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ABSTRACT

The pure initial value problem for the system of equations
Ve = Ve t f(v) - w
we = (v = W)
is considered. Here € and Yy are positive constants, and i
f(v) = v - H(v - a) where H is the Heaviside step function and
ae (o, B&). Because of the discontinuity in f one cannot expect the
.. solution of this system to be very smooth. Sufficient conditions on the

initial data are given which guarantee the existence of a classical solution

in R x (0,T) for some positive time T .
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SIGNIFICANCE AND EXPLANATION

The most famous model for nerve conduction is due to Hodgkin and
Huxley. However, a mathematical analysis of their model has proven very
difficult. The complexity of the Hodgkin and Huxley model has led a number of
other authors to introduce simpler models. In this report we consider one
such simplification.

It has been demonstrated (experimentally) that impulses in the nerve axon
travel with constant shape and velocity. Mathematically, this corresponds to
traveling wave solutions. A number of authors have proven that the mathe-
matical equations considered here do possess traveling wave solutions.

Another property of impulses in the nerve axon is the existence of a threshold
phenomenon. This corresponds to the biological fact that a minimum stimulus
is needed to trigger an impulse. Here we prove some preliminary results which

will be used in a later report when it is demonstrated that the equations

e g

under study do indeed exhibit a threshold phenomenon. Accession For }
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LOCAL EXISTENCE FOR THE CAUCHY PROBLEM OF A
REACTION-DIFPFUSION SYSTEM WITH DISCONTINUOUS NONLINEARITY

David Terman

l. INTRODUCTION

In this paper we consider the pure initial value problem for the PitzHugh-NHagumo

equations

(1.1)

Ve ® Ve t f(v) - w

we = e(lv=-mw ,

the initial data being (v(x,0), w(x,0)) = (¢(x),0). Here € and Y are positive
constants. These equations were introduced as a qualitative model for nerve conduction
{2,5,7}. wve follow McXean [4] and assume that £(v) 1is given by f(v) = v - R(v - a)
where H is the Heaviside step function and a € (0, bﬁ).

Note that because f(v) 1is discontinuous we cannot expect the solution, (v.w), to
be very smooth. By a classical solution of System (1.1) we mean the following:
Definition: ZLet S, = R x (0,7) and G, = {{x,t) e Sy: v(x,t) # a}. Then
(vix,t) ,w(x,t)) is said to be a classical solution of the Cauchy problem (1.1) in Sq if:

(a) (v,w) along with (verw,) are bounded continuous functions in S

(b) in GT ¢ Vegr Vi and W, are continuous functions which satisfy the system

of Equations (1.1),
{c) lim v(x,t) =¢(x) and 1lim w(x,t) = 0 for each x @ R .
ti0 t+0
Throughout this paper we assume that ¢(x) = v(x,0) satisfies the following

conditions:

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. This

material is based upon work supported by the National Science Foundation under
Grant No., MCS80~-17158.




(a)  o(x) e clim

(b) ¢(x) = ¢(-x) in R

(e) #(x3) = a for some x4 > 0
(1.2) (d) ¢(x) > a if and only if |[x| < g

(e) ¥ (xg) < 0

(£) ¥"(x) is a bounded continuous function except possibly at

x = xq .

This last condition is needed in order to obtain sufficient a priori bounds on the
derivatives of the solution of System (1.1).

In this paper we prove that if ¢(x) satisfies (1.2) then there exists a classical
solution of the Cauchy problem (1.1) in Sp for some T > 0 . Here we give an outline of
the proof.

From Assumption (1.2) we expect there to exist a positive constant T and a smooth
function s(t), defined in [0,T], such that v > a for Ix|] < s(t) and v < a for
Ix| > s(t). Suppose that this is the case. We then set G = {(x,t):|x| < s(t),

0 ¢t <T} and let Xg be the characteristic step function of the region G. It follows
that if |x| # s(t), then (v,w) is a solution of the system of equations

v .Vxx-v+xc-v

t
(1.3) 't = g{v = yw) in ST '
(v(x,0),w(x,0)) = {¢(x),0)} in R.

Note that the first equation in (1.3) is similar to a nonhomogeneous heat equation while
the second is just an ordinary differential equation. Formally, the solution of (1.3) can

be written as:

vix,t) = [° x(x-g, 010 (DAt + [* ar [H7 x(x-g,t-nag

- 0 -8( 1)
(1.4) - [far [ R(x-E,t-TIw(E, DAE
0 -o0
wix,t) = ¢ e ETE Iteeyn v(x,n)dn .
)
-2a-
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Here K(x,t) - —he-x /4t is the fundamental solution of the linear differential
2% ‘f¢ ¢
equation
(1.5) wt-wxx-w.

Setting x = s(t) 4in (1.4) we find that, formally, s(t) must satisfy the integral

equation

2T r(sit)-£, t-n)aE

a = [ xistt)-g, v (pa + [tar
- 0 -8( 1)
(1.6)
- [® ar [° K(s(t)-£,t- 1w £, TIAE.
0 -
Using an iteration procedure, we prove the existence of functions v(x,t),w(x,t),
and s(t) which satisfy the Equations (1.4) and (1.6). We then show that (v,w) is che

desirad classical solution of the Cauchy problem (1.1) in s,r .

We now introduce some notation.

Let §(x,z) = [° K(x~E,t)9(£)AE . Note that u(x,t) 1is the solution of the linear
-

equation 11.5) with initial datum (x,0) = ¢(x).

Suppose that aft) is a positive, continuous function defined in [0,'1'1] for some
Ty > 0 . Let z(x,t) be a continuous function defined in R x [0,‘1‘1). Let

sa)(t) = [Far (MO

K(a(t) - E,t-1)dE in (0.'1'11
0 -a( 1)

and
I(z) (x,t) = gtdr [° K(x-E.t-1z(E,DAE  in R x [0,7.] .
-
Note that s(t) is a solution of (1.6) if and only if
(1.7) Yis(t),t) = a - &(s)(t) + I(w)(s(t),t).
In Section 2 we prove the properties of  and the operators ¢ and T which are
nesded in the proof of the local existence of a classical solution of System (1.1). The

proof of local existence is given in Section 3.




Lemma 2.1. Y(x,t) e Cw(l x R+). Furthermore, there exist positive constants

Proof: The first assertion is a standard result about solutions of Equation (1.5). The

Lemma 2.2. Assume that a(t) € C'(0,T). Then &(a)(t) @ C'(0,T) and

2. The Operators ¢ and T .

In this section we prove the properties of ¢ and the operators ¢ and T which are

needed in the proof of the local existence of a classical solution of Sysatem (1.1).

§,,8.,8, and ) such that -6‘ < wx(x,t) < -62 and lwt(x,t)l < 63 in the rectangle

1’72’73

Pa= (xg = A %, + A) x (0,7).

other assertions follow from the Assumptions (1.2e,f). (See Friedman (3], page 65)}.//

X
o) (t) = [ 0 x(att)-£,0)aE + [FR(alt)+a(n),t=-T)[a'(T) + a'(t))AT

-x0 0

(2.1}

+ [f K(a(t)-a(D),t=D) [a' (T)=a’ (t)]dT «
0
Proof: Note that

$@'(e) = Lm 1 (acaditre) - a(adit))
€+0

fa( 1)

= 1a + ([®Can (alt+e) -, t+e-T)AE
0

es0 € ~al1)

- fFar [T giae)-E t-n) aE)
0 -alT)

- 1im 1 [0 g polTrEIral®dmalTe) g o) g,eanae

e+»0 € ~a{ T+e)talt) -altte)

+ € aq oW K(a(t)=-E,t=1)aAE
0 —a(t+e) ta(t)-a( t+e)

- fF ar pofTrEralE el e ey -g, t-naE)
0

~a(1)

Passing to the limit we obtain (2.1). //




Lemma 2.3: Suppose that oft) @ C'(0,T) and la'(t)| <M in (0,T). Then

1
et (e)] ¢ 1 + m/z in (0.1 .

Proof: Prom (2.1) it follows that for t € (0,T),

letar*(t)l < 1+ ad [° R(a(t) - a(v),t-1)dT
0

1
<1+am ff ——— ar
0 2n 2(t-1) 2

1
<1+am 2. 4y
Lemma 2.4: Let a(t) be as in the previous Lemma. Suppose that for some p € (0,T)
there exists a constant M, such that
Y.
' - ot - 2
la () - a (to)l < M1|t1 tol
for each ty, ty e (p,T). Then there exist positive constants K, and Ky, which depend
only on p and M , such that
Y V.
' - ’ 2 - 2
|¢(a) (t1) $(a) (to)\ < (K1 * K2H1T1 )$t1 toi
for each ty, ty € (p,T)e

Proof: Pix to, t1 € (p,T) « Then

X
0
oa)’(t,) - ola)'(t,) = J (R(alt,)=E,t,) - K(a(ty)=E,t )1dE

..xo

t
+ [I 1x(a(t1)-a(r),t1-1)[a'(r)-a'(t,)]dr
0

t
-1° K(altg)=alt) .to-‘t)(u'(t)-u'(to)]d‘t}
0

t
+ [f 1x(a(t1)+u(r),t1-1)[u'(r)ﬂx'(t’)]dr
0

t
- [o Rlalty)raln ,to-r)ta'(r)m'(to)]dr]
0

= [a] + [B] + [C}].

-5~
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=y = e

e gt e ey

Since K(x,t) is an infinitely differentiable function of (x,t) for t > 0, there
1
exists a positive constant Dy such that | (A})] < D1|t1-tol A + Note that D, depends
onlyon p and M .

Next consider [B] which we rewrite as

t

0 '
8] = Kla(t )-altht -t ),t -1)(a’ (Tt -t )-a’(t ))dr
t -t
0 1
%o
-J R(alt))-al(1), £y =) (a' (T)=a' (£ ))dT .
Note that,
a'(mo-t1) - c'(t1) - [a'(ﬂt1-to) - a'(1)])
+ [u'(t)-u'(to)l + [a'(to) - a'(t,)]
< [a'(1) - a'(t)] + 2m |t -e|1’2’
aiT) = ity 1% 0
Therefore,

0
18}l < [t{ - !(u(t,)-a(ﬂ-trtc).to-t)[n'(ﬂt,-to)-u'(t")]d'r]
01

t
+ [ [ o[K(a(t1)-a(ﬂto-t1),to-r) = K(alty)~al1),t,-1)] [a’('r)-u'(to)]dt]
0

to 1/2
+ [ g K(a(t1)"0(‘l‘+t1-t0),to-'r)2M1|t1-t°| d‘r]

- [51] + [321 + [53]-

[31] < 2M fo —1/—'—1'—'—17 ar
to-t, 2w 2(t-n 2

oM o W
:172 |t1 tD |

1/
- 2
< D2 |t'.1 to‘

for some constant Dz which depends only on M and p . We also have that

T T T




R 4

1/2 tO
1B 11 < 2m le -t | "2 [ "R(a(t)) = a(t+t

: -to),to-t)dr

1

T dt
0 2x 72 (ty=1) 72

1/ 1/
2 - 2
< ZH‘ T |t1 tol .

Now consider [52]. Note that

t
18,11 < 24 [ %IR(a(t )-a( e

] 1-t0),to-r) - K(a(to)-a(t).to-r)ldT

t
0 1
=2 [ —1-———172|7(t1,r) - vy, vt

0 2w /2(1:0—1)

where
[a(t)'a(ﬂt-to)lz

4(to-r)
y(t,1) = e .

Assume that 1 € (O,to)- Then, by the Mean Value Theorem,
)
(e, = vitg. ] < I5 Y(n D lle -t
for some n € (to,t1). (We agssume, without loss of generality, that ty < t,).

Note that

(c(n)-u(ﬂ-n-to)]z
3 2|u(n)-a(r+n—to)l - 4(t-1)
I3¢ v(n.0)l = ( gl Jla'(n) = a (et )] - e
2n|t0-1| ]
< — 2M 1
!to-tl
, {

= 4M° .




Therefore,
t Je -t |
3,0 1
[(8,]1 < &m / 7
0 2n 2 (ty-1)

0
d
%t

3 B&
<aM” T It1 tol

t/
- 2
< D3|t1 tol
for some positive constant D3 which depends only on M . (Since we will eventually
choose T to be small we agsume throughout that 7T < 1.)
We have shown that

1/ 1/

2 - 2
T1 |t1 t0|

V.
- 2
IBI1 < 1[B,J] + 1(B,)1 + I[B1| <D le -t | 2+ 2m,

where D4 = D2 + D3 depends only on M and p .

A similar computation shows that there exist constants Dg and Dg, which depends

only on p and M , such that

y 1 1
- 2 Ay, o %)
Iteil < pglt, t,! + DM T "¢ |t -t | 2.

67171
In fact, this computation is much easier since K(u(t1) + a(t),t1-r) and
K(a(to) + a(r),to-T) are smooth functions of T .
Setting K, =Dy + D, + D, and K, = 2 + Dg . The result follows. //
We now consider the operator T(z)(x,t). In what follows we assume that T is some

positive constant and ST1 = R x (0,T). We also assume that a(t),M,p, and M1 are as

in the previous two lemmas, and set h(t) = T'(z){a(t),t).

Lemma 2.5: Assume that z(x,t) € C'/'(s;) with 1z} 4.4 =%+ Then,
c ’
1) h(t) e c'(o,m ,
i1) there exist a constant K, , which depends only on Z , such that

V.
Ih'(£)] < Ky + ZMT 2 for te (0,7),
iil) there exist constants Ka and KS , which depend only on p, M, and Z
such that
1 1
In'(£g) = h'(g)] € (Ky + RgM T2) [ty- o] 72

for each ty.ty @ (p,T)e




Proof: Set g(x,t) = I'(z)(x,t). Then g(x,t) is the solution of the inhomogeneous
differential equation
Up = U U * 2
u(x,0) =0 .
Since z @ C"‘(ST) it follows from the Schauder estimates (see [3], page 65) that

1
g e c 72 (s,) where depends only on 3 . We set K_ = gl
T

gl 1 1
c? 25, 6 c? 2 (s,)

Furthermore, there exists a constant K, , which depends only on 3, such that
lgg(x,t)] < X3 in S,. Note that in Sy,

lo, (x,t31 = 1[5 ar [ K (x-E,t-miz(g, DK
0 -

5(x-{,t—r)z(i,r)dil

Iftd-r r‘ K
0

(g, 1) dgl

1% at [° R(x-E,t-1)z
0

13

<z [far [® x(x-E,t-D1aE
0 -

Now (i) follows because h(t) = gfa(t),t) where g and a are both smooth
functions. (ii) is true because
(2.2) h'(t) = Iy a(t),t)a’(t) + gt(a(t),t) in (0,T)
and, therefore,

1
|h*(t)| < Z MT 72 4 K,




Pinally, it follows from (2.2) that for f;u.'r.1 e (p,T),
In'(e) = Mt ] < lg (alt )t ) = g (alty) todllat(e )]
+ lg (o)t lla’(e) = a'(eg)] + lg (alt )t ) = g (alt)), )]
< Ksllt'-tol " + m‘buile'-tol 1/2+ lslt' - col % .

(111) now follows if we get Ky = Kg(u + 1)

and K5 ~ E. //




3. local Existence

We are now ready to prove the existence of a classical solution of the Cauchy problem

(1.1) in ST for some positive T . The idea of the proof is as follows.

Let s,(t) = in ®* ana suppose that for some time T, > 0 we have defined
0 X0 1

smooth functions sk(t) for te [o,r,], Xk = 0,1,e00,n, We then let

(vn(x,t),wn(x,t)) be the solution of the integral equations

s (1)

v ) = [T reentrvpag + ffar [ RGegt-nag
- 0 -8 (1)
n

(3.1a)

- [far [P R(x-E,t-T)w (£, T)AE

0 -= n
(3.1b) v (x,t) = ce ST [" oMy (x,man .
n 0 n

That such a solution exists is proved in Lemma (3.1). We then use the Implicit Function

Theorem to define s, . ,(t) as the solution of the equation

t(sn+1(t):t) =-a- O(Bn)(t) + F(wn)(sn(t):t) '

sn(O) - x0 .

We show that the gequences of functions {sn(t)}, {vn(x,t)}, and (wn(x,t)) converge to

functions s8(t), vi(x,t), and w(x,t). These functions are shown to be solutions of the

Equationsg (1.4) and (1.6). It is then shown that (v,w) is a classical solution of the

Cauchy problem (1.1).

In what follows we let s8,(t) = Xq in R' and assume that smooth functions sk(t),

k = 0,1,¢0¢,n, have been defined in [0,T1] for some T’ >0 . Restrictions on Ty will

be given later. We agsume that Mk - sup Isi(t)l o, for k= 0,1,2,¢ee,n., Por
te(O,T1)

each p € (O,T1) we assume that there exist constants Ck such that

. 1
|s§(t1) - si(to)l < Cklt1 - tol 2 for each k and t,,t, @ (p,T1).

Lemma 3.1: There exist bounded, continuous functions (vn(x,t),wn(x,t)) which satisfy the

Bquations (3.1) in

S .
Ty




Proof: The proof follows Evans and Sheni: [1]. Let v_ (x,t) = ¢(x) and wno(x,t) -

[t 00 SN

b . -

PSR

o
w(x,0) =0 in ST1 « Assuming that vnj(x.t) and wnj(x,t) have been defined for

3520, we let vnj+1(x,0) = ¢(x) and wnj+1(x,0) » w(x,0), and, for (x,t) e 8T1’

" sn(r)
v, (xt) = [TRepe)v0ar + [Car | K(x-E,t-1)4f
3+1 - 0 -8 (1)
n
(3.2a)
- [far [P rOeg v (DA
0 - b
(3.2b) wn (x,t) = ee-eYt ft eean (x,n)dn .
341 0 ™

The resulting sequences of functions, {vn (x,t)} anad {vn (x,t)}, are defined and

3

continuous in ST1' We show that these sequences converge uniformly to a solution of the
Equations (3.1). Note that since ¢(x) is bounded, it follows from induction that each of

the functions Yn and w, are bounded.
b 3

Let
pj(t) - sup  {lv (x,t) - v (x,t)| + Iw, (x,t) =w  (xt)]}.

(x,t)eST1 3 3-1 3 3-1

From Equations (3.2) it follows that, for (x,t) € 8T1 '

(3.3a) v, ot -9 el < ffar [PROeGt-0lv, (61 - w (B D1AE
j+1 3 0 = 3 -1

(3.3b) e ) mw 0l <[5y xem s v (x,mlan .
P31 3 0 3 3-1

Adding (3.3a) and (3.3b) we obtain

< +e [t b (VAT for te (0,T,), 3= 1,200
0
If X is a bound on p1(t) for 0 <t < T1 we have .

l<[(1+e)t:]j

°j+1

pyt) S K, py(8) € (14 ke, eee,p ey ¢ ELZREL o
o w j+1 (1+e)T
Thus, J p.(t) < ) LICRLDIL I P ' and the sequences {v_ (x,t)} and
A R A e ny

{wn (x,t)} converge uniformly in ST1 to limit functions vn(x,t) and vn(x,t)-

3

-12-
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Moreover, passing to the limit in Equations (3.2) we find that vn(x,t) and wn(x,t)

satisfy the Bquations (3.1) in ST1. //

From the proof of the preceding Lemma it follows that there exist constants V and

W such that Ivn(x,t)l <V and Iwn(x,t)l < W in ST,' Note that V and W can be

chosen independent of the curve sn(t). From (3.1) it follows that (vn)x(x,t) and

(wn)x(x,t) both exist in sT‘, except possibly at |[x| = 8,(t), 0 <t <Ty .

Lemma 3.2. There exist constants V, and W, , independent of the curve s, (t) , such

that I(vn)x(x,t)l < V1 and |(wn)x(x,t)| < Wy 1in ST1' except possibly at x| = s, (t).

Proof: Suppose that x # sn(t). We differentiate both sides of (3.1a) to obtain

8 (1)

v (xt) = [ K (x=Et)o(EAE + ffar ™

K (x=E,t-1)dE
- 0 -ln( 1)

- ffar [T K (x-E.t-tIv_(£, )AL .
0 x n
Integrating by parts in the first integral yields

v ) (x,8)] € 107 () I+ (1 + W) Jtd'l’ [T 1K (x-E,t=1) l4E .

-0
Note that
ffar [* Ik _(x-g,t-n1daE = 2 [* ar [TIx_(n,t-D)lan
b4 x
0 - 0 0
-(t=-1) 2
t e n -n /4(t-1)
- T dr .r‘ — e dn
S ';é (t=1) L 0 2(t-1)
e-(t-t)
- W,V dr
0 x2(e-1) 2
Y
2
<, 2.
Therefore,

Y.
v ) (e t) ] < Il + (1 + WT /2 v

1

-13-
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Differentiating both sides of (3.1b) yields
I(vn)x(x.t)l < coft I(vn)x(x,n)ldn

<€ V1 T, H " . //

Leama 3,3: (wn)t(x,t) is a bounded continuous function in 8'1‘1 .

t
Hwadetx,t)) < Wy in Sp,e /7

Proof: This follows because ('n) - c(vn - Wn) in 8.1.‘ +« We choose W, so that

Let W= '1 + "2 + "3 .
We wish to define 8,+1(t) implicitly as the solution of the equation:
(3.4) v(-n,,(e).t) -a - 0(-n)(t) + I’(vn)(cn(e),t) '
LI (0) = L
Recall that we are assuming that an(t) is a smooth function in (0,7y),
M = sup e'(t) ¢ », and given p @ (0,T. ), there exists a constant C. such that
n n 1 n
ee(o,m‘)
Is*(t,) - 8'(t )| €C |t,~t 11/2 for each ¢ _,t. @ (p,T,)s From Lemmas 2.3, 2.4 and 2.5
n 1 n'o0 n""1 0 01 | !
we conclude the following.
i Let f(t) equal the right hand side of (3.4). Then,
o swacior),
b) there exists constants K, and KB such that
v
y 2
% (3.5) I8'(e)) <k, +x M2 4n (o7,
c) there exist constants Ky and Kyg such that

v Y
' - at 2 - 2
ls'ct) - 8 (gg)] < (kg + Ko Cn T1 %) lt-tl
for each t1 ,to e (p,'l.‘1).
Note that the constants 'K7 and Kg depend only on w » and are, therefore, independent
of n . PFurthermore, Ky and LT ~depend on p and the bound on |B'(t)| given in

(3.5b). Hence, Ky and K49 ©an be chosen independently of n .

-14~
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We conclude from Lemma 2.1 and the implicit function theorem that there exists a
smooth function sn+1(t), defined for some time, (say t @ [O,Tzl), which is a solution of
(3.4). We show that as long as (8,44(t),t) stays in the rectangle P, defined in lemma

2.1, then s (t) 1is bounded, independently of n .

L}
n+1
We differentiate Equation 3.4 to obtain

wx(ln+1(t),t)l;+1(t) + wt(ln+‘(t):t) = g'(t) ,

or

1
(3.6) s! —_—
Ox(ln+‘(€):t)

n+1(t) =

[B*(t) - wt('n+1(t)’t)) .

Prom Lemma 2.1 and (3.5b) it follows that if (ln+1(t),t) e P, then

M (c)|<1—[x +K u-r1/2+6]
LAV 62 ? 8 n 1 3
1/2

=Ky tRpM T,

1
where K11 - = (x7 + 63) and K

=X /8, do not depend on n .
2 8 "2

12

Suppose that T < (——1 )2 . Then, as long as (s_, ,.(t),t) e P,
2K12 n+1
. 1
Isf (B <k +Tpu
Hence,

1 1 1 vie
Maet STy ¥ 2M, SRy YR M < <

1
2n—1

-n ~
1" ) + 2 Mo < 2K11 + Mo =M.

Therefore, the sequence {s;(t)} is uniformly bounded by the constant M . It follows

<K, (1 +154+ cee s
that there exists a constant T such that T < Ty, and (sn(t),t) @ P for each t @
(0,T) and each n . Furthermore, there exists a subsequence {sn (t)} which converges
uniformly on (0,T] to a continuous function s(t). We assume, without loss of

generality, that (s (t)} = {s_(t)}.
ny n

-15-
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Lemma 3.4: PFix p @8 (0,T). There exist positive constants Ky3 and K44 such that

1] 1 1/2 ‘/2
l'n+1(t1) S SR (Ryy + K, C T )lt1 - :ol

for each n and to,t1 e (p,T) « The constants Kq3 and Ky4 ©Can be chosen

independently of n.

Proof: This follows from (3.5¢c), (3.6), and lLemma 2.t. //

We now assume that T < ( 5%—— )2 « Then the previous lemma implies that

14

1 Yot eee 4 = -n
Chey S K3 * 2C < CK (1 +he +2n_1)+2 M,

< 2K13 + Co =C .

That is, given p €@ (0,T), there exists a constant E such that
~ 1/
. - at - 2
l-n(t‘) -n(to)l <c It‘| tol

for each n and to,t

in (0,T) and a subsequence of

1 € (p,T). It follows that s'(t) is continuously differentiable
{a;(t)) converges uniformly on compact subsets of

(0,T) to se'(t). With loss of generality we assume that {-;(t)) converges uniformly on

compact subsets of (0,T) to s'(t). //

lemma 3.5: The sequences (vn} and {vn} converge uniformly in 8, to continuous

functions v and w which satisfy the Equations (1.4).

Proof: let pn(t) - ::: (lvn+‘(x,t) - vn(x.t)l + |vn+1(x,t) - vn(x,t)l} . From (3.1a)

it follows that for (x,t) € sT ’

-16-
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)

8 (T
[™Y R(x-E,t-1aE -

t
Ivn+1(x.t) - vn(x,t)l <[ ar

0 -’nﬂ(T)

8 (1)
- ffar [ rex=g,e-maEl + [far [TR(x-Et-v v (E,7) - v (E,DIdE
0 -ln(‘l’) 0

-8 (1) s (1)
Iffar [ ®  xxe-ft-mag+ [Far [™ 0 r(x-g,e-magl
0

-an+1(t) 0 ln(T)

+

[far [7 Rix-g b1l (6,1 - w (£, DlaE
0

1
<2 supls (t)-s(r)lft—'l—-——'rd-rf
0< 1<t nH n 0 2x /2(t-1') 2
+ ({t ;‘elg 'wnﬂ(x’” - wn(x,t)ldr
(3.7) < 27 1/211\11; lsnﬂ(t)-sn(f)l + ftaup Iwn”(x,r) - wn(x,'r)ldt .
0< 1<t 0 x€R
From (3.1b) it follows that for (x,t) € B4 ,
t
(3.8) W, (x,t) = W (x,0)] < et{ 1V pq(®0) = v (x,D]dT .

1
let § = 2T 72 sup Is_ .. (1) -~ 8 (1)|. Note that § + 0 as n + « Adding (3.7) and
n 0<T<T n+1 n n

(3.8) we find that for t e (0,T),

t
py(t) € 8+ (1+e) g pyTAT .

-1
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Prom Gronwall's inequality it follows that

pn(t) <C Gn
for some constant C independent of n . Therefore pn(t) + 0 uniformly as n + » , and
the sequences (vn} and {vn} converge uniformly to limit functions v(x,t) and
w(x,t). Passing to the limits in (3.1) we find that (v(x,t),w(x,t)) satisfies the
Equations (1.4). This implies that v and w are continuous functions in Sp //
Theorem 3.6: Lat Kk =% min( ', - a,a) and suppose that T < ZLsV « Then (v,w) is a
classical solution of the Cauchy problem (1.1) in Sp o
Proof: Throughout this proof we assume that t @ (0,T). Recall that v(x,t),w(x,t), and
s(t) satisfy the Equations (1.4) and (1.6). Setting x = s(t) in (1.4) and subtracting

the resulting equation from (1.6) we find that v(s(t),t) = a .

Equation (1.4) implies that for |Ix| < s(t), (v,w) satisfies the differential

equations

v =V -v+tl-w
t xX
(3.9)

v, = e(v - yw)

and, for |x| > s(t), (v,w) satisfies the differential equations

vV =V _~-V-w
t xx

(3.10)

Vt't(V'W)-

We show that v > a for Ix] < s(t), and v < a for |x| > s(t). This implies that
for x * s(t), (v,w) satisfies the system of Equations (1.1).
Suppose it were not true that v > a for Ix| < s(t), and v <a for |x| > s(t).

For example, suppose that v(x,,ty) < a where |x1| < s(ty). Since v(x,0) > a for

Ixl ¢ xg = 8(0), we may assume that v(x,,t,) = 5 and vi(x,t) > a in the region

T AR aBuc N et 7
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G = {(x,t):|x] < 8(t), v & (0,!:1)}. We use the maximum principle (see [6], page 159) to
show that this is impossible. Note that v = a for Ix| = s(t) and wv(x,0) > a for

k] < x5 . Let L be the operator defined by Iv = Ve "V YV ¢ Then, in G ,

Lv = 1 - wo From (1.4b) it follows that in R x (0,t1) .

lwix,t)] < ¢ ft lv(x,n) ldn
0
(3.11)

< eV <K.

Therefore, in G, Iv > 1 - K> a = L(a). It now follows from the maximum principle
that v(x1,t1) >a . This is a contradiction. A similar argument shows that it is
impossible for v > a for |[x| > s(t).

We have shown that except for x # s(t) , (v,w) satisfies the system of Equations

(1.1) in 8. It remains to show that v, (x,T) exists for |x| = s(t).
Assume that Ix| < s(t) and |E] < s(1). Then (v(E,1),w(E,T)) satisfies the system

of equations

v -~V +v=1-w

T (13

"t = g(v - yW).
Multiply both sides of the first equation by X(x-£,t-71), integrate by parts, and use the
fact that KT + KEE - K =0 to obtain:

(!V)r - (RVE)E + (xgvg) = (1 ~wK.

We integrate this last equation for -s(t1) < E<s8(7), 6§< 1<t -6, andlet § +0 to

obtain:

-19- H
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X
vix,t) - [ O K(x=g,£)0(0)aE = [* K(x-8(1),t-1)a8' (MAT
0

-xo

- [f x(era(n) t=van (D7 - [° KOea(t) tm0v (a(n T DA

0 0
t + t
(3.12a) + f K(xts (1), t-1)v (~8(7)", T)dT + [Fa K (x-8(7),t-T)d1
0 0

- [f a K (xts(1),t-T)dT
0 &

. [far M7 (1 - wRO-Et-1IE
0 ~-8(1)

Next assume that [ > s(1). Then v(E,7) satisfies the differential equation

vV_ -V s - ,

T €€
Multiply both sides of this equation by X(x-{,t-71) and integrate by parts to obtain:

(Rv), = (Kv, )_+ (K, v), = =Kvw .

g 3 4 £°E
Integrate this last equation for s(t1) < E< o, §< 1<t~ § and let § + 0 ¢to

obtain:
-[" R(x-E,20(8)4E + [ K(x-8(1),t-D)as’ (1)dr
x 0
0
t + t
(3.12b) + f K(x=8(1),t=T)v (8(1)", T)dt - [Fa K (x-8(1),t-1)d7
0 0

- [far [0 ROegt-TwE DA .

Similarly, for E < s(t) we obtain:

J K(x-E,t=-T)dE + ]t K(xts{1),t-1)a 8'(1)d7
o 0

(3.12¢) - [F Rixts(D),t=1)v (-8(0) 7, AT

0 £

+[Fa K (es(1) t-T)dT = fFar [0

0 0 -

R(x=E,t=-T)w(E, 1) 4§ .

-20-




Adding (3.12a), (3.12b), and (3.12¢), and using (1.6) we find that

(3.13) [‘[x(x—s(t),t-r)[vg(s(r)+.r) - vg(l(t)-.t)l
0

+ K(xts(1),t-1) (v ('I(T)+,T) - VE(-O(T)-,T)UGT =0 .

£

Using the assumption that ¢(x) = ¢(~-x) it follows from (1.4) that v(x,t) = v(-x,t) in

Sy - Therefore, (3.13) can be rewritten as

[EIR(x-8(1),t-1) - K(x+s(1),t-1)] v, (sl otn - v(a(n)”,mldr = 0 .
0

ldtin

Since [K{x~s(T),t-7) = K(x+s(T),t=1)] > 0 1in (0,T) we conclude that vx(s(t)',t) =

v (s(t)*,t) 1n (o,m.

We have shown that vx(x,t) is a bounded continuous function in Spe Prom (1.4b) it

follows that vx(x,t) is also a bounded continuous function in sT « //

-21-
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