
Texas Tech University Notre Dame University
Lubbock, Texas 79409 Notre Dame, IN. 46556

During the past quarter century the engineering community has been
witness to tremendous strides in the art of electronics design. The graph-
icai algorithms of the previous generation have given way to the modern
CAD package, the breadboard has been subsumed by the simulator. Indeed,
even the universal building block has become a reality. To the contrary
electronics maintenance has changed little since the day of the vacumm
tube, remaining the responsibility of the experienced technician with
scope and muitimeter. As such, our ability to design a compiex electronic
circuit is quickly out-distancing our ability to maintain it. In turn,
the price reductions which have accompanied modern electronics technoliogy
have been paralleled by increasing maintenance and operations costs. In-
deed, mary industries are finding that the 1ife cycle maintenance costs
for their electronic equipment now exceed their original capitol invest-
ment.

Given the above, it is quickly becoming apparent that the electronics
maintenance process, like the design process, must be automated. Un-
fortunately, the 50 years of progress in circuit theory, on which our
electronics design automation has been predicated, does not exist in the

maintenance area. As such, the past decade has witnessed the inauguration

of a basic research program to lay the foundations for a theory of electronic

maintenance and a parallel effort to develop operational electronic

maintenance codes.
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Thus far the greatest success has been achieved in the digital electronic
area, wherein the finite state nature of the UUT (unit under test) may be
exploited.3 Typically, one assumes that all failures manifest themselves in
the form of component outputs which are either "stuck-at-one" or "stuck-at-
zero" and/or shorts and opens.s Under such an assumption a theory for
digital system maintenance has been developed and practical fault diagnosis
algorithms are in the formative stages of development. Typically, one
hypothesizes some limit on the number of simultaneous faults and then simu-
lates the responses of the UUT to a family of test vectors for each allowed
combination of faults. The actual responses of the UUT are then compared with
the simulated responses to locate the failure. Although lacking in asthetic
appeal the above approach, termed fault simulation, is ideally suited for
the maintenance environment, wherein, the actual simulation process need only
be done once at the factory or a maintenance depot with the simulated
response data being distributed via magnetic tape to the various field loca-
tions where the actual test is conducted. As such, with the aid of some
sophisticated software engineering, this apparently "brute force" approach
to the fault diagnosis problem has slowly evolved into a workable concept.4
Indeed, at the present time a number of automatic test program generators
which classify faults, choose test vectors, and carry out the appropriate
simulation (often in a parallel processing mode), are commercially available
and, as such, the automated maintenance of digital electronic circuits is
becoming a rea]ity.4

Unfortunately, the above described success in the digital world has

not been paralleled by progress in the analog world. Indeed, test engineers




complain that while 80% of the boards are digital, 80% of their headaches
are analog and hybrid. This difficulty arises from a number of character-
istics of the analog problem which are not encountered in digital circuits.
Indeed, in an analog circuit:

(i) there is a continuum of possible failures,
(ii) a component may be "in tolerance" but not nominal,
(iii) complex feedback structures are encountered,
(iv) simulation is slow and costly,
(v) post-fault component characteristics may not be known,
(vi) and a fault in one component may induce an apparent fault in
another.
Items (i) and (ii) imply that an extremely large number of simulations will
be required for analog testing. Items (iii) and (iv) suggest that these
simulations will be far more expensive than similar digital simulations.
Finally, items (v) and (vi) indicate that the simulation of a post-fault
circuit by itself may not be a tractable prob]em.. As such, it is by no
means clear that the kind of "brute force" fault simulation algorithm
associated with the digital problem will be applicable to the analog or
hybrid case.

As an alternative to fault simulation, a number of academic researchers
have proposed a variety of "post test" fault diagnosis algorithms, wherein,
an "equation solving like" algorithm is used to locate the faulty component
given the test data from UUT.Z’8 Although these algorithms are, in some
sense, "smarter" than the simulation algorithms, most of the required com-

puting must be done in the field after the UUT has been tested. Moreover,

these computational requirements must be replicated each time a unit fails.




As such, the success of such "post test" algorithms is contingent on re-
ducing their computational requirements to a bare minimum. Although no
system is yet operational, with the aid of the powerful linear circuit
theory developed over the past half century, a computationally efficient
solution to the fault diagnosis problem for linear analog circuits appears

1,2 Unfortunately, no such light exists at the end of

to be within reach.
the nonlinear tunnel, wherein progress appears to be limited by a
"computational complexity/test point" bound.

Not surprisingly, the computational cost of an analog fault diagnosis
algorithm is an inverse function of the number of test points at which
measurements of the UUT may be made. Indeed, if one lets n be a measure of
UUT complexity (which may loosely be taken to be the total number of
terminals for all of the circuit components), then if one has access to
O(n)(?]) test points the fault diagnosis problem can be resolved using
linear a]gorithms.7’10 Moreover, by combining such algorithms with the
above mentioned linear algorithms, acceptable comphtationa] efficiency can
be obtained with 0{(m) test points where m is a measure of the complexity
of the "nonlinear subsystem" of the UUT.6’7 Although such algorithms can
be effective on the typical academic example a "real world" PC (printed
circuit) board does not iave terminal space for the 20 or 30 test points
which are required even for a routine board made up of discrete components
and/or SSI (Small Scale Integration). Although the problem can be partially
alleviated by making internal measurements with the aid of a "bed-of-nails”
tester it has been our experience that such testers cause as many failures

as they locate while their applicability to two-sided, multilayer, and

¥ f(n) = 0(n) means f increases in the order of n; more precisely,
[f(n)| <c|n| for some c>0.




coated boards is severly limited. As such, we would like to limit the
number of test points required by an analog fault diagnosis algorithm
should inc ease at a rate of no greater than O(n]/z). A further study of
the possible tradeoff‘between test points and computational cost appears
in references 11 and 12.

Unfortunately, a1l computationally acceptable "post test" algorithms
which have thus far been proposed have test point requirements which grow
linearly with UUT complexity (assuming that m grows linearly with n). As
such, many researchers are looking at the classical fault simulation al-
gorithms with renewed vigor. Indeed, these algorithms have minimal on-
line computational costs, while the number of test points employed can
easily be kept below 0(n2/1). The difficulty lies with the required number
of simulations and the development of decision algorithms which will allow
us to "interpolate” between simulated data points.

Thus, while the state-of-the-art in digital diagnosis is fast maturing,
a serious investigation of analog fault diagnosis problems is only just
beginning. Indeed, a satisfactory fault diagnosis code for linear analog
circuits has yet to be demonstrated while the nonlinear problem has yet to

progress beyond the basic research stage.
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Fault Diagnosis - A Nonlinear Systems Problem

R. Saeks
Department of Electrical Engineering
Texas Tech University
Lubbock, Texas 79409

Summary

Conceptually, the fault analysis problem for an analog circuit or
system amounts to the measurement of a set of externally accessible para-
meters of the system from which one desires to determine the internal system
parameters or equivalent]y* locate the failed components as illustrated in

Figure 1. Here, the

Figure 1. Conceptual Model of Fault Diagnosis Problem.

measurements, m;, may represent data taken at distinct test points or alter-

natively, data taken at a fixed test point under different stimuli.

*

Since the problem of determining the values of the failed components is usually
straightforward, once the failures have been located, the exact determination of
all internal component parameters is essentially equivalent to the problem of
"simply" locating the failed components.

11
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Similarly, the r represent parameters characterizing the various internal
system components. Here, a single parameter may characterize an entire
component, say a resistanée, capacitance or inductance. Alternatively, a
component may be represented by several parameters: the h-parameters of a
transistor, the po}es and gain of an op-amp, etc. In general, one models
a system component by the minimum number of parameters which will allow
the failure to be isolated up to a "shop replaceable assembly" with all
"allowed" system failures manifesting themselves in the form of some para-
meter change.

To solve the fault diagnosis problem, one then measures m = col(m,)

1

and solves a nonlinear algebraic equation
1. m = F(r)

forr = co1(ri) to diagnose the fault. Note, the function, F, is nonlinear
even for linear systems, however, for linear time-ipvariant systems the
function, F, can be expressed analytically. More generally, in the nonlinear
case, one can evaluate F{r) for any given parameter vector, r, with a simu-
lator, and thus solve 1. numerically, even though F has no analytic expression.
Although one does not usually formulate the fault diagnosis problem in
terms of the above described equation solving notation, this formulation is
equivalent to the classical fault simulation concept. Indeed, fault simula-
tion is simply a search algorithm for solving 1. Here, one precomputes
m= f(;) for each a]1owab1e# faulty parameter vector r and then compares the
measured m with the simulated ﬁ's, stored in a fault dictionary, to solve
equation 1.
#By allowable faults we mean all possible parameter vectors, ;, which satisfy a
specified set of fault hypotheses. These typically restrict the maximum number

of component parameters which are simultaneously out of tolerance and the type
of failure (open circuit, short circuit, small change, etc.)

12
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Although the above described approach to fault simulation has been
successful** when applied to digital system, there is considerable question
surrounding its applicability to analog circuits and systems. The problem
is two-fold. First, rather than simply failing as a one or zero, an analog
parameter has a continuum of possible failures. Secondly, unlike a digital
system wherein a component is either good or bad, in an analog system, a com-
ponent parameter is either in tolerance or out of tolerance. As such, for
each hypothesized failure, it may prove necessary to do an entire family
of Monte Carlo simulations in which the values of the good components are
randomly chosen within their tolerance limits. Although, at the present
time we have insufficient practical experience to determine the precise
number of fault simulat{ons required for analog fault diagnosis, it is esti-
mated that the number of simulations required for an analog system will ex-
ceed the number of simulations required for a digital system of similar
complexity by a factor ranging between two and six qrder of magnitude. As
such, the fault simulation concept which has proven to be so successful for
a digital system may not be applicable in the analog case.

As an alternative to fault simulation, one may adopt one of the more
classical equation solving algorithms for the solution of 1. Here, one first
measures m and on the basis of this measurement, makes an initial guess r°

(usually taken to be nominal parameter vector) at the solution of the equations.

(¢] (o]

One then evaluates m® = F(r®) and compares it with m. If m =m, r

is the
solution to the fault diagnosis equation. If not, one makes a new "educated"

guess at the solution, rl, (usually based on the deviation between m and m°)

**Host industrial users of ATE obtain satisfactory fault detection in digital

circuits via fault simulation techniques but require guided probe techniques
in addition to the fault dictionary data for fault diagnosis (isolation).
13




and one repeats the process by evaluating m] = F(r]) and comparing it with
m. Hopefully, sequence qf component parameter vectors, ri, simulated data
vectors, mi = F(ri), is obtained, which "quickly"” converges to r and m,
respectively. Since the evaluation of F(ri) is essentially equivalent to the
simulation of the system with the faulty parameter values, ri, this technique
is really another form of fault simulation. In this case, however, one
simulates the system after the data vector has been measured and uses this
data to make an educated guess at a (hopefully) small number of parameter
vectors at which the system should be simulated. As such, the.approach has

been termed simulation after test to distinguish it from the classical

approach, wherein all simulation is done before test.

At the time of this writing, both approaches are under study, neither
of which have been shown to be superior. Fault "simulation after test" requires
that one include an efficient simulator in the ATE itself, which can be used
for on-line computation of mi = F(ri) after the UUT has been measured. On the
ohter hand, simulation after test eliminates the requirement of searching a
large fault dictionary for the (approximate) data matches required by
"simulation before test". In addition, the complex ATPG requirement for
"simulation before test" is eliminated.

To make "simulation after test" feasible, however, an efficient equation
solving algorithm is required to obtain convergence of the r"i sequence in a
reasonable amount of time. Moreover, since "real world" failures in analog
circuits and systems often take the form of open and short circuited components
or large parameter diviations from nominal, the classical perturbational

algorithms a-la Newton-Raphson are inapplicable. Fortunately, in the context

14
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of the fault diagnosis problem, cne can reasonably assume that relatively
few component parameters have failed. As such, even though it is not valid
to assume that r-r° (the deviation of r from nominal) is small in norm, it

is reasonable to assume that it is small in "rank".

15
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Criteria for Analog Fault Diagnosis*

R. Saeks
Department of Electrical Engineering
Texas Tech University
Lubbock, Texas 79409

Introduction

After a half century of neglect by the electronics community the
past decade has witnessed an expanding effort in the analog fault diagnosis
area. Indeed, the ever increasing complexity of electronic circuits com-
bined with the decreasing availability of trained maintenance technicians
has pushed computer-adided testing (CAT) to fhe forefront of electronics
research. Unfortunately, the tremendous strides which have been made in
digital test technology have not been paralleled by equal progress in the
analog area. As such, even though "80% of the boards are digital 80% of
the problems are analog".

The lack of progress in analog CAT vis-a-vis digital CAT may be
attributed to four factors:

i). the cost of analog circuit simulation,

ii). the continuous nature of analog failure phenomena,

ii1). tolerances on the "good" components in analog circuit,

iv). and the lack of viable models for the components in a faulty circuit.
Moreover, these difficulties have been exaggerated by the economics of the
maintenance environment which limits the degree to which many of the classical
tools of analog circuit design can be used in a CAT package.

The purpose of the present paper is to describe a set of criteria which
we believe a practical analog CAT algorithm should achieve and to indicate

the degree to which they are met by the various algorithms which have thus

* This research supported in part by the Joint Services Electronic Program
at Texas Tech University under ONR Contract 76-C-1136.
19
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far been proposed.1 These criteria include computational requirements,
numbers of test points and test vectors employed, robustness to tolerance
effects, availability of models, and the degree to which the algorithm is
amenable to parallel processing. Although many specific algorithms have
been proposed they may naturally be classified into three categories:
i). simulation-before-test,

ii). simulation-after-test with a single test vector,

iii). and simulation-after-test with multiple test vectors.
Each of these three approaches to the analog CAT problem is compared against
our criteria, and, interestingly, each approach fails to meet at least one

of the proposed criteria.

Criteria

A. Computational Requirements: Unlike a CAD algorithm which is used

only in the initial design of a circuit or system, a CAT algorithm lives in
an operational environment and thus must be used repeatedly each time a
system fails. As such, a viable measure for the computatigna] cost of a CAT
algorithm must distinguish between on-line computation which is done in the
field and must be repeated for each unit under test (UUT) and off-line compu-
tation which is independent of the unit under test and thus need only be done
once at the factory or a maintenance depot. Indeed, the distinction between
on-line and off-line computation is further exaggerated by high cost of
computing and the dearth of trained personnel in a field maintenance environ-
ment vis-a-vis that is available at a maintenance depot. Thus in a CAT al-
gorithm a great prionity must be placed on reducing the on-£ine computational
requinements even at the cost of significantly increasing the off-line com-
putation. As such, an algorithm which is viable in a design environment might

not be acceptable in a maintenance environment and vice-versa. Indeed, in a
29




CAT algorithm one would be happy to accept the cost of generating a complex
data base in an off-line environment to achieve a reduction in on-line
computational requirements.

B. Test Points: Historically, analog circuits have been tested with
the aid of a "bed of nails" tester which allows one to make use of test
data which is not accessible via the input and output terminals of the circuit
board. Unfortunately, modern circuit boards are often multilayered and/or
coated, thereby limiting the applicability of the "bed of nails" concept.
As such, a modern CAT algorithm must be designed to work with the test data
which is available at the externally accessible terminals of a printed
circuit board. In practice, this proves to be a dominating factor in the
design of a CAT package, which preciudes the use of some of the more
attractive algorithms with test point requirements which grow linearly with
circuit complexity. In fact, circuit complexity is proportional to the
area of a printed circuit board (if not a power thereof) while the number
of accessible test points is proportional to the edge length of the board.

As such, in a practical CAT package it is reasonable to require that the

number of test points ghow with the square root of circuit complexity (or less).

C. Robustness: Unlike a digital system wherein a device is either good
or bad in an analog circuit a device is either "in-tolerance" or "out-of-
tolerance" and, as such, an analog CAT algorithm must be able to cope with
the effects of components which are in-tolerance but not nominal. Although,
at the time of this writing, there is insufficient experimental data to
determine the import of robustness in an anaiog CAT algorithm it is, at
minimum, a factor of which one must be cognizent and may, in fact, prove to

be a dominating factor in the design of a viable CAT package.

21




D. Models: Since most CAT algorithms presuppose some form of circuit
simulation in their operation and design of such an algorithm must consider
the type and availability of circuit models which are required and/or
available. In particular, does the algorithm use nominal circuit models or
faulted cincuit models? Indeed, even if nominal circuit models are used do
they operate in their normal range? Finally, one must consider whether or
not the algorithm is capable of dealing with "fuzzy" components which do not

admit viable simulation models.
E. Module vs. Parameter Testing: Most analog fault diagnosis algorithms

can be catagorized as either module oriented or parameter oriented. In the
former case the algorithm tests the input-output performance of the individual
modules or subsystems which make up the UUT while in the latter case the
algorithm estimates a set of parameter values which determine

the performance of a given circuit component. Although one can often
formulate a circuit model for a given module thereby permitting one to

use a parameter oriented algorithm to test modules, such a process may
unnecessarily complicate the test procedure. As such, a module oniented

CAT algonithm is preferred over a parameter oriented algorithm if it can be
formulated without compromising other factors.

F. In-Situe Testing: Although secondary to the above considerations

the ideal CAT algorithm should allow for .in-situe testing. Since one cannot
control the input signals applied to the UUT in-situe such an algorithm
must work with an arbitrary input signal rather than a fixed set of test

vectors.

G. Parallel Processing: Since the CAT problem is inherently a large

scale systems problem it is essential to exploit whatever computational

22




power is available to reduce both on-line and off-line computational
requirements. In particular, digital CAT algorithms often use some degree
of parallel processing in their implementation. Given the additional
computational problems associated with an analog CAT algorithm the degree
to which an algorithm can be implemented in parallel becomes a significant
§acton in determining its viability and should therefore be included among
our criteria for an analog CAT package.

In the above paragraphs we have described seven aspects of the CAT
problem which must be considered in judging an analog CAT algorithm,
Although we would ideally like to formulate an algorithm with minimal
computational requirements a moderate amount of off-Line computation is
acceptable since the off-1ine computation need only be done once and is
carried out in a depot environment where good computational facilities and
high level personnel are available. On the other hand since the on-£Line
computation associated with a CAT algorithm is rep]icated for each UUT and
carried out in a field environment it must be kept to a minimum. Likewise
the test point requirements for an analog CAT algorithm must be kept to a
minimum. Although the requirement that the number of test points used by
a CAT algorithm grow with the square root of circuit complexity is open to
debate it is indicative of a fundamental limitation to the effect that the
number of test points should grow a less than a linear rate with circuit
complexity. Concerning the remaining criteria we want an algorithm that is
robust though the significance of this requirement is not fully understood

at this time. Similarly, the availability of circuit models to implement

an algorithm must be considered. Finally, but secondary to the above require-

ments, it would be desirable to have a module oriented algorithm which is
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amenable to in-situe testing and parallel processing. These criteria are
summarized in table 1 along with a set of goals which one would wish to

achieve in an "ideal analog fault diagnosis algorithm".

CAT Algorithms

A. Simulation-Before-Test: Although it is essentially a brute force

search algorithm simulation-before-test is well suited to the depot/field
computationa) environment of the CAT problem and, as such, it predominates
in most state-of-the-art digital CAT packages.3 On the other hand its weak-
nesses become more pronounced in the analog problem wherein it has yet to
be successfully implemented. Basically, a simulation-before-test algorithm
is a search algorithm in which one simulates the expected test data which
would result from various hypothesized failures in an off-line environment.
Then when the actual test data is obtained in the field it is compared

with the simulated results to determine the failure. Needless to say the
technique requires immense amounts of off-line computer time to generate
the required data base but is extremely efficient on-line, wherein one need
only compare the test results with the simulated data base.

Unfortunately, the cost of an analog simulation is much greater than that
of a digital simulation. Moreover, one requires a much larger data base in
the analog probiem than in the digital problem to cope with the continuous
nature of the analog failure phenomena and the robustness problem. As such,
there is considerable doubt about the applicability of the simulation-before-
test concept in an analog CAT package.

Vis-a-vis our criteria for analog fault diagnosis simulation-before-
test requires extremely large amounts of off-line computer time but only a

minimum of on-line computer time. Additionally, the test point requirements
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for the algorithm are minimal. On the other hand the technique has no

inherent robustness and uses faulted simulation models for all components.
With regard to the secondary factors the algorithm is module oriented and
amenable to parallel processing but not in-situe testing. These considerations
are summarized in Table 1.

B. Simulation-After-Test with a Single Test Vector: Rather than using

a search algorithm for fault diagnosis one can attempt to model the analog
fault diagnosis problem as a nonlinear equation in which one solves for
the internal variables or component parameters in terms of the test data.
Although this may, at first, seem to totally bypass the repetitive simu-
lation-before-test algorithm, a careful analysis will reveal that each itera-
tion of the required numerical equation solver amounts to a simulation of
the UUT. In this case, however, the particular simulations which one carries
out are based on known test data rather than a-priori fault hypotheses. As
such, the simulations are done on-line after the test data has been obtained
and the technique is thus termed simu]ation-after-test.2
In the case where only a single test vector is employed the resultant
fault diagnosis equations are "almost linear" and may be solved with the aid
of a single (off-line) sparse matrix inversion.a’s The test point reguire-
ments for the algorithm, however, grow linearly with circuit complexity.
Interestingly, this class of algorithms have been discovered independently
by a number of authors over the years, most of whom thought that they had
found the "ideal algorithm" until they fully appreciated the significance
of the test point requirement which severely limits its applicability.

From the point of view of our other criteria, however, the algorithm is,

25




indeed, "ideal". Off-line computational requirements are moderate while
on-line computational requirements are minimal. Moreover, the algorithm
is inherently robust and requires no simulation models of any kind, it
tests modules, and it is amenable to in-situe testing. Finally, the
computational requirements associated with the algorithm are sufficiently
low so as to render the parallel processing question moot.

C. Simulation-After-Test with Multiple Test Vectors: One approach

to reducing the test point requirements of the simulation-after-test
algorithm is to use multiple test vectors to increase the number of
equations obtained from a given set of test points, thereby rendering the
fault diagnosis equation soluable with a restricted number of test points.
The most common form of the multiple test vector algorithm is the multi-
frequency algorithm used in linear fault diagnosis, though the concept
extends to the nonlinear case via the use of multiple test vectors of any

type.]’2

The reduced test point requirement obtained via the use of multiple test
vectors is, however, achieved at the cost of greatly increasing the complex-
ity of the resultant fault diagnosis equations. Indeed, the "almost linear"
equations of the single test vector algorithm are replaced by an extremely
complex set of nonlinear equations (even for linear systems) in the multiple
test vector algorithm. Although these equations can be made trackable in
the linear case they appear to be totally untrackable in the nonlinear case
and, as such, most of the advantages of the simulation-after-test concept
are lost when multiple test vectors are employed.

With regard to our criteria the multiple test vector algorithms require

large amounts of on-line computer time though relatively little off-line




computer time is required. In its most obvious form the technigue is
robust, though this robustness is compromised by most of the "tricks" which
have been proposed to make the multiple test vector fault diagnosis
equations trackable. Faulted simulation models are required and the al-
gorithm is inherently parameter oriented. Finally, it is not suited to

either in-situe testing or parallel implementation.

Conclusions

The above concepts are summarized in Table 1, wherein the various
criteria, by which an analog CAT algorithm should be measured are tabulated,
the goals for an ideal algorithm are described, and the degree to which the
various algorithms achieve these goals is indicated. From the table it is
apparent that none of the algorithms is fully acceptable. Indeed, even if
one neglects the secondary considerations regarding modules vs. parameters,
in-situe testing, and parallel processing all three approaches fail to
meet one or more of the primary criteria (indicated by capital leters in
the table). As such, the proper approach to the solution of the analog

CAT problem remains an open gquestion.
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C.-c. Wu, K. Nakajima, C.-L. Wey, and R. Saeks
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Abstract

A simulation-after-test algorithm for the analog fault diagnosis problem
is proposed in which a bound on the maximum number of simultaneous failures
is used to minimize the number of test points required. The resultant al-
gorithm is applicable to both linear and nonlinear systems and can be used

to isolate a fault up to an arbitrarily specified "replaceable module".

* This research supported in part by the Joint Services Electronic Program
of Texas Tech University under ONR Contract 76-C-1136.
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I. Introduction

Conceptually, analog fault diagnosis algorithms can be subdivided into
three c]asses;3 simulation-before-test, simulation-after-test with a single
test vector, and simulation-after-test with muitiple test vectors. The former
is commonly employed in digital testing and is characterized by minimal on- |
line computational requirements. Unfortunately, the high cost of analog
circuit simulation coupled with the large number of potential fault modes
which must be simulated in an analog circuit limits the applicability of
simulation-before-test algorithms in an analog test environment. As an
alternative to simulation-before-test, a number of researchers have proposed
simulation-after-test algorithms, in which the internal system variables or
component parameters are computed from the test data via a "nonlinear
equation solver - like" algorithm. Indeed, in the case where sufficiently
many test points are available only a single test vector is reguired and the
fault diagnosis problem reduces to the solution of a linear equation.a’9
Except for the large number of test points required, this approach is ideally
suited to the analog fault diagnosis problem and, as such, a considerable
research effort has been directed towards the problem of reducing its test
point requirements.3 One such approach uses multiple test vectors to increase
the number of equations obtained from a given set of test points. Unfortunate-
1y, this is achieved at the cost of greatly complicating the set of simultan-
eous equations which must be solved and, as such, the applicability of the
approach is limited.

The purpose of the present paper is to describe an alternative simulation-

after-test algorithm in which a bound on the maximum number of simultaneous
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failures is used to reduce the test point requirements while still retaining
the computational simplicity inherent in a single test vector algorithm.
Indeed, even though a given circuit may contain several hundred components

it is reasonable to assume that at most two or three have failed simultaneous-
ly. As such, rather than solving a set of simultaneous equations in n-space
the solution to our fault diagnosis problem actually lies in a two or three
dimensional submanifold which should yield a commensurate reduction in test
point requirements. Unfortunately, even though we may assume that at most
two or three components have failed we do not know which two or three, und as
such, some type of search is still required. Fortunately, with the aid of

an appropriate decision algorithm the required seach can be implemented

quite simply.

Consider the circuit or system which is illustrated abstractly in figure 1.

® //@ ’@_

|

Figure 1. Test algorithm for abstract circuit or system.
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Here, the individual circuit components or sub-systems are denoted by

circles indexed from a to n. These components are subdivided into two groups,
at each step of the test algorithm, as indicated by the dashed lines in

figure 1. At each step we assume that one group; say, d through n;

is composed of good components and we use the known characteristics of

these components together with the test data to determine whether or not the
remaining components; a, b and ¢ in this case; are good. Of course, if
components d through n are actually good then the resultant test results for

components a, b and ¢ will be reliable. On the other hand, if any one of the

components d through n is faulty the test data on a, b and ¢ will be unreiiable.

As such, we repeat the process at the next step of the test algorithm with a
different subdivision of components. For instance, we may assume that a
through d and h through n are good and use their characteristics to test
components, e, f and g. Finally, after a number of such repetitions the test
results obtained at the various steps are analyzed to determine the faulty
components.

O0f course, the number of components which may be tested at any one step is
dependent on the number of test points available while the number of steps re-
quired is determined by the number of components which may be tested at any one
step and the bound on the maximum number of simultaneous failures. As such,
the procedure yields a natural set of tradeoffs between the numbers of test
points, simultaneous failures and steps required by the algorithm. Indeed,
since the computational cost associated with each step of the algorithm is
essentially the cost of a single system simulation the latter parameter is
a natural measure of the computational cost.

In the following section we describe the simulation model used to test
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one set of components under the assumption that the remaining components

are good. The model is formulated in both the linear and nonlinear cases

and can be used as readily to test modules and subsystems as individual
components. Moreover, the requirement that an appropriate matrix be invertible
determines the maximum number of components which can be simultaneously tested
from a given set of test points as well as the allowable component sub-
divisions. In section three two decision algorithms for analyzing the resul-
tant test data are described. Indeed the required theory is reminiscent, ‘
though not identical to, the t-diagnosibility theory developed for digital

4.6 In the context of our application

system testing over the past decade.
we give an exact decision algorithm for the case of a single failure together
with an analysis of the possible tradeoffs between test points and algorithm
steps (read computer costs). Although an exact decision algorithm for the
multifailure case has yet to be developed an heuristic algorithm which is
applicable to both the single and multifailure case is presented. The algorithm,
which is based on an inherently analog heuristicz to the effect that two
analog errors will never cancel, has proven to be highly reliable while
simultaneously reducing the number of steps required from that of the exact
(single failure) algorithm. Finally, section four is devoted to a number of
examples. These examples include linear circuits with 12 aml 22 components
which were run on a desktop calculator and a 16 bit mini, respectively.

Although we have yet to implement the algorithm in the nonlinear case
the nonlinear algorithm is identical to the linear algorithm except for the

requirement that a nonlinear simulator be used in lieu of the linear simulator.

As such, we believe that the increase in computational costs for the nonlinear .
case vis-a-vis the linear case will be in proportion th the increased running

time for the nonlinear simulator. ]
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I1. The Simulation Model

Although our test algorithm can be formulated in terms of any of the
standard system models for the purpose of this exposition we will assume

2 In the

a component connection model for the circuit or system under test.
nonlinear case the unit unden test is represented by a set of decoupled state
models characterizing its components and/or subsystems together with an

algebraic connection equation as follows.

x; = f.(x.,a;)
T % (0) = 0, 51,2, ... (2.1)
b-' = 91(x1 ’a‘i)
and
a=Llyb+Llyu (2.2)
y = Lyph Ly (2.3)

Here, a = co](ai) is the column vector composed of the component input variabies,

b= col(bi) is the column vector composed of component output variables, u is
the vector of external test {nputs applied to the system and y is the vector

of sustem nesponses measured at the various test points. Although the component
connection model is not universal it is quite general and subsumes most of the
classical topological connection models commonly used in circuit and system

2 Moreover, its inherently decoupled nature is ideally suited to the

theory.
test problem wherein we desire to distinguish between the characteristics

of the individual system components. Although these components may be taken
to be elementary RLC components and/or discrete semiconductor devices, in
practice the “components“ are taken to be the "replaceable modules" within the

circuit or system, under test; say, an IC or a "throw-away" circuit board.
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At each step of the test algorithm we subdivide the "components" into
two groups denoted by “1" and "2" with the components in group “1" assumed
to be good and used together with the known values of u and y to compute the
component input and output variables, a, and bi’ for the components in group
"2". Although computationally we prefer to work with the decoupled component
equations for notational brevity we combine the equations for the components

in each group into a single equation

' = fl(x',ah

; x'(0) =0 (2.4)
b] - 91(x1’a1)
and
x¢ = £2(x2,2%)
s x2(0) = 0 (2.5)

b2 - gz(xz,az)
Here, x], a] and b] are the vectors of group "1" component state variables,

inputs and outputs; and similarly for xz, a2 and bzf

To retain notational
compatibility with 2.4 and 2.5 we reorder and partition the connection

equations of 2.2 and 2.3 to be conformable with 2.4 and 2.5 as follows

1 1.1 12,2 1
2 _,211 22,2 2
y = lyb! + Lg%+ Ly (2.8)

Given equations 2.4 through 2.8 our goal is to compute the group "2"
component variables, a2 and bz, given the test input, u, the measured tesz

responses, y, and an assumption to the effect that the group "1" componets are
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ot faulty. To this end we assume that L§1 admits a left inverse, [L§1]-L,

which, in turn, determines the allowable component subdivisions. Under

this assumption one may then formulate a component connection model for a
"nseude circudlt” composed of the group "1” components with external input
vector uP = col(u , y) and external output vector yp = co](az, bz) in the

form

; x(0) =0 (2.9)
b] - g](x],a])
1 _ 1 p
a’ = Kypb' o+ Kz]u (2.10)
P . 1 JP

Indeed, some algebraic manipulation of equations 2.6 through 2.8 together with

the assumption that [L%.ll'L exists will yield

L n2n2 L
K11 [n'LnELzﬂ '-21] (2.12)
1 12,2 L, ! 1242 L
K2 = En'Lnf’-zﬂ Lag 1 Lyyltyyd ] (2.13)
21,222
Lyy=tyytyy 2 '-
KZ] = ——----—---; ----- (2.14)
-L
‘“21] Loy
T2 22 V22 L
SPRE fL Lo 3 Lygltyyd
PSR P fommememmoen (2.15)
2 -L b2 L
-0y "Ly, v Loy
a1




Since, in our test problem both u and y are known, the above equations
can be solved via any standard circuit analysis code to compute yp = az,bz).
Now, under our assumption that the group "1" componenta sre not faulty yp =
(az,bz) represents the inputs and outputs which actually appeared at the
terminals of the group "2" components during the test. As such, we may
determine which of the group "2" components are faulty by solving equation
2.5 with input a2 and checking to determine whether or not the resultant
output coincides with bz. Of course, since our assumption to the effect that
the group "1" components are not faulty may not be valid the results of
this test are not reliable. As such, we repeat the process a number of
times with different choices for the subdivision of the components into
group "1" and group "2". Here, the only constraint on the choice of sub-
divisions is the requirement that [LS]]'L exist while the number of com-
binations employed is limited only by the cost of the required simulations.
The results of the several steps in the test algorithm are then analyzed
via the techniques described in the following section to determine those

components which are actually faulty. To this end the results of each step of

the test algorithms are tabulated as follows

N a b oc ... K
|l2l| s
0
Ty
012
Here, a,b,c, ... ,k denote the group "1 components for a given step of the
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test algorithm, x,y, ... ,Z denote the corresponding group "2" components

while the binary annotation associated with the group "2" components in-
dicates whether this step of the test algorithm indicated that they were
good (0) or bad (1). Although this tabular notation is somewhat cumbersome
we will eventually generate a binary array indexed by the group "1" and
group “2" components in the process of our decision algorithm in which case
the tabular notation probes to be convenient.

For linear systems one may formulate an identical algorithm in which

the component equations 2.1 are modeled in the frequency domain via

a. =272.b. ; i=1,2, ... ,n (2.16)

where we have suppressed the s-variable for notational brevity. Then upon

subdividing the components into two groups characterized by the equalities

]
b1 =72 and b1 = 7% and solving the resultant equations under the assumption

that [LSIJ—L exists one obtains an equation in the form yp = MoP. Specifically,
a2 = M u+ M (2.17)
1 12Y .
b2 = M,.u + M (2.18)
21 22y :
where
21 2202 =L, 1 20,011 12,2 =L, 1. -1,201 1202 --L
Mpp = (=L 0 ) T IO - 200 Lol Tl - 200y -l llyy ] Thppd)
2 22,2 4-L
oy 21 22,2 4oL, ] 111 12,2 210 1=151.12.02 =Ly, q 2202 =L
(2.20)
) 2 -L 10,011,120 2 =L, 1 (=152, 1 12,2 .-L n2 4L
I TR A e P O R L A P IR PR TR
(2.21)
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and

1 1242 )

o rp2 1l SIS B

Although these expressions appear to be foreboding they may all be
computed with the aid of only a single matrix inversion. Moreover, since the
Mij are independent of the test data and computed in terms of the nominal
values of the group "1" components they may be computed off-line and stored in
a data base to be retreived at the time a test is conducted. Furthermore,
since only a single test vector is required, single frequency testing can be
employed in which case the Mij need only be computed at a single frequency.

As such, the only on-line computation required for the fault diagnosis of a
linear system is the matrix-vector multiplication indicated by equations 2.17
and 2.18 together with the computation of 22a2

Unlike the linear case, if one is working with a nonlinear circuit or

2 and b? require a-priori knowledge

system, the simulations required to compute a
of y and y and thus must be carried out on-line. In practice, however, relative-
1y few time steps are required by these simulations, thereby minimizing their
running time. Moreover, all simulations are carried out with nominal components
allowing one to use standard CAD circuit models. Indeed, since the group "2"
component models are only invoked at the final step of the analysis one can

avoid simulating "troublesome" components by always including them in group

"2" though this usually means that additional test points will be required.

As such, one can avoid simulating "fuzzy” components which do not admit a viable
simulation model and/or nonlinear components. Indeed, if sufficiently many

test points are available to permit all nonlinear components to be included in

group "2" a linear simulation model such as that of 2.17 and 2.18 may be

employed even for a nonlinear system.
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III. Decision Algorithms

Since the results of the tests described in the preceding section are
dependent on our assumption that the group "1" components are not faulty
they are not immediately applicable. Following the philosophy initiated by

6 in their study of self testing computer networks,

Preparata, Metze, and Chein
however, if one assumes a bound on the maximum number of faulty components
it is possible to determine the actual fault(s) from an analysis of the test
results obtained at the various steps in the algorithm. To this end we will
give a complete analysis of the theory required to locate a single fault
together with an heuristic which is applicable to the multiple fault case.
Let us assume that at most one circuit component is faulty and that the

test results obtained from a given step of the algorithm indicate that all

group “2" components are good as indicated in the following table.

won 2 a b c ... k
0 X
0 |vy
0 z

In this case we claim that the group "2" components are, in fact, good. Indeed,
if a group two component were actually faulty then our test results are in-
correct, which could only happen if one of the group "1" components was
faulty. As such, the system would have two faulty components contradicting
our assumption to the effect that at most one component is faulty.

Now, consider the case where the results from a given step of the test

algorithm indicate that exactly one group "2" component is faulty; say, x
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In this case the same argument we used above will guarantee that the components
which test good; say, y through z; are, in fact, good. On the other hand we
have no information about x. It may be faulty or, alternatively, the test
result may be due to a faulty group "1" component.

Finally, consider the case where two or more group "2" components test

bad in a given step as indicated in the following table.

“2"'1“ a b c k
1 X
11y
0| 2

Since, under our assumption of a single failure, it is impossible for two or
more group “2" components to be faulty, this test result implies that at least
one of the group "1" components is bad. On the other hand since we have assumed
that there is at most one faulty component the faulty group "1" component is
the only faulty component and, as such, the group “2" components are all good.
Consistent with the above, at each step of the test algorithm, either all
or all but one of the group "1" components are found to be good. As such, if we
choose our subdivisions so that the components which are found to be good at

ane step of the algorithm are included in group "1" in all succeeding steps
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we will eventually arrive at a group "1", all of whose components are known

to be good. As such, the test results obtained at that step will be reliable,
thereby allowing us to accurately determine the faulty components in group “2".
Although the number of components in group "1" and group "2" may vary from step
to step (especially if we work with multivariate components) if we assume that
group "1" contains n-m components n-m components and group "2" contains "m"
components at each step of the algorithm then the process will terminate in
approximately n/m steps. Since the computational cost of the algorithm is
proportional to the number of steps (essentially the cost of one simulation
per step) while m is determined by the number of allowable test points the
ratio n/m represents a natural measure of the possible tradeoffs between test
point and computer requirements when employing the algorithm in a single fault
made.

Unlike the single fault case, at the time of this writing, we do not yet
have an exact decision algorithm for the multiple fault case. Following Liu,
however, theproblem can be greatly simplified if one adopts an "analog
heuristic” to the effect that two independent analog failures will never
cance].5 Needless to say, this is an inherently analog heuristic since two
binary failures have a fifty-fifty chance of canceling one another. In the
analog case, however, two independent failures are highly unlikely to cancel
one and another (as long as one works with reasonably small tolerances).

Recall from our discussion of the single fault case that whenever a test
result indicates that a component is good then it is, in fact, good. Although

this is not rigorously true in the multiple failure case it is true under the
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assumption of our heuristic. For instance, consider the test results indicated

in the following table in which x is found to be good.

"2 J a b c ... k
0

11y

0] z

Now, if x is actually faulty there must be a faulty group "1" component whose
effect is to cancel the error in x as observed during this step of the test
algorithm, This is, however, forbidden by our heuristic and, as such, we

q conclude that x is actually good.

Interestingly, our heuristic can be carried a step further than indicated
3 above since, under our heuristic, a bad group "1" component would normally
yield erroneous test results., An exception would, however, occur if some of
the group "1" components are totally decoupled from some of the group "2“

] components., As such, if prior to our test we generate a coupling table (by

P simulation or a sensitivity analysis) which indicates whether or not a faulty
group "1" component will effect the test results on a group "2" component, our

heuristic may be used to verify that certain group "1" components are good

whenever a good group "2" component is located. Consider for example the

following table

wou u | b o k
0| x 1 0
1yl 1 1 o 0
0z Q 1 1 0
48
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in which a "1" in the i-j position indicates that the test results for component
i are affected by component j while a "0" in the i-j position indicates that
component j does not affect the test results for component i. Now, siace
component x has been found o be good in this test our heuristic implies that
those group "1" components which are coupled to x in this test shows that z is
good the heuristic implies that b and ¢ are aiso good. This, with a single
test we have verified that x,z,a,b,c, and k are all good.

Since in any practical circuit the coupling table is composed mostly of
1's it has been our experience that relatively few steps of the algorithm will
yield a complete diagnosis. To implement the heuristic, however, one must
assume that the maximum number of faulty components is strictly less than
the number of group two components. If not, the test results at each step
may show that all group "2" components are faulty. in which case no reliable
test information is obtained. Moreover, the degree to which the number of

group "2" components exceeds the maximum number of faulty components determines

the number of algorithm steps which will be required to fully diagnose a
circuit.

Although no exact decision algorithm for the multiple failure case
presently exists it is noteworthy that the underlying combinatorial decision
| problem is quite similar to the t-diagnosibility problem usually associated with
self testing computer networks, wherein the multiple fault probiem has been

5.6 In that problem, however, one computer tests another with the

resolved.
rest of the network being decoupled, whereas in our problem a subset of
components test all remaining components since there exists no practical

mechanism for decoupling components in an analog circuit or system. In any
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event the problems are similar and, in fact, Amin1 has already formulated

1ization of the t-diagnosibility problem in which one subset of

a genera
As such, we believe that an exact

computers on a network tests another.
d in the multiple failure

decision algorithm for our problem can be formulate

case.
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IV. Examples

To illustrate the exact decision algorithm for the single fault case
consider a system composed of eight components; a,b, ... ,h; in which any
five may test the remaining three. Initially, we let a through e represent
the group "1" components and f,g and h represent the group "2" components
and assume that the test results for this first step are as indicated in

the following table.

nou & a b C d e
0t f
04
11]h

Employing our exact algorithm for the single fault case the above table in-
dicates that components f and g are good and, as such, we move them into

group "1" for the second stap of the algorithm obtaining

ll] " i
non f g a b ¢
0td
11 e
11| h

Since this test indicates that two group "2" components are bad which contradicts
§ our single fault assumption the faulty component must be in group "1" implying
that d,e, and h are all good. We therefore move these components into group "1

and implement the final step of our algorithm in the form

2 h e 4 f g
0} a
1] b
0fc
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Since all group "1" components are known to be good this final test is
reliable and indicative of the fact that b is the faulty component.

Note, that the requirement that L%.l be left invertible may make it im-
possible to use some component subdivisions in which case an alternative
sequence of steps may be required in the above process. For instance, if

h,e,d,f, and g is not an allowable subdivision the last step in the above

process might be replaced by

uon " e d f g a

11b

indicating that ¢ and h are good. Now, a final step in which ¢,e,d,f, and g

make up group "1" will be reliable as indicated below.

|l'|ll
wou c e d f g
0| a
3 b
0| h

Now, consider the same single fault example in which our heuristic algorithm

is applied using the coupling table indicated below

l|1ll
non - b ¢ d e
0l f 0 0 1 1
01g 0 0 1 1 0
1 h 1 1 0 1

According to our heuristic f and g are good and, moreover, everything in group

"1" which is coupled to either f or g is good. As such, we conclude from this
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first step that f,g,a,c,d, and e are all good. Thus, taking group "1" to be
e,d,f,g and a in the next step will yield a reliable test for b,d and h as
above,

Finally, consider the case where at most two failures are assumed with

the first step in our test algorithm yielding:

wym 2 a b C d e

1]gl 0 o 1 1 o0
1{h| 1 1 1 0 1

Consistent with cur heuristic f,a,d, and e are found to be good in this step.

Incorporating these components into group "1" for the following step we obtain:

ll'l 1]
non f a o d e
1 b| O 1 1 1
11911 0 1 1 0
11 h{1 1 H 0 "1

which gives us no information in the multiple failure case*. As such, we try

another allowable combination obtaining the following table

e
non f g a d e

b0 1 1 0
0 1 1 1 0
11¢ct0 1 1 0

indicating that h,f,g,a, and e are good. Coupled with our previous knowledge

* Actually one can deduce that at least one of the group "1" components is
bad since all three group "2" components cannot be bad via our two fault
assumption. This, in turn, implies that at most one of the group "2"
components is bad.
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hat d is good this implies that all group "1" components are good and hence
this last step in our algorithm reliably indicates that b and c are the
faulty components.

To obtain more realistic examples the above technigues are applied to
the 12 and 22 component linear amplifier circuits shown in figure 2 using
simulated test data for various numbers of simultaneous failures, choices
of test point locations, and both decision algorithms. A1l analysis for the
12 component circuit was done on an HP 9825 desktop calculator while the 22
component examples were run on a Tl 990/20 minicomputer. The results of
some 150 simulations of the algorithm are tabulated in table 1. where the
number of test points, simultaneous faults, and the decision algorithm employed
are inlicated. The results of the various simulations are indicated by the
ambiguity of the resultant diagnosis. For instance, in our simulation of the

12 component circuit with 3 test points, one failure and the exact algorithm

) L
a | l

1
L]

LI/
L

"
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Figure 2. a) 12 component amplifier and b) 22 component amplifier.
A11 stages of the amplifier circuits have nominal op-amp
gains of 1.6, nominal resistances of 10K ohms, and
nominal capacitance values of .00luf while the feedback
capacitors have nominal values of 100pf.
12 runs were made (one with each component faulty). On 10 occasions the
fault was located exactly while the fault was located exactly while the fault
was located up to an ambiguity set composed of two components on 2 occasions.
Finally, we note that the 5th run of the 12 component circuit indicated by an
asterisk in the table represents a simulation in which the good components
were set at +/-2% off of nominal to test the robustness of the algorithm.

Circuit/Computer #Test Points #Faults Dec. Alg ?mbi%uit% seg

|
12 component 4 1 Exact 12
circuit simulated 4 2 Heuristic 12
on an HP 9825
desktop calculator 3 ] Exact 1012
. 3 1 Heuristic 12
3 1 Exact 104 2*
22 component 8 1 Exact 22
¢circuit simulated 6 1 Exact 18 4
on a Tl 990/20
minicomputer S 1 Exact 16 6
5 ] Heuristic 22

Table 1. Simulated test data. * indicates a simulated test in which
the good components were taken to be +/- Z off of nominal.
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V. Conclusions

Although the proposed algorithm is still new and we are just beginning to
investigate its performance in the nonlinear case the algorithm promises to
meet most of the criteria set in reference 7. Although the on-Line computa-
tional nequinements for the algorithm do not compare with a simulation-before-
test algorithm they can be kept within reasonable bounds. Indeed, urlike
most simulation-after-test algorithms no iterative on-Tine computatior is
required. Moreover, one can limit the on-line computation by restricting the
number of algorithm steps (at the price of increasing the ambiguity in the
resultant diagnosis). Furthermore, in the linear case and/or in the case where
there are sufficiently many test points available to permit all nonlinear and
fuzzy components to be included in group "2" the major part of the computation
required by the algorithm can be done off-1line.

In general the proposed algorithm permits one to tradeoff between on-line
computational requirements and test points. Indeed, as indicated in table 1.,
one can reduce the test point requirtements to quite ;easonabIe Tevels though
this is usually achieved at the cost of increasing the number of steps in the
algorithm (and hence its on-line computational requirements). In particular,
our simulations indicate that the algorithm comes close to achieving the /n
test point goal set in reference 7.

With respect to the remainder of the criteria specified in reference 7
the algorithm "looks good". In particular, all simulations are carried out
using nominal component models, it can test &inear and nonlinear modules of
arbitrary size, and is amenable to in-situe testing and parallel processing
techniques (since several steps of the algorithm can be carried out simul-

taneously).
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At the present time the major open question with respect to the perform-

ance of the algorithm is its xncbustness. Indeed, there is nothin in the

algorithm to make it inherently robust though our initial test for robustness

indicated by the asterisk in table 1. proved to be favorabtle.

vI.
1.
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A Differential-Interpolative Approach to
Analog Fault Simulation

C.-c. Wu**, A, Sangiovani-Vincentelli*, and R. Saeks**

I. Introduction

After a half centry of neglect by the circuits and systems community the
past decade has witnessed the emergence of a research effort in the analog
¢ircuit maintenance area. The various algorithms which have been thus far
proposed for the analog fault diagnosis problem may naturally be subdivided
into two classes termed "simulation-before-test" and "simulation-after-test".
The former are commonly used in digital system test algorithms and require
an automatic test program generator (ATPG) which simulates the responses of
"all possible" failures. This is typically done at a maintenance depot with
the simulated responses being recorded and shipped to the field where the
response of the unit under test (UUT) is compared with the simulated responses
to determine the failure. The major advantage of simulation-before-test is
that it is ideally matched to the depot/field maintenance environment with the
) largest part of the computation done only once. As shch, the technique is
ideally suited for digital testing where the binary nature of the problem
| keeps the number of failures to be simulated within bounds and eliminates
[ tolerence problems. Unfortunately, in the analog problem we must cope with
a continuum of possible failures and simultaneously deal with good components
which are in tolerance but not nominal. As such, a tremendous number of simu-

lations are required by a simulation-before-test algorithm, while some type

i of decision algorithm is required to cope with the tolerance effects.

: * Dept. of Elec. Engrg. and Comp. Science, Univ. of California at Berkeley,
E Berkeley, CA 90024.

'y ** Dept. of Elec. Engrg., Texas Tech Univ., Lubbock, TX 79409. This research
| supported in part by the Joint Services Electronics Program at Texas Tech
‘ University under ONR Contract 76-C-1136.
b
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Unlike simulation-before-test, simulation-after-test uses an "equation
soiver-like" algorithm to compute the parameters of the UUT components in the
field. Since most such algorithms require iterative evaluation of the equation
to be solved, the UUT is effectively simulated at each iteration, though the
simulation is based on actual test data rather than hypothesized failure data.
The simulation process is, thus, carried out after testing the UUT and hence
the choice of terminology. The advantage to such an approach is that the
faulty component parameters are computed explicitly, thereby, eliminating the
ambiguity caused by the use of discrete simulation-before-test data and
tolerance effects. Although relatively few simulations are required for each
UUT, they must be carried out in the field rather than the depot and they must
be repeated for each UUT.

The purpose of the present paper is to describe a research effort directed
at alleviating some of the difficulties in developing a simulation-before-test
algorithm for analog fault diagnosis. The underlying philosophy and motivation
for our formulation is discussed in section 2, along with a derivation of the
required differential-interpolative fault diagnosis formula. Finally, section 3
is devoted to a number of illustrative examples of the approach. These include
both 1inear and nonlinear examples formulated in the frequency and time domains,

respectively.
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IT. A Differential-Interpolative Algorithm

Although any practical fault diagnosis algorithm must be able to handie
systems with a hundred or more components, from an intuitive point of view
our algorithm is best illustrated in the two component cases where the
parameter space can be displayed graphically. Say, we are dealing with an

RC circuit for which the parameter space is illustrated in figure 1.

Figure 1: Parameter space for RC circuit.

Here, R and C represent normalized parameter values, wherein, the nominal
parameter values are transformed to the origin. In the most general simulation-
before-test algorithms one assumes that the faulty parameter values may lie
anywhere in the R-C plane and therefore carries out simulations along a two
dimensional discrete array spread over the entire plane.

Fortunately, in a "real world" testing environment one can assume that
only a "limited number of components" fail simultaneously. In our two component
example we may therefore assume that either R or C has failed with the other

remaining nominal in which case the circuit need only be simulated at a discrete
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set of points along the coordinate axes in the R-C plane denoted by x's in
figure 1. As such, the number of simulations required is significantly de-
creased. Indeed, this is one of the major advantages of the simulation-before-
test concept as compared to simulation-after-test algorithms which typically
fail to exploit a "limited number of failures" assumption.

While the above described approach has been used with considerable success
in digital system testing, wherein, the axes are binary and no tolerance problems
are encountered, it is not well suited to the analog test problem. First, an
analog failure may occur anywhere along the axis and hence some type of approx-
imation scheme is required to interpolate between the discrete simulations.
Secondly, a "good" component is assumed to be in-tolerance though it may not be
nominal. As such, in an analog environment the "1imited number of failures"
assumption implies that the solution to our faul. diagnosis problem lies near,
but not necessarily on, the coordinate axes as indicated by the shaded regions

in figure 2a.

- - . -

Figure 2: a) Solution space under a single failure assumption.
b) ITlustration of the differential-interpolative
diagnosis algorithm.
While we might choose to simply fill the shaded region with additional

simulations, the cost of such a process may prove to be excessive. Rather, we
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exploit the fact that the deviations of good component parameters from

nominal are small and use a 1st order Taylor series approximation to approximate
the deviation. We note that such an approach cannot be used to locate the faulty
parameter values which may be far from nominal; indeed, it is often infinite

or zero; though it can be used to cope with the tolerance effects.

Qur differential-interpolative approach thus uses a classical minimum distance
algorithim to locate the general region of the faulty parameter values indicated by
the circle in figure 2a (which is magnified in figure 2b). Now, it is assumed that
the simulated values of the system responses; f1, f2’ and f3; corresponding to
the points; Cys Co» and Cq3 are available along with the associated inverse
sensitivity matrices; J;], jél 5].

to approximate the system responses and the associated inverse sensitivity

, and J We then interpolate these data points
matrice along the axis by functions f(c) and J(c)']. Although any interpolation
can be employed we have had our best resu]fs using a bilinear interpolation

for f (which gives exact results in the linear case) "and a second order poiynomic
interpolation of J']. Now, if x denotes the faulty parameter vector and m de-
notes the measured system responses then a 1st order Taylor series approximation

combined with our interpolation will yield the (approximate) equality

m=f(c) + I(c)lx - c] 1.

for those values of c near x. Equivalently,

[x -¢] = J(c)'][m - f(c)l 2.

Interestingly, by invoking the Projection theorem one can reduce the above
vector equation to a scalar equation and simultaneously eliminate the requirement

for storing the inverse sensitivity matrices. Indeed, the vector [x-c] will be
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perpendicular to the axis at the point ¢ which makes the closest approach to
the fault. As such, if €. denotes the unit vector in the direction of the

axis then

0= ez[x -c] = eEJ(c)'][m - f(c)] 3.

which can be solved for the faulty parameter value, c. Note, our goal is to
solve for c, not x, since we are interested in locating the faulty parameter
value in the presence of the tolerance problem, but we really do not care to
compute the deviations from nominal in the good parameters.

To summarize, if rather than simply storing the simulated circuit responses,

1 then the tolerance effects associated with

f., we also store the vectors eﬁJ;
the good components can be completely removed from our fault diagnosis
algorithm - at least up to the approximation error induced by the interpolation
process and Taylor series expansion. Since most good circuit simulation codes
include a package for generating sensitivity matrices at little additional

cost over and above that involved in simply simulating the circuit responses
the approach can be implemented with only a minimal increase in simulation
costs. As such, the major expense associated with the approach lies with the

1 vectors) which are approximately

storage requirements (for the fi and eEJ;
double that of a classical fault simulation algorithm.

Although the above derivation has been illustrated in the two dimensional
case with a single faulty parameter it can be readily extended to a general
setting, say with several hundred components and three or four simultaneous faults.
If one assumes p simultaneous faults then p inner products are required to apply
the Projection theorem yielding p equations and p unknowns to be solved for

the faulty parameter values. Otherwise the formulation for the general case is

identical to the single fault case described above.
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IT1. Examples

In this section, three examples are given, two of them for linear systems
and one for the nonlinear case. A1l of these examples were simulated on
an HP9825A programmable calculator, and yielded fairly good results.

Our first example is a second order low pass filter. The filter contains

five components, K, R], R2, C1, and CZ’ while, the circuit diagram is shown in

figure 3-1
G
|
i
o AN A > N
'
| T i
Figure 3-1. ’
The transfer function for this circuit is given by
f(;,S) = 7 K

The partial derivatives of the transfer function with respect to each

parameter take the form

- D + SC,R.K
st - 11
o (rs) = = (3-2)
2
£ pey = KU CERy * 5Cp + G (1003 (3-3)
R] i DZ
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2
Tif (r,s) = -K(S C1C2:] +SC + SC,] (3-4)
2 D
2
- -K[S“C,R,R, + SR.(1-K)]
sf 121 1
= (r,s) = (3-5)
o D2
2
§F 2 _ ~-K[S“C4R R, + SR, + SR,]
'E'z(rgs) = 1 ;22 2 1 (3'6)

_ <2
where D = S C]CZR]RZ + S[R2C2 + R]C2 + R1C1(]'K)J + 1

Since we have five parameters in the transfer function, five distinct test
frequencies are required to provide sufficient information for diagnosis. The
f(;) vector is then formed by the transfer functions corresponding to each

frequency,

Pf(;,s])—
f(r,Sz)
f(r) = f(r,S;) (3-7)
f(r,S4)
f(r,Ss)
- 4

Similarly, the sensitivity matrix is given by

o sy 5 S e ]
5% (759) GR](r,Sﬁ R~ 2(r‘,S])
ar) = %,f(- (?,52) %E](‘:’Sz) - .%2(},52) (3-8)
5f (2 sf 2 5f
3K (r,Sg) Eﬁj(r’ss) . Eté(”*ss)
e —
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Next, we generate a data base in which f(;) and e:J(;) are evaluated at
selected points on each axis. Since the bilinear interpolation gives exact
results in the linear case, we need not choose too many points on each axis,
in fact, for this simulation example 15 points were selected along each axis.

Given the measured data for a faulty circuit, the processor searches the
data base, to Jocate the point a, which minimizes {|m-f(a) ||. We then choose
the two points @y, @5 ON both sides of oy along the same axis, and use these

three points to evaluate the coefficients of the bilinear polynomial a::g

in the interval (u], 03) also, we use e:J'](a]), e:J'](aZ) and eEJ'](a3) to

compute the coefficients of the second order polynomial approximate to e:J'](u)

Finally, a golden section linear search is used to solve

el () (F(a)-m) = 0 (3-9)

The faulty diagnosis results are listed in table 3-1. Here, the nominal
values of K, R], R2, C], 02 are 1.6, 1Ka, 1Ke, 0.16uF and 0.16uF respectively and

the faulty parameter is underlined in the table

Table 3-1
1 2 3 4 5 6
K 0.6 1.62 1.62 1.58 1.62 4
Ry 1090 2500 1090 1070 1050 1050
R, 930 1040 10 930 930 1045
C.l 0.163u | 0.167u 0.157u} 0.25u 0.157u| 0.162u

C2 0.162u | 0.162u 0.162u} 0.157u) 0.25u 0.162u
Result K R1 R2 C] C2 K
0.591 2492 19.4 0.239. 0.238u{ 4.01
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In the first simulation, K is the faulty component with a value of 0.6,
the other four components are 5% or so off their nominal values, the simulation
result shows that K failed, and locates it at K=0.591. The same remarks apply
to the other five simulations.

Although the technique generally yields satisfactory results occasional
errors occur when the good components are too far out of tolerance. For instance,
the following parameter values K=1.62, R]=1070, R2=910, C]=0.5u, and C2=0.172u
led to an erroneous result. The simulation shows that C2 is failed with the
value of 0.179u. However, the faulty component, in this simulation, is
actually C]. If we sketch a two dimensional representation of the C1, C2 plane
the difficulty becomes clear. Figure 3-2 shows that C2 is too far away from
its own nominal value, and thus instead of locating the error at o we expect
the simulation result locates the failure at g, with the differential term still

pointing toward the actual failure denoted by x.
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Figure 3-2

Our second example is a fourth order low pass filter, comprised of two

cascade second order low pass filters, the circuit diagram is shown in Figure 3-3.
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The procedure for generating the data base is similar to the one described
above, except here, ten different frequencies are required. The fault diagnosis
results are described in table 3-2. Here, the nominal parameter values are
Ky = 1.6, R] =R, = 1K, C] = C, = 0.16u, K, = 1.2, R3 =R, = 1.5K, C3 = C&
= 0.2u, while the faulty parameter is again underlined in the table.

OQur final nonlinear example is composed of a diode loaded by a shunt RC
circuit as illustrated in Figure 3-4. The diode is modeled by the character-

istic function

WA
1=10e® t.oy) (3-10)

Figure 3-4
Now, instead of working with frequency domain transfer functions, we work
in the time domain. A state equation for this circuit is given by
s (Vi'vc)/vt vc 4
VC s Io(e -1) - " (3-11)
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Table 3-2
1 2 3 4 5 6
K 1.62 1.62 1.57 1.57 0.36 1.61
R] 1070 1070 1055 1050 1070 1043
R2 920 920 1630 300 930 1010
o 0.162u! 0.157u | 0.157u | 0.162u | 0.161u 0.1
C2 0.167u| 0.162u | 0.162u | 0.157u | 0.158u 0.157u
K2 1.17 3.45 1.22 1.22 1.21 1.18
R3 600 1550 1560 1430 1430 1535
R4 1560 1570 1450 1570 1590 1478
Cq 0.21u 0.2%u | 0.195u { 0.205u | 0.195u | 0.202u
C4 0.205u | 0.195u 0.12u | 0.203p 6.203u 0.198u
R3 K2 C4 R2 K} C.l
Result
m 3.546 0.125p| 339.7 | 0.357 0.118
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The goal is to integrate this differential equation so as to build a
Vc(;') vector and f(;) vectors as in the previous examples.

Numerical techniques can be used to compute Vc(t) at any instant t.
In this example, the Vc(;‘) vector was elevated by applying the fourth order
Runge-Kutta method. Note that since there are four independent parameters,

R, C, Io’ and VT; in equation (3-11) Vv(;‘, t) should be evaluated at four

different time instants to build a Vc(r) vector.

The sensitivity matrix is generated via the linear differential equations

8 (v-V )V 8V
C 1 i ¢/t c
—= = (e -1)+E =% (3-12)
510 C GIO
§ I (v.-v )V sV
W os oy -ve T T o (3-13)
t VTC T
sV v sV
c c c
- = 5 *E = (3-14)
SR R2C SR ]
sV v sV
c ¢ c
T 2 5t = (3-15)
sC RC2 6C
V. -V )/V
- 1 ( T 1
Where E= - VTT Ioe - B
6VC -
Again, a fourth order Runge-Kutta method is applied to obtain W(r, t),
X' X' &Y . ¢}
W%(r, t), Tc—(r, t), and -6—c—c(r, t) at the four specified instants.

The simulation results are summerized in table 3-3. The nominal values of

10, VT’ R, C are 0.2, 0.1, 1K, and 0.25 respectively.
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Table 3-3
1 2 3 4 5

Io 0.035 0.21 0.2 0.22 0.002
1

VT 0.1 5.3 0.N 0.11 0.09

R 920 930 6250 1070 1090

C 0.23 0.27 0.255 2.4 0.23

1 K R C I

Result ° °

0.0312 5.449 6001 2.678 0.003
1
4
<
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IV. Conclusions

For the simulation-before-test approach to fault diagnosis, we gain
from the fact that most computation can be done by off-line computation, thus
greatly reducing the repetitive on-line computation associated with many
fault diagnosis algorithms. From a practical point of view, the economics of
such an approach are extremely attractive. Unfortunately, the simulation-before-
test approach is subject to a certain degree of ambiguity introduced by good
components which are in-tolerance but not nominal.

In this paper, we have proposed a simulation-before-test algorithm for
analog fault diagnosis, in which a differential-interpolative technique is
used to eliminate the ambiguity caused by tolerance effects. Our approach
has been tested with satisfactory results in both the linear and nonlinear
cases. In fact, for the linear case, the approach provides an exact inter-
polation for f(c) on the axes, and thus reduces the amount of simulation-before-
test data required on each axis. Although this is not true for nonlinear case,
the diagnosis results are still very attractive. Of course, occasional errors
may occur when the good components are too far out of tolerance. This phenomena
is, however, expected and well understood. Indeed, the difficulty occurs only
when the 1st order Taylor series approximation is too good. Because this
phenomena will rarely occur in the real world, we believe that it may be neg-

lected in a practical algorithm.
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Multitest Diagnosibility of Nonlinear Circuits and Systems

A. Sangiovanni-Vincentelli* and R. Saeks**

I. Introduction

During the past decade a considerable research effort has been devoted
to the analog fault diagnosis problem wherein one desires to locate faulty
circuit components given the overall circuit response to one or more test
vectors. Conceptually the process may be described by a nonlinear

equation

y - f(a,u) 1.

where y represents the measured response to the test vector u given the
faulty parameter vector, a. Since u is known and y is a measureable
quantity the fault diagnosis problem may be resolved by simply

solving 1. for o given u and y. Unfortunately, in practice, the dimension
of y is 1imited by the number of accessible test points in the circuit

and is typically smaller than the dimension of the parameter vector,
thereby precluding the direct solution of 1. To alleviate this difficulty
a set of test vectors; {u],uz, v ,un}; is employed yielding the set of

simultaneous equations

Y5 = f(“’ui) y 1=1,2, ... ,m 2.

Since the parameter vector, a, is independent of the choice of test vector

this process effectively increases the number of available equations without

*Dept. of Elec. Engrg. and Comp. Sci., Univ. of California at Berkeley,

Berkeley, Ca. 90024.

**Dept. of Elec. Engrg., Texas Tech Univ., Lubbock, TX. 79409. This research

supported in part by the Joint Services Electronics Program at Texas Tech
Univ. under ONR contract 76-C-1136.
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increasing the number of unknowns. More Concisely, if we Tet y = co](yi)
and F (a) = col(f(a,ui))the "multitest" fault diagnosis problem
reduces to the solution of

X=F(a) 3.

Needless to say once equation 3. has been formulated its solution is
amenable to standard algorithms. The problem, however, is to determine
whether or not there exists a set of test vectors {u],uz, cee ,um} such that
3. is solvable in an appropriate sense. To this end we will formulate a
diagnosibility criterion directly in terms of the function f which determines
the degree to which the equationy = F (a) will be solvable, given an
"optimal" choice of test vectors. Since this criterion is a property of
the circuit rather than the test algorithm it can therefore be used as a
design aid with which to choose test points and/or to aid in designing
"testable circuits”.

The authors have previously formulated such criteria for linear circuits
and for memoryless nonlinear circuits,] respectively. The present formulation
for dynamical nonlinear circuits is obtained by simply reformulating the
memoryless nonlinear theory in an infinite dimensional setting. Surprisingly,
however, since the parameter vector, r, remains finite dimensional the
infinite theory yields a fi{nite dimensional test matrnix.

Let U denote a (topological) space of admissible test inputs and let Y
denote a Hilbert space of test outputs. We then model a general nonlinear
dynamical system as a function f:UxA -~ Y where y = f(u,a) denotes the response
of the system to an input u given the parameter vector a ¢ A. Heie, A is an

open subset of Rk which defines our parameter space and f is assumed to be
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continuous in u and continuously (Frechet) differentiable in az.

The problem
at hand is to solve for o given a set of input/output pairs (ui,yi).
i=1,2, ... ,m. We say that the system is Locally diagnosable at a point @, € A
if there exists an open neighborhood, V, of a, such that for every a ¢ V
f(u,a) # f(u,ao) for some u ¢ U. Similarly, we say that the system is
locally diagnosable if it is locally diagnosable for almost all a, € A (in
the sense of Lebesque measure). Finally, if M(a) is a matrix valued function
of a € A we say that a point ey is a regular point if there exists an open
neighborhood, V, of a, such that M(a) has constant rank in V.

To define our test matrix we let J(u,a) = %{(u,a) denote the Frechet

2

derivative® of f with respect to o evaluated at a fixed u and a. With u e U

fixed, f maps A to Y and hence J(u,a) is a linear transformation mapping from

k

2
R™ to Y-. Moreover, for k = 1 such a mapping may be represented by an element

of Y hence %5-(0,0) may be identified with an element of Y and
i

J(u,a) = row tg—f (u,0)] € Y¥ - a.
1

Now let w denote a positive measure defined on the Borel sets of U such that
w(v) > 0 for every open set V contained in U.2 Finally, we introduce the test

matrix
Rw(a) = & J*(u,a)d(u,a)dw(u) 5.

k to Y hence its adjoint is a mapping

Recall that J(u,a) is a mapping for R
from Y to Rk and thus Rw(u) is a matrix valued function even though U and Y
may be infinite dimensionaL2 Also note that the self duality of Y is necessary

for Rw(a) to be well defined.
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Theorem 1: Let w be any admissible measure for which Rw(“) exists
for all a ¢ A. Then the system is locally diagnosable at a regular
point a, € A if and only if Rw(°) is nonsingular.

2

Proof: By invoking the integral form of the mean value theorem® we have

1
f(u,a) - f(u,ao) = é J(u,tao + (1-t)a)dt [a - uo] 6.

for any a in a neighborhood of e, and u e U. Now, assume that the system is
not locally diagnosable at a, in which case there exists a sequence {°i} e A

approaching e for which

f(u,ai) = f(u,ao) 7.
Letting o = ay in 6. yields
1
0= é J(u,tao + (1-t)ai)dt [ai - uoj 8.
1
= é J(u,tao + (1-t)ai)dt [ai] 9.

where a; = [a; - o 1/||Ce; - o 1|l Since a, is normalized to lie in the unit
k

sphere of R™ which is a compact set a, admits a convergent subsequence a,
k

whose limit, a, also has unit norm.z Using the convergent subseguence in 9.

we have

1

s e 1
0= I‘(‘T‘:'(j] J(u,tuo+('l-t)u1.k)dt fag 3 (j) Ju,ay)dt [a] = I(u,a )a 10.

Since a has unit norm it is non-zero while

a*Rw(ao)a = J' a*J*(u,uo)J(u,a)a dw(u) = 0 1.
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implying that Rw(ao) is singular since it is a positive semidefinite matrix

which is not positive definite.?

Conversely, if Rw(°o) is singular it follows from the assumption that
ay is a regular point and lemma 1 of reference 1 that there exists an open
neighborhood V of a, and a continuous rK valued function c(a) # 0 defined on

V such that
0= C*(u)Rw(a)c(a) = £ c*(a)d*(u,a)d(u,a)c(a) dw(u) 12.
Since w{v) > 0 and J(u,a) is continuous in a this implies that
J(u,a)e(a) =0 a eV 13.
Finally, we define a curve a(s) ¢ V by the differential equation
—==cla) ; a(0) = s, 14.

Substituting a(s) into f(u,a) and computing its derivative with respect to

s via the chain ru'le2 we obtain

a3
i

u,a(s)) = J(u,a(s))32 = J(u,a(s))c(a) = 0 15.

showing that f(u,a(s)) is constant along a curve emanating from a- Since
a(s) is independent of u this implies that the system is not locally
diagnosable at ay thereby completing the proof. 0O

Note, the proof uses the finite dimensionality of the parameter space but
does not require that U and Y be finite dimensional. As such, the theory
is equally valid for memoryless and dynamical systems. Furthermore, the

result is independent of the choice of the measure w.
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To use the theorem as a test for local diagnosability we may invoke
Theorem 2 of reference 1. Alternatively, one may make the mild assumption
that f(u,a) is (real) analytic in a in which case the hypotheses of that
theorem are automatically satisfied and the following result is obtained.

Theorem 2. Assume that f(u,a) is analytic in a and let w be any ad-

missable measure for which Rw(a) exists for all a € A. Then the system

is locally diagnosable if and only if Rw(uo) is nonsingular for some

uocA.

Proof: Let

p = max {rankERw(a)]} 16.

ach

which must be achieved, say at a, since rank[Rw(a)] takes on only finitely
many values. Now, let !M(a) be a p by p submatrix of Rw(u) which has rank
p at o and consider det[M(a)]. Since rank[M(a)l = p det[M(a)] # O verifying
that det[M(a)] is not identica11y‘zero. This function is, however, analytic
in a (since f(u,a) is analytic in a) and since it is not identically zero,

its zero set is nowhere dense in A.2 Letting

B¢ = Ta ¢ A, det(M{a)] = 0} 17.

denote the closure of the zero set and B denote the complement of B the
hypotheses of theorem 2 of reference 1 are satisfied. Indeed, since BS is
the closure of a nowhere dense set it has Lebesque measure zero2 while the

fact that det M({(a)] # O for a ¢ B implies that

p > rank tRw(a)] > rank(M(a)] =p ; a € B 18.
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hence

rank [Rw(a)] =pachB

Since the hypotheses of Theorem 2 of reference 1 are satisfied in our case

the conclusion of the theorem to the effect that the system is locally

diagnosable if and only if Rw(ao) is nonsingular for some @, follows.
Consistant with the proof of Theorem 2 rank[Rw(a)] is a generic property

(i.e., constant almost everywhere) and hence we may refer to p as the generic

rank of Rw(u) when f(u,a) is analytic in a. As such, one may check the non- 1

singularity of Rw(a) with a randomly chosen a, and the result of the theorem

may be restated via:

Corollary 1: Assume that f(u,a) is analytic in a and let w be any
admissible measure for which Rw(°) exists for all a € A. Then the

system is locally diagnosable if and only if the generic rank of

Rw(a) is k.

Once it has been verified that a system is locally diagnosable it still

remains to pick a set of test signals {ul’UZ’ cen

resultant set of equations

y] f(u]90)

Y, f(uz,a)
L= - = Fla)

ym f(umya)

for a ¢ A. For this purpose we require that
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B N af af of

o) E_E](u]’“o) 33, (U17%) -+ 3g, (U109
af .

J(Uz,uo) a (UZ’QO)

oF - -
Hn = 3a(%) = 21

af , 3f

Jupap) 53}(um’°o) e EZk(um’uo)

have column rank k in which case a Newton-Rapson type of algorithm will be
assured of converging to a, from a sufficiently good initial guess. More
generally, if this Jacobian matrix has a generic column rank of k such an
algorithm will converge to almost any solution of 17. given a sufficiently
good initial guess. Recall from equation 1. that each %E.(uj’ao) is an
element of Y and hence we are dealing with an m by k matr;x whose entries
are elements of Y.

Theorem 3: Let w be an admissible measure for which Rw(°) exists for

all a ¢ A and assume that Rw(ao) is nonsingular at a regular point

a, € A. Then there exists a sequence u; e U; i=1,2, ... , m < k;

for which %g(uo) has column rank k.
Proof: If %Eﬁ (u,ao) = 0 for all u then the first column J(u,ao) is zero for
all u implying that the first row and the first column of Rw(ao) is zero.
This, however, contradicts the assumption that Rw(°o) is nonsingular and we
may therefore assume that there exists a Uy € U for which g{;(u],ao) #0. As
such, there exists uy € U such that H.I has a column rank of at least 1. Using
this fact as the starting point for an inductive hypothesis we assume that
there exists ujs i=1,2, ... n; such that the matrix Hn has column rank

p < k where n < p. We now desire to verify the existence of a vector Uty € U

86




for which the corresponding matrix Hn+1 has column rank greater than or
equal to p + 1. To this end we let T be a nonsingular matrix of scalars
which operate on the columns of Hn in such a way that the (p + 1)st column
through the kth column of HnT is zero. Since T is nonsingular Hn+1 will
have column rank greater than, or equal to, p + 1 for some U+l if and only
if Hn+]T has column rank greater than, or equal to, p + 1. Because of the
special form of HnT, however, this will be the case if, and only if, the

bottom row of Hn+1T given by

Q

f i
By e )T = Ju a0 22.

is non-zero in columns p + 1 through k for some u If this is not the

n+l”
case we may let t denote the (p+1)st column of T which is non-zero since T

is nonsingular, in which case we have
J(u,ao)t =0 ' 23.
for all u ¢ U. This, however, implies that
= * =
t*R (a )t 5 t**(ua )d(ua )t dw(u) = 0 24.

which contradicts the assumption that Rw(ao) is nonsingular. As such, there

must exist a u for which Hn+1 has column rank greater than, or equal to

n+l
p+ 1. Repeating the argument inductively until an Hm = %E(ao) with column
rank k is obtained now completes the proof of the theorem. Note that since
n < p at each step,m < k.

Our purpose in the above ha§ been to indicate a mechanism by which the

existing diagnosibility theory for linear s_ystems3 and memoryless nonlinear

systems can be extended to the general nonlinear dynamical case. Indeed, the
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same tools can be used to extend the theory in any number of directions. For

instance, one might use the rank of Rw as a measure of the degree to which
a circuit fails to be diagnosable. Indeed, the resultant measure of
testability is a natural generalization of the frequency domain measure of
testability introduced in reference 4. Moreover, the frequency domain

criterion for choosing test signals introduced by Priester and C1ary5 may

also be extended to the case of general nonlinear systems via the above

described formulation. Finally, a vector space criterion for diagnosability

similar to that of reference 3. may be formulated.
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A Data Base for Symbolic Metwork Analysis*
€C.-C. Wu and R. Saeks

Texas Tech University
Lubbock, Texas 79409

I. Introduction

Historically, symbolic network analysis has been motivated by the prob-
lems of circuit design and, as such, the emphasis has been placed on
quickly and efficiently obtaining a symbolic transfer function from a

given set of circuit specifications.z’3

In an operational or maintenance
environment, however, one is tyoically given a prescribed nominal circuit
and desires determine the effect of various (possibly larce) perturbations
thereon. This is the case in a power system where one is given a fixed
network and desires to determine the effect of proposed modifications thereto.
Alternatively, in the problem of analog circuit fault diagnosis one desires
to simulate the effect cf a number of alternative failures to compare the
simuiated data with the observed failure data.d

In such an operational or maintenance environment numerous perturditicns
of tne nominal circuit are studied and, as such, significant computationai
efficiencies can be obtained if one first generates a data tase in terms
~f the nominal circui®t parameters and then extracts the apcrooriite svmbo’ic
transfer functicn from the zata base each time a different symbolic transfer
is reguired. Of course the tenefit to be achieved via such an approach is

dependent on the size of the data base and the ease with which a symbolic

transfer function may be retrieved therefrom.

*This research supported in part by the Joint Services Electronics Program
at Texas Tech University under ONR Contract 76-C-1136.
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The obvious manner in which to generate such a data base is to simply
pre-compute the coefficients of all required symbolic transfer functions
and store them in the data base. Retreival from such a data base is, of
course, immediate but the data base may become overly large. Indeed, the
number of transfer functions which must be stored is 0(52) where k is the
total number of potentially variable circuit parameters and p is the maximum
number of circuit parameters which may vary simultaneously. An alternative
approach is to store the nominal transfer function information and then use
Householder's formula] to compute the required symbolic transfer functions.
In such a data base we need only store O(gz) transfer functions where n is
the total number of component output terminals but retreival reguires

{n +p3) multiplications where p is the actual number of circuit parameters

wnich vary simultaneously. Since, in practice, n >> p the retreival process
requires approximately 0(33) myltiplications and is dominated by the large
dimensional matrix multiplication reauired by Householder's formula rather
than the lcw dimensional inverse.

in the present paper we will formulate an alternative data tase for
the symbolic transfer functicns which also requires O(Qz) entries, out for
wrich retrejval requires only O(a3) multiplications. Since p is tynically
small this is tantamount to immediate retreival.

in the remainder of this introduction we will review the properties of
the component connection model for a large scale circuit or system1 which
serves as the starting point for our theory. The data base and retreival

formulae for the case where p < 2 are formulated in section 2. while the

general retreival formula is derived in section 3. Section 4. is devoted
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to the problem of retreiving sensitivity formulae from the data base while
section 5. deals with the problem of updating the data base when the nominal
circuit parameters are changed. Finally, section 6. is devoted to an example
illustrating the theory.

The component connection model is an algebraic model for an inter-
connected dynamical system which subsumes the classical topological models
but is more readily manipulated both analytically and computationally. The
mot.vation and justification of the model are discussed in detail in
reference 1 and will not be repeated here. The component connection model

takes the form of the set of simultaneous equations

b= Z(ju)a 1.1
a s L]1b + L]2u 1.2
and

Here, Z (=2(:.)) is a frequency cependent matrix characterizing the decoupled
system components with composite component input and output vectors 2 and b,
respectively. On the other hand the Lij; i,j = 1,2; matrices are freguency
independent connection matrices characterizing the coupling between the
composite component vectors, a and b, and the composite system input ard
output vectors, u and y, respectively.

A little algebra with the component connection equations will readily
reveal that

-1

S = L22 + L21(1 - ZL]1) Z 1.4

L1z
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where S (= S(jw)) is the composite system transfer function matrix]

characterizing the external behavior of the system via

¥y = S(jw)u 1.5

Often, rather than working with the entire S matrix we find it convenient

to work with its individual entries; qu’ qQ=1,2, ... ,gand v = 1,2, ...,v:

which are related to the component connection model via

Qv _ , Qv q 15 v
Here L3V is the q-v entry in L,,; g = 1,2 and v = 1,2 vi L9 s
22 22’ 189 o 92_ 163 9V 2'(
the qth row of Lyys a = 1,2, ... ,q; and L¥2 is the vth column of Lyos

v =1,2, ... , V.

Finally, since we are interested in analyzing the effects of perturbing
one or more components from their nominal values, we decompose 7 into

nominal and perturbation terms in the form

= Z0 + Z] 1.7

vihere

e
Z, = ,cé&r 1.8

Here, ¢ (= ¢

~

k(j.,)) is a column vector, rk (= rk(ju)) is a row vector, and

X is the scalar perturbation for the kth potentially variable component

k, and Sk 5

parameter. In a typical application one is given ck, r
k =1,2, ... ,k; characterizing k potentially variable component parameters
though at most p such parameters varv in any given analysis; p < p < k.

Indeed, p << k in most applications. Finally, we note that 21 can be expressed

more concisely in the form
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Z = C&R
where
C = [c] ' cz:
x!
2
R = (I~
PP
and -7
-
6]
A= 52

%,

1.9

The above described notation formulated for the component connection model

is summarized in table 1.
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Hatrix

a

n
L2

L12
v
Ly2

v
L3

Type

composite component input
vector

composite component output
vector

composite system input vector
composite system output vector
connection matrix

connection matrix

qth row of Loy

connection matrix

vth column of le

conpection matrix

g-v entry in L22

composite system transfer
function matrix

g-v entry in S
composite component transfer
nominal composite component

composite component transfer
function perturbation matrix

column vector characterizing
perturbation of kth parameter

array of the ck vectors for the
parameters chich actual vary

( rowlck?)

row vector characterizing

array of rk vectors for the
parameters vhich actually

vary (collr®]

kth variable parameter

array of & 's for parameteri
which actually vary (diag(&"1)

Dimension

m

j< [B=]

13 o

o — o 13 |13 |— Jo

[p=]

3= ]

x 1

x
|<

x
i<

x x
2 I3

x
13

x
{3

0
[}

>
]

Table 1. Summary of Component Connection Model
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I1. The Data Base

Our data base is composed of the following family of (frequency

dependent) scalar transfer functions

s s e 0 -z s as 2, v 2, Ly 2.

b¥ = 1g,00 -z Q=1,2, ... ,0; 3 =1,2, ... .k 2.2
| kv - rk[1 + L]](I - ZoLll)-]Z°]L¥2; k=1,2, ... ,k v=1,2, ... ,v 2.3

and

R T L AT DK = 1,2, ..ok 2.4

Here, g and v denote the number of external system inputs and outputs
which are typically few in number. As such, the ekj array composed of 52
entries dominates the data base. Also note that all of the entries in the
data base are formulated in terms of the nominal component values and, as
such, the data base may be generated off-line without a priori knowledge
of the perturbations to be analyzed. Finally, the entire data base may be
generated with the aid of only a single n by n (sparse) matrix inverse.

Now, if we assume that only a single parameter is perturbed, i.e.

Z, = ckskrk 2.5
for some fixed k = 1,2, ... ,k, to retrieve s7¥ from the data base we must
' evaluate
Qv _ gV q _ k. k_k -1 k .k ko v
s L22 + L21(1 [Z0 +csr ]L]1) [Z0 +csr ]L12 2.6
' in terms of the elements of our data base and the variable nparameter, sk.

To this end we invoke Householder's formu]a1
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-1 1 -1

(o xy)T = st s v o v 2.7

k k

with W= (1= 2130, % = =c¥6¥, and ¥ = rkL . obtaining

(117, + cKsfrfa =0 -zt )+ MRk T

) -1 -1 k ok, Ak -1 Kk ky-1 k -)
= (-2 L) 7+ (-2 ) T e s (185 (-2 L ) T ) T L (-2 L)

-1 k k k -1
o 11 ] - erkk

2.8

Now, upon substitution of 2.8 into 2.6 we obtain

k. k k

IV - L0V 4 9 (1-[Z°+ck5krk]L]])'1[Z0+c s*rfaL,

22 21

-7 L )‘]tzo+cks"r"]L‘]’2

qv
L o 11

22 * L3

2

q -1k k k -1 k. k kg, v

+
1 - erkk
k, gk k _ -1 V.
v, kgakky S0 Tt Ten) Zobyp f
0 12 1 - ékekk

(5k) 2kl Y

o]

S

k,ak kv ki2- gk kk _k, v qk kk_k, v
b+ (81)C-be T rily, + b e rly,] v, skpak4kv
) ;‘j‘;E;EE

Qv 2.9

s
0 1 - sKekk

"
w

which is the desired symbolic transfer function.

If we assume that two parameters are perturbed; that is

Z1 = ckskrk + cJéjrj 2.10

a similar formula can be obtained wherein Householder's formula is appiied
twice. Since this formula is subsumed by the general retreival formula derived
in the following section, we simply state the result without proof. In

particular,
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1]

- W 8

L

Qv
22

0

q
L

k. k k i 3.3 -1 k.k k. §.3.34,v
1(1 - [Zo+c g r + CUs¥r ]L]]) [Zo+c & pr +cYé%r ]L12

kbqkdkv+53b“jdjv+sk53(-ekkaJdJV-eJqukde+ekijJdJV+e3kadeﬁl

1 - erkk - gdedd 4 Gkaj(ekkeJJ - ekJeJk) 2.1
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III. Retreival Theorem

As is apparent from equation 2.17, our retreival formulas are quite
complex, even for the case p = 2 and, as such, a more compact notation is

required if they are to be tractable. To this end, we assume that

sk; k = 1,2, ... ,p: denote the potentially variable parameters and that
Z, = Pockekek < car 3.1
k=1

Of course, the same expression applies to any set of p potentially variable
parameters given an appropriate change of the index set. To obtain the re-

quired symbolic transfer function for
_ -1

with the above specified Z1 we now define the following matrices made up of

elements from our data base

1 12 v
S0 S S0
21 22 2v
So So s -
So = . : 3.3
ql a2 qv
S0 5o 0
bl] b]Z blo_
21,22 2p
g = | bbb 3.4
NCUNCCIN
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— -
g1 2 Al
2 422 42
D=|. . . 3.5
| qP1 gP? dPY |
e” e]z e]p
21 22 2p
F=( ¢ e .. e 36
L_epl P2 .. ePP |

while & is defined as per equation 1.12.
THEOREM: Using the above notation
N -1 - _ -1
Proof: First, we observe that

AT 3.7

5=t 1) Lotiz

o = Lo * L=t

is just the nominal system transfer function matrix while
- -1

and

- -1 - -1
D = R[(1 + L11(1-20L11) ZOJL12 = R(l-L‘1Zo) 3.9
via Householdér's formula. Finally,
- -1
E = RL11(1-ZOL]1) C

where R and C are as defined by equations 1.10 and 1.11. As such,
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(1 - af)" “lgy-!

(1 - aRL,4(1-Z L

otn! ¢

1

[n+ ARL11

-1
1 - ZoLll - Z]L]]) C]

{1+ ARL]l(

-1

[1 + aRL,,(1-ZL C]

11 11)

where we have invoked Householder's formula with Z =

Yy = (1-Z°L11)']C; and equation 1.9. As such,

1. -1
So-+B(1 - aE)" 'aD = So-+L2](1-ZOL1]) C[1<+ARL]](

1-2 L,

=So+L olﬂ

21l
-

i

-1
SO.*L21(1-ZOL]]) (]-ZOLI])(]-ZL]])

-1 7z )7L

= Syt Ly (1-2Lyy) nte! L2

Z](1-L

-1 1

=L+l (1-2.L4y)

s Lo+ L..7 (1-L,42 )"L]2 + L21(1-ZL”)']Z

22 "2170 1170 1

i A 1
= Loy tip(Zy + (1-2Ly) Z3100-L3Z0) Ly,

-1

=L (1-ZL]]) [(1-ZL”)Z0 + Z]](1-L]1ZO)

22+ Lo

1

Lop * Lo (1-2L) 7702 - ZLq3Z0(0-L442,)° L,

i -1 -1
= Loyt Loy (1-2Ly ) Z01-Ly 23001y 20) Ly,

-1

Lop * Loy {1=2ly) 2Ly, = S

as required. /i
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2,(1-L42,

ZOL]2 + L21(1-ZL1]) 21(1-L

-1

X = ARL]1, and

11

Lyo

-1 -1
So* Lo (-2 Lyq) L2y * 2Ly (0-2Ly 1) 21300142

Z,)

0

(1-Ly,Z,)

-1 -1
(1 - (1-ZOL]]) CARL]]) (1—ZOL]])

)-]

-1
) Ly,

-1

-1

L1z

Ly

L2

-1

C]

-1 -1

]'ZL]]) C]AR ] L Z ) L]z
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IV. Sensitivity Formulae

If one is working directly with the component connection model, it is

well known4 that the sensitivity of S with respect to a parameter, 6’, can be

computed via the formula

asT . -1z 7 -1
[}—;[ = Ly (1-2Ly) 192 Ty » Ly (=200 7 200, 4.1

11 lds J

and hence it is appropriate to ask whether or not such a sensitivity matrix

can also be computed from our data base. Since the expression

s =5, +8(1- AE)"TaD 4.2

is formally identical to 1.4, if 1 < 1 < p we may write
ds

L -
Q{[ = B(1-28)" M, 11 + E(1-2E)a20 4.3

where

ol
1

y, =98 g 4.4

with the cne appearing in the ith diagonal entry. Clearly, the expressiun
can be computed directly from the d-ta base with the same leve™ ~* 7  ca-
effort as required for the retreival formu’a.

i .
In the case where i 35 ng® “n¢ e v "ee
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deviate from nominal, i > p in our notation, we must first augment the B, E, D,
and A matrices to include §' and then apply equation 4.3 to the augmented

system. To this end we let

p—

b]T

T
b2 .. /P bl

21 22 2 2

b

[EUNC L

PP
22 2

aPl qPZ . M

d’ d'L |
|
JT 12 I 1]
' e21 e22 . eZp eZi
h ET = 4.7
ep1 ep2 epp epi
{§11 ei2 L eii_
and
a ¢ 9
Aa = -——:——— 4.8
0:0

The we obtain the retreival formulae

$=5,% 31(1 - AaEi)'lAaDi 4.9
and
f 5 7. gi-aey "I r1eef(1-a2et) Ta23p! 4.10
} |ds] g
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V. Updating the Data Base

In many applications one uses a data base such as that described above,

as a design tool to aid in simulating the effects of various proposed

modifications to the system.

When such a modification is finally implemented

it is then necessary to update the data base to reflect the new nominal

parameter values

p
IR Al AN 5.1

k=1

with the aid of Householder's formula we may compute

(]'zoLll)

+

= (I-ZOL]]

-1
)+ (1-Z°L

- -1 _ -1
= [(T-ZOL]]) - CARL]lj = (1-Z°L1])

-1 =1pq~1 -1
(1-Z°L]]) crl - ARL1](1-Z°L]]) €] ARL]](I-ZOL11)

-1 -1 -]
1707 C(1-8E) T aRL, (1-Z Ly 5.2

which upon substitution into equation 2.4 yields

ékj - ekj + [ek] ek2 .

Similarly,
593

akv _

9K & [pdl p92

. ekp](l-AE)']A e~lJ 5.3

b y1-aE)"Ta |® 5.4

e
L

_ efPy(1-ae) T2 [a'V] 5.5
d

109 =




and —_
AR %' 532 .. bIP3(1-aE) Vs [a'V 5.6
dZv
\")
Plad

As such, the entries in our data base can be updated with a computational

effort which is commensurate with that required by the retreival formula.
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VI. Examples
Consider the simple RC op-amp circuit shown in figure 1.
connection

Figure 1: RC Op-amp circuit.

model for this circuit takes the form

ic sC 0 vc
Vol = 0] R 0 ir
v2 0 0 K v.I
- 4 7 4 -
vl o a4 1c[ B vi]
i <
ri = {1 0 0 vr + ({0
A1 L I R
T = (A - - -
Yo 0 0 M i+ [0 vd
vf‘
\

The component

6.1

6.2

6.3

6.4




——— - -~

-
1 0 -5
N
(1-Z°L1]) D S 6.5
E'! -1 s+1
Ts 0 -8 ]
.
("zoLll) Zo s 1 -5 6.6
l-s -1 s+l
0 o -1]
-1,
[1 -1 SJ
and
1 0 -1
-1 .
Lll + L]](I-Z°L11) Z0 s 1 =5 6.8
-5 -1 s+l

tiow, we may represent perturbations in the parameters C, R, and K via the

s 5 [3 0 é}

0 6.9
0

0 1

1

matrices

Jelel
20 1 d

222 .

L_O_l

and

12

L
]

6.10
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6.11

Combining the appropriate ck and v matrices with the above expressions as

per equations 2.1 thru 2.4 we obtain the data base

5, = 1 6.12
b = o5 b2 = -1 b3 = s+l 6.13
a'=1 a0 &= 6.14
and
el =0 o220 &=
2. 2.0 oB. .
3 2 . 30

@ = -5 @ " =] e =3 6.15

where we have deleted the q and v indices since we are dealing with a single-
input single-output system.

Now, if one desires to compute the symbolic transfer function with respect
to perturbations in the op-amp gain we have
3.3.3 3

b~§~d 1+ 8
+ = — 6.16
1-8"e 1-6"s

Recalling that 63 represents a perturbation from a nominal parameter value of
3 3

Ko = 1 our actual gain is K = K0 +8" = 1487, which upon substitution into 6.16

yields

$(s:K) = TTRTS 6.17
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which is the classical gain formula for such a circuit.

Finally, if we desire to update our data base to reflect a new nominal
value for the circuit parameters of C = 1, R = 1, and K = 2 we invoke

equations 5.3 thru 5.6 with 63 = ] yielding

3,33
T - b”&°d - 2
%o "% T T, 333 T 6.18
1-4% 53=]
13,331 3
11 _ 11 e "s8% - ~1)8°(-s = s
il well v 888y =gy LGS T-s 6.19
_ §” =1

and similarly for the other elements of the data base.
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VII. Concliusions

The preceeding development has been motivated by operational and main-
tenance considerations rather than the design considerations. In such an
environment one typically deals with a fixed nominal system, but carries
out repeated analyses thereon. As such, the cost of generating the required
data base is secondary compared to the cost of storing the data base and
retreiving information therefrom. In these respects we believe that our
data base is near optimal. Since the number of system inputs and outputs
js tyoically small our data base contains approximately 5? elements
(actually 5? + k{v+g) + vg) where k is the total number of parameters

which are potentially variable. This data base, however, contains sufficient

information to permit one to retreive symbolic transfer functions for any
number p < k of variable parameters. Indeed, the number of variable para- ‘H
meters in a symbolic transfer function is reflected only in the cost of

3 3 2

retreival which is on the order of p” multiplications (actually p~ + p°v +

pv(g+l)). Since p is typically small, say five or less, this is minimal.
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On Large Nonlinear Perturbations of Linear Systems

Phitlip D. Olivier
R. Saeks
Department of Electrical Engineering

Texas Tech University
Lubbock, Texas 79409
Abstract
This paper generalizes the classical Householder's formula to certain
nonlinear operators. This class of nonlinear operators is shown to be

common in circuit theory. Several examples are provided that show where

these operators occur and the result is applied.
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I. INTRODUCTION

The purpose of this paper is to present a technique for analyzing
lumped analog systems with some linear and some nonlinear elements. It
is shown that such a system is described by an operator of the form

B+YoD (1.1
where B and D are Tinear and Y is nonlinear, Since no assumptions are
made about the nature of the nonlinearities, it is impossible to view the
vperator YoD as small in any sense, hence, YoD has to be viewed as a large
nonlinear perturbation of the linear operator B.

The technique to be presented js based on a theorem that allows us to
invert (1.1) in two steps. First, invert the Tinear operator B. If there
are NL linear elements and NN nonlinear elements, B will be an (NL+NN)x
(NL+NN) matrix. Second, invert a nonlinear operator of rank NN. That such
a result exists, is not surprising. Those experienéed in solving equations
involving such operators apply Gaussian elimination until there are NN
nonlinear equations in NN unknowns. Another way to see that this segregation

can be accomplished is to view the nonlinear elements as a "load" on an
appropriate linear circuit, in much the same way as a circuit where one
nonlinear element is analyzed by viewing that element as the load and
finding the Thevenin's Equivalent circuit that it sees.

The main result of this paper is obtained by generalizing to
operators the form B+YoD, a classical theorem concerning linear operators
known as Mouseholder's Formula. This classical result and its generalization

are stated and proven in section 2. In section 3, we show such operators do,
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indeed, occur in circuit theory and then two examples are presented. The

results are summarized in section 4.

Section 2.
The classical Householder's formula [1] provides a means of calculating

Vand (1+08710) Y. 15877 s

the inverse of the matrix B+CD in terms of B~
known and if the dimensions of C and Dare appropriate, then a great savings

in time and effort can be realized using this technique.

Theorem 1: (Classical Householder's Formula)
If B is an NxN matrix, C is an NxP matrix, and D is a PXN
Vg~ Te(1+pe~Ye) Tos~T.

matrix, then (B+CD)'] =B '-B”

In the nonlinear extension, the linear operator C is replaced by the
nonlinear operator Y. The proof of this extension looks, at first glance,
Tike the proof of a linear rather than a nonlinear fheorem. To see that
this is indeed a nonlinear result, the differences between the nonlinear

and linear operator algebra will be reviewed by giving two basic definitions.

Definition 1: (Operator Addition) Let f and g be two operators (linear or
nonlinear) with the same domain, then the operator f+g is

by the following y

(F+g)(x)4F(x)+g(x) (2.1)

122




Definition 2: (Linearity) an operator f is linear if for all x and y in
its domain and all scalars o and 8

faxtBy) = f(ax)+f(8y)
=af(x)+ef(y).

The argument distributes to the left for all operators, but the operator
distributes to the right only for linear operators. With this distinction
in mind, we are ready to state and prove our main result which is a closed

Vand (140871Y)"7 (cf course,

form expression for (B+YD)'] in terms of B8~
operator multiplication is to be interpreted as composition, i.e.,

¥o2YoD.

Theorem 2: If i)B and D are linear operators, ii)B'] exists, iii)y is an
arbitrary operator and iv)B+YD is defined, then

(8+yD)~! = =1~ Vy(1+nBY) YoB~!. - (2.3)

Proof: Consider the operator X+XYX where X is linear and Y is possibly
nonlinear,
X+XYX = X(I+YX) = I+XY)X,
If (I+YX) and (I+YX) are both invertible (it can be shown [2] that

one is invertible if and only if the other is) we have
(1+xY)"Tx = x(14¥x)"! (2.4)

Now consider the identity

(I+YX)(14xY)™ 1 = T(1+YX) ™ Teyx (14vx) ™!

I

[}

(14YX) " 14y (14%Y) " X
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where we have used (4). Solving for (I+YX)'] yields
(5) (1+vX)~V = 1-v(1+xy)"'x.
Finally, consider the operator B+YD.
(8+vp)~! = r(1+v08~")B37" = BT (14v08~)"!
Letting X = DB™! in (5) yields

: 1

(B+YD)~ 1

= B'1[I-Y(I+DB' Y)']DB']J

= g1~ ly(1+08”y)"tog~ 7.

To see how this result is useful, consider the case where B+YD is an

Nth

order nonlinear operator, D a linear operator that maps IRN+|RP,P<N
and Y a nonlinear operator that maps [RP+|RN. This result allows the
solution of N nonlinear equation in N unknowns to be replaced by the
solution of N linear equations in N unknowns and also the solution of P

(recall P<N) nonlinear equations in P unknowns. Thus, we have, via a

closed form expression, ordered our equations and unknowns properly to

make maximum use of linear techniques and minimum use of nonlinear techniques.

It should be noted that the proof of Theorem 2 relied on the fact that

B and D were linear operators and allowed Y to be arbitrary. B and D were
not assumed to be matrices and Y was not assumed to map |RP*|RN. Any or
all of the operators could be differential operators and the result would
still be valid. Regardless of whether the operators aredifferential or
functional, we have succeeded in breaking it up into a linear portion and
a nonlinear portion. If there are few nonlinear components in comparison
with the number of linear components, the nonlinearities can be viewed as

a perturbation on the linear system.

Section 3

The purpose of this section is to show that operators of the form
124
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B+YD occur in circuit analysis problems and to apply Theorem 2 to two
examples.

This type of operator arises naturally in nonlinear network analysis.
Consider the Node analysis of a network with reduced incidence matrix A,

[3]. Kirchoff's Laws are
(KCLY Aj =0

(KVL) v = ATg.

The branch equations might be
J= G!fjs—6!5+f(!)

Where

jé the branch current vector;

!? the branch voltage vector;

jsé the current source vector;

!sé the voltage source vector;

e® the mode-to-datum voltage vector;

(=

G is assumed to be an "invertible" matrix of differential operators, f is a
nonlinear differential operator, and all branches are voltage controlled.
If

i8A6V -Aj

then Kirchoff's Laws and the branch equations can be combined to yield

(AGAT)e+Af(ATe) = i. (3.1)

Letting AGAT=B, and Af(-)=Y, we see that this operator is of the desired
form. The typical situation is for f to be a function of only a few (p<n)
linear combinations of the components of v then (3.1) can be rewritten in

the form
125




B+Y(CA') e=i (3.2)

which is precisely the type of operator that is amenable to the results of
Theorem 2.
We now apply Theorem 2 to the problem of solving two nonlinear

simultaneous equations in two unknowns. Consider the following nonlinear

7 3
IR N I IR Poe's B

In order to apply Theorem 2, fi{x) must be put into the form

equations

(B+YD)(X)
where B is an invertible matrix. One way to do this is

-17 X
£(X) = (B+YD)x = X W o+y(01,03%)
1o %,

where (-)3-(-;
Y(.) = 0

Theorem 2 says that

RS T Tyr-Too-1.
X = B71z-871V(1+0871Y)"10B ™12 = X Xy,
where
E i 1] 24 27
X =8'z=
1o 3 -a
and
. Ty -Tro-1
Xy, = B Y(1+0871Y) " Tog" 1z
- B“Y(1+DB“Y)"DBL

8- Ty(1+08~1y)"T27.
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Now
(1+08” ') 127 = u
is equivalent to

(14DB™ 1Y)y
1

27.

1 1 u3 -U
u+(1,0]
-1 1 0

3
us  -u
= y+[1 11 [ ] = u+u3-u=u3=27
0

which implies

(I+DB™ 'Y)u

Now 3

NL T

27-24 3
X = X =Xy =
LONL {21424 3

The reason for choosing a functional example is that for large circuits

><
/]
(o]
'
_<_.a
)

"
IR,
|...4 —II
A

w

o ~—

-
fl

I ] |

N n

I-P -P'

or systems, the differential equations are solved numerically so at each
iteration an operator of the form B+YD must be inverted. To see that this
is indeed the case, consider discretizing the differential equations obtained
from the component connection model [2] of a system. The component equations
are assumed (here) to be given in state form

f(X,a)

g(X,a).

X

b

where a is the vector of component inputs, b is the vector of component out-

puts, and x is the state vector of the components. The connection equations
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(KVL and KCL equations) are given by

a . L1 Ly, b

Yl |tar Ly

where u is the vector of system inputs and y is the vector of system outputs.

If we order the entries in all of the vectors correctly, we can partition

the vectors in the following manner

N, N N
_4a _b _ X
a-= aL s b= bé] , and x xé]

where the superscript N(L) denotes entries associated with the nonlinear
(Tinear) components. The discretized equations that the computer is to

solve have the form

r

N NN N
2o 9i%k=T Kioagd:
r

L _abloaab
I 9K ARy

N_N
bkN=gN(Xk '3y Y,

L~y Lonal

N_ NN.N. NL L. N
3y =Ly b Ly btLyouy

L LNN, LL L, L
a=Lyyb bty

N Ny Lol

YieLo1bytLaobttoouy -

The last equation is just the output equation and is not used during the

iterations. These equations can be put in the following form
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TW YW, ) =
[ 140 0 0 0 -1 0 x:
N
0 0 0 0 0 0 ay
0 0 A-dol B 0 0 xt
0 0 c D 0 -1 at
NN N
0 0 0 S LY bt
1 n K
L ] B i
~ N, NN B N )
FXsa) iy i
QN(XN,aN) - r 0
0 i=] i r‘i
0 0
0 0
-0 L 0

where D= 1,0 , and I is conformable with

&

x =

4, Conclusion
The classical Householder's Formula has been generalized to certain

nonlinear operators. It was shown that these nonlinear operators occur in




circuit theory, both in the differential equations that describe the circuit
and in the discretized equations that are used in the computer aided
analysis of these circuits. It is hoped that this result will be as useful
a tool in the fault analysis of nonlinear circuits as the classical result

turned out to be in the fault analysis of linear circuits.
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NONLINEAR OBSERVER'S AND FAULT ANALYSIS
P. D. Olivier and R. Saeks
Department of Electrical Engineering

Texas Tech University
Lubbock, Texas 79409

Abstract
A fault analysis algorithm appropriate for time varying and nonlinear
systems, is developed. The algorithm essentially constructs an observer

for a nonlinear system that is intimately related to the system under test.
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INTRODUCT ION
Given enough time and computing capability brute force searches will

identify possible fault sets. The real problem in fault analysis is to

construct algorithms that, in some sense, locate the fault sets "efficiently".

"Efficiently”, in this context, means that the fault isolation must be

done relatively quickly and with limited on site computing. Such techniques
have been developed to handle Tinear time invariant and digital systems.2’3’4
These, however, make heavy use of the defining properties for these systems,
and do not generalize. The purpose of this paper is to show that an observer
for an appropriate nonlinear differential equation can be utilized, on line,

to determine the values of the system parameters. A technique, based on

optimal control theory, for constructing such observers is also presented.

OBSERVERS AND FAULT ANALYSIS

Consider testing a system that is described by the nonlinear state

equations

X) f(x],a,u,t)

y = a(xq)

where X4 is the dynamical state vector, a is the vector of parameters to be
estimated (they are assumed constant over the test time), and u is the input
used in the test procedure. If we want to estimate a we need to include it

in the state vector, i.e., we want to build an observer for the augmented

differential equation

PRECEDING PAGR BLANK-"OT FILM&D
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If it is possible to build an observer that will observe the subvector
a we have solved the fault analysis problem. It would then be necessary to

justify our solution in terms of time and computation requirements.

AN OBSERVER DESIGN

We chose to design an observer with the following structure

ye

Xy f(;,;,u,t) + H(& -y) (H time invariant)
a 0
y = 9(x).

we term such an observer as a Model reference linear time invariant observer.
The term "linear time invariant" is used because the residuals enter in a
linear time invariant fashion. The problem is now that of choosing H. To
avoid involved stability considerations (at least initially) we choose H so
that it minimizes the following function

t1 ’

J(H) = [ [(xq~x)

)

+(a-a)23 dt

and hope that the stability takes care of itself. The construction of H

can be done by solving the following optimal control prob]em]
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t
min J(H) (J(H) = [ xTqxdt, Q=11 -I )
t

H R? 0 R

subject to the differential equations constraints

x.|_ :'(x],a,u,t)— r-O_‘
x= 2 0 +1 01 (3-y)
;] f(g],é,u,t) H
a 0
T AT 5 o \T gy AToT
Kt) = o (e Tate )k (¢ ) ace)T)

Note. 1) H will be dependent on the X(to) used in its construction, so when

it is used to estimate a (when a differs from a(to)) it has 1ittle chance

of being the optimal H. So even though we use optimization techniques to

construct H, it will not, in general, be optimal. 2) Several observers may

need to be constructed, each one convergent for a in a different region.
Experience indicates that only a few components fail at a time. Because

of this a reasonable approach is to construct an observer for each component,

(thereby minimizing the dimension of the augmented state vector) and estimate

the parameters for each component in parallel. Observers can also be built for

the common two and three element faults.
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CHAPTER 1
INTROBUCTION

The advent of microelectronics, the ever-increasing complexity and
compactness of electronic circuits, together with a need for higher
reliability in space, military, and even commercial projects, has
brought new problems to industry; test and diagnosis of electronic
circuits is one of them.

Presently, a printed circuit board may include several hundred
components; modular construction as well as small geometrical dimensions
make impractical, even infeasible, and certainly uneconomical, e
conventional test methods based on classical laboratory equipment such
as signal generators, meters, oscilloscopes, and probes.

In either the analog or digital case, fault detection and location
in electronic systems is generally performed via measurements at a
1imited number of input and output connections. These measurements are
then executed by computer test programs to provide diagnosis.

Until now, algorithms for automatically generating test programs
have been concerned mainly with digital circuits. Analog circuits, on
the other hand, have received far less attention, due to several
reasons: Analog systems are frequently non-linear, and the values of
the parameters of the elements exhibit large deviations [6]; analog
signals are inherently more complex than digital signals. They occur
continuously in time, rather than at discrete times, and their values
have infinite resolution, instead of being truncated into a finite
number of bits; most importantly, digital automatic test generation has
been successful due to the simplified modeling at the logic gate or
higher level, rather than the internal parameter level as in the case
of analog systems. As a result, most analog automatic test generation
and fault isolation techniques require a large computational capability
on the ATE or off-line computers [5].

FRECKDING  PAGE BLANK-NOT FILagsp
147




Several efforts have been made to attack the fault diagnosis
problem in analog circuits. The multi-frequency technique for fault
analysis in general linear dynamical systems was developed by N. Sen
and R. Saeks [1],[7].[8]>[9], was considered to be more efficient and
advanced in terms of output selection and reduction. By varying the
test frequency at the same test points, the number of test points can
be reduced significantly compared to the case of single frequency
measurements. _

This technique has been generalized to non-linear analog systems
by linearization of the non-linear components. Unfortunately, the
linearization concept fails in many cases [10]. For example, consider-
ing a single-loop circuit consisting of a power supply, a resistor,
and a tunnel diode. At a given bias, the non-linear characteristic of
the tunnel diode has a particular slope. With the breakdown of the
bias resistor, the linearization of the non-linear characteristic of
the tunnel diode at the new biasing point will be different, and the
diode will appear to be faulty if one ignores the fact that the diode
is operating at a aifferent bias.

Recognizing the Tinearization problem in multi-frequency test,
the fault-diagnosis of non-linear analog systems in the D.C. case was
studied by V. svanathan and A. Sangiovanni-Vincentelli 2,and N.
David and A.N. Wilson [3] at the component parameter level. These tech-
niques have these disadvantages: the required number of test points is
more than required by the multiple frequency technique; the tremendous
amount of computer time is required to solve very complicated non-linear
equations. Since this is a D.C. test, these techniques can only be
applied to memoryless systems ( without reactive components such as
capacitors and inductors ).

The dual-mode technique for fault-diagnosis for non-linear analog
systems is introduced as a compromise between the above approaches.

Mode 1 (A.C. Test): utilizing the multi-frequency technique to
search for the faulty linear components, then the faulty linear component
values are calculated. The non-linear components of the circuit under
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diagnosis are replaced by small signal A.C. or linearization equivalent
circuits. Therefore, this A.C. test is performed at the internal
parameter level for both linear and non-linear components.

Mode 2 (D.C. Test): this test is used to diagnose a reduced non-
linear problem after the linear components are determined in Mode 1.

The nominal values or the faulty values given by Mode 1 are used for
computations depending on whether the linear components are in tolerance
or not. A non-linear device or element is treated as a blackbox with
inputs and outputs. The task is to find the D.C. inputs and outputs or
the operating conditions of the blackbox, not the internal parameters
of the non-linear devices. This approach is compatible to previous
successful techniques in digital systems performed at the logic gate le-
vel or higher. The fault-diagnosis algorithm is shown in Figure 1.

The Mode 2 formulation and examples are presented in this thesis
together with a comparison with existing techniques in fault-diagnosis
for non-linear analog systems. Finally, an experiment on a four-transis-
tor amplifier circuit 1is conducted to verify the theorectical solutions
and to determine the sensitivity of the dual-mode approach.
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Fig. 1  Fault-Diagnosis Algorithm by the Dual-Mode Technique !
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REPLACE FAULTY
COMPONENTS

END

Fig.1 Fault-Diagnosis Algorithm by the Dual-Mode Technique
(Continued)
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CHAPTER 11
THEORETICAL DEVELOPMENT

The theoretical formulation of the D.C. test for the non-linear
problem is based on the component connection equations [4] :

a=M,,b+M_u

11 12

b =M,b+M,_u

21 22

i

Where u and y represent the vectors of accessible inputs and outputs
which are available to the test systems, a and b represent the compo-
nent input and output vectors, respectively. The relationship between
a and b is:

b=12Za
Although the symbol Z is used, the components are not assumed to be
represented by an impedance matrix. Indeed, hybrid models are used
in most of our examples.

Before the circuit is analyzed in the D.C. test, the capacitors
and inductors, which are assumed to be linear components, are replaced
by open-circuits and short-circuits respectively.

The component vectors a and b are partitionéd into:

4 L
a = b =
ay by
Where 3 and bL are the linear component input and output vectors, and
ay and bN are the non-linear component input and output vectors.
Therefore: - - _
b, L 3
———- = | aaeaa 1'.-;_--- ————
 df
by g 2N
b o = ' daN
when a linearized model is employed.




The component connection matrix is partitioned accordingly:

LL N L
a M Mo My by
L NN N b
v b= M1 Myl My N
enee] | eccccceccccaceee i. ........ ———
L N )
| Y " Mg My My LY

Equation (1) and (2) can be solved simultanously to yield:

e R -1_lL

by ‘[“21 (2% mp) ©0m ] [ (Gt ”12*”22):] (3)
_ [N, LN L N

ay = [Mll(zl. -M ) ]b + [ M12 + MlZ] (4)

Thus the inputs and outputs of the non-linear devices can be
computed by a few simple matrix operations. These values are checked
against the operating characteristics of the corresponding functional
devices for fault isolation.

The coefficient matrices of (3) and (4) can be pre-computed if
the lTinear components are not faulty. The matrix -ZL should be changed
to incorporate the faulty values of the linear components, if any, to
avoid the computational errors caused by the use of nominal values of
the Yinear components.

For each pair of non-linear component input-output signals. one
test point is required. For instance, a bipolar transistor can be modeled
with two (2) input-output pairs:

Therefore, two (2) measurements must be taken. Non-linear integrated
circuits can be modeled in the same manner., The number of test points
required in this mode goes up linearly with the number of non-linear
devices in systems.
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. L,,-1 Ll -1,LN NT. . .

The matrix BZI(ZL - Mll) M11 + M21]1s singular if the test
points are not chosen properly. The selection of test points to make
the above matrix non-singular will be discussed in detajl in the

Appendix.
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CHAPTER III
EXAMPLES

CET

Fig. 2(a) Single-Transistor Amplifier
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Fig. 2(b) Small Signal A.C. Equivalent Circuit
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Multi-Frequency Test (Mode 1) [1], [12]

The small-signal A.C. equivalent circuit of the circuit of
Fig. 1(a) is shown in Fig. 1(b). The connection equations associated
with the A.C. or mode 1 test are as follows :

1C1 0000011010110 r-;c1
Ir, 000000101011 § o ||vr,
Ir, 000000 1-11-100i 0 [
Ic, 000000000111} 0[]
1C2 000000O0GCOOO0O0 1 0/f]ve
VR -1 00000000000 § 1|1,
VRE -1-1-1 00000000 0! 1||Ie
ve, 0010000600000 § o ||1c,
VCE |=|-1-1-1 0 0000000 O} 1 |[ICE
vg_ 00 1-1000000T00 § o ||1g,
VRC 1-10-10000000O0! 2 |[IRC
VRL 1-1 0-1000000 0 0 g 1 || 1R
b Y BTN H— o
v, -1-1 0-1-1 00000 0 0 § 1|}y,
Ic1 000001101011} 0]|—
VR} -1 00000O0GO0OO0OQ 0 i ]
IE 000000101000; 0

- B -

Here we initially aliow Vo ,» IC1 , VRA ,and IE to be taken
as test outputs. The measure of testability Gmin is used to extract a
reduced set of test outputs from these options. According to table [
two (2) is the minimum number of test outputs in this example , which
suffices to yield Smin = 0 (perfect testability) or to provide locally
unigue solutions for the fault-diagnosis equations .

The test measurements are taken at the two output VRA and IE
at twelve (12 = n - Emin ) distinct frequencies , where n is the dimen-
sion of the parameter vector r .The faulty parameters can be identified
by using the Householder's Formula and the optimization algorithm[13] .
Only the faulty parameter values for the linear components of the circuit
need to be calculated to be included in the calculations in mode 2.
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Table 1  Measure of Testability for the
Amplifier Circuit of Figure 1

]
OUTPUT b oMIN.
'
:
Yo E 3
IC1 b2
i
) ]
VR o2
IE P03
]
]
:
Vg, 101 {0
' i
VorVRY .
. ]
Vorlt i 0
\ ]
IC1,VRy o2
IC1,1E ol
) 1
VRy, IE P00
i
!
i
Vg » IC1, YRy 0
1
Vo . IC1, IE {0
' [}
Vg » VR . IE L0
’
IC1, Ry , IE b0
'
Vg » IC1, VRy , IE b0
1
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D.C. Analysis {Mode 2)

Assuming that the capacitors of the amplifier circuit are not
shorted. They are treated as open-circuits in D.C. test, and removed
from the circuit before Mode 2 analysis begins. The test point measure-
ments are chosen at the same test points used in the multi-frequency
test. The connection equations for this circuit in D.C. test are:

a . Wf
VRA 0-1 00 0 0 }1f]Ira o i
IRB 100 0-101i0]]ves wma|l fwra 0 Yfwra
IRE 0000 1 1;0]fvre VRB RB IRB
IR(f _ J0 0 0 0 0 1 i0fJVRC and VRE] . RE IRE
VBE 0 1-1 00 0 ;i0]|}IB VRC R VRC
VCE 0 0-1-10 Ojl IC e I ';;;' "
el . D l-- -e '__
VRB 0-100 0 0:0f}y ic§ | fa, JLVCE
IR |0 000 1 110))

The non-Tinear component input and output vectors ay and by can be
found via (3) and (4):

r— -1 = .
I8 _ RA+RB 0 VRB RB
RA.RB
bN = = - RA+RB V+
IC RA+RB 1 IRE 0
L RA.RB J U ~
!
| _pf. RA.RB -RE 18 RB
VBE RE RATRE TATRE
’ = = +
: a v
VCE -RE -RC-RE 1€ 1
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Fig. 3 Cascode Amplifier Circuit

The capacitors in the circuit are assumed to be good
They are removed from the circuit before Mode 2 diagnosis

connection equations for the circuit are:

ol

0-1-100 0 0 0
0 0 0 0-1 0 0-1-1
1 000 0-120200
1 0 0 0 0-1-1 0O
o 1.0 0 0 1 1 0 O
o 0o 1 1-1 0 0 O0-1
= o 0 0 1-1 0 0 O O
0 1 0 0 0 0 O O O
0O 1.0 0 01 0 0 O
0000 100 00
1 0 000O0O0 0O
0 10000000
0o 000 100 0 1
-y
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begins. The
1_1 ﬂ--IRl
1 IRC
0 VR2
0 VR3
0 VRE
0 1B2
0 iBl
0 VCE2
0 VCE1
0 V+

0

0

°JL




182 1
181
VCE2

LVCEI

VBE2
VBE1

IC2

BCI

r -

IR1
IRC
VR2
VR3
VRE._
182
IB1

VCEZ2

chsg

)
]
[}
[}
1
]
]
]
]
]
]
[}
]
[}
[}
[}
]
]
[
e

VR1
VRC
IR2
IR3
IRE_
VBE2
VBE1
1C2

IC1

The non-linear inputs and outputs are determined via (3) and (4):

1
RE.R2

————

-

p—

~R1(R2+R3)_,

R

-R3
R3+R2

~-R2.RE

~R1.R3

A= Bx =

RE.R R3.RE
-RE.R -(R2+R3)RE
0  -R2.RE.RC
0 0
-RL.R3_, K_
R RC
-R3(RI+R2) K
R RC
-K -K
RC RE.RC
-K -K
RC RE.RC

where R = Rl + R2 + R3

¢ = RE-RC
RE+RC
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Direct-Coupled Two-Stage Amplifier

Fig. 4

The component-connection equations for Mode 2 analysis are:

— ]
~12345E21?_.+
X X o & &£ o ;o O WV >
- = D> D D > s
| )
100000111"1001
llllllllllllllllllllllllll "Illlllll|llll
000110000"0100
1
001000000"0100
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410000000“0000
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1
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e

IR1
IR2
VR3
VR4
b = | VRS

VBE1
182
IC1
1C2

. L ,4-1 L
The matrix (M21 (ZL - M1

1/R1
1/R2

R4

- > - - .- - - -

1

-1/R1 O 0

-1/R1 1 1
0 RS 0

L 0 -R3  -R3
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%)'1 MN 4 Mgl) is non-singular:
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11
1

Fig. 5 Video Amplifier Circuit

The same circuit is used as an example in [3]). In [3] ten (10)
test points are required besides the input terminals. The solutions
or the values of the parameters are obtained by solving eighteen (18)
non-linear equations. On the other hand, the dual-mode technique requires
eight (8) test points besides the input terminals and the solutions i
can be obtained by straight-forward matrix manipulations.

167 ! ‘




After the capacitors are removed, the connection equations are:

B B ] 7]
IR 00000000010000000:00 | VR
IR3 00000000011000000:00 | VR3
IR2 00000000001100000:00 | VR
IR4 0000000000011-10-10:00 | VR
IR5 0000000000000-1000:00 | VRS
IR6 000000000000000-10:00 | VRe
IR7 00000000000000100:00 | VR
IR8 00000000000001100:00 | VRe
IR9 00000000000000011300 | VR
VBEL |-1-1000000000000000 i0-1 | IBl
VCEI | 0-1-100000000000000 :1-1 | ICl
V8E2 | 00-1-1000000000000010 | IB2
VCE2Z ={000-10000000000000:10 | 1IcC2
VBE3 J0001100-1000000000:00 | IB3
VCE3 |000000-1-1000000000:10 | 1IC3
VBE4 | 00010100-100000000:00 | I84
VCE4 |00000000-100000000:10 | Ica
——— Soeommeemmemm e cmm oo fo-=- ———-
V2 [00100000000000000:00 v+
VR3 01000000000000000 300 V-
VR7 00000010000000000:00 -
VR1 10000000000000000 00
VR 00000000100000000:00
VR8 00000001000000000 {00
VR4 00010000000000000 00

|10 [00000000000000001 '0 0
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The non-linear inputs and outputs can be found via (3) and (4):

~ - T ] B
181] |0 Rz R2 0 0 0 0 0|-1 |VRe
1ca] |R3R3 0 000 0 0 VR3
182 {00 0 0 0 R7O O VR7
oy . |12 |M0 ¢ 00000 VR1
183 ]0 0 0 0 0 0 R9RY VR9
ical oo 0o o0 R8RBO O VR8
4] |0 0 R4 R4-R4 O -R4 O VR4
1c4] {00 0 00 0 0 1] 104
- o -
veel| | -R1-R3 -R3 O o o o0 0 0
VCE1 R3 -R3-R2 -R2 0 0 O 0 o0
VBE2 0 -R2 -R2-R& -R& R4 O R&E 0
an | 22| O 0O -R& -R& RE O Rar
VBE3 0 0 R& R4 -R4-R5 -R8 -R& O
VCE3 0 0 0 o R -r;re 0 o0
VBE4 0 0 RE R& -RE O -R4-R6-R9 -R9
veea| | o 0 0 0o 0 0 -R9  -RY
—~ -
0 -1
1 -1
1 0
1 of | v
*lo o
1 of |V
0 o
RIS
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CHAPTER [V
COMPARISON OF FAULT-DIAGNOSIS TECHNIQUES FOR NON-LINEAR SYSTEMS

Method of V. Visvanathan and A. Sangiovanni-Vincentelli [2]

Referring to the single-transistor amplifier circuit of Fig.6(a)
and its equivalent circuit of Fig. 6(b) using Ebers-tlo11 Model [11].

v2=E

T ®
v+ Q) | EF NArIer
Re Re +Yler

TR I 0
Ry ) - Ter

Fig. 6(b)
where R = R1//R2
Igp = Kl(exp(Alvl)-l)

The node equations at C and B are :

(V+/RC) - “IICF + IEF = (v1 - vz)/RC (5)

(V#/R1) + ader = Icp = Vvy/R (6)
Substitute IEF and ICF into (5) and (6) to obtain:

V+/RC - uIKz(exp(szz)-l) + Kl(exp(xlvl)-l) = (v1 - vz)/RC (7)
V+/R1 - aNKl(exp(Alvl)-l) - Kz(exp(xzvz)-l) = v1/R (8)

Suppose i is chosen to be the test point measurement, by
solving (7) and (8) simultanously, vy can be expressed as :
y=vy= f (u’Rl’RZ’RC)

where u is the input voltage, V+ in this case .
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The Jacobian matrix of y with respect to R], RZ’ and RC’ which
is the basis of V. Visvanathan and A. Sangiovanni-Vincentelli formu-
lation, must be computed numerically. This example, on the most
simple circuit, has thus shown the impracticality of the above method.

Method of Nasrollah David and A. N. Wilson [3]

Referring to the single transistor amplifier circuit in [3). This
circuit requires five (5) test points, excluding the input terminals.
Also, the parameter values can be obtained by solving eight (8) non-
linear equations.

Dual-Mode Fault-Diagnosis

Mode 1: vreferring to the single-transistor amplifier circuit in
[1], the set of test point measurements V'Ra and IE yields the perfect
testability (6nﬁn = 0) implying that the fault diagnosis equations
have locally unique solutions.

Mode 2: referring to the circuit in Figure 1 of Example 1 in the
previous sections, the same test points can be used to measure VRB
and I.. In general case, the set of test points for the two modes will

E
overlap each other.

Summar

Computationally, the dual-mode fault-diagnosis technique uses only
straightforward matrix manipulations. This is an advantage over sol-
ving non-1inear equations. The required number of test points in the
duai-mode technique is much less than that of Wilson's technique.

Only one test point is required by Sangiovanni-Vincentelli's method
but the trade-off is to solve a very complicated set of non-linear W
equations. 1
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CHAPTER V
FAULT~DIAGNOSIS ALGORITHM FOR TRANSISTORS

The calculations in Mode 2 of the dual-mode fault-diagnosis
technique are performed to provide the D.C. operating points of the
non-linear devices. In the case of bipolar transistors, the opera-
ting conditions can be determined by the collector current Ic, the
base current Ig, the base-emitter voltage Vgg, and the collector-
emitter voltage Vcg. The fault-diagnosis algorithm for bipolar tran-
sistors is developed on the basis of their known operating charac

Table 2 Transistor Operating Modes

Modes IB IC VBE Vee

Active IB BN-IB o BV Ve > VBE
Saturation Ig BS-IB =.7v Vee < VBe
Cut-off 0 0 < .45 VCE A Ve

where By js the nominal current transfer ratio in active mode, Bg
is the saturated current transfer ratio, and VCc is the power supply
voltage connected to the collector.

The algorithm for field-effect transistors is even simpler
because the input or gate current IG is always zero. Field-effect
transistors are characterized by the gate voltage VG’ the drain
voltage VD’ and the drain current ID.

The fault-diagnosis algorithm for bipolar transistors shown
in Figure 7, is used to analyze the experimental results in the fol-
lowing section.
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Fig. 7 Fault Diagnosis Algorithm for N-P-N Bipolar Transistors

(Continued)
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CHAPTER VI
EXPERIMENTAL RESULTS

The video amplifier circuit of Example 4 was built and tested
at nominal operating conditions and at intentionally faulty condi-
tions. The measured values of the non-linear devices'operating con-
ditions are compared to those obtained by calculation. The computation
in this particular example is simple enough to be carried out by a
programmable hand-held calculator. The computational error are inves-
tigated experimentally in the following cases.

Case I. Nominal Operating Conditions

The components of the circuit, which consist of four (4) tran-
sistors and nine (9) resistors, were carefully analyzed before the
experiment was started. The four transistors 2N2222A were checked on
a curve tracer. Their betas or current gains varied between one hun-
dred twenty (120) to two hundred sixty (260). Thus there is more than
one hundred percent (100%) variation among the various transistors.
Furthermore, these transistors are highly sensitive to temperature.
For example, a transistor that carries twice the -amount of collector
current than another will generate more heat and change its charac-
teristics. The temperature sensitivity has a major effect on the accu-
racy of the test results. A1l the resistors were within five percent
(5%) tolerance. The measured values and the nominal values of the
resistors are compared in Table 3. The experimental test-point mea
surements for all cases of the experiment is tabulated in Tabie 4.

The experiment was performed in a temperature-controlled environ-
ment at twenty degrees Celcius (20° C). The measurements at the test
points were taken and used to compute the transistors' operating con-
ditions with two (2) sets of the resistor or linear component values.
The two (2) sets of computed values for the transistors' operating
conditions are tabulated in Table 5.

The errors that are produced by using the manufacturer's claimed
values for the resistors are less than ten percent (10%) for the col-
lector currents, the base-emitter and the collector-emitter voltages.
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Table 3 Comparison of Measured and Nominal Values of Resistors
Resistor |Measured values | Claimed values | Percent error
(Nominal) :%
R1 1.189 K 1.20 K -.90
R2 3.298 K 3.30 K -.06
R3 5.654 X 5.60 X .96
R4 1.173 K 1.2 K -2.25
RS .316 K .33 K -4.24
R6 .325 K .33 K -1.50
R7 1.010 K 1.00 K -1.00
R8 1.461 K 1.50 K -2.60
R9 3.280 K 3.30 K ;:L -.61
Table 4 Test Point Measurement for ATl Cases of the Experiment at

v+ = 26.2 Volts and V- = -28.0 Volts

Test Units Case I Case II Case III Case IV
point
VR2 volt 16.04 28.52 15.87 15.86
VR3 volt 27.31 25.66 27.32 27.32
VR7 volt 6.04 0.00 9.827 5.336
VR1 volt .0264 1.611 .0263 .0263
VR9 volt 8.83 0.00 0.00 £.00
VR8 volt 8.800 0.00 14.32 0.00
VR4 volt 9.492 0.00 15.04 16.44
{e) mA 2.665 0.00 12.82 .00866
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Table 5 Transistor Operating Conditions of Case I

Computed operating points Measured operating | % Error
Parameter based on points(ii) (i) vs.(ii)
Measured R |Claimed R (1)

1B1 22.2 22.00 22.04 uA .18

1B2 56.76 70.33 56.33 uA 24.90

1B3 47.11 -169.3 41.75 uA -505.5

184 31.07 14.76 28.09 wuA -47.50

IC1 4,808 4.855 4,805 mA 10.40

1C2 8.113 7.748 8.094 mA -4.27

IC3 5.978 6.038 5.993 mA .75

1C4 2.665 2.665 2.665 mA 0.00

VBE1 .6636 .6636 .656 v 1.16

VBE2 .6640 .6640 .655 v 1.30

VBE3 .6740 .7449 .674 v 10.50

VBE4 .6520 .6571 643 v 1.17

VCE1 10.85 10.85 10.82 v .28

VCE2 16.71 16.71 16.70 v .06

VCE3 11.36 11.36 11.36 v 0.00

VCE4 17.37 17.37 17.36 v .06

— =
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The errors are, however, worse for the base currents due to the fact
that the base currents are so small. Considering the transistor 03,
the base-emitter voltage is positive; therefore, the base current
cannot be negative or the transistor is not faulty. This is thus a
case of calculation error.

Case II. A Bad Linear Component in the Circuit

The resistor R2 is increased from 3.3K to 8.9K. A set of measure-
ments is taken from the test points, and used to compute the transis-
tors' operating conditions with the faulty value of R2 taken or not
taken into account. The results are tabulated in Table 6. The signi-
ficance is that the transistor Q2 appears to be faulty if the faulty
value of R2 is not taken into account. The base current, which is
equal to the collector current in magnitude, suggests that the base and
the collector of 02 are shorted together while the emitter is open.

On the other hand, if the faulty value of R2 is used for computation

of the base and collector current of 02’ these currents are almost zero
(P), indicating that the transistor Q2 js operating at the origin of
the characteristic curve.

Case I1I. A Bad Transistor in the Circuit

Transistor 04 is replaced by a known faulty transistor, whose
emitter is open-circuited and base to collector junction is almost
short-circuited. This is a common type of failure when the emitter to
base junction is forward-biased too much. The base-collector voltage-
current characteristics uf the above transistor is shown in Figure 8.
The transistors' operating points are calculated and tabulated in
Table 7.

Referring to the calculated operating points based on the mea-
sured resistor values of Table 7, the value of IB4 equals in mag-
nitude to IC4, and VBE4 is much greater than point six volts (0.6V).
These data indicate that the emitter-base junction is short-circuited,
therefore, the transistor Q4 is faulty.
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Table 6 Transistor Operating Conditions for Case II

Transistor | Parameter |[Faulty value of R2 Faulty value of R2
is used for operating not taken into
point calculations. account.

Q1 181 1.355 1.355 mA
1C1 3.183 3.183 mA
VBE1 .729 729 v
VCE1 .020 020 v
Q2 1B2 .001 5.464 mA
1C2 -.001 -5.464 mA
VBE2 -2.32 -2.32 v
VCE2 26.20 26.20 v
Q3 183 0.0 0.0 mA
I1C3 0.0 0.0 mA
VBE3 0.0 0.0 v
VCE3 26.20 26.20 v
Q4 1B4 0.0 0.0 mA
1C4 0.0 0.0 mA
VBE4 0.0 0.0 v
VCE4 26.20 26.20 v
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Fig. 8

Collector-Base I-V Characteristics of the Faulty Transistor
Used in Case IIl and IV of the Experiment
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Table 7 Calculated QOperating Points and Fault-Diagnosis
Case I11
Q |Parameter | Calculated Diagnosis Calculated Diagnosis
value based value based
on measured on claimed
resistance. resistance
Q1 1Bl 22.12 Good 21.92 uA Good
I1C1 4.81 g = 217 4,86 mA g = 222
VBEL .6540 .654 v
VCEl 11.01 11.01 v
Q2 1B2 2.15 At rest -47.56uA VBE>.5v ,
1c2 73.47 B = 0 -517.4 uA IB,IC must
VBEZ -3.71 IC ~ O -4.71 v be zero :
VCE2 11.16 11.16 v Calculation
error
Q3 IB3 71.80 Good ~-280.3 uA VBE >.6v
I€3 9.73 g = 136 9.83 mA I8 must> 0
VBE3 .6970 813 v :Cal.error
VCE3 2.05 2.05 v
Q4 184 -12.82 Bad -12.82 mA Bad
1C4 12.82 18=-1C 12.82 mA 1B= -IC
VBE4 19.21 VBE>>.6v 19.27 v VBE>>.6v
VCES 26.20 :B-E opened | 26.20 v
C-B short.
E==L=———-—==—:.t“
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Again, using the nominal values of the resistors for calculation
produces significant errors. Consider the transistor 02, the base to
emitter voltage is negative, therefore, the transistor is operating
in the cut-off region or both the base and the collector currents have
to be close to zero (@). However, the calculations show a relatively
large negative value for both of these currents. The error also occurs
in the base current calculation for transistor Q3, which causes an
ambiguous state for the above transistor.

Case IV. Transistors Q3 and Q4 are Faulty

Transistors 03 and 04 are replaced by known faulty transistors,
whose base-collector characteristics are shown in Figure 8. The tran-
sistors' operating points are calculated and tabulated in Table 8.

The calculation of operating points based on the measured resistor
values is accurate, while those based on the nominal resistor values
creates errors.
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Table 8

The Calculated Operating Points and Fault-

Diagnosis for Case 1V

Q (Parameter Calculated Diagnosis Calculated Diagnosis
. value based value based
on measured on claimed
resistor resistor
values values

Ql I8l 22.12 Good 21.92 uA Good
IC1 4.81 g = 217 4.86 mA g = 222
VBE1 .654 .654 v
VCE1 11.02 11.02 v

Q2 1B2 -1.19 At rest -50.9 uA At rest
ic2 74.22 IB,I1C ~ 0 -244 .3uA IB,IC »~ O
VBE2 -6.10 VBE <0 -6.1v VBE <0
VCE2 9.76 9.76 v

Q3 183 -5.28 Bad -5.34 mA Bad
IC3 5.28 18= -1IC 5.34 mA I18=-1C
VBE3] 18.11 VBE>>.6v 18.20 v VBE>>.6v
VCE3 20.86 20.86 v

Q4 | 184 -8.66 Bad -8.66 mA ~ Bad
1C4 8.66 same as 8.66 mA same as
VBE4 19.25 Q3 19.30 v q3
VCE4 26.20 26.20 v
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CHAPTER VII
CONCLUSION

The dual-mode fault-diagnosis technique for non-linear systems
has been formulated in the preceding sections via the component-
connection equations. Mode 2 or non-linear D.C. analysis is performed
at the device or element level rather than at the internal parameter
level of the corresponding non-linear devices, which is not only com-
patible to previous successful fault-diagnosis techniques in digital
systems, but also very practical in today's increasingly complex elec-
tronic systems.

Computation-wise, this technique is much more advantageous than
the other existing techniques in analog non-linear systems because of
the use of linear matrix manipulations rather than solving complex
non-linear equations. However, this technique requires a relatively
larger number of test points compared to the method of V. Visvanathan
and A. Sangiovani-Vincentelli [Z].

The experimental results indicate that the D.C. or non-linear
fault-diagnosis techniques cannot be used to diagnose the tolerance
or soft-fault problems due to the significant errors introduced by
the use of the manufacturer's claimed component values. However, these
errors can be eliminated by the dual-mode technigue since the measured
values of the linear components can be computed in Mode 1 or the multi-
frequency test. Furthermore, for the Mode 2 analysis, the bad value of
a faulty linear component has to be calculated so that the more accu-
rate results and fault-diagnosis can be obtained.
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APPENDIX
TEST POINT SELECTIONS

Analysis of the Singularity of the Matrix

i -1 LLy-L LN
Fe (Mg (zp-d g + m) )

This analysis is intended to expose the readers to the problem
of the test point selection in the D.C. analysis of the dual-mode
fault-diagnosis technique. The matrix F can be arranged in the
following form:

-1 LL,-1 LN N
Fo=( Myy(z M) TMGY + My )
) -1 LN
3 [é21' ] """"""""
- "y E--]
where: K = (ZE ) -1 LN
I = identity matrix

The matrix M21 depends totally on output selections; therefore,
the singularity of matrix F is also determined by the test point or
output selections.
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Referring to Example 2 of Section III, the matrix K] is:

R R
RE - RE 1 1
Re* R, Re + Re Re + R Rg + Re
-R1R2 R2R3 0 0
R R
-RiRy Ry(Ry+R,) 0 0
R R
ReRe ReRe -Re -Re
RE+RC RE+RC RE+RC RE+RC
1
1
1
1
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If Vé, IR1, IRC, VR3 are chosen as
= VM + VCE2 the matrix is:

= —

21"

The resulting matrix F is singular

1inear dependent.

PO 0
1 0
0 1
0 o0

-

o O o o

o o o
o o o
o o o o
o o o o
o o o

- O O

test measurements, where

because row 1 and 3 are

ReRe RgRe Re Re
RE+ RC Re+ Re RE+ Rc RE+ RC
Ro+R R
2+R3 3 0 0
R R
-RE - RE -1 -1
Ret Re Re+ Re Re*Re Re*Re
_RqR -R2(Ry+R5)
1R3 3(Ri+ Ry 0 0
R R
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However, with a minor change in output selection, VM’ IR1,
IRC, VR3 are chosen, the first row of M21 becomes:

[booo1i0001] |

and the first row of matrix F becomes:

ReRe  ReRe Re Re
Re+Re  Rg*Rp Re¥Re Rp+Re

Therefore, F is non-singular.
Referring to the Example of Section III, the matrix K] is:

1/R1 0 0 0
1/R2 0 0 0
0 R3 R3 0
0 0 0 R4
0 RS 0 RS
e
1
1
L 1

196

P




If VM’ I+, VB1, VB2 are chosen as test points, the matrices

M21 and F are:

21 ~

-
]

o O - O
O O O o

0-10:i0000
000i01 11
000:1000
-1 003i0000
0 0 0 -R
-/RLL 11
1 0 0 O
0 -R3-R3 0

The F matrix is singular because the columns 2 and 3 are
linearly dependent.

However, i
non-singular:

M1 =

f VM’

I+, VRS, VB2 are chosen, the matrix F is

000-10:i0000
1000010111
0000 T1i{0000
0 0-1001i0000
F-um 0 0 0
-R1 1 1 1
0 RS 0 RS
o R0
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Considering the second and third column of matrix Kl, the
1

differences between these two columns are the elements Ks2 = RS’
1 _ 1 _ 1 _ . .
K53 = 0 and K72 =1, K83 = 1. A subset of M21’ which consists of

two outputs, has to be chosen, in such a way that its product
with the second and third column of K1 is non-singular. This
condition is satisfied when one of the outputs contains VR5,
as in the third row of M21 of the preceding discussion, which

results a non-zero element at row 3 and column 2 of matrix F.
Referring to Example 4 of Section [II, the matrix K] is:

pr—— e

RY 6 0 0 0 ©0 © 0O
R3 R3 0 0 0 0 0 O
0 RR R 0 0 O O O
0O O R4 R4 -R4 0 -R4 O
0 0 0 O -~RS 0 0 O
6 0 0 O O O -R6 O
0 0 0 O O R7 0O O
0 0 O O R8 RB 0 O
0 0 0 0 O O R R9
1
1
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Suppose VR2, VR3, VR7, VR, VR8 and VR4 are chosen to be the
test points, the matrices M21 and F are:

(0 "2 R2 0 0 0 0 o]
RZR3 0 0 0 0 0 O
© 0 0 0 0 R7 0 0
el - R O 0 0 0 0 0 0
0 0 0 0 0 0 R9 R
0 0 0 O RS R8 0 O
0 O RS RE -R4 O -R4 O
L0111 0 1 0 1|

The determinant of F is:

0 Ry Ry
det(F) = -R1R3R2R7R8.det R4 -R4 .0 = 0
0 1
because
0 RI R9 0 R9 RS R9
1 0 1
-R4R9+R4R9= 0
0 R9 R9
In order to make det R4 -R4 0 %= 0, one of the elements of
1 0 1
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the third row of this matrix has to be changed to zerc as follows:

0 R9 R9 0 R3 R9
R4 -R4 O or R4 ~R4 O
o 0 1 1 0 O

Physically, this means one has to select the last output measure-

ment such that it does not contain both 1¢4 and IC3.
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