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Preface

This research project is a part of the ongoing effort
here at the Air Force Institute of Technology to develop
alternate methods for solving the two-dimensional steady
state anisotropic neutral particle transport equation. The
thrust of this research effort is towards an accurate and
cost-effective solution of the steady state transport of
neutrons, gamma rays and high energy x-rays from a low
altitude nuclear burst. This problem which is modeled as
a point source in a two-dimensional cylindrical (r,z)
geometry with the air ground interface included, is of
particular interest in the areas of nuclear weapons effects
and radiation physics.

Presently the most widely used computational methods
for solving the (air-over-ground) problem are Monte Carlo
and discrete ordinates. However, these methods have
severe limitations and computational problems. My research
plan was to formulate and evaluate a solution technique
whicn did not have these disadvantaces. A finite element
solution method which is based on a space-angle synthesis
£lux expansion of bicubic splines and spherical harmonics
was chiczou. The merits of this solution technique were
examlned and 1 computer algorithmn {or the numerical solu-
tion of this problem was developed.

I wi:h to acknowledze and nxpress my appreclation

for the assistance and encouragement which I have received




from the staff and students of the Air Force Institute of
Technology. Special thanks are due to my advisor, Captain
David D. Hardin, without whose direction, encouragement and
miny hours of discussion and counselling this thesis would
not have been possible. I am also grateful for the support,
advice and encouragement that was provided by Dr. J. Jones
of the Air Force Institute of Technology Mathematics
Department.

Finally, I wish to express my appreciation to my wife
and daughter for their understanding, patience and constant
support throughout this project. To my wife, Cynthia, I
must also express a special thanks for her effort in typing

this thesis.

Eze E. Wills

ii1

i




Contents

Preface . . . . & v v v e e e e e e e e e

List of Fipures . . . . . . . . . . .

List of Tables. . . . . . . . « « v « v v v . .

Abstract. . . . .« . e e v e e e e

I.

IT.

IIT.

Iv.

VI

VI.

Introduction. .« .+ v v v v « « o e e e e .

Backsround.
The Alr—Over-Ground Problem .
Ray Effects and Discrete Ordlnates .
Problem, Scope and Solution Approach.
Assumptions e e e e e e e e e e e e
Development . . . . . . . .

The Problem Equation. . . .
The Finite Element Method

Tven and Odd Parity Second Order Forms .
The Variational Principle . .
The Method of Weighted Re51duals

snace-Angle Synthesis of the Even-Parity
Anisotropic Boltzmann Equation.

The Trial Functious
The Spherical Harmonlc Inteorals
Bicutic Polynomial Splines
The Source Terms . . . . .
The First Scatter Source .
Source Interpolation

Cowputer Implementation and Results

Conclusions and Fecommendations

Bibliography. . .

Appendix A: Derivation oy the Scatteriag Kernel,

Inverse Collisicn Operators and the

Even and Udd Parity Collision Cross-

Sections

Avpendix B: Weak Form of the runcticnal.

Appendix C: Derivation ol the Weak Form From

the Calerkin Method of Weighted
Nesiduals,

i1
vi
vii

viii

(o2} N WRN =

11

13
20
21

24
26
32
34
35
36
40
44
24

56

(o8]




Appendix

Appendix
Appendix

Appendix

Appendix

Appendix

Appendix
Appendix

Vita

Expansion Properties of Spherical
Harmonics

The Synthesized Boltzmann Equation.

Angle Integrals of the Synthesized
Second Order Boltzmann Equation

Space Integrals (Bicubic Splines)
of the Synthesized Second Order
Even Parity Boltzmann Equation

An Expansion of the First Scatter
Source in Legendre Polynomials.

A Derivation of the Total Particle
Fluence.

Computer Subroutines.

Numerical Results

PR v S

72
77

85

88

91

93
97
125
161




Figure

[ B o N VS 2

10-44

List of Figures

Cylindrical (p,z,4) Problem Geometry

Problem Geometry and Coordinate System .

A Schematic of the Angular Symmetry.
Cubic Spline with Evenly Spaced Nodes,

First Scatter (Collision) Souce
Direction VectorsS. . « « v « « o « « .

A Linear Lagrange Polynomial Function,

Computed Fluences as a Function of
Radius and showing a variation with
the Problem Spatial Mesh Size.

Computed Fluences as a Function of
Radius and showing a varlation with
the Degree of the Aungular Spherical
Harmonic Trial Function Expansion.

Surface MNormal and Particle Velocity
Direction Vectors.

Neutron Fluences as a Function of

Radius and Altitude for Various
Spatial Mesh (Grid) Sizes.

vi

Page

28

37
42

51

52

78

126




List of Tables

Table Page
I Legendre Expansion Coefficients which
were used in a Numerical Solution of
the Air-Over-Ground Problem . . . . . . . . . 49
I1 Execution Times and Convergence Rates
for the FESAS Computer Code . . . . . . . . . 50

viil




Abstract

A finite element space-angle synthesis:.solution of the
steady state anisotropic Boltzmann (transport) equation in a
two-dimensional cylindrical geometry has been developed.
Starting from a variational principle the Bubnov-Galerkin
solution method was applied to the second order even parity
form of the Boltzmann equation. A trial function flux ex-~
pansion in bicubic splines and spherical (surface) harmonics
was used. A first scatter (collision) source and an exponen-
tially varying atmosphere was also incorporated into this
development.

Finite element space-angle synthesis (FESAS) was
developed as an alternate solution approach and an im-
provement in comaparison to the methods of Monte Carlo and
discrete ordinates. FESAS does not have the inherent
characteristics which have produced the ray effect problem
in discrete ordinates. Also, FESAS may result in lower
computational costs. than those of Monte Carlo and discrete
ordinates.

The second order even parity form of the Boltzmann
equation was derived and shown to be symmetric, positive
definite and scli-adjoiat, The equivalence of a varia-
ticnal minimization principle and the Bubnov-Calerkin
mothod of weichted residuals was established. The finite

! ~lement zpace angier synthesis svslem ol cquations was

villi




expanded and a numerical computer solution approach was im-
plemented. ~ A computer program was written to solve for the
trial function expansion (mixing) coefficients, and also to

compute the particle flux.




THE APPLICATION OF FINITE ELEMENTS AND
SPACE-ANGLE SYNTHESIS TO THE ANISOTROPIC
STEADY STATE BOLTZMANN (TRANSPORT) EQUATION

I Introduction

Background

The Air-Over-Cround Problem. The transport of neutrons,

camma rays and high-energy x-rays, away from a low altitude
nuclear explosion (air-burst), is of special interest in
assessing the vulnerability and survivability of militarv
weapon systems and in makine radiation exposurc and deose
predictions., This neutral particle transport problem in-
creascs in complexity because of the exponentially varying
air densityv and the air-ground interface. A description of

neutral particle transport and, therefore, the air-over-

~sround problem 1s given bv the Boltzmann transport equation.
Numerical seolutions te this problem already exist.

The main solution techniques are Monte Carlo and discrete

ordinates, However, discrete ordinates and Monte Carle have

severs difficulties and disadvantases. To pertform an accurate

ST oo Louralton oreoniros the use ol hours o costlv

S o Ulmee,  cleorobe crelnates uses Loss computer oxe-s

Coe i

cuilen time than Monte Carlo, however, it 1s subject te a

cemputational Jdifiiculty called rayv ~ffects {(Ret 1:357).




Ray Effects and Discrete Ordinates. Ray effects are a

result of the angular discretization of the particle flux 1in
the discrete ordinate method. It is not a numerical problem,
but originates in the derivation of the discrete ordinate S
equations. In a physical sense these equations only allow
source particles to travel in specific directions. However,
in most practical problems these particles move in all
directions. An in-depth analysis of the S, equations and the
nature and rcasons for ray effects can be found elsewhere
(Ref 1:357). ,
Ray effects produce non-physical distortions of the
angular flux in regions where there are strong absorbers,
localized sources, or high energy ctreaming particles (Ref
2:255-268). These distortions in the numerical formulation

of the discrete ordinate method produce solutions which are

inaccurate. The degree of these inaccuracles 1s dependent

upon the specific problem and the nature of the absorbing

media and sources. In the air-over-ground problem this

of fact will be sinnificant because it 1s essentiallv a
streaning particle problem with localized first scatter
sources.

A considerable amount of work has already been done
in an attempt Lo elininate rav effects {rom the Sn equations
ind Lhe discrets ordinate methed. Rav effects can be aiti-
“ated bw othe use of a fine anvular mesh in the linite
ditlerencine scheme ot the S, cquatiovas, However, this

anproach Incroases the computational time and thoe already

1]
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high computer costs. Other approaches involve a spherical
harmonic-like formulation (Ref 2:255-268), piecewise bilinear
finite element approximations (Ref 3:205-217), and space-
angle synthesis with specially tailored trial functions (Ref

4:322-343).

Problem, Scope and Solution Approach

The purpose of this research project was to d velop a
finite element solution to the air-over-ground problem by
using a space-angle synthesis of bicubic splines in space
and spherical (surfacc) harmonics in angle. Specifically,

a solution of the monoenergetic Boltzmann equation in the
context of the air-over-ground problem was sought. Working
from a variational principle and using a judicious choice of
trial functions the problem of ray effects may be eliminated
(Ref 3:214). Also, this judicious trial function choice,

and a Bubnov-Galerkin solution method may be more efficient

and less costly than Monte Carlo or discrete ordinates.

The steady state solution of the Boltzmann equation
with tfirst scatter sources, anisotreopic scattering and an
exponentially changing atmesphere is desired. The problem
is formulated from a variational principle and in a two-
dimensional cylindrical (r,z) spatial geometry with the air-
over—cround interface included. Fluence values as a
function of two spatial (r,z2) and two aungular (u,y) variables
ire soucht, This i1s a tour dimensional problem. VFinally,

a numerical solution algorithm and the computer implemen-

tation of this problem 1s required.

P R S S
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Figure 1. Cylindrical (p,z,é) Problem Gecmectry

Assumptions

There are two baslc assumptions which are made in the
formula:ion of this preblem. A time-independent (steady
state) solution and axial symmelry 1s assumed. Because of
the exponentially changin~ air density the air-over-ground
problem is four dimensional with a spatially dependent
(r,z) solution, Anr assumption of axial symmetry is made
sossible by iznorine the curvature of the earth. Within
the proclem domain ol most practical problems the curvature
of the carth 1s small and can therefore be ignored. Figure
1 shows the spatial cvlindrical problem geometry.

The {lux {rom an air burst is non-zero Tor 3 fraction
¢! a second (microseconds). Therelore, particle fluence
(aumber/area) and not (lux is the more 1seful quantity.

A steady state formulation of the air-over-ground problem

is5 obtained bv integrating the time dependence out ot the




Boltzmann equation. This integration which is carried out
over time limits when the flux is zero produces a time

integrated or fluence equation.

Development

In the next chapter of this report the problem equa-
tions are presented. A finite element formulation of the
air-over-ground problem is developed in Chapter III. The
Bubnov-Galerkin method of weighted residuals is incorpora=
ted into this development. In Chapter IV a space-angle
synthesis of bicubic splines and spherical harmonics 1is
performed. An interpolation of the source terms is also
outlined in Chapter IV. A computer implementation of the
problem solution is examined in Chapter V. Finally, con-

clusions and recommendations are presented in Chapter VI.

(o2




II The Problem Equation

The application of finite elements and a variational
principle to the air-over-ground problem and the mono-
energetic steady state Boltzmann equation 1s not a new
concept (Ref 5). As in the work by Wheaton (Ref 5) only
the monoenergetic problem will be considered. It is
assumed that energy dependence can be easily incorporated
into this treatment by the use of standard multigroup
methods. The air-over-ground problem which 1is in effect
the steady state transport of neutral particles can be
described by the Boltzmann (transport) equation and
appropriate boundary conditions as follows:

Jevo(r,R) + or(r)o(r,d) = [_oS(r,ﬁ-ii')¢(r,cz')dsz‘

’ v s(E,8 (1)
This 1s the one speed monoenergetic Boltzmann equation in

general geometry where

r = the spatial position vector,

jse}
1

a unit direction or velocityv vector,
v = g¢radient operator,

¢ = angular particle fluence in particles/
unit area/steradian,

total macroscoplc interactlon ¢ross
section at spatial position r,

¢%(r, * ) = macroscopic scattering cross soction,
The propbability ot a particle at positica
£ oand directiva o7 scatterias ioato
directivn .. Lt is a funcitren ol the
scattering angle 7«4 and not & tunction
of the iundividual directions (isctropic
media),
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(Ref 6:57). wu is the cosine of the angle formed by the
z-axls and the particle velocity vector Q. y is the angle
between the planecs formed by the # vector and the z-axis
and that of the . vector and z-axis.

The scatteriny properties of air show a directional
dependence which is highly peaked in the forward direction

especially at the high particle energies that exist in the

air-over-cround problem. Because of this the exterior boundary

condition for this problem will be approximated bv a vacuum

boundary condition:

:(fs,?) = 0 for ?g on the boundarv of the nroblem

domain and &+d < 0 D]

where 1 is toe outward unit normal to the beundary surface.
In phvsical torms this is a non-reentrant boundarv condition.
No particles are allowed to reenter the region once thev

Qave 1t.

In two-dimensional cvlindrical (r,z) geometry there

ts sommetyy in the ansle . This svmmetrv can be written
as
S{F. 0 = o(f, 0 for 0 _,=3 . =2(f+" i . 3a
\U\r,--l) (T, :) 2 pl (n Pl) .3a)
[ARGENeRS
=z . - AR R
(voiy) (vywi=) LT
3
L)
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Figure 3. A Schematic of the Angular Svmmetrv.

This symmetry in v is shown in Vigure 3, where the vectors
fi and A are perpendicular,

Note that because of the exponentially varying air
density (in the z direction), only azimuthal symmetry in the
angle y is assured. There 1s no symmetry in u(Cos ©) and

thererore (r, ) will not be equal to s(r,-3). The svmmetrv

condition, fqs (3a) and (3b), implies that

s(T,u,y) = even function in y (3¢)
At the air sround iancerface (r,2) is continuous excaepy
At = 0 (et 6T EnY, dLe,
“(ry, ) = “Ar,.) at z = 0 and . # 0 4)
alr aroun i

Howeyoer Lhe dertoatices of (v, ) are not o oconrinuons.




The problem geometry and coordinate systems as shown
in Figure 2 implies that when p 1is equal to zero the engle
X must also assume a value of zero. Therefore, along the
z axis (p=0) the angle y does not vary between 0 and 2m.
This means that there is no x variation in 4(r,d) at

=0 and that

d ~oal ~_
5;¢(r,9)-—0 for 8=0 (5

10
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IIT The Finite Element Method

The finite element method is a mathematical and
numerical technique for approximating the solutioun to
a large class of problems. Initially ir wac developed
and used to solve problems in stress analysis (Ref 7:9).
Later, as the mathematical foundation of the method was
established it gained widespread acceptance and use 1in
solving a larger class of problems.

Finite elements are an extension of the Rayleigh-
Ritz technique of first recasting the problem in an equi-
valent variational form and then seeking a solution on
the basis of an energy minimization principle (Ref §:1).
In the Ravleigh-Ritz method a solution in the form of
a linearly independent set of trial functions is assumed.
These trial functions must satisfy the essential
boundary conditions. The approximate or "best" solution
to the problem is the linear combination of these trial
functions which maximizes (or minimizes) the variational
nrinciple (functional). If this linear combination of
functions 1s not an extremum (maximum or minimum) of the
functional, then the class (or space) of trial functions
1s expanded by the addition of more functions. This ex-
pansion of the trial f{unction space is continued until a
lincar combinaticn of functions which is an extremum of
the [unctiocual is obtalned.

The finite element solution technique is similar to

that of Ravleigch-Ritz. The onlyv difference lies in the

11




choice of trial functions. In finite elements the problem
domain is divided into smaller regions (grids) or elements.
Each trial function 1s usually associated with only a few
elements. Unlike Rayleigh-Ritz, finite elements uses

trial functions which are zero over parts of the solution
domain (a local basis). Also, the trial space (number of
trial functions) is expanded by using more elements (mesh
points) and not by the addition of a new class of functions.
Because of these differences the finite element method is
more adaptable towards a numerical (computer) solution than
Rayleigh-Ritz.

There are two basic approaches to the finite element
formulation of a problem, One approach is to find the
extremum of the functional which originates from a varia-
tional principle and the calculus of variations (Rayleigh-
Ritz with a local basis). The other is by the method of
welsinted residuals. The method of weighted residuals
does not include the use of a variational principle or
the-calculus of variations. In some problems a variational
principle has not been developed or mav not exist, and
therefore, the Rayleigh-Ritz approach cannot be used.
However, in such cases, the method of weighted residuals
can be nsed to solve the problem. Therefore, the method
ol welchted rosiduals can be extended to a wider class ot

“anlems tnan Raviolrsh-2itz.

e osethod ot weighted residuals 1s another approach

Tor developine a sot of (alvebraic) problem equations to

vhich the rinite element method can be applied. Thers are

1




three basic mathematical "recipes' through which the method

of weighted residuals can be developed. These are the methods
of least squares, collocation and Galerkin. 1In some problems
where a variational principle (functional) exists it can be
shown (Ref 9:735) that the Galerkin method of weighted
residuals is equivalent to Rayleigh-Ritz. An identical set

of matrix equations and therefore the same solution is
achieved by either method.

In the following paragraphs a variational principle for
the air~over-ground problem and the even parity form of the
Boltzmann equation is examined. A weak form of the variational
principle and the boundary conditions are incorporated within
this development. Finally, the Galerkin method of weigchted
residuals 1s discussed and an equivalence to the variational

approach for the air-over-ground problem is established.

Even and 0dd Paritv Second Order Forms

In order that a variational principle may be used the
even and odd parity forms of the anisotropic Boltzmann
ccuation and associated boundary conditions will be
developed. The starting point ol this development 1is
Eqs (l) and (2). Following the derivation of Kaplan and
Davis (Ref 10:166) and that ot Wheaton (Ret 5) the mono-
enorcetic steady state trausport equation can be written i
terms ob che - vecto: by changing 2 to -w in Eq (1).

his wives

SReU (T Y 2 (Y (P~ = [ Sr, =Sty (Ll ydl




The even and odd parity terms will now be defined as

v(r,8) = Hle(r, ) + o(r,-)} (7)
X(Fyid) = slo(r,Q) - o(z,-)} (8)
s€(r,Q) = %{s(r,Q) + s(£,-)} (9)
sU(E,8) = sls(r,) - s(r,-D)} (10)
08(£,8+0) = 5{05(2,087) + oS(F,-8+07)) (11
oU(r, 887 = 5{c%(F,8:0") - ¢%(F,-0-87)} (12)
where
¥(r,%) = even parity fluence
X(?,ﬁ) = odd parity fluence
SS(7,8) = even parity source
SU(?,ﬁ) = odd parity source
og(;,:~n3 = even parity scattering cross=-section
ou(g,ﬁ';3 = odd parity scattering cross=—sectilon
Adding Egqs (1) and (6), then dividing throughout by two
and using the above definitions gives
Qe9x(E,8) + ce(D¥(F,D) = fwogd,ﬁwﬁ‘)\r(’f,ﬁ')da'
+ 85(r,) (13)

Using the derivation of Wheaton (Ref 5:8), which is also
reproduced in Appendix A, the scattering kernel term in (13)

.. - I T T SN
can v VITUL U

' . , : \ [ ... o .
f e, Ty, DAL T = J' ey, )i (r, L Nde T (14
LT Lo

14




where the even properties of the even parity scattering
cross-section and the even parity fluence have been used

in the derivation of Eq (l4). FEq (13) now becomes

iy
+ 872 D) (15)

Similarly, by substracting Eqs (1) and (6) and rearranging

the scattering kernel (See Appendix A) gives

TeTE(E,D) + (N (E, D) = oM, A A (R, al e
+ 88,0 (16)

“qs (13) and (16) are referred to by Kaplan and Davis (Ref 10)
as canonical forms. The natural boundarv condition Eg (2)

cen also be rewritten as

Y(r_,0) + a(r_,) =0 for e < 0 (17)
S ]
and
B(r ,0) - X(%S,\) = for '*n > 0 (18)
' IR TR comditions tns o and (3¢) now begone
(“-s l)$ ‘(r,‘m ':‘(r,\z) + '(r;‘wz)
Yor = =27 ,eadn
vr pl2  pl ( pl / (19
whAore fr o) ang v {(r, ) musl he even fnnctions ia the
aztmmthal antly o fsoe Fie, 3). Therelfore it feollows that
Y ) 71‘.( SRR
LT s e (20)




and
X(2,8)) = x(¥,2) (21)

Also x(r,8) and ¥(r,Q) are continuous at the air ground inter-
face (wheu p 3 0) but their derivatives are discontinuous.

A further simplification is now introduced into this
development by defining the even and odd operators, c&

and GY as

GE(2)E(E,8) = o (DIE(E,D) -f”ogd,ﬁ-ﬁ')fd,é‘)dﬁ‘ (22)
CU(E)E(T,8) = o (D)E(F,D) -f”dJ(hﬁ-ﬁ’)f(,%,ﬁ‘)dﬁ' (23)

where the scattering cross sections can be expanded in

spherical (surface) harmonics (see Appendix A) to give
GS(TYE(E,) = o (DYI(r,D)
o N v N A AN LA,
- I, 2 op(r)y () a8 E(T,1 7590 (24)

where the even parity Legendre expansion cross-section o@

2

is defined as

a A J@S(r) for ¢ even

Sy = 47

2

lo for ¢ odd (25)

and

<, N . . .

0;(r) = legendre expansion scattering cross—section

coeliicrents {Ref 5:29

e e . . . - [ag ~ a .
[he derivation of R g can heo tanmd in Appendiz Al

A
r
[RAVEERA

L, L

S S —



The odd parity scattering cross section can also be expanded
to give
GYN(r)E(E,Q) = ot<r)f(2,sz)

_ u,” N WA e, R .
lemoﬁ‘,(r)YQm(Q)/;nYRm(Q YE(r,27)dd (26)
where only odd expansions in % are used orcﬁ is defined as

qf(;) _ {(r) for 2 odd

0 - for % even (27)
The G® and GY operators are self adjoint positive definite
(Ref 10:174). Inserting these operators into Eqs (l13) anc

(16) they becoie

G8(P)¥(r, %) = s8(r,%) - Devy(,H) (28)
and
CU(IIX(E, D) = s¥(r,2) - Gev¥(r,0) (29)

Solving for ¥(7,%) and x(f,d) from Egs (28) and (29) pro-

duces
¥(2,8) = [cg<£>]‘1{sg<§,§> - ?z-m2,§>} (30)
-~ r . 1 r PO ~ ~ n
((r,0) = Lc“cr')} ‘1_5“<r,r-> - ss-vwr,n)} (31)

where using the ncotation of Kaplan and Davis

KU (E) = {GH(E)}—1 = inversc of the operator
¢H (1) (32)
KO(r) = LU.(E)}—I = inverse ot the operator
GR(E) (33)
L7




A detailed mathematical derivation of these inverse operators

is presented in Appendix A. They are defined as (Ref 11:481)

K&(t) = @1(§){1

+ Elinl{cﬁ(%>/(ct(r)—c‘gd))}YQm(mLY’gm(ﬁ’)dsz'] (34)

where(%(g) is defined by Eq (25).
u,~y - =1
K (r) = 9 (r)l\l

b (o) /(5 E g EN VY B, Y (el | (35)

Both KY and K® must be self adjoint positive definite since

they are the inverses of G" and G® which are both positive

definite and self adjoint.

The functions %ﬂ‘@) and Yzm(ﬁ)are the well known nor-

malized spherical (surface) harmonics (Ref 6:609) which are

defined as

Yo = (e o/ 2L CTRE R et (36)

Gn . (L+m)!

and.iiﬂ(ﬁ) being the complex conjugate of &rﬁﬁ) is defined

as
oA B3 20+ 1 (L-m)! :
(@) =Y, (u x)ﬁ//r . " ph —1my .
Ym PALE oy Piwe (37
where u = Cosv and PT(u) is the associated Legendre func-
L1ens.,

AP

fqs {3U and (31) can now be written as

P(2,8) = KB(D){s8(F,d) - Qevx(r,0)}

~~
o
[s.9]
~
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and

x(r,8 = KUDSU(E,D) - devv(r,D)) (39)

Substituting Eq (39) into Eq (28) produces the second order

even parity form of the Boltzmann equation

—QevRY (D)0 vy (T, 0) + G8()v(r,d) = s8(%,N)

- Q.vKkY(r)sY(Tr,D) (40)

and inserting Eq (39) into Egs (17) and (18) gives the appro-

priate surface boundary conditions for Eq (40) as

A A ~ u ~ Y ~ N ~ ~
¥(E,,0) + RU(T O (B, 0) - Q-vv(r,, D))

= 0 for $*n < O (41)
and

W(gs’ﬁ) - Ku(;s){Su(gs,ﬁ) - @.V?(gs’ﬁ)}

=0 for f-3 >0 (42)

Egs (38) and (39) give the second order odd parity form of

the Roltzmann equation which is
—3.VRE(T)B Uy (F,8) + G¥(O)x(x,d) = s¥(r,d)
- VKRS (E)SE(E, D) (43)

Inserting Eq (38) into Eqs (17) and (18) the surface boundary

conditions for Eq (43) are

~ A o AN A A AL D
Ar )+ KBS (r ) = DoV L))

pe]

=0 for =*n ~ 0 (44)
1ind
-" ".(r::;s.l\.) - Kq(i\_)Lb\rrb)A)) - d\:'\:\(rs).]>}
= 0 for Hvn > O (45)

1y




The Variational Principle

Variational principles for the monoenergetic transport
equation have been found. These principles are related by
a series of transformations (Ref 10:166). The functional
whose Euler equations are the even and odd parity second order
Boltzmann equations will be used in this work. Primarily
the even parity component will be used because it is always
positive, self-adjoint and can be integrated to give the
scalar flux or fluence (Ref 12:148). The odd-parity flux which
can be negative integrates (over all directions) into the net
current (Ref 13:12). Another '"nice" feature of this even and
odd parity formulation is that it produces a solution matrix
which 1s positive definite and symmetric.

Defining the inner product of two functions as
<f,go> :-.ﬂnf’iﬁ)g(ﬁ)dﬁ (46)

where % means the complex conjugate, the functional wkich

corresponds to Eqs (40) (41) and (42) is gtiven as (Ref 10:169)

F(u) —J[{\M‘VU K" (w Vu)> + <u, C8u> - 2<0- Yu, KYsY>

-2<.1,87 >} dr é’j(l s-n[u dﬁ}dg (47)

where é;represents a surface 1integral.

[t can be shown Ref (10:169) that the Euler equation
(stationary point) of this functicnal is indeed the even paritv
second order torm ot the Boltumann cquatica aud that Egs (41)
and (42) arc the natural boundary conditions. A similar

tunctional for the odd parity equation has also been round.
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In Appendix B the stationary point of Eq (47) is shown to ;
be a minimum and the weak or Galerkin form is obtained. This :

weak form 1is f

jr (Govn,KY(Q V¥ > + <n,58¥> 4T +5£J( IQ n}anst
T

jR{<Q vr,KYsYs + <n,s8>}ar (48)
where
n = test or weight function
and
¥ = trial function

The natural boundary conditions Eqs (41) and (42) are incorporated

into the weak form ol equation (48). However, the boundary

condition at the e¢round interface 1s an essential condition.

A solution to the air-over—-ground problem can be obtained

from a svlution to Eq (48) and this essential boundary condition.
The Calerkin or weak form of lIq (48) produces a solu-

tion matrix which is positive definite and symmetric. It

15 :vmmetric because the test and trial functions are the

same in the Galerkin solution method. The matrix 1s positive

u

definite because K" and G® are positive definite and it 1is

~

. N . . . LU,
obvious that for the Calerkin solution the term <wg+7n,K (n*V¥)>

is also positive definitn.

The Method of Weighted Residuals

The method of welghted residuals 1s a straighttorward

and simple prescription for solving a wide class of preblems.




Unlike Rayleigh-Ritz it does not depend on a variational prin-
ciple or the calculus of variations. However, in solving
certain types of problems the use of a variational principle
or the Galerkin method of weighted residuals is equivalent
and they produce solutions which are identical. For the air-
over—ground problem and the second order even parity form
of the Boltzmann equation it will be shown that the Galerkin
method and the weak form, which 1s given by Eq {(48),
are equivalent formulations of the same problem.

In the method of weighted residuals an approximate
solution which is a linear combination of trial functions
1s assumed to exist., These trial functions are required to
satisfy the necessary boundary and continuity conditions.
The approximate solution, when inserted into the problem
equation, 1s then required to be an exact solution of
the problem with respect to several weight functions (Ref
7:106). The choice of weight functions determines whether
the method of weighted residuals is one of collocation,
least squares or Galerkin. 1In the Galerkin method the
weight functions are chosen to be the same as the trial
functions.

Applying the Galerkin method of weighted residuals to

the second order form of the Boltzmann equation is equivalent

to using a varitational principle. In Appendix € the weak
Torm, Eq (48), is derived from a Calerkin formulation of
this problem. The natural boundary conditicn is incorporated

into this development and an equation identical to Eq (48)




o Y

is produced. Therefore, solutions to the second order form of

the Boltzmann equation, by using a variational principle or
the Galerkin method of weighted residuals are equivalent.
This equivalency exists because the second order even parity

operator of Eq (40) is positive definite and self-adjoint.

ro
Lo




TV  Space-Angle Svnthesis of the
Even-Parity Anisotropic Boltzmann Equation

A space angle synthesis solution approach has already
been applied to the air-over-ground problem. Roberds and

Bridgman used 'specially tailored" angular trial functions
to solve the two dimensional steady state anisotropic
Boltzmann equation Ref (4:332). Space angle synthesis was
applied directly to Eq (1), and not to the second order form
of the Boltzmann equatiomn. Miller et al. (Ref 13:12) have
applied phase-space finite elements directly to the isotropic
second order Boltzmann equation in X - y geometry. Wheaton
(Ref 5) has applied phase~space finite elements to the air-
over—-ground problem. However a space angle synthesis finite
element approach using a flux expansion in bicubic splines
and spherical harmonics has not been done.
Because of the complexity of the air-over-ground problem
a space-angle synthesis finite element approach seems to be
justified. This solution technique might have several
advantages, some of which are:
1. The elimination of ray effects;
2. The numerical advantages of finite elements
in combination with a space-angle synthesis
approach, may be able to better handle the
four-dimensionality of the problem;
3. Anisotropic scattering can be easily handled
by a "wise and convenient" choice of angular

trial functions




4. The computational effort might be reduced,
without a loss in accuracy. It is expected
that bicubic splines will not require a
fine spatial problem grid (mesh size); and

5. The boundary conditions and a first scatter

source formulation can be easily handled.

The finite element space—angle synthesis technique 1is
merely a spatial and angular expansion of tlie even parity flux
by a tensor product of polynomial functions and spherical
harmonics. In this work a temnsor product of bicubic poly-
nomial splines 1is used. This expansion 1is the trial solu-
tion which will be used in the finite element method. The
plecewise bicubic spline expansion becomes a local basis in
the spatial (e¢,z) variable. However, the spherical (surface)
harmonics which are defined throughout the angular problem '
domain form a global basis. Therefore, this trial function
expansion has a dual basis -- a local basis in space and a
global basis in angle. This 1s the finite element space
angle synthesis method.

“he startine point of this Jdevelopment is the weak
form of the second order even parity Boltzmann equation
and essential boundary conditions. The air-over-ground pro-
blem is described by the weak form of Eg (48) and the
svmmetric condition g (20). An essential boundarv conditicn,

at the air ground interface, its that ¥(r.i) 1ls contlnuous

il

at =z

D oand o # 0 (see Fiyg. _)y. However, the derivatives

of ¥(r,.) are discontinuous.

[
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In the remainder of this section the spatial and
angular trial functions will be examined. A system of
coupled equations for the numerical solution of the air-
over—-ground problem will be developed. A first scatter

(collision) source will be used in this development.

The Trial Functions

Because this is a four dimensional problem with
anisotropic scattering a numerical solution techniqu: is
required. The finite element formulation of this problem
lends itself directly to such a solution approach. However
an application of four dimensional phase-space finite elements
to Eq (48) will be very costly (computer costs) and
inefficient (Ref 5:33). This is due to the added complexity
of anisotropic scattering. Anisotropic scattering 1lncreases
the bookkeeping and computational difficulties. A local
elemental basis in argle requires that the scattering contribu-
tion to each element must be computed on an element by
element basis for all space and angle elements within the
problem domain. Therefore a four-dimensional phase-space
finite element formulation of this problem is not a very
attractive or realistic approach.

A close examination of Eq (48) shows that the problem
operator is self-adjoint positive definite symmetric, This
allow: _he use 0! standard matyrix lterative sclutien tech-=
niques such as Gauss-Seidel, Jacobl or Succassive over-
relaxation (Ref 14:183). Thercetfore, a numerical method

that includes a finite element solution might be feasible




1f the anisotropic scattering contributions can be effectively
dealt with. A space-angle synthesis finite element development
with a local spline basis in space and a global spherical
harmonic basis in angle appears to meet this requlrement.

A phase-space finite element problem formulation which
eliminated the characteristic lines of the hyperbolic discrete
ordinate S, equations has been effective in mitigating ray
effects (Ref 3:205). The well known PN and double—PN aquations
of nuclear reactor physics have inherent elliptic features
which eliminate ray effects. Therefore space-angle svnthesis
using spherical harmonics seems to represent an approach
which will eliminate ray effects.

The trial function expansion which will be used in this

development is

1z IR +L +5,
(z)- B; (o)& (u X)
L WP 3D TR
1z=]1 1ir=1 =0 (49)

where p,z 1s the spacial coordinate dependence in cylindrical

~ . .
P a1 19t N o}
geonelry and u,Xx represents the i angulax variable 1n 1‘13". AN

¥(z,p,u,x) = even parity fluence at position r,z and in
direction wu,Y¥,

Aiz,ir = flux expansion or mixing coefficients,
J,m
B. (z) cubic polynorial spline in the z-
Lz e A
variable {(z-spline),
Bir(u) = cubic polvnomial v-spline,

= spherical harmonic function, Eq (51).

o
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Figure 4. Cubic Spline With
Evenly Spaced Nodes

iz, ir, £ and m are the trial function summation indices and

IZ = total number of z-splines,
IR = total number of p-splines,
L = degree of the spherical harmonic expansion.

The deflnition of a cubic polynomial splines (Ref 15:89)

with evenly spaced nodes (knots) 1is
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Y, (400 = Co Py (e X _ Gy Py () {eos(mg) + isin(my)} (51

where

C =V2Q+l (- m!
Lm e L+ m!

(52)

The trial function expansion, Eq (49) can be made to satis{yv
the symmetry of Eq (20). This 1s a symmetric condition in ¥
which directly implies that the solution must also be an even
function 1n the variable . Therefore, the angular trial
function expansion of Eq (49) must also be even in y. Dropping
the isin(my) term from Eq (51) and substituting into Eq (49)

aglves

4

Ln

(20,0, = Z Z Z iz, ix 11( 2) By (), (53)

12 ir=1 -0 m=0

b
Zs]

P\ﬂ

Q= Cqf (B)cos ) (54)

ang by using the orthonormal properties ot spherical harmonics
the m index begins at zero instead or -2 (see Appendix D).

The essential boundary condition at the air ground
interface wust also be applied to Eq (53). The fluence
conlinu: oy requrrements can be satlsiied bw this expansiocn 1in
blcunic pulynomial splines and spherica! harmonics. Both

S Uhers Tnnctiens ave contiauods throughout the preplem

domain. The cobic splines are also twice continuaously




differentiable but the spatial z-~derivative of the solution
fluence 1s not continuous at the ground interface. However,
the z-splines can be modified to have discontinuous deri-
vatives at this interface (Ref 16). A Double~Py or Yvon's
method (Ref 6:163) can also be used to accomodate the fluence
discontinuity at p=0. In this development the air-ground
interface will not be included in the problem domain, and
therefore, this interface boundary condition will not be
enforced.

Since a Galerkin method is being used the test or weight

functions are

M(Z,0,8,X) = ,(2) B ) an (55)

Substituting Eqs (55) =znd (53) into Eq (48) produces Eq

(58) where for simplicity the o0,z,u,x dependencies are onitted

and
BL = Biz(Z)Blr(D) (56)
and
3.0= 4. (2B () (57)
172 IR L L —
.. ',:(So\" 2, e l)l-l/(\
IPIRIT AR
) - e

Ton N
+ *Bijm‘bv(DLu Cdr *lejr n[b Qllblg .d dbi

- A 712 N - IS4 .
-j,[{rﬂj'.‘ (bjt} .ﬂ‘,_\lxu - \-bjk,b,m,b‘-,}dr 259
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This is a system of coupled algebraic equations where the
unknown quantities are the Aijpn mixing coefficients. Eq (58)

can also be written as

HEENEH (59)
NxN Nxl Nx1

vhere
N = IZ«IR«(L+1)(L+2)/2 (60)

K = Coefficient or stiffness matrix, where
each element is a summation of terms in
the square brackets of Eq (58)

A

i
1]

mixing coefficient vector

13f4m
S = Source vector which is the right hand side
of Eq (58)
The Ai’om coefficients of Eq (53) will be obtained from
52

a computer solution of Eq (59). These mixing coefficients

can then be substituted into Eq (53) to give the even parity
fluence, i(z,p,i,X). In a solution of Eq (59) the elements of
the K matrix and S vector must be computed. This computation
involves an evaluation and summation of the individual expanded

terms of Eq (58). This expansion is carried out in Apprndix

N

The directional gradient operator in cylindrical geometry

is defined as (Ref 6:59)

" Vf—"f- i .
e/ =Y 1wt cosy d(ae) - 1 2{»V1-uY siny} + u

(61)

i I

t-

{his i1s the conservatlive torm of the directiovnal derivative

in two dimensional (p,z) geometry with azimuthal symmetry.

(05
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The K" and G® operators have been defined in Eqs (24) and
(35) of Chapter III. The scalar product of the velocity and

normal vectors 1s given in Appendix E as

A A

C-nz for the horizontal outer surfaces (top or
R bottom) of the problem cylinder, and as
‘(‘Woﬁ =
+n_ for the vertical surface (side) of the
¥ cylinder (62a)
where
A  on the top surface, and
Qon =
Z

-1 on the bottom surface (62b)

'av = ¥Y1-p? cosy (62¢c)

Q

The normal unit vectors ﬁp and i, are shown in Fig. 9, Appendix E.

and

3>

c

Expanding the expressions in Eq (58) produces an integral=~
differential equation which has twventy-cicht terms (see Appendix
EY. These terms, except for the source terms, can be easily se-
parated into a product of z, p, u and yx integrals. This 1s an
integral separation of variables which is a direct result of Eqg.
(53); where, 1t 1s assumed that the solution can be expressed in
a form where the dependent variables are separable. This separa-
tioﬁ propertv simplifices the individual integrals which have to
be evaluated. It allows for the evaluation of only single inte-
grals and not the more complicated double, triple or quadruple
integrals. By this separation of variables it may be possible
to integrate most ol these single lutecorals analvtically and
thus avoid a numerical integration process.

The Spherical jlarmonic Iotegrals.,  The use of a spherical

harmonic angular trial function expansion was motivated by six

Baslc conslidorations:




-\

1. Because of the global nature of these functions the
computational effort will be substantially reduced.

2. Spherical harmonics are well-known functions with
orthonormal and symmetric (odd, even) properties.

3. The scattering cross sectlons are usually expanded in
spherical harmonics (sece Appendix A).

4., Spherical harmomics will produce 2 system of equations
which are elliptic and invariant under continuous
coordinate rotations (Ref 1:362).

5. An analytic or closed form evaluation of the angular
integrals might be possible.

6. The even parity angular fluence, Eq (53), can be
easily integrated to give the total particle fluence.
This integration is carried out in Appendix 1.
The term-by-term expansion of Eq (58) has been partly carried
out in Appendix E. The resulting angle integrals are only de- 5
pendent on the degree of the spherical harmonic trial function
expansion which is used. They are not dependent on the problem i
parameters and therefore they can be independently evaluated.
They can be cvaluated once, and thereafter, used as a part of
the problem input data.

Three approaches were pursued in an attempt to evaluate the

angle integrals which are produced by this expansion. The first
approach was to use the orthovonal properties of the associated
Lecendre functions and the well-known properties of sines and

cosines to analytically evaluate these integrals. However, be-

cause of their complicated nature (see Appendix F) a closed form

snalviic intorration was nog easily obtained for most of thenn,

[he second approach was Lo use a computer voutine that can

cvalusta these interrals in a svmbollic or aluebraic sense.  Suen

4 rentine will transform the integrals into aleebraic expressions.
1

Sl neavrem Clacvagma wiilel was wirritten by othe Massachusetts tosctoa-

Tt vooT e iy e Mt o s 1aeer ot this attoont. Howew oy




because of the time constraint on this research project and the
need to learn a new programming language this approach was aban-
doned.

Finally, it was decided to evaluate these integrals by
a numerical integration technique. Because it is possible to
separate the integration variables, the computational effort
can be substantially reduced by using a single (one variable)
integration routine. So as to further reduce the computational
effort, Eq (58) was completely expanded and twenty distinct
angle integrals were identified. These integrals can be found
in Appendix F. A ten point Newton-Cotes single integration
routine was used to evaluate them. They were evaluated for
each combination of the m, 2, k and n trial and weight function
subscripts.

Bicubic Polvnomial Splines. The spatial dependence

of the particle fluence in the air-over-ground problem 1is
approxlmated by a product of cubic splines. The use of
cubic¢ polvnomial splines in the trial function expansion of
Eq (53) requires the formation of a tensor product space.
ihis sbace is nade u; ol bicubic polynomial splines which
are products oi ¢ and z-splines on a rectangular graid

(Ret 153:131). The exact shape of these bicublc splines are

eblatned troa a variational principle or the equivalent method
vl ot residuals (Gae., a osolution ot Eq (58)).
plceuviy polvioa.al splines are being used for the
flow o v Lo
Lo vhe are poecewise contiauous and form a

. S o raat the date-cral

SN v -t
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This reduces the number of integrals which must be
evaluated anc also produces a sparse and banded
coefficient matrix.

2. A separation of the p and z integration variables
is possible.

3. Third degree polynomials such as cubic splines have
a faster rate o7 convergence than those of lower
degree. Cubic splines are also twice continuously
differentiable and thus thev are very smooth func‘\\\
tions. For a ziven problem mesh size splines will ™
produce a coefficient (stiffness) matrix that is
smaller but less sparse than hermites or lagrange
polynomials,

N

The expansion of Eq (58) with a trial function of bicubic
splines and spherical harmonics is carried out in Appendix E.
A further expansion of these equations and a separation of the
variables of integration produced seventeen distinct ¢ and z
intecrals. These intcgrals which include the space source
integrals are listed in Appendix G. The source integrals are
derived from an interpolation of the first scatter source over
the entire spatial problem domain.

The Source T..rms. A numerical solution to the air-over-

ground problem and the second order Boltzmann equation requires
that the source terms (right hand side of Eq (58)) must be
evaluated. These terms form the individual elements of the
problem source vector in Eq (59). The even and odd pariuy
sources S* amd 8% will be defincd as the first scatter or
collision even and odd parity sourcrs. The first scatter
scurce S(r,.)) is the number density of particles whici: leave
the burst point and undergo onlyv one co.lision belore being
scattered into direction © at position r. Streaming neutrons
which leave the burst point and do not collide before reaching

position (r,:) arc neot included in the collision source.




The use of 2 first scatter source makes the air-over-
ground problem more isotropic. It removes the strongly
anisotropic streaming particles from being a part of the
problem source. Therefore, the solution fluence of Eq (58)
will be the scattered even parity fluence WS(§,§) and not
the total even parity fluence ?t(g,ﬁ). The total even parity

fluence can be defined as

Ve(r,2) =¥ (r,Q) + ¥, (r,Q) (63)
where
Yd(f,ﬁ) = streaming uncollided particles at

position (r,&).

A precise mathematical definition of the S$& and s“
sources will now be developed. Also a source interpolation
procedure will be outlined, This source interpolation is
used in order to simplify the source integrals of Appendix
£ O(E-40 to E-46).

The First Scatter Sour ~. The even and odd parity

sonrces have been defined as

$°(r,) = Hs(r,) - s(r,-)}
SS(r,.) = 4iS(r,2) + s(r,-)} (93

u o . .. AN
and S® ar» fivrst scatter source densities then S(r,..)

It S
and S(ﬁ,—;) must also be detined as (irst scatter source
particles/unit volnuwe., 1L a position (v,2) Lln the preblem
domain is cheser then a unit vector rrom the burst point

(0,zb) can be detined as

36




The Burst

Point

(0,2zb)
zb

//."‘-——.\\
— ™

~ ~

z=0

Figure 5. First Scatter (Collision)
Source Direction Vectors

" pé + (z-zb)é
Q%(p,z) = 2L 2 (64)
{p? + (z-zb)2}?

Fig. 5 shows the direction vectors of this first scatter
(collision) source. & is the direction that all streaming
(uncollided) particles have at point (p,z),

By definition only particles which are streaming
radially outward from the burst point can be included in

the direct fluence. Therefore the direct fluence at point

(p,2) is in the {“ direction and can be written as




A Y s
b4(0,2,0 ) = ;;;zexpl J; ot(z)ds} ' (65)
where
s = {p? + (z-zb)?}* (66)

and'/;s means that the integration is carried out along the

path s (see Fig. 5). Also

Y = Total particle yield of the nuclear
explosion at the burst point.

ct(O)enz/Sh for z > 0

OC(Z) = ; o
O, {ground) 7or z < 0 (67)

shh = atmospheric scale height

The terx jsst(z)ds 1s the average number of collisions
which a particle undergoes in traveling from the burst point
(©,2zb) to point (p,z). From Fig. 5 the distance s can also

be written as

s = (z-zb)/d (68)
and therefore by changing wvariables

ds = dz/ud (69)
where ud 1s a function of o and z (but counstant along a path
lenrh §)

pd{o,2) = cos w= (z=2b)/s5 = (z=zv)/ {p° - (Z'Zb):}¥ £70)

The intesral term ot Eq (65) can now be written for z > 0 as

r c (o), _,
o,2) = Jir (2)ds =t f7 z/shy, (71)

(98]
e




and finally as

1(0,2) = lyfdo—) {e72P/sh 72/shy )
= {o(zb) - 0,(2)}*sh (72)
(2 - o (@) sh

Frou the above derivation 1t follows that

{Ot(zb) - Gt(z)}’sh/ud for z > 0
(p,2) =
{ot(zb) - ot(O)}°sh/ud - otz/pd for z < 0 (73)

also

7
L

54(p,2,27) = —=: exp (-1(p,2)) (74)

[ =]

1

Yote that @d(p,:,Q‘) 1s only a function of p and z.
The first scatter source at (0,z) and with direction

~

Q are those particles which undergo their first collision

~
-

at (p,z) and are scattered from direction 17 to ... i

Therefore the first scatter source can now be defined as
S(0,2,2) = 0%(2,2:004(0,2,27) (75)

where 0% is not a function of &~ but of the scattering angle

- ~

- e . - S ", . A -
e o)y and z.o From Fig. 5 and Fiz. 2 07 1s defined bv
Is} o 5 h

>

-

= (17,x7) where u” = ud and »~ = 0.

o
)

ud and ¥ = 0 1.e.
By use of the addition theorem it 1s shown in Appendix
H that Eq (75) can be written as

T

—

— . - Y .
N TEIsh ; ; ST ()P, () cosT

/ 4 . NN A tobe
= =) ( 76 .

S(o,2,..) = :h(rgk




and that the even and odd parity first scatter sources are

L 2
Sg(p,z,ﬁ) = ¢d(p,z,§')e—z/5ki§:::E:%;(O)C%m{l+(-1)R_m}PQm(pd)PQm(u)CCSUm
=0 w*=0 (77)
and
L & ‘
$'e,z,d) = ;d(p,z,ﬁ‘)e‘z/Sh oS(0)C” {1-(-1)" ™P,_(ud)P, (u)cosmx
2=0 m¥=0

(78)
where m* means that all terms with a m = O subscript must be
divided by two, and cosmX should be interpreted as cosine (my)

Source Interpolation. Because of the complicated nature

of the source expressions, Eqs (77) and (78), aund the need to
integrate the source terms of Appendix E, a spatial source
interpolation will be used. This interpolation which
simplifies the source integrals 1is necessary if a very
tedious (double or quadruple) integration 1is to be avoided.
By this interpolation process the source terms of Appendix E
can all be separated into a product of single integrals.

It is important to note that pd which is given by Eq (70)
is a function of p 2nd z and therefore le(pd) is also a
function of o and z. Furthermore ¢H(p,z,:’) of Eq (74) is
a function of p and z. Beginning with Eqs (77) and (78)

they can be rewritten as

I

L v

2., .0 =§_§Srq,5/ 21yt G2V (L)eosiy (76
570 lig L, i\o)blm“‘+( D ‘Atm(”’“)‘;m(“)LObm\ 79D
=0 =0

and




L &
8%(2,2,2) =ZZ oS(0)C?_(1-(-1)" Ay (p,2)P,  (1)cosmy (80)

C=0 mi={

where

. . f:» - h
Agn(022) = 1g(z, 87 P (udye 8 (81)

A spatial (g,z) interpolation of the even and odd
parity sources, Eqs (79) and (80), is therefore an inter-
polation of AQm(p,z). In this project these first scatter
second order sources were interpolated by a combination of
piecewise bi-linear Lagrange polynomial functions. Speci-
fically, s& was approximated by a tensor product of linear

lLagrange polynomials as follows
N7 iR ‘
$3(0,2,) =ZZ$9<QJ-,zi,sZ)Hjcpmi(z) (82)
i=1 j=1

Sg(pj,zi,ﬁ) = the even parity source, Eq (79)
evaluated at the spacial nodes
(o le)
N

where

.

Nz = total number of z-nodes

NR = total number of R-nodes
"(g) = o-linear Lagrange polvnci:lal
Z(2Y = :-linear Lagzrange polrnemind

hes . lincar pelynemials are delined us
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Figure 6. A Linear Lagrange Polynomial Function,

The product Hj(c)'Hi(z) ol Eq (82) forms a tensor product
space on a rectangular grid, in the p, z plane (Ref 15:129)
Substituting Eq (3.) tfor Sg(gj,zi.:) n Eq (77) gives
Lol
58(5,2,) 7 ) Z[Tf(mcim“ KZ \R
C =) M= Q/"'L 5 * O
=0 m'=y +(~1) nr‘.plm(p)cosmj{zz “,‘lm(pj’Zi)Hj('JHi(z)]
i=1l j=1 (24)

“imilarly the odd parity source can :..lso be expressed as

U, A . 5y L
S y2,0) Z Z [/,,,(U)C mtl NZ MR
LS E [Nt 100N
Y —(-D ‘“;pm(;)cosm-{ Z‘\im(“ },zi)Hj(,:)Hi(:)]
(35

=1 5=l 35)
C YW e cnoatruat dornte Lhe Lonrce terms
o Nmrand i T = An ro E=Ne) 0 Tt sqbstitation and a
SUTATE LD G Pleoor2tos e o variaelos prodiced six Jdistinct

space inteorals.  These space intesrals are listed in Appendix




e i3

G. The source angle integrals have been included in those

integrals which are presented in Appendix F.
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¢y Computer Implementation and Results

A numerical solution of the air-over—-ground problem
can be obtained from a computer solution of the system of
coupled algebraic equations which are represented by Egq
(58). These equations can be written in the matrix form
of Eq (59) and through a direct inversion or some other
matrix solution process the Ai,j,@,m mixing coefficients
can be found.

The computer solution to this problem was accomplished
by a two step process. Each element of the stiffness matrix
and source vector was computed and assembled in the matrix
form of Eq (59). Then the mixing coefficients were computed
by the iterative matrix solution method of successive over-
relaxation. An indirect iterative matrix solution method
1s possible because Eq (58) and the stiffness matrix of Egq
(59) 1is symmetric positive definite., A computer progran
which assembles the problem matrices and computes the
mixing coefficients and particle fluences was written.

This oro:ram which 1s written in FORTRAN V is listed in
Appendix J,

Using a ten point Newton-Cotes numerical integration
routine, each of the thirty-seven integrals in Appendix
F oand G were evaluated. The angular integrals were evaluated

tor =2ach a, kn combination ol the trial ang welght functica

subscriors. Sclected products ol these integrals were thoen
usced to gencrate each ot the twventy-elght terms (E-19 to

E-46) oif Appendix E. PFolloving the prescripticn of Apoendix

~

o M ot Mo e



E the first twenty-one terms were then added (or sub-

tracted) to produce the elements of the stiffness matrix.

The next seven terms gave the elements of the source vector.
Writing the synthesized Boltzmann equation, Eq (58), in

operator notation as

(86)
L(’iz,ir)njz,jr B Sn“j_z,',r
L,m k,n Ksn
where ¥ and = are derined by Eqs (53) and (55) and
L(Yiz,ir)wjz,jr,= Lett hand side of Eq (58)
Q\’m n
Sn-. e T Right hand side of Eq (58)
k,h
the K element of the stiffness matrix 1is
b
Kp,q = LtBiz(Z)Bir(p)QLm}'sz(Z)Bjr(p)an C37)
where

q = (mt+l) + i(i;l) + (Lmax + 1)(Lmax + 2)-{(ir-1) +IR{iz-1)} (88)

<

and

It

n = {n+l) + k(k+l) + (Luax » DY(lmax + 2)<(Jr=i) + JR(jz=1)} (9)
e 7

< &<

The corresponding source vector element S, ls e¢iven bv

Sp = S'sz(z)Bjr(p)an (40)

where pois given by kEq (89) and




Lmax = degree of the spherical harmonic expansion

JR=IR = total number of p-splines
p = the row index of the problem (K) matrix
q = column index of matrix K

B(z), B{:) and Qun are defined in Chapter IV (Egs (50) and
(54)). iz, ir, jr, jz, 2, m, k, and n are the trial and

welight function expansion subscripts where

L,k = 0 to Lmax

m =0 to &,
n = 0tok
iz,jz = 1 to I7Z

ir,jr = 1 to IR

and
1Z

total number of z-splines

IR total number of p-splines

Using the notation of Egqs (87), (88) aund (89) the K-problen
matrix and S-source vector can be easily assembled in the

following do loop.

DO 10 jz = 1, IZ

DO 10 jr

i
—
—
s

DO 10 k = 0, Lmax

DO 10 n =0, k

DO 1Y 12z = L, iZ
D0 1o ir = 1, IR
20 10 4 7 0, Laax

DO 10 mo= 0,0
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" = '. . \ 3 .
Fo,q = Miz ir? Mz, ir

Lyu kk,a

10 continue

The assembled coefficient (K) matrix which results from
Eq (58) and a bicubic spline spherical harmonic trial
function expansion 1s sparse and symmetric. Because of this
synmetry and sparseness the coefficient matrix can be stored
within the computer by special storage schemes (Ref 14:70).
These sparse and symmetric schemes will greatly reduce the
computer storage requirements. As an example, in a trial
function expansion where JR = IR = 8 and Lmax = 2 the
problem coefficient matrix is a 384 x 384 square symmetric
matrix with many elements which are zero. Therefore if this
entire matrix is stored within the computer it will req. =
147456 separate storage locations. This much core
storage 1s already bevond the capacity of most computers. How-
ever, by using a sparse and symmetric storagce scheme this
matrix can be reduced to one with less than 73728 elements.
For large trial function expansions (JR = IR = 50, Lmax = 3),
special auxilizrv storzee and solutieon techniques will be
necessary.

This entire problem (coefficient and source matrices)
was assembled on a CDC 6600 computer at the Air Force
[nstitute of Technologv. The 384 x 384 problem matrix
1s too large to be stored in core memorv unless a sparse
symnetric storage Tode s used. Because some of the (p)

integrals in Appendix G are discontinuous (infinite) at

L7

PR o anud ey —




p = 0 1t was necessary to use a lower p-integration limit
of 1.0 E-8. Also, since the first scatter sources of Eqs
(77) and (78) are undefined at the burst point none of the

problem nodes can be located there (see Fig. 5).

Results

The computer routines which are listed in Appendix J
were used to produce a numerical solution to the air-over-
ground »roblem. These routines demonstrate the feasibility
of using FESAS to produce a computer solution to the two-
diwensional steady state anisotropic Boltzmann ecuation.

This computer procram has not been fully developed, refined or
debugged and therefore the accuracy of the results has noc
been evaluated. These results are presented in an attempt to
further show that FESAS is a viable numerical solution
technique,

The problem domain 1s a cylinder which sits on the sur-
face of the earth (see Fig. 5). However, the air-ground
interface 1is not included in the problem domain and there-
fore all ~round o{tfects are ignorced. The lollowing problem

parametors were used

“Weapon yield = 1.0E+23 neutrons
Cylinder height = .4km

Cvlinder radius = .4km

Burst hetght = .12 km

Total cross secrion (:t(U)) = 15.0 km_1




Table I

Legendre Expansion Coefficients which were used
in a Numerical Solution of the Air-Over—-Cround Problem

Legendre expansion coefficients

Q

Expansion subscript &

2 u

o %

| 0 10.0 .0
|

| 1 0.0 2.5

The cross-sections 1n Tabl2 [ were arbitrarilv chosen and they
do not represent the actual values for air at sea level. A
relative convereence criteria (.001) which is accurate to three
sivnilicant lisures was uscd.

The prooram exccution times varicd with the dearce of the
spherical harmonic trial functicn expansion and the problem
mesh (grid) size. The entire problem matrices were stored
within core memoryv and bv trial and error it was determined
that a relaxation parameter of 1.7 gave the fastest convergence
rate,  However, as more trial functions were used and the
s5vstem of aquations and aavrices orew larcer tho rate of
convereonce decreased.  In Table II the program execution times
and the anmber ol iterations to convergence are listed for
carione weoblom meesh sizos. These oxecution times and con-

vorsonee rates can be oanbgtantially reduce~d by orewritine or

|4

. . . [ .
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In Figures 7 and & fluence values as a function of radius are
presented. These values are representative of an altitude of
200 metres and the aforementioned problem parameters., Figure

7 shows a variation ol the solution with spatial grid (mesh)
sizes whereas Figure 8 shows a variation with the degrece of the
spherical harmonic trial function expansion. DMore detailed

numerical results can be found in Appendix K.




VI Conclusions and Recommendations

Conclusions

A finite element space-angle synthesis (FESAS) solution
of the steady state anisotropic Boltzmann equation in two-
dimensional cylindrical geometry has been presented. In this
presentation a weak form of the even parity steady state
Boltzmann equation was developed. It was shown that because
the problem equations were positive definite and self-adjoint
the Rayleigh-Ritz variational principle and the Bubnov-Calerkin
method of weighted residuals are equivalent. The problen
solution was formulated by using a trial function expansion in
bicubic polynomial splines and spherical harmonics. This trial
function expansion has a dual basis -- a local basis 1in space
and a global basis 1in angle.

This development was specialized to the air-over-ground
neutral particle transport problem. It was shown that a
finite element space-angle synthesis solution is possible and
that a first scatter interpolation source can be used. It
was nlso shown that a aumerical solution can be achieved and
that this selution technique nay eliminate ray cliects and

reduce computational costs,

Reconmendations

The oreliminary results of this study have shown that
the FESAS method can produce a numerical solution to the
' steaav state Boltznann egnation and the ailr-over—cround

problem. However, because of the time constraints on this




research project a complete development and evaluation of the
FESAS method was not accomplished. Therefore, there are a
number of recommendations for the further analysis and
evaluation of the FESAS method, which must be made. Some

of these recommendations are:

1. To enforce the boundary conditions at the air-
over—-ground interface. This can be accomplished
by a coalescing or stacking of the nodes (knots)
of the bicubic splines and by using a Double-

Py approximation at this interface.

2. Develop or refine the computer algorithm so that
a comparative study can be made. This study
should include a comparison of the computational
costs and accuracy of FESAS to those of Monte
Carlo and discrete ordinates. Also, a determina-
tion should be made as to whether ray efrfects
have been eliminated.

3. Obtain, 1f possible, a closed form solution to
the angle integrals in Appendix F.

4. Explore other ways of handling the discontiauity
{at ¢ = 0) of the space 1integrals.

5. Use other spatial trial functions. Lower degree
bi-quadratic splines, hermites and Larrange
polvnomials are possible candidates. A coupari-—

son of the results which are obtained from the
use of varicus trial functions can then be made.

Ch

Examine the effects of an improved source inter-
polatien on the solution accuracy and rate ol
converaence. An improved source lnterpolation |
can be achieved by the use of a smaller source
(space) erid or a hicher degree Lagrange or
Hermite polynomial interpolation function

7. Extend the use of finite element space-an-le
svnthesis to the solution of energy depenaent
multi-rroup problens.
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AEEendix A

Derivation of the Scattering Kernel, Inverse Collision
Operators and the Even and Odd Parity Collision Cross Sections

Collision Cross-Sections

The even and odd parity legendre expansion scattering cross-
sections 0% and og originate in the derivation of the second
order forms of the Boltzman equation (Chapter III)., A defini-
tion of these quantities has been given elsewhere (Ref 5:29).
This definition is repeated below,

Beginning with the even and odd parity scattering cross

sectlons
SHANA) = £{64 ) +55{F,-Ji.ﬁj} (a-1)
(B AN) =2 §BAR) -GS (FAAR o

the usual computational practice (Ref 6:131) i1s to expand these

scattering cross sections in Lecendre polynomials as

Z
P
S Ao ~, ) - ~ ~ ~
SEAN) =G . 2487/, Bl 0) (A=3)
= O 47:
or
4
e -~ ~N 3 ~ o~ -~
¢THA-A) —~Z§(f):§_£ﬂ_ . BER.A)
Z 477 (A=4)
where
o“(r,ﬁ-ﬁ’) = macroscople scattering cross section
cS(r) = ‘ecgendre macroscoplc cross-section

expansion coetfficient which 1s a
function or position (material)

L = the degree legendre polynomial expan-
sion which 1s used




PR(Q-Q’) = lLegendre polynomial of degree %.

Ge0° scattering angle (po = CosH)

Inserting Eqs (A-3) and (A-4) into (A-1l) and (A-2)

gives

Z
AR S et { PR B )

F=0o

ﬁ/ﬂ/z} Lé (szévézf/?‘//z /() P(/L/Zg

(A-5)

(A-6)

From the even and odd properties of lLegendre polynomials (Ref

17:223)

}Ca/ﬁ— - even function if & is even
s S =
7o)

odd function if £ is odd

therefore i f

£ 4 is odd
A.) 7 (/Z/L} .
Z{Z ) 5 2P( /?.? if & 1s even
an
27>6QJ1) L is odd

if & is even
Eqs (A-5) and (A-6) can now be rewritten as
q <
5 o SA A Ny
é%;éﬁ/txz) %E}%(ﬁ):ii:/,‘é?é&./z

and L even

(A=7)

(A=8)

(A-9)

(A-10)

(:‘\_llTﬁ




The even and odd parity cross-sections can also be

expanded in legendre polynomials as

Z
3(/-;/3./2}_—265(0-2_{:/ .7(?(45/?7 (A-12)
=z O
and
- 2E4/ . A A -
,,Q,L) zé(f) £27 Bl (A-13)
Comparlng Egs (Aefﬁ), (A-12), (A-11) and (A-10) 1t is apparent
that
R jo?rg) for L even
g = i
o7 (x)
lo for 2 odd (A-14)
{
and ’
0 for 2 even
U,2\ -
o (r) = s -
oz(r) for £ odd (A-15)

Therefore 0%(9) and oi(g,ﬁ'ﬁ’) are even functions. Also cz(r)

and ¢%(%,0+8°) are odd functions.
s

Scattering Kernel

In the development of the even and odd parity forms of the
anisotropic steady state Boltzmann equation (Chapter III), it
was necessary to express the scattering kernels in terms of
the even and odd parity flux (fluence) components. Following
the derivation of Wheaton (Ref 5:11) the scattering terms can

be written as

/‘,3/, £ ﬂ)¢( “AVDA = 4l P A A JE)dA

7t 2
2 Bpan ) As sy ~ .
*2[65(”3"‘“/ A5-2) dii (a-1o)
YT
where the integrations are carried out over all directions




Because o§ is an even function, meaning f(x) = f£(-x),
it follows that
Gp ~_5) Gn A 2/ (A_17
&AL A7) = éé-,/z./l) )

and therefore

[gE ) Pea)ds =4 <A)SPEA)
s 7
- BE-A)§di (a-15)

With the even parity flux defined as
WHA) ='z"{¢5ﬁﬁﬂ7"¢(€‘f@} (4-19)

Eq (A-18) becomes

[ S EAR)HEA)AA =[5 48) Y A) A (4-20)
G

“«r 44

and by a similar derivation

/s,“(f:/f-n”y P 1A =[5 A A XE AL (a-21)

344 U

Inverse Collision Operators

In deriving the second order forms of the Boltzmann

equation (Chapter III) the G& and GY operators were defined as
CYN) = 6D {264 )d 7 (a-22)
2
and

G"/’ N T (aa 2N L) g s
/ (/(:/ =&y “6_;(/'2./2)/ (_/7-)4/2. (A-23)
g
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where the r dependence has been omitted in an attempt to
simplify the notation.
Using the addition theorem (Ref 6:609)
+ M R
AR = 27 VoA Vo)

26+
ﬂﬂ:mé

in (A-12) and (A-13) gives

£ 2L 4 s
SR N & gD D

and [:; ': i P
g A)S S YD
L=0 wre-E

Eqs (A=-22) and (A-23) can now be written as

L+
GHA- D)) & %{f’t‘j( yintas

E=0 Mm=-&
and
4 A ‘.
CHA) - o)y et e
L0 m=-E 47

The inverse operators are defined as

g~ - -t
KS:[G } / auad Ki[GL‘]
where it is meant that if
/ f/b»\ SBYFA
GHA) = R
then

KIGHA)= K RA) =A¢A)
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(A-24)

(A-25)

(A=26)

(A~27)

~—~

A‘ZS)

(A-29)

(A=31,

(A—J:




multiplying Eq (A-30) by &nYin(ﬁ)dﬁ and expanding the c8

operator gives

& f;{'//z‘) YA A)dz- Zg / Y )/gﬂ)c/,q[ YAGY, Vi )dit

# A
:%]C??Qﬁ%iﬁfihjcf (A-32)
¥a

using the orthonormal properties of spherical harmonics (Ref

6:609)

[ AP < g o (4-32)

where Sk is the Kronecker delta which is defined by

S =

0 9 # k

1 L=k (A-3L)

Therefore Eq (A-32) can now be written as

¢ [/ od i - & /}?;//29/?/270’/2/

§/}€?7i)}42295£{“ (A-35)
J[;‘?/‘)}/Ca)cffz - :;%€¥;%7;£%£;;5£)c54? (A-36)

Rewriting Eq (36) with a &m spherical harmonic subscript

and substituting inio the expanded form of Eq (A-30) gives

3

R = &5 qu>~\ i 62 5)/(1 /P(/Z )/‘,/(”"J/a (A=37)
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i
and by rearranging Eq (A-37) i
|

. ) 3 N
gl een Y &3 SRRy

Comparing Eqs (A-3¢) and (A-31) it is obvious that k&
fined by

1s de-

f “ A < < ~) ¥ A, Ay
A AL = é[?/ﬂ/ 725%%;?} YA R pILz ] (A-39)

. . . . u
a similar derivation for KY would produce
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Appendix B

Weak-Form of the Functional

The functional whose Euler equation is the even parity

Boltzmann equation of Chapter III 1is

i) = Z(<ff. Ve, K LETL)) + e, Gy -2 Tk ST
<

_2<44,53>3¢//—‘ +j£{[//a,;/¢%/,§ 75 ‘B-1)

where the inner product <f,g> is defined as
X ~ ~
<;€’3>=f7'%z) 5//2)./,/ﬂ (B=2)
27T

and * means the complex conjugate.

The minimizing function of this functional is the
function ¥ which is a solution to the second order even
parity Boltzmann equation (Ref 10:169) Therefore, a solu-
tion to the even parity Boltzmann equation can be found
by minimizing Eq (B-1).

Another more useful formulation of this problem is the
weak rorm. This weak form can be found by imposing the
condition that a function which satisfies the natural boundary
conditions Eqs (41) and (42) and the even parity Boltzmann
eugation must also be a minimum of the functional (B-1).

Let the functionral, (Eq (B-1), have a minimum at Y.
Then, for all n and ¢ where = can be arbitrarily small and
ol either sign

N

Fly) < /'/:(/%9'*572) (B-2)
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where ¥ and n are real functions that satisfy the boundary

conditions.

Expanding Eq (B-1) in ¥+en gives
FW*E7) :l@y%/r(/z.yg/))c/;
+f£</2.yy) Ky vy dF
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noting that (B-4) + (B-8) + (B-12) + (B-l4)
+ (B-i6) = F(¥)
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and that Kg,Ku,Gg and G" are self adjoint operators (Ref

10:174), where if L is self adjoint then

{LFcA), 364)) = <ALA), L 3eA)
= (£ 3¢A), 7/(/5)}‘e (B-20)

* means the complex congugate. Since n and Y are both
real functions (B-5) = (B-6) and (B-9) = (B-10). Therefore,

collecting terms and simplifying

Flyren) = FLy)+ 25/4(((%- vy, K évgy
<TG =L, 45 - SN
+ f f /Z /r‘/wzd/zdf]ﬁf[’{(ﬂ‘-”é/r “irz))
T f’é)ff’*”*f[/f”’//ﬁ“ffa//] (3-21)

With both K" and G&® being positive definite operators then the
62 term of (B-21) must also be positive. Note that 62 is al-
ways positive., Now in order to ensure that F(¥+en) > F(Y¥)
for ¢ # 0, the € term in equation (B-21) must be positive or

zero, But ¢ can be of either sign therefore the coefficient

of £ must be zero, that 1is
’/‘-' & e'/": - ? ! - . »~ 174 &
Q(/: PZACETY)) #7586 - Rkl
:f D A /."- /\-/’/ ~~ ~
(757 )Zdﬁ - j{;ﬂ{/zﬁ/)//,ﬂ//wé - O .
s - v/
Cgq (B-22) is the weak or Calerkin torm cof the second order even

parity Boltzmann equation. A detailed derivation of equaticn

(B=22) can be found clsewhere (Rer 3:57).




Appendix C

Derivation of the Weak Form From the Galerkin
Method of Weighted Residuals

It can be shown that solutions to the second order forms
of the Boltzmann equation, by using a variational principle or
the method of weighted residuals are equivalent. A proof of
this equivalency for the even parity equation is outlined below.
However, a similar proof can also be extended to the odd
parity second order equation.

The starting point of this proof is the even parity

Boltzmann equation
~ @ ~~ A~ ’3" ‘A A — 3,4/’2‘)
~ AT Cr) NV Y F ) ) (/(/;/l) =S5 (c-1)
— ATk ENSEAD

and vacuum boundary conditions

Y 7) +k‘ég)<(5?;/2)-ﬁ.m//(/;j/2)} =J (c-2)

for/&:'fi<i C)
LiiA) ~/<?é){5 P =T P, )] - N O
tor Sl /L 70

In the following equations the ¥ and dependences will be
omitted.

If a trial soluticn ¢ 1s assumed where ¥ 1is a linear
combination of functions such that
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then the Galerkin method of weighted residuals requires
a weight or test function n; where

25

o=/

The requirement that ¥ should be an exact solution to the
problem is imposed by substituting Eq (C-4) into (C-1), and
then requiring that the Euclidean norm of the right and left
hand sides of (C-1), with respect to the weight function n,

are equal,

Applying this requirement to Eq (C-1) gives
%@W AT <6 ?éﬁ}éf
- j? {(55’%) SAVES 7)}4; (c-6)
where the inner product is defined as

<h9y - [F9d7

and the trial and weight functions, Y and n are real functions.

Using the vector identity (Ref 10:169)
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Substituting Eq (C-9) and (C-10) into (C-6) gives
( {(/ﬂ%n“z.w) - <&M 70 JdF
RSy = CARKATYE ) (ds
- L{@-m R CR Tt
term A of Eq (C-11) can be rearranged into
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Using the boundary condition of Eq (C-2) and (C-3), Eq (C-12)

can be written as

@-$lfc 4 [G IV

ﬂ(O

Ec (C-12) can also be written as
@:dﬁpf-//%/fd@?df (C-14)
Sy

wvhere || means the absolute value. Substituting Eaq (C-14)

into (C-11) gives

/ oA , - . -2 /o~
= {\,'1.7/;7)/6’3 f/) +§/f” S /\ ar (C-15)




Eq (C-15) is the weak or Galerkin form of the even parity

Boltzmann equation. [t is identical to Eq (B-22) of

Appendix B.
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Aggendix D

Expansion Properties of Spherical Harmonics

In Chapters III and IV the angular dependence of the
trial functions and cross sectlons was expanded in spherical
harmonics. Because of the two dimensional angular
dependence in u and yx, and the requirement that the expan-
sion functions should form a complete set, the expansion

is presented with m and 2 subscripts as follows (Ref 6:608)
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[f {(u,X) is even in the angle X then the expansion must also

be even in y, and theretfore, (D-4) can be rewritten as

Re You = Gom= éi;’*éﬂ(’“‘}gos(mx)

(D-7)

where the odd 1iSiny term 1is omitted. Also from Eq (D-5)

=07 ‘ "/i i
e R PN

Thercefore for an even expansion Eq (D-3) can be written as
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ﬂniﬁ f/ FLu, 108, ey ) dudx (5-9)
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For an aven x expansion of £(u,.) Eq (D=2) can theretore be

written as
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where P,(2+27) 1s given by Eq (A-24)
Eq (D-13) can be expanded to give
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Note that
/ /) [ 7 5 . Ve
LosA(7-1")=Cos m Losmx'+ weAL S Y gy
The angles u and X are shown in Fig., 2.
Similar derivations would give
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By inserting Eq (D-20) into Eq (A-22) the cven paritv collistion

operator can now bu written as
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and frem Egs (D=15) and (D=17) thoe inverse odd parity collison
oporator ¥q (A-40), can be written as
LU ~/F

e

Y W ’Dz»,‘/”[% () osm V-2 )d 7 J
L 4 (D=2

\ co by P . e Lol o nipuen)
4 o~
/P \ N A Mmoo - \
s N oA . | ‘F ol (‘“_
Lo L




g/,«) = (D)) ! Z/a) (D-25)
.y _— g

2

(;2//»:)/
+
77/49/7,/"‘)4{%: =R DY _ (D-26)
E o G % ey, VP
</
where
0 for 2 # 0
7 1 for 2 = (D-27)




Appendix E

The Synthesized Boltzmann Equation

In order to formulate a numerical solution to the
air-over-ground problem it 1s necessary to expand the
weak form of the even parity Boltzmann equation in a set of
trial and test functions. The finite element space-angle
synthesis trial and weight functions of Chapter IV will
be used in this expansion. Because this is a very
tedious and lengthy derivation, the more obvious albegraic
steps will be omitted. The starting point of this formula-
tion 1s the synthesized even parity Boltzmann equation, Eq

(58), of Chapter III.

ZZ 4 _Z
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where B. and Bj are tensor products of cubic polynomial splines,

and they are given by
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also
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Figure 9. Surface Normal And Particle
Velocity Direction Vectors.
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sz(u) are the associated Legendre functions,

and

The directional derivative 1s given as
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If @, ﬁr and ﬁz are considered to be unit vectors then

from Fig. 7

AE = FB=CF =/

(E~-10)
and therefore for the top surface of the cylinder
A A, = AExERxLosH =4
(E-11)
and for the bottom surface
;%/'72 - - U
z (E-12)

also CD = HB = projection of 2 unto the x-y plane

and therefore,

CD = HB = EB Sind

= /1-Cos?a = 1/1-4° (E-13)
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In Appendix D the cven and odd operators were given as
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where m means that all terms with a m = 0 index must be

divided by two, and

2
Zﬂ:{ﬂ) = Zf“) E{“) oS m(x- 1) (E-17)

Also the inner product is defined as

<K9>-[F3a%
=Zr7fj0//’E for real f (E-18)

Using Egqs (E-16), (E-15), (E-14), (E-11), (E-12) and (E-6) and

noting that Tfm’ qu, B, and Bj are all real functions, Eg (E-1)

can be expanded to give
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Eqs (E-19) to (E-36) is an expansion of the first term of

Eq (E~1). Eqs (E~37) and (E-38) is an expansion of the second
term, Eq (E-39) 1is an expansion of the third term. Egs
(E~40) to (E-46) is an expansion of the right hand side of

Eq (E-1). c%, 9 and ozr are functions of z and they must

be included 1n the spatial or dv integrals. In cylindrical
geometry with azimuthal svumetry

C/D’: 2T IS 2 (E~49)

and fds means an lutegration over the surface of the problem
cylinder, Fig. 9.
For the alr-over-ground problem with an exponentially

varying alr density
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where ct(o), o%(o), ogro) are cross—sections of air at sea
level.
Z = the height above sea-level
sh = atmospheric scale height =~ 7km

In Eqs (E-19) to (E-46) the integrals are separated
in the space and angle variables. These are double integrals
in space and angle. However, they can be separated into

single integrals of the uw, X, p and z variables.




Appendix F

Angle Integrals of the Synthesized Second
Order Boltzmann Equation

An expansion of the even parity Boltzmann equation has
produced twenty-eight integral terms (Appendix E). By a
further expansion and separation of the integration variables
twenty distinct single angle integrals are formed. These
angle integrals are dependent on the degree of the spherical
harmonic trial function expansion and independent of the
problem parameters. They can be evaluated once and thereafter
used as a part of the problem input data. In this research
project these integrals were numerically integrated for each
combination of the &, m, k and n expansion subscripts. They
were then stored as a matrix, and selected products were used
to produce each of the twenty-eight angle integrals of Egs
(E-19) to (E-46) in Appendix E.

These twenty integrals are
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(F-6)

{F-7)

(F-9)

(F-10)

(F-11)

(F-12)

(F-13)

(F-14)

(F-15)

(F-16)

(F-17)

(F-18)
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A numerical evaluation of all twenty integrals was
carried out for a third degree spherical harmonic expansion.
This evaluation showed that these integrals are equal to zero
for many combinations of the &m and kn subscripts.

Integrals (F-10) to (F-14) are a part of the surface inte-
gral term which has been partitioned into the outward
(ﬁ'ﬁ > 0) and inward (§°ﬁ < 0) directions. This partitioning

was .incorporated into the weak form derivation of Appendix C.
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Appendix G

Space Integrals (Bicubic Splines) of the Synthesized
Second Order Even Parity Boltzmann Equation

A trial function expansion of the spatial flux dependence,
in the weak form of the even parity Boltzmann equation, has
been carried out in Appendix E. Bicubic polynomial splines in
the p and z variables were used to form a tensor product
space. These splines are twice continuously differentiable and
have non-zero integrals IRBi(x)Bj(x)dx for all |i-j|34.
After a separation of the p and z variables of integration
seventeen distinct integral forms are produced. These integrals,
which include the source integrals, must be evaluated over the
entire problem domain. The space integrals of Appendix E are

selected products of the following seventeen single integrals.
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B(z) = cubic polynomial z=-spline
B(x) = cubic polynomial p-spline
sh = atmospheric scale height
R = outer radius of the problem cylinder

H = problem cylinder height

(G-8)

(G-9)

(G-10)

(G-11)

(G-12)

(G-13)

(G-14)

(G=15)

(G-16)
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H(z) and H(p) are the source interpolating functions (linear

Lagrange polynomials).
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Appendix H

An Expansion of the First Scatter
Source in Legendre Polynomials

In Chapter IV the first scatter source was defined as
- A~ 65( Pnd o~ p >r

where

©
o %
7\
a1
N
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AY
g
n

direct fluence of Chapter 1V, Eq (74)

Q
P
N
Y
o)
S
u

scattering cross-section

The usual Legendre polynomial cross—-section expansion will
now be carriea out., Also the even and odd parity first scatter
source expressions of Chapter IV will be derived. Expanding
6° in Legendre polynomials and using the addition theorem

(see Appendi D)
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where m means that all terms with a m = Q subscript must

be divided by two, and
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From Fig. 5 and Fig. 2 it is apparent that pw- = ud
and x“ =0

Therefore
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and using the identity (Ref 18:96)
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and a little algebra, the even and odd parity first scatter

sources can be written as
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Appendix I

A Derivation of the Total Particle Fluence

In Chapter IV a trial function expansion of the even

parity angular particle fluence was given as

72 IR
Lf(ﬂzzay) iz U, 52)3(/))2

1221 1F21 foo mmeo (I-1)
where
é@n
and
O = |28 po-mDf
Zm _ T S——
FT (L 7n)! (1-3)
The A; mixing coefficients are obtained from a numerical

yjsk,m
solution of the second order synthesized Boltzmann equation of

Chapter 1V.

The angular even parity fluence is also defined as

R R

An integration of Eq (I-4) over all directions gives the
total even parity particle fluence ¥(p,z), and also the total

navticle flueuce #(p,2). This is because

YlBz,«x)di = @i~ z) (1-3)
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Therefore

(1-6)

Y(Bz) = PEa)

Eq (I-1) will now be integrated to give the total particle

fluence at position (p,z). Using the orthogonal properties

of Legendre polynomials this integration is carried out as

follows.

The zero order associated Legendre function is defined

as
(1-7)

7:7)0(/“> = /

.

Multiplying Eq (I-1) by Eq (1-7) and integrating over all o and

. directions gives

j/(zu(/fz)’dgy) f;o(f“) C/./“ gdx

o £ 'Zzifi 4 &
= Ky 'Zz_z ) B
)] )ﬂ" /

S 2= gr E=2 M=

27 "/
x//g]w Tewdedx (1-8)
O Sl

Substituting Eq (1-2) for Q,.,, the integral of Eq (I-8)

} becomes )
27

cosm dx - | C, B <) 4’)’0/&4) doee

-~/

(1-9)

)
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27 form=0 (I-10)
and (see Appendix D)

]c oo Bywdde = 2. 62! S o
/) 224/ (p)/ %

- 28, = 2///477’ (I-11)

therefore Eq (I-9) becomes
27 - 2//a/m =/LT (I-12)

and the total particle fluence is

T2 z#
%/@zﬁ = URZ)=/47 > > 7.Z(EAD a1
12wt thy

wvhere { = = O
The angular particle fluence is given by

¢/€z,i) = §V/€%/f) + X722 7) (1-14)

where X(p,z,ﬁ) i1s the odd parity fluence, which, is defined
in terms of the even parity fluence and source by the follow-

ing expression

X (2.8 koSG2~ 5 0 yizz )

5

(L=13)
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Therefore once W(p,z,ﬁ) has been found the odd parity fluence

and the angular particle fluence ¢(o,z,§) can be computed from

Eqs (I-15) and (I-14).
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ABEendix J

Computer Subroutines

A computer program has been written to solve the svnthe-
sized Boltzmann equation of Chapter IV. This program is
designed to use a trial function expansion in bicubic splines
and spherical harmonics, and to perform a first scatter source
interpolation using linear Lagrange polynomials. The program
in an assemblage of several subroutines which collectively
perform the following tasks,

1. Computes all single space and anecle integrals.

2. Combines the single u and y anegle integrals for

all combinations of the spherical harmonic
expansion subscripts.

3. Combines the single o and z inteerals for all

combinations of the bicublc spline expansion

subscripts.

4., Assembles the coefficient problem matrix.

5. Computes and interpolates the first scatter
source.

6. Assembles the source vector.

7. Checks for symmetry and diagonal dominance.

S§. Solves rfor the A; 3 . -« expansion (mixine)
e . . ey At . .
covtiicients by the method ot successive
over-relaxation,
9. Solves for the total particle fluence.

A ten point Newton—Cotes sinale integration routine was

nsed to numericallvy latearat~ ti. thirtv-soven intograls

of Appundices Foand G, This integration routine i3 an ia—hou

subrontine of the Air Force Acronautical Svstems Division,

wricht-tatterson Air Foree Rase,  The overall prosram lovic
Y7
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has been written in a manner whereby this integration routine

could be used. The program is written in Fortran V.

Listing of Problem Subroutines
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Appendix K

Numerical Results

The computer subroutines which are listed in Appendix.J
were used to produce numerical results for varying problem
spatial mesh sizes and degrees of the spherical harmonic
trial function expansion. Some of these results are presented
in Figures 10 through 44. They are valid for the problem para-
meters which were presented in Chapter V. However, the cross-
sections which were used do not accurately represent the
values for air at sea level. Also, the air-ground interface
was not included in the problem domain and therefore all
ground effects were ignored.

Because of the time constraints on this research project
neither an evaluation of the accuracy ol these results nor
a comparison to a discrete ordinate or Monte Carlo calcula-
tion was accomplished, Therefore, the results are presented
solely in an attempt to show that finite element space-
angle synthesis is a viable solution technique for solving
the two-dimensional stecady state anisotropic Boltzmann
equation. They are not meant to represent a precise and
exact solution to the air-over-ground problem, but rather
to demonstrate that FESAS may be a feasible alternate solution

technique to Monte Carlo and discrete ordinates.
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