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ABSTRACT

The pure initial value problem for the system of equations

vt = vxx + f(v) - w

wt = e(v - yw)

is considered. Here c and y are positive constants, and

f(v) = v - H(v - a) where H is the Heaviside step function and

a e (0, 1/2 ). Because of the discontinuity in f one cannot expect the

solution of this system to be very smooth. Sufficient conditions on the

initial data are given which guarantee the existence of a classical solution

in R x (0,T) for some positive time T .
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SIGNIFICANCE AND EXPLANATION

The mast famous model for nerve conduction is due to Hodgkin and

Huxley. However, a mathematical analysis of their model has proven very

difficult. The complexity of the Hodgkin and Huxley model has led a number of

other authors to introduce simpler models. In this report we consider one

such simplification.

It has been demonstrated (experimentally) that impulses in the nerve axon

travel with constant shape and velocity. Mathematically, this corresponds to

traveling wave solutions. A number of authors have proven that the mathe-

matical equations considered here do possess traveling wave solutions.

Another property of impulses in the nerve axon is the existence of a threshold

phenomenon. This corresponds to the biological fact that a minimum stimulus

is needed to trigger an impulse. Here we prove some preliminary results which

will be used in a later report when it is demonstrated that the equations

under study do indeed exhibit a threshold phenomenon. Accession For

Dazt P 0C i1a

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.



LOCAL EXISTENCE FOR THE CAUCHY PROBLEM OF A

REACTION-DIFFUSION SYSTEM WITH DISCONTINUOUS NONLINEARITY

David Terman

1. INTRODUCTION

In this paper we consider the pure initial value problem for the FitzRugh-Vaguao

equations

(1.1) v -vxX + f(v)- w

wt - e(v - yw)

the initial data being (v(x,O), w(x,O)) - (V(x),O). Here c and y are positive

constants. These equations were introduced as a qualitative model for nerve conduction

12,5,71. We follow Mclean 14] and assume that f(v) is given by f(v) - v - H(v - a)

where R is the Heaviside step function and a 8 (0, 1/2).

Note that because f(v) is discontinuous we cannot expect the solution, (v,w), to

be very smooth. By a classical solution of System (1.1) we mean the following:

Definition: et ST - R x (OT) and GT - {(x,t) e ST: v(x,t) * a). Then

(v(x,t),w(x,t)) is said to be a classical solution of the Cauchy problem (1.1) in ST if:

(a) (v,w) along with (vx,w x ) are bounded continuous functions in T,

(b) in GT , Vxx, vt and wt are continuous functions which satisfy the system

of Equations (1.1),

(c) lii v(x,t) - o(x) and lim w(x,t) - 0 for each x e R
t+0 t+0

Throughout this paper we assume that V(x) - v(x,0) satisfies the following

conditions:

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. This
material is based upon work supported by the National Science Foundation under
Grant No. MCS80-171S8.



(a) i(x) e C1 (a)

(b) O(x) - V(-x) in R

(c) O( )  a for soe X0 > 0

(1.2) (d) O(W) > a if and only if Ixl < x0

(*) 0'(x O ) < 0

(f) w'(x) is a bounded continuous function except possibly at

X -X 0

This last condition is needed in order to obtain sufficient a priori bounds on the

derivatives of the solution of System (1.1).

in this paper we prove that if O(x) satisfies (1.2) then there exists a classical

solution of the Cauchy problem (1.1) in ST  for some T > 0 . Here we give an outline of

the proof.

From Assumption (1.2) we expect there to exist a positive constant T and a smooth

function s(t), defined in (0,T), such that v > a for lxi < s(t) and v < a for

lxi > s(t). Suppose that this is the case. We then set G - ((x,t)slxl < s(t),

0 < t < T) and let YG be the characteristic step function of the region G. It follows

that if jx :* s(t), then (v,w) is a solution of the system of equations

vt .V xx - v + w

(1.3) wt - e(v- Yv) in ST

(v(x,0),v(x,0)) - (i(x),0) in R

Note that the first equation in (1.3) is similar to a nonhomogeneous heat equation while

the second is just an ordinary differential equation. Formally, the solution of (1.3) can

be written as:

v(x,t) - f' K(x-t,t)O()dE + ft dr fs( T) K(x-),t-,)dE
-- 0 -s(T)

(1.4) - ftdT XlX-E, t-T)w(CT)d&
0 --

w(x,t) c e "  
fte v(x,)dri
0
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-t x2/a

Here K(x,t) -- ---, /2 is the fundamental solution of the linear differential

equation

(1.5) *t - -" "

Setting x - 9(t) in (1.4) we find that, formally, s(t) must satisfy the integral

equation

a fSKlslt-,t)o( )d + ltdT js(t) Ks(t)-&,t-T)dE
-e 0 -s(T)

(1.6)

ft dT

0 -m

Using an iteration procedure, we prove the existence of functions v(x,t),w(x,t),

and s(t) which satisfy the Equations (1.4) and (1.6). We then show that (v,w) is the

desired classical solution of the Cauchy problem (1.1) in ST

We now introduce some notation.

Let t(xt) = f K(x-&,t)O(C)d . Note that *(x,t) is the solution of the linear

equation 1.5) with initial datum (x,0) - (x).

Suppose tiat a(t) is a positive, continuous function defined in (0,T1]  for some

T1 > 0 . Let z(x,t) be a continuous function defined in R x (0,T1 . Let

*(n)(t) = ltdT 1u(T) K(a(t) - Et-T)d& in (0,T1
0 -Q(T)

and

r(z)(x,t) = ltdT K(x- ,t-T)z(E,T)dC in R x [0,T 1).
0 -

Note that s(t) is a solution of (1.6) if and only if

(1.7) *(s(t),t) - a - o(s)(t) + r(w)(s(t),t).

In Section 2 we prove the properties of * and the operators 0 and r which are

needed in the proof of the local e istence of a classical solution of System (1.1). The

proof of local existence is given in Section 3.

-3-
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2. The Operators 0 and r

In this section we prove the properties of * and the operators 0 and r which are

needed in the proof of the local existence of a classical solution of System (1.1).

Lemma 2.1. (X,t) * C"(M x e). Furthermore, there exist positive constants

61,6 2,63 and A such that -61 < *x(x 't) < -62 and 1*t(x 't)l < 63 in the rectangle

P- (x0 - 0 + A) x (O,)).

Proof: The first assertion is a standard result about solutions of Equation (1.5). The

other assertions follow from the Assumptions (1.26,f). (See Friedman [3], page 65).//

Lemma 2.2. Assume that a(t) e C I(0,T). Then O(a)(t) e C I(0,T) and

Ola)'(t) - f Klaltl- ,tld + ftKlc(t)+a(r),t-T)[a'(T) + a't]dr
-x 0

(2.1)

+ ft K((t)-a(T),t-T)[a'(r)-a'(t)]dT
0

Proof: Note that

O(CL)'(t - lim .1 [(00(t sl - VCOWIt)

- lim .[t+ dt fQ(T) (a-t+)-E,t+ c-T)d
C+0 0 -O(r)

- ft dr f(T) K(o(t)-C,t-r)d{]

o -a(T)

- lim [fO dr fCa1(+)+aCt)-aClT+) Klalt)-Et-r)dE
£40 C -a(T+e)+a(t)-a(t+£)

+ ft dr F
a l )  

Ma(t)- ,t-T)d

0 -a(T+£) +a(t)-a(t+C)

- ft dT fa(T+)+ a(t)-a t+E)K(alt)-E,t-T)dE]
0 -a(r)

Passing to the limit we obtain (2.1). //

-4-
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Lemma 2.3: Suppose that cl(t) e CI(O,T) and Ic'(t)t < M in (0,T). Then

) 4XfT12 in (0,T).

Proof: From (2.1) it follows that for t e (0,T),

I*(a)I(t)l C I + 41 ft K(a(t) -(T),t-T)dT
0

(1+44M ft 1 dT

0 21 w/2 (t-T) '/ 2

S1 + 4T
1 2. /

Lemma 2.4: Let a(t) be as in the previous Lemma. Suppose that for some p e (O,T)

there exists a constant K such that

la'(t ) a* a(t a ) I -C H A1t l t 0 1/ 2

for each to, tI e (p,T). Then there exist positive constants K1  and K2, which depend

only on p and M , such that
WC I (t1I - 4%)'(t 0 4 (K I + 1, 1 /2 ) tl - t0l 1/2

for each tot t1  e (p,T).

Proof: Fix to , t I e (p,T) . Then

4)a't)- *(aP(tO) - Jx 0 [Klnlt 1 ). ,tl) - all-,tld
-x

O[f a'(t -alT)t f a'( )-t V0Et
t0

+ KlQtiI)alTl,t-TlCa'(T)-a'(t I dT
0

t

+ 0 fl ( + t[ )+O(T),t.0

0
+ K.( +(T, - T) Cg(T)(tcft I )jd T t)at 0 d]

- [A) + [B] + [C].

-5-



Since X(xt) is an infinitely differentiable function of (x,t) for t > 0, there

exists a positive constant D such that IJA]I 4 0 1 t 1-t 01 1/2. Note that 01 depends

only on p and N .

Next consider IS] which we rewrite as

J13-1 
t  K(Q(t I)-a(T tl-tO0)It0- T)Cg'(T~t 1-tO0)-a'(tl1))dT

t -t

0 1

to

0
Note that,

Cg' (Tt0-t 1 a(t 1 " al(T+tl-t 0  - a(T))
0-1 1- 10

+ (a'(T)-a'(t 0 )] + ca'(t 0 ) - a,(tI)]

4 W (T) - Ci'(t 0 )] + 2M1 It - t 0 1/2.

Therefore,

1[n] I [ fo K((t)-(t+t 1-t).t) 0-T)[',(4t -t 0 )-a'(tl)]dT]
t -t0 

1

+ f 0 rQ~ )-(T+t0-tI ) ' t 0 " T ) " X ( a(t 0 ) - a ( -) , t 0 - T) ] [a'(T)-'(t 0 ) 1]  I j

0

+ [ t0 K(Q(tl)-M(T+t
1 -t 0 ),t 0 -)2MIIt

1 -t 0 1/2 d]

[ Bn1] + (8 2 ] + E 3 ).

Now, (B1 ] 2Mf 0  1

to-t 1 2 
2 (t 0 -T) 2

2K 1,/2 t1,

2 t 1 0 2

0 tI- t

for some constant D2 which depends only on N and p • We also have that

-6-



I
I[B311 21 It-to 1/2 0 -1(2+t 1 -t) 0 -)

0

-C2 1 itl-tO 1 o 2 / 1/ dT
2 1 0 2w/2 (to-) 2

C 2M1 T/2 It 1-t 0 1 1/2

Now consider [B2]. Note that

I[52]I 4 2M ft0IK(a(t )-a(+t -t 0),t 0-T) - K(a(t 0)-a(T),t 0-)IdT
0

- 2Kq f t 0 / 1 /2 x(t1,T) - Y(to, T)IdT

0 2w 2(to0-T)

where

[a(t)- a( ot-to0) ] 2

4(to0- )
yr(t,r) = • ( 0 r

Assume that T e (O,t0 ). Then, by the Mean Value Theorem,

IY(t 1 ,T) - Y(t 0 ,r)I < I y(n,T) IIt 1-t 0

for some n e (to,tI). (We assume, without loss of generality, that to ( t1 ).

Note that

= 21 a(n)-Q(T+rr-t)I - 4(t 0 -T)I y(n,T) I = ti ]a' (n) -a' (T+n-to • e

2MIt o-TI

' [ Ito_ } 20 * 1

= 4142.

-7-
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Therefore,

0 21 1
2 (t0- ) 72

8M T/2 ItI I t0 1

D3 It - 01 1/2

for some positive constant D3 which depends only on M# (Since we will eventually

choose T to be small we assume throughout that T < 1.)

We have shown that

1/2I] I I [B1] I + I I2 1 + I [B 3 ] I 4 D4 It1 -t0 1 12+ 2MIT 1
1/2 It1-t01

where D 2 3+ D depends only on M and p

A similar computation shows that there exist constants D5 and D61 which depends

only on p and M , such that

I[c] < o 5 t-t 0 1 1/2 + D6141T 1/2 [t1 -t 01 1/2.

In fact, this computation is much easier since K(m(tI ) + a(T),t -T) and

K(a(t 0 ) + n(T),t0-T) are smooth functions of T .

Setting K1 - DI + D4 + D6 and K2 = 2 + D6 . The result follows. //

We now consider the operator r(z)(x,t). In what follows we assume that T is some

positive constant and S R x (0,T). We also assume that a(t),M,p, and M are as

in the previous two lemmas, and set h(t) = T(z)(c(t),t).

Lemma 2.5: Assume that z(x,t) e CI' 1 (ST) with IzI 1,1 - Z . Then,

i) h(t) e C1(0,T) ,

ii) there exist a constant K3 , which depends only on Z , such that

Ih'(t)I < K3 + 3T /2 for t e (0,T),

iii) there exist constants K4 and K5 , which depend only on p, M, and Z

such that

Ih(t) - h'(tO)I (K4 + K5MIT1/2)Itl- t01 1/2

for each t0 ,tI e (pT).

-8-



Proof: Set g(x,t) - r(z)(x,t). Then g(x,t) is the solution of the inhomogeneous

differential equation

Ut I UXX- U + Z

u(x,O) - 0

Since z e C1 'I (ST) it follows from the Schauder estimates (see [3], page 65) that

g e c2 ' 1/2 (ST) where IgH 2, I1 depends only on 2 . We set K6 = Iglc2 ' 1/2c 2 (SX 

2
Furthermore, there exists a constant K3 , which depends only on Z, such that

Igt(x,t)i < K3  in ST ' Note that in ST

1g (xt)I = Ift d, x (x- ,t-)z(,-r)d~l

- ItdT K (x-E,t-T)z(E,-r)dU
0 --

=I dt K(X-,t-T)Z (E,tr)dU

0 --

(Z ftdT fr K(X-E,t-T)dE

o -- r

0 (t-T) /2

1 T 1/2

Now Mi) follows because h(t) g(a(t),t) where g and a are both smooth

functions. (ii) is true because

(2.2) h'(t) 9x a,(t)A t) + gt(a(t),t) in (0,T)

and, therefore,

lh'(t)l 1 Z XT /2+ K3

~-9-
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yinallY, it follows from (2.2) th~at for toot 1 6 (P1'T),

Ih'(t ) - h'(t 0 j H I; 19 (t 1).t1) - 9 g(u(t0 )It 0 H11(t )i

+ I9x(o(t,).,tO)IIa'(t1) - CL~ol+Iqt (G(tt).ti) - 9t(a(tO),tO)I

K6Miti-tol /2 + Z1/2M 1/2 +K 6 I t t to 1/

(iii) now follows if w not K4  6 ( + 1) and TS 3 //

-10-



3. Local Existence

We are now ready to prove the existence of a classical solution of the Cauchy problem

(1.1) in ST  for some positive T • The idea of the proof is as follows.

Let s0 (t) - x. in le and suppose that for some time T1 > 0 we have defined

smooth functions sk(t) for t e 1O,T 1], k - 0,1,...,n. We then let

(vn(xt),wn(xt)) be the solution of the integral equations

(S4T)

v (x't) - ~ -~)VEd f r fd, 5 Zx-F A-fld

(3.1la)

_ ftd " rK(x-.,t-T)W(n4,T)dE

0 --

(3.1b) wn(xt) cecyt 0 eY v n (xd

That such a solution exists is proved in Lemma (3.1). We then use the Implicit Function

Theorem to define Sn+1(t) as the solution of the equation

*(s n+1(t),t) = a - n(s )(t) + r(Wn)(S (t),t)

5n(0) =x

We show that the sequences of functions (a n(t)}, {v n(x,t)), and (w n(x,t)) converge to

functions s(t), v(xt), and w(Xt). These functions are shown to be solutions of the

Equations (1.4) and (1.6). It is then shown that (v,w) is a classical solution of the

Cauchy problem (1.1).

In what follows we let s0 (t) - x 0  in W+ and assume that smooth functions skt),

k - 0,1,.,n, have been defined in 10,T 11 for some T1 > 0 . Restrictions on T, Will

be given later. We assume that Kh sup Is'(t)I < , for k - 0,1,2,.-.,n. For
te (0, T1 )

each 0 e (0,T1 ) we assume that there exist constants such that

1N(t I ) - S4(t0 )I 4 C kIt I - t0 1 1/2 for each k and to,t 1 e (p,T1 ).

LeAmma 3.1: There exist bounded, continuous functions (v n(X,t),w n(xt)) which satisfy the

Equations (3.1) in ST1 .

-11-
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Proof% The proof follows Evans and Shen: [1]. Let vn,(x,t) OWCX) and W. (xt) -

w(x,O) I 0 in ST1. Assuming that vnj(xt) and n (xt) have been defined for

j 0 0 , we let Vn+ (x,0) - (x) and Wn J+(x,O) - w(x,0), and, for (xt) e 6T,

V (x,t) Kf K(x-E,t)-(Ud& + ft dr fn ( K(x-&,t-r)d
+l - 0 -s (T)

(3.2a)

-ft fr K(x.-,t-)w n(,r)d

(3.2b) w (x,t) Ce- £ y t ft e n (x,n)dn
nj+1  0

The resulting sequences of functions, {v n(x,t)) and {w (x,t)}, are defined and

continuous in STI. We show that these sequences converge uniformly to a solution of the

Equations (3.1). Note that since O(x) is bounded, it follows from induction that each of

the functions v and w are bounded.
vnj Wnj

Let

p -(t) sup [IV n(x,t) - vn (xt)I + Iv (x,t) -w n (Xt)I).
(xt)eST i J-1 J- I

From Equations (3.2) it follows that, for (x,t) e ST1 I
(3.3a) IV (x,t) - v (xt)I dT K(x-E't-T)IWn(ET) -fT)td

J+1j 0 njJ-

(3.3b) IV (x,t) - w (xt)I 4 C ft IV (x,n) - V (xn)Idn
n +1n 0 n i-1

Adding (3.3a) and (3.3b) we obtain

P J+(t) e (1 + £) f t 0(1 )dT for t e (0,T1), j - 1,2,...
0

If K is a bound on p1(t) for 0 4 t C TI we have

1 K , P2(t) C (1 + c)Kt, ...,p J+(t) ( J(1+et

Ths -j~) ( + )t j+1 (1+€)T1{n

Thus, P M C 1 K(1£J+1)t I( K 1 and the sequences {v (x,t)} and
i.-iJ- (j+Iln

{wn (x,t)} converge uniformly in STI to limit functions v (x,t) and w,(x,t).

-12-



Moreover, passing to the limit in Equations (3.2) we find that vn(x,t) and wn(x,t)

satisfy the Equations (3.1) in ST //

Prom the proof of the preceding Lemma it follows that there exist constants V and

W such that Ivn(x,t)I < V and JWn(Xt)I < W in STN. Note that V and W can be

chosen independent of the curve sn(t)o From (3.1) it follows that (Vn)x(xt) and

(Wn)x(x,t) both exist in ST, except possibly at xi - a n(t), 0 < t < T1

Lemma 3.2. There exist constants V, and W, , independent of the curve sn(t) , such

that l(vn)x(x,t)I < VI  and l(wn)x(x,t)l < WI in ST1 , except possibly at xj - sn(t).

Proof: Suppose that x * s (t). We differentiate both sides of (3.1a) to obtainn

(Vn)x (Xt) - f- K(x-,t)o(&)d& + f dT in ( T) KX(x-&,t-T)dE
-- 0 -s Cr)

n

f ftdT I rXC..,t-t)n(&,t)d&

0 -ft

Integrating by parts in the first integral yields

(Vn )x (x,t)I 1 IV'(x)I + (I + w) ftdT f IKx(x-&,t-T)Id"0 --

Note that

ftdT f, Ix x(x-,t-T)ldE - 2 ft dr fJlx (n,t-T)Idn

0 -- 0 0

t -_t-_ )2 __ e- 
2
/4(t-T)

0 0 C2(t-T)

-(Ct- r)
mft a d

0 W 1/2(t-r) 1/2

4T1'/2.T1,

Therefore,

IVn ) xx,t)l 1 Ie (x) I+ (1 + WIT /2 V I

-13-
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Differentiating both side@ of (3.1b) yields

I(Wn)x(Xt)I C C I (V)x(xn)Idn
0

-C CV IT, = W1€ 1 T1 - 1 •/

lama 3.3: (vn)t(x,t) is a bounded continuous function in 8T1

Proofs This follows because (Wn)t - C(v n - ywn ) in 8T. We choose W2 so that

I(wn)t(x,t)I < W2  in 1/

Let W -v 1 + W2 + W3

We wish to define an+ 1 (t) implicitly as the solution of the equation:

(3.4) *( n+1(t),t) - a- *(sn)(t) + r(vn)(sn(t),t)

a n+1(0) x 0

Recall that we are assuming that Sn(t) is a smooth function in (0,T1) ,

N - sup an(t) ( C , and given p 6 (0,T1 ), there exists a constant C s such thatn a Cte( 0,T I )

'sn(t1 ) - n(t 0 )I ( ClitI-t 0 1 / for each t 0 ,t 1 6 (p,T). From Lsmae 2.3, 2.4 and 2.5

we conclude the following.

Lot B(t) equal the right hand side of (3.4). Then,

a) B(t) 4 CI(0,T1 )

b) there exists constants K7  and K8  such that

(3.5) 08'(t) K 7 + Kg MnT 1 2 in (0,T1j)

c) there exist constants 9 and KI0  such that

I8'(t 1 ) - B'(t 0) -C (K9 + K10 Cn T I ) Ity-ol 1/2

for each tlft
0 8 (pT 1).

Note that the constants aK and K8  depend only on v , and are, therefore, independent

of n . Furthermore, K9  and K10  depend on p and the bound on I' (t)l given in

(3.5b). Rence, K9 and K 10 can be chosen independently of n•

-14-ii ,4
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We conclude from lemma 2.1 and the implicit function theorem that there exists a

smooth function Sn+l(t), defined for some time, (say t e [0,T 2 ],) which is a solution of

(3.4). We show that as long as (sn+l(t)lt) stays in the rectangle P, defined in Lemma

2.1, then s' (t) is bounded, independently of n
n+1

We differentiate Squation 3.4 to obtain

*xlsn+llt)1tl@n+l(t) + *tlsn+lltI1t) - 01(t)

or
1

(3.6) s t) lt) lt)

From Leama 2.1 and (3.5b) it follows that if (sn+l(t),t) e P, then

-K + K T 12 + 8 1
tn+,I(t) 8 2 7 aK n 1

X 11 
+ 
K12 Kn T1I/

where K 1 -2 ~-(K 7 + 63) and K12 K8/6 do not depend on n
whr 1-a2 7 312 %82

1 2
Suppose that T1<( 2K1  2 Then, as long as (sn+l(t)it) e P'

I8n+l(t) 1 1 ll +1/2n.

Hence,
K n+l < Kll +1/2Mn " KllI + 1/2 (KlIl + 1/2 14n-1 ) 

4 -' -C

,(I + 1/2+ ... + I ) + 2 0 -n. 2K1 + No=- f "
1 1 -n 0 i

Therefore, the sequence {sn(t)} is uniformly bounded by the constant H . It follows
n

that there exists a constant T such that T < TI, and (sn(t)'t) e P for each t e

(0,T) and each n . Furthermore,there exists a subsequence [a n(t)) which converges

uniformly on (OT] to a continuous function a(t). We assume, without loss of

generality, that Csn (t) I sn (t)).

't' /' -1.5-

-A '



Lemma 3.4: Fix p 6 (0,T). There exist positive constants K 13 and K14  such that

1/11/2
- a,+(t 0 ) 1 4 (K13 + K 14Cn T 1 2)It1 - t 1

for each n and t0 ,t1 e (p,T) The constants K 13 and K14  can be chosen

independently of n.

Proof: This follows from (3.5c), (3.6), and Lama 2.1. //

We now assume that T < ( 1 )2 Then the previous lemma implies that
2K14

C K /2  *.(K (I + /2 + .+- + 2 -n
n+1 '13 + 1/2Cn 13 2n-1 0

C 2K 13 + CO = C

That is, given p 6 (0,T), there exists a constant C such that

181(t ) - an(to) l 'CF It I - to 1 /2

for each n and tot 1 e (p,T). It follows that a'(t) is continuously differentiable

in (0,T) and a subsequence of {sn(t)) converges uniformly on compact subsets of

(0,T) to s'(t). With loss of generality we assume that {n'(t)) converges uniformly on

compact subsets of (0,T) to s'(t). //

Lema 3.5: The sequences (v n} and {w converge uniformly in ST  to continuous

functions v and w which satisfy the 9quations (1.4).

Proof: Let on(t) - sup (IV n+(xt) - vn (xt)I + Iw n+(x,t) - wn (x,t)l) . From (3.1a)

it follows that for (x,t) 0 8 ,

-16-



IV i ,t) - v n(x,t)I 9 IftdT is+ T K(X-E,t-T)d&

0 8n+1(T

-ftdT ffl(T KX-,t-T)dEI + f t d f K(X-&,t-IW R+ I C&,T) W n E,T) d &

0 -a (T) 0 - r

I Iftd-r f--(T K(X-E,t-T)d& + ftdT fri+l K~x-&,t-r)d~l
0 -s n 1 (T) 0 T

+ ftdT f rKCc-E,t-T)v~ 1 C,r,) - v(E,T)IdC

42 sps C)-sCr1 dT +sup ~ ~ )1+(T o( ft '/2t-,2
0< rt 0 2ir(-r'

+ ft sup Iv n 1C(x,r) - v n(xT)IdT

(3.7) < 2T 2 sup Is n+ T)-s n ()I + ftsup Iv + (X, T) W n Cx,T)IdT
0<r<t 0 i Xel n+ r

From (3.1b) it follows that for Cx,t) e 9
(3.8) Iv.+ CX,t) - (X, t) I -C c £ I + xT - v (xT)Id

TIet 6 -2 1/2 sup Is~ C+ T) - 9 n (T)I. Note that 6 n 0 as ni. Adding (3.7) arid

(3.8) we find that for t e (0,Tr),

p C t) -C 6 + C 1+e) ft pnCr)dT
0

-17-
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From Gronwall's inequality it follows that

Pn (t) ( C '

for some constant C independent of n . Therefore pn(t) * 0 uniformly as n * m , and

the sequences (v ) and (w ) converge uniformly to limit functions v(x,t) and
n n

w(x,t). Passing to the limits in (3.1) we find that (v(x,t),w(x,t)) satisfies the

Equations (1.4). This implies that v and w are continuous functions in ST • //

Theorem 3.6: Let K -1/4min( 1/2.- a,a) and suppose that T < - Then (v,w) is a

classical solution of the Cauchy problem (1.1) in ST .

Proof. Throughout this proof we assume that t 0 (0,T). Recall that v(x,t),w(x,t), and

s(t) satisfy the Equations (1.4) and (1.6). Setting x - s(t) in (1.4) and subtracting

the resultinq equation from (1.6) we find that v(s(t),t) - a

Zquation (1.4) implies that for lxI < s(t), (v,w) satisfies the differential

equations

vt v xx-V +1-w

(3.9)

t - E(v - Yw)

and, for lxi > a(t), (v,v) satisfies the differential equations

-t v xx- V - W

(3.10)
wt 9 (v - Y).

we show that v > a for Ixi < 9(t), and v < a for lxI > a(t). This implies that

for x $ s(t), (v,w) satisfies the system of Equations (1.1).

Suppose it were not true that v > a for lxi < a(t), and v < a for lxi > s(t). i
For example, suppose that v(x1 ,t1 ) ( a where Ixjl < s(t,). Since v(x,0) > a for

Ixi < - s(0), we may assume that v(xl,t 1 ) - a and v(xt) > a in the region

-18-



G - ((x,t),lxl < s(t), t S (0,t )). We use the maximum principle (see 16), page 159) to

show that this is impossible. Note that v - a for lxi - s(t) and v(x,O) > a for

lxI < x0 . Let L be the operator defined by W E= v - Vxx + v . Then, in G

Lv - I - w. From (1.4b) it follows that in R x (O,t

lw(x,t)l f C t Iv(x,n) ldn
0

(3.11)

( £VT (K

Therefore, in G , In > I - K > a - L(a). It now follows from the maximum principle

that v(xl,t I ) > a • This is a contradiction. A similar argument shows that it is

impossible for v > a for lxi > s(t).

We have shown that except for x * s(t) , (v,w) satisfies the system of Equations

(1.1) in ST • It remains to show that vx(x,T) exists for lxi a(t).

Assume that lxi < a<t) and lEl < s(T). Then (V(&,T),W( ,T)) satisfies the system

of equations

v v + v 1 w

w - £(v - Yw).

ultiply both sides of the first equation by K(x-&,t-T), integrate by parts, and use the

fact that K K - 0 to obtain:

(Xv) (v) + (Xv) (I -w)K.

We integrate this last equation for -a(T) < < S(T), 6 < T < t - 6 , and let 6 + 0 to

obtain:

-19-



v~x,t) f 11-0 ~ ()d ft Xx'~)tTa'Td

- t (2c~() t-,r)as' (r)di - f t K(wgO(t) t)v (s(T) r) dr
0 0

(3.12s) + f t K(X+8(T) ,t-r)V (-s(r)T) 4 ta X (x-s(r) ,t-T)dT

- ta Kt(X4+a(T),t-'r)dr

-tdr fa(r) (I - w trd
o -M(T)

NeXt assUMe that C > O(T). Then Vt9,T) satisfies the differential equation

vT - c+v--

Multiply both sides of this equation by X(X-E,t-T) and integrate by parts to obtain:

(Kr) c- (XVc) c+ (Kv -KW .

rnteqrate thisalast equationffor s(T)Cin 5(<Ttt- and let 5+0 to

obtain:

-f"Kxcw.,t)V(E)dC + ft K-(')t-)as' (T)dT

0 0 0

d t drf K(X-&,t-T)W(t,r)dt
0 R(r)

Similarly, for <~ ( T) we obtain:

f X0 KXEtTd+ftX(sT),t-T)a s'(r)dT

-- 0

(3* 12c) -ft K(X+S(T),t-)V c(-*(T)-, )dT
0

+ ft a RC(Xiu(T) ,t-T)dT- fdT FB T)xr~~)VCtd
0 E0 -

-20-



Adding 43.12a), (3.12b), and (3.12c), and using (1.6) we find that

(3.13) f tc(X(3..(T),t. )!(($T) + , ) - V E(*(T) T)
0

+. K(X+B(T),t-T)IV (-S(T) +'r) - VE (-u(T) ,T)J~dr - 0

Using the assuption that v'(x) - sp(-x) it follows from (1.4) that v(x,t) -v(-x,t) in

ST . Therefore, (3.13) can be rewritten as

f t[K(x..s(T),t-T) - K(X+s(T),t-T)]!( (r() +' T) - V (S(T) ,r)]dr 0 0

0tE

Since EX(x-s(r),t-T) - KC(t(),t-T)] > 0) in (0,T) we conclude that v (s(t)-,t)

v Xs~) +t)in (0,T).

We have shown that vx(x,t) is a bounded continuous function in ST~. From 01.4b) it

follows that vx(x,t) is also a bounded continuous function in ST~./
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