
A AOO 38 AIR FORCE INST OF TECH WRIGHT-PATTERSON 
AFB OH SCHOO--ETC F/6 12/1

THE APPLICATION OF FINITE ELEMENTS AND SPACE-ANGLE SYNTHESIS TO--ETCIU)

.UNCLASSIFIED AFIT/GNE/PH/81-13 N

soo En IEonEEEEEE
EomhEEEEmhmhEEI
EEEEohEohmhnhI



00



THE APPLICATION OF FINITE ELEMENTS AND
SPACE-ANGLE SYNTHESIS TO THE

ANISOTROPIC STEADY STATE BOLTZMANN
(TRANSPORT) EQUATION

THESIS

AFiF/CNE/PH/81-13 Eze E. Wills
2nd Lt. USAF

Approved for public release; distribution unlimited



AFIT/GNE/PH/81-13

THE APPLICATION OF FINITE ELEMENTS AND

SPACE-ANGLE SYNTHESIS TO THE ANISOTROPIC

STEADY STATE BOLTZMANN (TRANSPORT) EQUATION

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

in Partial Fulfillment of the

Requirements for the Degree of

Master of Science

by

Eze E. Wills, B.S. a
2nd Lt. USAF

Graduate Nuclear Engineering

March 1981

Apprcvci for public release; distribution unlimited

6



Preface

This research project is a part of the ongoing effort

here at the Air Force Institute of Technology to develop

alternate methods for solving the two-dimensional steady

state anisotropic neutral particle transport equation. The

thrust of this research effort is towards an accurate and

cost-effective solution of the steady state transport of

neutrons, gamma rays and high energy x-rays from a low

altitude nuclear burst. This problem which is modeled as

a point source in a two-dimensional cylindrical (r,z)

geometry with the air ground interface included, is of

particular interest in the areas of nuclear weapons effects

and radiation physics.

Presently the most widely used computational methods

for solving the (air-over-ground) problem are Monte Carlo

and discrete ordinates. However, these methods have

severe limitations and computational problems. My research

plan was to formulate and evaluate a solution technique

which did not have these disadvantages. A Finite element

solution method which is based on a space-angle synthesis

flux expansion of bicubic splines and spherical harmonics

was c'r2,:I. The merits of this solution technique were

* xaj;nined aI u 'i comtouter alh4orithm for the nun ericaL solu-

tion of this problem was developed.

Twi sh Lo -icKnowledge and oxpress my appreciation

for the assistance and encouragement which I have received
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from the staff and students of the Air Force Institute of

Technology. Special thanks are due to my advisor, Captain

David D. Hardin, without whose direction, encouragement and

miny hours of discussion and counselling this thesis would

not have been possible. I am also grateful for the support,

advice and encouragement that was provided by Dr. J. Jones

of the Air Force Institute of Technology Mathematics

Department.

Finally, I wish to express my appreciation to my wife

and daughter for their understanding, patience and constant

support throughout this project. To my wife, Cynthia, I

must also express a special thanks for her effort in typing

this thesis.

Eze E. Wills
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Abstract

A finite element space-angle synthesissolution of the

steady state anisotropic Boltzmann (transport) equation in a

two-dimensional cylindrical geometry has been developed.

Starting from a variational principle the Bubnov-Galerkin

solution method was applied to the second order even parity

form of the Boltzmann equation. A trial function flux ex-

pansion in bicubic splines and spherical (surface) harmonics

was used. A first scatter (collision) source and an exponen-

tially varying atmosphere was also incorporated into this

development.

Finite element space-angle synthesis (FESAS) was

developed as an alternate solution approach and an im-

provement in co7parison to the methods of Monte Carlo and

discrete ordinates. FESAS does not have the inherent

characteristics which have produced the ray effect problem

in discrete ordinates. Also, FESAS may result in lower

computational costs. than those of Monte Carlo and discrete

ordinates.

The second order even parity form of the Boltzmann

equation was derived and shown to be symmetric, positive

definite and self-adjoint. The equivalence of a varia-

tional minimization principle and the iBubnov-(alerkin

,n!thnd of wpihted residuals was established. The finite

,I.ement 7pace nn oi, synthesis o tem e ,'quations WLas

vii



expanded and a numerical computer solution approach was im-

plemented. A computer program was written to solve for the

trial function expansion (mixing) coefficients, and also to

compute the particle flux.
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THE APPLICATION OF FINITE ELEMENTS AND
SPACE-ANGLE SYNTHESIS TO THE ANISOTROPIC

STEADY STATE BOLTZMANN (TRANSPORT) EQUATION

I Introduction

Background

The Air-Over-Ground Problem. The transport of neutrons,

gamma rays and high-energy x-rays, away from a low altitude

nuclear explosion (air-burst), is of special interest in

assessing the vulnerability and survivability of military

weapon systems and in makin, radiation exposure and dose

predictions. This neutral particle transport problem in-

creases in complexity because of the exponentially varying

air density and the air-ground interface. A description of

neutral particle transport and, therefore, the air-over-

grotind problem is given by the Boltzmann transport equation.

Numerical solutiotns tc this problem already exist.

The main solution techniques are Monte Carlo and discrete

ordinates. However, discrete ordinates and Monte Carlo have

sever, difficulties and disadvantages. To perform an accurate

Lr t wt ,.. eI t C iUcite useS LoSS tti t 0X(-

ruei. : t P:2 twn >h Carlo, however, it is subject to "I

C-,) it L sal ,Ji Ifieultv call o, ray ffects (Ref 1"357>.
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Ray Effects and Discrete Ordinates. Ray effects are a

result of the angular discretization of the particle flux in

the discrete ordinate method. It is not a numerical problem,

but originates in the derivation of the discrete ordinate Sn

equations. In a physical sense these equations only allow

source particles to travel in specific directions. However.

in most practical problems these particles move in all

directions. An in-depth analysis of the Sn equations and tie

nature and reasons for ray effects can be found elsewhere

(Ref 1:357).

Ray effects produce non-physical distortions of the

angular flux in regions where there are strong absorbers,

localized sources, or high energy _treaming particles ("ef

2:255-268). These distortions in the numerical formulation

of the discrete ordinate method produce solutions which are

inaccurate. The degree of these inaccuracies is dependent

upon the specific problem and the nature of the absorbing

media and sources. In the air-over-ground problem this

eff-ct will be significant because it is essentiallv a

strohimin;v particle problem with lcalized lirst scatter

sources.

A considerable amount of work has already been done

;n n11 aterTnt Lo ellinate ray effects from the S equations

d toc Ji:;crte orcinate method. Ray effects can be -niti-

-Uted v the u0e C a 1n( aneulor mesh in the binIte

IF j I ernc in- schemc of the S equat ions. However, this

a '1pra cI incr ,: s, Lh e comp i tat ie ial ti e and the already
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high computer costs. Other approaches involve a spherical

harmonic-like formulation (Ref 2:255-268), piecewise bilinear

finite element approximations (Ref 3:205-217), and space-

angle synthesis with specially tailored trial functions (Ref

4:322-343).

Problem, Scope and Solution Approach

The purpose of this research project was to d velop a

finite element solution to the air-over-ground problem by

using a space-angle synthesis of bicubic splines in space

and spherical (surface) harmonics in angle. Specifically,

a solution of the monoenergetic Boltzmann equation in the

context of the air-over-ground problem was sought. Working

from a variational principle and using a judicious choice of

trial functions the problem of ray effects may be eliminated

(Ref 3:214). Also, this judicious trial function choice,

and a Bubnov-Galerkin solution method may be more efficient

and less costly than Monte Carlo or discrete ordinates.

The steady state solution of the Boltzmann equation

wit[i Lirst scatter sources, anisotropic scatterirne and an

exponentially changing atmosphere is desired. The proble

is formulated from a variational principle and in a two-

dimensional cylindrical (r,z) spatial geometry with the air-

ov-r-' ruijd interface included. Fluonce valups as a

finction of two spatial (r,:) and two angular (t,,) variables

ar, : ou.,hL. This is a fonir dimensional problem. i,:alIv,

a numrical solution algorithm and the computer implemen-

tation o 1 this problem is required.

3
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Air

- I

G ron Air- round

G rou n d Interface

Figure 1. Cylindrical (p,z,¢) Problem Geometry

Assumptions

There are two basic assumptions which are made in the

formulaon of this prc-blem. A timc-independent (steady

state) solution and axial symmeLry is assumed. Because of

the exponentially changin:z air density the air-over-ground

problem is four dimensional with a spatially dependent

(r,z) solution. An assumption of axial symmetry is made

soss iL c by i.norin the curvature of the earth. ithin

rh rk proom domain of most practical problems the curvature

of the earth is small and can therefore be ignored. Figure

i shows the spatial cylindrical problem geometry.

ni,, flux frem an air burst is non-zero ,or a fraction

a second (microseconds). Therefore, particle fluence

(:iumbr/area) and nioc L -ox i a the more iseflil quantity.

A steady state formulation of the air-over-ground problem

i s obtained by in to"ra t init the timo( dependence oil t of the

4
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Boltzmann equation. This integration which is carried out

over time limits when the flux is zero produces a time

integrated or fluence equation.

Development

In the next chapter of this report the problem equa-

tions are presented. A finite element formulation of the

air-over-ground problem is developed in Chapter III. The

Bubnov-Galerkin method of weighted residuals is incorpora-

ted into this development. In Chapter IV a space-angle

synthesis of bicubic splines and spherical harmonics is

performed. An interpolation of the source terms is also

outlined in Chapter IV. A computer implementation of the

problem solution is examined in Chapter V. Finally, con-

clusions and recommendations are presented in Chapter VI.

6



l The Problem Equation

The application of finite elements and a variational

principle to the air-over-ground problem and the mono-

energetic steady state Boltzmann equation is not a new

concept (Ref 5). As in the work by Wheaton (Ref 5) only

the monoenergetic problem will be considered. It is

assumed that energy dependence can be easily incorporated

into this treatment by the use of standard multigroup

methods. The air-over-ground problem which is in effect

the steady state transport of neutral particles can be

described by the Boltzmann (transport) equation and

appropriate boundary conditions as follows:

: -~V$(r, ) + ot(r)$(r, = oSr) )

+ S(r) ()

This is the one speed monoenergetic Boltzmann equation in

general geometry where

^r the spatial position vector,

= a unit direction or velocity vector,

V = g~adient operator,

anpular particle fluence in particles/
unit area/steradian,

c (r) = total macroscopic interaction cross
section at spatial position r,

macroscoplc scattering cros sect Lon.
the prooability ot a particle at positicI
r and direct io, . scatLcri,iit
: , recciun .1t iC Ci Lu :i i iL oL t

ocaLLering angle and 10L a functLion
of the individual directions (isk'tropic
[TIPl dI ) ,

6
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(Ref 6:57). u is the cosine of the angle formed by the

z-axis and the particle velocity vector Q. , is the ar.le

between the planes formed by the vector and the z-axis

and that of the vector and z-axis.

The scattering properties of air show a directiona .

dependence which is high peaked in the forward direction

especially at the high particle energies that exist in the

air-over-ground problem. Because of this the exterior boundary

condition for this problem '.i11 be approximated by a vacuum

boundary condition:

0 for s on the boundarv of the problem

domain and >ii < 0 (2)

whcrc i s Lti outiward unit normal to the boundary surfacc.

T1 physical t,-rms this is a non-reentrant boundary condition.

No particles are allowed to reenter the region once the-'

leive it.

In two-dinensional cylindrical (r,z) ,eometry there

n th,, anzle . 'his svmmeLrv can be written

as

.(r1 2 ) for 2 2 ( i '

3a
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The projection of
-I X 

?:3 
0 

unto the -y plane~
q

pl S]p2

[he projection of labout a spatial
-plane point (p,z). See

XFigure 2.

Figure 3. A Schematic of the An2ular Symmetry.

This symmetry in X is shown in Figure 3, where the vectors

fi and 3 are perpendicular.

Note that because of the exponentially varying air

density (in the z direction), only azimuthal symmetry in the

angle X is assured. There is no symmetry in .(Cos 0) and

rh . rcore :(,j) will not be equal to i(,-x). The symmetry

condition, gqs (3a) and (3b), implies that

even function in < (3c)

AL h' -1 r -rauni , ,rfcc (r,,) is ,onLinuoiis u,:cup'

-~ 0 -- a:~ 6: !iC) i .u.

(r, ) "(r,.-) aL z 0 and ; 0 (4)
i r "r iin -i

",,'v.'r th, , i .'ri,, t .: , ,,* "' ) :i .' -.t c.ovr I 'Ules.



The problem geometry and coordinate systems as shown

in Figure 2 implies that when p is equal to zero the angle

X must also assume a value of zero. Therefore, along the

z axis (p=O) the angle ), does not vary between 0 and 27T.

This means that there is no X variation in (r,Q) at

p=O and that

T (r,2) 0 for 3=O (5)

10
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III The Finite Element Method

The finite element method is a mathematical and

numerical technique for approximating the solut n to

a large class of problems. Initially it was developed

and used to solve problems in stress analysis (Ref 7:9).

Later, as the mathematical foundation of the method was

established it gained widespread acceptance and use in

solving a larger class of problems.

Finite elements are an extension of the Rayleigh-

Ritz technique of first recasting the problem in an equi-

valent variational form and then seeking a solution on

the basis of an energy minimization principle (Ref 8:1).

In the Rayleigh-Ritz method a solution in the form of

a linearly independent set of trial functions is assumed.

These trial functions must satisfy the essential

boundary conditions. The approximate or "best" solution

to the problem is the linear combination of these trial

functions which maximizes (or minimizes) the variational

principle (functional). If this linear combination of

functions is not an extremum (maximum or minimum) of the

functional, then the class (or space) of trial functions

is expanded by the addition of more functions. This ex-

pansi-on of the trial function space is continued until a

1 Lncar combination of functions which is an extremum of

the Lunctional is obtained.

The finite element solution technique is similar to

that of Ravleigh-Ritz. The only difference lies in the

11
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choice of trial functions. In finite elements the problem

domain is divided into smaller regions (grids) or elements.

Each trial function is usually associated with only a few

elements. Unlike Rayleigh-Ritz, finite elements uses

trial functions which are zero over parts of the solution

domain (a local basis). Also, the trial space (number of

trial functions) is expanded by using more elements (mesh

points) and not by the addition of a new class of functions.

Because of these differences the finite element method is

more adaptable towards a numerical (computer) solution than
Ui

Rayle igh-Ritz.

There are two basic approaches to the finite element

formulation of a problem. One approach is to find the

extremum of the functional which originates from a varia-

tional principle and the calculus of variations (Rayleigh-

Ritz with a local basis). The other is by the method of

weil-1ted residuals. The method of weighted residuals

does not include the use of a variational principle or

the-calculus of variations. In some problems a variational

principle has not been devCloned or may not e.xist, and

therefore, the Rayleigh-Ritz approach cannot be used.

However, in such cases, the method of weighted residuals

can be ,used to solve the problem. Therefore, the method

; ,ie Vhtcd rosiduals can be extended to a wider class of

. :f,', nd ~.: i <hted res idualIs is another approach

, r 1evopi~ ~ sa t oF (alebraic) problem erqiiations to

.'icL thoL i niL. o oloment method can be applied. Ther .are

61:2



three basic mathematical "recipes" through which the method

of weighted residuals can be developed. These are the methods

of least squares, collocation and Galerkin. In some problems

where a variational principle (functional) exists it can be

shown (Ref 9:735) that the Galerkin method of weighted

residuals is equivalonL to Rayleigh-Ritz. An identical set

of matrix equations and therefore the same solution is

achieved by either method.

In the following paragraphs a variational principle for

the air-over-ground problem and the even parity form of the

Boltzmann equation is examined. A weak form of the variational

principle and the boundary conditions are incorporated within

this development. Finally, the Galerkin method of weighted

residuals is discussed and an equivalence to the variational

approach for the air-over-ground problem is established.

Even and Odd Parity Second Order Forms

in order that a variational principle may be used the

even and odd parity forms of the anisotropic Boltzmann

ecuation and associated boundary conditions will be

developed. The starting point of this development is

Eqs (1) and (2). Following the derivation of Kaplan and

Davis (Ref 10:166) and that of Wheaton (Ref 5) the mono-

nt, r", Lic steady s ta t0 L Isport oqua t IOn can be writ ten LI

terms of cnle - veco • by chajnging to - in Eq (1).

-,, Ives
, AAf

^."'( - ) -, ):( -}? ,~ r - ') (r,' )

d(,, o



The even and odd parity terms will now be defined as

(r, ) = {4(2,) + 4(-2)} (7)

X×(r ) ={q(r,2) - (r,-)} (8)

s ,) 4-{s(rn) + S(,-n)} (9)

S -0)} (10)
= -Jo (r,2.V) + oS(r'-fiJ)} (1I)

oU(r,C2i ) = -{oS(r,2' V) - aS(r,- 2. Y)} (12)

where

= even parity fluence

= odd parity fluence

S ) = even parity source

sU(r,3) = odd parity source

(r,.. l) = even parity scattering cross-sectioa

o (rUd )= odd parity scattering cross-section

Adding Eqs (1) and (6), then dividing throughout by two

and using the above definitions gives

.VJ(4,) +ct(r)Y'(r, 1 ) ( =- Agr A' 5 )

+ S (ri) (13)

Using the derivation of Wheaton (Ref 5:8), which is also

reproduced in Appndix A, ti scattering kernel term in (13)

14-



where the even properties of the even parity scatterin(:

cross-section and the even parity fluence have been used

in the derivation of Eq (14). Fq (13) now becomes

+ S h.7) (15)

Similarly, by substracting F.qs (1) and (6) and rearranging

the scatterine kernel (See Appendix A) gives

+- u

+ Su(i,.) (16)

..qs (15) and (16) are referred to by Kaplan and Davis (Ref 10)

as canonical forms. The natural boundary con,:ition Eq (2)

c"n also be rewritten as

ro) (r,7 = 0 for n < 0 (17)

an:

) -(r , = 0 for n 0 (13)
S '

(I-, 1) ('-, N"

o r F1(19)

.., -,  r ) "i v -r v i inst , ' n ,nuct i s a: the

a: i ilhal an, . (s... L . 3). Therefore it fC lows that

:1 1



and

x(r,) X(r, 2
2 ) (21)

Also X(r, ) and Y(rn) are continuous at the air ground inter-

face (whenL P = 0) but their derivatives are discontinuous.

A further simplification is now introduced into this

development by defining the even and odd operators, Gg

and Gu as

= ot(r)f(rn) - f47 .0")f r,) (22)

GU(r)f(r2) = (r)f(r,) -f(r,TO )fr,A)d" (23)

where the scattering cross sections can be expanded in

spherical (surface) harmonics (see Appendix A) to give

Gg(C)f(r,2 ) = (r)f(ri)

- g" ' v ('A (24)

where the even parity Legendre expansion cross-section ag

is defined as

S(r) = j ~( ) for . even

' 0 for Z odd (25)

and

c A

&(r) = ~Legendre expansion scattering cross-section
ceeIIc-nL:3 (Ru 1 5:23)

( 7 L



The odd parity 6Uattering cross section can also be expanded

to give
G(6)f(r,$) = t(r)f(r,Q)

- k2mo (r)Y\( a) Y m(N ')f(r,Ac')2 (26)

where only odd expansions in Z are used or q is defined as

=J c (r) for Z odd

0 for k even (27)

The Gg and Gu operators are self adjoint positive definite

(Ref 10:174). Inserting these operators into Eqs (15) and

(16) they become

G= s(r,2) - i.V:(r,2) (28)

and

C , )s - .VV r,. (29)GU(r)x(r,Q) sU(r,) - $Yrj)(9

Solving for Y(r and x(r, ) from Eqs (28) and (29) pro-

duces

.(r = .( g ) - .x(r,} (30)

Fs,).I, - V (rBI (31)

where using the notation of Kaplan and Davis

KU(r) = { ( ()} inverse of the operatir

CGU() (32)

=1G (r)} = inverjc ol the operator

CU(L) (33)

I:I



A detailed mathematical derivation of these inverse operators

is presented in Appendix A. They are defined as (Ref 11:481)

Cr^ -I 1

KO(r) = ot (r)Ti
L

m , (r)/(dt( (34)

where 0(r) is defined by Eq (25).

K(u(r) = at(r)Ll

+ U r'/ (u( .-a. ....( f dP (35)

Both Ku and Kg must be self adjoint positive definite since

they are the inverses of G and Gg which are both positive

definite and self adjoint.

The functions m(,) and Y~m(g) are the well known nor-

malized spherical (surface) harmonics (Ref 6:609) which are

defined as

A = = - ~(Z-m)! P(~e(6
Yzm(P,X) 2Z+ 1 ( -m)

4, " ( +m)!

and.. () being the complex conjugate of Y,(P) is defined
In

as

S(')= 4_ (Q-m)! X)P (i)el (37'

where i = CosO and P m(it) is the associated Legendre func-

icqs (3j and (3'1) can now be written as

(,) Kg(r)isg(r,2) - f Vx(r,~ (38)

18
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and

X(r, ) = K (r)(SU(r,n) - (39)

Substituting Eq (39) into Eq (28) produces the second order

even parity form oC the Boltzmann equation

-2VK (r) V{(r, + Gg( )(r, ) = sg(r, )

- f'vKU(r)S (r,2) (40)

and inserting Eq (39) into Eqs (17) and (18) gives the appro-

priate surface boundary conditions for Eq (40) as

\(Vs, P) + K (rs){SU(r,) r .;(rs,

= 0 for 2-n < 0 (41)

and

Y(rs,i) - K (r){sU(rs,) -. r

0 for na > 0 (42)

Eqs (33) and (39) give the second order odd parity form of

the Boltzmann equation which is

-!2V~~rg.V~r©)+ G(r);x(r, ) = Su (,~

- 7K6'(r)S (r, Q) (43)

Inserting Eq (38) into Eqs (17) and (18) the surface boundary

conditions for Eq (43) are

0 or o n (44)

S0 for .n > 0 (45)

19
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The Variational Principle

Variational principles for the monoenergetic transport

equation have been found. These principles are related by

a series of transformations (Ref 10:166). The functional

whose Euler equations are the even and odd parity second order

Boltzmann equations will be used in this work. Primarily

the even parity component will be used because it is always

positive, self-adjoint and can be integrated to give the

scalar flux or fluence (Ref 12:148). The odd-parity flux which

can be negative integrates (over all directions) into the net

current (Ref 13:12). Another "nice" feature of this even and

odd parity formulation is that it produces a solution matrix

which is positive definite and symmetric.

Defining the inner product of two functions as

<fg,g> ff')g()d (46)

where * means the complex conjugate, the functional which

corresponds to Eqs (40) (41) and (42) is given as (Ref 10:169)

F(u) < fR .Vu,K 0 G2Vu)> + <u,0gu> - 2< 'VuKuSu

C1 - S I '.u- , (47)

where#isrepresents a surface integral.

It can be shown Ref (10:169) that the Euler equatLon

(stationary point) of this functional is indeed the even oar- tv

second order torm oL the !)oLtziuann criuit ca and that EUs (41)

and (42) are the natural boundary conditions. A simiLar

Lunctional for the odd parity equation has also been found.
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In Appendix B the stationary point of Eq (47) is shown to

be a minimum and the weak or Galerkin form is obtalned. This

weak form is

fr(.vn,KU( .V> + <n,§fgT>;dr + ls.nnidd
JR{ rK S - + <n,Sg>},-r (48)

where

= test or weight function

and

Y = trial function

The natural boundary conditions Eqs (41) and (42) are incorporated

into the weak form of equation (48). However, the boundary

condition at the ,round interface is an essential condition.

A solution to the air-over-,around problem can be obtained

from a solution to Eq (48) and this essential boundary condition.

'The Galerkin or weak form of Eq (48) produces a solu-

tion matrix which is positive definite and symmetric. It

is _z:r.metric because the test and trial functions are the

same in the Galerkin solution method. The matrix is positive

definite because Ku and Gi are positive definite and it is

obvious that for the Galerkio solution the term <.7'n,K u( 7.'>)"

is also positive defiritr.

The Method of W'eighted Residuals

1h:c ,,Li1,), of weighted residuals is a straightforward

and simple prescription for solving a wide class of problems.
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Unlike Rayleigh-Ritz it does not depend on a variational prin-

ciple or the calculus of variations. However, in solving

certain types of problems the use of a variational principle

or the Galerkin method of weighted residuals is equivalent

and they produce solutions which are identical. For the air-

over-ground problem and the second order even parity form

of the Boltzmann equation it will be shown that the Galerkin

method and the weak form, which is given by Eq (48),

are equivalent formulations of the same problem.

In the method of weighted residuals an approximate

solution which is a linear combination of trial functions

is assumed to exist. These trial functions are required to

satisfy the necessary boundary and continuity conditions.

The approximate solution, when inserted into the problem

equation, is then required to be an exact solution of

the problem with respect to several weight functions (Ref

7:106). The choice of weight functions determincs whether

the method of weighted residuals is one of collocation,

least squares or Galerkin. In the Galerkin method the

weight functions are chosen to be the same as the trial

functions.

Applying the Galerkin method of weighted residuals to

the second order form of the Boltzmann equation is equivalent

to usLIP, a variational principle. In Appendix C the wea!

Cor n, (; , s .. ...) Is a 2alorin formulation

this problci. [hc naturnl boundary condiLion is incorporated

into this devolooment and an equation identical to Eq (48)

22
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is produced. Therefore, solutions to the second order form of

the Boltzmann equation, by using a variational principle or

the Galerkin method of weighted residuals are equivalent.

This equivalency exists because the second order even parity

operator of Eq (40) is positive definite and self-adjoint.

2
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TV Space-Angle Synthesis of the
Even-Parity Anisotropic Boltzmann Equation

A space angle synthesis solution approach has already

been applied to the air-over-ground problem. Roberds and

Bridgman used "specially tailored" angular trial functions

to solve the two dimensional steady state anisotropic

Boltzmann equation Ref (4:332). Space angle synthesis was

applied directly to Eq (1), and not to the second order form

of the Boltzmann equation. Miller et al. (Ref 13:12) have

applied phase-space finite elements directly to the isotropic

second order Boltzmann equation in x - y geometry. Wheaton

(Ref 5) has applied phase-space finite elements to the air-

over-ground problem. However a space angle synthesis finite

element approach using a flux expansion in bicubic splines

and spherical harmonics has not been done.

Because of the complexity of the air-over-ground problem

a space-angle synthesis finite element approach seems to be

justified. This solution technique might have several

advantages, some of which are:

1. The elimination of ray effects:

2. The numerical advantages of finite elements

in combination with a space-angle synthesis

approach, may be able to better handle the

four-dimensionality of the problem:

3. Anisotropic scattering can be easily handled

by a "wise and convenient" choice of angular

trial functions;
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4. The computational effort might be reduced,

without a loss in accuracy. It is expected

that bicubic splines will not require a

fine spatial problem grid (mesh size); and

5. The boundary conditions and a first scatter

source formulation can be easily handled.

The finite element space-angle synthesis technique is

merely a spatial and angular expansion of the even parity flux

by a tensor product of polynomial functions and spherical

harmonics. In this work a tensor product of bicubic poly-

nomial splines is used. This expansion is the trial solu-

tion which will be used in the finite element method. The

piecewise bicubic spline expansion becomes a local basis in

the spatial (P,z) variable. However, the spherical (surface)

harmonics which are defined throughout the angular problem

domain form a global basis. Therefore, this trial function

expansion has a dual basis -- a local basis in space and a

global basis in angle. This is the finite element space

angle synthesis method.

.he -,tartinz point of this development is the weak

form of the second order even parity Boltzmann equation

and essential boundary conditions. The air-over-ground pro-

blem is described by the weak form of Lq (48) and the

svmmeLric coid'L ion i'(" (20). An essontial bolndarv concition,

at the air ground i nterface, is that (r,2) is continuous

L z and . 0 (se e Fi ). lowevor, the derivatives

of '(iK) are discontinuous.
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In the remainder of this section the spatial and

angular trial functions will be examined. A system of

coupled equations for the numerical solution of the air-

over-ground problem will be developed. A first scatter

(collision) source will be used in this development.

The Trial Functions

Because this is a four dimensional problem with

anisotropic scattering a numerical solution techniqvu is

required. The finite element formulation of this problem

lends itself directly to such a solution approach. However

an application of four dimensional phase-space finite elements

to Eq (48) will be very costly (computer costs) and

inefficient (Ref 5:33). This is due to the added complexity

of anisotropic scattering. Anisotropic scattering increases

the bookkeeping and computational difficulties. A local

elemental basis in angle requires that the scattering contribu-

tion to each element must be computed on an element by

element basis for all space and angle elements within the

problem domain. Therefore a four-dimensional phase-space

finite element formulation of this problem is not a very

attractive or realistic approach.

A close examination of Eq (48) shows that the problem

operator is self-adjoint positive definite symmetric. This

alm-'. -he use )! standard matrix itcratLive sclution tech-

niques such as Gauss-Seidel, Jacobi or Succcssive over-

relaxation (Ref 14:183). Therefore, a numerical method

that includes a finite element solution mizht be feasible

6
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if the anisotropic scattering contributions can be effectively

dealt with. A space-angle synthesis finite element development

with a local spline basis in space and a global spherical

harmonic basis in angle appears to meet this requirement.

A phase-space finite element problem formulation which

eliminated the characteristic lines of the hyperbolic discrete

ordinate Sn equations has been effective in mitigating ray

effects (Ref 3:205). The well known PN and double-PN equations

of nuclear reactor physics have inherent elliptic features

which eliminate ray effects. Therefore space-angle synthesis

using spherical harmonics seems to represent an approach

which will eliminate ray effects.

The trial function expansion which will be used in this

development is

iZ lR +L +,r

iz=l ir=l 0 =- (49)

where Q,z is the spacial coordinate dependence in cylindrical

geotetry and u,X represents the angular variable in Fig 2

T(z,p, ,,) = even parity fluence at position r,z and in
direction PX,

Aiz,ir = flux expansion or mixing coefficients,

B3 L.(z) cubic polynorial spline in the
variablE 1Z-spline),

3- (c) = cubic polynomial c-spline,

YVm(a,,) - spherical harmonic function, Eq (51).
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Figure 4. Cubic Spline With
Evenly Spaced Nodes

iz, ir, Z and m are the trial function summation indices and

IZ = total number of z-splines,

IR = total number of p-splines,

L = degree of the spherical harmonic expansion.

The definition of a cubic polynomial splines (Ref 15:89)

with evenly spaced nodes (knots) is

Xx+-) xi - -i+

( + -) -4(xi+j--<) 3, x I -xx +

'S

i -- i -
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YZm(.,X) = C~mP~m(p)elmX = CnmPgm(i){cos(mx) + isin(mX)} (51)

where

= 2 + 1 i m;!

eM 211 7+ -, ! (52)

The trial function expansion, Eq (49) can be made to satisfy

the symmetry of Eq (20). This is a symmetric condition in X

which directly implies that the solution must also be an even

function in the variable X. Therefore, the angular trial

function expansion of Eq (49) must also be even in X. Droppin2

the isin(m\) term from Eq (51) and substitutin- into Eq (49)

1I VR L

"iz,. 1r-1z  " ir( (53)

iz ir=l .-0 m=0

where

Q = C, P (;.)cos(m) (54)

ana by usinc the ortho r::m proper ties of speorical i harmonics

the m index begins at zero instead of -. (see Appendix D).

The essential boundary condition at the air ground

interface rust also be applied to Eq (53). The fluence

co:ic ;:u: v rtqiH ~tT ,.:3. Cal J satislieU bv thLb expansion in

i cu.o i po, ynomia 1 sp Iines an1 s pheri ca I harimonics . Both

doaihn. h, 1 bic spljnee are a lso twice cont ini,louslv



differentiable but the spatial z-derivative of the solution

fluence is not continuous at the ground interface. However,

the z-splines can be modified to have discontinuous deri-

vatives at this interface (Ref 16). A Double-P N or Yvon's

method (i\Rf 6:163) can also be used to accomodate the fluence

discontinuity at p = 0. In this development the air-ground

interface will not be included in the problem domain, and

therefore, this interface boundary condition will not be

enforced.

Since a Galerkin method is being used the test or weight

functions are

"I(z,p,p,X) =  Bj z ) Bjr P) k (55)
z jr p'Qkn

Substituting Eqs (55) and (53) into Eq (48) produces Eq

(58) where for simplicity the P,z,vi,x dependencies are omitted

and

Bi - B iz(Z)B ir() (56)

and

..3 (57)

TZ IR L Aj)-

iz=l ir=l Z=0 m=O

. i ' dr " '~B . , .. ds
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This is a system of coupled algebraic equations where the

unknown quantities are the A ij1 mixing coefficients. Eq (58)

can also be written as

r~1 ~i =(59)

N'xN Nxl NX I

where

N IZ.IR"(L+I).(L+2)/2 (60)

S= Coefficient or stiffness matrix, where
each element is a summation of terms in
the square brackets of Eq (58)

A ijzm mixing coefficient vector

Source vector which is the right hand side
of Eq (58)

The Ai:,;m coefficients of Eq (53) will be obtained from

a computer solution of Eq (59). These mixing coefficients

can then be substituted into Eq (53) to give the even parity

fluence, (zQ,i.,X). In a solution of Eq (59) the elements of

the K matrix and S vector must be computed. This computation

involves an evaluation and summation of the individual expanded

terms of Eq (58). This expansion is carried out in Apprndix

he directional gradient operator in cylindrical geometry

is defined as (Ref 6:59)

" = cos" , ' ) - {V l-u s in } + , : (61)

Vh is is thc conservativo lorm ot the di rctional derivative

in two dimensional (p,z) geometry with azimuthal symmetry.
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The Ku and Gg operators have been defined in Eqs (24) and

(35) of Chapter III. The scalar product of the velocity and

normal vectors is given in Appendix E as

fln for the horizontal outer surfaces (top or

z bottom) of the problem cylinder, and as

- .n for the vertical surface (side) of the
cylinder (62a)

where
on the top surface, and

n - on the bottom surface (62b)

and

n =V 7 cosx (62c)

The normal unit vectors f!0 and flz are shown in Fig. 9, Appendix E.

Expanding the expressions in Eq (58) produces an integral-

differential equation which has twenty-eic ht terms (see Appendix

E). These terms, except for the source terms, can be easily se-

parated into a product of z, p, p and y integrals. This is an

integral separation of variables which is a direct result of Eq.

(53); where, it is assumed that the solution can be expressed in

a form where the dependent variables are separable. This separa-

tion property simplifies the individual int,erals which have to

be evaluated. It allows for the evaluation of only single inte-

grals and not the more complicated double, triple or quadruple

integrals. By this separation of variables it may be possible

to in tegrato most of these single iitccra ls an lyt icll and

thus avoid a numerical integration process.

The Sphe rical 1Iarmonic li toLgrals. The ust oi a sphorical

harmonic angular trial function expansion was motivated by six

2 2



1. Because of the global nature of these functions the
computational effort will be substantially reduced.

2. Spherical harmonics are well-known functions with
orthonormal and symmetric (odd, even) properties.

3. The scattering cross sections are usually expanded in
spherical harmonics (see Appendix A).

4. Spherical harmomics will produce a system of equations
which are elliptic and invariant under continuous
coordinate rotations (Ref 1:362).

5. An analytic or closed form evaluation of the angular
integrals might be possible.

6. The even parity angular fluence, Eq (53), can be
easily integrated to give the total particle fluence.
This integration is carried out in Appendix I.

The term-by-term expansion of Eq (58) has been partly carried

out in Appendix E. The resulting angle integrals are only de-

pendent on the degLree of the spherical harmonic trial function

expansion which is used. They are not dependent on the problem

parameters and therefore they can be independently evaluated.

They can be evaluated once, and thereafter, used as a part of

the problem input data.

Three approaches were pursued in an attempt to evaluate the

angle integrals which are produced by this expansion. The first

approacch was to use the ortho-,onal properties of the associated

Le:-endre functions and the well-known properties of sines and

cosines to analytically evaluate these integrals. However, be-

cause of their complicate( natuire (see Appendix F) a closed for

12 :L .r: !iL10 2 .: n,: e sily btaOd or 0os ! 3! ti,".:i.

";e o seoCinn approach was Lo use a comipuLer -oti'U I LIUIIL Cai:

. .. .h so i:t,>,r: 1:; iII a svmbolic or al Qrnic :;ens,. :

"I rout] Ifl L1tansform the integrals into al-ebraic expressioi,s.

aI : ':'" ,i.) '" :',on! ii ,'on1! 'or ;i . ' t ton h >ls sachk s 1:D . it )'t "" -

• ; " ; - " i I I Ii * t

................................... e S .,IsahsIL
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because of the time constraint on this research project and the

need to learn a new programming language this approach was aban-

doned.

Finally, it was decided to evaluate these integrals by

a numerical integration technique. Because it is possible to

separate the integration variables, the computational effort

can be substantially reduced by using a single (one variable)

integration routine. So as to further reduce the computational

effort, Eq (58) was completely expanded and twenty distinct

angle integrals were identified. These integrals can be found

in Appendix F. A ten point Newton-Cotes single integration

routine was used to evaluiate them. They were evaluated for

each combination of the in, ', k and n trial and weight function

subscripts.

Bicubic Polvno'ni.al Splines. The spatial dependence

of the particle fluence in the air-over-ground problem is

approximatcd by a product of cubic splines. The use of

cubic polynomial splines in the trial function expansion of

Eq (53) requires the formation of a tensor product space.

ih. ; s:,acC is :a-, u*, Of bicubic polynomial splines which

art I)rOucLs 01 c and z-splines on a rectangular grid

(IXi1 3:131). The exact shape of these bicubic splines are

Vbt I::,Qd iro.. a variataioal principle or the equivalent method

*: .. ' I tI ( '-- , a So LuLion of Eq (58)

ai, i, ,_ ,1,v :; .ai spiinos are being used for the

1. ii. Ar- conLinuoIIs and form a
n L:i ral

3 .
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This reduces the number o integrals which must be
evaluated and also produces a sparse and banded
coefficient matrix.

2. A separation of the p and z integration variables
is possible.

3. Third degree polynomials such as cubic splines have
a faster rate o' convergence than those of lower
degree. Cubic splines are also twice continuously
differentiable and thus they are very smooth func-
tions. For a given problem mesh size splines will
produce a coefficient (stiffness) matrix that is
smaller but less sparse than hermites or lagrange
polynomials.

The expansion of Eq (58) with a trial function of bicubic

splines and spherical harmonics is carried out in Appendix E.

A further expansion of these equations and a separation of the

variables of integration produced seventeen distinct ¢ and z

integrals. These integrals which include the space source

integrals are listed in Appendix C. The source integrals are

derived from an interpolation of the first scatter source over

the entire spatial problem domain.

The Source Trrms. A numerical solution to the air-over-

ground problem and the second order Boltzmann equation requires

that the source terms (right hand side of Eq (5S)) must be

e valuate d. These terms form the individual elements of the

problem source vector in Eq (59). The even and odd pariLy

sources SI" amd S will be defined as the first scatter or

collision even and odd parity sourcrs. The first scatter

source S(r,.:) is the number density of particles whictL leave

the burst point and undergo only one collision before being

.tcattored into directionu at position r. Streaming neutron-;

which leave the burst point and do not collide before reaching

: ,3itlon (r, ) are not ncluded in the collision source.

35



The use of a first scatter source makes the air-over-

ground problem more isotropic. It removes the strongly

anisotropic streaming particles from being a part of the

problem source. Therefore, the solution fluence of Eq (58)

will be the scattered even parity fluence T s(r,2) and not

the total even parity fluence Yt(r,P,). The total even parity

fluence can be defined as

"t(r )Y s(r'i) + Yd(r, 2) (63)

where

Yd(r,!) = streaming uncollided particles atposition (r, 2).

A precise mathematical definition of the Sg and Su

sources will now be developed. Also a source interpolation

procedure will be outlined. This source interpolation is

used in order to simplify the source integrals of Appendix

1 (E-40 to E-46).

The First Scatter Sour -. The even and odd parity

soiirces have been defined as

su(r,) : 2{s(r,) - s(r,-,)} (10)

S-6r".) ' S(r,") + S(6,

IC Su and Sg arj first scatter source densities then S(r,.)

and S(r,- -) mIust also b" do" iu as [irst scatter source

Particies/uniL uii:Ae if a posit ion ( i,) tL Lc problm

domain is choserl" then a unit vector from the burst point

(O,zb) can be dCLined as
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H

The -Burst I-
Point W=cos Pd
(O,zb)

z b

Figure 5. First Scatter (Collision)
Source Direction Vectors

+ (z-zb)eP z
{p2 + (z-zb)2} (64)

Fig. 5 shows the direction vectors of this first scatter

(collision) source. 2 is the direction that all streaming

(uncollided) particles have at point (p,z).

By definition only particles which are streaming

radially outward from the burst point can be included in

the direct fluence. Therefore the direct fluence at point

(p,z) is in the S' direction and can be written as



z exp{ (z)ds}

d 'T rnS (65)

where

s {p 2 + (z-zb) 2}a (66)

and fds means that the integration is carried out along the

path s (see Fig. 5). Also

Y = Total particle yield of the nuclear
explosion at the burst point.

a t(z)  C. It(O)e-Z/sh for z > 0
uzt (ground) {for z < 0 (67)

sh = atmospheric scale height

The ter.- fu (z)ds is the average number of collisions

which a particle undergoes in traveling from the burst point

@,zb) to point (p,z). From Fig. 5 the distance s can also

be written as

s = (z-zb)/d (68)

and therefore by changing variables

ds = dz/!d (69)

where ud is a function of ( and z (but constant along a path

len-h S)

, cos (-b)/s (z-zD)/ z,
2 -> ( D-b)

2}  70)

The tntugral term of Eq (65) can now be written for z > 0 as

e (71)
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and finally as
a (0)

-
0-~ 0 -zb/sh -zish

T(p,Z) = t -- ie- b e -  sh

= {otzb) - ot(z)}'sh (72)

From the above derivation it follows that

S {ot(zb) - at(z)}.sh/id for z > 0

{at(zb) - at(0)}.sh/id - atz/id for z < 0 (73)

also

4(74)
zd r) -44-57. exp (--r(p z))(4

N:ote that qd (,z,P," ) is only a function of P and z.

The first scatter source at (o,z) and with direction

are those particles which undergo their first collision

at (o,z) and are scattered from direction L to

Therefore the first scatter source can now be defined as

S(p,z, ) = (z, -) d( ,z,') (75)

where a is not a function of f" but of the scattering angle

' ) and z. Fro:-n 1ig. 5 and Fig. 2 is defined bv

wd and )< = 0 i.e. '
= (ux) where lj = 1d and & = 0.

By use of the addition theorem it is shown in Appendix

H that Eq (75) can be written as

I

~I~j 76 '
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and that the even and odd parity first scatter sources are

L Z
^s hos 4. + -m I

Sd(PZIO)eZo z (O)C m{1+(-i) Pm(ld)PZm()XccsmX

Z=0 m=O (77)

and

L Q
= ) "G a(0)C~ml(l ;m(i) J cosmx

Z=0 f.'=0 (78)

where m means that all terms with a m = 0 subscript must be

divided by two, and cosmx should be interpreted as cosine (mX)

Source Interpolation. Because of the complicated nature

of the source expressions, Eqs (77) and (78), anJ the need to

integrate the source terms of Appendix E, a spatial source

interpolation will be used. This interpolation which

simplifies the source integrals is necessary if a very

tedious (double or quadruple) integration is to be avoided.

By this interpolation process the source terms of Appendix E

can all be separated into a product of single integrals.

It is important to note that pd which is given by Eq (70)

is a function of p and z and therefore P :m (pd) is also a

function of o and z. Furthermore ,(p,z, ) of Eq (74) is

a function of p and z. Beginning with Eqs (77) and (78)

they can be rewritten as

L
0-_ C- 1+(;h t[ (-1)'- } ,(' ,1r (' c s x7 9 )

,=0 '*=0

and

__ 0



L

-u m: '2

where

(p,,z,2 )Pm(d)eZ/sh 81

A spatial ( ;,z) interpolation of the even and odd

parity sources, Eqs (79) and (80), is therefore an inter-

polation of AZm(p,z). In this project these first scatter

second order sources were interpolated by a combination of

piecewise bi-linear Lagrange polynomial functions. Speci-

fically, Sg was approximated by a tensor product of linear

Lagrange polynomials as follows
-TZ _7%

s,o ) = cgPj , ,)j (P)Hi(z) (82)

i=l j~l
where

sg(Pj,z.," ) = the even parity source, Eq (79)
cvaluated at the spacial nodes
(; ,zi)

total number of z-nodes

NR total number of R-nodes

o-lineir Lagrange poln , il

"': =-linear Laran 2 pol:mnvm"I

11:. lir pclynomials are delincd as
X X

L



Iieighl- of
Tria1Lg~e =1

xi ~ x. x.+

Fig,:uro2 6. A Linear Lagrange Polynomial Function.

The product H(cl.) of Eq (32) forms a tensor product

space on a rectanglular grid, In the p, z plane (Ref 15:129)

S:ubstituting; Eq (6k) for S'( 1: j. Z.--) in Eq (77) gives

L Lk;~ml NZ \%R

i=1 j=1 (,S4)

imilarly the odd paritV source can :.lso be expressed as

Sm Z EY NZ NT

C > s Ix i t I t

L~~:c t ra-i ii .DtO :t~ are listcd in APPendix



G. The source angle integrals have been included in those

integrals which are presented in Appendix F.
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V Computer Implementation and Results

A numerical solution of the air-over-ground problem

can be obtained from a computer solution of the system of

coupled algebraic equations which are represented by Eq

(58). These equations can be written in the matrix form

of Eq (59) and through a direct inversion or some other

matrix solution process the Aij.m mixing coefficients

can be found.

The computer solution to this problem was accomplished

by a two step process. Each element of the stiffness matrix

and source vector was computed and assembled in the matrix

form of Eq (5)). Then the mixing coefficients were computed

by the iterative matrix solution method of successive over-

relaxation. An indirect iterative matrix solution method

is possible because Eq (58) and the stiffness matrix of Eq

(59) is symmetric positive definite. A computer program

which assembles the problem matrices and computes the

mixing coefficients and particle fluences was written.

This pro rai-, which is written in FOR TR.AN V is listed ;-n

Appendix J.

Using a ten point Newton-Cotes numerical integration

routi e, each of the thirty-seven integrals in Appendix

F and G were evaluatcd. The angular integrals were evaluatcl

tor e'ach jm, kl cormbinaion o,1 the Lr 'iaI an:i weigL Iuncti,

iD6C fID LS. S, 0c Led prodlic I's of Lit es, itegra Is were thln

usd t) gentrate each of the twcenty-eight terms (E-19 to

E--46) of Appendix E. IFo lokle 'ng tte prescri-ptik:1 oI Append



E the first twenty-one terms were then added (or sub-

tracted) to produce the elements of the stiffness matrix.

The next seven terms gave the elements of the source vector.

Writing the synthesized Boltzmann equation, Eq (58), in

operator notation as

(86)
L(iz,ir djz,jr jz, jr

IM k,n

where T and - are defined by Eqs (53) and (55) and

L(iz,ir)j z , jn. = Left hand side of Eq (58)izi z jr,

M ,m k,n

S Tj ,ir = Right hand side of Eq (58)
, j

the K element of the stiffness matrix is
p,q

K = L4Bi (z)B. (P)Q, 1-". (z)Bj. ((7)
p~q j ir ' m jZ jr )~kn

where

q = (m+l) + (+1) + (Lmax + l)(Lnax + 2)-{(ir-l) +iR(iz-l)} (88)

-2-

and

p = (n-) (k+1) Liiax - I)( imx + )i(j r-i) + JR( z-1)t (;9)
2

The corresponding source vector element S, is c<tvnn by

S-b (z)b' (: ((.J)
p z r)kn

re n is oveil by Lq (89) a-Lid

-4 )



Lmax = degree of the spherical harmonic expansion

JR=IR = total number of p-splines

p = the row index of the problem (K) matrix

q = column index of matrix I",

B(z), B(.) and Qjm are defined in Chapter IV (Eqs (50) and

(54)). iz, ir, jr, jz, Z, m, k, and n are the trial and

weight function expansion subscripts where

.,k = 0 to Lmax

m = 0 to Z,

n = 0 to k

iz,jz = I to IZ

ir,jr = I to TR

and

IZ = total number of z-splines

IR = total number of p-splines

Lsing the notation of Eqs (87), (88) aud (89) the K-problem

matrix and S-source vector can be easily assembled in the

following do loop.

DO 10 jz = 1, IZ

DO 10 jr 1 1, IR

DO 10 k = 0, Lmax

DO 10 n = 0, k

S Sn l r- k

DO 10 ]z = L_ A

:)0 10 ir I , [R

DO 0" 0, LX

DO 10 m 0,
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11 L(Y. )n
p,q iz,ir z,jr

kn

10 continue

The assembled coefficient (K) matrix which results from

Eq (58) and a bicubic spline spherical harmonic trial

function expansion is sparse and symmetric. Because of this

symmetry and sparseness the coefficient matrix can be stored

within the computer by special storage schemes (Ref 14:70).

These sparse and symmetric schemes will greatly reduce the

computer storage requirements. As an example, in a trial

function expansion where JR = IR = 8 and Lmax = 2 the

problem coefficient matrix is a 384 x 384 square symmetric

matrix with many elements which are zero. Therefore if this

entire matrix is stored within the computer it will req.

147456 separate storage locations. This much core

storage is already beyond the capacity of most computers. How-

ever, by using a sparse and symmetric storag e scheme this

matrix can be reduced to one with less than 73728 elements.

For large trial function expansions (JR = IR = 50, Lmax = 3),

; cial 'uxiliarv stora-o ind solutio-i techniques will be

neceossarv.

This entire problem (coefficient and source matrices)

was assembled on a CDC 6600 computer at the Air Force

Lnstitut,2 of Technology. The 384 x 384 problem matrix

is too large to be stored in core memorv unless a sparse

symetric storage :odc LS IsCI. Because some of the (p)

integrals in Appendix G are discontinuous (infinite) at

/47



0 it was necessary to use a lower p-integration limit

of 1.0 E-8. Also, since the first scatter sources of Eqs

(77) and (78) are undefined at the burst point none of the

problem nodes can be located there (see Fig. 5).

Results

The computer routines which are listed in Appendix J

were used to produce a numerical solution to the air-over-

ground D-roblem. These routines demonstrate the feasibility

of usino FESAS to produce a computer solution to the two-

dii !nsional st ,adv staLe anisotropic Boltzmann ecuation.

This computer program has not been fully developed, refined or

debugged and therefore the accuracy of the results has noc

been evaluated. These results are presented in an attempt co

further show that iESA\S is a viable numerical solution

t Ic hn q u .

The problem domain is a cylinder which sits on the sur-

face of the earth (see Fig. 5). However, the air-ground

interface is not included in the problem domain and there-

tour p all ",round , Clts are i noreo. iho following problem

parameters were used

':eapon yield = 1.OE+23 neutrons

Cylinder heig<ht = .4km

Cvi:ider radius = .4ki

Burst height .12 km
Total cross ecrion (-(C)) 15.0 km t

lo l ('t 0

%S8



Table I

Legendre Expansion Coefficients which were used
in a Numerical Solution of the Air-Over-Ground Problem

Legendre expansion coefficients

Expansion subscript kC

91

0 !0.0 .0

1 0.0 2.5

The cross-sections in TablV I were arbitrarily chosen and they

do not represent the actual values for air at sea level. A

relative convergence criteria (.001) which is accurate to three

sienificant figures was used.

F'h prorai.i exccu-ioi times variecd with the degree of the

spherical harmoiic trial function expansion and the problem

mesh (,-rid) size. The entire problem m.itrices were stored

within core memorv and by trial and error it was determined

that a relaxation parameter of 1.7 gave the fastest convergence

r t Howevr, as :noro trial functions were used and the
3~. .. o! oquatlous 00d 1'avriceS ,rw lar er the rae

conver-ence decreased. In Table II the program execution times

,rid tao niuaber o' terat ions to convergence are listed for

- ,. . o , ", h .' . Th, ' Xe C ut iO t irueS and con-

..... c rat s .an . .instautia lv rOdic..'d by rowritin,, or

Sj T1J

IIII IF II 1 11 - I A
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PARTICLE (NEUTRON) FLUENCES.

0-

-- - --- - -n

LL].

Qv-

2D BURST HT.- 0.12KM.
DEGREE (LMMX) -0
ALTITUDE - 0.20KM.

MESH SIZE4x4

-MESH SIZE2x2

0.0 0.1 0.2 0.3 0.4 0.5
RFADIUS (KM)

Figure 7. Computed Fluences as a Function of Radius and
showing a variation with the Problem Spatial
Mesh Size.
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PARTICLE (NEUTRON) FLUENCES.

0

CDJl E--
:

W 0

, BURST HT.- 0.12KM.
MESH SIZE -2<2

LTITUOE -. 10KM.

.. DEGREE(LMX)-1

,- DEGREE(LMAX)-O

0.0 0.1 0.2 0.3 0.4 0.S

R9DIUS(KM)

Figure 8. Computed Fluences as a Function of Radius and
showing a variation with the Degree of the Angular
Spherical Harmonic Trial Function Expansion.
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in Figures 7 and 8 fluence values as a function of radius are

presented. These values are representative of an altitude of

200 metres and the aforementioned problem parameters. Figure

7 shows a variation of the solution with spatial grid (mesh)

sizes ,hereas Figure 8 shows a variation with the degree of the

spherical harmconic trial function expansion. More detailed

numerical results can be found in Appendix K.
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V! Conclusions and Recommendations

Conclusions

A finite element space-angle synthesis (FESAS) solution

of the steady state anisotropic Boltzmann equation in two-

dimensional cylindrical geometry has been presented. In this

presentation a weak form of the even parity steady state

Boltzmann equation was developed. It was shown that because

the problem equations were positive definite and self-adjoint

the Rayleig:h-Ritz variational principle and the Bubnov-Galerkin

method of weighted residuals are equivalent. The problem

solution was formulated by using a trial function expansion in

bicubic polynomial splines and spherical harmonics. This trial

function expansion has a dual basis -- a local basis in space

and a global basis in angle.

This development was specialized to the air-over-ground

neutral particle transport problem. It was shown that a

finite element space-angle synthesis solution is possible and

that a first scatter interpolation source can be used. It
' iso shown that a nuineri-a so ution can be achieved and

tni tt is solt ioi technique, .av liinate ray CL octs and

reduce computational costs.

!R ocommne"dat i onls

The .rellimniary resulits of this stuv havo snown that

the FESAS method can produce a numinrical solution to the

.;tca ov stant I rt::iano eqiatLion IOd the a r-uver-,ironnd

problem. However, because of the time constraints on this

-4



research project a complete development and evaluation of the

FESAS method was not accomplished. Therefore, there are a

number of recommendations for the further analysis and

evaluation of the FESAS method, which must be made. Some

of these recommendations are:

1. To enforce the boundary conditions at the air-
over-ground interface. This can be accomplished
by a coalescing or stacking of the nodes (knots)
of the bicubic splines and by using a Double-
P,, approximation at this interface.

2. Develop or refine the computer algorithm so that
a comparative study can be made. This study
should include a comparison of the computational
costs and accuracy of FESAS to those of Monte
Carlo and discrete ordinates. Also, a determina-
tion should be made as to whether ray effects
have been eliminated.

3. Obtain, if possible, a closed form solution to
the angle integrals in Appendix F.

4. Explore other ways of handlin- the discontinuity
(at o = 0) of the space integrals.

5. Use other spatial trial functions. Lower deoree
bi-quadratic splines, hermites and Lacrange
polynomials are possible canaidates. A compari-
son of the resulIts which are obtained from the
use of various trial functions can then be made.

6. Examine the effects of an improved source inter-
polation on the solution accuracy and rate of
convergence, An improved source interpolation
can be achieved by the use of a smailr source
(space) qrid or a higher degree Lagrange or
Hermite polynomial interpolation function

7. Extend the use of finite element spaco-an ],o
svnthesis to the solut ion of energy depencaent
MIt -:rouln 2rob eus.
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Apendix A

Derivation of the Scattering Kernel, Inverse Collision
Operators and the Even and Odd Parity Collision Cross Sections

Collision Cross-Sections

The even and odd parity legendre expansion scattering cross-

U
sections cc, and a originate in the derivation of the second

order forms of the Boltzman equation (Chapter III). A defini-

tion of these quantities has been given elsewhere (Ref 5:29).

This definition is repeated below.

Beginning with the even and odd parity scattering cross

sections

12 QA-AJ g( - . (A-2)

the usual computational practice (Ref 6:131) is to expand these

scattering cross sections in Le ;,endre polynomials as

or

. j7 Z- r(A-4)

where

o r,:;= macroscopic scattering cross sectiofn

rS(r) = ,cgcndre macroscopic cross-section
expansion coefficient which is a
furiCz'cn or position (material)

L = the degree 1.egendre polynomial expan-
sion which is used

5 )



= Legendre polynomial of degree Z.

= scattering angle (1±o = CosO)

Inserting Eqs (A-3) and (A-4) into (A-1) and (A-2)

gives

From the even and odd properties of Legendre polynomials (Ref

17:223)

ven function if Z is even

odd function if Z is odd (A-7)

therefore 0 if Z is odd

2it 1 is even (A-8)

and

JZ?( "-Z" if is odd

0 if Z is even (A-9)

Eqs (A-5) and (A-6) can now be rewritten as

#7r
and

6,
7'5) 77r



The even and odd parity cross-sections can also be

expanded in Legendre polynomials as

(A-12)

a na

(A-13)

Comparing Eqs (A -i3), (A-12), (A-lI) and (A-10) it is apparent

that

Z(r) for Z even
G,(r) =

0 for Z odd (A-14)

and

0 for Z even
U ~ ^

G,(r) for Z odd (A-15)

Therefore og(r) and og(r''2-)sare even functions. Also cu (r)
Z ~ SZ

and u( , .V) are odd functions.
s

Scattering Kernel

In the development of the even and odd parity forms of the

anisotropic steady state Boltzmann equation (Chapter III), it

was necessary to express the scattering kernels in terms of

the even and odd parity flux (fluence) components. Following

the derivation of Wheaton (Ref 5:11) the scattering terms can

be written as

f (A-

where the integrations are carried out over all directions.

C) 0



Because ag is an even function, meaning f(x) =f(-x),
s

it follows that

g~4/i A (A-17)

and therefore

" - (A-18)

With the even parity flux defined as

4/- ,s (A-19)

Eq (A-18) becomes

Cg (4/tyZ~r;.t~d. :f 6/z,,Zy /C"4, ./ ,(A-20)

and by a similar derivation

-(A-21)

Inverse Collision O )oralcrs

in deriving the second order forms of the Boltzmann

equation (Chapter III) the G9 and Gu operators were defined as

and

1(A-23)
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where the r dependence has been omitted 
in an attempt to

simplify the notation.

Using the addition theorem (Ref 6:609)

2..',- /(..
,M -e

in (A-12) and (A-13) gives

4 (A-25)

and 'a P (A-26)

Eqs (A-22) and (A-23) can now be written 
as

- -o - =

and

The inverse operators are defined as

where it is meant that if

th -n

A:



multiplying Eq (A-30) by f Ykn()d and expanding the Cg

operator gives

6iff

--() , f ^ --  , -(A-32)

using the orthonormal properties of spherical harmonics (Ref

6:609)

(A-33)

where 6k is the Kronecker delta which is defined by

0 9, k

Z k (A-34)

Therefore Eq (A-32) can now be written as

and

"ql4t

Rewriting Eq (36) with a Zm spherical harmonic subscript

and substituting inLo the expanded form of Eq (A-30) gives

1 --
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and by rearranging Eq (A-37)

Y 3 (A-38)

Comparing Eqs (A-3E) and (A-31) it is obvious that Kg is de-

fined by

(A-39)

a similar derivation for Ku would produce

(A-40)



Appendix B

Weak-Form of the Functional

The functional whose Euler equation is the even parity

Boltzmann equation of Chapter III is

F a) {K/<J. ZA'V . Z)> 4 >'2 . 3ki j>

'B-1)

where the inner product <f,g> is defined as

j(B-2)

and * means the complex conjugate.

The minimizing function of this functional is the

function T which is a solution to the second order even

parity Boltzmann equation (Ref 10:169) Therefore, a solu-

tion to the even parity Boltzmann equation can be found

by minimizing Eq (B-l).

Another more useful formulation of this problem is the

weak form. This weak form can be found by imposing the

condition that a function which satisfies the natural boundary

conditions Eqs (41) and (42) and the even parity Boltzmann

euqation must also be a minimum of the functional (B-1).

Let the functional, (Eq (B-1), have a minimum at ij.

7hen, for all n and where can be arbitrarily small and

oi either sign

2 F('~~! ;-7) E



where T and n are real functions that satisfy the boundary

conditions.

Expanding Eq (B-1) in '+cn gives

- =<. 6 t ".7y)2d/ _(B-4)

< Y, (B-5)

. .(B-7)

I- (B-8)

(B-9)

<(B-10)

-2 (. (B-i2

J " (B-13)

noting that (B-4) + (B-8) + (B-12) + (B-14)

+ (B-i6) F(Y) (B-19

6(,



and that Kg,K UG g and Gu are self adjoint operators (Ref

10:174), where if L is self adjoint then

means the complex congugate. Since n and T are both

real functions (B-5) = (B-6) and (B-9) = (B-10). Therefore,

collecting terms and simplifying

(B-21)

With both Ku and Gg being positive definite operators then the

E2 term of (B-21) must also be positive. Note that c2 is al-

ways positive. Now in order to ensure that F(i+En) > F( )

for £ 0, the E term in equation (B-21) must be positive or

zero. But e can be of either sign therefore the coefficient

of c must be zero, that is

~~h-

- <' S ) f.;"' """ ,J; ;' - '

" Eq (B-22) is the weak or Calerkin form of the second order even

parity Boltzmann equation. A detailed derivation of equation

(B-22) can be found elsewhere (hel 5:57).



Appendix C

Derivation of the Weak Form From the Galerkin
Method of Weighted Residuals

It can be shown that solutions to the second order forms

of the Boltzmann equation, by usine a variational principle or

the method of weighted residuals are equivalent. A proof of

this equivalency for the even parity equation is outlined below.

However, a similar proof can also be extended to the odd

parity second order equation.

The starting point of this proof is the even parity

Boltzmann equation

I ~ -. .)WA'1 - i)<r; ,--&" <,sy'<f) =- A,-) (C-i)

and vacuum boundary conditions

4e (C-2)

for, < 0

-KT2 (C-3)

j.or tk., 70

In the following equations the v and £ dependences will be

omitted.

if a trial solution i Is assumed where i' is a linear

combination of functions such that
/V

(C-4)



then the Galerkin method of weighted residuals requires

a weight or test function n; where

V' (C-5)

The requirement that ' should be an exact solution to the

problem is imposed by substituting Eq (C-4) into (C-i), and

then requiring that the Euclidean norm of the right and left

hand sides of (C-1), with respect to the weight function n,

are equal.

Applying this requirement to Eq (C-i) gives

- RK /> ~lV/~S~ 9d' (C-6)

where the inner product is defined as

KAA (C-7)

and the trial and weight functions, Y and n are real functions.

Using the vector identity (Ref 10:169)

terms A B of Eq (C-6) becomes

-- 7'

L(c-9)



(C-10)

Substituting Eq (C-9) and (C-10) into (C-6) gives

( <Z -. J7 AA (C-li)

term A of Eq (C-11) can be rearranged into

Using the boundary condition of Eq (C-2) and (C-3), Eq (C-12)

can be written as

Eq (C-12) can also be written as

2. /47-6+dS (C- 14)

where means the absolute value. Substituting Eq (C-14)

into (C-11) gives

' • r '.,. w ''4 y2/ ,Z ".

I ,, ' / I , "

I 7 i61, - (C-13)



Eq (C-15) is the weak or Galerkin form of the even parity

Boltzmann equation. it is identical to Eq (B-22) of

Appendix B.

I:



Appendix D

Expansion Properties of Spherical Harmonics

In Chapters III and IV the angular dependence of the

trial functions and cross sections was expanded in spherical

harmonics. Because of the two dimensional angular

dependence in vi and X, and the requirement that the expan-

sion functions should form a complete set, the expansion

is presented with m and Z subscripts as follows (Ref 6:608)

Z x-e

7CI)~ Z (D-1)

or

Z(D-2)
where

227

-( d(D-3)

and

and

- 2



If f( ,.) is even it, the aigle X then the expansion must also

be even in >, anid therefore, (D-4) can be rewritten as

A (D-7)

where the odd iSinx term is omitted. Also from Eq (D-5)

7n (0-8)

Therefore for an even expansion Eq (D-3) can be written as

-, - (D-9)

Fo: vei x oy:.is, wi of U(,) Eq (D-2) ca.n therefore be

wri tten a s

-F

L, 2.

. tti',7 ' 1d'..IL' OL '. .'" Ii. D,)',' ' ,C i[ . l " L 2 . c

;,:lL:S l oAI Lc Lc nL arnd ',1 (;-i2) Lorms a cot'ilplete set.

S iLIli . ; )prach Clin .' Iso. or the 1'4s0d-'oc 1,:2

tC Xp)i 1 1 I 1 0



4

6i

L a
where is given by Eq (A-24).

Eq (D-13) can be expanded to give

+- /__ >1 (D-14)

and from Eq (D-5)

-- ,) /-. (D1

Therefore (D-14) becomes

S

= > (D-16Y

uihere m means thaL all terms with a m 0 subscript must

be divided by tWo.

Since the scattering cross-sections are real the expan-

sion of Eq (D-16) must also be real and with

LI j (D-16) can be writtLCn as

• '". , - (D -i:

Aba .. N'Wf



Note that

The angles p and X are shown in Fig. 2.

Similar derivations would give

(D-20)

and L

. : z 6(D-21)

By inserting Eq (D-20) into Eq (A-22) the even parity collision

operator can now be writLen as

I 91
?k: 5 14 D: - 22)qIF_

S'-,: V"qs (D-15) a d (')-I-) tho i vers, odd parity collison

opra tor !'q (A-'it)), can he writton as

I p

R' .. . * **.*: '~ : 2 ,,: .:1, I ::, " . . * ", * .,' t r; '

- 4 . . .



____ A-(D-25)

26'#/(D-26)

wherc

0o for Z 0
"= 1. for o = 0 (D-27)

z(D -'2



Appendix E

The Synthesized Boltzmann Equation

In order to formulate a numerical solution to the

air-over-ground problem it is necessary to expand the

weak form of the even parity Boltzmann equation in a set of

trial and test functions. The finite element space-angle

synthesis trial and weight functions of Chapter IV will

be used in this expansion. Because this is a very

tedious and lengthy derivation, the more obvious albegraic

steps will be omitted. The starting point of this formula-

tion is the synthesized even parity Boltzmann equation, Eq

(58), of Chapter III.

-'s(E-1

where B. and B. are tensor products of cubic polynomial splines,1 J

and they are given by

/Z/

Z [ so

7 7



Fz

CosB
0

I

Figure 9. Surface Normal And Particle
Velocity Direction Vectors.

and

47 (E-5)

P~m(,,) are the associated Legendre functions.

The directional. derivative is given as

where

* or -Liic !,r z n a I ol (:;iLLOM

:1 a:S11:.ta- h *and
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If P, fr and nz are considered to be unit vectors then

from Fig. 7

(E-lO)

and therefore for the top surface of the cylinder

zL. (E-ll)

and for the bottom surface

7- (E-12)

also CD =  i = projection of .2 unto the x-y plane

and therefore,

CD = HB EB SinO

- 1_Cos2  = i (E-13)

and

~~- _/-A. - zd5 -K_

(E-14)

In Appendix D the oven and odd operators were glven as

Lr

(17-15)

and

71)



where m means that all terms with a m - 0 index must be

divided by two, and

a ~ (E-17)

Also the inner product is defined as

4,r

-- for real f (E-18)

Using Eqs (E-16), (E-15), (E-14), (E-ll), (E-12) and (E-6) and

noting that T,.m, Q'm, Bi and Bj are all real functions, Eq (E-l)

can be expanded to give

L L ( '/j,.'6 bg, f O P'2$_ (E- 9)

/Z k p
- # "J ~~ d(E-20)

-O W? (E-22)

_' J) (E-23)

147/-



- ~ v ~ E-26)

DP .1 r

Al 7-~,0{ & ~ o / (E-28)

6"5-.:~~)d 4 f(A9r "3 7 (E-29)

6 ~z/ / JtI#

,47 '

(E-30)

_ (E-3 1)
;72?

- ~ (E-33)

all,,
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- 7-

- ~A~:k ;d1 1 3 jA~~ (E-35)

ii

-1J

.? ,-(E-37)

-2"-Z N4% E-3S

S -) /,,~ /-- ,L',5 (E-3.)

,( E -4'2

(E'2
• ,,



-r 4f Ai ((E-45)

-Xjd fw (E-46)

where

6'- (E-47)

and

(E-4F)

Eqs (E-19) to (E-36) is an expansion of the first term of

Eq (E-1). Eqs (E-37) and (E-38) is an expansion of the second

term. Eq (E-39) is an expansion of the third term. Eqs

(E-40) to (E-46) is an expansion of the right hand side of

Eq (E-1). og, ot and or are functions of z and they must

be included in the spatial or dv integrals. In cylindrical

geometry with azimuthal symmetry

Jt=- 2f-dJ (E-40)

and Ids means an integration over the surface of the problem

cylinder, Fig. 9.

For the air-over-ground problem with an exponentially

varying air density

A 3



6 z) (E-50)

-z) =()& 2 A(-51)

6 2> (E-5 2)

where o(o), ag(o), Otr o ) are cross-sections of air at sea

level.

Z = the height above sea-level

sh = atmospheric scale height - 7km

In Eqs (E-19) to (E-46) the integrals are separated

in the space and angle variables. These are double integrals

in space and angle. However, they can be separated into

single integrals of the p, X, p and z variables.

0 ,4



Appendix F

Angle Integrals of the Synthesized Second
Order Boltzmann Equation

An expansion of the even parity Boltzmann equation has

produced twenty-eight integral terms (Appendix E). By a

further expansion and separation of the integration variables

twenty distinct single angle integrals are formed. These

angle integrals are dependent on the degree of the spherical

harmonic trial function expansion and independent of the

problem parameter3. They can be evaluated once and thereafter

used as a part of the problem input data. In this research

project these integrals were numerically integrated for each

combination of the Z, m, k and n expansion subscripts. They

were then stored as a matrix, and selected products were used

to produce each of the twenty-eight angle integrals of Eqs

(E-19) to (E-46) in Appendix E.

These twenty integrals are

cL~j~c~ ~)c J/?l) c/hi (F-1)
/0

d' (F-3)

/ -- i] D 34
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(F-6)
2ir

zos -y ( -05 (x)2 (Fr-7)

SF-8)f 7  Sc/l~) •z' j r )1' x <F-S)

(F-9)

(F-12)

(F- 14)

,_ _/ _(F-15)
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'~~' (F-19)

(F-20)

A numerical evaluation of all twenty integrals was

carried out for a third degree spherical harmonic expansion.

This evaluation showed that these integrals are equal to zero

for many combinations of the £m and kn subscripts.

Integrals (F-10) to (F-14) are a part of the surface inte-

gral term which has been partitioned into the outward

(Qfi > 0) and inward (S2.'i < 0) directions. This partitioning

was incorporated into the weak form derivation of Appendix C.
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Appendix G

Space Integrals (Bicubic Splines) of the Synthesized
Second Order Even Parity Boltzmann Equation

A trial function expansion of the spatial flux dependence,

in the weak form of the even parity Boltzmann equation, has

been carried out in Appendix E. Bicubic polynomial splines in

the P and z variables were used to form a tensor product

space. These splines are twice continuously differentiable and

have non-zero integrals fRBi(x)Bj(x)dx for all ji-j( 4.

After a separation of the p and z variables of integration

seventeen distinct integral forms are produced. These integrals,

which include the source integrals, must be evaluated over the

entire problem domain. The space integrals of Appendix E are

selected products of the following seventeen single integrals.

(G-l)

(, _ -.2), 3 .C I) d p( -3)
10 Jll A".-

d(G-5)

(G-6)

H,
~A~')3 1 Z (G-7)

0

8



-7 "(G-"8)/

(G-9)

LZ (, z. (G-10)

-z- (G-11)

The Source Integrals

z A' p," (G-12)

h'r J] (G-13)

I (G-14)
!0

3(z) /~Z)e Jz(G-15)

(G-16)

where

B(z) = cubic polynomial z-spline

B(x) = cubic polynomial p-spline

sh = atmospheric scale height

R = outer radius of the problem cylinder

H = problem cylinder height



H(z) and H(p) are the source interpolating functions (linear

Lagrange polynomials).

9
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Appendix H

An Expansion of the First Scatter
Source in Legendre Polynomials

In Chapter IV the first scatter source was defined as

6SzZ.i) 0(3z4 (H-1)

where

d(r,z, ) = direct fluence of Chapter IV, Eq (74)

o (z,Q. W) = scattering cross-section

The usual Legendre polynomial cross-section expansion will

now be .arric-a out. Also the even and odd parity first scatter

source expressions of Chapter IV will be derived. Expanding

as in Legtndre polynomials and using the addition theorem

(see Appendi% D)

/,Z.e

where m means that all terms with a m = 0 subscript must

he divided by two, and

9 i



From Fig. 5 and Fig. 2 it is apparent that j, =pd

and X -= 0

Therefore

and using the identity (Ref 18:96)

(H-5)

and a little algebra, the even and odd parity first scatter

sources can be written as

(H-6)

and

1 -7



Appendix I

A Derivation of the Total Particle Fluence

In Chapter IV a trial function expansion of the even

parity angular particle fluence was given as

Z2- A=B i= i= (1-i))

where

9- (I1-2)

and

ell"_

The Ai,j,, m mixing coefficients are obtained from a numerical

solution of the second order synthesized Boltzmann equation of

Chapter IV.

The angular even parity fluence is also defined as

z) -9-(11-4)

An integration of Eq (1-4) over all directions gives the

total even parity particle fluence T(p,z), and also the total

N rirticle El',lonc~cf, T(e , his is hncnusc
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Therefore

Eq (I-1) will now be integrated 
to give the total particle

fluence at position (p,z). Using the orthogonal properties

of Legendre polynomials 
this integration is carried out as

follows.

The zero order associated 
Legendre function is defined

as
(1-7)

Multiplying Fq (1-I) by Eq (1-7) and integrating over all 
o and

' directions Pives

24 /

9,,ZZ ' z)

dxd

x .,,(T"-i d .-s)

Substituting Eq (1-2) for the integral of Eq (1-8)

becomnes

6,-j

(4



where

"0 2 7' for m 0 (1-10)

and (see Appendix D)
/

o 21,,, /_¢)/

therefore Eq (1-9) becomes

r7 (1-12)

and the total particle fluence is

where ,j ,w 0
The angular particle fluence is given by

~K ~ ) (1-14)

where X(p,z, 2) is the odd parity fluence, which, is defined

in terms of the even parity fluence and source by the follow-

ing expression
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Therefore once 'T(Pz,) has been found the odd parity fluence

and the angular particle fluence 
!(oz,2) can be computed from

Eqs (1-15) and (1-14).
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Appendix J

Computer Subroutines

A computer program has been written to solve the synthe-

sized Boltzmann equation of Chapter IV. This program is

designed to use a trial function expansion in bicubic splines

and spherical harmonics, and to perform a first scatter source

interpolation using linear Lagrange polynomials. The program

in an assemblage of several subroutines which collectively

perform the following tasks.

1. Computes all single space and angle integrals.

2. Combines the single ; and x angle integrals for
all combinations of the spherical harmonic
expansion subscripts.

3. Combines the sinile and z integrals for all
c.o bi:ations of the bicubic spline expansion
subscripts.

4. Assembles the coefficient problem matrix.

5. Computes and interpolates the first scatter
source.

6. Assembles the source vector.

7. Checks for symmetry and diagonal dominance.

S. Solvs -or The Al. , expansioni (mixine)
coefhicients by rhe method of successive
over-re i axa Lion.

9. Solves for the total particle fluence.

A ten point Newton-Cotes sineIle integraLion routine was

' 0,> to u:;,-o'rica] rv inteiat tW thir tv-seven inte-rals

otf .Qppiice F and C. this inte.,ration routine is an l.a-aoL

snnr tLin' I , tin-' Air " oc A,,rcnatit Lcal SVs teCs M iv sion,

..r ih-Y-at terson Ai,- Forc, !Paso'. '[he overall prog..ram L .ic
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has been written in a manner whereby this integration routine

could be used. The program is written in Fortran V.

Listing of Problem Subroutines

PRO 0GRM M A I H

D I MENC I ON CH L~7 FH-:7 IEH-B7 DUH (1:) PL 7E. 5) D$P7,.1'.LR

1 E : I) ON A.:. 50F- - PAT:- II!P P:rI:..-:Ix

COMrMOH 0r A I -PN.::. I AJ A'--H I TYRE.- I T:. I T T'
C,:or-1o N E 0 2 - : H F:: I F

* THU:- POUTIE TOV:THE E'.'EN RAR'ITY, RHiI_OTRORT': BOLT.ZMAHH
*Ei:'UAT TON ANll THE RI-0V..EPF GRFOUN1D PROBLEM FOPTERAIO

* RATE FLUEN': E BY) CAFLL I H, A7 NUMB ER OF :7 UPPFOUT INEt_' ANT' U1I I HG; A *
* TEN ROT IT NEITOl C:OTE_- IrTEGPAT TON POUTMTE.

PERT' *D ENT'l= I E ' Y' F.I-T*I

PRFIN4T.. PROBLEM INPUT DATA*

PRIINT.. D7= III-, t'E= liT'. F-= P2 22 -RH=
14.7-H. - 21= C' * 1 R.RL:RTTONi FACTOP <'

P PI q'T1q.E. A

PRFINIT. LEG-'ENPE!E EHFC O -LMA>9=.:-'LMAV:
PERL'...EN'=1i:'' ..EL' I' I I:'LM R)

P ERU-4. T .Et ET=1I 1fK0IO1 L I)I' L r<' LMR:)
PER'... NT~1JI: ' I L MI=':.LMR:

F F I 'IT T.
FERINtIT.. LEGENDEE DD E::ERtiCION CAFTTERING CFO_:: ECTION. ALL OP

1MO!'ENT* ARE ZERO.

Pc 1H - . P.*T

F WiT. L-EEtlFE D PIU FRI T'I'E B Pr tN C:TTE IE t I 0-EC T :c. Et

ILL L' EVENf MONENTI- REE ZERO.

PRIN.. .OPL I I >ILMRh'

REZ PTT. LE'3ENIRPE E> l:rAH IN CRC 0ETIN'L N VN

pi T.

7v

1_F ,



PP rNT. THE CFHEP I CAL HRMONiI c CODEFF IC IlENT: 'L* N

1DO 5 L=C3.LriAY:-
FPRINHT. *L 'L t-' M=1~ L..

FEINHT.

TOL 111-1 '1.

iOUNT =2 A3A

PRI NT*. ANGULAIR INiTEGPALC. OF :PHERIi:AL HRPMFJNtI':c7 FOR THE
FPRINT. GRLEF~ir N OLUITION TO THE ENPAIYFORM OF THE
FP INT* - NEUTRON TRANI PORT Ef.UAT IONi.
PiRINT. THEC-E RE INTEG;RAL: OV,.ER- 2.P*FHI OF THE PEAL AND OF EV..EtN

PPRI HT. FARPT OF E P -- -It:-* - E:: P-NtET I N C I NE-- Aitl C i N

DO 15 I:7-H=1.1.2
CALL :PH EFP- L mA::. :H I'3 H3 1 :::'I2 TOL. OUNTh
PRINT.. ANGULAR *HAFMON IC>. INTEGRL=- R IC H
ri 0' 1M='3m LMNA::

P P I Nr T * . ' H-" I H N ' . M

PF' I NT
C:ONT I NLt'E

I TYP E 2
PPRIINT.- THE AC 0C -OIFITEP LENGENlDRE FOLYNOMIAL.I INTEGRLC- FOP THE
PRFINiT.. GA;LEF INi :OLUTION.
~PI T* - THE:-E ARE THE POLYNOMIAL:. r-L L. N''A::oc LEGENriE
PRINltT.. IN1TEGRAITED OV.,ER THE IN-TERVA.,L '-L -'-i

DO 25 1=1.

PRF-INT.. H 0' .1 MTED LEGENDF E POLYH OM I L I NTEGFRHL= I P

UZ T'.T.T'iTdT

ONIT I til-'F
H LL -ri-LE LMRA: -L. :H -PL.:A C 71GT.:E'.'L.:::OI'L V T,.-: .
I TT' =I

T T P, I rr

FIr - T = I * ri

99



ITC=1
PPI TT.' MATRI:: VA.'FLUE:- FOP 5---IFACiE CC' 'FiL-E IU!TE(SPALC
PP I UT+

CALL -COUP;CE' N7-- Si TOL- [;OUUT'
'C OUT I HUE

t 'PS,"-Pl 1 F'+ I .

I F -Pri::, 'I ElU'. 1-. 1- ' 'I '1 = I. IE ':
FriP - P 'N P'UY P

UT=k T+F- T. N:7--I, rHZc +* ' PS-1

PF I r'T.
PP IUrT*. THE TOTAIL HUMBEP OF TPIAL FUNCiTIOnj = HT
PP ITUT*. THE NUJMPFP OF LEI3EUDFE FUU T I ONC k T
RRPIUT* -

PP IUtT.. PROLEM 'EOMETP(, ItNPUI-T DATA-.
PP IUrT+ NODE 'S. MESmH FCOOPUtUATE '.

PP I NT#

PFRI r I T #
I TPtE=S-
I T = I
P P IUrIT N R TPT: 'LY -C CF OP P- PAC E I r UT EBFP A

DO i~i1i
'CAlLL 'FL JUE, ' CPP UP -. TOL. OUT

PP-,IUHT* t-lTFI: tA- LIIEC- FOP -PC CUPICE PITE'3PA-LC-
PP IUiT* -

t 4 i T1- I -

TO C OMPYI-TE TH1E+ I UTE FPEWS <1 O PGItUTVAEC
CALL DlI REC-T'- LtIA:' PI' A'l r Pt n. FtiP. Uip? * US' C I'T H P, VD, ACFL - 1 H,

TO -O~t',l-TE THE PRIOFL.EMl C ::uPc F ''EC -TOP
'CA7L L L'EC 'FT'r P ' -< C/P.Z- E 47 tj 7 rC CLMA: FCA. CII-Td 9 T NT
TO COMPU-ATE THE :TIFFt'E- n~7TT .

VC IY> -T CTTFrPCIC T'

EO EOLE THE FFOELEM ;PrI

FF 7'F. 7 F FTT~ ti-4 F' TEE 'P[J% L

1:F JfT , C rg ' 'r r mTI I Tru!F T ClI

L IT C-c+K 1 T--
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DO= 111a :1 MR

P=P I + -1=3. n

I F ,P. L T. PHR P r 4 R 1-

CALL TFLUj::'P~4RF'rI.:: :EF.Z.F-T.HNC.PI PH HP -sT5<.

TFH I =DP I TPH

FPRINT*. * ~ R TFHI,* DPH I

I-CiTIUE*TFHI
l'30 TO1
PRINT*. PRFEtMATUR'FE PROELEM DATA EN-D<*
-TOP

L'E:OUTIHNE 7 FHEF- LNA:.U:H 0,l 0-:. TOL- OUNT)

CrrIEN : I LU:t,-F I H I Ti '. tC:,IT:.ITT

*THI V POUT THE HUrlERICALLY INTE'3PATE_ THE V INE: N eO-n: 7 H: IN41'E
* ITERA: F THE AT lOTR-OP*IC EV .ENi RARITY EOLTEMRNN ECUATION

*UE OF AZ TEN POINT NEITON-CODTEC- INiTEi;RTIONi ROUTINE.

IFI:-H.LE.%3O15 TO
IF I tE.1 'THEN

::2=2..TN
'30 TO
EL:-E IF I _H.E.l11 THEN

0 TO 5
ELT- IF ,I H. E0?. 1-, THEN

r 0 tI L

C ALL LRF'.S*TOL. FiLC-H' ti,'* OUN T:

CO I " 'E

- ~ ~ ~ ~ ~ t 177 7~ C < I~ I**r
11 ',t MI -TI-H 4 F 74TH -,'4T P7 17 I- F',J_ FPF.'

DI1E0 4t,' ri 'r TT< -0

'C'



IF' IF. LE. 1'30 TO -
IF I P. EO-. 7:'- THENi

GO0 TO
ELTE I F *IFP. Eil' THENt

END I F
CONiT I rHU-E

DO 40 =0 LtIP::
DC 410 t4111.F
I T=

rDO 40 L=l'.LTPR>
DO 41' I.
I T= ITi-i
C'RLL 7Ur'1 S O.F'' II T'*F'T
IF ' Dl-lEL , 11-1 I T'.LT.1. E-1:D FL II T =C.

IOtT I t4)I9E

rir~~, Ot 1 1 !l--NES VH E-; IF' F:4 LO I TYPE-*ITT I TiT
0110f P1 4 EN F4 H, P 4 PT Ft JP4 7, IH-LF

*TH II Fl' C TI ONr I-- 1-:TE' BY THE TEN P'OINT N4EI-TONl COTE' ItNTERRRp7T I EN
*C~LlTIMF 'LITE] -ELECT THE ItlTE'3-FP:TIONi FUNCTIOC . IT Hi ET- THE *

I r~i7M TI ON I : N T 17 -E C ODt'r-ON1' P'LO f C TO DETEEN ItiE THF FUNC -TIP*
* IIIITHI- FEPr1 '3 PiTEf-FP-TEr.

I F' IT < FE-4 .E '. I 3 T O

-3 ,, ** :*,- : u

7<

F E TLF Ni
EL-E l-7 Ih.. T.iKEC IlEl P. ITH. ET'. 1.OP . ITH. EP 15 T HENt

L IF TIHFEr4 THEM



EL:-E IF IHE'.'THEN
0 ri. 1 .7T 1H.>.'

FE T U-; P N
EL--E I F I*U7H. EPi., THEN

Er I F
FE T 11 Fr i
C OUT I HUE

F 1=I-:: -
IF F . L E. 1. E -1''' As=.
I F ' IFP. E'P1. 1' THEN
'=Ft.L':q .:-.RLF::L t-l>

FPE T U1 FRN
EL:-E IF 'IR.EC'.2') THEN

-IFT 'R't L ,-: iN * L , L M
FE TUF r
EL:-E IF ' IF.E'Pl. 3'.* THEN

>=:RF'T -Ft.F-LF::.Fi t4 P.L F::L l.
F E T L' Fri
EL -E IF 'IF.E'1. 4' THEN
,=7..E-,F'LF ' ti * N FI_: L. Uf:,
PE TIJ1F trI
ELUTE IF TF. El-f5.O1F. F. E0. 7. OF. IF. E;).:' THEN
','t:FLF tof rl *FLF -', L M,
FE T U1 Fr I
EL: E IF IFP.EO-.& THEN

EI F I TF E f? S :F

IF' ITT-. E 1130 iICTLi2

rI F 1 .E-. T P

EL: iF T IE 3 THE
7, j

0T TO '

r'rlrTrPI;



IF TT?.EC.2'GO TO i-:)

IF 'I.El'. I' THEN
r- =
N=3
'0 T 0
EL:-E IF ,I.E'.E- THEN
r-1l= -:.
r1=I

;7-O TO
EL-E IF IED.E : THEN
r= 1
N= 1
G' TO 7'0
EL-:E IF 'I.EC.4: THEN
t'l =-:

O TO 7 0
EL:E IF I.ElC., THEN
r I
ri= 1

IO TOF 7 D
EL:E IF ,.I.EO.e THEN
r=-- 1
ri= 1

PI I F
_-F' =-FFM ,'- *F'N'.: iF--, ,!F' rl:.. i .R-,:' * F'N:.'.:_ 'R-1,, RN'.: JR :, :,
-F.---F ', N. -JT, F':, JRF:'._T- P_., ,RFr<-:, JFR+_iT -a>: , RH:::: ,: _I+ _iT- 1 ,* F'N::K:, .JFR+JT, ' *

2'

IF' IT''FrE.EC.J,3F To 1':
IF I.LE.3' THEN
I=E:-':. -H' .. E'

ELEE IF 'I.E'7.4' THEN

R-ETIC 4
ELE IF I. EC. 5, THEN
'= rFi . - F'S-

I T

IF '.L. THEN

: " : . .. : 1 . ~
t' . " " "-S

~~EO'-+



'30 TO 140
ELE IF 'E'.'THEN

'30 TO 14'0

L ONT I rIL1E
IF 'I. E'. 1: THEN
H:

'30 TO 14thl
ELT-E IF IE'2O.IE.3THEN

ENDP I F
5FH 1= - FF N i 1: P, 4F:-: ':LF'- Pr :::: ~LP-) P FRi:.: L LF- 1' rni:: L F :

IF 'I. E-1. 1. OP. I. E. 2) THEN

P E T L1 rrN
E LI-E IF ,I. EC THENi

FPE T L1 Fr'
ErD I F
F or jT I rHULE
IF :1. El,. I.OFi1. E[1.J' THEN!

'=FH1.PFHS-

ELC-E IF 'I.E'9.' THEN

ENDI :rH.

EI-ri' TION FL ,::

* THI- 7 FEUTINE T-ELEi-T:- Frll CZONFUTE- THE ai:OC IRTEI' LE'3ENT'PE
" FIUrCTION lIlHICH- 17- FEIr~iB INTEGFATED.

IF I* ED. 0'. FfND. J1. ED. C' THENl
PLF-1 . i

P E T F rl
EL T IF 1I. El-. 1. Fsflr. hEr'. 1-' THEN
FL F

-7 7,- -
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PL F= ?.A
FE T 11 Pr
ELT-E IF 'I. El.3.an 1 ED-. 0" THEN
P L F=4:::..>.+2 'E: 4:3:..
FPE T U ' N
E LC-E I F I. E t 4. AD.J ET' 1.' T H ENt
P L F= LOT 'AR %E>.37. 43:
FE T L1 Fr
E LT-E I F T.IE. r.Fi. l1E 1> T H ENt
FLF= 15. .>:'*A
PETUF N
E LImE I F ' I .ET' R AN111LEO 1-1 T H EN
PLF=-151. .'Al I9
END IF
F' FT U r i

D INENT I ON C L' H: 1 2: * HI3.:3. FL37:::7- IH:.sl.E'L :
14' TOt -C4'. 0: 4'

*THIT- POUT INC RTTF-NE LET THE TOTAL ANG,-LE INJTE3PA:L? FOP AiLL
ON* rfliIPT I ON 1 27 THE TEFHEP ICtAi-L HA-PMONIT TRIAqL AND, 'EIGHT Fl-ii'TTZ>

* UE:TTFF'T:.

FPPINrT. TOT& ! INTEE-FPL WALET N MTFI:: FUFJI, OF THE IHFIQ
PP NT. HACr-frt; I TFTA t; ANT'! ''F IGHT rIl-tiC TI ONT- UT LEl I N T'HE

f:P I '34T :PLF T OLUTIONi rF THE EYNR PT OLTY'IANNr~t EITID
PP TNT.. THETE FiLUET AP -ELECTED PPOCTI-0T- OF THEr- AT TO I TE

FP INtIT. LE3EP1DPE POLLNOMIA~L 1T~l AN1A1IjAR 1TEITFA L- T Th EP-E
FP:PINT*. ICOMPITEI' EAPFLIEP. THEY PEPPEF(A' THE TTA4TTEP TtI"3 P-t t'
PP TNIT.. NO4- TT ATTEF I P3- AiI3lL HP ITEGRAL 4j ER FL- T HI 'TH AR- E FCC FT

PIt.. b'HEN TC$EWRITAL HAPNt4I T PELED, A, THE i'ANK R- TPF A
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Appendix K

Numerical Results

The computer subroutines which are listed in Appendix.-J

were used to produce numerical results for varying problem

spatial mesh sizes and degrees of the spherical harmonic

trial function expansion. Some of these results are presented

in Figures 10 through 44. They are valid for the problem para-

meters which were presented in Chapter V. However, the cross-

sections which were used do not accurately represent the

values for air at sea level. Also, the air-ground interface

was not included in the problem domain and therefore all

ground effects were ignored.

Because of the time constraints on this research project

neither an evaluation of the accuracy o_ these results nor

a comparison to a discrete ordinate or Monte Carlo calcula-

tion was accomplished. Therefore, the results are presented

solely in an attempt to show that finite element space-

angle synthesis is a viable solution technique for solving

the two-dimensional steady state anisotropic Boltzmann

equation. They are not meant to represent a precise and

exact solution to the air-over-ground problem, but rather

to demonstrate that FESAS may be a feasible alternate solution

technique to Mlonte Carlo and discrete ordinatos.
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