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Let ny,...,n be k given populations. i’:} ' f
\ | |
Assume that we wish to find a population better—thanm

given control, if there is any. From all populations we ma:’ draw inde-
pendent samples with distributions which are (at least partly) determin-

ed by real parameters Opseseatlys say. A population . is viewed to be

‘e . el

better than the control if i g i=1,...,k, where Vg ¢ IR is a tixed
given constani{. The goal is to quarantee at least a probability P* of
making a correct decision if Gy < vy 171,00k and to maximize the prob-

ability of finding a population better than £ otherwise.

Two-stage procedures of the following type will be wtudied: At

e ittt it o ¢

Stage 1, based on samples 51""‘§k’ all populations are screened out
which appear to be no better than o If none (exactly one) is left the
procedure stops and decides that none (this one) is better than o 14
more than one, n; with i €s5,survives then onc proceeds to Stayge ¢, Here
additional samples !i‘ i€s, are drawn and final decision i% made haced

4

on X, or (xi,Yi), i€s,
A natural class of two-stage procedures 16 proposed which can oe
completely described and studied in terms of Neyman-Pearson te.ting the-

ory, where the unsymmetry of tests, however, can be overcome to g consid-

erable extent. As a typical result it is shown that optimality of test,

carries over to optimality of two-stage procedurecs. findally, under nuov-
mality, comparisons are made in case of k- 2 with certain Bayecian pro-

cedures.




1. Introductio

If k populations Hyseesshy are Jiven and we wish to decide on the
basis of a properly chosen sampling scheme which one ot these popula-
tions is the best one (e.g. has the largest mean), various different ap-
proaches and methods have been studied up to now. A complete overview
is provided by Gupta and Panchapakesan (1979). Anong those, two-stage
procedures with screening in the first stage seem to be juite appropri-
ate, since they are more economical as one-stage procedures but still
technically not as complicated as sequential ones. Nevertheleus, opti-
mality results here are missing up to now and cbviously are hard to find.
Even the implementation of a simple procedure {as that one which uses
Gupta's (1965) maximum means procedure in the first stage and the nat-
ural final decision in the second stage) in an indifference zone approdcn
under the assumption of normality with a common known variance causes
considerable difficulties. Ffor details and references see Tamnane and
Bechhofer (1979}, Gupta and Miescke (1979) and Miescre and Sehr {1980).

The situation becomes somewhat fairer if we wish to find a pojpuila-
tion better than a control e whether it is known or unknown, This be-
cause pairwise comparicors are te bhe made now hetwoen s and i inctead
of " and Py iFis 1, J€ VoK It oy admit here additionally the

choice of a final decision "none ! the ju;oialions o hetter Uian U

control”. Moreover, let u- adopt the toilowinag basic “oprirvencn: aan
qoal:
P*-Condition: Let P*¢ (0),1) be a predetermined constant. o procedaor

is said to meel the P*-condition it 1t prooaoility of makbing the
final decision: "none of the population, ic better Dnae e costeal

ia at least P* whonever thic decision o coriect,

]
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Goal: Among a!l procedures (ir a given class) which meet the P*-condition

find that procedure which maximizes the probability of deciding tinal-

ty in favor of a population better than the control if there is any.

The purpcse of this paper is to show that a natural class of two-stage
procedures, being widely used in practice, can be described and studied
within the framework of Neyman-Pearson testing theory, where the unsymmne-
try of tests can be overcome to a considerable extent. Emphasi< hereby
is laid on the basic structure and on comparisons of such procedures rather
than on establishing specified ones.

In Section 2 we introduce a natural class &' of two-stage procedures
and derive a formula for their probabilities of correct decisions. A, a
typical consequence it will be demonstrated in Section 3 that two-staqe
procedures based on good unbiased one-sample tests for H,: “population

"

#; is better than T, versus K, "population o is inferior with respect
to no", which are simultaneously good tests for the dual problem (where
Hi and Ki are interchanged), perform well. Three open questions conclude
this section, Finally, in Section 4 we study the normal case and make

some comparisons with certain Bayesian procedures in the case of k¥ ¢

populations.

2. Basic results
Suprose that for every " i=1,.. ,%, we have a family

{f. } of densities with respect to the lebecque measure
i,8. 08, ¢C. R
i i
or any counting measure on R which have a comnen ~nveport Qo R oand may
be known or onlv partly known. The assumption concerning the supports
is made for convenience to make ideas clearer and can be weakened 1n cer-

tain circumstances. Let the fixed known control be denoted by RERTA




and all populations "5 be called better than the control if IR and

\

inferior to it if By s Yy Let 51 = (xi],...,x. ).

mn.

) and Y, = (Y
; =i

RETREN S

]
i=1,...,k, be samples from " available at Stage 1 and Stage 2, respective-
ly, where X,,Y,,...,X .Y, are nutually independent, and let X= (X;,...,% )
and Y = (X],...,!k).

Before we are going to define a natural class of twn-stace procedure.,
in a concise way, let us briefly describe how these procedures typically
are applied in practice. For every testing probliem Ki: Ty g versus
Hi: by Y, the experimenter chooses a test hased on 51 and for fiy ver-

sus Ki another one based on Yi or (gi,yi), i=1,...,k, takes two Tevels

n ety € (0,1) (which usually are small) and proceeds as foliows:

At Stage 1 he discards all populations which are not <ignificant at
level e under the first sev of tests. If none {exactly one; is left. he
decides that none (this one) is better than the control. Only if nore
than one population survives, he proceeds to Stage 2.

At Stage 2 the experimenter draws additional samples Yi trom thowe

wi's which were selected at Stage 1 and exchanges hypotheses and alterig-
tives with respect to thesc populations. I all these populations now ‘
turn out to be significant at +enel o under the second set ot tests
{(which is rather unlikely to happer: be docides that none of the popula-
tions is better than the control. Otherwice. he makes o tiral g

in favor of that population among the <elected ones whicn nas the Tarcos
p-value under the associated secend feet

[f these tests are upper Jevel 0 qreaspectively Tower Tevel 0 et

I

which for simplicity are non ravdoiized tor a ooment to i, 1deas . ba e

on real valued statistic Ui and Vo T o b, then the peacedare




described above can be equivalently described as follows: At Stdye 1 all
"i's are selected with U; > ¢y (where c; is the o -fractile of U, under
by = no), and final decision is made in terms of the largest Vj among the
selected nj'S, provided Vj > dj {(where di is the wg-quanti1e of Vi under
ej = 00). The truncated version of such procedures {i.e. which perform
Stage 1 only) have been studied by several authors. See, for exampic,
Gupta and Sobel (1958) and Lehmann (1961). Also some work has been done
in sequential setups. For references see Gupta and Panchapakesan (19/9),
Chapter 20. But, apparentiy, no results concerning two-stage procedures
of the type described above have appeared in literature until now. This
gives us the motivation for the following considerations.

To begin with, let us state without a formal proof that by siwilar
arguments as are used in Miescke (1979a) it can be shown that every pro-
cedure of the type described just now - where Ui‘ ¢; and Vi' di mere yen-
erally may take values in measurable spaces 2y and Y and where Ui and
Vi are stochastically non-decreasing in vy with respect to measurable total
orderings in 2-1 and ;i , 1=1,...,k - is a member of the class & to bhe de-
fined below.

To avoid confusions and to arrive at a consistent representation of
this class let us from now on use only tests for Hi Versus Ki‘ {1 P
which take value 1 as soon as one observation falls outside suppurt ().
(This modifies procedures only on null-sets.) Finally, several definition,
given in Miescke (1979a) will be relevant in the sequel but for brevity
are not repeated here. Especially, tests may be randomized ones taking
values in [0,1]. This typically occurs in discrete cases or in continuous

cases when nonparametric (rank) tests are under concern. Thus significance




statements as well as p-vaiues are understood to be based on additional

randomization schemes as are used in Miescke (1979a). To be more specitic,

i

let A = (A],...,A be that one for the first stage and B (81,...,Bk)

W)
that one for the second stage. Note that X, Y, A and B are assumed to be

independent.

The class & of two-stage procedures:
For i=1,...,k let

= ) 1 - 1 ' tone [in .
(1) < {%1,‘t;d< [0,1] be a right-continuous and monntone {in .)

unbiased test for H. versus K. based on X, which is standardiz-

ed at by Assume that within Q }o 0 and ° 1 1. let

i :(‘x],-..,"1k).

7 S, . T oD, L < t MRT N -
(2) Analogously, let v EINRINS RS be <uch a test fou (i over

sus K, based on (X,

1,Y~). Let . - (,],...,;k),

for 0 - o I and 0 - 1 let (1,1—:1,;,12) denote tne following two-

l2 ‘
staye procedure:
Stage 1: Select " if P (}i,Ai), the p-value of Xi under I is larger
3 ] -
than '-w], i=1,...,k. If nane (exactly one) ol the populations is

selected, stop and decide "none (this one) i< beller than ~0“ Ut her-
wise proceed to Stage Z.

Stage 2:  Among the selected populations cecirde tinally in favor of (net
n‘j which has the largest p-value p,i(SJ'YJ’Pj) ander e PEON TG

is no smaller than Utherwise decide that "rone is better tnan

Pr
let & be the set of all <uch two-stage procedure:..

The following result will serve as our bhasic tool to determing
((',1?)~tuplpu for meeting the NM*-condition ac well as to compare the pem

formance of competing procedures catisiying the Pr-condition




(X.) and Fi(w) = F {y. (5..Y.);§i is not <ignificant under

i Tyt

b, i=1,...,k. Then for every non-empty Do t1,...,k} and -« k

(2.1) Po{fina1 decision of (5,1 -1],3,‘2) talls into D:

1
= f H[EJ-*(]-F]-)J-(:)'Jd( ITCevr-b 00 (ot
v, 14D ) ieD

where integration is with respect to .. Moreover,

(2.2) PH!final decision of (&% ,1 ) does ot tall dinto «1,... .k |

AR A

k
jnl[Ej\»(LEj)rj(l?)] .

Proof: It is shown in Miescke (1979a)(cf. {2.3) there) that the distribu-
tion function of each p-value appearing in (% ,]—1‘,3,«2) equals Lo the
power function of the corresponding test, which hereby is thought of being
a function of .€[0,1] where parameter o Ezzk on the other hand is held
fixed.

Let Do 1o ki, D@, =€u, 00 - Tand 0 o 1be tix-
ed. Then

P,{final decision falls into D!

1

b} P Ifinal decision is in favor of n |
reb -

) }
r

P“{the ni'S with i € s are selected and final
red s: -

€s
decision is made in favor o!

1
=} o0 I rcaar o T 0-e)) _Idl r
or 14

e ¢«




Now, the integrand {---: equals to ]] LB+ 01-E01 ()] and (1-¢
1] '
i1 r
can be replaced by Er+(1-EF)ir(k). Thus P o final decision fall- inte
equals
] k
P TTE+Q-eEr (oldle (e 3 (]
A FAE i’ Y r’o
rch 12 1=1
i#r
] .
oIl tevitr (o1 I1 AR D I R N EE I
v, J§n ! o P oy ' !
? .
I V
r I1 tera-eorcota IT e+t 31 0070 _
G[\ ] J 3 1ED 1 1 1 P
This completes the proof of (2.1). Since (2.2) can be verified by . - .

ing similar arquments its proof is omitted for brevity.

Remark Note that for i1=1,...,k we have also the following renresentaricg

of Loe(1-0.)7 . (). c[n,1]:

] i’
3) L ‘ A )+(0- ) ! Y
L) . ivi- (-1) EL A R EE R I SRR R
1 ] i
P (1 (11,A1) }_L]‘\, ; Jer b and oy (_1‘,
i i ) 1
Corollary 1. Lvery two-stage procedure [ .i«.],l,;,}< e tdatistaen Ty

P*-condition if

(2.4) G )t s




k
Pron<- Y ojower bound for (2.7 s II Eoowhnion satisties
I
k k K
. . . L N3
II 'L] B Il L i T ('_;) ’ I_I ' . (1/ '1‘1]
i<l ity T T
(hd Ty Ty s ollows from the unbiasedness of the test

Unfortunately, the dependencies between (Ai) and Qo

x} - 9!
i=1,...,k, make it hard to find good vrocedures in o . Theretore o

b
i -

.

our results in the sequel will be giver only with respect to o', av,

o' - aoconsists of all procedures from o where the testy o in the e
- 1

stage depend only on the Ye|5 and not on the . s, bV T, .. k. ihe in
ed reader 15 invited to try to prove one of the conjectures stated af
end of this sectiorn.

Corollary 1'. A twe-stage procedure (4 .]-,

i ]~;wl’4.

Yoot o satistae,

P*-condition 1t and only if

(2.5) Vet ) L
Proof: Let T e oy ,1-l],,,1q)< SLEL0) reduces
O - ‘ .
Kk
O NS 00 ELNN
“| ~‘: LI »] 1 L} ] N \i«'v ‘1

which, by the unbiasedrons of the testo, and “ne tact that ar{i-alb
beil-bla o increacivag inoa, L0, aosumes s Towest value at
3 .. "y e where the power tunction, ave equai to the Teve I

the tegts,

Remark : [t in a procedure - ey o) Ca every pair of et
N IR .
have nan-neqgative corvelations for RIS Pl o b Twhich, of o
1
is qiven *t the oyocedure bejonas o o0 10 tner the Tatamgn of

e

Otid
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e

e
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o
i
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e
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Ppaeeeati falls between (l—w])k and (1-;]*.],,

/
<

k

Let us from now on adopt the following coivention:

Convention:  All procedures from &' are assumed to have an o sotiy
. k

ing (l—l]) = P*and a small ,.

K
)

In view of (2.5) (1-. = Pxand o, 5 U cleariy is the Lot anoic o

1
minimize the expected overall sampling amount {and to make (7.4 to an es-
act condition with respect to & ). But on the other nhand an experinente:
might feel restricted at not being permitted to decide also at Staje ¢
against all populations. Thus let us admit at least a small e Thic s
slightly conservative with repsect to (2.5). But it changes the vrobabil-
ities of any events at most by a difference of {(max 1‘7.‘2-)?_ This fol-
lows from the fact that ‘9 acts only on probabilities of events wnere at
Teast two populations pass Stage 1 and eventually are reiectied ot Stace

To give a numerical example. take g7 et 10—?. Ther fov k=~ 501D} we 4

have a P* above 0.95 (0.90) and «, unanges all probabiiities a4t cwst i,
; C

the amount of 10'4.

2

3. Consequences and extensions
The following two resulzs will be used repeatedly in tne sequel.  Their
proofs are straightforward using 1rteprations by parts and are tnevetore

onitted for brevity.

Lemma 1. Let Gi’ éi: (0,17 > {0,1] be right-continuous, non-decreas i

with Gi(]) = hi(]) =1 and Gi(w) - (')“i(’) L2 R AT O S S 1 U W I

rCil,...,kt. Then for 0 - , - 1 i
1 r k ] r K

(5. 1) / I1 G].(l)d(II (;,(,)> ) I1 Gi")d(” Lol
;o301 jrer i el




As a special case of Lemma 1 we get

Corollary =-. Let G]....,Gk as before and ﬁi(t) G0, U], tor

paiv 1, Je i ks wite 14 o Then for 0 - o, - ]

1k 1k
(3.2) [ § (P OO F R OVERIN B § (RN E RO
N ] ' h Cry B .
#i g
For the sequel 1et P 1 C.D.» denote the probability ot a currect deci-
ston at - ¢ . i.e. tha! the final decision falls into R{-) i, . .

1 0

ie1, 0 ke F R{-Y is non-empty or that the final decision is “no popula-

tion i+ belter than - 7 it B 3 9s emply,

1

et : v‘“‘lvlﬁiiw) (J‘.’, 0o '] - ] and 1) - l:) . ]. vt ofor

(o9

Corallary
every i C 1, ke, and are MP unbiased tests for Hoversus g baved

on X, and Y, and if uuuilaneously 1-7 and 1-.. are UMP unbiased test.im

the dual testing problem (where the hypothesis and the glternative are inter-

k

changed), inen at every ¢ (v 1= tysivey) has the Targest B 00 amd

L 1
the smallest expected sampling amount amona all .I—l],ﬁ,.))( i
An in owell bnown, tnese condttions are usueltlv tultidled o one-pava-

meter MLK and multiparameter esponertial fanily situations.  The proof o

]

Corollary % a. well s that of the next result follows from (V.1) and

Lemma 1.

_,.,,l7:€ & 1T the power functionmof ol tests
) - -

Corollary 4. let (n , I-

are nen-decreasing {por-inereasing) in sample-sizes for - () .~ then
[\

P 0.0t 1s nondecrea ing ire nample sizes al every ¢

The next result van be stated with respect to o




r—————-—-—————-—“

Corollary 5. Let (v ,1-z],i,x2)( & where o consiste of consistent tet.

Then P iC.0D. 1 converges to 1 if n, » woand o f - 171,k

Proof: tet 4 (n‘k with Oi # “0‘ i=1,....k. Then

PC.D.i - P lonly ni's with i C(Rr() are selected at Stage 1

I oo I e

PdRe) Ty k) P

which tends to 1 for larga Nyaeeesn

(r.o )

Jd

N by the consistency of the tlects.

Under the assumption of monotone (non-decreasing) likelinood rat o

(MLR) a stronger result can be obtained.

Theorem 2. Assume that in every population g the family o7 densities na

MLR, i=1,...,k. Let (& ,1- ) Ca (or &) consist of the UMP tests

L*l ’1‘a‘12,
for the corresponding testinqg problems. Then for increasing ~ample size

Nys My i=1,...,k, Phifina1 decision in favor of that " with the largest

neo 0, ! tends to 1 for all :(‘:k with R(*) # @ and P {final decision i
“no population is better than ~0”1 tends to 1 for all - ¢ k with
kT o
~00f : ' e . G .- { R Lo
Proof:  Let " ot g | 9 1 and P I
P:{(g ,1—41.9,12) finally decides 1.0 avo oof =
Pt ! A ~ (9 (. B .; ) t ! SR I : LS

R L R € R L A PR IR FRE 4

- k k I
Now, P ip (Z(k’/\k) ]-,I;p (Y‘k’\—{,k’Bt’\ e tends to o tor arge Hy i

-k K

m by the consistency of the tost.,

k
Moreaver, the procedure which decides v Tavor of a popiation aooord-

ing to the Targest p-value with reapect 1o e beoyaewed Do ler g

15 bheing based on

g beve where e eeent e e s e b bt
1
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now standardized at N {1 tead of S v-1,... k. But then since all

populations ame shitted into "alternatives™,

T

1 k-1
RTINS 7V U (TR TSN SN § G e Yylas
DMk S X Loy

{cf. Miescke {1979a)) whicn {ends to 1 for large LI When tiore

than one s Tarcest o similar sesult can be derived.  The proof tor .
using UMP tests & ..... | hased on Yi""'Yk is exactly the same. The

second assertion of Lhe thenien is already proved by Corrollary b.

Remark : TE the asviptotic relative etticiency (ARF) in the sense o Pitman

is defined in terrw 0f fhe provatitity of selecting the wilﬂ with i CR{Y)

at Stage I, thoro ot Adcy ., » Podoes not depend on 1 Cil L ke fan 0y
1
typically ithe case when Ylaeeety are ot the <ame type and Sy,
are of the same cype' we have o000y, ~]) ARE(( ,l-l],r,vy}Aﬁ.l—nl.,~tyH

for atll U.-]~ 1, U o Tod o The proot 1 similar to that in

¢

Miescke (1497Ga). Ot course, i LT be o morve atisfactory ty have an ARE-

)

concept including buth tay 0 et thes copres Lo he g ditiicalt problem,

In fact, Pitmanr' aporoacn does net Jea nere to clegr conclusions,

Corollary 6. PEL U e T T e power functions of - and
vy are non-increasiay dno 0 0 b oo b then oy e o0k with
AR
r 5
(3.3) Dooting ) dec st 0 e taver oot
. "
oovana! e o b an tavar ot
Mroof - This tallow. trom Y rorvallary 2




Fingl Remarks:
(1) The results so far derived hold analogousliy in cases where the

control values 0. may depend on 1 € {1,...,k}.
i

(2) The case of unknown controls can be treated analogously provideu
that control samples are drawn independently for each single test.
(3) Under the assumption of MLR let (% ,l—‘],1,12)< oconsist of the

UMP tests for the corresponding testing problems. Then

(3.4) inf{P”{C.D.}{g (szk, R(v) = @y = dinfip (C.D.j- 7, R, /O

This follows from Theorem 1 in a recently published paper by Simons (19507,
(2.1) and Lemma 1.

(4) Let us conclude this section by stating the following three 1a-
portant questions that have not been <ettled now: Assuine that in all popu-
lations MLR is given and that ¢ i‘”i’;i are the UMP te<t, based on Mo j'.
(XiaYo)e i=To k.

1y Is (4, I-l].!,l?) performing better than (1 -"‘}‘;~‘;)f

[1) It this iy true, Yow well performs (4, 1- RPINEND I I

111) The one-stage procedurcs ( ,1-.,) and {,.l—.l) Wik edeor aconed
) ‘ .

ing to the larqgest p-values of the corvesvoading test o, provided tagt tae,

are larger than 1- - are tne notural competitor., ta o,

(. ll,,.()). o they need lacqger sampling amounts thar *he tue Lt

0
1

procedures take in the nicar to have the same o

4. The normal cane.  Bayesian two Stage proceduros tar b
JU
Arcsume tnat owe have b onocogl oty vone O I R S L I It
' ‘
G R OWn VA Tdne e, .i L et 1L N e te NN
\




\7‘

means derived from the v les ot i nooand o fygn i Voo et

v denote the cunalative Jy tribtuion foanction of the standard nommal dinty -

bution. Then the cptive. oocedure in 2 vy as tollows:

Stage 1: Select all populetion, o V... Kk, with 1

POST o R ..'".':—](ln]}.i],...,k-

If S = ¢j (S W <ton, and decide in favor of 'j ("none 14 Letter

than ~O“). Dtherwise, proceed to
Stage 2: Decide tiraily ir favor of it r S with Vr . VH, & CS dand

Yr PO [+ ). Mheruise decide that no population i« better i

than the (nntrol,

Let o, (ni*mi} (ui7|~m.§‘;, i .. ..k, be the overall <anple wean. .

Though we do not inow aacther the alterpative procedure which ucer /i'n

instead of ¥, i Stage Joperfoe better, we can at Jeast <how that an

(2.1) the fune v 0 b 0 0 e T 1], with 5 “ will then b
i ‘ N ]
replaced by smaller canction, o (_)F?J.E, o (.?,i{, TRV T I
Let ‘
i G
(-t ) (-1 ' : T tln. ) : l\!‘
1 i ' ! 1 ] 1 4
; ' . Ill R K k) : l(,l
| o I 1
! i
Thia tollow v S Heni o tocanr bty ey ;] At ?1 AP a1 e
ly correlated,  Tanail, the oo leted by
Pl i ey D NICIOTR R Voo |
' | ! 1 \ ! 10 !
]
i
ne - i \ )
{m v, ol
v [ ]Iy | '
oo )
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When the variances are unknown the optimal proceduve tn o' 19 based
on t-tests in an analoqous way. Let S and S denote the usual NV unb-
ased estimators of 5 based on }i and !j, respectively, i=1,...,k. Then
ﬂ;iwi¢‘](]-w‘) at Stage 1 has to be replaced by n;;sit(ni—l,lAL]), and

1

m;‘x¥'f}(w) at Stage 2 has to be replaced by m _*s t{m -1,.}, where t{n, )

m
v

denotes the ..-quantile of the t-distribution with n deqrees of freedon,

Though a (Bayesian) decision theoretic approach is quite difficult ty
perform in general, the case of k- 2 populations can at least be studieu
to some extent. A two-stage procedure will now be described by S(x){the
random subset af (1,2t of indices of those populations & being selected
at Stage 1) and d(X,Y) (the final decision at Stage 2). A« before, the pro-
cedure stops and decides U, 1.e. "none iy better than -O“ (o) s
S(X) -~ @ (ihn,024) and d(K,Y) at Stage iy used only it S(k) I

let +: R » R, with .{0) - 0, be a non-decreasing function which acts
a5 loss-gain-function with respect to final decision, 1 and /. Assume
that decision 0 leads neither to o loss nor a gain.  Horveover, let o U
he the costs we have to pay if we wisn to peirtorm Stage 720 Pivally, let
¢ be the prior distribution of the (now rando) Larameces vector o fhe

the overall Bayesian risk 1. i by

. : v | . . ' . , . .
{4.1) { {[( vt -{‘”' i"‘ ydoo : A O N D DU
k i -
‘}
: / Vel 1t
#' [“— ‘l( P |‘1 \
Pl -
fhe optimal deciovion d* at Staqge WO T e e ety e
pected Tose given £ and Y ) daie et qepen oo the ecdal cnan e

atny Labeet welection rale 5 and tarne oot o be
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(4.2) d*(e,y) = 1 iff E!:(vo-?i)[gzi, Y=u!

mindo e (- YK=L Yenid, fiLgr s 41,20,

o il
and d*(¢.n) = 0 otherwise.

The optimal subset selection rule S* at Stage 1 (which ninimizes the
posterior expected loss given X - - under the assumption that d* will be
used at Stage 2) decider according to the smallest of the tour values qiven
in the following scheme:

(4.3)  S*(¢) = @: 0

o) i ~O~()i)f'(r'r, e NN

{l

i u+[{nin{”, min  £¢0(

S*(e) ]
i ")

o) it

Notethat in tne la:l e«pression the inner conditional >xpectiation i
viewed as being a function ot Y, and that the outer one is the expecta-
tion with respect to the conditional distribution of Y-qgiven ¥

Now let us assume the followina normal model: tonditionally, given

0 =9, Xand Y are independent with X — 7 (o.pl) and Y = (o,ql), and

- (0
apriori - (wol,rl), p,g,r - 0,1 .(L;). - (.0).

Then by using for convenience U, Vi' V.., which are ascumed to he in-

dependent standard normals, wie qet the following ncheme equivalent to (44
(4.4) S*(;) = ¢ 0
SR(-) - i g”(‘(,fp4s;'lp . i)+(rp(p*r)-])'l!)), il
- L

. , IR .
S*Y() 11,70 win A0 min
(I

where . - pr[{p+r){pg+pr+ar)] - and «  [rpg/{pgepreagr) ]
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Let especially ¢ be linear, i.e. ¢(A) - a’, > C R, where we can as-
sume without loss of generality that a- 1 holds (since this can be com-
pensated by c). Moreover, let us for a moment restrict our consideration:
to two-stage procedures which at Stage 2 are not permitted to make deci-
ston 0. (This corresponds to procedures in &' or & with P 0.} Then
the optimal procedure, denoted by d, and S,, can be described in a conci-e

form.

(4.5) d, (s ,n) = i iff gt Py Qi b
<0 J

and S, decides according to the smallest of the 4 values given in the tol-

fowing scheme:
(4.6) Seli) =@ : 0
S*(&)

{it: A(HO—&i), i=1,2,

Seled = 02y o mmaxyey i, )4e=2n T(= (2)7 v e )

R
where & = r(p+r)_] and T(y) = [ +(x)dx, ye€ R .

The last expression follows from Lemma 3 in Miescke (1979h). Since 3
is an increasing function with T{0) - (24)7 =, the procedure will never ar-
rive at Stage 2 if ¢ - ;» *. But on the other hand, let ¢ - .~ "~ . /o Letore

an ll]. with ‘,i .'.j,‘jo,{i’j}_(],z‘” Wil he V‘—'U]e(ted by S*' But now if 1

or 1, - ngthen S.(5) - 41L20 Af and only i o e Tl o)
Moreover, if ey g there i< an area in the neighborhood of o

/\J. . [N
AR A

[§]

0

where also S,(:) = (1,2 occurs. Thus within IF is

of the type of Gupta's (1965) maximim means procedure.
If now more generally a decision O 1s also advitted at Stage O, then

Lhe optimal procedure (S*,d*) i< of <imilar form but 1< na longer rep e-

sentable in such a concise mannev.  Typically, tne ares wherve af Staage |




both populations are selected will be larger.
finally, let us mention that one gets analogous results if otner los
functions are admitted. It is thinkable that especially .{ ) - -](--))

if o > (<)0, 1], az -~ 0, Yeads to a procedure which is closer to that one

given at the beginning of this section. But, unfortunately, 1ty reprecenta-

tion is more complicated such that this question could be studied unly num-

erically.
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