

MGB

(1)

THE APPLICATIO: OF FINITE ELEMENTS AND SPACE-ANGLE SYNTHESIS TO THE Ailisotropic steaby state boltzmann (TRANSPORT) EQUATION

TUESIS

AFIT/CNE/PH/81-1j Eze E. Wills
2nd Lt. USAF

Approved for public release; distribution unlimited

THESIS

Presented to the Faculty of the School of Engineering of the Air Force Institute of Technology
 Air University
 in Partial Fulfillment of the
 Requirements for the Degree of
 Master of Science

by	
Eze E. Wills, B.S.	
2nd Lt.	

A
Graduate Nuclear Engineering
March 1981
Appreved for public release; distribution unlimited

Preface

This research project is a part of the ongoing effort here at the Air Force Institute of Technology to develop alternate methods for solving the two-dimensional steady state anisotropic neutral particle transport equation. The thrust of this research effort is towards an accurate and cost-effective solution of the steady state transport of neutrons, gamma rays and high energy x-rays from a low altitude nuclear burst. This problem which is modeled as a point source in a two-dimensional cylindrical (r,z) geometry with the air ground interface included, is of particular interest in the areas of nuclear weapons effects and radiation physics.

Presently the most widely used computational methods for solving the (air-over-ground) problem are Monte Carlo and discrete ordinates. However, these methods have severe 1 imitations and computational problems. My research plan was to formulate and evaluate a solution technique which did not have these disadvantages. A finite element solution method which is based on a space-angle synthesis Elux expansion of bicubic splines and spherical harmonics was ciacan. The merits of this solution technique were axamined and a computer algorithin tur the nunerical solution of this problem was developed.

I wish to acknowledge and express my appreciation for the assistance and encouragement which I have received
from the $s t a f f$ and students of the Air Force Institute of Technology. Special thanks are due to my advisor, Captain David D. Hardin, without whose direction, encouragement and many hours of discussion and counselling this thesis would not have been possible. I am also grateful for the support, advice and encouragement that was provided by Dr. J. Jones of the Air Force Institute of Technology Mathematics Department.

Finally, I wish to express my appreciation to my wife and daughter for their understanding, patience and constant support throughout this project. To my wife, Cynthia, I must also express a special thanks for her effort in typing this thesis.

Eze E. Wills

Contents

Preface ii
List of Ficures vi
List of Tables vii
Abstract. viii
I. Introduction. 1
Background. 1
The Air-Over-Ground Problem. 1
Ray Effects and Discrete Ordinates 2
Problem, Scope and Solution Approach. 3
Assumptions 4
Development 5
II. The Problem Equation. 6
III. The Firite Element Method 11
Tven and Odd Parity Second Order Forms 13
The Variational Principle 20
The Sethod of Weighted Residuals. 21
IV. space-Angle Synthesis of the Even-Parity Ani:sotropic Boltzmann Equation. 24
The Trial Functions 26
The Spherical Harmonic Integrals 32
Bicutic Polynomial Splines 34
The Source Terms 35
The First Scatter Source 36
Source Interpolation 40
V. Colaputer Implementation and Results 44
VI. Conclusions and Fecommendations 54
Bibliography 56
Appendix A: Derivation h Sonterinc Kernel, Inverse Collision Operators and the Even and Udd Parity Collisi $u n$ Cross Sections 53
dupondix B: Wak form of the functional. $6:$
Appendix C: Derivation of the Woak Form Fromthe Galerkin Method of lieightedtresiduals.
Appendix D: Expansion Properties of Spherical Harmonics 72
Appendix E: The Synthesized Boltzmann Equation. 77
Appendix F: Angle Integrals of the Synthesized Second Order Boltzmann Equation 85
Appendix G: Space Integrals (Bicubic Splines) of the Synthesized Second Order Even Parity Boltzmann Equation 88
Appendix H: An Expansion of the First Scatter Source in Legendre Polynomials. 91
Appendix I: A Derivation of the Total Particle Fluence. 93
Appendix J: Computer Subroutines 97
Appendix K: Numerical Results 125
Vita 161
Figure Page

1. Cylindrical (ρ, z, \emptyset) Problem Geometry 4
2 Problem Geometry and Coordinate System 7
3 A Schematic of the Angular Symmetry. 9
4 Cubic Spline with Evenly Spaced Nodes. 28
5 First Scatter (Collision) Souce Direction Vectors. 37
6
A Linear Lagrange Polynomial Function. 42
7 Computed Fluences as a Function ofRadius and showing a variation withthe Problem Spatial Mesh Size51
8 Computed Fluences as a Function of Radius and showing a variation with the Degree of the Angular Spherical Harmonic Trial Function Expansion 52
9 Surface Normal and Particle Velocity Direction Vectors. 78
10-44 Neutron Fluences as a Function of Radius and Altitude for Various Spatial Mesh (Grid) Sizes. 126

List of Tables

TablePageI Legendre Expansion Coefficients which were used in a Numerical Solution of the Air-Over-Ground Problem 49
II Execution Times and Convergence Rates for the FESAS Computer Code 50

Abstract

\section*{Abstract}

A finite element space-angle synthesis solution of the steady state anisotropic Boltzmann (transport) equation in a two-dimensional cylindrical geometry has been developed. Starting from a variational principle the Bubnov-Galerkin solution method was applied to the second order even parity form of the Boltzmann equation. A trial function flux expansion in bicubic splines and spherical (surface) harmonics was used. A first scatter (collision) source and an exponentially varying atmosphere was also incorporated into this development.

Finite element space-angle synthesis (FESAS) was developed as an alternate solution approach and an improvement in comparison to the methods of Monte Carlo and discrete ordinates. FESAS does not have the inherent characteristics which have produced the ray effect problem in discrete ordinates. Also, FESAS may result in lower computational costs than those of Monte Carlo and discrete ordinates.

The second order even parity form of the Boltzmann equation was derived and shown to be symmetric, positive definite and self-adjoint. The equivalence of a variational mininization principle and the Bubnov-ialerkin mothod of woighted residuals was established. The finite - loment anace andin synthesis bystom ot iquations was

expanded and a numerical computer solution approach was implemented. A computer program was written to solve for the trial function expansion (mixing) coefficients, and also to compute the particle flux.

THE APPLICATION OF FINITE ELEMENTS AND SPACE-ANGLE SYNTHESIS TO THE ANISOTROPIC STEADY STATE BOLTZMANN (TRANSPORT) EQUATION

I
 Introduction

Background

The Air-Over-Ground Problem. The transport of neutrons, gamma rays and high-energy x-rays, away from a low altitude nuclear explosion (air-burst), is of special interest in assessing the vulnerability and survivability of military weapon systems and in making radiation exposure and dose predictions. This neutral particle transport problem increases in complexity because of the exponentially varying air density and the air-ground interface. A description of neutral particle transport and, therefore, the air-overround problem is given by the Boltzmann transport equation. Nunerical solutions to this problom already exist. The main solution techniques are Monte Carlo and discrete ordinates. However, discrete ordinates and Monte Carlo have severs difficulties and disadvantages. To periorm an accurate

 Nuion tam than Mone Carlo, hower, it is subject to a compan

Ray Effects and Discrete Ordinates. Ray effects are a result of the angular discretization of the particle flux in the discrete ordinate method. It is not a numerical problem, but originates in the derivation of the discrete ordinate S_{n} equations. In a physical sense these equations only allow source particles to travel in specific directions. However. in most practical problems these particles move in all directions. An in-depth analysis of the S_{n} equations and tire nature and reasons for ray effects can be found elsewhere (Ref 1:357).

Ray effects produce non-physical distortions of the angular flux in regions where there are strong absorbers, localized sources, or high energy :treaming particles (lici 2:255-268). These distortions in the numerical formulation of the discrete ordinate method produce solutions which are inaccurate. The degree of these inaccuracies is dependent upon the specific problem and the nature of the absorbing media and sources. In the air-over-ground problem this effect vill be sirnificant because it is essentially a stroanian particle problem with localized first scattex sources.

A considerable amount of work has already been done in an attompt to elininate ray effects from the S_{n} equations and the discrete ordinate method. Ray offects can be mitiated b: tho ube of a ino anoular mesh in the finite ditherencine seheme of the S_{n} equations. However, this apprach incroasos the computational time and tho alrady
high computer costs. Other approaches involve a spherical harmonic-1ike formulation (Ref 2:255-268), piecewise bilinear finite element approximations (Ref 3:205-217), and spaceangle synthesis with specially tailored trial functions (Ref 4:322-343).

Problem, Scope and Solution Approach

The purpose of this research project was to d velop a finite element solution to the air-over-ground problem by using a space-angle synthesis of bicubic splines in space and spherical (surface) harmonics in angle. Specifically, a solution of the monoenergetic Boltzmann equation in the context of the air-over-ground problem was sought. Working, from a variational principle and using a judicious choice of trial functions the problem of ray effects may be eliminated (Ref 3:214). Also, this judicious trial function choice, and a Bubnov-Galerkin solution method may be more efficient and less costly than Monte Carlo or discrete ordinates.

The steady state solution of the Boltzmann equation with iirst scater sources, anisotropic scatterine and an exponentially changing atmosphere is desired. The problen is formulated from a variational principle and in a twodimensional cylindrical ($r, 2$) spatial geometry with the air-over-gromd interface included. Fluence values as a Cunction of two spatial (r, a) and two angular ($\mu,{ }_{\mathrm{X}}$) variables are sousht. This is a tour dimensional problem. Finally, a numerical solution algorithm and the computer implementation of this problem is required.

Figure 1. Cylindrical (ρ, z, \emptyset) Problem Gecmetry

Assumptions

There are two basic assumptions which are made in the formulai ion of this problem. A time-independent (steady state) solution and axial symmelry is assumed. Because of the exponentially changing air density the air-over-ground problem is four dimensional with a spatially dependent (r, z) solution. Ar assumption of axial symmetry is made possible by ignoring the curvature of the earth. Within the probiem domain oi most practical problems the curvature of the earth is small and can therefore be ignored. Figure 1 shows the spatial cylindrical problem geometry.

Thi flux fron an air burst is nun-zero for a Eraction 0 a second (microseconds). Therefore, particle fluence (amber/area) and not llus is the more setill quantity. A steady state formulation of the air-over-ground problem is obtained by integrating the time dependence out or the

Boltzmann equation. This integration which is carried out over time limits when the flux is zero produces a time integrated or fluence equation.

Development
In the next chapter of this report the problem equations are presented. A finite element formulation of the air-over-ground problem is developed in Chapter III. The Bubnov-Galerkin method of weighted residuals is incorporated into this development. In Chapter IV a space-angle synthesis of bicubic splines and spherical harmonics is performed. An interpolation of the source terms is also outlined in Chapter IV. A computer implementation of the problem solution is examined in Chapter V. Finally, conclusions and recommendations are presented in Chapter VI.

II The Problem Equation

The application of finite elements and a variational principle to the air-over-ground problem and the monoenergetic steady state Boltzmann equation is not a new concept (Ref 5). As in the work by Wheaton (Ref 5) only the monoenergetic problem will be considered. It is assumed that energy dependence can be easily incorporated into this treatment by the use of standard multigroup methods. The air-over-ground problem which is in effect the steady state transport of neutral particles can be described by the boltzmann (transport) equation and appropriate boundary conditions as follows:

$$
\begin{align*}
& \hat{\Omega} \cdot \nabla_{\varphi}(\hat{r}, \hat{\Omega})+u_{t}(\hat{r}) \phi(\hat{r}, \hat{\Omega})=\int \sigma^{s}\left(r, \hat{S}_{0} \cdot \hat{S}^{\prime}\right) \psi\left(r, \Omega^{\prime}\right) d \Omega^{\prime} \\
&+S(\hat{r}, \hat{\Omega}) \tag{1}
\end{align*}
$$

This is the one speed monoenergetic Boltzmann equation in general geometry where

$$
\begin{aligned}
& \hat{r}=\text { the spatial position vector, } \\
& \hat{\Omega}=\text { a unit direction or velocity vector, } \\
& v=\text { gradient uperator, } \\
& \phi=\text { angular particle fluence in particles/ } \\
& \text { unit area/steradian, }
\end{aligned}
$$

Figurn 2. Problem ('oometry and Coordinate system.

The interration js carried out wre all diroctions ('t: siera. inans).

The air~over-round problem will be formulated in

(Ref 6:57). u is the cosine of the angle formed by the z-axis and the particle velocity vector $\hat{\Omega}$. \because is the angle between the planes formed by the \hat{r} vector and the z-axis and that of the $\hat{\Omega}$ vector and z-axis.

The scattering properties of air show a directiona! dependence which is highly peaked in the forward direction especially at the high particle energies that exist in the air-over-ground problem. Because of this the exterior boundary condition for this problem vill be approximated by a vacuum boundary condition:

$$
\begin{gather*}
:\left(\hat{r}_{s}, \hat{?}\right)=0 \text { for } \hat{r}_{s} \text { on the boundary of the problem } \\
\text { domain and } \hat{\delta} \cdot \hat{n}<0 \tag{?}
\end{gather*}
$$

where A is to ontward unit normal to the boundery surface. In phesical torms this is a non-reentrant boundary condition. No particles are allowed to reenter the region once they loave it.

In two-dimensional cylindrical (r, z) goonetry there is sumpetry in the ando. This symatry can be written as

$$
\$\left(\hat{r}_{,} \hat{X}_{1}\right)=:\left(\hat{r}_{2}\right) \text { for } \hat{\vdots}_{p}=\hat{\lambda}_{p 1}-2\left(\hat{n}_{p l}\right) \hat{n}
$$

or as

$$
\begin{equation*}
(\dot{i}, \vdots) \quad(\because, \ldots,-\cdots \tag{32}
\end{equation*}
$$

Figure 3. A Schematic of the Angular Symmetry.

This symmetry in x is shown in Figure 3 , where the vectors \hat{n} and \hat{o} are perpendicular.

Notc that because of the exponentially varying air density (in the z direction), only azimuthal symmetry in the angle x is assured. There is no symmetry in $\mu(\operatorname{Cos}$ e) and thoroiore (\hat{r}, \hat{y}) will not be oqual to $(\hat{r},-\hat{a})$. The symnetry condition, Eqs (3a) and (3b), implies that

$$
\begin{equation*}
\therefore(\hat{r}, \mu, x)=\text { cven function in } x \tag{3c}
\end{equation*}
$$

At tha air oroun' inarface $(\hat{r}, \hat{\prime})$ is contimuons excop: ?t: $=0$ (2e: 6:!60), i.e.

$$
\begin{equation*}
\left(r,{ }_{a}(r, \ldots) a t z=0 \text { and } ; \neq 0\right. \tag{4}
\end{equation*}
$$

The problem geometry and coordinate systems as shown in Figure 2 implies that when ρ is equal to zero the angle X must also assume a value of zero. Therefore, along the z axis ($\rho=0$) the angle x does not vary between 0 and 2π. This means that there is no x variation in $\phi(\hat{r}, \hat{\Omega})$ at $p=0$ and that

$$
\begin{equation*}
\frac{\partial}{\partial x} \phi(\hat{r}, \hat{\Omega})=0 \text { for } \hat{\rho}=0 \tag{5}
\end{equation*}
$$

III The Finite Element Method

The finite element method is a mathematical and numerical technique for approximating the solut;un to a large class of problems. Initially it was developed and used to solve problems in stress analysis (Ref 7:9). Later, as the mathematical foundation of the method was established it gained widespread acceptance and use in solving a larger class of problems.

Finite elements are an extension of the RayleighRitz technique of first recasting the problem in an equivalent variational form and then seeking a solution on the basis of an energy minimization principle (Ref 8:1). In the Rayleigh-Ritz method a solution in the form of a linearly independent set of trial functions is assumed. These trial functions must satisfy the essential boundary conditions. The approximate or "best" solution to the problem is the linear combination of these trial functions which maximizes (or minimizes) the variational principle ([unctional). If this linear combination of functions is not an extremum (maximum or minimun) of the functional, then the class (or space) of trial functions is expanded by the addition of more functions. This expansion of the trial function space is continued until a linear combination of functions which is an extremun oi the iunctional is obtained.

The finite element solution technique is similar to that of Ravleish-ritz. The only difference lies in the
choice of trial functions. In finite elements the problem domain is divided into smaller regions (grids) or elements. Each trial function is usually associated with only a few elements. Unlike Rayleigh-Ritz, finite elements uses trial functions which are zero over parts of the solution domain (a local basis). Also, the trial space (number of trial functions) is expanded by using more elements (mesh points) and not by the addition of a new class of functions. Because of these differences the finite element method is more adaptable towards a numerical (computer) solution than Rayleigh-Ritz.

There are two basic approaches to the finite element formulation of a problem. One approach is to find the extremum of the functional which originates from a variational principle and the calculus of variations (RayleighRitz with a local basis). The other is by the method of weighted residuals. The method of weighted residuals does not include the use of a variational principle or the calculds of variations. In some problems a variational principlo has not been developed or may not exist, and therefore, the Rayleigh-Ritz approach cannot be used. However, in such cases, the method of weighted residuals can be used to solve the problem. Therefore, the method ai veithted residuals can be extended to a wider class of ablons tan Ravionen-:itz.

The arthoc : weighted residuals is another apprach For levelopine a ant or (alanbraic) problom equations to when the inite oloment method can bo appiled. Thero are
three basic mathematical "recipes" through which the method of weighted residuals can be developed. These are the methods of least squares, collocation and Galerkin. In some problems where a variational principle (functional) exists it can be shown (Ref 9:735) that the Galerkin method of weighted residuals is equivaloni to Rayleigh-Ritz. An identical set of matrix equations and therefore the same solution is achieved by either method.

In the following paragraphs a variational principle for the air-over-ground problem and the even parity form of the Boltzmann equation is examined. A weak form of the variational principle and the boundary conditions are incorporated within this development. Finally, the Galerkin method of weighted residuals is discussed and an equivalence to the variational approach for the air-over-ground problem is established.

Even and Odd Parity Second Order Forms

In order that a variational principle may be used the even and odd parity forms of the anisotropic Boltzmann ecuation and associated boundary conditions will be develuped. The starting point of this development is Eqs (1) and (2). Following the derivation of kaplan and Davis (Ref 10: 166) and that of Wheaton (Ref 5) the monoeneryetic steady state Lraisport equation can be written in Lerms of che iht: gives

$$
-\hat{\theta} \cdot(\hat{r},-\hat{i})+\because(\hat{r}):(\hat{r},-\hat{r})=\int \quad s(\hat{r},-\hat{\therefore} \cdot \hat{r}):(\hat{r}, \hat{r}) d \hat{\vdots}
$$

The even and odd parity terms will now be defined as

$$
\begin{align*}
\Psi(\hat{r}, \hat{\Omega}) & =\frac{1}{2}\{\phi(\hat{r}, \hat{\Omega})+\phi(\hat{r},-\hat{\Omega})\} \tag{7}\\
x(\hat{r}, \hat{\Omega}) & =\frac{1}{2}\{\phi(\hat{r}, \hat{\Omega})-\phi(\hat{r},-\hat{\Omega})\} \tag{8}\\
S^{g}(\hat{r}, \hat{\Omega}) & =\frac{1}{2}\{S(\hat{r}, \hat{\Omega})+S(\hat{r},-\hat{\Omega})\} \tag{9}\\
S^{u}(\hat{r}, \hat{\Omega}) & =\frac{1}{2}\{S(\hat{r}, \hat{\Omega})-S(\hat{r},-\hat{\Omega})\} \tag{10}\\
\sigma^{g}\left(\hat{r}, \hat{\Omega} \cdot \hat{\Omega}_{G}\right) & =\frac{1}{2}\left\{\sigma^{s}\left(\hat{r}, \hat{\Omega}^{\prime} \cdot \hat{\Omega}^{\prime} ;+\sigma^{s}\left(\hat{r},-\hat{\Omega} \cdot \hat{\Omega}^{\prime}\right)\right\}\right. \tag{11}\\
\sigma^{u}\left(\hat{r}, \hat{\Omega}^{\prime} \cdot \hat{\Omega}^{\prime}\right) & =\frac{1}{2}\left\{\sigma^{s}\left(\hat{r}, \hat{\Omega}^{\Omega} \cdot \hat{\Omega}^{\prime}\right)-\sigma^{s}\left(\hat{r},-\hat{\Omega}^{\prime} \cdot \hat{\Omega}^{\prime}\right)\right\} \tag{12}
\end{align*}
$$

where

$$
\begin{aligned}
\mathrm{f}(\hat{r}, \hat{\Omega}) & =\text { even parity fluence } \\
x(\hat{r}, \hat{\Omega}) & =\text { odd parity fluence } \\
S^{g}(\hat{r}, \hat{\Omega}) & =\text { even parity source } \\
S^{u}(\hat{r}, \hat{\Omega}) & =\text { odd parity source } \\
\sigma^{g}(\hat{r}, \hat{\Omega} \cdot \hat{\hat{n}}) & =\text { even parity scattering cross-section } \\
\sigma^{u}(\hat{r}, \hat{\Omega} \cdot \hat{\Omega}) & =\text { odd parity scattering cross-section }
\end{aligned}
$$

Adding Eqs (1) and (6), then dividing throughout by two and using the above definitions gives

$$
\begin{align*}
& \hat{\Omega} \cdot \nabla x(\hat{r}, \hat{a})+\sigma t(\hat{r})(\hat{r}, \hat{a})=\int_{\mu} \sigma^{g}\left(\hat{r}, \hat{\Omega} \cdot \hat{a}^{\prime}\right) \theta\left(\hat{r}, \hat{\Omega}^{\prime}\right) d S^{\prime} \\
& +S^{5}(\hat{r}, \ldots) \tag{13}
\end{align*}
$$

Using the derivation of Wheaton (Ref 5:8), which is also reproduced in dpendix A, the scattering kernel term in (13)

$$
\begin{equation*}
\int_{4 \pi}\left(r, i \cdot \gamma(r, \cdots) d i=\int(r, \cdot)(r, \because) d \ddots\right. \tag{1+}
\end{equation*}
$$

where the even properties of the even parity scattering cross-section and the even parity fluence have been used in the derivation of Eq (14). Fq (13) now becomes

Similarly, by substracting Eqs (1) and (6) and rearranging the scattoring kernel (See dppendix A) gives

$$
\begin{align*}
\hat{O} \cdot(\hat{r}, \hat{O})+t^{(\hat{r})} \times(\hat{r}, \hat{a}) & =\int_{0} \sigma^{u}(\hat{r}, \hat{r} \cdot \hat{O}) \times(\hat{r}, \hat{a}) d \hat{?} \\
+ & s^{u}(\hat{r}, \hat{r}) \tag{16}
\end{align*}
$$

Eqs (15) and (lo) are referred to by Kaplan and Davis (Ref 10) as canonical forms. The natural boundary condition Eq (2) can also be rewritten as

$$
\begin{equation*}
y\left(\hat{r}_{s}, \hat{\Omega}\right)+\forall\left(\hat{r}_{s}, \hat{O}\right)=0 \text { ror } \cdot \hat{i}<0 \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
4\left(\dot{r}_{s}, \hat{\theta}^{\prime}\right)-x\left(\ddot{r}_{s}, \hat{\theta}\right)=0 \text { for } \hat{S} \cdot \hat{\mathrm{n}}>0 \tag{18}
\end{equation*}
$$

$$
\begin{equation*}
\text { ar } \hat{\vdots}_{p 2}=\hat{a}_{p 1}-2\left(\hat{p}_{p 1} \cdot \hat{n}\right) \hat{n} \tag{19}
\end{equation*}
$$

 azimuthal and. : (sun fir. 3). Therefore it follows that

$$
\begin{equation*}
(\because, 1)=(\hat{O},) \tag{․․0}
\end{equation*}
$$

$$
\begin{align*}
& \hat{Q} \cdot \nabla \times(\hat{r}, \hat{a})+\sigma_{t}(\hat{r}) \because(\hat{r}, \hat{a})=\int_{4 \pi} \sigma\left(\hat{r}, \hat{O} \cdot \hat{\Omega}^{\prime}\right) \because(\hat{r}, \hat{O}) d \hat{Q} \cdot \\
& +S^{\underline{o}}(\hat{r} . \hat{\gamma}) \tag{15}
\end{align*}
$$

and

$$
\begin{equation*}
x\left(\hat{r}, \hat{\Omega}_{1}\right)=x\left(\hat{r}, \hat{\Omega}_{2}\right) \tag{21}
\end{equation*}
$$

Also $X(\hat{r}, \hat{\Omega})$ and $\Psi(\hat{r}, \hat{r})$ are continuous at the air ground interface (when $\mu \neq 0$) but their derivatives are discontinuous.

A further simplification is now introduced into this development by defining the even and odd operators, G^{g} and G^{u} as

$$
\begin{align*}
& G^{\delta}(\hat{r}) f(\hat{r}, \hat{\Omega})=\sigma_{t}(\hat{r}) f(\hat{r}, \hat{\Omega})-\int_{4 \pi} \sigma^{g}\left(\hat{r}, \hat{\Omega} \cdot \hat{\Omega}^{\prime}\right) f\left(\hat{r}, \hat{\Omega}^{\prime}\right) \mathrm{d} \hat{\Omega}^{-} \tag{22}\\
& G^{\mathrm{u}}(\hat{r}) \mathrm{f}(\hat{r}, \hat{\Omega})=\sigma_{t}(\hat{r}) f(\hat{r}, \hat{\Omega})-\int_{4 \pi}{ }^{11}(\hat{r}, \hat{\Omega} \cdot \hat{\Omega}) \mathrm{f}\left(\hat{r}, \hat{\Omega}^{\prime}\right) \mathrm{d} \hat{\Omega}^{\prime} \tag{23}
\end{align*}
$$

where the scattering cross sections can be expanded in spherical (surface) harmonics (see Appendix A) to give

$$
\begin{align*}
& G^{g}(\hat{r}) f(\hat{r}, \hat{W})=\sigma_{t}(\hat{r}) f(\hat{r}, \hat{\Omega}) \tag{24}
\end{align*}
$$

where the even parity Legendre expansion cross-section σ_{l}^{g} is defined as

$$
\sigma_{i}^{g}(\hat{r})= \begin{cases}v^{s}(\hat{r}) & \text { for } \ell \text { even } \tag{25}\\ 0 & \text { for } \& \text { odd }\end{cases}
$$

and

$$
\begin{aligned}
\sigma_{\chi}^{s}(\hat{r})= & \text { legendre expansion scattering cross-section } \\
& \text { coeliticients }(\text { Ref } 5: 29)
\end{aligned}
$$

The odd parity scattering cross section can also be expanded to give

$$
\begin{align*}
G^{u}(\hat{r}) f(\hat{r}, \hat{\Omega})= & \sigma_{t}(\hat{r}) f(\hat{r}, \hat{\Omega}) \\
& -\sum_{\ell} \sum_{m} \sigma_{\ell}^{u}(\hat{r}) Y_{\ell m}(\hat{\Omega}) \int_{4 \pi} Y_{\ell m}^{*}\left(\hat{\Omega}^{\prime}\right) f\left(\hat{r}, \hat{\Omega}^{\prime}\right) \hat{\alpha} \hat{?} . \tag{26}
\end{align*}
$$

where only odd expansions in ℓ are used or ρ_{ℓ}^{μ} is defined as

$$
\sigma_{\ell}^{u}(\hat{r})= \begin{cases}\sigma_{l}^{S}(r) & \text { for } \ell \text { odd } \tag{27}\\ 0 & \text { for } \ell \text { even }\end{cases}
$$

The G^{G} and G^{U} operators are self adjoint positive definite (Ref 10:174). Inserting these operators into Eqs (15) and (16) they become

$$
\begin{equation*}
G^{g}(\hat{r}) \Psi(\hat{r}, \hat{\Omega})=S^{g}(\hat{r}, \hat{\Omega})-\hat{S} \cdot \nabla x(\hat{r}, \hat{\Omega}) \tag{28}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{G}^{u}(\hat{r}) \times(\hat{r}, \hat{\Omega})=\mathrm{S}^{u}(\hat{r}, \hat{\Omega})-\hat{\Omega} \cdot \nabla \Psi(\hat{r}, \hat{\Omega}) \tag{29}
\end{equation*}
$$

Solving for $\Psi(\hat{r}, \hat{\Omega})$ and $X(\hat{r}, \hat{\Omega})$ from Eq (28) and (29) produce

$$
\begin{align*}
& \Psi(\hat{r}, \hat{\Omega})=\left[G^{g}(\hat{r})\right]^{-1}\left\{S^{g}(\hat{r}, \hat{\Omega})-\hat{\Omega} \cdot \nabla \times(\hat{r}, \hat{\Omega})\right\} \tag{30}\\
& x(\hat{r}, \hat{x})=\left[G^{u}(\hat{r})\right]^{-1}\left\{S^{u}(\hat{r}, \hat{\Omega})-\hat{\Omega} \cdot \nabla u^{u}(\hat{r}, \hat{\Omega})\right\} \tag{31}
\end{align*}
$$

where using the notation of Kaplan and Davis

$$
\begin{align*}
K^{U}(\hat{r})=\left\{G^{11}(\hat{r})\right\}^{-1}= & \text { inverse of the operator } \\
& G^{u}(\hat{r}) \tag{32}\\
\hat{K}^{\hat{\prime}}(\hat{r})=\left\{G^{(\hat{r})\}^{-1}=}\right. & \text { inverse of the operator } \\
& G^{\hat{G}}(\hat{r}) \tag{33}
\end{align*}
$$

\therefore detailed mathematical derivation of these inverse operators is presented in Appendix A. They are defined as (Ref 11:481)

$$
\begin{align*}
& k^{g}(\hat{r})=\sigma_{t}^{-1}(\hat{r})[1 \\
& \left.\quad+\Sigma_{\ell} \Sigma_{m}\left\{\sigma_{l}^{g}(\hat{r}) /\left(\sigma_{t}(\hat{r})-\sigma_{\ell}^{g}(\hat{r})\right)\right\} Y_{\ell m}(\hat{\Omega}) \int_{4 \pi} Y_{l m}^{*}\left(\hat{V_{l}}\right) d \hat{\Omega}^{-}\right] \tag{34}
\end{align*}
$$

where ${\underset{l}{g}}_{g}^{f}(\hat{r})$ is defined by Eq (25).

$$
\begin{align*}
& \mathrm{K}^{\mathrm{u}}(\hat{r})=\sigma_{t}^{-1}(r)[1 \\
& \quad+\Sigma_{\Omega} \Sigma_{\mathrm{in}}\left\{\sigma_{l}^{u}(\mathrm{r}) /\left(\sigma_{\mathrm{t}}\left(\hat{r} ;-\sigma_{l}^{\mathrm{u}}(\hat{r})\right)\right\} Y_{\ell m}(\hat{\Omega}) \int_{4 \pi^{\prime}} \hat{Y}_{\ell \mathrm{m}}^{*}\left(\hat{\Omega}^{\prime}\right) \mathrm{d} \hat{\Omega}^{\prime}\right] \tag{35}
\end{align*}
$$

Both K^{u} and K^{g} must be self adjoint positive definite since they are the inverses of G^{U} and G^{g} which are both positive definite and self adjoint.

The functions $Y_{\ell m}(\hat{\Omega})$ and $Y_{\ell m}^{*}(\hat{\Omega})$ are the well known normalized spherical (surface) harmonics (Ref 6:609) which are defined as

$$
\begin{equation*}
Y_{\ell m}(\hat{\Omega})=Y_{\ell m}(\mu, x)=\sqrt{\frac{2 \ell+1}{4 \pi} \cdot \frac{(\ell-m)!}{(\ell+m)!}} P_{\ell}^{m}(\mu) e^{i m x} \tag{36}
\end{equation*}
$$

and $Y_{\hat{I}}^{*}(\hat{\Omega})$ being the complex conjugate of $\hat{Y}_{\mathrm{m}}(\hat{\Omega})$ is defined as

$$
\begin{equation*}
\dot{Y}_{\ell m}^{*}(\hat{\Omega})=Y_{\ell m}^{*}(\mu, \chi)=\sqrt{\frac{2 \ell+1}{4 \pi} \cdot \frac{(\ell-m)!}{(\imath+m)!}} P_{\ell}^{m_{m}}(\mu) e^{-i m \chi} \tag{37}
\end{equation*}
$$

where $H=\operatorname{Cos} \theta$ and $P_{R}^{m}(11)$ is the associated Legendre func\therefore ins.

Eqs (3u and (31) can now be written as

$$
\begin{equation*}
\Psi(\hat{r}, \hat{a})=k^{g}(\hat{r})\left\{S^{g}(\hat{r}, \hat{\Omega})-\hat{\Omega} \cdot \nabla x(\hat{r}, \hat{\Omega})\right\} \tag{38}
\end{equation*}
$$

and

$$
\begin{equation*}
x(\hat{r}, \hat{\Omega})=\mathrm{k}^{\mathrm{u}}(\hat{\mathrm{r}})\left\{\mathrm{s}^{\mathrm{u}}(\hat{\mathrm{r}}, \hat{\Omega})-\hat{\Omega} \cdot \nabla \Psi(\hat{r}, \hat{\Omega})\right\} \tag{39}
\end{equation*}
$$

Substituting Eq (39) into Eq (28) produces the second order even parity form of the Boltzmann equation

$$
\begin{align*}
-\hat{\Omega} \cdot \nabla K^{u}(\hat{r}) \hat{\Omega} \cdot \nabla \Psi(\hat{r}, \hat{\Omega})+G^{g}(\hat{r}) \Psi & (\hat{r}, \hat{\Omega})=s^{g}(\hat{r}, \hat{\Omega}) \\
& -\hat{\Omega} \cdot \nabla K^{u}(\hat{r}) S^{u}(\hat{r}, \hat{\Omega}) \tag{40}
\end{align*}
$$

and inserting Eq (39) into Eqs (17) and (18) gives the appropriate surface boundary conditions for Eq (40) as

$$
\begin{align*}
& \Psi\left(\hat{r}_{s}, \hat{\Omega}\right)+K^{u}\left(\hat{r}_{s}\right)\left\{S^{u}\left(\hat{r}_{s}, \hat{\Omega}\right)-\hat{\Omega} \cdot \gamma \Psi\left(\hat{r}_{s}, \hat{\Omega}\right)\right\} \\
&=0 \text { for } \hat{\Omega} \cdot \hat{n}<0 \tag{41}
\end{align*}
$$

and

$$
\begin{align*}
& \Psi\left(\hat{r}_{s}, \hat{\Omega}\right)-K^{u}\left(\hat{r}_{s}\right)\left\{S^{u}\left(\hat{r}_{s}, \hat{B}\right)-\hat{S} \cdot \nabla \Psi\left(\hat{r}_{s}, \hat{\Omega}\right)\right\} \\
&=0 \text { for } \hat{B} \cdot \hat{\Omega}>0 \tag{42}
\end{align*}
$$

Eqs (33) and (39) give the second order odd parity form of the Roltzmann equation which is

$$
\begin{array}{r}
-\hat{\Omega} \cdot \nabla K^{g}(\hat{r}) \hat{\Omega} \cdot \nabla X(\hat{r}, \hat{\Omega})+\mathrm{C}^{\mathrm{u}}(\hat{r}) \times(\hat{r}, \hat{\Omega})=\mathrm{S}^{\mathrm{u}}(\hat{r}, \hat{\Omega}) \\
-\hat{S} \cdot \nabla \mathrm{~K}^{\hat{S}}(\hat{r}) \mathrm{S}^{\mathrm{g}}(\hat{r}, \hat{\Omega}) \tag{43}
\end{array}
$$

Inserting Eq (38) into Eqs (17) and (18) the surface boundary conditions for Eq (43) are
and

$$
\begin{align*}
& \therefore\left(\hat{r}_{s}, \hat{\lambda}\right)+k^{g}(\hat{r})\left\{s^{2}\left(\hat{r}_{s}, \hat{i}\right)-\hat{i} \cdot \nabla x\left(\hat{r}_{s}, \hat{i}\right)\right\} \\
&=0 \text { fur } \therefore \cdot \hat{n}-0 \tag{44}
\end{align*}
$$

$$
\begin{align*}
& \therefore\left(\dot{r}_{i j}, \hat{y}\right)-k^{\hat{r}}\left(\hat{r}_{1} s\left(\hat{r}_{s}, \hat{i}\right)-\hat{\lambda} \cdot \hat{\lambda}\left(\hat{r}_{j}, \hat{\lambda}\right)\right\} \\
& \quad=0 \text { for } \hat{\Omega} \cdot n>0 \tag{45}
\end{align*}
$$

The Variational Principle

Variational principles for the monoenergetic transport equation have been found. These principles are related by a series of transformations (Ref 10:166). The functional whose Euler equations are the even and odd parity second order Boltzmann equations will be used in this work. Primarily the even parity component will be used because it is always positive, self-adjoint and can be integrated to give the scalar flux or fluence (Ref 12:148). The odd-parity flux which can be negative integrates (over all directions) into the net current (Ref 13:12). Another "nice" feature of this even and odd parity formulation is that it produces a solution matrix which is positive definite and symmetric.

Defining the inner product of two functions as

$$
\begin{equation*}
\langle f, g\rangle:=\int_{4 \pi} f^{*}(\hat{\Omega}) g(\hat{i}) d \hat{\Omega} \tag{46}
\end{equation*}
$$

where * means the complex conjugate, the functional which corresponds to Eqs (40) (41) and (42) is given as (Ref 10:169)

$$
\begin{align*}
& F(u)=\int_{R}\left\{\left\langle\hat{\jmath} \cdot \nabla u, K^{u}(\hat{i} \cdot \nabla u)\right\rangle+\left\langle u, c^{g}{ }_{u}\right\rangle-2\left\langle\hat{\Omega} \cdot \nabla u, K^{u} S^{u}\right\rangle\right. \\
& \left.-2<, u, S^{x}>\right\} d \dot{r}-\oint_{j}\left\{\int_{\pi}|\hat{S} \cdot \hat{n}| u^{2} d \hat{j}\right\} d \hat{S} \tag{47}
\end{align*}
$$

where \oint_{s} represents a surface integral.
It can be shown Ref ($10: 169$) that the Euler equation (stationary point) of this functional is indned the even parity sacond order torm of the Boltamana equation and that Eqs (4) and (42) are the naturai boundary conditions. A simitar Iunctional for the odd parity equation has also been iound.

In Appendix B the stationary point of Eq (47) is shown to be a minimum and the weak or Galerkin form is obtained. This weak form is
where

```
\eta = test or weight function
```

and

$$
\Psi=\text { trial function }
$$

The natural boundary conditions Eqs (41) and (42) are incorporated into the weak form of equation (48). However, the boundary condition at the oround interface is an essential condition. A solution to the air-over-ground problem can be obtained [rom a sulution to Eq (48) and this essential boundary condition.

The Galerkin or weak form of Eq (48) produces a solution matrix which is positive definite and symmetric. It is zommetric because the tost and trial functions are the same in the Galerkin solution method. The matrix is positive definite because K^{4} and $G^{ع}$ are positive definite and it is obvious that for the Galerkia solution the term $<\hat{i} \cdot 7 n, K^{u}(\hat{S} \cdot \nabla \mathrm{i})$) is also positive definitn.

The Method of Weighted Residuals
Oie mothou of weighted residuals is a straightiorvard and simple prescription for solving a wide class of problems.

Unlike Rayleigh-Ritz it does not depend on a variational principle or the calculus of variations. However, in solving certain types of problems the use of a variational principle or the Galerkin method of weighted residuals is equivalent and they produce solutions which are identical. For the air-over-ground problem and the second order even parity form of the Boltzmann equation it will be shown that the Galerkin method and the weak form, which is given by Eq (48), are equivalent formulations of the same problem.

In the method of weighted residuals an approximate solution which is a linear combination of trial functions is assumed to exist. These trial functions are required to satisfy the necessary boundary and continuity conditions. The approximate solution, when inserted into the problem equation, is then required to be an exact solution of the problem with respect to several weight functions (Ref 7:106). The choice of weight functions determincs whether the method of weighted residuals is one of collocation, least squares or Galerkin. In the Galerkin method the weight functions are chosen to be the same as the trial functions.

Applying the Galerkin method of weighted residuals to the second order form of the Boltzmann equation is equivalent to usins a variational principle. In Appendix C the weak Com, Ef (4i), is dorived Enom Calerkin formulation of this problem. The natural boundary condition is incorporated into this develonment and an equation identical to Eq (48)
is produced. Therefore, solutions to the second order form of the Boltzmann equation, by using a variational principle or the Galerkin method of weighted residuals are equivalent. This equivalency exists because the second order even parity operator of Eq (40) is positive definite and self-adjoint.

IV Space-Angle Synthesis of the Even-Parity Anisotropic Boltzmann Equation

A space angle synthesis solution approach has already been applied to the air-over-ground problem. Roberds and Bridgman used "specially tailored" angular trial functions to solve the two dimensional steady state anisotropic Boltzmann equation Ref (4:332). Space angle synthesis was applied directly to Eq (1), and not to the second order form of the Boltzmann equation. Miller et al. (Ref 13:12) have applied phase-space finite elements directly to the isotropic second order Boltzmann equation in $x-y$ geometry. Wheaton (Ref 5) has applied phase-space finite elements to the air-over-ground problem. However a space angle synthesis finite element approach using a flux expansion in bicubic splines and spherical harmonics has not been done.

Because of the complexity of the air-over-ground problem a space-angle synthesis finite element approach seems to be justified. This solution technique might have several advantages, some of which are:

1. The elimination of ray effects:
2. The numerical advantages of finite elements in combination with a space-angle synthesis approach, may be able to better handle the four-dimensionality of the problem;
3. Anisotropic scattering can be easily handled by a "wise and convenient" choice of angular trial functions;
4. The computational effort might be reduced, without a loss in accuracy. It is expected that bicubic splines will not require a fine spatial problem grid (mesh size); and
5. The boundary conditions and a first scatter source formulation can be easily handled.

The finite element space-angle synthesis Lechnique is merely a spatial and angular expansion of the even parity flux by a tensor product of polynomial functions and spherical harmonics. In this work a tensor product of bicubic polynomial splines is used. This expansion is the trial solution which will be used in the finite element method. The piecewise bicubic spline expansion becomes a local basis in the spatial (ρ, z) variable. However, the spherical (surface) harmonics which are defined throughout the angular problem domain form a global basis. Therefore, this trial function expansion has a dual basis -- a local basis in space and a global basis in angle. This is the finite element space angle synthesis method.

The startinz point of this development is the weak form of the second order even parity boltzmann equation and essential boundary conditions. The air-over-ground problem is described by the weak form of Eq (48) and the symmetric condition (20). An essential boundary condition, at the air ground interface, is that $\because(\dot{r}, \dot{i})$ is contimuous at $:=0$ and $\therefore \neq 0$ (seefig. .). Howevar, the derivatives oi $\mathcal{Y}(\hat{r}, \hat{i})$ are discontinuous.

In the remainder of this section the spatial and angular trial functions will be examined. A system of coupled equations for the numerical solution of the air-over-ground problem will be developed. A first scatter (collision) source will be used in this development.

The Trial Functions

Because this is a four dimensional problem with anisotropic scattering a numerical solution techniqu is required. The finite element formulation of this problem lends itself directly to such a solution approach. However an application of four dimensional phase-space finite elements to $\mathrm{Eq}(48)$ will be very costly (computer costs) and inefficient (Ref 5:33). This is due to the added complexity of anisotropic scattering. Anisutropic scattering insreases the bookkeeping and computational difficulties. A local elemental basis in arigle requires that the scattering contribution to each element must be computed on an element by element basis for all space and angle elements within the problem domain. Therefore a four-dimensional phase-space finite element formulation of this problem is not a very attractive or realistic approach.

A close examination of Eq (48) shows that the problem operator is self-adjoint positive definite symmetric. This allow the use of standard matrix iterative solution techniques such as Gauss-Seidel, Jacobi or Sucessivo overrelaxation (Ref 14:183). Therefore, a numerical method that includes a finite element solution misht be feasible
if the anisotropic scattering contributions can be effectively dealt with. A space-angle synthesis finite element development with a local spline basis in space and a global spherical harmonic basis in angle appears to meet this requirement.

A phase-space finite element problem formulation which eliminated the characteristic lines of the hyperbolic discrete ordinate S_{n} equations has been effective in mitigating ray effects (Ref 3:205). The well known P_{N} and double- P_{N} equations of nuclear reactor physics have inherent elliptic features which eliminate ray effects. Therefore space-angle synthesis using spherical harmonics seems to represent an approach which will eliminate ray effects.

The trial function expansion which will be used in this development is
where $0, z$ is the spacial coordinate dependence in cylindrical geonetry and u, x represents the $\hat{\lambda}$ angular variable in Fig. 2 .

$$
\begin{aligned}
& \Psi(z, p, \mu, x)=\text { even parity fluence at position } r, z \text { and in } \\
& \text { direction } \mu, x \text {, } \\
& \mathrm{A}_{\mathrm{iz}, \mathrm{~m}} \mathrm{ir}=\mathrm{flux} \text { expansion or mixing coefficients, } \\
& \begin{array}{l}
B_{i z}(z) \quad \text { cubic polynorial spiline in the } z- \\
\text { variable } z-\text { splinej), }
\end{array} \\
& B_{i r}(0)=\text { cubic polynomial p-spline, } \\
& Y_{q, m}(u, x)=\text { spherical harmonic function, Eq (5l). }
\end{aligned}
$$

$$
\begin{aligned}
& x_{i+2}^{-x_{i+1}}=x_{i+1}-x_{i} \\
& =x_{i}-x_{i-1}=x_{i-1}-x_{i-\prime}=h
\end{aligned}
$$

Figure 4. Cubic Spline With
Evenly Spaced Nodes
iz, ir, \mathcal{L} and m are the trial function summation indices and
$I Z=$ total number of z-splines,
$I R=$ total number of p-splines,
$L=$ degree of the spherical harmonic expansion.

The definition of a cubic polynomial splines (Ref 15:89)
with evenly spaced nodes (knots) is

$$
\begin{align*}
& \left(i x_{i+2}-x\right)^{3}, \quad x_{i+1} \leqslant x \leqslant x_{i+} \\
& \left\{\begin{array}{l}
\left(x_{i+}-x\right)^{3}-4\left(x_{i+1}-x\right)^{3}, \quad x_{i} \leqslant x \leqslant x_{i+1} \\
(\because,-1-1
\end{array}\right.
\end{align*}
$$

$$
\begin{aligned}
& -(\because,-\because)^{3+n}(\because--\cdots)^{3}-1(\because ;--\because)^{3},
\end{aligned}
$$

$$
\begin{equation*}
Y_{\ell m}(\mu, x)=C_{\ell m} P_{\ell m}(\mu) e^{i m \chi}=C_{\ell m} P_{\ell m}(\mu)\{\cos (m x)+i \sin (m x)\} \tag{51}
\end{equation*}
$$

where

$$
\begin{equation*}
C_{l m}=\sqrt{\frac{2 \ell+1}{4 \pi} \cdot \frac{(\ell-m ;}{(\ell+m)!}} \tag{52}
\end{equation*}
$$

The trial function expansion, Eq (49) can be made to satisfy the symmetry of Eq (20). This is a symmetric condition in X which directly implies that the solution must also be an even function in the variable χ. Therefore, the angular trial function expansion of Eq (49) must also be even in x. Dropping the isin(mx) term fron Eq (5l) and substituting into Eq (49) gives
where

$$
\begin{equation*}
Q_{l m}=C_{i m}{ }^{P} m_{m}\left(\psi^{\prime}\right) \cos \left(m_{x}\right) \tag{54}
\end{equation*}
$$

and by usias the orthomalal properties oi spherical harmonics the m index begins at zero instead oi (see Appendix D).

The essential boundary condition at the air eround intoriace must also be applied to Eq (53). The fluence contiau: B requatmats can bu satisiied b: this expansion in bicunie poiynomial splines anc sphericalharmonics. Both
 dumain. The cabic splines are also twice contintursly
differentiable but the spatial z-derivative of the solution fluence is not continuous at the ground interface. However, the z-splines can be modified to have discontinuous derivatives at this interface (Ref 16). A Double-P or Yvon's method (Raf 6:163) can also be used to accomodate the fluence discontinuity at $\mu=0$. In this development the air-ground interface will not be included in the problem domain, and therefore, this interface boundary condition will not be enforced.

Since a Galerkin method is being used the test or weight functions are

$$
\begin{equation*}
\eta(z, p, \mu, x)=B_{j z}(z) B_{j r}(0) Q_{k n} \tag{55}
\end{equation*}
$$

Substituting Eqs (55) and (53) into Eq (48) produces Eq (58) where for simplicity the ρ, z, μ, x dependencies are omitted and

$$
\begin{equation*}
B_{i}=B_{i z}(z) B_{i r}(0) \tag{56}
\end{equation*}
$$

and

$$
\begin{align*}
& 3=3 z^{2}(2) 3 r_{i}(r) \tag{57}\\
& \sum_{i z=1}^{I Z} \sum_{i=1}^{I R} \sum_{i=0}^{L} \sum_{m=0}^{\ell} A_{i j}\left[\int _ { R } \left[R \hat{\Omega} \cdot \nabla\left(E_{j} \cdot O_{k n}\right), x^{u}\left(\hat{\Omega} \cdot \nabla\left(R_{i} Q_{\chi m}\right)\right)>\right.\right.
\end{align*}
$$

This is a system of coupled algebraic equations where the unknown quantities are the $\mathrm{A}_{\mathrm{i} j \text { fa }}$ mixing coefficients. Eq (58) can also be written as

$$
\begin{equation*}
\left.\left.\underset{N \times N}{[\vec{N}}]_{N \times 1}^{[\vec{A}}\right]=\underset{N \times 1}{\Gamma} \vec{S}\right]_{N}^{-} \tag{59}
\end{equation*}
$$

where
$N=I Z \cdot I R \cdot(L+1) \cdot(L+2) / 2$
$\overline{\mathrm{K}}=$ Coefficient or stiffness matrix, where each element is a summation of terms in the square brackets of Eq (58)
$\bar{A}=A_{i j \ell m}$ mixing coefficient vector
$\ddot{S}=$ Source vector which is the right hand side of Eq (58)

The $A_{i j}{ }_{j}$ coefficients of Eq (53) will be obtained from a computer solution of Eq (59). These mixing coefficients can then be substituted into Eq (53) to give the even parity fluence, $:(z, p, i, x)$. In a solution of Eq (59) the elements of the K matrix and S vector must be computed. This computation involves an evaluation and summation of the individual expanded terns of Eq (58). This expansion is carried out in Apprndix \because.

The directional gradient operator in cylindrical geometry is defined as (Ref 6:59)

$$
\begin{equation*}
\left.\hat{A}=\sqrt{1-2} \cos x(0 x)-\frac{1}{3} \sqrt{1-u^{2}} \sin \right\}+4 a x \tag{61}
\end{equation*}
$$

This is the conservative lorm of the directiunal derivative in two dimensional (ρ, z) geometry with azimuthal symetry.

The K^{U} and G^{g} operators have been defined in Eqs (24) and (35) of Chapter III. The scalar product of the velocity and normal vectors is given in Appendix E as

$$
\hat{\Omega} \cdot \hat{n}= \begin{cases}\hat{\therefore} \cdot \hat{n}_{z} & \text { for the horizontal outer surfaces (top or } \tag{62a}\\
\hat{O} \cdot \hat{n}_{0} & \begin{array}{l}
\text { for the vertical surface (side) of the } \\
\text { cylinder }
\end{array}\end{cases}
$$

where

$$
\hat{\theta} \cdot \hat{n}_{z}=\left\{\begin{align*}
\because \text { on the top surface, and } \tag{62b}\\
-\mu \text { on the bottom surface }
\end{align*}\right.
$$

and

$$
\begin{equation*}
\hat{\Omega} \cdot \hat{n}_{0}=\sqrt{1-\mu^{2}} \cos x \tag{62c}
\end{equation*}
$$

The normal unit vectors $\hat{\mathrm{n}}_{\mathrm{p}}$ and $\hat{\mathrm{n}}_{z}$ are shown in Fig. リ, Appendix E .
Expanding the expressions in Eq (58) produces an integraldifferential equation which has twenty-eight terms (see Appendix E). These terms, except for the source terms, can be easily separated into a product of z, β, μ and X integrals. This is an integral separation of variables which is a direct result of Eq. (53); where, it is assumed that the solution can be expressed in a form where the dependent variables are separable. This separation property simplifies tho individual interrals which have to be evaluated. It allows for the evaluation of only single integrals and not the more complicated double, triple or quadruple interrals. By this separation of variables it may be possible to iatesrate most of these single intenrals analytically and thus avoid a numerical integration process.

The Spherical inarmonic Inteyrals. The use of a spherical harmonic angular trial function expansion was motivated by six basic onn:iurations:

1. Because of the global nature of these functions the computational effort will be substantially reduced.
2. Spherical harmonics are well-known functions with orthonormal and symmetric (odd, even) properties.
3. The scattering cross sections are usually expanded in spherical harmonics (see Appendix A).
4. Spherical harmomics will produce a system of equations which are elliptic and invariant under continuous coordinate rotations (Ref 1:362).
5. An analytic or closed form evaluation of the angular integrals might be possible.
6. The even parity angular fluence, Eq (53), can be easily integrated to give the total particle fluence. This integration is carried out in Appendix I.

The term-by-term expansion of Eq (58) has been partiy carried out in Appencix E. The resulting angle integrals are only dependent on the degree of the splerical harmonic trial function expansion which is used. They are not dependent on the problem parameters and therefore they can be independently evaluated. They can be cvaluated once, and thereafter, used as a part of the problem input data.

Three approaches were pursued in an attempt to evaluate the ancle integrals which are produced by this expansion. The first approach was to use the orthoronal properties of the associated Legendre functions and the well-known properties of sines and cosines to analytically evaluate these integrals. However, because of their complicated nature (see Appendix F) a closed form andytiz inburation was ant nasily obtained ior most ot than.
the second approach was to use a computer routine that can
 a rontind will transform the integrals into algebraic expressinis.

because of the time constraint on this research project and the need to learn a new programming language this approach was abandoned.

Finally, it was decided to evaluate these integrals by a numerical integration technique. Because it is possible to separate the integration variables, the computational effort can be substantially reduced by using a single (one variable) integration routine. So as to further reduce the computational effort, Eq (58) was completely expanded and twenty distinct angle integrals were identified. These integrals can be found in Appendix E. A ten point Newton-Cotes single integration routine was used to evaliate them. They were evaluated for each combination of the $m, ?, k$ and n trial and weight function subscripts.

Bicubic Polynonial Splines. The spatial dependence Of the particle fluence in the air-over-ground problem is approximated by a prodtact of cubic splines. The use of cubic polynomial splines in the trial function expansion of Eq (53) requires the formation of a tensor product space. iths suace $!$ maw u_{i} oi bicubic polynomial splines which ar: products of and z-splines on a rectangular grid (R1: 1j:131). The exact shape of these bicubic splines are dotaibed iroa a variational princtple or the equivalent method

 11.\%: シ......in:

This reduces the number of integrals which must be evaluated anc also produces a sparse and banded coefficient matrix.
2. A separation of the ρ and z integration variables is possible.
3. Third degree polynomials such as cubic splines have a faster rate 0 : convergence than those of lower degree. Cubic splines are also twice continuously differentiable and thus they are very smooth functions. For a given probler mesh size splines will produce a coefficient (stiffness) matrix that is smaller but lisss sparse than hermites or lagrange polynomials.

The expansion of Eq (58) with a trial function of bicubic splines and spherical harmonics is carried out in Appendix E. A further expansion of these equations and a separation of the variables of integration produced seventeen distinct and z interrals. These integrals which include the space source integrals are listed in Appendix G. The source integrals are derived from an interpolation of the first scatter source over the entire spatial problem domain.

The Source I.rms. A numerical solution to the air-overground problem and the second order Boltzmann equation requires that the source terms (right hand side of Eq (58)) must be evaluated. Thase terms Form the indiviuual elements of the problem source vector in Eq (59). The even and odd parity sources $S^{?}$ and S^{u} will be defined as the first scatter or collision even and odd parity sourcrs. The first scatter source $S(\hat{r}, \hat{i})$ is the number density of particles whici leave the burst point and undergo only one co lision before being Gcattored into direction \because at position \hat{r}. Stroaming neutrons: which leave the burst point and do not collide before reaching position ($\mathrm{r}, \hat{\mathrm{O}}$) are not included in the collision source.

The use of 2 first scatter source makes the air-overground problem more isotropic. It removes the strongly anisotropic streaming particles from being a part of the problem source. Therefore, the solution fluence of Eq (58) will be the scattered even parity fluence $\psi_{s}(\hat{r}, \hat{\Omega})$ and not the total even parity fluence $\Psi_{t}(\hat{r}, \hat{\Omega})$. The total even parity fluence can be defined as

$$
\begin{equation*}
\because_{t}(\hat{r}, \hat{\Omega})=\Psi_{s}(\hat{r}, \hat{\Omega})+\Psi_{d}(\hat{r}, \hat{\Omega}) \tag{63}
\end{equation*}
$$

where

$$
\begin{aligned}
\Psi_{d}(\hat{r}, \hat{\Omega})= & \text { streaming uncollided particles at } \\
& \text { position }(\hat{r}, \hat{\Omega}) .
\end{aligned}
$$

A precisc mathematical definition of the S^{g} and S^{4} sources will now be developed. Also a source interpolation procedure will be outlined. This source interpolation is used in order to simplify the source integrais of Appendix E (E-40 to E-46).

The First Scatter Sour \cdot The even and odd parity sources have been defined as

$$
\begin{align*}
& S^{u}(\hat{r}, \hat{r})=\frac{1}{2}\{S(\hat{r}, \hat{r})-S(\hat{r},-\hat{r})\} \tag{10}\\
& \left.S^{S}(\hat{r}, \ldots)=\frac{1}{2} S(\hat{r}, \hat{a})+S(\hat{r},-\hat{r})\right\} \tag{19}
\end{align*}
$$

If S^{u} and s^{g} aro first seatter source densities then $S(\hat{r}, \hat{i})$ and $S\left(r^{\prime},-\right.$) must also br duifmed as first seatter source partichas/unit volmay. If a pusition (\because, \therefore) in the problem domain is cheser then a unit vector from the burst point $(0, z b)$ can be detined as

Figure 5. First Scatter (Collision) Source Direction Vectors

$$
\begin{equation*}
\hat{\Omega}^{\prime}(\rho, z)=\frac{\rho \hat{e}_{\rho}+(z-z b) \hat{e}_{z}}{\left\{\rho^{2}+(z-z b)^{2}\right\}^{\frac{1}{2}}} \tag{64}
\end{equation*}
$$

Fig. 5 shows the direction vectors of this first scatter (collision) source. $\hat{\Omega}^{\prime}$ is the direction that all streaming (uncollided) particles have at point (0,2).

By definition only particles which are streaming radially outward from the burst point can be included in the direct fluence. Therefore the direct fluence at point (ρ, z) is in the $\hat{\Omega}^{-}$direction and can be written as

$$
\begin{equation*}
p_{d}\left(o, z, \hat{\Omega}^{\prime}\right)=\frac{Y}{4 \pi s^{2}} \exp \left\{-\int_{0}^{s} \sigma_{t}(z) d s\right\} \tag{65}
\end{equation*}
$$

where

$$
\begin{equation*}
s=\left\{\rho^{2}+(z-z b)^{2}\right\}^{\frac{1}{2}} \tag{66}
\end{equation*}
$$

and $\int \mathrm{ds}$ means that the integration is carried out along the path s (see Fig. 5). Also

$$
\begin{align*}
& Y=\text { Total particle yield of the nuclear } \\
& \quad \text { explosion at the burst point. } \\
& \sigma_{t}(z)=\left\{\begin{array}{l}
c_{t}(0) e^{-z / s h} \text { for } z>0 \\
\sigma_{t} \text { (ground) } \text { for } z<0
\end{array}\right. \tag{67}
\end{align*}
$$

$$
\text { st: }=\text { atmospheric scale height }
$$

The terri $\int_{0}^{S_{\sigma}} t^{\prime}(z) d s$ is the average number of collisions which a particle undergoes in traveling from the burst point (0,20) to point (p, z). From Fig. 5 the distance s can also be written as

$$
\begin{equation*}
s=(z-z b) /: d \tag{68}
\end{equation*}
$$

and therefore by chaneing variables

$$
\begin{equation*}
\mathrm{ds}=\mathrm{d} z /: 1 . \mathrm{d} \tag{69}
\end{equation*}
$$

where ud is a function of n and z (but constant alons a path lenrh S

$$
\mu:(,, b)=\cos w=(z-a) / a=(z-z) /\left(0^{2} \therefore(\because-z b)^{2} ; \quad ; 70\right)
$$

The intesral term of Eq (65) can now be written for $z=0$ as

$$
\begin{equation*}
\because(0, z)=\int_{0}^{s_{t}}(z) d s=\frac{\sigma_{t}^{(0)}}{u d} \int_{z b^{2}} e^{-z / s h} d z \tag{71}
\end{equation*}
$$

and finally as

$$
\begin{align*}
\tau(0, z) & =\frac{\sigma_{t}(0)}{\mu d}\left\{e^{-z b / s h}-e^{-z / s h}\right\} \cdot s h \\
& =\left\{\sigma_{t}(z b)-\sigma_{t}(z)\right\} \cdot \frac{s h}{\mu d} \tag{72}
\end{align*}
$$

From the above derivation it follows that

$$
\tau(\rho, z)=\left\{\begin{array}{l}
\left\{\sigma_{t}(z b)-\sigma_{t}(z)\right\} \cdot s h / \mu d \text { for } z>0 \tag{73}\\
\left\{\sigma_{t}(z b)-\sigma_{t}(0)\right\} \cdot \operatorname{sh} / \mu d-\sigma_{t} z / \mu d \text { for } z<0
\end{array}\right.
$$

also

$$
\begin{equation*}
\phi_{d}\left(0, z, \hat{\Omega}^{\prime}\right)=\frac{Y}{4 \pi s^{2}} \exp (-\tau(\rho, z)) \tag{74}
\end{equation*}
$$

Note that $\phi_{d}\left(f, z, \hat{\Omega}^{\circ}\right)$ is only a function of p and z.
The first scatter source at $(0, z)$ and with direction $\hat{\Omega}$ are those particles which undergo their first collision at ($0, z$) and are scattered from direction $\hat{\lambda}$. \hat{i}. Therefore the first scatter source can now be defined as

$$
\begin{equation*}
S(0, z, \hat{a})=\sigma^{s}\left(z, \hat{a}^{\prime} \cdot \hat{\Omega}^{\prime}\right) \phi_{d}\left(0, z, \hat{\Omega}^{\prime}\right) \tag{75}
\end{equation*}
$$

where σ^{s} is not a function of $\hat{\Omega}^{\prime}$ but of the scattering angle
 $\mu \mathrm{d}$ and $X^{x}=0$ i.e. $\hat{\bar{x}}^{-}=\left(u^{\prime}, X^{\prime}\right)$ where $\mu^{-}=$ind and $\lambda^{-}=0$.

By use of the addition theorem it is shown in Appendix H that Eq (75) can be written as
and that the even and odd parity first scatter sources are

$$
\mathrm{S}^{g}(\rho, z, \hat{\Omega})=\dot{\psi}_{\mathrm{d}}\left(\rho, z, \hat{\imath}^{f}\right) \mathrm{e}^{-z / \mathrm{sh}} \sum_{\ell=0}^{L} \sum_{\mathrm{m}^{*}=0}^{\ell} \sigma_{\ell}^{\mathrm{s}}(0) \mathrm{C}_{\mathrm{lm}}^{2}\left\{1+(-1)^{\ell-\mathrm{m}_{\mathrm{f}} \mathrm{P}_{\ell \mathrm{m}}(\mu \mathrm{~d}) \mathrm{P}_{\ell \mathrm{m}}(\mu) \operatorname{cosmx},}\right.
$$

and
where m^{*} means that all terms with a $\mathrm{m}=0$ subscript must be divided by two, and cosmx should be interpreted as cosine ($m \times$)

Source Interpolation. Becausc of the complicated nature Of the source expressions, Eqs (77) and (78), atai the need to integrate the source terms of Appendix E, a spatial source interpolation will be used. This interpolation which simplifies the source integrals is necessary if a very tedious (double or quadruple) integration is to be avoided. By this interpolation process the source terms of Appendix E can all be separated into a product of single integrals.

It is important to note that $\mu \mathrm{d}$ which is given by Eq (70) is.a function of ρ and z and therefore $P_{\text {im }}(\mu d)$ is also a function of p and z. Furthermore $\varphi\left(p, z,{ }^{\prime}\right)$ of Eq (74) is a function of ρ and z. Beginning with Eqs (77) and (78) they can be rewritten as
and

$$
\begin{equation*}
S^{u}(\imath, z, \hat{\imath})=\sum_{n=0}^{L} \sum_{m^{i=}=0}^{l} \sigma_{2}^{s}(0) C_{i m}^{2}\left\{1-(-1)^{l-m_{\}}} A_{l m}(0, z) P_{l m}(\mu) \cos m_{i}\right. \tag{80}
\end{equation*}
$$

where

$$
\begin{equation*}
i_{\ell \mathrm{m}}(0, z)=\hat{d}_{\mathrm{d}}\left(\mu, z, \hat{\imath}^{-}\right) P_{\ell \mathrm{m}}(\mu \mathrm{~d}) e^{-z / \mathrm{sh}} \tag{81}
\end{equation*}
$$

A spatial (f, z) interpolation of the even and odd parity sources, Eqs (79) and (80), is therefore an interpolation of $A_{\ell m}(\rho, z)$. In this project these first scatter second order sources were interpolated by a combination of piecewise bi-linear Lagrange polynomial functions. Specifically, S^{g} was approximated by a tensor product of linear lagrange folynomials as follows

$$
\begin{equation*}
s^{g}(p, z, \hat{\imath})=\sum_{i=1}^{n} \sum_{j=1}^{i n}\left(p_{j}, z_{i}, \hat{z}\right) H_{j}(p) H_{i}(z) \tag{82}
\end{equation*}
$$

where

$$
\begin{aligned}
S^{g}\left(\nu_{j}, z_{i}, \therefore\right)= & \text { the even parity source, Eq (79) } \\
& \text { cvaluated at the spacial nodes } \\
& \left(0_{j}, z_{i}\right)
\end{aligned}
$$

$N 2=$ total number of z-nodes
$N R=$ total number of R-nodes
$T(c)=0$-linear lagrange polyniiial
$\because(\therefore)=$ - -1 inear hagrange pol:nomini
Thes Liaiur polynomials are delined is
lieigh: of
Triangle $=1$

Figure σ. A Linear Lagrange Polynomial Function.

The product $H_{j}(0) \cdot H_{i}(z)$ of $E q$ (82) forms a tensor product space on a rectangular grid, in the p, z plane (Ref 15:129)

\therefore imilarly the odd parity source can ilso be expressed as

space interals. These suace intrerals are listed in Appendix
G. The source angle integrals have been included in those integrals which are presented in Appendix F.

V Computer Implementation and Results

A numerical solution of the air-over-ground problem can be obtained from a computer solution of the system of coupled aigebraic equations which are represented by Eq (58). These equations can be written in the matrix form of Eq (59) and through a direct inversion or some other matrix solution process the $A_{i, j, 2, m}$ mixing coefficients can be found.

The computer solution to this problem was accomplished by a two step process. Each element of the stiffness matrix and source vector was computed and assembled in the matrix form of Eq (59). Then the mixing coefficients were computed by the iterative matrix solution method of successive overrelaxation. An indirect iterative matrix solution method is possible because Eq (58) and the stiffness matrix of Eq (59) is symmetric positive definite. A computer progran which assembles the problem matrices and computes the mixing coefficient: and particle fluences was written. This propan which is written in FORTMM V is listed in Appeadix J.

Using a ten point Newton-Cotes numerical integration routine, each of the tiarty-seven integrals in Appendix F and G were evaluated. The angular integrals were evaluatod for each an, kn combiation or the trial and weignt iunctica subscipls. Sulected products of thes integrals were then used to gencrate each of the twenty-eight terms (E-ig to E-46) of dppendix E. Following the proseription of ippondis

E the first twenty-one terms were then added (or subtracted) to produce the elements of the stiffness matrix.

The next seven terms gave the elements of the source vector. Writing the synthesized Boltzmann equation, Eq (58), in operator notation as
where Ψ and r are defined by Eqs (53) and (55) and

$$
\begin{aligned}
& \text { Sinjz, ir }_{\substack{\text { k, }}}=\text { Right hand side of Eq (58) }
\end{aligned}
$$

the $K_{p, q}$ element of the stiffness matrix is

$$
\begin{equation*}
\left.K_{p, q_{1}}=L_{i} B_{i z}(z) B_{i r}(\rho) Q_{\ell_{m}}\right\} \cdot B_{j z}(z) B_{j r}(\rho) Q_{k n} \tag{37}
\end{equation*}
$$

where

$$
\begin{equation*}
q=(m+1)+\frac{\lambda(i+1)}{2}+(\underbrace{\operatorname{Lmax}+1)(\operatorname{Lmax}+2}_{2}) \cdot\{(i r-1)+\operatorname{Ik}(i z-1)\} \tag{88}
\end{equation*}
$$

and

$$
p=(n+1)+k\left(\frac{k+1)}{2}+(\underline{\operatorname{Liax}+1)(\operatorname{lnax}+2}) \cdot i(j r-1)+J k(j z-1)\right\}(\therefore 9)
$$

The corresponding source vector element S is riven by

$$
\begin{equation*}
G_{p}=S \cdot B_{j z}(z) B_{j r}(B) Q_{k n} \tag{0}
\end{equation*}
$$

where pis given by Eq (89) and

Lmax $=$ degree of the spherical harmonic expansion
$J R=I R=$ total number of ρ-splines
$p=$ the row index of the problem (K) matrix
$q=$ column index of matrix K
$B(z), B(0)$ and $Q_{\ell m}$ are defined in Chapter IV (Eqs (50) and (54)). iz, ir, jr, $j z, 2, m, k$, and n are the trial and weight function expansion subscripts where

$$
\begin{aligned}
\ell, \mathrm{k} & =0 \text { to } \text { Lmax } \\
m & =0 \text { to } \ell, \\
\mathrm{n} & =0 \text { to } \mathrm{k} \\
\mathrm{iz,jz} & =1 \text { to } \mathrm{I} Z \\
\mathrm{ir}, \mathrm{jr} & =1 \text { to } \mathrm{IR}
\end{aligned}
$$

and
IZ $=$ total number of z-splines
$I R=$ total number of $\rho-s p l i n e s$

Using the notation of Eqs (87), (88) and (89) the K-problem matrix and S-source vector can be easily assembled in the following do loop.

$$
\begin{aligned}
& \text { DO } 10 \mathrm{jz}=1 \text {, IZ } \\
& \text { DO } 10 \mathrm{jr}=1 \text {, IR } \\
& \text { DO } 10 \mathrm{k}=0 \text {, Lmax } \\
& \text { DO } 10 \mathrm{n}=0, \mathrm{k} \\
& S_{p}=S: n_{i z}, i r, k, n \\
& \text { DO } 10 \text { iz }=1,1 Z \\
& \text { Do } 10 \mathrm{ir}=1 \text {, } \mathrm{IR} \\
& \text { 20 } 102=0, \tan x \\
& \text { DO } 10 \mathrm{~m}=0, \therefore
\end{aligned}
$$

10 continue

The assembled coefficient (K) matrix which results from Eq (58) and a bicubic spline spherical harmonic trial function expansion is sparse and symmetric. Because of this symmetry and sparseness the coefficient matrix can be stored within the computer by special storage schemes (Ref 14:70). These sparse and symmetric schemes will greatly reduce the computer storage requirements. As an example, in a trial function expansion where $J R=I R=8$ and $\operatorname{Lmax}=2$ the problem coefficient matrix is a 384×384 square symmetric matrix with many elements which are zero. Therefore if this entire matrix is stored within the computer it will req. 147456 separate storage locations. This much core storage is already beyond the capacity of most computers. However, by using a sparse and symmetric storage scheme this matrix can be reduced to one with less than 73728 elements. For large trial function expansions $(J R=I R=50, \operatorname{Lmax}=3)$, suecial auxiliary storay and solution techniques will be necessary.

This entire problem (coefficient and source matrices) was assembled on a CDC 6600 computer at the Air Force Institute of Technology. The 384 x 384 problem matrix is too large to be stored in core memory unless a sparse symetric storage oode is used. Because some of the (p) integrals in Appendix G are discontinuous (infinite) at
$\rho=0$ it was necessary to use a lower ρ-integration limit of 1.0 E-8. Also, since the first scatter sources of Eqs (77) and (78) are undefined at the burst point none of the problem nodes can be located there (see Fig. 5).

Results

The computer routines which are listed in Appendix J were used to produce a numerical solution to the air-overground problem. These routines demonstrate the feasibility of using FESAS to produce a computer solution to the twoditensional stwdy state anisotropi= Boltzmann ecuation. This computer pronram has not been fully developed, refined or debugged and therofore the accuracy of the results has not been evaluated. These results are presented in an attempt to iurther show that FESAS is a viable numerical solution techuique.

The problem domain is a cylinder which sits on the sur[ace of the earth (see Fig. 5). However, the air-ground interface is not included in the problem domain and thereEure all sound iftects are ignored. The following problem parametors were used

```
Geapon yield \(=1.0 E+23\) neutrons
Cylinder heisht \(=.4 \mathrm{~km}\)
Cyliader radius \(=.4 \mathrm{~km}\)
Burst height \(=.12 \mathrm{~km}\)
Total cross section \(\left(\sigma_{0}(0)\right)=15.0 \mathrm{~km}^{-1}\)
```

Table I
Legendre Expansion Coefficients which were used in a Numerical Solution of the Air-Over-Ground Problem

Expansion subscript ℓ	Legendre expansion coefficients	
	σ_{ℓ}^{G}	σ_{l}^{11}
0	10.0	.0
1	0.0	2.5

The cross-sections in Table I were arbitrarily chosen and they do not represent the actual values for air at sea level. A relative converacnce criteria (.001) which is accurate to three sieniiicant ifrures was used.

The procran exccu:ion times varied with the degree of the spherical harmonic trial function expansion and the problem mesh (grid) size. The entire problem matrices were stored within core memory and by trial and error it was determined that a relaxation parameter of 1.7 gave the fastest convergence rati. Howevor, as more trial functions wore used and the systen ot equations and auricos rew laroer the rate of conver ance decreased. In Table II the program execution times ad the amber of iterations to convergence are listed for
 Fremen ratns an bon mbantially rodned by rewriting or

Table II
Execution Times and Convergence Rates for the FESAS Computer Code

$\begin{gathered} \text { Number of Iterations } \\ \text { to Convergence } \end{gathered}$	$\begin{aligned} & n \\ & \stackrel{n}{n} \\ & \underset{r}{n} \end{aligned}$	$\begin{aligned} & -1 \\ & 0 \\ & 0 \\ & N \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & \sim \end{aligned}$	$\begin{gathered} -1 \\ \infty \\ \hline \end{gathered}$	$\begin{aligned} & \text { L } \\ & \stackrel{0}{\sim} \end{aligned}$	$$	∞ 0 -1
$\begin{array}{ccc} G & \\ 0 & & 0 \\ -H & 0 & 0 \\ U & 0 & U \\ J & E & 0 \\ 0 & -1 & 0 \\ 0 & E-1 & \\ x & \\ \text { Ha } & & \end{array}$	$\begin{aligned} & \infty \\ & \stackrel{\sim}{\sim} \end{aligned}$	$\begin{aligned} & \text { r } \\ & \dot{N} \\ & \dot{H} \\ & i \end{aligned}$	$\begin{aligned} & n \\ & \sim \\ & \text { n } \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & m \\ & -1 \\ & 0 \\ & m \end{aligned}$	$\begin{aligned} & N \\ & 0 \\ & \dot{O} \\ & \boldsymbol{r} \end{aligned}$	$\begin{aligned} & \underset{\infty}{\dot{\infty}} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & m \\ & \infty \\ & \dot{0} \\ & \sim \\ & N \end{aligned}$
	\bigcirc	-	0	-1	0	\checkmark	\bigcirc
	3	$\xrightarrow{-1}$	$\begin{gathered} \underset{X}{N} \\ N \end{gathered}$	$\begin{aligned} & \underset{X}{X} \\ & N \end{aligned}$	$\underset{\substack{+-1}}{\text { - }}$	$\underset{\text { - }}{\substack{\text { ® } \\ \text { - }}}$	∞ \times ∞

PARTICLE(NEUTRON) FLUENCES.

Figure 7. Computed Fluences as a Function of Radius and showing a variation with the Problem Spatial Mesh Size.

PARTICLE(NEUTRON) FLUENCES.

Figure 8. Computed Fluences as a Function of Radius and showing a variation with the Degree of the Angular Spherical Harmonic Trial Function Expansion.

In Figures 7 and 8 fluence values as a function of radius are presented. These values are representative of an altitude of 200 metres and the aforementioned problem parameters. Figure 7 shows a variation of the solution with spatial grid (mesh) sizes whereas figure 8 shows a variation with the degree of the spherical haranic trial function expansion. More detailed numerical results can be found in Appendix K.

VI Conclusions and Recommendations

Conclusions

A finite element space-angle synthesis (FESAS) solution of the steady state anisotropic Boltzmann equation in twodimensional cylindrical geometry has been presented. In this presentation a weak form of the even parity steady state Boltzmann equation was developed. It was shown that because the problem equations were positive definite and self-adjoint the Rayleigh-Ritz variational principle and the Bubnov-Galerkin method of weighted residuals are equivalent. The problem solution was formulated by using a trial function expansion in bicubic polynomial splines and spherical harmonics. This trial function expansion has a dual basis -- a local basis in space and a global basis in angle.

This development was specialized to the air-over-ground neutral particle transport problem. It was shown that a finite element space-angle synthesis solution is possible and that a first scatter interpolation source can be used. It Uas also shown that a amorical soluthon can be achieved and that this solution technique nay eliminate ray efocts and reduce computational costs.

Recommendations
The reliniary rosults of this stary have shown that the FESAS method can produce a numerical solution to the stenay state Boltaman equation and the air-uver-around problen. However, because of the time constraints on this
research project a complete development and evaluation of the FESAS method was not accomplished. Therefore, there are a number of recommendations for the further analysis and evaluation of the FESAS method, which must be made. Some of these recommendations are:

1. To enforce the boundary conditions at the air-over-ground interface. This can be accomplished by a coalescing or stacking of the nodes (knots) of the bicubic splines and by using a DoubleP_{N} approximation at this interface.
2. Develop or refine the computer algorithm so that a comparative study can be made. This study should include a comparison of the computational costs and accuracy of FESAS to those of Monte Carlo and discrete ordinates. Also, a determination should be made as to whether ray effects have been eliminated.
3. Obtain, if possible, a closed form solution to the angle integrals in Appendix F.
4. Explore other ways of handing the discontinuity: (at $0=0$) of the space interrals.
5. Use other spatial trial functions. Lower degree bi-quadratic splines, hermites and Lasranoe polynomials are possible candatates. A comparison of the results which are obtained from the use of varicus trial iunctions can then be made.
6. Examinc the effects of an improved source interpolation on the solution accuracy and rate 0 i convergenco. An improved source interpolation can be achicved by the use of a smaller sourco (space) grid or a higher degree Lagrange or Hermite polynomial interpolation function
7. Extend the use of finite element spaco-an lo synthosis to the solution of energy depencent mult:-arour prodems.

Bibinorraphy

1. Lathrop, K. D. "Ray Effects in Discrete Ordinates Equations," Nuclear Science and Engineering, 32: 357-369 (June 1968).
2. Lathrop, K. D. "Remedies for Ray Effects," Nuclear Science and Engincering, 45: 255-268 (September 1971).
3. Brigos L. L. et al. "Ray-Effect Mitigation in Discrete O-cinate-like Angular Finite Element Approximations in Neutron Transport," Nuclear Science and Engineering, 57: 205-217 (July 1975).
4. Roberds, Richard M. and Charles J. Bridgman. "Application of Space-Angle Synthesis to Two-dimensional NeutralParticle Transport Problems of Weapon Physics," Nuclear Science and Engincering, 64: 332-343 (October 1977)
5. Wheaton Ronald C. Application of Phase-Space Finite Elements to the Neutron Transpurt Equation in Cylindrical Geomerry. AFIT/GNE/PH77SD-25. TirightPatterson AFB, Ohio: Air Force Institute of Technology December 1978.
6. Bell George I. and Samuel Glasstone. Nuclear Reactor Theory. New York: Van Nostrand Reinhold Company, 1970.
7. Huebner Kenneth H. The Finite Element Method for Engineers. New York John wiley \& Sons, Inc., I975.
8. Strang Gilbert and Goorge J. Fix. An Analysis of the Finite Element lethod. New Jersey: Prentice-hall lnc., 1973.
9. Einlayson B. A. and L. E. Scriven. "The Mothod of heifhed Residuals -- a Revinw," ippl. Rech. Rev., 19: 735-748 (September 1960).
10. Kaplan S. and James A. Davis. "Canonical and Involutory Transformations of the Variational Problems of Transport Theory," Nuclear Science and Engineerins, 28: 166-176 (May 1967).
11. Duderstadt James J. and William R. Martin. Transport Hhory. mow ionk: John ailey \& Sons, 1974.

 iranspurt bination," Nuctoar Science and Engineorjne 51: 148-156 (June 1973).
12. Niller W. F. et al. "The Application of Phase-Space Finite Elements the Two-Dimensional Neutron Transport Equation in $x-y$ Geometry," Nuclear Science and Engineering 52: 12-22 (September 1973).
13. Jennings Alan. Matrix Computation for Engineers and Scientists. New York: John Wiley \& Sons, 1977.
14. Prenter P. M. Splines and Variational Method. New York: John Wiley \& Sons, 1975.
15. De Boor, Carl. A Practical Guide to Splines. New York: Springer-Verlag, Inc., 1978.
16. Churchill R. V. and James W. Brown. Fourier Series and Boundary Value Problems (Third Edition). New York MeGraw HiM, I975.
17. Hobson E. W. Spherical and Ellipsoidal Harmonics. New York (Secund Edition): Chelsea Publishing Company, 1965.

Appendix A

Derivation of the Scattering Kernel, Inverse Collision Operators and the Even and Odd Parity Collision Cross Sections

Collision Cross-Sections

The even and odd parity legendre expansion scattering crosssections σ_{l}^{g} and σ_{ℓ}^{U} originate in the derivation of the second order forms of the Boltzman equation (Chapter III). A definicion of these quantities has been given elsewhere ($\operatorname{Ref} 5: 29$). This definition is repeated below.

Beginning with the even and odd parity scattering cross sections

$$
\begin{align*}
& G_{S}^{g}\left(\hat{F_{,}} \hat{\Omega} \cdot \hat{\Omega}^{\prime}\right)=\frac{1}{2}\left\{G^{s}\left(\mu_{,}, \hat{\Omega} \cdot \hat{\Omega}^{\prime}\right)+G^{s}\left(\hat{r_{3}}-\hat{\Omega} \cdot \hat{\Omega}\right)\right\} \quad(\dot{A}-1) \\
& \sigma_{S}^{u}\left(\hat{r}_{3} \hat{\Omega} \cdot \hat{\Omega}^{\prime}\right)=\frac{1}{2}\left\{G^{s}\left(\hat{r}_{3}, \hat{\Omega} \cdot \hat{\Omega}^{\prime}\right)-G^{s}\left(\hat{r}^{\prime}, \hat{\Omega} \cdot \hat{\Omega}\right)\right\} \quad(A-2) \tag{A-2}
\end{align*}
$$

the usual computational practice (Ref 6:131) is to expand these scattering cross sections in Legendre polynomials as

$$
\begin{equation*}
G^{S}\left(\hat{r}, \hat{\Omega} \cdot \hat{\Omega}^{\prime}\right)=\sum_{R=0}^{L} G_{\ell}^{S}(\hat{r}) \cdot \frac{2 l+1}{4 \pi} \cdot P_{l}\left(\hat{\Omega} \cdot \hat{\Omega}^{\prime}\right) \tag{A-3}
\end{equation*}
$$

ur

$$
\begin{equation*}
G(r,-\hat{\Omega} \cdot \hat{\Omega})=\sum_{\hat{l}=0}^{L} G_{e}^{S}(r) \cdot \frac{2 \ell+1}{4 \pi} \cdot P_{e}(-\cdots \cdot \hat{\Omega}) \tag{A-4}
\end{equation*}
$$

where

$$
\begin{aligned}
\sigma^{i}(r, \hat{A} \cdot \hat{O})= & \text { macroscopic scattering cross section } \\
\sigma^{s}(x)= & \text { !egendre macroscopic cross -section } \\
& \text { expansion coefficient which is a } \\
& \text { (unction of position (material) } \\
L= & \text { the desren legendre polynomial expan- } \\
& \text { sion which is used }
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{P}_{\ell}\left(\Omega^{\prime} \cdot \Omega^{\prime}\right) & =\text { Legendre polynomial of degree } \ell . \\
{\hat{\Omega} \cdot \hat{\Omega}^{\prime}}= & \text { scattering angle }\left(\mu_{0}=\cos \theta\right)
\end{aligned}
$$

$$
\text { Inserting Eqs }(A-3) \text { and }(A-4) \text { into }(A-1) \text { and }(A-2)
$$

gives

$$
\begin{align*}
& G_{s}^{g}\left(\hat{F}, \hat{\Omega} \cdot \hat{\Omega}^{\prime}\right)=\frac{\left.\sum_{2}^{L} \int_{e=0}^{s}(F) \frac{2 l+1}{4 \pi}\left\{P^{(\hat{\Omega}} \cdot \hat{\Omega^{\prime}}\right)+P_{l}\left(-\hat{\Omega} \cdot \hat{\Omega}^{\prime}\right)\right\}}{} \tag{A-5}\\
& \sigma_{s}^{u}\left(F, \hat{\Omega} \cdot \hat{\Omega}^{\prime}\right)=\frac{\lambda}{2 \sum_{l=0}^{L} \sigma_{l}^{s}\left(\hat{r}^{\prime}\right) \frac{2 l+1}{4 \pi}\left\{P_{l}\left(\hat{\Omega} \cdot \hat{\Omega}^{\prime}\right)-P_{e}\left(-\hat{\Omega} \cdot \hat{\Omega}^{\prime}\right)\right\}} \tag{A-6}
\end{align*}
$$

From the even and odd properties of legendre polynomials (Ref 17:223)

$$
P_{\ell}\left(\tilde{\Omega} \cdot \tilde{\Omega}^{\prime}\right)=\left\{\begin{array}{l}
\text { even function if } \ell \text { is even } \tag{A-7}\\
\text { odd function if } \ell \text { is odd }
\end{array}\right.
$$

therefore
and
afore

$$
\sum_{l=0}^{L}\left\{P_{l}\left(\hat{\Omega} \cdot \hat{\Omega}^{\prime}\right)+P_{e}\left(-\hat{\Omega} \cdot \hat{\Omega}^{\prime}\right)\right\}=\left\{\begin{array}{l}
0 \\
2 P_{l}\left(\hat{\Omega} \cdot \hat{\Omega}^{\prime}\right) \text { if } \ell \text { is even } \quad(A-8)
\end{array}\right.
$$

$$
\sum_{l=0}^{L}\left\{P_{l}\left(\hat{\Omega} \cdot \hat{\Omega}^{\prime}\right)-P_{l}\left(-\hat{\Omega} \cdot \hat{\Omega}^{\prime}\right)\right\}= \begin{cases}2 P_{e}\left(\hat{\Omega} \cdot \hat{\Omega}^{\prime}\right) & \text { if } \hat{i} \text { is odd } \\ 0 & \text { if } \ell \text { is even }(A-9)\end{cases}
$$

Eq (A-5) and (A-6) can now be rewritten as
and

$$
\begin{equation*}
G_{s}^{g}\left(F, \hat{n} \cdot \hat{n}^{\prime}\right)=\sum_{\substack{l=0 \\ \text { leven }}}^{L} G_{l}^{s}(\hat{F}) \frac{2 l+1}{4 \pi} \cdot \hat{e}^{\left(\hat{n} \cdot \hat{n}^{\prime}\right)} \tag{A-10}
\end{equation*}
$$

The even and odd parity cross-sections can also be expanded in legendre polynomials as
and

$$
\begin{equation*}
\sigma_{5}^{g}\left(\hat{r}, \hat{\imath} \cdot \hat{R}^{\prime}\right)=\sum_{l=0}^{4} \sigma_{l}^{g}(\hat{\mu}) \cdot \frac{2 e+1}{4 \pi} \cdot P_{l}\left(\hat{n} \cdot \hat{\Omega}^{\prime}\right) \tag{A-12}
\end{equation*}
$$

$$
\begin{equation*}
\left.G_{S}^{u}\left(t, \hat{n} \cdot \hat{n^{\prime}}\right)=\sum_{2}^{L} G_{2}^{4}+\hat{r}\right) \cdot \frac{2 e+1}{4 \pi} \cdot P_{2}\left(\hat{n} \cdot \hat{R}^{\prime}\right) \tag{A-13}
\end{equation*}
$$

Comparing Eqs $(A=13),(A-12),(A-11)$ and $(A-10)$ it is apparent that

$$
\sigma_{\ell}^{g}(\hat{r})= \begin{cases}\sigma_{\ell}^{s}(\hat{r}) & \text { for } \ell \text { even } \tag{A-14}\\ 0 & \text { for } \ell \text { odd }\end{cases}
$$

and

$$
\sigma_{\ell}^{u}(\hat{r})= \begin{cases}0 & \text { for } \ell \text { even } \tag{A-15}\\ \sigma_{\ell}^{s}(\hat{r}) & \text { for } \ell \text { odd }\end{cases}
$$

Therefore $\sigma_{l}^{g}(\hat{r})$ and $\sigma_{s}^{g}\left(\hat{r}, \hat{\Omega} \cdot \hat{\Omega}^{\prime}\right)$ are even functions. Also $\sigma_{\ell}^{u}(\hat{r})$ and $\sigma_{s}^{u}\left(\hat{r}, \hat{\Omega} \cdot \hat{\Omega}^{\prime}\right)$ are odd functions.

Scattering Kernel

In the development of the even and odd parity forms of the anisotropic steady state Boltzmann equation (Chapter III), it was necessary to express the scattering kernels in terms of the even and odd parity flux (fluence) components. Following the derivation of Wheaton (Ref 5: ll) the scattering terms can be written as

$$
\begin{align*}
& \int_{4 \pi} G_{5}^{g}\left(\tilde{r}, \hat{n} \cdot \hat{\imath}^{\prime}\right) \phi\left(\hat{r}, \hat{\imath}^{\prime}\right) d \hat{\imath}^{\prime}=\frac{1}{2} \int_{4 \pi} G_{5}^{g}\left(r^{\prime}, \hat{n} \cdot \hat{n}^{\prime}\right) \phi\left(\hat{r}, \hat{n}^{\prime}\right) d \hat{\imath}^{\prime} \\
& +\frac{1}{2} \int_{4 \pi} G_{s}^{g}\left(\sim, \hat{\imath},-\hat{r}^{\prime}\right) Q^{\prime}\left(\hat{r}-\hat{\imath}^{\prime}\right) d \hat{\imath}^{\prime} \tag{A-10}
\end{align*}
$$

where the integrations are carried out over all directions.

Because σ_{s}^{g} is an even function, meaning $f(x)=f(-x)$, it follows that

$$
\begin{equation*}
\sigma_{s}^{g}\left(\hat{r}, \hat{R}-\hat{R}^{\prime}\right)=\sigma_{s}^{g}\left(\hat{r}, \hat{R_{0}} \hat{\Omega}^{\prime}\right) \tag{A-17}
\end{equation*}
$$

and therefore

$$
\begin{align*}
\int_{\pi \pi} \sigma_{s}^{g}\left(\hat{r}, \hat{n} \cdot \hat{n^{\prime}}\right) \phi\left(\hat{r}, \hat{n}^{\prime}\right) d \hat{n}^{\prime} & =\frac{1}{2} \int_{\pi \pi}^{g} \sigma_{s}^{g}\left(\hat{r}, \hat{n^{\prime}} \cdot \hat{n}^{\prime}\right)\{\phi(\hat{r}, \hat{\Omega}) \\
& \left.+\phi\left(\hat{r},-\hat{n}^{\prime}\right)\right\} d \hat{\Omega}^{\prime} \tag{A-18}
\end{align*}
$$

With the even parity flux defined as

$$
\begin{equation*}
\psi\left(\hat{F}, \hat{\Omega}^{\prime}\right)=\frac{1}{2}\left\{\phi\left(\hat{n^{\prime}}\right)+\phi\left(\hat{\kappa},-\hat{\Omega}^{\prime}\right)\right\} \tag{A-19}
\end{equation*}
$$

Eq (A-18) becomes

$$
\begin{equation*}
\int_{\alpha \pi} \sigma_{s}^{g}\left(\hat{r}, \hat{\Omega} . \hat{\Omega}^{\prime}\right) \phi\left(r_{,}^{\prime}, \hat{\Omega}^{\prime}\right) d \hat{\Omega}^{\prime}=\int_{4 \pi} \sigma_{s}^{g}\left(\hat{F}, \hat{\Omega} \cdot \hat{\Omega}^{\prime}\right) \psi\left(\hat{r}, \hat{\Omega}^{\prime}\right) d \hat{\Omega}^{\prime} \tag{A-20}
\end{equation*}
$$

and by a similar derivation

Inverse Collision operators

In deriving the second order forms of the Boltzmann equation (Chapter III) the G^{G} and $G^{\text {u }}$ operators were defined as

$$
\begin{equation*}
G^{g} f(\hat{\imath})=G_{t} f(\hat{\imath})-\int_{\alpha \pi} G_{s}^{g}\left(\hat{i}, \hat{\imath}^{\prime}\right) f\left(\hat{\Omega}^{\prime}\right) d \hat{\Omega}^{\prime} \tag{A-22}
\end{equation*}
$$

and

$$
\begin{equation*}
G^{u} f(\hat{\imath})=\theta_{t} \hat{i} \tag{A-23}
\end{equation*}
$$

where the \hat{r} dependence has been omitted in an attempt to simplify the notation.

Using the addition theorem (Ref 6:609)

$$
\begin{equation*}
P_{l}\left(\hat{\imath} \cdot \hat{\kappa}^{\prime}\right)=\frac{4 \pi}{2 l+1} \sum_{m=-l}^{+e} Y_{\ell_{m}}^{*}\left(\hat{n}^{\prime}\right) Y_{\ell m}(\hat{m}) \tag{A-24}
\end{equation*}
$$

in ($A-12$) and ($A-13$) gives

$$
\begin{equation*}
\sigma_{s}^{g}\left(\hat{\Lambda} \cdot \hat{\Lambda}^{\prime}\right)=\sum_{\ell=0}^{L} \sum_{m=-e}^{+e} G_{e}^{g} V_{e m}^{*}\left(\hat{n}^{\prime}\right) V_{l m}(\hat{R}) \tag{A-25}
\end{equation*}
$$

and

$$
\begin{equation*}
G_{3}^{u}\left(\hat{\imath} \cdot \hat{\Omega}^{\prime}\right)=\sum_{l=0}^{L} \sum_{m=-}^{+\infty} G_{\mathcal{C}}^{u} y_{l m}^{k}\left(\hat{\Omega}^{\prime}\right) V_{l m}(\hat{\Omega}) \tag{A-26}
\end{equation*}
$$

Eqs $(A-22)$ and $(A-23)$ can now be written as
and

The inverse operators are defined as

$$
\begin{equation*}
K^{g}=\left[G^{9}\right]^{-1} \quad \text { ind } \quad K^{4}=\left[G^{4}\right]^{-1} \tag{A-29}
\end{equation*}
$$

where it is meant that if

$$
\begin{equation*}
G \xi(\hat{n})=R(\hat{\Omega}) \tag{A-30}
\end{equation*}
$$

then

$$
K^{g}\left[G^{g} f(\hat{\imath})\right]=K^{g} R(\hat{\Omega})=f(\hat{\imath})
$$

multiplying Eq ($\mathrm{A}-30$) by $\delta_{4 \pi} Y_{\mathrm{kn}}^{*}(\hat{\Omega}) \mathrm{d} \hat{\Omega}$ and expanding the C^{g} operator gives

$$
\begin{align*}
& =\int_{4 \pi} P(\hat{R}) V_{i}(\hat{\imath}) d \hat{R} \tag{A-32}
\end{align*}
$$

using the orthonormal properties of spherical harmonics (Ref 6:609)

$$
\begin{equation*}
\int_{a \pi} y_{m}^{(\hat{n})} Y_{i n}^{*}(\hat{n}) d \hat{\imath}=\zeta_{e k} \zeta_{m n} \tag{A-33}
\end{equation*}
$$

where $\delta_{\ell k}$ is the kronecker delta which is defined by

$$
\delta_{l k}= \begin{cases}0 & \ell \neq k \tag{A-34}\\ 1 & \ell=k\end{cases}
$$

Therefore Eq ($\mathrm{A}-32$) can now be written as

$$
\begin{align*}
& G_{t} \int_{4 \pi} f(\hat{n}) V_{\beta n}^{*}(\hat{n}) d \hat{n}-G_{e}^{g} \int_{4 \pi} V_{k h}^{*}(\hat{n}) f\left(\hat{n}^{\prime}\right) d \hat{n}^{\prime} \\
& \quad=\int_{\mu \pi} R(\hat{\imath}) V_{k n}^{*}(\hat{n}) d \hat{n} \tag{A-35}
\end{align*}
$$

and

$$
\begin{equation*}
\int_{a \pi} f(\hat{n}) Y_{i s h}^{x}(n) d \hat{\imath}=\frac{1}{\sigma_{\epsilon}-\sigma_{e}^{a}} \int_{4 \pi} P(\hat{\imath}) V_{\operatorname{len}}^{x}(\hat{\imath}) d \hat{\imath} \tag{A-36}
\end{equation*}
$$

Rewriting Eq (36) with a $\ell \mathrm{m}$ spherical harmonic subscript and substituting into the expanded form of $\mathrm{Eq}(\mathrm{A}-30)$ gives
and by rearranging $E q(A-37)$

Comparing Eqs $(A-3 E)$ and $(A-31)$ it is obvious that K^{g} is defined by
a similar derivation for K^{u} would produce

$(A-40)$

Appendix B

Weak-Form of the Functional

The functional whose Euler equation is the even parity Boltzmann equation of Chapter III is

$$
\begin{aligned}
F(u) & =\int_{R}\left\{\left\langle\hat{R} \cdot \nabla u, k^{u}(\hat{\imath} \cdot \nabla u)\right\rangle+\left\langle u, G^{9} u\right\rangle-2\left\langle\hat{n} \cdot \nabla u, k^{u} S^{u}\right\rangle\right. \\
& \left.\left.-2\left\langle u, S^{g}\right\rangle\right\} d \tilde{r}+\oint_{S}\left\{\int_{a \pi}|\hat{\pi} \cdot \hat{n}| u^{2} d \hat{n}\right\} d \hat{s} \quad, B-1\right)
\end{aligned}
$$

where the inner product $\langle\mathrm{f}, \mathrm{g}\rangle$ is defined as

$$
\begin{equation*}
\langle f, g\rangle=\int_{\Delta \pi} \hat{f}^{*}(\hat{\Omega}) g(\hat{\Omega}) d \hat{\imath} \tag{B-2}
\end{equation*}
$$

and * means the complex conjugate.
The minimizing function of this functional is the function ψ which is a solution to the second order even parity Boltzmann equation (Ref 10:169) Therefore, a solution to the even parity Boltzmann equation can be found by minimizing Eq ($B-1$).

Another more useful formulation of this problem is the weak form. This weak form can be found by imposing the condition that a function which satisfies the natural boundary conditions Eqs (41) and (42) and the even parity Boltzmann euqation must also be a minimum of the functional (B-1).

Let the functional, (Eq (B-1), have a minimum at Ψ. Then, fur all n and e where a can be arbitrarily small and or either sign

$$
\begin{equation*}
F(\psi) \leqslant F(\psi+\varepsilon \eta) \tag{E-3}
\end{equation*}
$$

where y and η are real functions that satisfy the boundary conditions.

Expanding Eq ($B-1$) in $\Psi+\varepsilon \eta$ gives

$$
\begin{align*}
& F(\psi+\varepsilon \eta)=\int_{R}\left\langle\hat{R} \cdot \nabla \varphi, K^{\mu}(\hat{\Omega} \cdot \nabla \varphi)\right\rangle d \dot{H}^{2} \tag{E-4}\\
& +\varepsilon \int_{x}\left\langle\hat{\imath} \cdot \nabla \psi, K^{\mu}(\tilde{\Omega} \cdot \nabla \eta)\right\rangle d \hat{r} \tag{B-5}\\
& \left.+E \int_{\mathcal{R}}\langle\hat{R} \cdot \nabla \eta) k^{(}(\hat{R} \cdot \nabla \Psi)\right\rangle d F \tag{B-6}\\
& +\varepsilon^{2} \int_{R}\left\langle\hat{n} \cdot \nabla \eta, k^{(2}(\hat{\imath} \cdot \nabla \eta)\right\rangle d F \tag{B-7}\\
& +\int_{R}\left\langle\psi, G^{a} \Psi\right\rangle d F^{*} \tag{B-8}\\
& +\varepsilon \int_{\mathbb{R}}\left\langle\Psi, \sigma^{g} \eta\right\rangle d F^{n} \tag{B-9}\\
& +\varepsilon \int_{P}\left\langle\eta, G^{9} \psi\right\rangle d r^{\sim} \tag{B-10}\\
& +\varepsilon^{2} \int_{R}\left\langle\eta, G^{N} \eta\right\rangle d r \tag{B-11}\\
& -2 \int_{R}\left\langle\hat{2} \cdot \nabla \Psi, K^{u} S^{u}\right\rangle d \hat{r} \tag{B-12}\\
& -2 \varepsilon \int_{R}\left\langle\hat{\imath} \cdot \nabla \eta, k^{u} S^{u}\right\rangle d r \tag{B-13}\\
& -2 \int_{F^{*}}\left\langle\psi, s^{g}\right\rangle d F^{2} \tag{B-1+}\\
& -2 \varepsilon \int_{R}\left\langle R, S^{s}\right\rangle d^{2} \tag{B-15}\\
& +\oint_{s} \int_{\pi \pi}|\hat{n} \cdot \hat{n}| \varphi^{2} d \hat{n} d \hat{s} \tag{B-16}\\
& +\mathcal{E} \oint_{s} \int_{\pi} i \hat{i} \dot{H} / \Psi \eta d \tilde{n} d \hat{s} \tag{B-1;}\\
& +\varepsilon^{2} \psi_{S} \int_{4 \pi} \hat{n^{2}} n^{2} d \hat{s} \tag{B-15}\\
& \text { noting that }(B-4)+(B-8)+(B-12)+(B-14) \\
& +(B-i \omega)=F\left(y^{\prime}\right)
\end{align*}
$$

and that $K^{g}, K^{\mathrm{U}}, \mathrm{G}^{\mathrm{g}}$ and G^{U} are self adjoint operators (Ref 10:174), where if L is self adjoint then
$\langle L f(\hat{\Omega}), g(\hat{n})\rangle=\langle f(\hat{\Omega}), L g(\hat{\Omega})\rangle$

$$
\begin{equation*}
=\langle L g(\hat{\Omega}), \hat{f}(\hat{\Omega})\rangle^{*} \tag{B-20}
\end{equation*}
$$

* means the complex congugate. Since η and Ψ are both real functions $(B-5)=(B-6)$ and $(B-9)=(B-10)$. Therefore, collecting terms and simplifying

$$
\begin{align*}
& F(\psi+\varepsilon \eta)=F(\Psi)+2 \varepsilon \iint_{R}\{\langle\hat{\Omega} \cdot \nabla \eta, \kappa<(\hat{\Omega} \cdot \nabla \psi)\rangle \\
& \left.+\left\langle\eta, G^{q} \varphi\right\rangle-\left\langle\hat{\Omega} \cdot \nabla \eta, k^{4} S^{u}\right\rangle-\left\langle\eta, S^{s}\right\rangle\right\} d \hat{r} \\
& \left.+\oint_{S} \int_{a \pi}|\tilde{n} \cdot \hat{n}| \psi n d \hat{n} d \hat{s}\right]+\varepsilon^{2}\left[\int_{R}\{(n \cdot \nabla \eta, k(\hat{n} \cdot \nabla \eta)\rangle\right. \\
& \left.+\langle\pi, a s\rangle\} d r+\oint_{s} \int_{i \pi} \mid \hat{n} \cdot \hat{\eta} / \eta^{2} d \hat{n} d r\right] \tag{B-2i}
\end{align*}
$$

With both K^{u} and G^{g} being positive definite operators then the ε^{2} term of (B-21) must also be positive. Note that ε^{2} is always positive. Now in order to ensure that $F(\Psi+\varepsilon \eta)>F(\Psi)$ for $\varepsilon \neq 0$, the ε term in equation ($B-21$) must be positive or zero. But ε can be of either sign therefore the coefficient of ε must be zero, that is

$$
\begin{aligned}
& \int_{R}\left\{\left\langle\hat{\imath} \cdot \nabla \pi, k_{L}^{u}(\hat{\imath} \cdot \nabla \psi)\right\rangle+\left\langle\eta, G^{g} \zeta^{\prime} \cdot \hat{?} \nabla \eta, k^{u} S^{u}\right\rangle\right.
\end{aligned}
$$

Eq ($B-22$) is the weak or Calerkin form of the second order even parity Boltzmann equation. A detailed derivation of equation (B-22) can be found elsewhere (kef 5:57).

Appendix C

Derivation of the Weak Form From the Galerkin

 Method of Weighted ResidualsIt can be shown that solutions to the second order forms of the Boltzmann equation, by using a variational principle or the method of weighted residuals are equivalent. A proof of this equivalency for the even parity equation is outlined below. However, a similar proof can also be extended to the odd parity second order equation.

The starting point of this proof is the even parity Boltzmann equation

$$
\begin{aligned}
& -\hat{\Omega} \cdot \nabla K^{\mu}(r) \hat{\Omega} \cdot \nabla \psi^{\prime}(\hat{F}, \hat{\imath})+G^{g}(\gamma) \psi(\hat{F}, \hat{\imath})=S^{g}(\hat{F}, \hat{\imath}) \quad(0-1) \\
& -\hat{\imath} \cdot \nabla K(\underset{F}{\mu}) S(\hat{F}, \hat{n})
\end{aligned}
$$

and vacuum boundary conditions

$$
\begin{aligned}
& (\hat{H}, \hat{\imath})-K(\dot{F})\left\{S^{\dot{n}}(\hat{S}, \hat{\eta})-i \cdot \nabla \varphi(\hat{\xi}, \hat{2})\right\}_{\text {io } \hat{R} \cdot \hat{n}>0}=0 \quad(c-3)
\end{aligned}
$$

In the following equations the \hat{r} and $\hat{\Omega}$ dependence will be omitted.

If a trial solution $:$ is assumed where $\%$ is a linear combination of functions such) that

$$
\begin{equation*}
\psi=\sum_{i=1}^{N} A_{i} \psi_{i} \tag{c-4}
\end{equation*}
$$

then the Galerkin method of weighted residuals requires
a weight or test function η; where

$$
\begin{equation*}
n=\sum_{i=1}^{N} \psi_{i} \tag{c-5}
\end{equation*}
$$

The requirement that Ψ should be an exact solution to the problem is imposed by substituting Eq (C-4) into ($C-1$), and then requiring that the Euclidean norm of the right and left hand sides of ($C-1$), with respect to the weight function η, are equal.

Applying this requirement to Eq (C-1) gives

$$
\begin{align*}
& \int_{R}\left\{\langle\hat{n} \cdot \nabla K \Leftrightarrow \hat{M} \cdot \nabla \psi, n\rangle+\left\langle G^{4} \psi, \eta\right\rangle\right\} d \dot{(B)} \\
& =\int_{x}\left\{\left\langle S^{\prime}, \vec{\eta}\right\rangle-\left\langle\hat{\lambda} \cdot \frac{B \pi}{B} s^{\prime}, n\right\rangle\right\} d \hat{r} \tag{c-6}
\end{align*}
$$

where the inner product is defined as

$$
\begin{equation*}
\langle f, g\rangle=\int_{4 \pi} f^{*} g d \hat{n} \tag{C-7}
\end{equation*}
$$

and the trial and weight functions, Ψ and η are real functions. Using the vector identity (Ref 10:169)

$$
\begin{aligned}
& \int_{R}\left\langle\hat{\imath} \cdot \nabla, \gamma^{n}\right\rangle d \dot{r}=-\int_{R}\left\langle\hat{\imath} \nabla f^{\prime}\right\rangle d \hat{H} \\
&+\oint_{s}\langle(\hat{R} \cdot \hat{n}) \eta, f\rangle d \hat{s}(C-0)
\end{aligned}
$$

terns A and B of Eq (C-6) becomes

$$
\begin{aligned}
& \left.-\oint_{S}\langle(\hat{\imath} \cdot \hat{n}) \dot{M} \hat{R} \cdot \nabla \Psi\rangle \eta\right\rangle d \hat{s} \quad(c-9)
\end{aligned}
$$

1:1:

$$
\begin{align*}
\int_{R}-\left\langle\hat{\imath} \cdot \nabla k^{u} S^{u}, n\right\rangle d F & =\int_{R}\left\langle k^{u} S^{u}, \tilde{\imath} \cdot \nabla \eta\right\rangle d r \\
& -\oint_{S}\left\langle(\hat{\imath} \cdot \hat{n}) k^{u} S^{u}, \eta\right\rangle d \hat{S} \tag{C-10}
\end{align*}
$$

Substituting Eq ($\mathrm{C}-9$) and ($\mathrm{C}-10$) into ($\mathrm{C}-6$) gives

$$
\begin{align*}
& \int_{R}\left\{\langle\hat{n} \cdot \nabla \eta, k \hat{n} \cdot \nabla \psi\rangle+\left\langle G^{g} \psi, \eta\right\rangle\right\} d \tilde{r} \\
& +\oint_{S}\left\{\left\langle(n \cdot \hat{n}) k^{u} S^{u}, \eta\right\rangle-\left\langle(\hat{n} \cdot \hat{n}) k^{\mu} \hat{\imath} \cdot \nabla \Psi, \eta\right\rangle\right\} d \hat{s} \\
& \left.=\int_{R}\left\{\langle\hat{n} \cdot \nabla \eta\rangle, k^{u} S^{u}\right\rangle+\left\langle\eta, S^{\xi}\right\rangle\right\} d F \tag{C-11}
\end{align*}
$$

term A of $E q(C-11)$ can be rearranged into

$$
\begin{equation*}
\theta=\oint_{s} \int_{\pi}(\hat{r} \cdot \hat{n}) K^{\mu}\left\{S^{\mu}-\hat{n} \cdot \nabla \Psi\right\} \eta d \hat{n} d \hat{s} \tag{C-12}
\end{equation*}
$$

Using the boundary condition of Eq (C-2) and (C-3), Eq (C-12) can be written as

$$
(A)=\oint_{s}\left\{\int_{\hat{n}, \hat{n}>0}(\tilde{n} \cdot \hat{n}) \psi \eta d \hat{n}-\int_{\hat{n}, \hat{\mu}<0}(\hat{n} \cdot \hat{n}) \eta \Psi d \hat{n}\right\} d \hat{s}_{(c-13)}
$$

Eq ((-12) can also be written ai

$$
\begin{equation*}
(A)=\oint_{S} \int_{a \pi} / \hat{r} \cdot \hat{h} / \Psi \eta d \hat{r} d \hat{s} \tag{c-14}
\end{equation*}
$$

where |i means the absolute value. Substituting Eq (C-14) into $(c-11)$ gives

Eq ($C-15$) is the weak or Galcrkin form of the even parity Boltzmann equation. It is identical to Eq ($B-22$) of Appendix B.

Appendix D

Expansion Properties of Spherical Harmonics

In Chapters III and IV the angular dependence of the trial functions and cross sections was expanded in spherical harmonics. Because of the two dimensional angular dependence in μ and X, and the requirement that the expansion functions should form a complete set, the expansion is presented with m and ℓ subscripts as follows (Ref 6:608)

or

where

$$
\begin{equation*}
f_{l, m}=\int_{0}^{2 \pi} \int_{-1}^{+1} f(\mu, x) y_{e m}^{*}(\mu, x) d u d x \tag{D-3}
\end{equation*}
$$

and

$$
\begin{equation*}
V_{e m}(u, x)=C_{\ell m} P_{e_{m}}(u) e^{i m x} \tag{D-4}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\frac{\mu}{n}, x\right)=(-1)^{m} / v_{0}^{*}(-a, z) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
C_{n}=\sqrt{\frac{2 l+1}{4 \pi} \cdot \frac{(l-m)!}{(l+\pi)!}} \tag{D-6}
\end{equation*}
$$

If $f(\mu, x)$ is even in the angle x then the expansion must also be even in x, and therefore, ($D-4$) can be rewritten as

$$
R_{e}\left[V_{l, m}\right]=Q_{l, m}=C_{\ell, m} P_{l, m}(\mu) \operatorname{Cos}(m X)(D-7)
$$

where the odd iSinx term is omitted. Also from Eq (D-5)

$$
\begin{equation*}
Q_{l,-m}=(-1)^{m} C_{l, m} P_{l, m}(\mu) \cos (m x)=(-1)^{m} G_{l, m} \tag{D-8}
\end{equation*}
$$

Therefore for an even expansion Eq (D-3) can be written as

$$
\begin{equation*}
f_{\ell, m}=\int_{0}^{2 \pi} \int_{-1}^{+1} f(\mu, \psi) Q_{2, x}(\mu, x) d \mu d x \tag{D-9}
\end{equation*}
$$

and

$$
t_{l, m}=\int_{0}^{2 \pi+1}(-1)^{m} f(\mu, \gamma) Q_{l, m}(\mu, \chi) d \mu d \chi=(-1)^{m} f_{l_{1} m}(0-10)
$$

Fun an ven x expansion of $E(a, i) E q(D-2)$ can therefore be written as

$$
\begin{align*}
& f(i, x)=\sum_{l=0}^{L}\left[f_{l 0} Q_{20}+2 \sum_{n=i}^{l} f_{l, m} Q_{l, m}\right] \tag{1-1i}\\
& f(u, x)=\sum_{l=0}^{l} \sum_{m=0}^{l} f_{l, m}\{l, m \tag{0-1?}
\end{align*}
$$

15
 mansion cociileients and EG (i ariz) forms a complete set.
 Expansion

$$
\begin{align*}
\sigma^{s}\left(\hat{n} \cdot \hat{n}^{\prime}\right) & =\sum_{e=0}^{4} \frac{2 e+t^{\prime}}{4 \pi} \cdot \sigma_{l}^{s} P\left(\tilde{n} \cdot \hat{n}^{\prime}\right) \\
& =\sum_{e=0}^{4} \sum_{m=0}^{t} \sigma_{e}^{s} V_{e m}^{*}(\hat{n}) \underline{v}(\hat{n}) \tag{1}
\end{align*}
$$

where $P_{\ell}\left(\hat{\Omega} \cdot \hat{\Omega}^{\prime}\right)$ is given by Eq ($A-24$).
Eq ($D-13$) can be expanded to give

$$
\begin{align*}
b^{s}\left(\hat{\imath} \hat{n}^{\prime}\right)=\sum_{e=0}^{L}\left[\sigma_{e}^{s} y_{e_{0}}^{*}\left(\hat{n}^{\prime}\right) y_{e}(\hat{n})\right. & +\sum_{m=1}^{e} \sigma_{e}^{s} y_{c}^{*}\left(n^{*}\right) y_{0 m}(\hat{n}) \\
& \left.+\sum_{m=1}^{e} \sigma_{e}^{s} y_{e}^{*}(\hat{n}) y_{e-m}^{*}(\hat{n})\right] \tag{D-14}
\end{align*}
$$

and from Eq (D-5)

Therefore ($D-14$) becomes

$$
\begin{align*}
& =2 \sum_{e=0}^{4} \sum_{m^{*}=0}^{e} \sigma_{e}^{s} V_{e}^{*}(\pi) \sum_{e}^{*}(\hat{i}) \tag{D-16}
\end{align*}
$$

where an * means thai all terms with a $m=0$ subscript must be divided by two.

Since the scattering cross-sections are real the expansion of Eq ($D-16$) must also be real and with
$\mathrm{Eq}(0-16)$ can be written as

Note that

$$
\begin{equation*}
\cos m\left(x-x^{\prime}\right)=\cos m x \cdot \cos m x^{\prime}+\sin m x \cdot \sin m x^{\prime} \tag{1}
\end{equation*}
$$

The angles μ and X are shown in Fig. 2.
Similar derivations would give

$$
\begin{equation*}
\sigma_{S}^{g}\left(\hat{\imath} \cdot \hat{r}^{\prime}\right)=2 \sum_{l=0}^{L} \sum_{m^{\prime \prime}=0}^{2} G_{l^{c} l_{l m}^{2}}^{g} p_{l n}\left(u^{\prime}\right) P_{l m}(u) \cos m\left(x^{\prime} x^{\prime}\right) \tag{D-20}
\end{equation*}
$$

and

$$
\begin{equation*}
G_{s}^{u}\left(\hat{n} \cdot \lambda^{\prime}\right)=2 \sum_{l=0}^{l} \sum_{m^{*}=0}^{l} b_{l}^{u} C_{l m}^{2} P_{l m}\left(\mu^{\prime}\right) P_{l m}(\mu) \cos m\left(\chi^{\prime}-\chi^{\prime}\right) \tag{D-21}
\end{equation*}
$$

By inserting Eq (D-20) into Eq (A-22) the even parity collision operator can now be written as

operator $!\because(A-+0)$, can he written as

$$
\begin{aligned}
& k^{\prime u}=-1 \Gamma
\end{aligned}
$$

$$
\begin{align*}
& \text { P(x) }=(-)^{\pi} \frac{(\tan)!}{(x+m)!} \text { P(a) } \tag{D-25}\\
& \int_{-1}^{+1} P_{e_{3}}(u) \lim _{i n}^{\prime}(u) a_{u}=\frac{2}{2 e+1} \cdot \frac{(e+m)!}{(e-m)!} \delta_{e^{\prime}} \\
& \text { (D-26) }
\end{align*}
$$

where

$$
\delta_{l e}= \begin{cases}0 & \text { for } \ell \neq 0 \\ 1 & \text { for } \imath=0\end{cases}
$$

(D-27)

Appendix E

The Synthesized Boltzmann Equation

In order to formulate a numerical solution to the air-over-ground problem it is necessary to expand the weak form of the even parity boltzmann equation in a set of trial and test functions. The finite element space-angle synthesis trial and weight functions of Chapter IV will be used in this expansion. Because this is a very tedious and lengthy derivation, the more obvious albegraic steps will be omitted. The starting point of this formulaLion is the synthesized even parity Boltzmann equation, Eq (58), of Chapter III.

$$
\left.+\left\langle B_{j} Q_{\& n}, G^{s}\left(B_{i}, Q_{Q}\right)\right\rangle\right\} d \hat{r}+\left.\oint_{S}\right|_{n \pi} \mid \hat{n} \cdot \hat{n} / B_{j} Q_{\beta_{n}} B_{Q_{\Omega}} Q_{n} d \hat{s}
$$

$$
\begin{equation*}
=\int_{R}\left\{\left\langle\hat{\imath} \cdot \nabla\left(B Q_{k n}\right), K^{\dot{4}} S^{4}\right\rangle+\left\langle B Q_{\beta_{n}} S^{9}\right\rangle\right\} d \hat{r} \tag{E-1}
\end{equation*}
$$

where B_{i} and B_{j} are tensor products of cubic polynomial splines, and they are given by

$$
\begin{align*}
B_{j} & =B_{i}(z) B_{j}(p) \tag{ERS}\\
B_{j} & =B_{j}(z) B_{j j}(p)
\end{align*}
$$

also

$$
Q_{i=m}=C_{i=n} P_{i}(x) \cos m x
$$

Figure 9. Surface Normal And Particle Velocity Direction Vectors.
and

$$
\begin{equation*}
C_{l_{m}}=\sqrt{\frac{2 e+1}{4 \pi} \cdot(e-m)!} \tag{E-5}
\end{equation*}
$$

$P_{\ell m}(\mu)$ are the associated Legendre functions.
The directional derivative is given as

$$
\begin{equation*}
\hat{n} \cdot \nabla \phi=\frac{\alpha}{\rho} \frac{\partial}{\partial \rho}(\rho \phi)-\frac{1}{\rho} \frac{\partial\{\phi \beta(u, z)\}}{\partial \chi}+\pi \frac{\partial \phi}{\partial z} \tag{E-6}
\end{equation*}
$$

where

$$
\begin{equation*}
\alpha=\alpha(\mu, k)=\sqrt{1-\mu^{2}} \cos x \tag{E-7}
\end{equation*}
$$

and

$$
\begin{equation*}
\beta=\beta(-\mu, x)=\sqrt{1-\mu^{2}} \sin x \tag{E-3}
\end{equation*}
$$

$\therefore 1: 0$

If $\hat{\Omega}, \hat{\mathrm{n}}_{\mathrm{r}}$ and $\hat{\mathrm{n}}_{z}$ are considered to be unit vectors then from Fig. 7

$$
\begin{equation*}
A E=E B=C F=1 \tag{E-10}
\end{equation*}
$$

and therefore for the top surface of the cylinder

$$
\begin{equation*}
\hat{\varkappa} \cdot \hat{n}_{z}=A E \times E B \times \cos \theta=\mu \tag{E-11}
\end{equation*}
$$

and for the bottom surface

$$
\begin{equation*}
\hat{n} \cdot n_{z}=-u \tag{E-12}
\end{equation*}
$$

also $C D=\mu B=$ projection of $\hat{\Omega}$ unto the $x-y$ plane and therefore,

$$
C D=H B=E B \text { Sin } 0
$$

$$
\begin{equation*}
=\sqrt{1-\cos ^{2} \theta}=\sqrt{1-\mu^{2}} \tag{E-13}
\end{equation*}
$$

and

$$
\begin{align*}
\hat{\imath} \cdot \hat{n}_{p} & =C D \times C F \times \cos x \\
& =\sqrt{1-\mu^{2} \cos x} \tag{E-14}
\end{align*}
$$

In Appendix D the even and odd operators were given as

$$
K^{\mu} f(\hat{n})=G_{t}^{-1}\left[f(\hat{n})-2 \sum_{l=0}^{L} \sum_{m^{*}=0}^{l}\left\{\frac{\omega_{l} \mu}{\left.\hat{\theta}_{t}-\theta_{l}{ }^{\mu}\right\}}\right\}\left[4 \pi T_{l m}\left(\hat{n}^{\prime}\right) f\left(\hat{n}^{\prime}\right) d \hat{n}^{\prime}\right]\right.
$$

and

$$
\begin{equation*}
G^{0} f(\hat{n})=6_{t} f(\lambda)-2 \sum_{\ell=0}^{L} \sum_{m^{+}=0}^{l} 6_{i}^{g} \int_{4 \pi^{\prime}} T_{l}\left(\lambda^{\prime}\right) f\left(\hat{n}^{\prime}\right) d \hat{n}^{\prime} \tag{E-15}
\end{equation*}
$$

where m^{*} means that all terms with a $m=0$ index must be divided by two, and

$$
\begin{equation*}
T_{l_{m}}\left(\hat{n}^{\prime}\right)=C_{l m}^{2} P_{l_{m}}\left(u^{\prime}\right) P_{l_{m}(u)} \cos m\left(x-k^{\prime}\right) \tag{E-17}
\end{equation*}
$$

Also the inner product is defined as

$$
\begin{align*}
\langle f, g\rangle & =\int_{\Delta \pi} f^{x} g d \hat{\imath} \\
& =\int_{4 \pi} f d \hat{\imath} \quad \text { for real f } \tag{E-18}
\end{align*}
$$

Using Eq (E-16), (E-15), (E-14), (E-11), (E-12) and (E-6) and noting that $T_{C_{m}}, Q_{a_{m}}, B_{i}$ and B_{j} are all real functions, Eq (Ell) can be expanded to give

$$
\begin{align*}
& -\int_{R} \sigma_{t}^{-1} \frac{\partial}{\partial P}\left(B_{j} \cdot P\right) \cdot \frac{B_{i}}{P^{2}} d v \int_{4 \pi} \alpha \frac{\partial}{\partial x}\left(B Q_{R}\right) Q_{\& n} d \hat{\imath} \tag{E-20}\\
& +\int_{R} \sigma_{t}^{-1} \frac{\partial}{\partial P}\left(P B_{j}\right) \cdot \frac{\partial}{\partial Z}\left(B_{i}\right) \frac{1}{P} d v \int_{a \pi} \alpha \mu Q_{i=m} Q_{i n} d \hat{\imath} \tag{E-21}\\
& \left.-\int_{R} G^{-1} \frac{1}{\rho} \frac{\partial(\rho B}{\partial P}\right) \frac{R}{P} d v \int_{a \pi} \alpha \frac{\partial(B Q)}{\partial x} Q_{P=B} d r^{-} \tag{E-22}
\end{align*}
$$

$$
\begin{align*}
& -\int_{p} G_{T}^{-1} \frac{\partial}{\partial z}\left(B \cdot \frac{B_{i}}{P} d v \int_{4 \pi} Q_{-m} \cdot \frac{\partial}{\partial z}\left(Q_{p}, \mathcal{B}\right) d^{\prime} \hat{\imath}\right. \tag{E-23}
\end{align*}
$$

$$
\begin{align*}
& +\int_{R} G_{t}^{-1} \frac{\partial}{\partial p}\left(p B_{i}\right) \cdot \frac{\partial}{\partial z}\left(B_{j}\right) \cdot \frac{1}{p} d v \int_{\alpha \pi} \mu Q_{p ;} \alpha Q_{\ln } d \hat{i} \tag{E-25}
\end{align*}
$$

$$
\begin{align*}
& +\int_{R} G_{i}^{-1} \frac{\partial}{\partial Z}\left(B_{j}\right) \cdot \frac{\partial}{\partial Z}\left(B_{i}\right) d v \int_{\Delta \pi} \mu Q_{B_{m}} \cdot \mu Q_{i n} d \hat{i} \tag{E-27}
\end{align*}
$$

$$
\begin{align*}
& -\int_{P} G_{t \mu}^{u} \frac{1}{p^{2}} B_{j} \frac{\partial}{\partial \rho}\left(P B_{i}\right) d v \int_{\Delta \pi} \frac{\partial\left(\beta Q_{p n}\right)}{\partial x}\left\{\int_{a \pi} \alpha Q_{e_{m}} T_{\mu} d n\right\} d i \tag{E-31}
\end{align*}
$$

$$
\begin{align*}
& -\int_{R} \sigma_{i}^{u} \frac{\partial}{\partial z}\left(B_{i}\right) \frac{\left(B_{j}\right)}{p} d v \int_{\Delta \pi} \frac{\partial}{\partial x}\left(\beta Q_{\beta n}\right)\left\{\int_{\Delta \pi} \mu Q_{\mu=1} \pi_{r=n} d \pi^{\prime}\right\} d \hat{\lambda} \tag{E-33}
\end{align*}
$$

$(E-34)$

$$
\begin{align*}
& \left.+\int_{R} \sigma_{t+}^{4} \frac{\partial}{\partial Z}\left(B_{i}\right) \frac{\partial}{\partial z}\left(B_{j}\right) d v \int_{4 \pi} \mu_{R_{k}}\left\{Q_{Q_{m}} \operatorname{mis}_{i n} d \tilde{n}^{\prime}\right\} d \tilde{n}\right\} \tag{E-36}\\
& +\int_{R} 6 B_{j} \cdot B \cdot d v \int_{\pi \pi} Q_{2 i} Q_{\min } d r^{2} \tag{E-37}\\
& -2 \sum_{r=0}^{R} \sum_{S_{=0}^{x}}^{r} \int_{R} \sigma_{r}^{s} B_{j} B, d v \int_{a \pi} Q_{e_{n}}\left\{\int_{a \pi} Q_{e=\pi} T_{r=} d r^{\prime}\right\} d \hat{\imath} \tag{E-38}\\
& \left.+\oint_{S} B \cdot B_{j} \cdot d s \int_{4 \pi} 1 \mu \stackrel{B R}{=} \sqrt{1 \mu^{2}} \cos \psi / Q_{e_{n}} Q_{d=m} d \hat{n}\right] \tag{E-39}\\
& =\int_{R} G^{-1} \cdot \frac{1}{\rho} \frac{\partial\left(P B_{j}\right) d \nu}{\partial \rho} \int_{d \pi} \alpha \rho_{p=n} S^{u} d \hat{i} \tag{E-40}\\
& -\int_{R} G_{\epsilon}^{-1} \frac{B_{j}}{P} d v \int_{\Delta \pi} \frac{\partial}{\partial x}\left(Q_{i n} \beta\right) S^{4} d i^{n} \tag{E-41}\\
& +\int_{R} \sigma^{-1} \frac{\partial}{\partial z}\left(B_{j}\right) d v \int_{4 \pi} \mu Q_{k n} S^{u} d i
\end{align*}
$$

$$
\begin{aligned}
& \text { (} \mathrm{E}-4 \text {) }
\end{aligned}
$$

$$
\begin{align*}
& +\int_{\pi} B_{j} d \nu \int_{4 \pi} \sum_{k n} S^{s} d n \tag{E-46}
\end{align*}
$$

where

$$
\begin{equation*}
G_{t r}^{u}=\sigma_{t}^{-1} \cdot \frac{G_{\mu}^{u}}{\sigma_{t}-\sigma_{L}^{u}} \tag{E-47}
\end{equation*}
$$

and

$$
\int_{4 \pi} d \hat{n}=\int_{0}^{2 \pi} \int_{-1}^{1} d u d x
$$

Eq (E-19) to (E-36) is an expansion of the first term of Eq ($E-1$). Eqs ($E-37$) and ($E-38$) is an expansion of the second term. Eq (E-39) is an expansion of the third term. Eq (E-40) to ($E-46$) is an expansion of the right hand side of Eq (E-I). $\sigma_{r}^{g}, \sigma_{t}$ and $\sigma_{t r}^{u}$ are functions of z and they must be included in the spatial or dy integrals. In cylindrical geometry with azimuthal symmetry

$$
\begin{equation*}
d v=2 \pi r d r d z \tag{E-40}
\end{equation*}
$$

and $f d s$ means an integration over the surface of the problem cylinder, Fig. 9.

For the air-over-ground problem with an exponentially varying air density

$$
\begin{align*}
& \sigma_{t}(2)=\sigma_{t}(0) e^{-2 / 5 h} \tag{E-50}\\
& \sigma_{t}^{u}(2)=\sigma_{t}(0) e^{+2 / 5 h} \tag{E-51}\\
& \sigma_{\mu}^{9}(2)=\sigma_{\mu}^{9}(0) e^{-3 / S h} \tag{E-52}
\end{align*}
$$

where $\left.\sigma_{t}(0), \sigma_{r}^{g}(0), \sigma_{t r}^{u} 0\right)$ are cross -sections of air at sea level.

$$
\begin{aligned}
\mathrm{Z} & =\text { the height above sea-level } \\
\text { sh } & =\text { atmospheric scale height }-7 \mathrm{~km}
\end{aligned}
$$

In Eq (E-19) to ($\mathrm{E}-46$) the integrals are separated in the space and angle variables. These are double integrals in space and angle. However, they can be separated into single integrals of the μ, x, ρ and z variables.

Appendix F

Angle Integrals of the Synthesized Second Order Boltzmann Equation

An expansion of the even parity Boltzmann equation has produced twenty-eight integral terms (Appendix E). By a further expansion and separation of the integration variables twenty distinct single angle integrals are formed. These angle integrals are dependent on the degree of the spherical harmonic trial function expansion and independent of the problem parameters. They can be evaluated once and thereafter used as a part of the problem input data. In this research project these integrals were numerically integrated for each combination of the ℓ, m, k and n expansion subscripts. They were then stored as a matrix, and selected products were used to produce each of the twenty-eight angle integrals of Eqs (E-19) to (E-46) in Appendix E.

These twenty integrals are

$$
\begin{align*}
& \int_{0}^{2 \pi} \cos ^{2}(x) \cos (m x) \cos (n x) d x \tag{F-1}\\
& \int_{0}^{2 \pi} \cos (x) \frac{\partial}{\partial x}\{\sin (x) \cos (m x)\} \cos (\pi x) d x \tag{F-2}\\
& \int_{0}^{2 \pi} \cos (x) \cos (\pi x) \cos (n x) d x \tag{F-3}\\
& \int_{0}^{2 x} \frac{\partial}{\partial k}\left\{\sin (x) \cdot \cos (x \operatorname{kin}\} \cdot \frac{\partial}{\partial x}\{\sin (x) \cos (\sin x)\}(x\right. \\
& \left.\int_{0}^{2 \pi} \cos x\right) \frac{\partial}{\partial x}\{\sin (x) \cdot \cos (\pi x)\} d x
\end{align*}
$$

$$
\begin{align*}
& \int_{0}^{2 \pi} \cos (m x) \cos (n x) d x \tag{F-6}\\
& \int_{0}^{2 \pi} \cos (x) \cos (n x) \sin (m x) d x \tag{F-7}\\
& \int_{0}^{2 \pi} \cos (n x) \cdot \sin (m x) d x \tag{F-8}\\
& \int_{0}^{2 \pi} \frac{d}{\partial x}\{\cos (n x) \sin (x)\} \sin (m x) d x \tag{F-9}\\
& \int_{0}^{\pi / 2} \cos (x) \cos (m x) \cos (n x) d x \tag{F-10}\\
& \int_{\pi / 2}^{3 \pi / 2} \cos (x) \cos (m x) \cos (n x) d x \tag{F-11}\\
& \int_{3 \pi / 2}^{2 \pi} \cos (x) \cos (m x) \cos (n x) d x \tag{F-12}\\
& \int_{0}^{1} \mu P_{l m}(\mu) P_{k n}(\mu) d u \tag{F-13}\\
& \int_{-1}^{0} \mu P_{l m}(\mu) P_{k n}(\mu) d \mu \tag{F-14}\\
& \int_{-1}^{+1}\left(1-\mu^{2}\right) P_{k n}(\mu) P_{l n}(\mu) d \mu \tag{F-15}\\
& \int_{-1}^{+1} \sqrt{1-\mu^{2}} \cdot \mu \cdot P_{l n}(\mu) P_{k n}(\mu) d \mu \tag{F-16}\\
& \int_{-1}^{+1} \sqrt{1-\mu^{2}} \cdot P_{l n}(\mu) P_{k n}(\mu) d \mu \tag{F-17}\\
& \int_{-1}^{+1} u^{2} P_{l m}(u) P_{k n}(\mu) d \mu \tag{F-18}
\end{align*}
$$

$$
\begin{align*}
& \int_{-1}^{1} u P_{e_{m}}(u) P_{k n}(u) d u \tag{F-19}\\
& \int_{-1}^{+1} P_{m}(u) P_{n}(u) d u \tag{F-20}
\end{align*}
$$

A numerical evaluation of all twenty integrals was carried out for a third degree spherical harmonic expansion. This evaluation showed that these integrals are equal to zero for many combinations of the ℓm and $k n$ subscripts.

Integrals ($F-10$) to ($F-14$) are a part of the surface integral term which has been partitioned into the outward ($\hat{\Omega} \cdot \hat{\mathrm{n}}>0$) and inward ($\hat{\Omega} \cdot \hat{\mathrm{n}}<0$) directions. This partitioning was incorporated into the weak form derivation of Appendix C.

Appendix G

Space Integrals (Bicubic Splines) of the Synthesized Second Order Even Parity Boltzmann Equation

A trial function expansion of the spatial flux dependence, in the weak form of the even parity Boltzmann equation, has been carried out in Appendix E. Bicubic polynomial splines in the ρ and z variables were used to form a tensor product space. These splines are twice continuously differentiable and have nonzero integrals $\int_{R} B_{i}(x) B_{j}(x) d x$ for all $|i-j| \geqslant 4$. After a separation of the ρ and z variables of integration seventeen distinct integral forms are produced. These integrals, which include the source integrals, must be evaluated over the entire problem domain. The space integrals of Appendix E are selected products of the following seventeen single integrals.

$$
\int_{0, H}^{R} B_{j}(\rho) \cdot B_{i r}(\rho) d \rho
$$

$$
\begin{equation*}
\int_{0}^{0} e^{H} z / \operatorname{sh} B_{j z}^{(z)} \beta_{i}(z) d z \tag{G-7}
\end{equation*}
$$

$$
\begin{align*}
& \int_{0}^{R} \frac{1}{\rho} \cdot \frac{\partial}{\partial \rho}\left\{\rho B_{j r}(\rho)\right\} \cdot \frac{\partial}{\partial \rho}\left\{\rho \beta_{i r}(P)\right\} d P \tag{G-1}\\
& \int_{0}^{R} \frac{\partial}{\partial \rho}\left\{\rho \beta_{j r}(P)\right\} \cdot \frac{B_{i \mu}(P)}{\rho} d \rho \tag{G-2}\\
& \begin{array}{l}
\int_{0}^{R} \frac{1}{p} B_{j i}(p) B_{i j}(p) d p \\
\int_{0}^{R} \frac{\partial}{\partial p}\left\{\rho B_{j}(p)\right\} \cdot \frac{B_{j}(P)}{\rho} d p
\end{array} \tag{G-3}\\
& \int_{0}^{P} \frac{B_{j}}{\beta_{j}}(p) \cdot B_{i j}(p) d p
\end{align*}
$$

$$
\begin{align*}
& \int_{0}^{H} e^{H / s h} \cdot \frac{\partial}{\partial z}\left\{B_{i /}(z)\right\} \cdot B_{j z}(z) d z \tag{G-8}\\
& \int_{0}^{H} \frac{\partial}{\partial z}\left\{B_{j z}(z)\right\} \cdot \frac{\partial}{\partial z}\left\{B_{i}(z)\right\} e^{z / 5 h} d z \tag{G-9}\\
& \int_{0}^{H} B_{i}(z) \cdot B_{j}(z) e^{-z / 5 h} d z \tag{G-10}\\
& \int_{0}^{H} B_{i z}(z) \cdot B_{j}(z) d z \tag{G-11}
\end{align*}
$$

The Source Integrals

$$
\begin{align*}
& \int_{0}^{R} \frac{\partial}{\partial \rho}\left\{\rho B_{j}(\rho)\right\} H_{j}(\rho) d \rho \tag{G-12}\\
& \int_{0}^{R} B_{j r}(\rho) \cdot H_{j}(\rho) d \rho \tag{G-13}\\
& \int_{0}^{R} B_{j r}(\rho) H_{j}(\rho) \rho d \rho \tag{G-14}\\
& \int_{0}^{H} B_{j}(z) H_{j}(z) e^{z / s h} d z \tag{G-15}\\
& \int_{0}^{H} \frac{\partial}{\partial z}\left\{B_{j z}(z)\right\} H_{j}(z) e^{z / s h} d z \tag{G-16}\\
& \int_{0}^{H} B_{j z}^{H}(z) \cdot H_{i}(z) d z \tag{G-17}
\end{align*}
$$

where

$$
\begin{aligned}
B(z) & =\text { cubic polynomial } z \text {-spline } \\
B(x) & =\text { cubic polynomial } p \text {-spline } \\
\text { sh } & =\text { atmospheric scale height } \\
\mathrm{R} & =\text { outer radius of the problem cylinder } \\
H & =\text { problem cylinder height }
\end{aligned}
$$

$H(z)$ and $H(\rho)$ are the source interpolating functions (linear Lagrange polynomials).

Appendix H

Ar Expansion of the First Scatter Source in Legendre Polynomials

In Chapter IV the first scatter source was defined as

$$
\begin{equation*}
S(P, Z, \hat{n})=\sigma^{s}\left(Z, \hat{n} \cdot \hat{n}^{\prime}\right) \phi_{d}\left(\rho, Z, \hat{n}^{\prime}\right) \tag{H-1}
\end{equation*}
$$

where

$$
\begin{aligned}
& \phi_{\mathrm{d}}\left(\hat{r}, z, \hat{\Omega}^{\prime}\right)=\text { direct fluence of Chapter IV, Eq (74) } \\
& \sigma^{s}\left(z, \hat{\Omega}^{2} \cdot \hat{\Omega}^{\prime}\right)=\text { scattering cross-section }
\end{aligned}
$$

The usual Legendre polynomial cross-section expansion will now be carried out. Also the even and odd parity first scatter source expressions of Chapter IV will be derived. Expanding σ^{s} in Legendre polynomials and using the addition theorem (see Appendix: D)

$$
\sigma^{s}\left(z, \hat{\imath} \cdot \hat{\imath}^{\prime}\right)=2 \sum_{C=0}^{L} \sum_{m=0}^{e} \sigma_{e}^{s}(z) P_{m}\left(u^{\prime}\right) P_{1}(u) \cos \left(m\left(x-x^{\prime}\right)\right)(H-2)
$$

where m^{*} means that all terms with a $m=0$ subscript must be divided by two, and

$$
\sigma_{l}^{s}(z)=\sigma_{l}^{s}(0) e^{-z / s h}
$$

From Fig. 5 and Fig. 2 it is apparent that $\mu=\mu d$ and $X^{\prime}=0$

Therefore

$$
\begin{aligned}
S(P, Z, \hat{n}) & =2 \phi_{d}\left(P, 2, \hat{n}^{\prime}\right) e^{-2 / s h} \\
& \times \sum_{l=0}^{L} \sum_{n^{*}=0}^{l} \sigma_{e}^{s}(0) C_{l m}^{2} P_{l m}(u) P_{\text {l }}(u) \cos m \psi(H-4)
\end{aligned}
$$

and using the identity (Ref 18:96)

$$
\begin{equation*}
P(-u)=(-1)^{e-m} P_{e \infty}(u) \tag{H-5}
\end{equation*}
$$

and a little algebra, the even and odd parity first scatter sources can be written as

$$
\begin{aligned}
& S(\rho, z, \hat{\imath})=\frac{1}{2}[S(P, z, \hat{\imath})-S(P, Z,-\hat{n})] \\
& =\phi_{d}\left(\beta, Z, \hat{n}^{\prime}\right) e^{-3 / s h} \sum_{e=0}^{L} \sum_{i^{x}=0}^{e} G_{e}^{s}(0) C_{\operatorname{lom}}^{2}[1(H-6) \\
& \left.-(-1)^{e-m}\right] P_{m}(u) P_{n=n}(u d) \cos (m x)
\end{aligned}
$$

and

$$
\begin{align*}
& S^{S}(\rho, Z, \hat{\imath})=\frac{1}{2}[S(\rho Z, \hat{\imath})+S(P, Z,-\hat{\imath})] \\
& =\phi_{d}\left(\rho, Z, \hat{R}^{\prime}\right) e^{-3 / s h} \sum_{R=0}^{L} \sum_{m=0}^{L} \sigma_{b}^{s}(0) C_{m}^{2}[1 \\
& \left.+(-1)^{e-m}\right] P_{\ell, m}(x) P_{e=m}(u d) \cos (m x) \tag{H-7}
\end{align*}
$$

Appendix I

A Derivation of the Total Particle Fluence

In Chapter IV a trial function expansion of the even parity angular particle fluence was given as

$$
\psi(P, z, \mu, x)=\sum_{i=1}^{I Z} \sum_{i=1}^{I R} \sum_{l=0}^{L} \sum_{m=0}^{e} A_{i, l} B_{l, m}(z) B_{i}(P) Q_{l m}
$$

where

$$
\begin{equation*}
Q_{e m}=C_{\text {em }} P_{m} \cos \cos n \tag{I-2}
\end{equation*}
$$

and

$$
\begin{equation*}
C_{e m}=\sqrt{\frac{2 e+!}{4 \pi \cdot \frac{(l-m)!}{(l+m)!}}} \tag{I-3}
\end{equation*}
$$

The $A_{i, j, \ell, m}$ mixing coefficients are obtained from a numerical solution of the second order synthesized Boltzmann equation of Chapter IV.

The angular even parity fluence is also defined as

$$
\begin{equation*}
Y(\beta, 2, \mu, x)=\frac{1}{2}[\phi(p, m, x)+\phi(,, 2,-\mu,-x)] \tag{I-4}
\end{equation*}
$$

An integration of $\mathrm{Eq}(\mathrm{I}-4)$ over all directions gives the total even parity particle fluence $\Psi(\rho, z)$, and also the total particle Eluencr ono, z). This is because

$$
\begin{equation*}
\int_{4 \pi} \Psi(P, Z, \mu, x) d \hat{n}=\Psi(P, Z) \tag{I-5}
\end{equation*}
$$

$$
\begin{aligned}
& =\frac{1}{2} \int_{4\rangle} \phi(\rho, z, \mu, x) d \hat{\imath}+\frac{1}{2} \int_{\mu \pi} \phi(\rho, z,-\mu,-x) d \hat{\imath} \\
& =\int_{\Delta \pi} \phi(\rho, z, \mu, x) d \hat{\imath}=\phi(\rho, z)
\end{aligned}
$$

Therefore

$$
\begin{equation*}
\psi(\rho, Z)=\phi(p, Z) \tag{I-6}
\end{equation*}
$$

Eq (I-1) will now be integrated to give the total particle fluence at position (p, z). Using the orthogonal properties of Legendre polynomials this integration is carried out as follows.

The zero order associated Legendre function is defined
as

$$
\begin{equation*}
P_{0,0}(u)=1 \tag{I-7}
\end{equation*}
$$

Multiplying Eq (I-I) by $\mathrm{Eq}(\mathrm{I}-7)$ and integrating over all o and x directions gives

$$
\begin{align*}
& \int_{0}^{2 \pi} \int_{-1}^{1} \psi(P, z, \mu, x) P_{g, 0}(\mu) d \mu d x \\
& =\Psi(P, z) \Rightarrow \sum_{i=1}^{L Z} \sum_{i+}^{L R} \sum_{m=0}^{C} A_{i j}, \lim B_{i 2}(z) B_{i}(P) \\
& \times \int_{0}^{2 \pi} \int_{-1}^{11} Q_{\ell m}^{12} \mathcal{P}_{0}(x) d x d x \tag{I-i}
\end{align*}
$$

Substituting Eq (I-2) for $Q_{l, m}$, the integral of Eq (I-8) becomes
where

$$
\int_{0}^{2 \pi} \cos (m x) d x= \begin{cases}0 & \text { for } m \neq 0 \tag{I-10}\\ 2 \pi & \text { for } m=0\end{cases}
$$

and (see Appendix D)

$$
\begin{align*}
\int_{-1}^{1} C_{l, 0} P_{e 0}(u) P_{0,0}(u) d u & =\frac{2}{2 l+1} \cdot \frac{(l+0)!}{(l-0)!} S_{e 0} \cdot c_{e_{0}} \\
& =2 C_{0,0}=2 / \sqrt{4 \pi} \tag{I-11}
\end{align*}
$$

therefore Eq (I-9) becomes

$$
\begin{equation*}
2 \pi \cdot 2 / \sqrt{4 \pi}=\sqrt{4 \pi} \tag{I-12}
\end{equation*}
$$

and the total particle fluence is

$$
\begin{aligned}
& \phi(P, Z)=\psi(P Z)=\sqrt{4 \pi} \sum_{i=1}^{I Z} \sum_{i=1}^{I P} P_{i j \ell_{m}} B_{i z}(z) B_{i /}(P)(I-13) \\
& \text { where } C=m=0
\end{aligned}
$$

The angular particle fluence is given by

$$
\begin{equation*}
\phi(P, Z, \hat{n})=U(P, Z, \hat{\imath})+X(P, Z, \hat{n}) \tag{I-14}
\end{equation*}
$$

where $x(p, z, \hat{0})$ is the odd parity fluence, which, is defined in terms of the even parity fluence and source by the following expression

$$
X(P, Z, \hat{\imath})=K(\underset{r}{\psi})[S\langle\rho, Z, \hat{\imath})-\hat{\imath} \cdot \nabla \psi(P, Z, \hat{n})](1-15)
$$

Therefore once $\Psi(\rho, z, \hat{\Omega})$ has been found the odd parity fluence and the angular particle fluence $\phi(\rho, z, \hat{O})$ can be computed from Eqs ($I-15$) and ($I-14$).

Appendix J

Computer Subroutines

A computer program has been written to solve the synthesized Boltzmann equation of Chapter IV. This program is designed to use a trial function expansion in bicubic splines and spherical harmonics, and to perform a first scatter sourco interpolation using linear Lagrange polynomials. The program in an assemblage of several subroutines which collectively perform the following tasks.

1. Computes all single space and angle integrals.
2. Combines the single μ and x angle integrals for all combinations of the spherical harmonic expansion subscripts.
3. Combines the single o and z integrals for all combinations ol the bicubic spline expansion subscripts.
4. Assembles the coefficient problem matrix.
5. Computes and interpolates the first scatter source.
6. Assembles the source vector.
7. Checks for symmetry and diagonal dominance.
8. Solvas ior the Ai.j, , mexpansion (mixing) coeificients by the method ot suceessive over-relaxation.
9. Solves for the total particle fluence.

A ten point rewton-Cotes sinele interration routine was
 ot Appendices F and G. lhis interration routine is an in-nou subrontim of tho dir bonce Auronantical Systems Division, Ori bl-baterson dir forco basr. The overall prosram dooic
has been written in a manner whereby this integration routine could be used．The program is written in Fortran V．

Listing of Problem Subroutines

FFOGFAN MAIH

EDrmarres ISHESIF

－EGURTIDH FHII THE AIF－G？EF GFDIHII FFDELEM FDF THE FEAKTIDH＊

－TEH FGIHT HE！itaH EDTE IHTEGFATIGH FDUITIHE．

FFFIHT＊FFRELEN IHFIIT IARTA．
FFIIHT＊

FFIIHT＊，

FFIHT＊$\because I=, H I, \quad H E=, H E, \quad \triangle I E T=, I I T$
FFFIHT＊

1HDIEITT HFE ZEFD．
FETHT＊．

HLL＇L．EVEH MCMEHT－FFE EEFQ．
FFIHT＊．
FFFIHT＊，$\quad, \quad, I I L \cdot I \cdot, I=I \cdot L+I F$
FFIHT＊＊

FEI：IT．．
二ここ「「．．．
\therefore ェ！！。
FF： 1 ••
：7＂：
ごこ。
$+\mathrm{EI}!\mathrm{T}=\mathrm{E}=1 \mathrm{i}$
ロこ＝

```
FFIHT*, THE SHEFIEAL HMFMDHIG GOEFFIIIENTS &L.M".
FFIIHT*
IOC S L= I, LMA%:
FFIHT*:GOLOMOM=D,L:
FFINT
FFIHT
\therefore1=0.
ス=E*HTAH!1.
TDL = gm@01
FDUMT = こ00!
IT'FE=1
FFIMT* FHGILAF IHTEGFALS OF SFHEFIIGL HAFMDHISE FDF THE
FFIHT*.GGHLEFHIH SQLIITIHY TO THE EMEH-FHFIT'G FOFM DF THE
```



```
FFIHT*, FHFT DF EOF&-IM%, E:OFHHIED IHSIHES FHI EDEIFES.
FFITHT**
IIC 15, IOH=1,1E
```



```
FFINT*, FHGIILFF GHAFHDHIE, IHTEGFFL=,ISH
IO 10 M= \, LMF%
FFIHT * i , SHMH,H,ISHO,H=O,LNHO
FF:INT**
FFIITT*,
GOHTINHE
Z1= - 1.!
\therefore=1.
ITYFE=Z
FFIHT*, THE GSGIIFTEI LENGEHDFE FDLYHDHIGLS IHTEGFALS FDF THE
FFIHT*, GHLEFHIH SOLUTIDH.
```



```
FFIHT*. IHTEGFHTEI IUEF THE IHTEFUFL :-1:+1:.
FFFIHT**
ID EC IF=1, S
```



```
FFIHT*, HEDGIATEI LEGEHIIFE FOLYHDHIFL INTEGFHL=`, IF
I口ご目肌=1,トT
EFT!TT.., , =:.I!M,IT,IE..IT=1,IT,
FCT:T*
EFINT**
COHTIHHE
```



```
ITT* = 1
H:!=こごーコ1, 「こ+1.1
IC 三n I=|, It+E
```



```
=`Z !=O!!'!
        =1'+
IT,FE=:
```



```
[0: % i=10
```



```
ITミ=1
FFIHT** MFTFI` UFLIIES FOF Z-SFHIE SUIFIE IHTEGFFLS
FFIMT**
I口 5GI=1, #
```



```
EOHT IHHE
゙:==FE-F1, IF+1.1
IO EOI=O.H%+E
FH%:I:=F1+I*IF
```



```
FHF:IO=FHMCI
1F= =1%+E
HT=HT+KT*1HRこ-1%+HES*HFS-1SN
FFIHT**
FFFI!!T**
FFIHT* THE TOTAL IH|NEF DF TFIFL FIHHTIDNS = HT
FFIHT** THE HIMEEF GF LEGENIIFE FIHtIGIDHF= =rT
FFINT
FFIHT*,
FFIHT* FFOFLEN GEDHETF'; IHFU!T IMTH.
FFIHT*, HOTE,E,F: MESH IDOFIIFARTE,E,F,
FFIHT*,
```



```
IO ESML=M,NF=- S
FFIHT* , , INF, , ,NI, , , FHF,NFO, , FHFOMI
FFIIHT**
FFIHT*,
IT;FE=\Sigma
IT:=0
FFIHT* MATFI:: GFL:ES FCFF F-SFAIE IHTEGFFI_.
FFITHT*,
IID 白 I=1,t
```



```
GCHTITHE
IT:=%
FFIHT* MATFIO: URLUES FDF F-SFGEE SDIFIE ITHTEGFFLS.
FFIHT * 
E! !-! !=:•=
```



```
OHTIME
TC :GMFUIE THE INTEFFELGTIOIG FGIHT URLIEE
```



```
TD GPFIITE THE FFOELEM -GNFEE UEITOF
```



```
TC SOMFIITE THE -TIFFIEE- ATFTO.
```



```
    *-!!- `دF:1,HこOTT
IT CL OE IHE FFQELEH MHTFI:.
```



```
    = !"r.
```



```
!コこリコーご!!
IF=,FE-F1% |F
I口 11㑑 I= I,ME
I口 110 I= 回MF
F:=F1+I* IF
IF,F.LT.FHE:O, F=FHF:G
こ=こ1+I*I号
```



```
TFHI=IFHI +TFHI
FFFIHT*,
FFIHT*, , , ,F,, , , ,FHI, IIFHI,
1 TFHI
ECRTIHHIE
GO TO 1%O
FFIHT* FFEMATIFE FFQELEM IIATA EHII
STDF
EIII
SEFOUTIHE SFHEF,LHE%, IHISH,%1,NE,TOL,FDITHT:
IIHEH=IOH [I|IH: O: S.O:SO
ECMMOHED N,IHEZ ISH,IT'GFE,ITE,ITT'i'
```



```
* 吕E DF A TEH FQIHT MEMTOH-IGTEG IHTEGFATIOH FCUITIHE.
********************************************************************
IF.IIH.LE.G.GD TO EO
IF IIH.EG.1回 THEH
    1=!.
\becauseこ=こ.*FTHKM1.'
吅T口E|
E!EE IF &ISH.EG.II% THEH
    E=ご•FTHTH,1.,
    :1=气&FTEr!!.O
GOTD E|
ELEE IF IISH.EG.1E' THEH
:1=+&FTHH!1.,
    \therefore=:*ージッい!.
E!+I!F
- CNTTM,|E
[口 三| H=|,LMA
IO डn H= O, LMF
```



```
GCHT[!ME
F5r!=1!
-:!
```



```
IF IIF.EO.T. THEH
    \therefore1=\.
    =1.0
G口TO ミ0
ELSE IF IIF.EI.E' THEH
\because1=!.I
    E=-1.0
EHTIIF
EDHTIHHE
I 1,I= 0
IDC 40 = = LIME:
```



```
IT=0
I li= IM+1
IIC +M L=O, LMA:
I口 +!M=O•L
IT=IT+1
```



```
IDHTITHE
EETIFPH
EHE
FGra!TIEt4
[HNEWIGH FTH:',- -
```


IE , !-4.E日. 1 THE!

- こと一。
FETIFI

FETAFH
ELE IF II:H.EM. A, THETH


```
FETIGFH
ELSE IF &ISH.EG.G` THEH
```



```
FETIFFH
ELEE IF ISH.ED.G THEN
```



```
EHIIIF
FETIIFH
EDHTIHHIE
F=1-\cdots*E
IF,F.LE.1. IE-1 OMF=0.
IF &IF.ED.I` THEN
\because=F*FLF,X,N,H+FLFFQ,L,M
FETIIFH
ELGE IF &IF.EG.E` THEH
```



```
FETIGFH
ELSE IF CIF.EE.E% THEH
```



```
FETIFFH
EL=E IF IIF.EG.H' THEH
```



```
FETIFFH
EL-E IF,IF.EG.F.DF. IF.EG.I.DF.IF.EO.EO THEH
```



```
FETUF!4
ELQE IF ,IF.EO.E゙, THEH
\because=FLF, 目,if*FLF,}\because,L,F
ENIIF
FETIFFH
EDHTITHE
IFIITYFE.EG.E゙GDTC EG
IF•ITE.ES.1.EL TL !ご!
IF 'i.E!.1, THE!H
r=1
\dagger=1
G0T% - %
E:E:= i.ご.こ THEB
#=1
11=
GCTD ア0
ELEE IF,I.EI. O THEH
P=
|=
FQ TO ア!
```



```
=!
= :
M-M
```



```
:-
二口T! - - 
\because:[IF
    EHIIMG
```

```
IF!ITS.EG.E゚GD TO 1\XiO
IF CI.EG.1` THEH
M= =
11= S
Bロ TO ア0
ELSE IF ;I.EO.E: THEH
M=:
H=1
G口TO アO
ELSE IF II.EO. B. THEH
M=1
H=1
G口TO P品
ELSE IF :I.EE!4` THEN
M=亏
H=1
GOTO FO
ELSE IF &I.EG.S THEH
M=1
H=1
BCTG ア行
EL=E IF &I.ES.G% THEH
M=1
H=1
EHIIIF
```



```
!'
```



```
IF 'I.LE.\Xi' THETt
OEOF,}\because=HOHOFI*SF
FETIIFH
ELEE IF 'I.ES.4, THEH
```



```
FETIEFH
ELZE IF II.EN.S', THEH
\prime=FFI-F;
FET:ET
=15:=
SH:T|H:E
IF I.LE. :' THEH
IF,:.EE, M, ::=1. IE-SM
\because= FL\bulletFE
EETHEP+
EL,E IF I.EI.H.DF.I.EG.E, THEH
    = =. E: %
```



```
H=シ
G口 TO 140
ELEE IF II.EG.O' THEH
H=1
G0 TD 140
EHIIIF
EDHT IHHE
IF &I.EG.1) THEN
H=S
BTO 140
ELSE IF CI.EO.E.DF.I.EG.ZO THEN
H=1
EHIIF
```



```
FHE=HIF!IH,FTHYLS,FHNGL+1,,%,
IF!ITE.EG.EOED TD 1%品
IF II.EG.1.OF.I.EG.EO THEN
OFFH1-SFHE ENFOFOH)
FETIIFH
EL=E IF II.EG. O' THEH
OFFHI SFHE
FETHFH
EHIIF
EDHTITHE
IF II.EG.1.DF.I.EO.EO THENH
Y=-FH1*SHE
FETUEF
ELS IF &I.EO. Z. THEH
''=SFH1*SFHE**
EHIIF
FETIIFH
EHIM
FIH4T TIDH FLF,}\because,I,I
```

+*+****+********

- THI FGUTIHE EELEIT HHI EOHFUTES THE FGSGIATEI LEGEHIFE
- FIHTI IDH いHIIH I EEITG INTEGFHTEI.

二⿲丿. - . ミ

$E=$ ・ー・•
IF I I.E日. I. ATH. . EG. G. THEH
FLF $=1$.
FETIIFII
ELE IF I I.ET. 1. FHIT. AEG. OI THEH
FL.F=:
EETIEM

FETI:FH

こr"r.:

二ロー:


```
    FLF=`*F
    FETIIFH
    ELEE IF II.EG. `. BHI. I.EM.O% THEH
```



```
    FETIIFH
    ELSE IF II.EO.E.FIHI.J.EG.1. THEN
```



```
    FETIIFN
```



```
    FLF=15.GF
    FETIIFH
    ELEE IF II.EN. З.FITI.,I.EO. 彐' THEH
    FLF=-15.*'F**1.S
    ENIIF
    FET!FIH
    ETHI
```



```
    - こHESEFIFT:.
```



```
    FFIHT*. TOTHL IHTEGFHL UFLIEE IH MATFI:: FCFM, CF THE GFHEFIIこ:
```



```
    FFIHT* THESE धGLIES GFE SELEITEI FFOIIMT DF THE FG-DGIETEI
```



```
    FFIHT* CDMFUITEI EHFLIEF. THE'O FEFFESEITT THE GGFTTEFIHG EHAT
```



```
    FGIHT**
    FFT!HT*
```



```
    I li=1
    IC . :. Sr.: THE!
    --
    SU i[ l!
    ELEE IF 'I.E!口.E', THE!,
    1-H=こ
    IF'H=1
    SO 10 1!
    EL=E IF :.5`... THF:
    U=
    \丁TG 1!
        - =
    \becauseここ!
```



```
    - --1
    !
```

```
G口T口 10
ELSE IF 'I.EG.E, THEH
ISH=5
IF'H=こ
GOTO 10
ELSE IF &I.EO.T THEN
ISA=\Xi
IF'H=\Xi
G口T口 1!
ELZE IF &I.EG.EM THEN
I.H=5
IFH=ミ
G口T口 ジシ
EL&E IF II.EO.G' THEH
ISH=F
IFH=4
G口 TC i!
ELSE IF II.EQ.15, THEIH
ISH=E
IFH=と
FロT\ 1!
EHIIIF
GロTO シだ
U口 इO Y=O.LVF:
I口 こ0+t=0.t
IT= I
I 1,= I M ! + I
ID ₹M = = LMM
IC %ilom,L
IT=IT + !
```



```
EDHTIN゙息
GLTC E:
HO EE + =I,LNF:
IG こ! !=!!,
IT=!!
IM= I':+ +
```



```
\becauseO }\because=|, 
```



```
COHTII|E
```



```
IF II.EG.E゙.DF.I.EG.E', THEI;
```



```
[0 4| 1:=に.9:
:=:
!二\mp@code{! +}
```



```
T=!
```



```
#rr+"
```

TEMFI＝FL，IW，IT，F＋FLCIW，IT，O

EHIIF
Cortitile
Gロ TV E日0
ELE IF CI．ED．EO THEH
ISH＝亏
IF＇H＝3
190T0 45
ELEE IF I．EO．ごSTHEH
I－F＝E
I $\mathrm{F} \cdot \mathrm{H}=\mathrm{B}$
阳T0 45
ELEEIF，I．EO．E4，THEH
ISH＝た
IF＇ $\mathrm{F}=5$
EロTロ 4
ETHIIF
可 Tロ 5든
ID 5 日

IT＝10
I $1.1=I: 1+1$
IUC S L＝I L LMF
I口 三日 $\mathrm{H}=\mathrm{H}=\mathrm{O}$
$I T-I T+1$
$i^{-}=\mathrm{L}-19$
$\bar{H}=1 .-1-1.1 * M^{-}$

EDTTITUE
IF II．EG． E ，THEH

$\mathrm{IT}=\mathrm{\square}$
$\Gamma 1.1=T 1.1+1$

$t \mathrm{~T}=\mathrm{i}^{\mathrm{T}}+1$
$M==-19$
$\mathrm{H}=\mathrm{C} 1 .+1-1, \cdots \notin \mathrm{Ma}^{-}$

$\because \mathrm{HI}$

ISE＝「
ISI＝
IEE＝
IFH＝
IFE：$=$
ELTE TF II．EG．1ジ THEN
I $\mathrm{A}=\mathrm{B}$
IE＝r
$I \leq I=\overrightarrow{1}$
I E＝
IFA＝
IFE：$=$
回保 $1=0$
ELEE IF II．EO．1 O THET

$\mathrm{I} \mathrm{E}=3$
ISTI＝
I．E $=\bar{i}$
IF＇H＝亏
IF $E=$
ELEE IF II．EO．14：THEH IVF＝E
I $\mathrm{E}=\mathrm{F}$
$\mathrm{IC} \mathrm{I}=\mathrm{a}$
ISE＝
IFF＝
IFE＝5
EL－EIF I．EG．15：THEK
IこF＝「
I－E＝
I： $\mathrm{I}=\boldsymbol{=}$
I－E $=$
IF＇H＝5
IFF $=$

$\mathrm{FE}=$
$\mathrm{I} \mathrm{I}=\mathrm{B}$
I－E＝－
IFF＝ IFE＝


```
I-E=た
I-I=S
ITE=S
IFH=5
IFE:=
G口 TO 130
ELEE IF :I.EG.こO; THEH
Iご二゙
I-E:O
Iこ!=%
I昂=:
IFH=と
IFE:=%
G口 Tロ 1S0
EHIIIF
GOTO 15G
ID| 145 %=0, LMF%,
IIC 145 H=0,0
IT=IT
I II= I M I + I
IID 14E L=O. LPG:
IO14E M= M, L
IF=0
IT=IT+1
IF,In, IT,I!=!.
[口 14E JF=|,LHM
TETF=0.
```



```
IIC 14O I==日, IF
IF=IF+1
IH=ご
IF,!-EO,OMIF=IF
```



```
ECHTIPHIE
```



```
    G!!:い足
```



```
IF 'I.EN.EE, THEN
I二F=\Sigma
I;E=r
IF=,
I-S='
「とム=--
\cdots=
EETE M.GOS THET
```

```
EL:E IF iI.EO.EO, THEH
    I-F=%
    I-F=こ
    I.I=E
    ICE=O
    IFH=5
    IFE=「
    ErtIIF
    ID 1FE R=O,L|G%
```



```
    IT=I
    I HI I I HI I I
    I口 1TE L=O, LRFE
    IO 1, 兵 M= M, L
    IF=0
    IT=IT+1
    G-IM,IT,I = O.
    IID 1,号 IF=1I•LMA%
    TEMF=0.
```



```
    IIC 1TO I-=昌, IF
    IF=IF+1
    H-=L-H
    F=E*1.-'-1.!*ME
```



```
I-GHT:HAE
```



```
EOHTTINE
```



```
FFIHT*, , 田,IM,IT,IO,IT=1•ト:T,
FFIIHT*,
FFIIHT*.
EDITIHHE
FET!'FH
#:I
```



```
    \becauseMF!:=
```



```
FEFL IFF.IIF
    - : = , %
```



```
IIF=IIF*I
FT=IT值 I IIF
GO TC 100
FT=1.
```



```
EDHTIHILE
FETIFFH
EHII
```



```
******************************************************************
* THIE FOUTIIHE GOMFIITES THE EIGMEIG ZFLIHE IHTEGFHLZ E'G GFLLIHG***
* F TEH FQIPTT HEMTDIH-IDTES IHTEGFHTIIHY FGIITIHE.
***************
I口 GO NO=1, 15%
EFOIF,NIO
IT=N-IF
```



```
|F=4
IF `.IT.EG.!日 THE!H
+I=1
G0Tロ 5
ELइE IF , IT.ES.1: THEH
|:I=.
FOTD 5
EL-E IF ' 'T.EI'E' THEH,
+ I=
GOTOS
EL=E IF ,IT.EO. B THEM
* I=4
SロTロ 5
EHIIIF
r I= :
IF !T.EI--1, THEIt
+F=`
M%"%
```



```
GT+5
ELGE IF 'IT.EN.-3' THEH
+F=1
GロT0 5
EITIIF
CO! = IMF
= = -i: +!
```



```
    \squareT+Tणリ:5
\therefore.*
```

```
IO 10日 NF=1,N&:
```



```
FFIHTT**
FFIIHT**
FETIFH:
E!II
FlH:'TIDH -FFIIF, IF,N1,N,N,N4,N
```



```
* that hfe feinfa ihtegFatem.
H=1:直汭
\therefore=F**
\Xi1=-ミ*H**E゙.
IF , IF.E日.4, THENH
IF ,IF.EM.1, THEH
-FF=こ
FETIFH!
EL-E IF IIF.EG.E: THEIH
FFF=こ1
FETIF!!
ELEE IF IIF.EN. ジ' THEN
-FF=\Omega+\cdots-\Omega1
FETIFM
EMIIF
E!|IIF
E=``-\because
\prime=\Omega-1*E**
\because1=!ご* E**ご白1
IF, IF.EO.G THEH
IF ,IF.EG.1: THENH
-FF='i
FETIFH
EL:E IF,IF.EG.E゙, THEH
EFF=O1
EETIIFP4
EL-E IF,IF.EG.S, THEH
-FF=:+!!
= Z-}=
#!%:
E|!:F
O=こ
\because='i+r*!**
\because!=\because1-1G.*-**
IF F.FI.C, THEN
IF.IF.E゙.L. THEH
```

```
I=`1-
1,1=ツ-4-[1** S
M1=\because1+1こ.* I** E
IF 'IF.ED.1" THEN
IF :IF.EN.1. THEH
-FF=1.1
FETIGFT
ELVE IF 'IF.EG.E', THEH
ZFF=1,1
FETIFHT
ELEE IF 'IF.EO.S' THETH
FF=1,1+::* 1,11
EINIIF
ETIIIF
FETIFH
EHII
```



```
* THIS FQIITIHE =ELEGTS HHI IDMFUITEE THE IHTEFFGLATEI ZGIFIE
* IHTEGFFL EG EGLLIHS A TEH F口IHT HEMTOHH EDTES IMTEGFGTIGH F[MTIHE
******************************************************************
IOCLLE}
IUSGLS=1,H%-E
O%MF,LI,IM=O.I
L
IF'L''GT.I.OF.L'.LT.-SHGOTG EG
fF=4
IF 'L'.EG.1. THEM
+I=4
G口T口 1%
ELEE IF,LO.EN.IT, THETH
l I=
ECTO!に
ETIIIF
IF 'L', EO.-1, THEH!
    I=
    F=
ELこE IF LLO.EN.-EN THEH
! I=1
1F=
\squareCTG 1H
EL:E IF 'LO.EN.-S'THEA
    #:!
:H=1
```



```
LE=LF-H!:+1
```



```
IH=I H+1
COHTIMIE
FFIHT*, MATFI% SDUFGE IHTEGFHL=`|
IOB# MF=1, 隹%
```



```
FFIHT**
FETBIFH
ErtI
FIlligTIDH HIF,IH,NI,NE,O,
******************************************************************
```



```
* AFE EEING IHTEGFATEI AS A FHFT DF THE =OIFIE IHTEGFFL=.
```



```
IF IIH.EO.E THET
```



```
FETHFH
ELSE IF IIH,EO.1; THEN
HIF=@-\because:% (%-%1
ENIIF
FETIIFH
ElII
```



```
*****************************************************************
* THI= FCUTINE GOPFUTES THE IIFEGT GCIFIE FOIHT GHLIEE MHIIH HFE *
* UET IH THE FIFST ECLLIEIDII CDIFIEE IHTEFFCLATIDH.
```



```
FFINT..
```



```
1.F
FFIHT*,
IM=0
IO 50, L=0, LHF%
IO 50,M=日, L
In=I I . + + I
```



```
こH=ーけに,IT-I,-HE
```



```
IF,FEH.EF.O゙GO TQ EO
|I=こH FFH
```



```
G口T口 三!
```



```
#こ!T-!:H:H
    -は!な!!に
```



```
ーFI!:「*.
#G +5 :!F=1.!口-G
=IFT*.
#二!!!T*.
#
```

```
BCTO TO
```



```
1= •FHF!IT-1*
TDF
FETIIFTH
EHII
```



```
- THIG FDITIHE FESEMELES THE FFGELEM zDIFIE YEGTOF.
FFIMT*,
FFIHT*, SOUFIE MATFIS EOLUMIH 'GETTOF.
FFINHT*
IS=0
IID GO IR=1,NE=
IOCG IF=1,NF:
IT=1
IID SO IL = O. LMF%:
IOCO - IM=0,|L
IF=IF+1
IS=IY+1
EMI品,
I口 F
E=1.9
TEMF=こ!
IF=!
IID 万自 IL=M, L!TA'
[口 ア0 IM=!. IL
IF=IF+1
TEMFE=B
I口 た! Iこ=1•リここージ
I口 EM IF=1, 仿=- =
!こーなこー, に
IGF=IF-IF
```



```
IF,I!F.FT.1.OF.JIF.LT.-ミッF口 TO EO
B=
1!二=ご
```



```
ELGE IF ,H.FO.E, THEH
!?=!
!4F=:
-=.-
```

```
ジロT0 5%
ELSE IF TH.EO.S THEH
H2=1
NH:=ご
|(H=EO
G口 TO EO
ELSE IF RHEQ.GO THEH
けこ=ご
|F=?
HF=\Xi7
G口 Tロ 5, \
ELSE IF T.ED.T THEP
12=%
HF=S
114=こ:
EHIIF
```



```
TEMFE=TEMF1+TEMFE
CDITITHE
TEMF:=TEMFE+TEMF:
IFINA.EO.ES.DF.NA.EG.ESOR=-1.!
IFIN.ED.TVED TD TE
TEMFE=TEMFS*S*ATAHH1.SGIGT*ES
G口 TQ PE
TEMFS=TEMFE*S*FTFHT:1.O*S
SEMI=TEMFE+EEMIO
GDITIHHE
FFIHT.. OT, ELEMEHT,O TD ELEMENT HHMEEF=,IS
FFIHT*, ,VENG,ME=IS-HT-1% IG
LDHTINHE
FFIItT*
FFIIHT*
FFIHT**
FETIFFH
EHII
```



```
ないここ:-
```



```
*************
I口 Eん N=1, H1T
```



```
r. 1=!
IG
A=
    !
! !=!
```



```
IO 50 IL=0.LHAO
HCTSIM=O.IL
IH=IH+I
I.I=! I+1
TEMF!=1!
TEMFE=1
LI=にーIこ
MF=IF-IF
IF,HE=,LIM.GT, %GOTD ミ
```



```
I口 ミこ 11=1,1E
NHE=
IF IH.EE. 1% THEN
f/F=1
15=1
GOTO SO
ELZE IF MH.EO.E゙, THEH
1F=こ
HE=1
THE=1
EL TD SOM HFEG.S' THEH
HF=4
けこ=ご
GOTOEO
EL=E IF ,H.EO.#, THETH
1FF=e
けこ=1
PHE=1
150 T[ご
ELSE IFIH.EO.E, THEH
HF=亏
1H=1
GTTO S
ELEE IF M.ES.F. THE!
!F=5
!こ=ご
```



```
ELSE IF NH.EE.11% THEN
||F=E
1H=1
HE=1
G0TC OO
ELQE IF N.EO.1EO THEH
PH=C4
NZ=こ
G口 TD S!
ELEE IF NH.EN.1SO THEN
|FF=ご
HE=1
HE=1
GロT澏
ELSE IF IH.EO.14 THEH
PIF=S
NE=1
GD TD SO
ELSE IF U.EG,15O THEH
HF=5
NE=
T!E=1
EOTD 30
ELEE IF IH.EI.1FO THEH
HF=4
1F=\Sigma
G口T口 ご1
ELSE IF UH.EN.1T: THEN
1HF=5
けご浮
ITE=1
FU TO E-S
ELEE IF TH.EO.1ES THETH
1HF=「
Hこ= =
G口T口ご!
EHIIF
```



```
BOT口ここ
```



```
TENFI=TEM*CA,IF,IH.N.*-1,* NHE + TEMFI
```



```
            O:rTala
```



```
    :F こ.E-G.: THEF!
    1, 1=4
```



```
    \square
```

```
EL=E IF,LI.EG.-1, THEH
Lこ=
B0 %O ミ
ELEE IF ILI.EG.-E' THEN
LE=E
EHIIF
ELEE IF , 云.E!.\Xi' THEM
L1=
IF LI'.EO.G. THEH
Lミ=
50 T[ #5
ELEE IF LI.EG.1. THEH
Lミ=山
EQTE SL', LI,EG.-1, THEM
Lごこ
GCTD 三5
EHIIF
EL:E IF ',G.E!. THEN
L1=E
IF 'LI.ES.日. THEH
Lこご
G0TS ミ:
ELSEIF,LIMEO.: TLE&
LE=
G[TC.E
ELTEIF'MINEO.E, THEH
ET\IIF
ENTIF
```



```
    GTE 4!
    `こここ!
    M=HE=-N
```



```
        A.OF
    # 二ご
    +I=1汻:-IF
    \therefore!-T, - - F
```



```
        Crat+ME
        _-%%
        #
```


FFITHT*
$\mathrm{ICO}+\mathrm{I}=1, \mathrm{HT}$
TERFFII. 0
IIC $\mathrm{EO} \quad \mathrm{I}=1$, HT
TEAF=TEMF + FE URSG, O
TEMF = TEMF-EES RE I, I O

FFIIHT *
EDHTIHE
FF:IHT*
FFIHT* HATFIS EHEGH FDF EMMETFY.
FFINT*
IC FOT $\mathrm{I}=1$ • $11 T$
IID E日 $1=1$, I

15!1.
EOHTITRE
FETIIFH
EHI

***-*

- DF シMIESEIUE DUEF-FELF: HTICT.

FFIITT*
FFIITT.
IC E I = 1 , HTT
\therefore HII $=1$.
E, I:=
$I T=1$
$I T=I T+1$
IU ㄷ: $\mathrm{F}=1 \cdot \mathrm{HT}$
TEMF=EEM,
- $\because \quad=: \cdot H T$

I口 犬 I $I=1$, HT

EDRTITIE
二 TR AR
-ー・! •

i

FF:OT T THE THIVEEF CF ITEFFTIDH MEFE OIT

FFIHT＊THE FFQELEM HAS HET ECHQEFGEI IH，IT，ITEFHTIDHE．
FFIHT＊．
FFFIHT．．THE EFFDF＝•TDL
FFIITT＊
FFIIHT＊．$\quad \therefore E \cdot I \cdot I=1 \cdot H T$ ，
FETIIFH
EliI
 1 II

－FLIIEIIIE．
IGLL IEMHT：ISFF，FHF，FHE，F， $\mathrm{C}, \mathrm{HF}, \mathrm{H}, \mathrm{H} \mathrm{Z}$
トコ＝
TEMF $1=1$.
IIC $+1 \mathrm{I}=1,4$
Mロ＝I－FFII， 1

トこニトニー1
1F＝ F
IR シ！に1•4
$M F=I=F \cdot F \cdot I$ ，

1F＝t $F-1$

TE FF $=T E M F 1+T E M F$ ．
CEHTITIS
－artillle

TFHI＝F－TE MFI
こH二゙ーートE
FこH＝ENFT•F＊＊シ＋こH＊＊ご
IF，FZH．EI．A．ED TD E日
＝－－

回 TG

明 TC ज
FEIMT＊EFFGF．THE FL：FFHMQT EE GQMFIITEI AT THE FUFET FGIMT．
－тre．
＝ 5 － 6
$=\because$

－ELEITET－rar feitro．


```
    I口 40I I=0,Nここ一#
```



```
EartTIHILE
IIC E0 1=1,4
ISFF:I|1)=I+.1
IC FOI I=I,NFG-S
IF,F,GE.FHFGIO, ANI.F.LT.FHF:I+1OGED TD EG
EOTTIPHE
|0:G |=1,4
IOFFOI, O= I + I
G口TD 10可
```



```
1FFOELEM IIMEMSIDIO.
GTGF
FETIIFH
EHII
```


Appendix K

Numerical Results

The computer subroutines which are listed in Appendix.J were used to produce numerical results for varying problem spatial mesh sizes and degrees of the spherical harmonic trial function expansion. Some of these results are presented in Figures 10 through 44. They are valid for the problem parameters which were presented in Chapter V. However, the crosssections which were used do not accurately represent the values for air at sea level. Also, the air-ground interface was not included in the problem domain and therefore all ground effects were ignored.

Decause of the time constraints on this research project neither an evaluation of the accuracy of these results nor a comparison to a discrete ordinate or Monte Carlo calculation was accomplished. Therefore, the results are presented solely in an attempt to show that finite element spaceangle synthesis is a viable solution technique for solving the two-dimensional steady state anisotropic Boltzmann equation. They are not meant to represent a precise and exact solution to the air-over-ground problem, but rather to demonstrate that FFSAS may be a feasible alternate solution technique to Yonte Carlo and discrete ordinates.

PARTICLE(NEUTRON) FLUENCES.

Figure 10
126

PARTICLE(NEUTRON) FLUENCES.

Figure 11

PARTICLE(NEUTRON) FLUENCES.

Figure 12

PARTICLE(NEUTRON) FLUENCES.

Figure 13

PARTICLE(NEUTRON) FLUENCES.

Figure 14

PARTICLE(NEUTRON) FLIJENCES.

Figure 15

PARTICLE(NEUTRON) FLUENCES.

Figure 16

PARTICLE(NEUTRON) FLUENCES.

Figure 17

PARTICLE(NEUTRON) FLUENCES.

Figure 18

PARTICLE(NEUTRON) FLUENCES.

Figure 13

PARTICLE(NEUTRON) FLUENCES.

Figure 20

PARTICLE(NEUTRON) FLUENCES.

Figure 21

PARTICLE(NEUTRON) FLUENCES.

Figure 22

PARTICLE(NEUTRON) FLUENCES.

Figure 23

PARTICLE(NEUTRON) FLUENCES.

Figure 24

PARTICLE(NEUTRON) FLUENCES.

Figure 25

PARTICLE(NEUTRON) FLUENCES.

Figure 26
14.2

PARTICLE(NEUTRON) FLUENCES.

Figure 27

PARTICLE(NEUTRON) FLUENCES.

Figure 28

PARTICLE(NEUTRON) FLUENCES.

Figure 29

PARTICLE(NEUTRON) FLUENCES.

Figure 30

PARTICLE(NEUTRON) FLUENCES.

Figure 31

PARTICLE(NEUTRON) FLUENCES.

$$
\text { Figure } 32
$$

PARTICLE(NEUTRON) FLUENCES.

PARTICLE(NEUTRON) FLUENCES.

Figure 34

PARTICLE(NEUTRON) FLUENCES.

Figure 35

PARTICLE(NEUTRON) FLUENCES.

Figure 36

PARTICLE(NEUTRON) FLUENCES.

Figure 37

PARTICLE(NEUTRON) FLUENCES.

Figure 38

PARTICLE(NEUTRON) FLUENCES.

Figure 39

PARTICLE(NEUTRON) FLUENCES.

Fiqure 40

PARTICLE(NEUTRON) FLUENCES.

Figure 41

PARTICLE(NEUTRON) FLUENCES.

Figure 42

PARTICLE(NEUTRON) FLUENCES.

PARTICLE(NEUTRON) FLUENCES.

Vita

Eze E. Wills was born in Cuyana, South America, in April, 1951. He served as a Food Inspection Specialist in the enlisted ranks of the U.S. Army from 1972 to 1974. In 1974, he was promoted to the rank of Sergeant. Upon completion of his two year military commitment he was discharged from the Army in 1974. He then worked as a Security Guard with the Department of Navy, Navy Headquarters, Washington, D.C. from 1974 to 1976. In 1975 he enrolled at the University of Maryland, from which he graduated in December 1978 with the degree of Bachelor of Science, Nuclear-Chemical Engineering. He also completed ROTC training at the liniversity of Maryland and was commissioned to the USAF in December 1978. He subsequently attended Graduate School at the University of Maryland and worked as a Chemical Engineer with the Department of the Navy, Naval Ordinance Station, Indian Head, Maryland. He entered the School of Engineering Air Force Institute of Technology in August 1979.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Dateenertered)

REPORT DOCUMENTATION PAGE	READ instructions
1. REPORT NUMEER GOVT ACCESSION NO. AFIT/GNE/PH/81-13 AD-A1006 3	3. RECIPIENT'S CATALOG NUMBER 8
4. TITLE (and Subtitio) THE APPLICATION OF FINITE ELEMENTS AND SPACE-ANGLE SYNTHESIS TO THE ANISOTROPIC STEADY STATE	5. TYPE OF REPORT A PERIOD COVE MS Thesis
7. AUTHOR(s) Eze E. Wills 2LT USAF	8. Contract or grant number(e)
9. PERFORMING organization name and address Air Force Institute of Technology (AFIT-EN) Wright-Patterson AFB OH 45433	10. PROGRAMELEMENTPROJECT. Th
11. Controlling office name and adoress	
14. MONITORING AGENCY NAME \& ADORESS(it difteront from Controiline Oifice)	

Approved for Public Release; Distribution Unlimited

BLOCK 20: ABSTRACT (Cont'd)

Finite element space-angle synthesis (FESAS) was developed as an alternate solution approach and an improvement in comparison to the methods of Monte Carlo and discrete ordinates. FESAS does not have the inherent characteristics which have produced the ray effect problem in discrete ordinates. Also, FESAS may result in lower computational costs than those of Monte Carlo and discrete ordinates.

The second order even parity form of the Boltzmann equation was derived and shown to be symmetric, positive definite and self-adjoint. The equivalence of a variational minimization principle and the Bubnov-Galerkin method of weighted residuals was established. The finite element space angle synthesi system of equations was expanded and a numerical computer solution approach was implemented. A computer program was written to solve for the trial function expansion (mixing) coefficients, and also to compute the particle flux.

