
AD-AlOO ',03 OFFICE OF THE UNDER SECRETARY OF DEFENSE FOR RESEARCH--ETC F/6 9/2

DEPARTMENT OF DEFENSE REQUIREMENTS FOR HIGH ORDER COMPUTER PROG-ETC(U)

JAN 77
UNCLASSIFIED NL

EiIIIIIIIII



r: rI

DEPARTMENT OF DEFENSE

REQUIREMENTS FOR HIGH ORDER

COMPUTER PROGRAMMING LANGUAGES 1 I

AJUN 

191981

&IRONMAN4

14 January 1977

.iis an apro e

81is 002lmt



OFFICE OF THE UNDER SECRETARY OF DEFENSE
WASHINGTON, D.C. 20301 ,

RESEARCH AND p." *tI
IFNGINEERING., , , ,

Dear Friend of Ada:

Thank you for your interest in Ada.

Your name has been added to the Ada mailing list, and
occasionally you will receive information from the Ada Joint
Program Office concerning the status of the Ada progran.

Under the Freedom of Information Act, the Ada Joint program
Office (AJPO) mailing list is being made available on the
USC-ECLB computer. If you object to inclison of your nawe on
this public list, please inform the AJPO In writing. To help
keep the list up-to-date, please notjfy 'the APO of address
changes.

Sincerely, ,

~Larry E. Druffq11, tot.. Co., UWA
"Director, Adak'oint Program, Of fice

I •, "



THE TECHNICAL REQUIREMENTS

The technical requirements for a common DoD high order programming language
given here are a synthesis of the requirements submitted by the Military Departments.
They specify a set of language characteristics that are appropriate for embedded
computer applications (i.e., command and control, communications, avionics, shipboard,
test equipment, software development and maintenance, and support applications).

The changes that produced this revision reflect the many comments on previous
versions received from the Services, military contractors, the research community, and
other organizations during 1976. This revision does not alter the basic intent or
substance of the December 1975 (i.e., "TINMAN") version of the requirements. It does
incorporate changes to improve clarity, to correct errors, and to ensure feasibility.

The revised requirements are hierarchically organized with an outline similar to
that expected in a language defining document. Section 1 gives the general design
criteria. These provide the major goals that influenced the selection of specific
requirgments and provide a basis for language design decisions that are not otherwise
dealt with in the requirements. Section 2 through 12 give more specific technical
requirements on the language and its tr-inslators. The requirements call for the inclusion
of features to satisfy specific needs in the design, implementation, and maintenance of
military software, specify many general and specific characteristics desired for the
language, and call for the exclusion of certain undesirable characteristics. Section 13
gives some of the intentions and expectations for development, control, and use of the
language. The intended use and environment for the language has strongly influenced
the requirements; understanding those intentions should aid in achieving the
requirements. .

A precise and consistent use of terms has been attempted throughout the
requirements. Potentially ambiguous terms have been defined in the text. Care has
been taken to distinguish between requirements, given as text, and comments about the
requirements, given as bracketed notes. Previously duplicative requirements have been
given just once. Potentially conflicting implications of requirements have been clarified.

H



.4

2

The following terms have been used throughout the text to indicate where and to

what degree individual requirements apply:

shall indicates a requirement placed on the language or translator

should indicates a desired goal but one for which there is no objective
test

shall attempt indicates a desired goal but one that may not be achievable given
the current state of the art, or may be in conflict with other more
important requirements

shall require indicates a requirement that is to be placed on the user by the
language and its translators

shall permit indicates a requirement placed on the language to provide an
option to the user

must same meaning as shall require but takes user as subject

may same meaning as shall permit but takes user as subject

will indicates a consequence that is expected to follow or indicates an
intention of the DoD; it does not in any case by itself constrain the
design of the language.

Some of the above terms are also used informally in the bracketed notes.
Language is used in the singular to refer to the minimum number of languages necessary
to satisfy the needs of DoD applications.

*1



3

1. General Design Criteria

IA. Generality. The language shall provide generality only to the extent
necessary to satisfy the needs of embedded computer applications. Such
applications require real time control, self diagnostics, input-output to nonstandard
peripheral devices, parallel processing, numeric computation, and file processing.
The language shall not contain features that are unnecessary to satisfy the
requirements.

lB. Reliability. The language should aid the design and development of reliable
programs. The language shall be designed to avoid error prone features and to
maximize automatic detection of programming errors. The language shall require
some redundant, but not duplicative, specifications in programs. Translators shall
produce explanatory diagnostic and warning messages, but shall not attempt to
correct programming errors.

1C. Maintainability. The language should promote ease of program maintenance.
It should emphasize program readability over writability. That is, it should
emphasize the clarity, understandability, and modifiability of programs over
programming ease. The language should encourage user documentation of
programs. It shall require explicit specification of programmer decisions and shall
provide defaults only for instances where the default is stated in the language
definition, is always meaningful, reflects common usage, and can be explicitly
overridden.

ID. Efficiency. The language design should aid the production of efficient object
programs. Constructs that have exceptionally expensive or exceptionally
inexpensive implementations should be easily recognizable by translators and by
users. Users shall be able to specify the time space trade offs in a program.
Where possible, features should be chosen to have a simple and efficient
implementation in many object machines, to avoid execution costs for available
generality where it is not needed, to maximize the number of safe optimizations
available to translators, and to ensure that unused and constant portions of
programs will not add to execution costs. Execution time support packages of the
language shall not be included in object code unless they are called.



4

1E. Simplicity. The language should not contain unnecessary complexity. It
should have a consistent semantic structure that minimizes the number of
underlying concepts. It should be as small as possible consistent wiih the needs of
the intended applications. It should have few special cases and should be
composed from features that are individually simple in their semantics. The
language should have uniform syntactic conventions and should not provide several
notations for the same concept.

IF. Implementability. The language shall be composed from features that are
understood and can be implemented. The semantics of each feature should be
sufficiently well specified and understandable that it will be possible to predict its
interaction with other features. To the extent that it does not interfere with other
requirements, the language shall facilitate the production of translators that are
easy to implement and are efficient during translation. There shall be no language
restrictions that are not enforceable by translators.

1G. Machine Independence. The language shall strive for machine
independence. It shall not dictate the characteristics of object machines or
operating systems. The design of the language shall attempt to avoid features
whose semantics depend on characteristics of the object machine or of the object
machine operating system. There shall be a facility for specifying those portions
of programs that are dependent on the object machine configuration and for
conditionally compiling programs depending on the actual configuration.

1H. Formal Definition. To the extent that a formal definition assists in achieving
the above goals, the language shall be formally defined. [Note that formal
definitions are of most value during language design; and that the same method may
not be appropriate for defining all aspects of a language.]



5

2. General Syntax

2A. Character Set. Every construct of the language shall have a representation
that uses only the 64 character subset of ASCII:

0123456789: ;<=>?
eABCDEFGH I JKLMNO
PQRSTUVWXYZ [\]A'

28. Grammar. The language should have a simple, uniform, and easily parsed
grammar and lexical structure. The language shall have free form syntax and
should use familiar notations where such use does not conflict with other goals.

2C. Syntactic Extensions. The user shall not be able to modify the source
language syntax. In particular the user shall not be able to modify or introduce
new precedence rules or tc define new syntactic forms.

2D. Other Syntactic Issues. Multiple occurrences of a language defined symbol
appearing in the same context shall not have essentially different meanings. The
language shall not permit unmatched parentheses of any kind (e.g., begin and end
must be paired one for one). Source program line boundaries shall be treated like
spaces. All key word forms that contain declarations or statements shall be
bracketed (i.e., shall have a closing as well as an opening key word).

2.1. Identifiers

2E. Mnemonic Identifiers. Mnemonically significant identifiers shall be allowed.

There shall be a break character for use within identifiers. The language and its
translators shall not permit identifiers or reserved words to be abbreviated.

2F. Reserved Words. The only reserved words shall be those that introduce
special syntactic forms or that are otherwise used as delimiters. Words that can
be used in place of identifiers shall not be reserved (e.g., names of built-in or
predefined functions, types, constants, and the like shall not be reserved). All
reserved words shall be listed in the language definition.



iS

2.2. Literals

2G. Numeric Literals. There shall be built-in numeric literals. Numeric literals
shall have the same values in programs as in data.

2H. String Literals. There shall be built-in string literals. String literals shall be
interpreted as fixed length one-dimensional character arrays. Literal strings shall
not be allowed to cross line boundaries of the source program.

2.3. Comments

21. Comments. The language shall allow comments to be embedded within
program text (e.g., a comment bracketed by special !eft and right bracket symbols)
and shall allow stand alone comments (e.g., a comment introduced by a special
symbol at the beginning of each line). Bracket symbols shall consist of no more
than two characters each. The language shall not permit comments to
automatically cross line boundaries.

'4



.4

7

3. Types

3A. Strong Typing. The language shall be strongly typed. That is, the type or
mode of each variable, array and record component, expression, function, and
parameter shall be determinable at translation time.

38. Implicit Type Conversions. There shall be no implicit conversions between
types.

3C. Type Definitions. It shall be possible to define new data types in programs.
Type definitions shall be processed entirely at translation time. The scope of a
type definition shall be determinable at translation time. No restriction shall be
imposed on defined types unless it is imposed on all types.

3.1. Numeric Types

3-1A. Numeric Values. The language shall provide types for integer, fixed point,
and floating point numbers. Numeric operations and assignment that would cause
the most significant digits of numeric values to be truncated (e.g., when overflow
occurs) shall constitute an exception situation.

3-11. Numeric Operations. There shall be built-in operations (i.e., functions) for
conversion between numeric types. There shall be built-in operations for
addition, subtraction, multiplication, division with floating point result, and negation
for all numeric types. There shall be built-in equality (i.e., equal and unequal) and
ordering operations (i.e., less than, greater than, less or equal, and greater or equal)
between elements of each numeric type. Numeric values shall be equal if and only
if they represent exactly the same abstract value. The semantics of all built-in
numeric operations shall be included in the language definition. [Note that there
might also be standard library definitions for numeric functions such as
exponentiation.]



8

3.1.1. Floating Point Type

3-1C. Floating Point Precision. The precision of each floating point variable and
expression shall be specifiable in programs and shall be determinable at translation
time. Precision specifications shall be required for each floating point variable.
Precision shall be interpreted as the minimum precision to be implemented in the
object machine. Floating point results shall be implicitly rounded (or on some
machines truncated) to the implemented precision. Explicit conversion operationsshall not be required between floating point precisions.

3-1D. Floating Point Implementation. A floating point computation may be
implemented using the actual precision, radix, and exponent range available in the
object machine hardware. There shall be built-in operations to access the actual
precision, radix, and exponent range with which floating point variables and
expressions are implemented.

3.1.2. Integer and Fixed Point Types

3-1E. Integer and Fixed Point Numbers. Integer and fixed point numbers shall be
treated as exact numeric values. There shall be no implicit truncation or rounding
in integer and fixed point computations.

3-1F. Integer and Fixed Point Variables. The range of each integer and fixed
point variable must be specified in programs and determinable at translation time.
Such specifications shall be interpreted as the minimum range to be implemented.
Explicit conversion operations shall not be required between numeric ranges.

3-1G. Fixed Point Scale. The scale or step size (i.e., the minimal representable
difference between values) of each fixed point variable must be specified in
programs and be determinable at translation time.

3-1H. Integer and Fixed Point Operations. There shall be built-in operations for
integer and fixed point division with remainder and for conversion between fixed
point scale factors. The language shall require explicit scale conversion
operations whenever the scale of a value must be changed to properly perform
some operation (e.g., assignment, comparison, or parameter passing).



9

3.2. Enumeration Types

3-2A. Enumeration Type Definitions. There shall be types that are definable in
programs by enumeration of their elements. The elements of ; . enumeration type
may be identifiers or character literals. Literal identifiers shall be syntactically
distinguishable from other identifiers. Equality and inequality shall be
automatically defined between elements of each enumeration type.

3-2B. Ordered Enumeration Types. Ordered enumeration types must be so
marked in their definitions. The four ordering operations shall be automatically
defined between elements of each ordered type defined by enumeration. A
variable of an ordered enumeration type may be restricted to a contiguous
subsequence of the enumeration.

3.2.1. Boolean Type

3-2C. Boolean Type. There shall be a predefined unordered enumeration type
for Boolean values. The Boolean type shall have operations for conjunction,
inclusive disjunction, and negation.

3.2.2. Character Types

3-2D. Character Types. Character sets shall be definable as enumeration types.
Character types may contain both printable and control characters. Definitions for
ASCII and other widely used character sets shall be available in a standard library.

3.3. Composite Types

3-3A. Composite Type Definitions. It shall be possible to define types that are
Cartesian products of other types. Composite types shall include arrays (i.e.,
composite data with indexible components of homogeneous types) and records (i.e.,
composite data with labeled components of heterogeneous type).



10

3-3B. Component Specifications. For elements of composite types, the type of
each component (i.e., field) must be explicitly specified in programs and
determinable at translation time. Components may be of any type (including array
and record types). Range, precision and scale specifications shall be required for
each component of appropriate numeric types.

3-3C. Operations on Composite Types. A value accessing operation shall be
automatically defined for each component of composite data elements. Assignment
shall be automatically defined for components that have alterable values. A
constructor operation (i.e., an operation that constructs an element of a type from its
constituent parts) shall be automatically defined for each composite type. An
assignable component may be used anywhere in a program that a variable of the
component's type is permitted.

3.3.1. Arrays

3-3D. Array Specifications. The number of dimensions for each array must be
specified in programs and shall be determinable at translation time. The range of
subscript values for each dimension must be specified in programs and shall be
determinable by the time of array allocation. The range of subscript values shall
be restricted to a contiguous sequence of integers or to a contiguous sequence ft om
an enumeration type. [Note that translators may be able to produce more efficient
object programs where subscript ranges are determinable at translation time.]

3-3E. Operations on Subarrays. There shall be built-in operations for value
access, assignment, and catenation of contiguous sections of one-dimensional
arrays of the same component type.

3.3.2. Records

3-3F. Operations on Records. Assignment shall be permitted between records
with corresponding components of identical name and type.

3-3G. Nonassignable Record Components. It shall be possible to specify record
components (including tag fields) for which assignment shall not be permitted.
These components shall include those defined as constants and those defined as
expressions. [Note that such components need not take data storage space.]



I'

3-3H. Variant Types. It shall be possible to define types with alternative record
structures (i.e., variants). The structure of each variant shall be determinable at
translation time. Each variant must have a tag field (i.e., component that can be
used to discriminate among the variants during execution). The value of a variant
may be used anywhere a value of the variant type is permitted.

3.3.3. Types Requiring Dynamic Allocation

3-31. Definitions of Dynamic Types. It shall be possible to define types whose
elements are dynamically allocated. Elements of such types may have components
of their own type and may have substructure that can be altered during execution.
Such types shall be distinguishable from other composite types in their definitions.
[Note that such types require pointers and heap storage in their implementations.
They are intended primarily for the support portions of embedded computer
software.]

3-3J. Constructor Operations. Each execution of the constructor operation for a
dynamically allocated type shall create a distinct element of the type. Such
elements shall remain allocated as long as there is an access path to them.

3.4. Set Types

3-4A. Set Type Definitions. It shall be possible to define types as power sets of
enumeration types. [Note that the elements of such types are sets and can be
implemented as bit strings.]

3-4B. Operations on Sets. Membership and constructor operations shall be
defined automatically for each type defined as a power set. Intersection, union,
symmetric difference, equality, and inequality shall be automatically defined
between elements of each set type. [Note that intersection, union, and symmetric
difference can be implemented as bit by bit operations for conjunction, inclusive
disjunction, and exclusive disjunction, respectively.]

3.5. Encapsulated Types

3-5A. Encapsulated Definitions. It shall be possible to encapsulate definitions.
Encapsulations may contain definitions of the data elements comprising a type and
of operations.



12

3-5B. Effect of Encapsulation. The effect of encapsulation shall be to inhibit
external access to implementation properties of the definition. In particular
declarations made within an encapsulation shall not automatically be accessible
outside the encapsulation. Data elements defined in an encapsulation shall not
automatically inherit the operations of the types with which they are represented.

3-5C. Own Variables. It shall be possible within encapsulations to declare
variables that are accessible only within the encapsulation but remain allocated
throughout the scope in which the encapsulation is declared. Such variables shall
retain their values between entries to the encapsulation. It shall be possible to
initialize such variables at the time of their apparent allocation.

3-51. Operations Between Types. It shall be possible to define operations, like
type conversion, that require access to local properties of more than one
encapsulated definition. [Note that this capability violates the purpose of
encapsulation and thus its use should be avoided wherever possible.]



13

4. Expressions

4A. Form of Expressions. The form (i.e., context free syntax) of expressions
shall not depend on the types of their operands or on whether the types of the
operands are built into the language.

4B. Type of Expressions. The language shall require that the type of each
expression be determinable at translation time. It shall be possible to specify the
type of an expression explicitly. [Note that the latter requirement provides a way
to resolve ambiguities in the types of literals and to assert the type of results; it
does not provide a mechanism for type conversion.]

4C. Side Effects. The language should permit few side effects in expressions. In
particular, during expression evaluation assignment shall not be allowed to any
variable that is accessible in the scope of the expression.

4D. Allowed Usage. Expressions of a given type shall be allowed wherever both
constants and variables of the type are allowed.

4E. Constant Valued Expressions. Constant valued expressions (i.e., expressions
whose values are determinable at translation time) shall be allowed wherever
constants of the type are allowed. Such expressions shall be evaluated before
execution time.

4F. Operator Precedence Levels. The precedence levels (i.e., binding strengths)
of all infix operators shall be specified in the language definition, shall not be
alterable by the user, shall be few in number, (e.g., three or four), and shall not
depend on the types of the operands. [Note that there might be built-in operator
symbols whose meaning is entirely specified by the user.]

4G. Effect of Parentheses. Explicit parentheses shall dictate the association of
operands with operators. Explicit parentheses shall be required to resolve the
operator-operand associations wherever an expression has a nonassociative
operator to the left of an operator of the same precedence.



14

5. Constant, Variables, and Declarations

5A. Declarations of Constants. It shall be possible to associate identifiers with
constant values of any type that is not dynamically allocated. Constants shall
include both those whose values are determinable at translation time and those
whose value cannot be determined until scope entry time. A translation time error
shall be reported whenever a program attempts to assign to a constant valued
identifier.

5B. Declarations of Variables. There shall be no default declarations for
variables. The type of each variable must be explicitly specified in programs and
shall be determinable at translation time. Variables may be of any type.

5C. Scope of Declarations. The intended scope of a declaration shall be
determinable from the program at translation time. Scopes may be lexically
embedded. Translators shall provide a warning wherever a local definition masks
a more global definition. [Note that a function need not mask a more global function
if they differ in name, number of parameters, or formal parameter types.]

5D. Restrictions on Values. Procedures, functions, types, labels, exception
situations, and statements shall not be assignable to variables, computable as
values of expressions, or usable as parameters to procedures or functions.

5E. Initial Values. There shall be no default initial values for variables. The
same syntactic form shall not be used both to declare constants and to initialize
variables. [Note that initialization of variables must (except for some global
variables) be accomplished during execution, not translation.]

5F. Operations on Variables. Assignment and an implicit value access operation
shall be automatically defined for each variable.

5G. Other Declarations. It shall be possible to associate identifiers with
specifications of type and representation (including range, scale, and precision).
Such identifiers may be used in declarations of variables, to specify components of
elements of composite types, and in formal parameter specifications.

4i



15

6. Control Structures

6A. Basic Control Facility. The built-in control mechanisms should be of minimal
number and complexity and where possible shall be structured (i.e., shall have one
point of entry and shall exit to a single point). Each shall provide a single capability
and shall have a distinguishing syntax. Nesting of control structures shall be
allowed. There shall be no control definition facility. Local scopes shall be
allowed within the bodies of control statements.

6B. Sequential Control. There shall be a sequential control mechanism (i.e., a
mechanism for sequencing statements). Explicit statement delimiters shall be
required. [Note the choice between terminators and separators can be left to the
user.]

6C. Conditional Control. There shall be conditional control structures that permit
selection among alternative control paths. The selected path may depend on the
value of a conditional expression, on a computed choice among labeled alternatives,
or on the true condition in a set of mutually exclusive conditions. The control action
must be specified for all values of the discriminating condition. [Note that only one
branch will be compiled when the selected case for a conditional statement is
determinable at translation time.]

6D. Short Circuit Evaluation. There shall be forms for short circuit conjunction
and disjunction of Boolean expressions in conditional and iterative control
structures.

6E. Iterative Control. There shall be an iterative control structure that permits a
loop to have several explicit termination conditions and permits termination
anywhere in the loop. Iterative control structures may be entered only at the head
of the loop. [Note that when the number of iterations is 7ero or one and is
determinable at translation time, the translator can omit any unnecessary object
code.]

6F. Loop Control Variables. Loop control variables, if any, shall be local to the
iterative control statement. Assignment shall not be allowed to control variables
from the loop body. It shall be possible to iterate over sequences of integers and
over elements of an enumeration type.

lI



I 16

6G. Explicit Control Transfer. There shall be an explicit mechanism for control
transfer (i.e., the go to). The go to shall not permit transfer of control out of
declarations (including functions, procedures, and encapsulated definitions) or out of
parallel control structures. It shall not permit transfer into narrower access
scopes or into control structures (e.g., conditional, iterative, and parallel control
structures). There shall be no control transfer mechanisms in the form of
switches, designational expressions, label variables, label parameters, or alter
statements.

iI



17

7. Functions and Procedures

7A. Function and Procedure Definitions. Functions (which return values to
expressions) and procedures (which can be called as statements) shall be definable
in programs. Existing functions (including those called using infix forms) and
procedures shall be extendible to new data types (i.e., overloading shall be
permitted).

78. Recursive Definitions. It shall be possible to define functions and procedures
recursively as well as nonrecursively. If necessary the language shall restrict
recursive definitions to insure that they do not add to the execution cost of other
program constructs.

7C. Scope Rules. A reference to an identifier (other than an identifier for an
exception situation) that is not declared in the most local scope shall refer to a
program element that is lexically global, rather than to one that is global through
the dynamic calling structure.

7.1. Functions

7D. Function Declarations. The result type for each function must be explicitly
specified in the function declaration and shall be determinable at translation time.
A function of two arguments may be specified as associative in its declaration.
[Note that the latter requirement reduces the need for explicit parentheses.]

7E. Restrictions on Functions. A function may only have input parameters and
may not be called in a scope that contains variables that are referenced or assigned
directly or indirectly within the body of the function. [Note that this requirement
guarantees that parameters to functions can be implemented safely with either
value or reference passing.]

7.2. Parameters

7F. Formal Parameter Classes. There shall be three classes of formal
parameters: 1) input parameters, which act as constants that are initialized to the
value of corresponding actual parameters at the time of call, 2) input-output
parameters, which enable access and assignment to the corresponding actual
parameters, and 3) output parameters, which act as local variables whose values
are transferred to the corresponding actual parameter only at the time of normal
exit. In the latter two cases the corresponding actual parameter must be a
variable or an assignable component of a composite type.

p.l



18

7G. Parameter Specifications. The type of each formal parameter must be
explicitly specified in programs and shall be determinable at translation time.
Parameters may be of any type. Range, precision, and scale specifications shall be
required for each formal parameter of appropriate numeric types. A translation
time error shall be reported wherever corresponding formal and actual parameters
are of different types and wherever a program attempts to use a constant or an
expression where a variable is required.

7H. Formal Array Parameters. The number of dimensions for formal array
parameters must be specified in programs and shall be determinable at translation
time. Determination of the subscript range for formal array parameters may be
delayed until execution and may vary from call to call. Subscript ranges shall be
accessible within function and procedure bodies without being passed as an
explicit argument.

71. Restrictions to Prevent Aliasing. Aliasing (i.e., multiple access paths to the
same variable from a given scope) shall not be permitted. In particular, a variable
may not be used as two output arguments in the same call to a procedure, and a
nonlocal variable that is accessed or assigned within a procedure body may not be
used as an output argument to that procedure.



19

8. Input-Output Facilities

8A. Low Level Input-Output Operations. There shall be a set of built-in low level
input-output operations that act on physical files (e.g., input-output channels and
peripheral devices). The low level operations shall be chosen to insure that all
application level input-output operations can be defined within the language.
They shall include operations to send control information, to receive control
information, to begin transfer of data in either direction, and to wait for completion
of a data transfer.

8B. Application Level Input-Output Operations. There shall be standard library
definitions for application level input-output to logical files. These shall include
operations for creating, deleting, opening, closing, reading, writing, and positioning
logical files. The meaning of such operations shall depend on the general
characteristics of the files or devices (e.g., on whether they are sequentially or
randomly accessed), but shall not be dependent on a specific device.

8C. Input Restrictions. Input shall be restricted to files whose data
representation is known to the translator (i.e., to files that are created and written
entirely within the program or to files whose data representation is explicitly
specified in the program).

8D. Operating System Independence. The language shall not require the
presence of an operating system. The form and meaning of built-in and library
definitions shall not be dependent on the operating system, if present. [Note that
functions and operators of the language can be implemented as operating system
calls where the operating system is compatible with the function or operator
definition.]

8E. Configuration Control. There shall be a few low level facilities that permit
programs (usually library routines) to interrogate and control the status of physical
resources (e.g., memory or processors) that are managed (e.g., allocated or
scheduled) by built-in features of the language. In particular it shall be possible to
dynamically reassign the association between physical and logical devices, to
control program overlays, and to prevent allocation and scheduling of faulty
resources.



20

9. Parallel Processing

9A. Parallel Control Structures. There shall be a control structure for parallel
processing. It shall permit a fixed number (i.e., determinable at translation time) of
control paths to operate in parallel and to rejoin at a single point. There shall be
an operation that is executable on any path of a parallel control structure and that
causes immediate termination of the other paths (i.e,, causes the other paths to
move to the rejoin point).

90. Parallel Path Implementation. The parallel processing facility shall be
designed to minimize execution cost. In particular, parallel control paths shall be
implementable with multiprocessors or with interleaved execution on a single
processor.

9C. Mutual Exclusion. There shall be a mechanism for mutual exclusion among
parallel processes. During specified portions of its execution, a parallel path shall
be able to wait for and gain exclusive use of certain program declared objects and
to release those objects. [Note that special asynchronous hardware and software
interrupt facilities are not necessary in the language; interrupts can be treated as
objects that are released upon occurrence of the interi upt.]

9D. Real Time Constraints and Scheduling. Constraints on the real (i.e., elapsed)
time for execution of portions of control paths shall be specifiable in programs.
Translators shall give warning if there is risk that time constraint will not be met. It
shall also be possible to specify which paths are to be given preference in
execution (in case the number of actual paths exceeds the number of available
processors or the processors execute at different speeds). [Note: Such
specifications provide a means to document the real time constraints of the
applications, but do not specify a specific execution order among parallel paths and
do not provide a safe means for mutual exclusion.]

9E. Real Time Clock. There shall be an accessible real time clock. It shall be
possible to specify a delay on any control path for specified real time intervals.
Such specifications shall be interpreted as the minimum time before continuing
execution on that control path.

9F. Simulated Time Clock. There shall be an accessible simulated time clock. It
shall be possible to delay any control path for a specified simulated time interval.



21

10. Exception Handling

IOA, Exception Handling Facility. There shall be an exception handling
mechanism for responding to unplanned error situations detected during program
execution. The exception situations shall include errors detected by hardware,
software errors detected during execution, error situations in built-in operations,
and attempts to execute portions of programs that are not present in main memory.
Exceptions should add to the execution time of programs only if they are invoked.

10. Software Error Situations. The software errors detectable during
execution shall include exceeding the specified range of an array subscript,
exceeding the specified range of a variable, exceeding the implemented range of a
variable, attempting to access an uninitialized variable, and failing to satisfy a
program specified assertion. [Note that many range checks can be done during
translation thereby reducing execution costs.]

10C. Invoking Exceptions. During any function or procedure execution it shall be
possible to invoke an exception situation in the calling statement. This exception
shall cause termination of the routine and an immediate transfer of control in the
caller. Such exceptions must be specified in the definition of the function or
procedure. Exceptions that can be invoked by built-in operations shall be given in
the language definition.

1OD. Processing Exceptions. There shall be a control structure for discriminating
among the exceptions that can occur in a specified portion of a program.
Exceptions that are not processed at a given function or procedure level shall
cause termination of the function or procedure and shall invoke an exception in its
caller. Exceptions that cause exit from parallel control structures shall terminate
all paths of the parallel control structure.

IOE. Order of Exceptions. The order in which exceptions in different parts of an
expression are detected shall not be guaranteed by the language or by the
translator.

1OF. Assertions. It shall be possible to include assertions in programs. If an
assertion is false when encountered during execution, it shall invoke an exception.
[Note that assertions can also be used to aid optimization and maintenance.]

10G. Suppressing Exceptions. It shall be possible to suppress individually the
detection of exceptions for software error s;tuations. Should such a situation
occur when its detection is suppressed, the co,,sequences will be unpredictable.



-I.

22

11. Specifications of Object Representation

11A. Data Representation. The language shall permit but not require programs
to specify the physical representation of data. These specifications shall be
distinct from the logical descriptions. Specifications for the order of fields, the
width of fields, the presence of "don't care" fields, the positions of word
boundaries, and the object representation of atomic data shall be allowed. If
object representations are not specified, they shall be determined by the
translator.

11B. Multiple Representations. It shall be possible in programs to define more
than one physical representation (e.g., packed and unpacked) for elements of a
given type, and to associate a specific representation with each variable of that
type. [Note that changes of representation can be accomplished through
assignment.]

1 1C. Machine Configuration Constants. The language shall require the
declaration of certain global constants of the object machine configuration. These
shall include constants that specify the machine model, the memory size, special
hardware options, the operating system if present, and peripheral equipment.
Such constants shall be used to determine the object code to be generated by the
translator and may also be used by the program like other constants. [Note that
the user can define constants and use them as switches to control user defined
compilation options.]

11D. Configuration Dependent Specifications. It shall be possible to use machine
dependent facilities in programs. Portions of programs that depend on the
characteristics of the object machine (e.g., on the machine model, special hardware
options, device configuration, or operating system) shall be permitted only within
branches of conditional control structures that discriminate on the object machine
configuration.

11E. Code Insertions. For some object machines it shall be possible to write
programs that include encapsulated code written in machine language or in other
established programming languages. Such facilities shall be modest and shall
attempt to maximize safety. The language should be designed to minimize the need
for code insertions.



23

1 IF. Optimization Specifications. It shall be possible in programs to specify the
optimization criteria to be used. It shall be possible to specify whether minimum
translation costs or minimum execution costs are more important. In the latter case
the user may also specify whether execution time or memory space is to be given
preference. The meanings of program constructs (other than execution time and
space) shall not depend on the optimizations that are applied.

i3 I



24

12. Library, Separate Compilation, and Generic Definitions

12A. Library Entries. The language shall support the use of an external library
of definitions and separately compiled segments. Library entries shall include type
definitions, input-output packages, common pools of shared declarations, and
application oriented software packages. The library shall be structured to allow
entries to be associated with a particular application, project or user.

128. Separately Compiled Segments. The language shall support the assembly
of separately compiled program segments into an operational program. It shall
allow definitions made in one separately compiled segment to be used in another,
and shall require that such definitions and declarations be explicitly exported from
the defining segment and be explicitly, but not necessarily individually, imported to
the using segment. Type constraints and other program and language imposed
restrictions shall be enforced across such interfaces.

12C. Restrictions on Separate Compilation. Separate compilation shall not
change the meaning of a program. Translators shall be responsible for the
integrity of object code in affected segments when any segment is modified, and
shall insure that shared definitions have compatible representations in all
segments. [Note: This suggests that a segment cannot be compiled until all
segments from which it imports definitions and declarations, are defined.]

12D. Gonoric Definitions. It shall be possible to define functions, procedures,
and types with parameters that are instantiated during translation at each call.
Such parameters may be any defined identifier (including those for variables,
functions, or types), an expression, or a statement. These parameters, like all
other parameters, shall be evaluated in the context of the call. [Note that generic
definitions generally cannot be separately compiled, but where generic definitions
are implemented as closed routines, several instantiations can often share the same
object code.]



25

13. Support for the Language

13A. Defining Documents. The language shall have a complete and unambiguous
definition. It should be possible to predict the complete action of any syntactically
correct program from the language definition. The language documentation shall
include the syntax, semantics, and appropriate examples of each feature including
those for standard library definitions. The defining documentation might point out
the relative efficiency of alternative constructs.

13B. Standards. There will be a standard definition of the language. Procedures
will be established for standards control and for certification that implementations
meet the standard.

13C. Subset and Superset Implementations. Translators shall implement the
standard definition. There shall be no subset or superset implementations. Every
feature that is available to the user shall be defined in the standard, in an accessible
library, or in the source program.

13D. Translator Diagnostics. Translators shall be responsible for reporting
errors that are detectable at translation time and for optimizing object code.
Translators shall do full syntax and type checking, shall check that all language
imposed restrictions are met, and shall provide warnings of unusually expensive
constructs. A representative set of translation time diagnostic and warning
messages shall be included in the language definition.

13E. Translator Characteristics. Translators for the language shall be written in
the language and shall be able to produce code for a variety of object machines.
Where practical, the machine independent parts of translators should be separate
from the code generators. Self hosting of translators is desirable, but is not
required (i.e., the translator need not be able to run on all the object machines).
The internal characteristics of the translator (i.e., the translation method) shall not
be dictated by the language definition or standards.



26

13F. Translation and Execution Restrictions. Translators should fail to compile
correct programs only when the program exceeds the resources or capabilities of
the in.tended object machine or when the program requires more resources during
the translation than are available on the host machine. Translators shall report an
error when a program requires memory, devices, or special hardware that are
unavailable in the object machine. Neither the language nor its translators shall
impose arbitrary restrictions on language features. That is, they shall not impose
restrictions on the number of array dimensions, on the size of data structures, on
the size of set types, on the number of identifiers, on the length of identifiers, or on
the number of nested parentheses levels unless such restrictions are dictated by
the limitations of the host or object machine and are documented in user accessible
manuals.

13G. Software Tools and Application Packages. The language shall be designed
to work in conjunction with a variety of useful software tools and application
support packages. These will be developed as early as possible and will include
editors, interpreters, diagnostic aids, program analyzers, documentation aids,
testing aids, software maintenance tools, optimizers, and application libraries.
There will be a consistent user interface for these tools. Where practical
software tools and aids will be written in the language. Support for the design,
implementation, distribution, and maintenance of translators, software tools and
aids, and application libraries will be provided independently of the individual
projects that use them.

For a more detailed discussion of the DoD common language effort, the requirements
background, and the relation of programming languages to the DoD software problem see:

1. Department of Defense Requirements for High Order Computer Programming
Languages, "TINMAN", June 1976, or

2. IDA Paper P-1191, "A Common Programming Language for the Department of
Defense -- Background and Technical Requirements", David A Fisher, June 1976.

Both of the these documents have been widely distributed and both contain the
December 1975 set of requirements.



.-.gold


