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20. Then our own work is presented, consisting of eight empirical

ferences in the knowledge bases of experts and novices to their
problem solving success. More specifically, they show l) that
it is difficult to use protocols of problem solving episodes to
illuminate the differences in the knowledge bases of experts and
novices, *17 that experts and novices perceive the problem them-
selves differently, i.e., novices respond to the surface features
of a problem while experts respond to its deep structure, (3)'
that less successful novices, at least, have deficiencies in their
declarative knowledge of physics, ' ( ' &Ithat novices tend to lack
knowledge of when to use certain phy'sics knowledge, and -(5)*that
deficiencies in knowledge appear to prevent novices at times
from naking key inferences necessary for solving problems.
Finally, these results and their implications for theories of

intelligence, are discussed.



Abstract

It has become increasingly clear in recent years that the quality

of domain-specific knowledge is the main determinant of expertise in

that domain. This paper begins with an examination of the shift from

consideration of general, domain-independent skills and procedures, in

both cognitive psychology and artificial intelligence, to the study of

the knowledge base. Next, the empirical findings and theoretical mcdels

of other researchers in physics problem solving are detailed and

summarized. Then our own work is presented, consisting of eight

empirical studies. These studies show, .n general, the importance of

differences in the knowledge bases of experts and novices to their4
problem solving success. More specifically, they show (1) that it is

difficult to use protocols of problem solving episodes to illuminate the

diLfferences in the knowledge bases of experts and novices, (2) that

experts and novices perceive the problems themselves differently, i.e.,

novices respond to the surface features of a problem while experts

respond to its deep structure, (3) that less successful novices, at

least, have deficiencies in their declarative knowledge of physics, (4)

that novices tend to lack knowledge of when to use certain physics

knowledge, and (5) that deficiencies in knowledge appear to prevent

novices at times from making key inferences necessary for solving

problems. Finally, these results and their implications for theories of

intelligence are discussed.
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Expertise in Problem Solving

INTRODUCTION

At first glance, it may seem anomalous for a chapter on expert

performance to appear in a volume on intelligence. But an

accumulation of scientific events indicates that the analysis o:f

expertise in semantically rich knowledge domains is quite relevant to

understanding the nature of intelligence. These events have occurred

in a number of disciplines, particularly cognitive psychology and

artificial intelligence. The first part of this paper briefly

outlines work in these fields. The common theme is the increasing

emphasis on the structure of knowledge as a significant influence on

intelligence and high level cognitive performance. The latter part of

this paper describes, as an illustration of this, investigations of

high and low competence in a knowledge-rich domain, namely, problem

solving in physics.

Intelligence has been studied by contrasting individual

differences, age differences, differences between the retarded and the

gifted, and between fast and slow learners. These dimesions of

difference are well represented by the past research *:r the

contributors to this volume, including ourselves. What have we

learned by investigating intelligent performance along zhese

dimensions? If we consider speed of prccessing, memory span, and the
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use uf complex strategies as three straightforward measures of

cognitive performance, the following picture emerges. More

intelligent individuals have faster processing speed, longer memory

span, and use more sophisticated strategies than less intelligent

persons (Belmont & Butterfield, 1971; Hunt, Lunneborg, & Lewis, 1975;

Jenson, in press). This is also true of older versus younger children

(Chi, 1976), and fast as compared with slow learners. For example,

good readers can encode words faster and have a longer memory span for

words than poor readerq (Perfetti & Hogaboam, 1975). Thus, over these

dimensions of comparison, measured intelligence correlates positively

with faster processing, more complex encoding and recall, and the use

of sophisticated strategies.

Although this pattern of results occurs reliably, we still do not

understand what the underlying mechanisms are, and whether similar

mechanisms are operative in various disciplines and areas of

knowledge. This is one reason the analysis of expertise has emerged

as an inturesting area of investigation. The study of expertise

forces us to focus on a new dimension of difference between more and

less intelligent individuals--the dimension of knowledge--sine

expertise is, by definition, the possession of a large body of

knowledge and procedural skill. The central thesis of this paper is

that a major component of intelligence is the possession of i Large

body of accessible and usable knowledge. In the following section, we

briefly outline the literature in two related disciplines that have

gradually come to the same conclusion.

.......................
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THE FOCUS ON KNOWLEDGE

Cognitive Psychology

Memory Skills

In cognitive psychology, the effects of knowledge on complex

skilled performance were first explored in the seminal work of de

Groot (1966) and Chase and Simon (1973a, 1973b) in their studies of

chess ski'1. In an attempt to discover what constitutes skill in

chess, de Groot (1966) found that differences in skill were not

reflected in the number of moves the players considered during their

search for a good move, nor in the depth of their search. Both the

master and the novice did not search any further ahead than five

moves. Both experts and novices used the same search strategies, that

is, depth first with progressing deepening. In order to capture the

essence of skill differences in chess, de Groot resorted to a

different type of task--memory for chess positions. He found that

when masters were shown a chess position for a very brief duration

(five seconds), they were able to remember the position far better

than the novice players. This difference could not be attributed to

superior visual short-term memory on the part of the masters because,

when random board positions were used, recall was equally poor for

masters and novices (Chase & Simon, 1973a).

In order to understand the chess masters' recall superiority,

Chase and Simon attempted to uncover the structures of chess know' edge

that the masters possessed. Using chunks as a defining unit of

knowledge structure, Chase and Simon set out to experimentally

identify the structure and size of chunks in the knowledge base of



P A G " 4

masters and novices. Two procedures were used by Chase and Simon.

One was to record the placement of chess pieces on the chess board

during the recall of positions, and use two-second pauses dL~ring

recall to segment the chunks. A second procedure was asking the chess

player to copy a position and using head turns from board to board to

partition the chunks. The theoretical rationale underlying both the

pause and the head-turn procedure was the notion that chunks are I
closely knit units of knowledge structure; hence, retrieval of one

item of information within a chunk would lead to retrieval of another

in quick succession.

Both master and novice did retrieve pieces in chunks--bursts

followed by pauses, and they reproduced chess positions pattern by

pattern, with a glance (or head turn) for each pattern. These

patterns were familiar and highly stereotypic patterns that chess

players see daily, such as a castled-king position, or a pawn chain,

or they were highly circumscribed clusters of pieces, often of the

same color, and located in very close proximity. The difference

between the novice and the expert chess player was the size of the

chunks. The master's patterns were larger, containing three to six

pieces, whereas novice's patterns contained single pieces. If one

counted by chunks rather than pieces, the novice and the master were

recalling the same number of chunks from the board position.

There are limitations with the procedure of identifying chunks by

a two-second pause and/or a head turn. One limitation is that it does

not provide a description of the complex structure of the chunk, for

example, the overlapping niature of chunks (Reitman, 1976). A more
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serious limitation is that it does not allow for the identification of

higher-order chunks. The pause procedure permits only the

identification of "local" chunks, that is, chunks that are spatially

close and defined by such relations as next to, color identity, piece

identity, etc. (Chase & Chi, in press).

The existence of higher-order chunks is evidenced in the master's

recall for sequences of moves (Chase & Simon, 1973b). That is, after

viewing all the moves of a game, a master's recall of move sequences

shows clustering of move sequences represented by pauses that is

similar to the clustering of pieces in the board-recall task. This

says that a given board position generates a sequence of stereotypic

moves. Data from eye movement studies clearly show that chess players

fixate predominantly on the pieces interrelated by attack and defense

strategy (Simon & Barenfeld, 1969), and that these pieces are

typically not proximally related, as are the local chunk pieces.

The study of expert-novice differences in the use of complex

knowledge in other domains has also revealed higher-order chunk

structures. In electronics, E3an and Schwartz (1979) found that

skilled technicians reconstructing symbolic drawings of circuit

diagrams do so according to the functional nature of the elements in

the circuit such as amplifiers, rectifiers, and filters. Novice

technicians, however, produce chunks based more upon the spatial

proximity of the elements. In architecture, Akin (1980) found that

during recall of building plans by architects, several levels of

patterns were produced. First, local patterns consisting of wall

segments and doors are rr~called, then rooms and other areas, tlen
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clusters of rooms or areas. The hierarchical nature of chunks also

has been illustrated in the recall of baseball events. High-knowledge

individuals can recall entire sequences of baseball events much better

than low-knowledge individuals (Chiesi, Spilich, & Voss, 1979).

Like the chess results, the expert in several diverse domains is

able to remember "sequences of moves" much more rapidly than novices.

Also, we see a similarity between chess patterns, circuit diagrams,

and architectural patterns in that functional properties are more

important at higher levels, whereas structural properties (such as

proximity and identity in color and form) are more important at lower

levels. And with increasing skill, more higher-order chunks are

developed.

In sum, one aspect of cognitive psychology research has clearly

identified the superior memory capacity of skilled individuals, as

exhibited in the large pattern of chunks, whether they are adult chess

players, child chess players (Chi, 1978), Go players (Reitman, 1976),

Gomoku players (Eisenstadt & Kareev, 1975), bridge players (Charness,

1979), musicians (Sloboda, 1976), baseball fans (Chiesi, Spilich, &

Voss, 1979), programmers (McKeithen, 1979; Jeffries, Turner, Polson,

& Atwood, 1981), or electronic technicians (Egan & Schwartz, 1979).

While a number of the above studies have uncovered the hierarchical

nature of the patterns (Akin, 1980; Chiesi, Spilich, & Voss, 1979;

Egan & Schwartz, 1979), no work to date has explicitly related the

knowledge and chunk structures of these skilled individuals to the

complex skill that they are able to perform.
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Problem-Solving Skills

A currently prominent area of research in cognitive psychology is

prcblem solving. Problem-solving research was revolutionized in the

sixties when researchers turned from studying the conditions under

which solutions are reached to the processes of problem solving.

Following the contribution of Newell and Simon's (1972) theory,

problem-solving research proceeded to model search behavior, and to

verify that humans indeed solve problems according to means-ends

analyses. Numerous puzzle-like problems were investigated, all of

which indicated that human subjects do solve problems according to

means-ends analyses to some degree (Gen,1978).

In puzzle problems, sometimes known as MOVE problems, the

knowledge involved in solving the problems is minimal. All the

knowledge one needs to solve the problems is given: the initial

state, the number and function of operators, and the final goal state.

Solution requires that a set of operators be applied to transform one

state of knowledge to another, so that eventually the goal state can

be reached. A variety of puzzle problems have been investigated: the

water jug problem (Atwood & Polson, 1976; Atwood, Masson, & Polson,

1980; Polson & Jeffries, this volume), hobbits and orcs (Greeno,

1974; Thomas, 1974), missionaries and cannibals (Reed & Simon, 1976),

and Tower of Hanoi (Egan & Greeno, 1974; Simon, 1975).

The research on puzzle problems, however, offered limited

insights into learning. Because, learning in real-world subject

matters requires the acquisition of large bodies of domain-specific

knowledge, cognitive scientists turned their attention from
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knovledge-free problems, like puzzles, to knowledge-filled domains

like geometry (Greeno, 1978), physics (Simon & Simon, 1978),

thermodynamics (Bhaskar & Simon, 1977), programming (Poison, 1981),

understanding electronic circuits (Brown, Collins, & Harris, 1978),

and recently, political science (Voss & Tyler, 1981).

Solving real-world problems presents new obstacles that were not

encountered previously in puzzle-like problems. Basically, the exact

operators to be used are usually not given, the goal state is

sometimes not well defined, and more importantly, search in a large

knowledge space becomes a serious problem. (The research on

artificial intelligence programs in chess, to be mentioned in the next

section, gives the flavor of this difficulty.) Solving real-world

problems with large knowledge bases also provides a glimpse of the

power of the human cognitive system to use a large knowledge system in

an efficient and automatic manner--in ways that minimize heuristic

search. In general, current studies of high levels of competence by

cognitive psychologists appear to support the recommendation that a

significant focus for understanding expertise is investigation of the

characteristics and influence of organized, hierarchical knowledge

structures that are acquired over years of learning and experience.

Artificial Intelligence

The goal of artifical intelligence (AI) research is to make a

machine act intelligently. In this area, the problem of understanding

intelligence has become increasingly focused on the large itrt ture of

domain-specific knowledge that is ,haracteristic of experts. This is

A,
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in contrast to the early years of the field, when the creation of

intelligent programs was identified with finding pure"

problem-solving techniques to guide a search, for any problem, tLhrough

the problem space to a solution, as in the General Problem Solver

(Newell, Shaw, & Simon, 1960). The techniques elucidated, such as

means-end analysis, are clearly part of the picture, but it was

apparent early on that in realistically complex domains, such

techniques must engage a highly organized structure of specific

knowledge. This shift in Al is characterized by Minsky and Papert

(1974) as a change from a power-based strategy for achieving

intelligence to a knowledge-based emphasis. They write as follows:

The Power strategy seeks a generalized increase in

computational power. It may look toward new kinds of

computers ("parallel" or "fuzzy" or "associative" or

whatever) or it may look toward extensions of deductive

generality, or information retrieval, or search

algorithms .... In each case the improvement sought is

intended to be "uniform'--independent of the particular datza

base.

The Knowledge strategy sees progress as coming from2

better ways to express, recognize, and use diverse and

particular forms of knowledge. This theory sees the problem

as epistemological rather than as a matter of computational

power or mathematical generality. It supposes, for example,

that when a scientist solves a new problem, he engages 3

highly organized structure of especially appropriate facts,



LL.L

Ic.

CL- -

z
P

oo

R.
114%

C.
cc LN Y)

U, LI-



PAGE 10

models, analogies, planning mechanisms, self-discipline

procedures, etc. To be sure, he also engages "general"

problem-solving schemata but it is by no means obvious that

very smart people are that way directly because of the

superior power of their general methods--as compared with

average people. Indirectly, perhaps, but that is another

matter: A very intelligent person might be thaL way because

of specific local features of his knowledge-organizing

knowledge rather than because of global qualities of his

"thinking" which, except for the effects of his self-applied

knowledge, might be little different from a child's.

(p. 59).

We can now elaborate on this transition in Al research from

building programs that emphasized heuristic search to knowledge-based

programs, using chess programs as examples. The chess problem space

can be pictured as a game tree. Figure 1 shows a very simple example

of such a tree. Each node represents a possible position (of all the

pieces) during a game and each link leading from a node represents a

possible move. At first glance, the problem might seem fairly simple:

Start at the top of the tree and find a set of paths that force the

opponent into checkmate. However, as Shannon (1950) pointed out, at

any given point a player has on the order of 30 legal moves available,

so the number of nodes at successive levels of the tree increases

dramatically. In an entire game, each player makes an average of '0

moves (giving the tree 30 levels) and the number of possible paths to

I 20the bottom of the tree total about 10 . ven the fastest zomputer
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could not search such a tree exhaustively, so intelligent choices must

be made to severely limit the exploration. There are two basic

limitations that can be applied: limiting the number of moves

considered from each node (width of search) and limiting the number of

successive moves that will be considered on each path (depth of

search). Both of these methods require some chess knowledge to be

used if they are to be applied successfully. In the case of depth of

search, since positions reached are not final (won or lost), they must

be evaluated to determine if they are advantageous or not. In

addition, simply cutting off the search at a specified depth can cause

problems (for example, the cut off may be in the middle of an exchange

of pieces), so some analysis is required to determine if the search

should be deepened.

Full-Width Search

Two general search-based approaches have been followed in

attempts to create chess playing programs: full-width (brute force)

search and selective search. Both limit the depth of search. 7n a

full-width program, as the name implies, the width of search is not

limited at all. To date, a modification of this approach has been the

most successful. It uses a mathematical algorithm which eliminates

from consideration noves by the opponent which are worse than the lest

move already found (based on the evaluation of the positions to which

they lead) since it must be assumed that he will make his best

possible move. The current (1980) world computer chess champion.

BELLE by Thompson and Condon at Bell Labs, and the former champion,
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CHESS 4.6 by Slate and Atkin at Northwestern, are both of this type.

These programs, and others like them, make use of a computer's speed

and memory to do vast amounts of searching, and have a bare minimum of

chess knowledge. Although these programs can now beat practically all

human players, they cannot beat the top ranked experts (grandmasters).

Estimates of 10 more years of work to reach this level are not

uncommon. The main reason for such slow progress is probably the

explosive branching of the game tree. Each level contains about 30

times as many nodes as the level above so a large increase in

computing power is needed for a very small increase in depth of

search.

Selective Search

Clearly, grandmasters do not play better chess because they

outsearch a computer. The limited size of short-term memory and the

amount of time required to fixate items in long-term memory limit

humans to very tiny tree searches. In fact, de Groot (1965) and

Newell and Simon (1972) have shown through protocol analysis :hat

expert players tend to choose good moves without any search at all and

then conduct a limited search to test their choices. This approach is

an example of the second programming method--selective search. The

Greenblatt (1967) program, the first to mnake a respectable showing in

human tournament competition, provide-, in example of how this -approach

has been implemented. His program selects moves for consideration in

the basis of "plausbility." It first generates all of the legal moves

available from the present position. A plausibility score is -hen
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calculated for each move on the basis of a subset of 50 heuristics

(not all are applicable to a given situation). These heuristics are

-eply "rules of thumb" for selecting a good move, taken from chess

lore, which have bepin roughly quantified to allow a numerical score to

be calculated. The moves are then ranked in order of decreasingN

plausibility and only the first few are considered. In addition, all

of the continuations used to evaluate a move are generated in the same

way. Since only a handful of the possible moves is considered at each

node, the game tree is significantly reduced in size. The size of the

search must be reduced still further, however, so the mathenatical

algorithm mentioned before is used to "prune" more branches from the

tree and the depth of search is also limited.

Although expert players do choose a few plausible moves for

consideration, they do not do it through computation and evaluation as

does the Greenblatt program. Rather, they respond intuitively to

patterns on the board. As mentioned earlier, de Groot (1965) has

shown that grandmasters can reproduce complicated positions almost

exactly after seeing them for only five seconds. Apparently, the

years of practice necessary to become a chess expert result in a very

large knowledge base of patterns of pieces and probably patterns of

moves as well. When an expert looks at the board and "sees" good

moves, he is engaging in pattern recognition. Thus, an obvious

direction for chess program design is to build production systems that

can recognize and respond as human players do (Simon, 1976).
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Knowledge-Based Chess

There is more to human play than just recognizing a possible next

move, however. The moves of a good player advance toward some goal;

they fit into a plan that looks at least a few moves ahead. An early

attempt to give chess programs simple goals is the Newell, Shaw, and

Simon program (1958). It has a series of independent goal modules.

Each module can recognize appropriate situations on the board and

generate moves with specific purposes, such as king safety, center

control, etc. The purpose of these goals, however, is only to select

a few reasonable candidates for the next move in order to limit the

search tree; there is no overall plan.

A program called PARADISE, written by Wilkins (1980), contains

the factors we have discussed that seem to give expert chess players

an edge over even the best search programs. It uses an extensive

knowledge of chess board patterns, embodied in production rules, to

establish goals, which are then elaborated into more concrete plans.

Search is used only to check the validity of the plans.

PARADISE does not play an entire game; it plays "tactically

sharp" positions from the middle game. Tactically sharp simply means

that success can be achieved by winning material from the opponent--a

common situation in chess. The knowledge base consists of some 200 I
production rules; each has a general pattern of relationships among

pieces as its condition. Most of these rules are organized around

general higher level concepts necessary for effective play, such as

looking for a THREAT to the opponent's pieces, looking for a way to

make a square SAFE to move a piece to it, trying to DECOY 3n opponent
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piece out of the way, etc. The effect of applying the production

rules to a given position is to suggest a plan or plans with the

overall goal of winning material. A given plan may include calls back

to the knowledge base to produce plans to accomplish subgoals of the

original plan (if such a subplan cannot be found, then the overall

plan is scrapped). Plans are thus hierarchically expanded until they

are ready for use. Each plan contains an initial move plus a series

of alternative future moves depending on the types of replies by the

opponent. Each plan also contains information about why the knowledge

base produced it in the first place. The plan and its associated

information are then used to gulfiie a very small tree search to

determine if the plan is feasible.

Productions in the knowledge base are used to generate the

defensive moves used in the search. Calls for additional planning and

analysis to expaud the original plan can also be generated by the

search. The depth of search is not artificially limited in this

program; instead, analyses are conducted (using the knowledge base)

at the ends of lines suggested by the plans to determine if

termination of the search is proper. Since the plans limit the number

of alternatives considered at each node to only a few, the search can

go much deeper than in other programs. Since all of the analysis,

planning, and searching is guided by the knowledge base, altering or

improving the play of PARADISE consists of simply modifying or adding

individual production rules. Such a system Seems LO have great

potential for playing expert chess, if the requisite knowledge can be
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determined and coded into the knowledge base, or if a self-learning

system can be designed to modify its own base.

In sum, the example of chess programs illustrates the general

tendency in AI toward knowledge-based programming. Even though

computers have great advantages over humans in speed and memory,

knowledge provides an edge which, it seems, pure power can only

overcome at great cost, if at all.

PHYSICS PROBLEM SOLVING AND EXPERTISE

In this section, we review what is known about how physics

problems are solved; and in particular, how expert physicists solve

them as compared to novices. The first section reviews the available

empirical evidence, and the second section reviews the resulting

theoretical models simulating the way experts and novices solve

physics problems.

Empirical Findings

In the relatively small amount of work done in this area, there

are basically three types of empirical investigation. One is

examination of the knowledge structures ]f physics concepts.

Shavelson (1974, also Shavelson & Stanton, 1975) for instance, has

investigated methods cor determining this "'cognitive structure." He

delineates three methods that may be used singly or in conjunction:

word association, card sorting, and graph building. Of the three,

word association is the most venerable and widely used. Using this

method, Shavelson (1974) has shown that students' physics concepts

. 60 000o.n
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become more interrelated and that their cognitive structures become

more like the course. "content Structure" (as determined by a

structural analysis of the instructional materials) at the end of the

course than at the beginning. Thro (1978) has found similar results

using the instructors' cognitive structure as the content structure.

A second type of empirical research is investigation of subjects'

prior conception of the physical world, with a view toward how that

preconception might affect one's learning of physics. For example,

McCloskey, Caramazza, & Green (1980), have shown that a sizable number

of students who have had no physics courses, as well as some who have

had one or more college courses, believe that an object once set in

curvilinear motion (through a spiral tube, for instance) will- maintain

that motion in the absence of any further external forces. Also,

Champagne and Klopfer (1980) have constructed the Demonstration,

Observation, and Explanation of Motion Test (D.O.E) to test students'

ideas of motion due to gravity. They have found, similarly, that a

sizable number of students entering a college mechanics course have

erroneous ideas about motion (and that students who had taken high

school physics did no better than those who had not). They also

found, however, that results on the D.O.E. 31one were of little

predictive value in determining success in the mechanics courses.

The third type of empirical evidence relates specifically to

problem solving and is usually gathered in the context of solution

protocols. Careful analyses of protocols have indicated significant

Jifferences between the expert and novice. The only obvious

similarities between then are in the macroprocesses they use in
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solving physics problems. According to Simon and Simon (1978), both

expert and novice proceed to solution by evoking the appropriate

physics equations, and then solving them. Their expert often did this

in one step, however, simply stating results without explicitly

mentioning the formula he was using, while the novice typically stated

the formula, put it into the appropriate form and substituted the

values of the variables in discrete steps. McDermott and Larkin

(1978) include another two -stages" prior to the evoking and

instantiating of equations, postulating that solution proceeds in at

least four episodes: the first "stage" is simply the written problem

statement. The second "stage" involves drawing a sketch of the

situation, while the third is a "qualitative analysis"' of the problem

which results in a representation containing abstract physics

entities. Generating the equations is the fourth stage. According to

Larkin (1980) experts seem to perform all four processes, whereas the

novice may skip the "qualitative analysis" stage. Beyond this gross

similarity lies much more subtle and salient differences between the

expert and riovice protocols. These are elaborated below.

Quantitative Differences

There are three major differences between the novice and the

expert physicist that are easily quantifiable. The most obvious one

is time to solution. The speed with which a problem can be solved

depends a great deal on the skill of the individual. Simon and Simon

(1978) noted a 4 to I difference between their expert and novice.

Larkin (1981) also reported a similar difference between her experts
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and novices. This difference is not unlike the speed difference found

in chess-playing ability of the master versus beginner. This is to be

expected if we postulate that experts in general are more efficient at

searching their solution space.

Related to time to solution is another quantifiable

difference--the pause times between retrieving successive equations or

chunks of equations. Larkin (1979) has claimed that a number of

physics equations are retrieved by the experts in succession, with

very small interresponse intervals, followed by a longer pause. Her

novice did not seem to exhibit this pattern of pause times in equation

retrieval. This is interpreted to suggest that experts group their

equations in chunks, so that the eliciting of one equation perhaps

activates another related equation, so that it can be retrieved

faster. (There is also some evidence that the chunk is associated V
with a "fundamental principle" of physics, such as Newton's Second

Law, or Conservation of Energy.) Additional evidence for the rapidity

of equation retrieval by the experts was demonstrated by Larkin (1981)

when she found that experts were four times faster than the novices in

accessing and applying equations during problem solving. This

suggests to Larkin (1979) that for the experts, physics equations are

stored in chunks or related configurations, so that accessing one

principle leads to accessing another principle. This result is

appealing because it is reminiscent of the chess results, where chess

pieces were found to be chunked when the interpiece pause times during

recall of a chess position were examined.
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Another interesting aspect of novice problem solving is not only

that they commit more errors than experts, but that even when they do

solve a physics problem correctly, their approach is quite different.

It is this difference that we want to understand, as well as why they

commit errors. Likewise, it is also interesting to understand the

circumstances under which experts make errors.

Qualitative Differences

Qualitative differences between an expert and novice problem

solver are harder to define operationally, especially in empirical

studies. However, it is the qualitative differences that distinguish

expertise most noticeably. One prominent yet elusive difference

between the expert and novice is that expert physicists, as noted

before, seem to apply a 'qualitative analysis" (Larkin, 1977a;

Larkin, 1980; McDermott & Larkin, 1978) or "physical intuition"

(Simon & Simon, 1978) to the problem, prior to the ictual retrieval of

physics equations. There are several possible interpretations of what

constitutes "qualitative analysis." One interpretation is that

'qualitative analysis," occurring usually in the beginning phase of

problem solving, Is the construction of a physical representation,

that is, a representation that has some external, :oncrete physical

referents. This ability to represent the problem physizally in terms

of real-world mechanisms was first noted over a decade igo, although

not in the context of the expert-novice distinction. Paige and Simon

(1966) observed that when ilgebra word problems that :-orresponded to
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physically unrealizable situations were presented to subjects, a few

of them immediately perceived the "incongruity" in the problem,

whereas others proceeded to evoke equations before realizing that the

solution was meaningless (such as a negative quantity for the length

of a board). The former solvers apparently imagined the physical

referents of the objects mentioned.

In physics problem solving, the construction of a physical

representation may be helpful, or even necessary, for several reasons.

First, Simon and Simon (1978) suggested that physical representation

provides a basis for generating the physics equations. Second,

physical representation provides a situation that can be used to check

one's errors (Larkin, 1977a; Simon & Simon, 1978). Third, the

physical representation provides a concise and global description of

the problem and its important features. And finally, we conjecture

that the physical representation permits direct inferences to be drawn

about certpin features and their relations that are not explicit in

the problem statement. but can be deduced once a representation is

construc ted.

However, there is also reason to think that what occurs during

qualitative analysis" is zaore than the construction of a physical

representatioai, since the often complex physical configuration and

intuition deriving from what happens in a physical sizuation, may not

necessarily lead to correct inferences. As the aforementioned work of

Champagne and Klopfer (1980) and McCloskey et il. (1980) have

indicated, naive problem solvers must not always rely on their

physical intuition for constructing a representation. However, since
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it is predominantly the experts who construct an elaborate

representation, we postulate that this representation need not

correspond directly to a physical representation, but may be more

abstract.

A second qualitative difference between the expert and the

novice, observed by Simon and Simon (1978), is in the number of

metastatements." "Metastatements ' are comments made by the subjects

about the problem-solving processes. On the average, their expert

made only one metacomment per problem, whereas the novice made an

average of five metacomments per problem. They were usually

observations of errors made, comments on the physical meaning of an

equation, statements of plans and intentions, self-evaluation, and so

on.

There are several possible explanations for why their expert made

fewer metacomments. First, he might be better at recognizing the

correctness of a solution, so that he need not voice any

uncertainties, etc. Secondly, their expert may have multiple ways to

solve a problem (Simon & Simon, 1978), so that he can easily

doublecheck his solution. Finally, the expert might have a

well-structured representation of the problem to check his results

against.

Another blatant qualitative difference between the solution

processes of experts and novices lies in their solution paths

(sequence and order of equations generated) (Simon & Simon, 1978).

The important distinction between the expert and the novice is that

the expert uses a working forward" strategy, whereas ,he novice uses
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a "working backward" strategy. The expert's strategy is simply to

work from the variables given in the problem, successively generating

the equations that can be solved from the given information. The

novice, on the other hand, starts with an equation containing the

unknown of the problem. If it contains a variable that is not among

the givens, then the novice selects another equation to solve for it,

and so on. (These processes and models based on them will be

explained more fully later.)

This interpretation of the novice's performance initially seems

counter-intuitive; that is, the novice's strategy appears to be more

goal oriented and sophisticated. One interpretation of this

difference is that the expert knows that he can achieve the goal

simply by direct calculations of the unknowns from the givens.

Another intepretation is that experts do not require complex planning

for simple problems. They probably have existing routines or

production systems that they can apply directly to the problems. This

simple forward-working strategy of the expert does change, however, to

a very sophisticated means-ends analysis of the goals and planning

when the problems become harder (Larkin, 1977b).

A puzzling question concerning the difference between the two

strategies is how people change from one to the other. Why is it that

the expert can develop a more efficient system? One possibile answer

is that over the years, the expert has built up and stired several

fundamental sets of subroutines which can solve several types of basic

problems. In this case, solving a problem becomes a matter of

categorizing the problem into one or more problem types and applying

d
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the existing subroutines. As we shall describe later, this ability to

quickly categorize the problem is faciltitated by a powerful parsing

mechanism that translates key words in the problem statement--words

such as "at the moment," "catch-up," etc.-into problem types.

The second question is how can the expert construct a more

efficient subroutine, if one does not already exist for solving a

complex problem? We think that this facility lies in the rich

internal representation that the expert has generated, a

representation that permits %~any appropriate inferences to be drawn so

that the problem can be simplified and reduced.

In sum, the analysis of the qualitative aspect of protocol data

raises a number of important questions: Why is the initial

"qualitative analysis" of the problem important? What kind of

representation of a problem is constructed during this initial stage

of analysis? Why are the sequences of equations generated by experts

and novices different? What enables an expert to generate a sequence

of equations that is more efficient? The quantitative analysis of the

protocol data simply confirms a number of intuitions that we already

have, but cannot explain: experts commit fewer errors, they can solve

problems faster, and they seem to store related equations in closely

knit chunk structures. Moreover, none of these quantitative findings

provides any answers to the qualitative questions. Nor do they answer

our questions posed earlier, namely, why are novices less successful

at solving physics problems, and why are their procedures somewhat

different, even when they are succ ; l. Answering these questions

is the focus of our own experimental program, which is described in
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the latter part of this paper. These questions also drive current

research and theory; we now turn to considering the current state of

theory.

Theoretical Models of Physics Problem Solving

There has been a great deal mnore theoretical than empirical work

done on problem solving in physics. In this section, we will review

all those models that exist. They are of two types: psychological

models that explicitly attempt to simulate human performance and

artificial intelligence models which do not (although they may contain

components that are simiar to human peformance). Both types of modelI

are written in the form of computer programs.

Psychological Models

The majority of psychological models discussed here have several

things in common. First, the behaviors they simulate ire generally

think-aloud protocols gathered while a person solves a physics

problem. Second, except for one case, most of them solve mechanics

problems taken from a first course in physics. Although these

problems are straightforward, they are by no means simple. They do

require some thought and usually take at least two minutes to solve.

Third, the aspects of protocols that the models attemot to simulate

are generally the sequences of equations generated bv --he solver.

Hence, the qualitative aspects of the protocols (such is the initial

analysis of the problem, the metastatements, and so on) ire usually

ignored. Finally, the simulation usually takes the form of a
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production system.

To be more specific, the core of several of these models is a

symbol-driven process. The variables representing the knowns and

unknown(s) (the answer) in the problem are simply compared to the

variables appearing in the various formulas that the model has in its

possession. Two very simple selection criteria can be applied to

produce two different behaviors. On the one hand, a formula can be

selected in which all variables but one are knowns. That one unknown

variable can then be asserted to be known (tagged as solvable, without

any actual algebraic or arithmetic computation) and the process can be

repeated until the new known is the answer to the problem. This is a

working forward strategy typical of experts. On the other hand, a

formula can be selected because it contains the desired unknown. If

all the other variables in the formula are known then the problem is

solved. If not, the unknown variable (the models discussed here

generally discard a formula if it has two or more unknowns) becomes a

new desired variable and the process is repeated; this 4s the working

backward strategy characteristic of novices.

To make these two strategies more concrete, consider the

following very simple example: There are two formulas available, one

relating the variables a, b, and e and the other relating d, c, and e:

(1) e = f(a,b)

(2) d -f(c,e)

Suppose a problem is proposed such that a, b, and c are given (the

knowns) and d is the desired answer (the unknown). The forward

working method chooaes equation 1 first, since a and b 3re known,

t4
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allowing the calculation of e. Since c and e are now both known,

equation 2 can be selected and used to find d. By contrast, the

working backward method chooses equation 2 first since it involves the

desired unknown d. Since e is unknown, it becomes the intermediately

desired unknown, and equation 1 is then chosen. Equation 1 can now be

solved for e, which is substituted into equation 2 to find d.

Simon and Simon models. The first models to be discussed use the

two strategies described above--working forward and backward. In the

Simon and Simon (1978) models, the behaviors of two subjects, -ne

novice and one expert, working a series of kinematics problems

(describing motion in a straight line without any constderation for

the causes of that motion), are simulated by two very simple

production systems. The available formulas are represented in the

conditions of the procuctions as lists of the variables they contain.

The problem itself is presented as a list of the known and desired

variables it contains. As explained above, the expert productions

match the knowns in the problem with the independent variables in the

formulas, while the novice productions match the desired unknown

against the independent variable and the knowns against the dependent

variables. The productions are listed in different orders, reflecting

the fact that the two subjects sometimes used different formulas where

both strategies might be expected to choose the same one. These rwo

versions of the model simulate the equation selection behavior of the

subjects quite well.

In this theory, there is no need to postulate any differences in

the mechanism by which equations were produced; it is only necessary
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to specify a difference in the order in which they were generated.

Nor is skill difference attributable to trivial differences such as

the lack of certain formulas. Both the expert and novice systems

contain basically the same set of equations.

Knowledge development and means-ends models. Two related models

are described in Larkin, McDermott, Simon, and Simon (1980). One is

referred to as the Knowledge Development model, which simulates expert

behavior, and the other is the Meaas-Ends model, simulating novice

behavior. These models expand and improve on the Simon and Simon

models in several ways to reflect more accurately human information

processing capacities and the behavior of the subjects. Three

separate memories are present: Long-term memory (LM), working (short

term) memory (WM), and external memory (EM). LM consists of the

productions themselves, which contain the necessary physics and

procedural knowledge. WM is a small memory limited to about 20

elements and it is the contents of this memory that the condition

sides of the productions are matched against. EM represents the

pencil and paper used by a problem solver. The complete problem

sta,.Lent resides in this external memory and elements can be

periodically transferred back and forth between EM and WIM by the

actions of certain productions to simulate the changing focus of

attention of a problem solver and the process of recor~ing

intermediate results on paper.

The solution process begins with the problem statement 4n i zoded

form that specifies the objects involved, their attributes ind Points

of contact, instants and intervals of time and the desired un"Iznowri(s).



?AGE 29

(The complex problem of natural language understanding is

avoided.) Both models have productions that assign variables to the

necessary elements of the problem so that the appropriate formulas may

be selected. As before, the two basic selection strategies, forward

and backward, are employed but they are more elaborate to more closely

simulate behavior.

The differences between the current and the previous Simon and

Simon models are the most marked in the selection of a formula in the

Means-Ends novice model, because novices are observed to do this in

several discrete stages, first selecting a formula, then relating its

variables to items in the problem, and then using it. A formula is

originally selected for consideration if it merely contains a lesired

quantity. In cases where more than one formula contains the desired

quantity, selectors tailored to represent observed novice preferences

pick one. This model produces the same backward chain of equations as I

the earlier model. It then "solves" them by chaining forward, marking

each previously unknown variable as known until the originaliv iesired

variable becomes "known." (Neither of these models has iny ictual

algebraic manipulation ability.)

The Knowledge Development model is more similar to the previous

Simon and Simon expert model. This is because experts generally do

not exhibit the step by step behavior of stating an equation ind then

connecting it to variables in the problem. Thus, as before, the

selectors select a formula on the basis of the unknowns ind issert

that the dependent variable is now known in one step. This situation

can be viewed as a "collapsed" or over-Learned version of the ilovice
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model (this will become clearer shortly when other models are

discussed). The main new feature of the model is that when more than

one formula can be selected based on the knowns, information from the

problem is used to decide among them. For instance if a

(acceleration) and t (time) are knowns, then both x=J-2at2 and v-at

could be selected. If the problem contains an object falling or

rolling from rest, the first is selected; in all other instances the

second is selected, corresponding to the observed expert preferences.

It is in this sense that the knowledge about the problem is used.

In addition to the differences mentioned above, the Larkin et

al. (1980) models have the ability to solve more kinds of problems

than the previous ones, which were confined to kinematics. They solve

dynamics problems (describing the motion of a body by considering the

forces causing or influencing that motion), using two basic methods

for solving such problems, Forces and Energies, and because they

contain more than one solution method, they have an attention focusing

mechanism. If a model is solving a problem using Energies, it should

not try a Force equation halfway through the solution, nor should it

select an equation when it is not through writing a previous one. To

accomplish this focusing, goal elements are included in the conditions

of many of the productions. At the beginning of a solution process, a

goal is set (placed in WiM and EM) so that only productions reiat, d to

that goal can execute.

Able models. The Able models of Larkin (1981.) iddress a

different issue than strictly simultating the problem 3olving

processes. Instead, they attempt to simulate the learning processes,

A--
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that is, how a novice might become an expert. In the model's "naive"

state, it is called the Barely Able model, and after substantial

learning, it is called More Able. The learning process is modeled by

a mechanism for adding procedures that is generally used in adaptive

production systems (Waterman, 1975).

Barely Able starts with a list of equations that can be used in

the Forces or Energy methods, and operates with a general means-ends

strategy for applying them that is similar to the previous Means-Ends

model. The learning process itself is quite straightforward:

Whenever a production succeeds in applying an equation to derive a new

known value, it creates a new production that has the previous knowns

on the condition side and an assertion of the new known on the action

side. For example, if Barely Able solves the equation V=V0 + at for

a, then the new production will check to see if V0, V and t are known

and, if so, assert that a is known. Psychologically, this means that

the procedure for finding the right equation and solving for the

unknown becomes automated once the initial production has been

executed. Thus, as Able solves more and more problems, it looks more

and more like the Knowledge Development model mentioned earlier--it

becomes forward-working because all the backward-working steps become

automated.

There are two limitations to the Able model. The first is that

the learning takes place in one trial. This is psychologically

unrealistic and a more complicated learning function probably needs to

be built in which some aspects of learning take place faster than

others. The second limitation is that the model does not provide the
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capability to concatenate series of productions into one, (Neves &

Anderson, 1981). Such a mechanism would allow two or more formulas to

be combined into a single step, as experts are often observed to do.

Model PH632. A model labeled PH632 developed by McDermott and

Larkin (1978), has a somewhat different focus than those previously

described. Its purpose is to examine and model in a general way the

use of problem representations by an expert solver, but not to exhibit

a detailed psychological model of the process. It is, again, a

production system with external, working, and long term memories. The

condition sides of the productions can contain goal elements that keep

attention focused on the specific task at hand and that allow the

productions to be hierarchically organized.

A series of four representational stages of a problem is

postulated: verbal, naive, scientific, and mathematical (see also

Larkin, 1980). The model assumes that a problem solver progresses

through these stages as a problem is solved. However, the detailed

description of the model (McDermott & Larkin, 1978) starts with the

naive representation. The naive representation is a sketch depicting

the components of the problem and their relationships, and is4

implemented as a data structure that encodes this information. The

scientific representation contains abstract physics concepts such as

forces, momenta and energies (which must generally be inferred by the

problem solver) and is usually depicted as a free-body diagram. The

mathematical representation! consists of the equations relating the

variables in the problem that must be solved to produce the final

answer.

li01
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Once PH1632 has a naive representation, it tries one of the two

solution methods menticned earlier--Forces and Energies. If both are

adequate, the one chosen nay simply be the first one tried. Once a

particular method is chosen, its productions give the model the abiity

to scan the sketch qualitatively to determine where the objects and

systems of interest are, whether they are f~miliar or unfamiliar, and

how they are related. If a system is familiar (such as a hanging

block), PH1632 can use its knowledge to build a production describing

it. If the system is unfamiliar, an extended analysis is conducted to

produce an encoded version of a free-body diagam. This difference in

representation corresponds to an expert's tendency not to draw an

explicit free-body diagram of a familiar system. The model makes

qualitative checks as it proceeds to determine whether its

representation seems correct and whether Its approach is working. For

instance, in a statics problem (one with no motion), it checks to make

sure all of the forces are balanced by at least one opposing force.

It can also test whether all of the entities generated in the

scientific representation, such as forces, can be related to the

quantities given in the problem statement so the equations can be

generated.

Once assurance is gained that the model is on the right track, it

can write the equations for the mathematical representation. Because

ill of the forces have already been located and resolved into

components in construction of the scientific representation, this step

is relatively simple. Unlike the previous models, PH-632 can perforn
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the algebraic and arithmetic operations necessary to produce the

answer.

Atwood. Larkin's (1980) latest program, Atwood, concentrates on

the verbal representation stage, an area generally ignored by the

previous models. Considering the difficulties and complexities

encountered by Al researchers in building language understanders,

Atwood accomplishes its task in a surprisingly simple and

straightforward way. Because mechanics problems in general contain a

rather small set of basic objects, attributes, and relationships, it

can simply ignore most of the words in a typical problem statement and

concentrate on the key words.

Basically, Atwood contains a set of schemas that tell it what

words to attend to and what situations those words may indicate.

Thus, it knows that the word "rod" is important and that there should

be one and only one length associated with it. "Pulley" is another

keyword and Atwood's schema tells it that there will be a rope passed

over this object and that the rope should have objects connected to

each end.

Using some rudimentary knowledge of English syntax, Atwood

processes the problem statement word by word, creating nodes for each

physics object it recognizes and connecting these nodes into a

semantic net with the help of the knowledge of- their legal

relationships contained in the schemas. When tested on a set of 22 of

the problems collected by Chi, Feltovich, and Glaser (in press),

Atwood was able to build correct nets for 15 of then, while ignoring

roughly two-third of the words they contain.
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Summary and discussion of the psychological models. The

psychological models so far developed, focus their attention on the

different approaches that experts and novices take in terms of the

sequence of equations they generate--forward working versus backward

working. In these models, it is assumed that experts are forward

working because their initial backward solution procedure becomes

automated with learning. The question of initial problem

representation is generally avoided in these models, perhaps primarily

because it is difficult to obtain empirical information on this

process solely through the usual forms of protocol analysis. As we

shall describe later, other techniques are required for this purpose.

An alternative theoretical framework is to suggest that novices

are data driven. They treat the unknown and known variables as

literal symbols and plug them into equations in their repertoire.

Experts, on the other hand, are schema driven ir; the sense that their

representation of a probem accesses a repertoire of solution methods.

Hence, for the expert, solving a problem begins with the

identification of the right solution schema, and then the exact

solution procedure involves instantiation of the relevant pieces of

information as specified in the schema. This is particularly likely

because mechanics problems are overlearned for the experts, especially

experts who have spent a great deal of their time teaching. Another

interpretation is to postulate that novices also solve pi )blems in a-

schema-driven way, except that their schemas of problem types are more

incomplete, incoherant, and at a level hierarchically lower than those

possessed by the experts. In our opinion, the development )f



PAGE 36

psychological models should proceed in this particular direction,

building knowledge structures in the forms of schemas, in order to

capture the problem-solving processes of experts and novices. Some

empirical evidence for the validity of this interpretation will be

presented later.

Artificial Intelligence (AI) Models

Al programs, unlike those previously discussed, are not

specifically intended to model observed behavior or to take into

account theories of human cognitive architecture. Their general aim

is to successfully solve physics problems by any means possible.

However, they do contain elements that are very similar to both human

behavior and the previous psychological models.

One of the main issues addressed by the AI models is

representation--how to represent the knowledge tl,-- program needs to

form a representation of the problem and solve it. Indeed, the

current recognition in psychology of the importance of representation

probably derives from the early recognition of its importance in AI

and computer science in general. The question of how physics

knowledge is represented is a major research problem, as the

rudimentary state of such representations in the psychological models

indicates.

The first phase of a problem solution is reading 3nd

understanding (or translating) the verbal problem statement. Much

work has been done on the general problem of natural language

understanding in Al and two of the programs to be desribed put

A
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considerable emphasis on this stage. Both are more detailed and

complex than the simple Atwood (Larkin, 1980) translator, since they

aim for a complete translation utilizing all of the information in Lhle

problem statement. Thus, both use esoteric translation processes and

have extensive knowledge bases of syntactic and semantic information,

including specific physics knowledge in a well-organized form to il low

a correct physical interpretation of a problem. Once translation is

complete, some kind of language-free, internal computer model of the

problem exists, which can be compared to a naive representation.

Issac. Issac by Gordon Novak (1977) is a program that can read

the problem statement. It does this for statics problems only. The

key feature of interest is the representation of objects as idealized

physics entities. For instance, in a problem that has a person

standing on a ladder, the properties that are important to the

solution are his mass and location on the ladder. He can therefore be

represented as a "point mass." But if he is holding up one end of the

ladder, only the point on the ladder he is holding is important and he

becomes a "pivot."~ This idealization is accomplished in Essac by using

Canonical Object Frames (schemas) from the knowledge base. Each one

contains the knowledge necessary to abstract the proper

characteristics from the "real life" object and to use the idealized

object properly in the solution of the problem. This idealization

process corresponds only partially to the formation of scientific

representation because no attempt is made to represent or analyze

qualitatively the other essential physics entities in a statics

problem--the forces. Instead, all possible balance-of-,orces
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equations are written at each point of contact between objects,

resulting in many more equations than are actually needed for 3

solution. This illustrates the problems that can arise if the

representation of a problem does not generate an efficient solution.

Newton. Newton by Johann de Kleer (1977) does not have any

language translation facility. It solves roller coaster problems

(blocks sliding on curved surfaces), and they are best represented is

a picture of the track, which is provided in a symbolic form. The key

feature of this program is a process of qualitative analysis referred

to as envisionment. Newton envisions, as a human solver might, what

might happen to the sliding block based only on the general shDe of

the track. Thus, on an upslope the block might slow down and slide

back down or continue up. At the crest of a hill, the block might be

traveling so fast that it flies off into space or it might slide down

the other side. Using a series of production rules that codify such

qualitative knowledge, Newton builds a tree of possible paths of the

block that guides further processing of the problem. Some simple

problems may be solved using only this qualitative reasoning. If this

is not possible, then schemas are used that contain knowledge and

formulas necessary to analyze each node of the tree (section of the

track) mathematically. In cases where the value of a particular

variable is needed for the answer, the familiar neans-ends process is

used to choose the proper formulas to apply.

Mecho. Another language translator is Mecho by Bundy, Bvrd,

Luger, Mellish, & Palmer (1979). This program solves problems from

kinematics and those with pulleys. It has also been extended KBundv,
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1978; Byrd & Borning, 1980) without translation tn solve problems in

statics and roller coasters in an attempt to make the problem-solving

part as general as possible by encompassing the work of others (e.g.,

de Kleer, 1977; Larkin & McDermott, 1978; Novak, 1977). The salient

feature of this program and, perhaps, the key to its extendability, is

a two-level knowledge organization. On the object (lower) level is

the physics knowledge, organized as rules and schemas and the problem

itself. The problem passes through several stages of representation

on the way to a solution. For example, the natural language

translation feature produces a symbolic representation specifying the

objects in the problem and their properties. Where necessary, schemas

describing important objects, such as a pulley, are cued in from the

knowledge base. Thus, this initial internal representation might be

viewed as naive with elements of a scientific representation. The

next general step is to produce the mathematical representation, which

can then be solved algebraically. This is not a simple step however.

The meta-(upper)level of the knowledge base contains all of the

procedural knowledge necessary for the entire solution process,

organized as a set of rules and schemas. It includes rules for

interpreting the object level knowledge for use at each step of the

process, for making inferences when needed information is not

explicitly stated, for deciding upon a general solution strategy, 3r

selecting equations (means-ends strategy again), etc. Athough i

complete scientific representation is not explicitly formed, -he

planning and inferencing powers of the ieta-level implicitly use he

elements of such a representation to plan the solution before
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equations are actually generated. Thus, in a statics problem, for

instance, the planning process eliminates the problem of excess

numbers of equations experienced by Issac.

The organization of procedural knowledge into explicit modular

form is what is most interesting psychologically about Mecho. Quite

often, such knowledge is buried in the structure of a program and the

assumptions that went into writing it, making changes difficult and

modeling of procedural learning impossible. This two-level

organization also allows the declarative knowledge to be present in

only one form, which can be interpreted by the meta-level for use at

each step of the solution process. By contrast, both Issac and Newton

contain separate representations of the same physics knowledge for

each step. In a sense, Mecho can learn (though not on its own) and

has learned to solve new problems in a fairly realistic way

psychologically because all that is necessary is to give it other new

pieces of procedural and declarative knowledge.

Summary. Although as noted, the purpose of these AI programs is

not to model human behavior, it is clear that they contain many

psychologically important features and ideas. The question of

representation of the problem and the knowledge base is common to both

fields and the proposed solutions--stages of representation, rules,

schemas, (often called frames in AI)--are generally similar. However,

since AI is not limited by empirical knowledge of behaviors, these

programs can venture into areas where psychological model builders

have more difficulty simulating, such as natural language translation,

qualitative analysis (e.g., envisionment), planning and inferencing



PAGE 41

processes, and the actual specification of knowledge or~ganization.

The importance of these items to the success of AI progams emphasizes

the need for much more work to determine empirically how they occur in

humans.

EMPIRICAL STUDIES TOWARD A THEORY OF EXPERTISE

The objective of the series of investigations that we have

carried out is to construct a theory of expertise based upon empirical

description of expert problem-solving abilities in complex knowledge

domains. In this case, the knowledge domain is physics, In

particular, mechanics. There are basically three questions that guide

oui* efforts. First, how does task performance differ between experts

and the novices? This question has been partially answered in the

review of empir~ical evidence on physics problem solving. To

recapitulate, the basic differences found thus far are: (a) the two

groups use different strategies for solving problems, forward qersus

backward; (b) they seem to have different chunking of equations; (c)

in an initial phase of problem solving, experts tend to carry out a

..qualitative analysis" of the problem; and (d) experts are faster at

solving problems. One of our goals is to describe more extensively

these differences between experts and novices.

The second question asks: H{ow are the knowledge bases 3f skilled

and less skilled individuals differently structured? It is clear that

the skilled individual possesses more knowledge, but liow is that

knowledge organized? Again, some research has already addressed this

issue. Simon and Simon (1978) initially postulated a 14."erence in
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the knowledge base in terms of the conditions of the productions.

Larkin (1979) has postulated a difference in the way equations are

stored. Experts store them in relation to a high level principle, but

this this does not seem to be the case for the novices. In our work

and in Larkin's model Atwood (1980), knowledge is postulated to be

organized in the forms of schemas.

The third question guiding our work is: 'How does the

organization of the knowledge base contribute to the performance

observed in experts and novices? The relation between the structure

of the knowledge base and solution processes must be mediated through

the quality of the representation of the problem.

A problem representation, as we stated in Chi, Feltovich, and

Glaser (in press) "is a cognitive structurc corresponding to a

problem, which is constructed by a solver on the basis of his

domain-related knowledge and its organization." We adopt Greeno's

(Riley, Greeno, & Heller, 1981) notion of a representation, which

takes "the form of a semantic network structure, consisting of

elements and relations between these elements" (p. 23). Hence, we

hypothesize that at the initia" stage of problem analysis, the problem

solver attempts to "understand" the problem (Greeno, 1977), i.e.,

constructing a representational network containing elements specifying

the initial state of the problem, the desired goal, the legal problem

solving operators, and their relational structures. From such a

structure, new inferences can be deduced. Hence, the quality,

completeness, and coherence of an internai representation must

necessarily determine the extent and accuracy of derived inferences,
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which in turn may determine the ease of arriving at a solution and its

accuracy. Therefore, the quality of a problem representation is

determined not only by the knowledge that is available to the solver,

but the particular way the knowledge is organized. One way to capture

empirically the difference between the representation of the expert

and that of the novice has been the amount of "qualitative analysis'

occurring in the beginning of the problem solving processes.

Because of its apparent overriding influence on problem solution

(Hayes & Simon, 1976; Newell & Simon, 1972), we have focused our

studies mainly on the representation of a. problem. We employ methods

of tapping knowledge in ways other than the analyses of problem

solving protocols, since as we will see shortly, the analyses of

protocols often provide limited information. However, the first study

we describe examines the protocols of problem solving, to see what

kind of information they do provide, as well as to see in what ways

they provide a limited glimpse into the knowledge structure. The next

set of studies looks at the categorization behavior of problem

solvers; the third set of studies looks at the knowledge available to

individuals of different skill levels; and finally, the fourth set of

studies examines the features in a problem statement that might elicit

the categorization processes--or to put it another way, what is

considered to be the relevant features of a problem by experts and

novices.
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Study One: Protocols of Problem Solving

In this first study, we attempted to characterize and contrast,

both quantitatively and qualitatively, the problem solving processes

of experts and novices, beginning with the reading of the problem,

through to the checking of the solution. To do so, the problem

solving protocols of two experts and two novices solving five mechanic

problems were examined. This study was initiated and carried out by

Joan Fogarty. The specific goals were twofold: First, we wanted to

describe some quantitative parameters of expert and novice

problem-solving processes, and compare these data with those existing

in the literature; second, we wanted to contrast some qualitative

differences between experts and novices, particularly focusing on the

qualitative aspects of the analyses of the problem.

The five mechanics problems used in this study were taken from

Chapter 5 of Halliday and Resnick (1974). The expert subjects for

this study were two professors of physics who had considerable

experience teaching introductory physics. The novices were two

freshmen physics majors (A students), who had just completed a term or

undergraduate physics, using Halliday and Resnick (1974) as the

textbook, in which mechanics problems of the type used in this study

were taught. Each subject was presented with written problems, one at

a time, and was instructed to "think aloud" while he solved Thie

problems.
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Quantitative Results and Discussion

A variety of quantitative measures can be obtained from pbtocol

data. These are elaborated below.

Errors. The experts on the average, made 1 out of 5 posible

errors, whereas the novices made three out of five errors. (See Table

I. Errors are marked by parentheses around the solution time. If

only a part of a problem is incorrect, then that part is indicated by

a subscript.) As anticipated, experts made fewer errors than novices.

The fact that one of the experts made two errors suggests that these

problems are nontrivial. On the other hand, these are problems that 3

competent novice (A student)" can solve. Novice K.W., for example,

solved 4.5 out of the 5 problems correctly.

Solution timds. Solution times were determined by timing the

length of tha protocols. Looking only at the correct solution times

for the entire problem (see Table 1), the mean solution time for the

experts averaged about 8.96 minutes, whereas the average correct

solution time for the novices was 4.16 minutes. The magnitude if Dur

solution time for problem solving protocols is much longer than those

obtained by Simon and Simon (1978). Their problems were selected from

a high school physics text and were limited to kinematics; such

problems can be solved mainly through ilgebraic manipulation. 9ur 1.
problems were more complex; they were :hosen from a college physicjs

text and involved dynamics, which requires that forces be explicitly

taken into account. Applying The Force Law requires some physical

inferences to be made before equations -an be brought into play.

A_1
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The novices in this study actually solved problems faster than

the experts. However, this seems to be an artifact of the great

number of errors made by Novice C.H. That is, Novice C.H.'s only

correct solution was problem 1, which in fact, took him longer than

the rest of the subjects to solve. But, because problem I. happens to

be a short problem, and since that was the only problem he solved

correctly, his average latency was reduced, because it was determined

by the speed of solving that particular problem. Novice K.-J.'s.

solution times, on the other hand, are actually comparable (averaging

7.01 minutes) to the experts' (averaging 8.96 minutes).

The only obvious outlier in solution time occurs in problem 2,

where Expert R.E. took significantly longer than Novice K.W.

Examining the protocols in detail, we see that Expert R.E. in this

case sought and calculated a value unnecessarily. When he discovered

that the problem was really much simpler than he thought, the actual

protocol for the short solution took only about 1.33 minutes.

Hence, barring unusual circumstances, competent novices not 3nly

can solve these problems, but they can do so in approximately the same

amount of time as experts. However, if the task had emphasized speed,

the experts probably could have solved the problems much faster than

the novices. 74e suggest, however, that protocol data are not a

particularly viable way to assess the speed of problem solving.

Number of quantitative relations. Another quantitative par3meter

that may shed some light on skill differences between experts and

novices is the number of quantitative relations generated 'nv the

subjects as they solve problems. Tab!,?e also shows the total -nmber
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of quantitative relations generated by each subject for each problem.

A quantitative relation is defined as any mathematical relation among

physical entities, and it generally takes the form of an equation.

Excluded were algebraic manipulations of already generated equations,

and instantiations of equations (i.e., substituting values for the

variables). In general, there appear to be no systematic differences

in the number of quantitative equations generated as a ffunction of

skill. There was greater variability in the number of equations

generated by a given subject for the different problems, than between

subjects on the same problem.

"Chunks' of equations. As stated earlier, Larkin (1979) has

hypothesized that experts store physics equations in tightly connected

~chunks," whereas novices store them individually. To test the

"chunking"~ hypothesis, Larkin (1979) measured the times during the

problem solving process when quantitative relations were generated.

Her results showed that the expert generated a great mnany pairs of

equations with short pauses between the equations, whereas her novice

generated fewer equations with shorter pauses.

Using the same analysis, we also examined the distribution of

generated equations over time. For each subject, the time interval

between the generation of each pair of quantitative relations was

calculated for each problem. Our data do not discriminate between the

generation pattern of experts and novices. If anything, the results

indicated that the opposite was true. That is, the novices seemed to

have generated a greater number of relations in close succession.
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There are substantial individual differences, however. Novice

Cd-I. showed the strongest degree of "chunking," or generated the

largest number of quantitative relations in rapid "bursts." How do we

account for the discrepancy between our results and Larkin's? One

interpretation is to hypothesize that a burst of equation generation

may be an artifact of various problem solving strategies that subjects

may adopt. Our novice subjects, for example, reported that when they

get stuck on a problem, they generate as many related equations as

they c . think of on paper. They then look at the equations they have

generated to get some hints about how to proceed. This would produce

clusters of equations.

Another strategy, reflecting the style of solution processes of

individual subjects, relates to the way equations are generated, that

is, often all at the same time. Novice C.l., for example, would spend

a considerable amount of time generating equations. This pattern of

solution processes would necessarily inflate the number of equations

generated within a short period of time. Perhaps the generating of

equations in bursts may also be the outcome of another artifact,

discussed in the next section: the drawing of free-body diagrams.

Even though we did not replicate Larkin's (1979) finding that

experts tend to generate equations in clusters, this does not deny the

possibility that the storage of equations may indeed be different in

the knowledge base of the experts and novices. Our conclusion is that

protocol analysis of equation generation will not address this

particular issue directly. In order to address the issue oi how

equations are stored in the knowledge bases of experts and novices,
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one needs to design a study where experts and novices are asked to

generate or freely associate equations outside the context of a

problem solving situation.

Number of diagrams generated. Another potentially interesting

quantitative measure is the number of free-body diagrams drawn by the

subjects. The construction of free-body diagrams, appears to form an

important component of problem solving. Free-body diagrams are

partial figures that depict partial abstractions of the total physical

situation. They may be drawn for all or part of the physical

situation, and utilize directional arrows denoting the forces acting

in a physical system.

The numnber of diagrams including free-body diagrams drawn by each

subject for each problem is also shown in Table I. Again, there

appears to be no systematic skill differences, although there seems to

be some individual differences, with Expert R.E. and Novice C.H7.

drawing the greatest number of free-body diagrams. These two

individuals also generated the greatest number of equations, and also

produced the greatest amount of clustering.

Drawing free-body diagrams may infJlate the number of equations

generated in clusters. .th novices, as well as the experts to a

lesser extent, utilized the str:iregy of constructing frebd

diagrams, which is taught and emphasized in introductory physics

courses. Using the free-body diagrams, equations relating the forces

can be generated. Hence, the more frequently a subject draws a

free-body diagram, the more likely he is to have clusters of equation

generation. Therefore, bursts of equation generation mav be an

artifact of a solver's need to generate many Jiacrams.
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It is not clear to us what the purpose is of generating many

free-body diagrams. We speculate that when a problem is difficult "or

a subject, the subject tends to draw more diagrams. Each drawing may

be seen as an attempt to create a meaningful representation of the

problem. For example, for problems that took the longest to solve, 'I

large number of diagrams tended to be generated (such as problem 2 for

Expert R.E.). Furthermore, problem 2 was the one that Expert R.E.

had some difficulty with, having derived a value unnecessarily.

Likewise, for Novice C.H., problem 3 took the longest time to solve

(which he did incorrectly); he also generated the greatest number of

diagrams for that problem. These speculations need to be confirmed,

but it seems that drawing free-body diagrams ma;- be a way of hielping

the subject to create a meaningful representation. It may also

indicate that the subject is having difficulty going beyond the visual

stage of problem representation.

In another study (Study Five in this paper), when four experts

and four novices were asked to solve a problem, the novices generated

four times as many (4.7) diagrams as the experts (1.0 diagrams). The

novices had more difficulty solving the problem correctly (3 out of 4

errors) than the experts (1 out of 4 errors). This provides some

additional support for the notion that frequent generation of diagrams

is used as an external aid to create a meaningful problem

representation, and especially when subjects are having difficulties.

Summary of quantitative measures. The results of this study

indicate that few of the quantitative measures we used meaningfully
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differentiated the experts from the novices. The quantitative

measures obtained from protocols seem to be tenuous measures that are

confounded with individual differences and the particular strategies

adopted by tnie problem solver. We now turn to qualitative analyses of

the protocols to locate differences that can be attributed to skill.

Qualitative Results and Discussion

For reasons already indicated, and since a great deal of

attention had been devoted to the equation generation and manipulation

stages of problem solving, in this section of the data anlayses, we

will focus our attention on the initial 'qualitative analysis" stage

of problem solving. We assume that during this stage of processing, a

representation of the problem is constructed, and that this occurs

primarily during reading of the problem, and is completed in the first

30-40 seconds after the problem has been read. We estimate that this

stage takes a very short time because it appears to be analogous to

the stage of "initial analytical assessment" that Simon and Barenfield

(1969) talked about for chess problem solving, and the stage of

"preconception" that expert musical sight readers engage in prior to

the actual playing of a musical piece (Wolf, 1976). The short

duration of these initial processes is an important consideration in

determining our subsequent experimental procedure.

Figures 2 - Ishow two samples of protocols, one from Expert

R.E. and the oth,_ Irom Novice C.H., both on the first part of

problem 5. -he protocols have been segmented into four types of

episodes: "qualitative analysis," Irawing diagrams (which nay be

L"



EXPERT R. E.
(PROBLEM #5)

TAXONOMY OF

EPISODES PHYSICS PROTOCOLS

*QUALITATIVE ANALY- Constant velocity-> Frictional "There must be a frictional force
SIS (INFERENCES) force retarding the motion because

otherwise the block would accel-
Frictional force opposes force erate down the plane under the
due to weight of block action of its own weight... the

angle * must be related to the
*Friction--Coefficient of fric- coefficient of friction somehow."

tion angle 0

DRAWING FREE BODY 14 "You would have a normal force
DIAGRAM perpendicular to the plane, the

weight down, and the force of
kinetic friction would lie along
the plane... the angle between
the weight vector and the normal
to the plane is also angle b."

GENERATE EQUATIONS mgsin: - fk 0 "For motion down the plane would
N - mgcos¢ 0 be mg times sin* minus f which
fk = ukN = ukmgcosO is retardinq things and that's

equal to zero. For motion per-
pendicular to the plane, you
would have the normal force act-
ing upward, but mqcoso acting
downward or into the plane and
those two things sum to zero.
The only relation you need in
addition is that the force of
kinetic friction is u times the
normal and is therefore u times
mgcoss."

ALBEGRAIC MANIPU- mgslno - umgcoso - 0 "So substituting that (f , umgcoso)
LATION Uk t tans into the first equation, which

I've circled, you would then have
mgsino, f which would be u times
mgcoss, and all of that would be
equal to zero, and so what one
finds then is that j, the coef-
ficient of friction must be tans."

REREAD QUESTION A

Figure 2. Epert R.E.'s protocol )n -r-nlem 5, segmented into e isodes.



EXPERT R. E.
(PROBLEM #5) CONTINUED

TAXONOMY OF

EPISODES PHYSICS PROTOCOLS

DRAW FREE BODY "So let's draw the plane again...
the difference is that the fric-

DIAGRAM tional force.. .acts in the other
direction."

QUALITATIVE "We know the initial speed is
ANALYSIS Vo...I'm sort of fishing here

for a minute, the final speed...
is obviously zero."

GENERATE Vf- 2 - 2ax "we have an expression which
relates several things of
interest to us,.. all at the
same time."

QUALITATIVE "We can easily solve for
ANALYSIS providing we know *he other

things in the equa 4on .... We
don't know a but that's not
hard to find."

GENERATE mgsino + mkmgcosp = ma "This time both mgsins and
the frictional force. .. L-ose
two forces act in .he same
direction."

MANIPULATE !Ogsin4 + uko.gcos.= -Oa "The masses cancel everywhere
Uk a tan a s ... we also know uk...u k is thecos$ tangent of $... wnich Is the sin

sinos of 0 over the cos of #... thea - gsin4 x coso cos's cancel and you're leftwith the acceleration down the
aZgsin$ plane of... twice gsine.

QUALITATIVE block slides uniformly "So effectively you have.. .an
ANALYSIS - fk a Fg acceleration.. .of twice the

u -3 sino weight... I n the first part
(INFERENCE) mgsit i of the problem...friction...(CHECK ANSWER) fk now in opposite direc- must be exactly equal to gsins

tions and if you have it operating

Total Force F9 + fk 2mgsin$ in the opposite directlon..."
a-Ftotal g

a flaq 2gsin,

m(

-L -.4 -



EXPERT R. E.
(PROBLEM #5) CONTINUIED

TAXONOMY OF
EPISODES PHYSICS PROTOCOLS

MANIPULATE 0 - Vo 2  2(-2gsino)x "Now let's go ahead and solve
x V02/gsin4for... .V Final squared was 0.
x = o2/4sin*V initial squared ,wds wnat it

is... so what you end up with
for, for x is Vo squared over
4gsino."



NOVICE C. H.
(PROBLEM #5)

TAXONOMY OF
EPISODES PHYSICS PROTOCOLS

DRAW DIAGRAM "Let me draw a picture. An in-
clined plane with slop angle o
...and it's (the block) sliding
down the plane with a velocity
...constant velocity."

QUALITATIVE ANALY- Constant velocity "Since it's (the block) sliding

down the plane with constant
SIS (INFERENCES) ->fF - o velocity, it means the sum of

->friction the forces is zilch so there's

a, there's got to be some kind
14 of friction on the thing..."

DRAW FREE BODY "I'll draw a free body' 'aram.
There's the weight mc, tne~e'sDIAGRAM the frictional force, er

there's the normal force per-
pendicular to the plane.

GENERATE EQUATIONS Force parallel to plane = "Ok. So I'm going to draw
mgsin¢ trusty axes and resolve we':r,

FN  mgcos0 into a, into.... You've got I
f- uFN  there so this mgcos¢, and this

is mgsin.. .normal force is

going to be equal to mgcos:
and friction equals, umm...,
times the normal force."

MANIPULATE f = umgcoso "So that frictional force is
equal to umgcoso."

GENERATE V2 u V02 + 2a(x-xo) "The block is projected up -'e
plane with an initial veloc't.
So I'm going to use...equat'c
for motion V2 u Vo2 + 2 tires
acceleration times change in
distance."

Figure 3. Novice C.H.'s protocol on problem 5, seeinented into erisoces.

r|.j



NOVICE C. H.
(PROBLEM #5) CONTINUED

TAXONOMY OF

EPISODES PHYSICS PROTOCOLS

MANIPULATE X, 0 V= 0 "Initial position I'm going to
call 0...final velocity equals

Vo2  0 so I get Vo(sic) over 2a is
2-a x  going to equal the x." j

*QUALITATIVE "a is going to be acceleration
Adue to the frictional force."

ANALYSIS J." (WRONG)
(INFERENCE)

DRAW FREE BODY "Now we've got a different
drawing. We've got mg and theD I AGRAM Jvelocity is up the plane so
frictional force... is down the
plane."

GENERATE zFx = ma "...sum of the forces in my
x direction is going to equal
mass times acceleration.'

MANIPULATE mgsins + f ma "So, you've got mgsin: - fric-
mgsino + umgcos s ma tional force equals the mass
a = g(sino + ucos¢) times acceleration, so fric-

Vo2  tional force is equal to...
x =(gsino + wcosq,) 3J times the normal force...

my m's go out so the accelera-

tion equals g times sine +
ucoS¢. So I substitute back
in the other equation."

(Leaves out factor of 2)
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either the diagrams depicting the main components of the problem, or

the abstracted free-body diagram), generating equations, ind

manipulating equations. There are several general remarks that can be

made about the initial stage of the protocols.

Before proceeding with the discussion of the protocol data, it

may be necessary to clarify a few terms and operational definitions. I
Any statements in the protocols that do not relate to drawing

diagrams, generating and manipulating equations, were considered to be

"qualitative analysis" of the problem. These statements can further

be of a variety of types, such as references to planning, checking 3f

the solution, and so on. We focused specifically on- those

"qualitative analysis" statements that seemed to generate knowledge

not explicitly stated in the problem, that is, inferences. (These

"qualitative analysis" statements are not to be confused with

qualitative analysis of the protocol data.)

First, contrary to the picture painted earlier, the protocol data

indicate that our novices also spent time analyzing the problem

qualitatively. During this stage, some inferences about the problem

are drawn. A simple count of the number of propositions that were

made that can be judged to be inferences shows that experts make, on

the average 12.75 propositions and novices make 10.58, which is iot

reliably different. Consistent with our earlier assertion, 1e

initial episode of "qualitative analysis" is usually short in

duration, taking only one paragraph in the protocols.

The second observation is that, unlike what is commonly believd,

the "qualitative analysis" episode )ften occurs throughout -ie
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protocols, not just at the beginning. For example, the inference

episode occurs, on the average, 2 1/2 times throughout each problem

for the experts and 1 1/2 times for the novices, although this

difference is again not significant. Because of this phenomen. n, it

is difficult to ascertain exactly when the construction of 3

representation is completed. These protocols lead us to think that a

gross representation is initially constructed; then if it needs to be

ref ined, that can occur later in the protocol.

The third observation is that errors in solution have two

sources. One source is trivial computation error, resulting either

from faulty manipulation or instantiation of equations. An example of

a trivial computation error occurs in the last episode of Figure 3.

In manipulating the equations, the novice made an error by a factor of

two. The other source of solution errors can be traced to either the

generation of wrong inferences, or the failure to generate the right

inference. The inference episode in Figure 3 having an asterisk

beside it, indicates an example of a tirong inference. We attribute

the source of solution errors in general to these incorrect

inferences, even though in this particular case, this incorrect

inference was not the cause for the problem's incorrect solution.I

This is because the novice was able to generate all the correct

equations. The mistake in this problem arises from the solv:er's

failure to complete the solution by substituting for Vi. Incorrect

inferences ire relatively easy to detect in the protocols. '.hat 's

more difficult to capture in these protocols, is the solver's failure

to generate i iecessary inference. This can be captured )ni,., by
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comparing and contrasting the expert's and the novice's protocols, in

trying to understand a novice's error. Our interpretation is that

Novice C.H. did not complete the solution (see the last episode of

Figure 3) because he failed to generate the inference that the

coefficient of friction U is somehow related to the angle t, as did

the expert (see Figure 2, the first episode). Without setting an

explicit goal to relate the two ( I and angle 0), Novice C.H. could

not solve the problem, even though he had all the necessary equations.

Hence, in general, we would conclude from examination of the

inference generating episodes of the protocols, that both experts and

novices are just as likely to spend time generating tacit knowledge

about a problem, and both groups are just as likely to do so

iteratively across the entire problem solving protocols. However, it

is the quality of the inferences that matters. Novices are more

likely to either generate the wrong inference, or fail to generate the

necessary inferences. A large number of the novices' errors can be

traced to this source.

Studies on the Categorization of Problems

To say that novices either fail to make the appropriate

inferences during qualitative analyses, or that they do not generate

inferences at all, does not explain the source of incomplete 3r

erroneous inference making. To uncover this limitation of the

novices, we have to understand the knowledge structure of the experts

and novices, and how that knowledge enhances or limits their problem

solving abilities. Analyzing the protocols of problem solving does
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not appear to provide enough information of this kind. Our research

described here, therefore, is concerned with ways of exploring the

knowledge of a problem solver, through means other than analyzing

solution protocols.

We hypothesize that a problem representation is constructed in

the context of the knowledge available for a particular type of

problem. Further, we make the assumption that the knowledge useful

for a particular problem is indexed when a given physics problem is

categorized as a specific type. Therefore, expert-novice differences

may be related to poorly formed, incomplete, or nonexistent problem

categories. Given this hypothesis, we investigated knowledge

contained in problem categories. Our first order of business then,

was to determine whether our initial hypothesis is true: that is, are

there reliable categorizes to which problems are typed, and if so, are

these categories different for novices and experts?

Evidence already exists to suggest that solvers represent

problems by category, and that these categories might direct problem

solving. For instance, Hinsely, Hayes, and Simon's (1978) study,

found that college students can categorize algebra word problems into

types. and that this categorization occurs very quickly, sometimes

even after reading just the first phrase of the problem statement.

This ability suggests that "problem schemata" exist and can be viewed

as interrelated sets of knowledge that unify superficially disparate

problems by some underlying features. We refer to the knowledge

associated with a category as a schema. The chess findings of Clhase

and Simon (197 3a, 1973b) can also be interpreted is showing that
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choosing a chess move results from a direct association between move

sequences and a chunked representation of highly stereotyped (or

overlearned) chess pieces or patterns. There is also evidence in

studies of medical diagnosis that expert diagnosticians represent

particular cases of disease by general categories, and these

categories facilitate the formation of hypotheses during diagnostic

problem solving (Pople, 1977; Wortman, 1972).

Study Two: Sorting Problems

To determine the kinds of categories subjects of different

experience impose on problems, we asked eight advanced Ph.D. students

from the physics department (experts), and eight undergraduates

(novices) who had a semester of mechanics, to categorize 24 problems

selected from eight chapters (5 through 12) of Halliday and Resnick's

(1974) Fundamentals of Physics. The subjects' task was simply to sort

the problems based on similarities in how they would solve them.

Analysis of quantitative results. Again, no gross quantitative

differences between the two skill groups were produced. For example,

there were no significant differences in the number of categories

produced by each skill group (both groups averaged about i..;

categories), and the four largest categories produced by each subject

captured the majority (about 77%) of the problems. There was ilso

little difference in the amount of time it took experts and novices 'i

sort the problems, although experts tended to take slightly :l-.cer
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time about 40 seconds per problem (discarding one outlier), whereas

novices took about 37 seconds per problem.

The absence of gross quantitative differences in measures such as

number of categories, number of largest categories, and time to

categorize confirms the notion that there are no fundamental capacity

differences between experts and novices. That is, the novices are not
L

inherently slower, for example, nor do they have limited abilities :o

discriminate the problems into eight categories. The lack of a

general quantitative difference points to the necessity of examining

the qualitative differences.

Analysis of qualitative results. If we examine the nature of the

categories into which experts and novices sorted the problems, they

are qualitatively dissimilar. This difference can be Most

dramatically seen by observing the two pairs of problems that The

majority of the subjects of each skill group sorted together. Figure

4 shows two pairs of problems that eight out of eight novices grouped

together as similar. These problems have noticably similar "surface

structures." By "surface structures," we -ean either (a) the objec:s

referred to in the problem (such as a spring or an inclined plane,

(b) the keywords that have physics meaning "such as center of mass )r

friction), or (c) the physical configuration that involves -ht

interaction of several object components 'such as a block Dr in

inclined plane).

The suggestion that these surface structures are the bases of --e

novices' categorization can be further -onfirmed by examinin:ig

subjects' verbal justifications for the :litegories, which ir,



Diagrams Depicted from Problems Categorized Novices' Explanations for Their Similanrv
by Novices wvithin the Same Groups Groupings

Problei-i 10 (11) Novice 2: "Angular velocity, momentum.
circular things"

" e 3: "Rotational kinematics, anzmiar
speeds, angular velocities"

Novice 6: "Problems that have somermnq
rotating," angular speed"

Problem 11 (39)

V

M

1OM

Problem 7 1231 .Vovice 1: "These deal with blocks on an
2 1b. 41 incline plane"
, .Vovice 5: "Inclined plane problems,

coefficient of friction

/4= .2 .N.-- .Vovice 6: "Blocks on inclined planes

,Z '- 30- with angles"

Problem 7 135)

it

Figure 4. Egamrles fromn novices' problem :atezories. Problem nmiber3
represent chapter and problem number from Hallidav and snick

(197)

4.



PAGE 58

presented on the right-hand column of Figure 4. The novices'

explanations indicate that they grouped the top two problems together

because they both involved "rotational things" and the bottom two

together because they involved "blocks on an inclined plane."

For experts, surface features do not seem to be the basis for

categorization. There is neither a similarity in the keywords used in

the problem statements, nor in the visual appearance of the diagrams

for the problems, as shown in Figure 5. No similarity is apparent in

the equations used for the problems that are grouped together by the

majority of the experts. The similarity underlying the experts'

categorization can only be detected by a physicist. It appears that

the experts classify according to the major physics principles or

fundamental laws) governing the solucion of each problem (sometimes

referred to as the solution method). The top pair of problems in

Figure 5 can be solved by the application of the Conservation )f

Energy Law while the bottom pair is better solved by the application

of Newton's Second Law (F-MA). The verbal justifications of the

subjects confirm this analysis. We might refer to the principles

underlying a problem as the "deep structure" of the problem, which is

the basis by which experts categorize problems.

In sum, the results of this study ancover sevcral facets of

problem solving that were not observable from protocol Analyses.

First, through a sorting task, it became apparent that categories )f

problems exist. These categories probably correspond to problem

schemas, that is, unified knowledge that can be used to solve I

particular type of problem. Second, category membership can be



Diagrams Depicted from Problems Catergorized Experts* Explanations for Their Similanty
by Experts within the Same Groups Groupings

Problem 6 (211 Expert 2: "Consen'ation of Energy'"

.6 M Expert 3: "Work-Energy Theorem.
K - 200 nt/r They are all straight-forward

problems."
Expert 4: "These can be done from energy

S mI Iconsiderations. Either you should15 m equilibrium know the Principle of Conservation
of Energy, or work is lost
somewhere."

Problem 7 (35) 
s h

3--.

Problem 5 (39) Expert 2: "These can be solved by .\'ewt on

Second Law"

Expert 3: "F = ma; Newton s Second Lak

T Expert 4: "Largely use F = ma; Newron
Second Law"

T

mg +

Mg

Problem 12 (23)

Fp Kv

mg

Figure 5. Examples from experts' roblem categories. Problem numers
represent chapter and problem number from Hallidav and Resnck

(1974.
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determined rather quickly, between 35-45 seconds. This is the amount

of time we initially alloted to the qualitative analysis episodes of

problem solving. Third, the results also imply that within 45

seconds, the experts at least, can already perceive the solution

method applicable to the problem. The possibility that such

evident from the problem solving protocols, because there was never

any cause for solvers to mention either the principle underlying a

problem or the surface structure of the problem. Only through an

alternative task, such as sorting, are we able to detect the presence

of categories that may be related to solution methods.

Study Three: Sorting Specially Designed Problems

If the interpretation of the previous sorting results is

accurate, then one should be able to replicate the findings, and

further, to predict how a given subject of a specific skill level,

might categorize a given problem. In this study, we specially

designed a set of 20 problems to test the hypothesis that novices are

more dependent on surface features whereas experts focus more on the

underlying principles. Table 2 shows the problem numbers and thej

dimensions on which they were varied. The left column indicates the

major objects that were used in the problem; the three right headings

are the solution methods (or the basic laws) that can be used to solve

them. Figure 6 shows an example of a pair of problems (corresponding

to problems 11 and 18 in Table 2), which contain the same surfaice

structure but different deep structure. In fact, the problems ire



No. 11 (Force Problem)

A man of mass M1 lowers himself to the ground
from a height X by holding onto a rope passed
over a massless frictionless pulley and attached to
another block of mass M2 . The mass of the man
is greater than the mass of the block. What is
the tension on the rope?

M fM
1

II
X

No. 18 (Energy Problem)

A man of mass M, lowers himself to the ground
from a height X by holding onto a rope passed
over a massless frictionless pulley and attached to
another block of mass M2 . The mass of the man
is greater than the mass of the block. With what
speed does the man hit the ground?

x

L:Li

7.L;ure 6. Sample -

.3

• .. ....... .... . l,. ++ . ... . .. + A
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identical except for the question asked. From the results of Study

Two, we predicted that the novices would group together problems with

similar surface features, such as the two problems shown in Figure 5,

whereas experts would not. Experts, instead, would group together

problems that have similar deep structure, regardless of the surface

features. Intermediate subjects might exhibit some characteristics of

each skill group.

The results confirmed our previous interpretations. Our one

novice, who had completed one course in mechanics, grouped strictly on

the surface structures of the problems. Table 3 shows his problem

categories, and the explanations he provided for his groups. First of

all, if one scans only the verbal justification column (far right), it

is evident that, except for the fourth group, where he mentioned

"Conservation of Energy," a physics principle, the remaining

categories were all described by either physics keywords (such as

"velocity problems"), or the actual physical components contained in

the problem ("spring"). And indeed, he collapsed problems across the

physics laws. For Group 5 (Table 3), problem 18 is obviously solvable

by the Force Law, whereas problem 7 is solved by the Energy Law (see

Table 2 again). The only category for which he made any reference to

a physics principle is Group 4, which he described as a "Conservation

for Energy" category. However, this is to be distinguished from the

expert's labeling of "Conservation of Energy." This novice only labels

those problems as "Conservation of Energy" when the term "Energy" is

actually mentioned in the problem statements themselves, as was the

case here.
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In contrast, the expert's classifications are all explained by

the underlying principles, such as Conservation of Angular Momentum,

Conservation of Energy, etc. (see Table 4). Furthermore, as

predicted, the expert collapsed problems arcoss the surface

similarities. For example, for Group 3, problem 1 is basically a

spring problem, and problem 4 is a collision problem.

Table 5 shows the groupings of an advanced novice (an

intermediate). His categorizations of the problems are characterized

by the underlying physics principle in an interesting way. These

principles are qualified and constrained by the surface components

present in the problems. For example, instead of classifying all theI
Force problems together (Groups 4, 6, and 7), as would an expert, he

explicitly separated them according to the surface features of the

problems. That is, to him, there are different varieties of Force

problems, some containing pulleys, some containing springs, and some

containing inclined planes.

To summarize this study, we were able to replicate the initial

finding that experts categorize problems by physics laws, whereas

novices categorize problems by the literal components. If we assume

that such categories reflect knowledge schemas, then our results from

the person at the intermediate skill level suggest that with learning,

there is a gradual shift in organization of knowledge. from one

centering on the physical components, to one where there is i ombined

reliance on the physical components and physics laws, to tinallv, one

primarily unrelated to the physical components.
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Study Four: Hierarchical Sorting

The results of the previous two sorting .studies strongly suggest

that the problem categories of the experts are different from those of

novices. That is, we assume that the differences lie not only in the

"category labels" that subjects of different skills prefer to use. We

assume that problem categories corresond to problem schemas and,

theoretically, schemas can have embedded in them subschemas, and be

embedded in higher-level or super-schemas. Hence, if we can identify

some similarity of the contents of schemas at different levels for

individuals of different skills, then perhaps we will have converging

evidence that the schemas of the novices and experts are indeed

different, and that their schemas might be the same when different

levels are compared.

To test this assumption, a hierarchical sorting task was designed

by Christopher Roth. In this task, subjects were first asked to sort

the problems in the same manner as in the previous two studies. Then,

their groups, which they had initially sorted, were returned to them,

and they were asked to further subdivide each group, if they wished.

The sorting of each group was conducted in a depth-first manner. When

all the discriminations of each group were completed, they were also

asked to combine their initial groups, until they no longer wished to

make any further combinations. Subjects' rationale for each group

that they made was also recorded.

Sixteen subjects were run. They ranged from graduate students

(experts) to fourth year physics and chemical engineering majors

(intermediates) to A and C students 'novices) who had taken -ourses in



PACE 63

physics (mechanics and electricity and magnetism). A sample of these

subjects' data will be discussed.

The 40 problems used in this study were selected from Halliday

and Resnick, covering the chapters 5-12 of the text (as in Study Two),

which is the minimumm amount of material typically covered in a first

year mechanics course.

There are two aspects of the data to examine: the contents of

the groups, and the tree structures. We believe that the most naive

structures are those generated by the novice C students (R.R. and

J.T.), as shown in Figure 7, top two panels. The circular nodes

represent the groups from the initial sort, and the numbers inside the

nodes indicate how many problems are in that group. The square nodes

beneath the circular nodes are the groups formed when the problems

were further discriminated, and the triangular nodes above the

circular nodes indicate the combinations. The tree structures of

these two novices have three distinct characteristics that none of the

other more skilled subjects exhibited. First, the initial groups

(circular nodes) have a greater than average number Df categories.

(Eight categories is the averge number derived from Study Two.) The

second characteristic is that they either cannot make further

discriminations (Novice R.R.), suggesting that their categories are

alreadv at the lowest level, or they make such fine liscriminations

(Novice J.T.) that each problem is in a category by itself. This is

reminiscent of the chess results. Beginner chess players have chunks

consisting of one or two pieces. The nature of the initLil categories

is physical configurations, much like what was found in Study Two,

' " ... "' ' /-i . ... '-i... . .. ...I " '" ' ' = " - ! 1 . ... .! an i' A



Novice R.R.

®ooooQooo
Novice IT.

A4

Expert C.D.

E xpert M. F.

Figure 7. Groupings made by novices and experts on a hierarchical
sorting task. Circular nodes are the preliminary groups
made, squares and he:asoris are subsequent discriminations,
and triangles are the combinations.
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such as "gravity," "pulley with weight," etc. When the novice (J.T.)

breaks the categories down so that each problem is a category, the

descriptions of these categories are very specific, and still bound to

the physical configuration. For example, one of the initial

categories of Novice J.T. is "tension in rope." When that category

was further broken down, one of them was specified as "tension with

two blocks on incline" and another was "tension with two blocks and

pulley on incline."

The most sophisticated tree structures of the experts are shown

in the lower two panels of Figure 7. The initial circular nodes are

generally the different varieties of physics principles, much like

those uncovered in Study Two. For Expert C.D., one group of circular

nodes contains Conservation of Energy, Conservation of Momentum, and

Conservation of Angular Momentum, and the other group of three are

F=MA, F=MA to find the Resultant Force, and Simple Harmonic Motion.

Each group of three (circled) categories was further collapsed to two

superordinate categories: Conservation Laws and Equations of Motion.

The subordinate categories for the same subject are generally

discriminations based on physical configurations, such as "tension

problems." Hence, from our limited analyses, we could hypothesize that

the subordinate categories of the experts correspond to the initial

categories of the novices. Although t- szudy is not definitive in

hypothesizing that experts' categc i are .- a higher level than

novices' categories, additional data from Study Five will converge on

the same notion.

4
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The results of this study can also be interpreted in the

framework proposed by Rosch (1978) of "basic" categories. The term

"basic" can be used loosely to mean the preferred or dominant

categories to which problems were divided by the subjects. Hence, one

could say that the "basic" categories of the novices correspond to the

subordinate categories of the experts.

Studies of the Knowledge Base

If the knowledge bases of the experts are different from those of

the novices, in what ways are they organized differently, and in what

way does the knowledge of experts and novices enhance and hinder their

problem solving processes? These questions, coupled with the results

of the categorization studies, lead us to an examination of the

knowledge bases. The categorization studies show that without

actually solving the problems, and in less than 45 seconds, experts

were able to encode the problem into a deep level of representation,

one that enables them to grossly determine the solution method

applicable to the problem. We speculate that such encoding skill

necessarily reflects the knowledge base differences between experts

and novices. The next set of studies asks to what extent and in what

ways are the knowledge bases of the novices less complete and coherent

than the experts.

Study Five: Summaries

With these questions in mind, we attempted to capture what

subjects knew about physics, independent of a problem solv.ing :ontent.
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One simple approach was to ask subjects to summarize a chapter. This

should reveal the knowledge they would have on a particular topic. We

selected chapter five on particle dynamics of Halliday and Resnick

(1974), because it was the knowledge in this chapter that subjects in

the first protocol study needed in order to solve those five problems

correctly. Furthermore, this chapter introduced Newton's three laws,

which could be a common theme of the chapter that all subJects mnight

mention during their summaries, so that we would be able to do some

comparisons.

We asked four experts (two college professors, one postdoc who

had never taught lower division physics, and one fifth-year graduate

student who had often taught lower division physics) and four

undergraduates (who had just completed the introductory physics course

with a B grade, using Halliday and Rensick as a text) to review the

chapter for five minutes, then summarize out loud the important

concepts of the chapter. Subjects were run individually. Fifteen

minutes were allotted for the summary. The book was also available to

them while they summarized, so that any limitation in their summaries

could not be attibuted to a retrieval problem. (Then they were all

asked to solve a single problem taken from Chapter 5. These problem

solving protocols provided the data for discussing the frecue ncy of

diagram drawing mentioned in Study One.)

We began again by looking at various quantitative measures, such

as the length of the summaries, the number of quantitativ:e relations

mentioned in the summaries, and so on. Cursory examination of the

data again suggested that there were no skill differences n any of
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these quantitative measures. We then turned to an examination of the

content of the summaries. Since every subject mentioned Newton's

three laws of motion, we compared what they said about two of them.

The top of Table 6 states Newton's Third Law, and the bottom of

the table shows one possible way of breaking down the law into its

subcomponents. Using these subcomponents as a scoring criterion, we

could analyze the summaries of the experts and novices, and see what

proportion of the subcomponents were mentioned by each skill group.

Such results are shown in Table 7. The X's in the table show the

subcomponents of the law that were mentioned by each subject. On the

bottom of this table are samples of protocols of a novice and an

expert. It is clear from Table 7 that experts in general make more

complete statements about the physical laws than novices, even though

the textbook was available for them to use. Table 3 is another

instance of a similar analysis of Newton's First Law. Again, experts

mentioned on the averge three subcomponents, whereas novices tended to

mention on the average at Most two subcomponents. :t is also

interesting to note that Expert S.D.'s performance in Table 9 is most

novice-like," perhaps because he did not have any experience teaching

mechanics.

The summaries of experts and novices on a given chapter from a

physics text indicate that experts do have more complete 4nformation

on physics laws than novices. This is not surprising in the sense

that one would expect experts to know more. On the other 'land, it is

surprising because the students 'have been taught this knowledge and

had the book available to them. One would hope -hat, after
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instruction, the students have mastered at least the declarative

knowledge of the laws of physics, however, one obvious deficiency of

novices is that they had not. One cannot automatically assume that

all students have mastered the prerequisite knowledge needed for

solving problems. Nor can we assume that the novices' deficiencies

lie mainly in the inadequate strategies or procedural knowledge that

improves with experience in solving problems.

Up to this point, our data show that novices are deficient in

three aspects of knowledge. First, very good students, as Study One

shows, make errors in problem solving only when they have either

generated the incorrect inferences or failed to generate the correct

inference during the initial eocoding or representation-generation

stage of problem solving. We attribute the generating of the wrong

inference to incomplete knowledge in the data base, so that the

appropriate inference (the right link between certain nodes in the

semantic network; Greeno & Riley, 1981) could not be made. Second,

we discovered that, whether novices and experts have the same

knowledge base or not, it is organized differently. That is, we can

view the knowledge of problem types as schemas, and the experts'

schemas center around the physics principles, whereas the novices'

schemas center around the objects. Finally, a third deficiency in the

novices' knowledge base, at least for B students, is that they lack

certain undamental knowledge of physics principles.

These three deficiencies in the knowledge base that we have

already identified are general in the sense that we do not nave a good

grasp of exactly what knowledge is missing from the novices' data base

'1A
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(except for the summary study), nor do we have any means for comparing

the knowledge bases. And most importantly, we have tapped only the

declarative knowledge that the subjects have. The next study attempts

to be more detailed in assessing the knowledge that subjects do have,

provides a means of comparing the knowledge bases between subjects,

and begins to look at the use of procedural knoLedge, since it is the

procedural knowledge that will ultimately determine how well a person

can solve a problem.

Study Six: Elaboration Study

In this study, we were interested in the knowledge associated

with certain physics concepts. These are concepts generated by the

category descriptors provided by the subjects in the sorting studies.

We view these concepts as labels designating schemas. Hence, the

purpose of the present study was to uncover what knowledge is

contained in the schemas of experts and novices. From the sorting

studies, we concluded that the schemas of the experts are

principle-oriented, whereas the schemas of the novices are

object-oriented. What we needed to know now is how the schemas of the

two skill groups differ. Do the schemas of the experts contain more

information, a different kind of information? Are the schemas of the

ices subschemas of the expert schemas? This study addressed these

.- ies.

Two experts (M.G., M.S.), both graduate students, and two novices

(H.P., P.D.) were asked to elaborate on a selected sample of 20

prototypical concepts that subjects in the sorting studies had used to
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describe their classifications. Figure 8 gives a frequency count of

those category labels that were used by the experts and novices in

Study Two. The sample of 20 used in this study ranged from those

provided by experts (e.g., Force Law), to those provided strictly by

novices (e.g., inclined plane). Subjects were presented with each

concept individually, and given three minutes to tell everything they

could think of about it, and how a problem involving the concept might

be solved.

We use two ways to analyze the contents of these elaboration

protocols. One way is to depict the contents of the protocol in terms

of a node-link network, where the nodes are simply key terms that are

mentioned that are obvious physics concepts. The links are simply

unlabeled relations that join the concepts mentioned contiguously.

Using this method, the networks of a novice's (H.P.) and an expert's

(M.G.) elaboration of the concept "inclined plane"~ are shown i

Figures 9 and 10. Since we view each of these concepts as

representing a potential schema, the related physics concepts

mentioned in the inclined plane protocol can be thought of as the

variables (slots) of the schema. For example, in Novice H.P.'s

protocol, his inclined plane schema contains numerous variables that

can be instantiated, including the angle at which the plane is

inclined with respect to the horizontal, whether there is a blocIk

resting on the plane, and what are the mass and height of the block.

Other variables mentioned by the novice include the surface property.

of the plane, whether or not it has friction, and if it does, what ire

the coefficients of static and kinetic friction. The nov'.ce ilso
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discussed possible forces that may act on the bicok, such as possibly

having a pulley attached to it. He also discussed, at the end, the

pertinence of Conservation of Enry However, his mentioning of the

Conservation of Energy principle was not elicited as an explicit

solution procedure that is applicable to a configuration involving an

inclined plane, as is the case with the expert, as will be seen later.

Hence, in general, one could say that the "inclined plane" schema that

the novice possesses is quite rich. He knows precisely what variables

need to be specified, and he also has default ralues for some of them.

For example, if friction was not mentioned, he probably knows that he

should ignore friction. Hence, with a simple specification that the

problem is one involving an inclined plane, he can deduce fairly

accurately what are the key components and entities (such as friction)

that such a problem would entail.

The casual reference to the underlying physics principle,

Conservation of Energy, given by the novice in the previous example,

contrasts markedly with the expert's protocol, in which she

immediately makes an explicit call to two priciples which take the

status of procedures, the Conservation of Energy Principle, and the

Force Law (Figure 10). (In Riley & Greeno's 1981 terminology, they

would be considered calls to action schemata.) We characterize then

as procedures (thus differentiating them from the way the niovice

mentioned a principle) because the expert, after mentioning the Force

Law, continues to elaborate on the condition of applicability of the

procedure, and then provides explicit formulas for two of the

conditions (enclosed in dashed rectangles in Figure 10). (She ilso
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explained the conditions of applicability of Conservation of Energy,

but did so during other segments of the study.) After her elaboration

of the principles and the conditions of applicability of one principle

to inclined plane problems (depicted in the top half of Figure 10),

Expert M.G. continued her protocol with descriptions of the

structural or surface features of inclined plane problems, much like

the descriptions provided by Novice H.P. (see Figure 9). Hence, it

seems that the knowledge common to subjects of both skill groups

pertains to the physical configuration and its properties, but that

the expert has additional knowledge relevant to the solution

procedures based on major physics laws.

Another perspective on the difference between the novice's and

expert's elaborations of "inclined plane" is to look at the

description that Rumelhart (1981) ascribes to schemas of inactive

objects. That is, an "inclined plane" is viewed by the novice as in

inactive object, so that it specifies not actions or event sequences,

but rather, spatial and functional relationships characteristic )f

"inclined planes." Because novices may view inclined plane as in

object, they thus cite the potential configuration and its properties.

Experts, on the other hand, may view an inclined plane in the context

of the potential solution procedures; that is, not as an object, but

more as an entity that nay serve a particular function.

An alternative way to analyze the same set of protocols is o

convert them directly into "production rules," or IF-THEN rules

(Newell, 1973). To do so, a simple set of conversion rules can bp

used, such as when the protocols manifest in :F-THEN or IF-WHEN )r



PAGE 73

WHEN-THEN structure. This transformation is quite straightforward,

and covers a majority of the protocol data. Tables 9 and 10 depict

the same set of protocols that were previously analyzed in the form of

node-link structures. What is obvious from such an analysis is that

the experts' production rules contain explicit solution procedures,

such as "use F=MA," or "sum all the forces to 0." None of the

novices' rules depicted in Table 10 contain any actions that ire

explicit solution procedures. Their actions can be characterized as

attempts to find specific unknowns, such as "find mass" (see rules

with asterisks in Table 10).

We alluded to an important difference between the way

Conservation of Energy was mentioned by novice H.P. versus expert '.S.

The present analysis makes this difference more transparent. The

difference lies in the observation that the novice's statement )f

Conservation of Energy (Rule 8 in Table 10) was part of a description

of the condition side of a production rule, whereas the statement if

this principle by both experts (Table 9 see asterisks) is described in

the action side of the production rules.

In Figure 10 on the elaboration of an inclined plane, we stressed

the observation that the Expert mentioned the conditions )f

applicability of the Force Law (the statements in the dasned

enclosures). This points to the presence of not only expli>-

procedures in the experts' repertoires, but also of explicit

conditions for when a specific procedure ipplies. Another anals-t;

supports this difference. We examined all itatements made by the - o

experts and the two novices throughout the nrotocols of the entire iet
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of 20 concepts, and recorded all statements made about Conservation of

Energy. Nearly half of each expert's statements (10 out of a total of

22 for Expert M.S., 9 out of a total of 21 for expert M.G.) were

specifying the conditions under which Conservation of Energy could be

used. For example, the following are two quotes, one from each

subject.

Expert M.S. - "If the (inclined) plane is smooth, of course

then you could use Conservation of Mechanical Eneigy to

solve the problem. If it's not smooth, then you've got to

take into account the work done by frictional forces."

Expert M.G. - "Energy conservation can also be used (in a

collision problem) but only for an elastic collision because

no heat is produced."

The novices on the other hand, made only one such statement between

them (1/22 for H.P., 0/13 for P.D.).

In sum, this study shows that the contents of the schemas are

different for the novices and the experts. First, for an object

schema, both experts and novices possess the fundamental knowledge

about the configuration and their properties; but the experts possess

additional knowledge, which may be viewed also as activating higher

level schemas (Rumelhart, 1981) that are relevant to the principle.

Second, the schemas of the experts contain more procedural knowledsze.

That is, they have explicit procedures, which -nay be thought of is t).e

action side of the productions. Finally, the experts' schemas conti42

much more knowledge about the explicit conditions of applicability )f

the major principles underlying a problem. Hence, this study, :ouioed
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with the Summary Study, emphasizes the impoverished nature of novices'

schemas, which can seriously hinder their problem solving success.

Studies to Identify the Key Features of Problems

The previous studies have suggested that novices in general, have

deficient knowledge in a variety of ways (perhaps with the exceptions

of A students). It is also important to ascertain whether the

difficulties novices encounter in problem solving lie also in their

inability to identify the relevant cues in the problem as is the case

with poor chess players. The common finding in chess research is that

the poorer players have greater difficulties seeing the meaningful

patterns on the chess board. The ability to perceive the relevant

chess-board patterns reflects t he organization of the chess knowledge

in memory. Hence, we need to determine whether novice and expert

problem solvers both have the ability to identify the relevant cues in

a problem, and if so, how this ability affects problem solving. From

the studies we have already discussed, we speculate that the

difficulties novices have derive from their inability to generate the

appropriate knowledge from the relevant cues.

Study Seven: Basic Approach

In this study, designed and carried out by Paul Feltovich, -.7

were interested in knowing about the features that help a~ sub>'ct

decide on a "solution method," which can be interpreted -is )ne of txie

three major principles (Conservation of Energy, Conservation D:

Momentum, and Force Law) that can underlie i mechanics problem of :he
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kind we use. Putting it another way, we are attempting to determine

the problem features that subjects could have used in the eliciting of

their category schemas, if the "solution methods," at least for the

experts, may be viewed as their schemas of problem types (see Study

Three).

Subjects in this study were asked to do three things. First,

they were to read the problem statement, and think out loud about the

"basic approach" that they would take to solve the problem. "Basic

approach" was not further defined for them. Second, they were asked

to re-state the "basic approach" explicitly in one concise phrase.

Finally, they were asked to state the problem features that led them

to their choice. We will focus predominantly on the last aspect of

this study. Additional details can be gathered from Chi, Feltovich,

and Glaser (in press). The subjects were two physicists (J.L., V.V.)

who had frequently taught introductory mechanics, and two novices

(P.D., J.W-) who had completed a basic college course in mechanics

with an A grade. The problems used were the same 20 (described in

Table 2) used for the sorting replication (Study Three).

Table 11 summarizes the key features cited by the experts and

novices as contributing to their decisions about the "basic approach"

to the solution of the problems. The numbers in the table show the

frequency with which each feature was cited. A 'eature was included,

for each skill group, only if it was mentioned it le.mist twice (across

the 20 problems), once by each subject or twice by one subject.

Analysis of these features shows, first of ill, that there is

essentially no overlap in the features mentioned by novices and
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experts except for the object "spring." Second, the kinds of features

mentioned as relevant by the novices are different from those

identified by the experts. Novices, again, mention literal objects

and key terms that are explicitly stated in the problem, cuch as

"friction" and "gravity." This is consistent with the results of the

categorization studies. Experts, on the other hand, identify features

that can be characterized as descriptions of states and conditions of

the physical situation, as described implicitly by the problem. In

some instances, these are transformed or derived features, such as a

"before and after situation" or "no external forces." Because these

features are not explicitly stated in the problem, we refer to these

as second-order features (or as we previously mentioned, generated

tacit knowledge).

In sum, the most interesting finding of this study is that the

features mentioned as relevant for suggesting a solution method are

different for the experts and novices. Because the subjects used

their own words to describe what the features are, there is often a

iack of consensus concerning relevant features, particularly between

the experts. In Table 11 for example, in 14 out of the 24 features

cited, the experts did not refer to the same features, whereas this

occurred only once for the novices (see the isterisks). This is

,,onsistent with the interpretation that novices must have geater

,,onsensus because they refer to the explicit key terms in the problem

itatement themselves. Experts, on the other hand, must necessarily

mhow a great deal of individual differences because they transform the

literal surface features into some second-order features, based on

I
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their individual knowledge bases. However, even with such wide

individual differences, there was a distinct characteristic to the

experts' cited features that distinguished them from the novices'

cited features.

Study Eight: Judging Problem Difficulty

Even though the experts cited the abstracted features as the

relevant cues in the previous study, it is still possible that the

experts transformed the same basic set of key terms as those

identified by the novices. A direct way to ascertain whether subjects

of different skills consider the same set of words as important, is to

ask them to point out the important words in the problem statements.

In this study, we presented six novices (approximately B students) and

six experts (graduate students) the same set of 20 problems used

earlier; and asked them to judge (using a 1-5 rating) how difficult a

problem was to acolve after reading the problem statement. We then

asked them to circle the key words or phrases that helped them make

that judgment. Finally, they were asked how those particular key

words helped them make that decision.

The most striking finding is the extensive overlap between the

cues that experts and novices identified as important for deciding on

the difficulty of a problem. If anything, experts identified fewer

c:ues as important, compared with the novices. Table 12 presents one

of the 20 problems, broken down into eight propositions. There were.

n the average, seven propositions per problem. The enclosed words

were chosen by three or snore of the six novices, ind the asterisks
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represent those that three or more experts selected. For 19 out of

the 20 problems, the experts and the novices circled the same sets of

words or phrases in the problem statements, which are embedded in 2.7

propositions, on the average. Only in seven of the 20 problems did

the experts identify additional cues (about 1.6) whereas in 13 of the

20 problems, the novices identified an additional (2.1) cues as

important. This result suggests, at least, that novices' difficulties

in problem solving do not stem from their failure to identify the

relevant cues.

The subjects' responses to both the questions of why these

particular cues are important and how they help them make decisions,

were classified according to the following categories: (1) whethe,2

the cues refer to one of the three fundamental principles ("the cues

tell me to use Energy Conservation"), (2) whether the cues refer to

some surface feature of the problem, much like what novices refer to

when they categorize problems, (e.g., Figure 8), (3) whether the cues

bring their attention to some characteristic of the problem that is

not related to physics ("it is difficult to visualize," or "it has

many concepts"), or (4) whether the cues elicit some reasons that are

unrelated to the specific problem (the problem is difficult "because T

have never solved it before,' or "it has a lot of words"). Table 13

is a breakdown of experts' and novices' reasons for why a problem was

'dged difficult or easy, along with samples of quotes. Consistent

with our previous findings, experts, much more often than novices,

rely on the underlying physics principle when judging the difrlicultv

of a problem (e.g., 'compressing spring tells me to t -ink Enerzv.
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They both rely equally often L .ru characteristics, such as

whether a problem involves friction or the center of mass. However,

novices are much more likely than experts to rely on superficial

nonphysics aspects of a problem to make their judgments (the third

category in Table 13) such as whether "it is abstractly phrased," and

it has a lot of words." Finally, the novices often introduce reasons

for why a problem is difficult that are not specific to a given

problem, such as "I1 have never done problems like this before."

When inferences were generated in the protocols of problem

solving (Study One), and when second-order features were identified

(Study Seven), we speculated that such tacit knowledge was generated

from the literal key terms in the problem statement. Now, we can

verify some of these speculations directly, by examining some of the

reasons that subjects gave for how some particular 'Key terms that they

circled contributed to their judgment of problem difficulty. Table 14

presents examples of the kind of statements produced by experts.

These statements of reasons can be judged to be inferences generated

either directly from the literal terms in the problem, such asp

"frictionless, use Conservation of Momentum," or the inferences nay be

generated from a derived cue, such as "no dissipative forces.' These

correspond to the second-order features mentioned in the previous

study.

Recall that the purpose of this task was to ask the experts and

novices to judge problem difficulty. The experts, in general, were

more accurate at judging the difficulty of a problem than novices.

Accuracy was determined by comparing the ratings of problem
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difficulties that subjects gave with our own assessment of how

difficult a problem actually is to solve. The aforementioned

examination of the reasons subjects gave for why a particular problem

is difficult, and why those particular keywords were helpful in

identifying a problem's difficulty (Table 13), suggest that novices

are less accurate at judging a problem's difficulty because they rely

heavily on nonphysics related or nonproblem related features to

determine its difficulty. Obviously these are not the reliable

factors to consider when one attempts to solve a problem.

In sum, even though rhe task of this study--requesting sources of

problem difficulty--is slightly different from either a problem

solving task, or tasks used in the other studies, such as sorting, we

suspect that the features identified as relevant in this task are the

saLe as those used in other tasks. Basically, the results show that

the relevant and important key terms in a physics problem can be

identified by novices quite accurately. In this sense, a physics

problem is not analogous to a "perceptual" chessboard, in which case

the beginner cannot pick out the relevant or important patterns.

However, the similarity between a chess expert and a physics expert

remains, and can be seen in their ability (compared to novices) to

abstract the relevant tacit knowledge cued by the external stimuli.

The chess masters' superior ability derives from the ability to

abstract or impose a cognitive structure onto the pattern of black and

white chess pieces. That is, novice chess players 3re just as capable

as experts at perceiving the chess pieces per se. However, to "see"

the relations among the pieces require the fitting of Dne's schemas
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(perhaps) to the configuration of chess pieces. Similarly, the novice

physicist is just as capable as the expert physicist at identifying

the key terms in a problem statement. The difficulty resides in the

novice's limited ability to generate inferences and relations not

explicitly stated in the problem.

GENERAL DISCUSSION

The goal of this chapter has been to contribute to our

understanding of high-level competence in complex domains of human

knowledge. Expert individuals in various areas of knowledge perform

remarkable intellectual activities, and cognitive psychiogists are on

the threshold of understanding these feats of memory retrieval, rapid

perception, and complex problem solving. Since intelligence is

generally measured through tests that assess skill in acquiring new

knowledge in scholastic settings, understanding the nature of the

competence attained should shed light on this ability to learn.

Early in this chapter, evidence was provided for the necessity to

focus on the organization and structure of knowledge, in both

psychological and AI research. This trend toward understanding the

influence of knowledge is relatively recent, in contrast to the

earlier emphasis on search algorithms and other heuristics for

deducing and retrieving information. The techniques and theories that

evolved, such as means-end analysis, were intended to be independent

of the particular data base, and as such, have proven to be valuable

search heuristics that are generalizable across different tasks and

knowledge domains.
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The turn to a focus on the knowledge base was necessitated in

part by the inability of psychological theories to model human

capabilities solely on the basis of search heuristics, and in part by

the limitations discovered in attempting to construct AI programs that

would outperform humans, even though the computer's search

capabilities are essentially limitless. Hence, the constraints of

powerful search techniques, when they did not engage an organized[

knowledge structure, soon compelled researchers to develop theories

and programs that took account of the role of knowledge structure.

The emphasis on the knowledge base has also changed the direction

of research. Since knowledge has different degrees of structure,

depending on an individual's experience, it was intuitively apparent

that an important problem was how a particular knowledge base is

structured. The obvious choice was to model the expert's knowledge,

as was done most dramatically in a number of AI programs. This choice

has also led to psychological investigations of developing structurej

of novices' knowledge, in contrast to the richly organized structure

of experts' knowledge.

The research on problem solving generated by this new emphasis

has revolved around understanding the processes of arriving at a

solution, in the context of the knowledge available to a solver. In

physics, this has led to the construction of numerous theoretiC3l

models that attempt to simulate the processes of problea solving, in

particular, the knowledge that is necessary to generate a particular

sequence of equations. Other theoretical models :onstructed by AI
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researchers have put more emphasis on the representation of the

problem in the context of the available knowledge.

The important issue of problem representation has also been

recognized in the psychological research. It is conspicuous in

protocols of problem solving in the form of "qualitative analysis" of

the problem, which usually occurs early in the solution process. Most

empirical findings to date have failed to explicate this initial

"qualitative analysis" of the problem, although the consensus has been

that a representation of the problem, constructed at this point, is a

significant factor in driving the solution process. Numerous

quantitative differences between the experts and novices have also

been identified, such as solution speed, errors, and equation

generation pattern. None of these measures, however, has succeeded in

shedding much light on understanding the different problem-solving

processes of experts and novices.

The research from our own laboratory has been oriented toward

magnifying the representational "stage" of problem solving through

techniques other than the analysis of problem-solving protocols. Our

findings (Study One) have emphasized the point that solution protocols

provide limited insights to the processes of representation, and

further, produce quantitative measures that are difficult to interpret

because they are subject to large individual differences. These

individual differences are dictated by a variety of particular

strategies that solvers adopt, such as generating a number of

equations when one cannot think of a way to proceed. Through the use

of a sorting task (Studies Two, Three, and Four), we were able to
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uncover a potential source of representational difficulty for novices.

If we assume that a problem is represented in the context of the

available knowledge, then novices will undoubtedly have an incomplete

and less coherent representation, because of the organization of their

knowledge. Their knowledge is organized around dominant objecrs (such

as an inclined plane), and physics concepts (such as friction)

mentioned explicitly in the problem statement. Experts, on the other

hand, organize their knowledge around fundamental principles of

physics (such as Conservation of Energy) that derive from tacit

knowledge not apparent in the problem statement. An individual's

"understinding" of a problem has been explicitly defined as being

dictated by tnowledge of such principles (Greeno & Riley, 1981).

Hence, during "qualitative analysis" of a problem, an expert would

"understand" a problem better than a novice, because he "sees" the

underlying principle.

A person's "understanding" of a principle can be evaluated in

several ways (Greeno & Riley, 1981). One way is to have it stated

explicitly, as was done by experts in the Summary Study (Study Five),

and in the rationale they provided in the Sorting Studies (Two, Three,

and Four). Another way is to analyze the nature of the categories

into which individuals sort problems; thls constitutes an implicit

assessment of their "understanding" of principles. An alternative but

'onsistent interpretation of the Sorting Studies is tiat experts and

novices organize their knowledge in different ways. Experts possess

schemas of principles that may subsume schemas of objects, whereas

novices may possess only schemas of objects. Some support for this
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conjecture was provided in both Study Four, on the hierarchical nature

of the sorting categories, and in Study Six, on the elaboration of the

contents of object and principle schemas. Once the correct schema is

activated, knowledge (both procedural and declarative) contained in

the schema is us.od to process the problem further. The declarative

knowledge contained in the schema generates potential problem

configurations and conditions of applicability for procedures, which

are then tested against the information in the problem statement. The

procedural knowledge in the schema generates potential solution

methods that can be used on the problem. Experts' schemas contain a

great deal of procedural knowledge, with explicit conditions for

applicability. Novices' schemas nay be characterized as containing

sufficiently elaborate declarative knowledge about the physical

configurations of a potential problem, but lacking in abstracted

solution methods.

Our hypothesis is that the problem-solving difficulties of

novices can be attributed mainly to inadequacies of their knowledge

bases, and not to limititations in either the architecture of their

cognitive systems or processing capabilities (such as the inability to

use powerful search heuristics or the inability to detect important4

cues in the problem statement). This conjecture follows from several

findings. First, similarity in the architecture of experts' and

novices' cognitive systems is probably implied by the fact that there

are generally no differences between experts and novices in the number

of categories into which they prefer to sort problems, in the latency

required to achieve a stable sort, and in a variety of other measures.
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These quantitative measuces point to the invariance in the cognitive

architecture of experts and novices. Second, novices do show

effective search heuristics when they solve problems using

backward-working solutions. Thirdly, in our last set of studies

(Studies Seven and Eight), we showed that novices are essentially just

as competent as experts in identifying the key features in a problem

statement. The limitation of the novices derives from their inability

to infer further knowledge from the literal cues in the problem

statement. In contrast, these inferences necessarily are generated in

the context of the relevant knowledge structures that experts possess.

In concluding this chapter, we would like to speculate on the

implications of the work and theory reported here for a conception of

intelligence. The tests of intelligence in general use today measure

the kind of intellectual perrormance most accurately called "general

scholastic ability." Correlational evidence has shown that the

abilities tested are predictive of success in school learning. Given

this operational fact, these commonly used tests of intelligence are

not tests of intelligence in some abstract way. Rather, if we base

our conclusions on their predictive validity, we can conclude that

they ire primarily tests of abilities that are helpful for learning in

present-day school situations. More generally, we can assume that

these intelligence tests measure the ability to solve problems in

school situations, which leads to learning. The problem-solving

ability possessed by the expert learner is a result of experience with

the diomains of knowledge relevant to schooling.
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If expertise in learning is the abiity for representing and

solving school problems, then for a less intelligent learner, a

problem representation may be in close correspondence with the literal

details of a problem, while for a more intelligent learner, the

representation contains, in addition, inferences and abstractions

derived from knowledge structures acquired in past experiences. As a

result of prior experience in various knowledge domains relevant to

schooling, the representations required for solving school problems

are more enriched, and contribute to the ease and efficiency with

which learning problems are solved. We speculate further that the

knowledge the expert learner brings to a problem would incorporate a

good deal of procedural knowledge--how a knowledge structure can be

manipulated, the conditions under which it is applicable, etc. Novice

learners, on the other hand, would have sufficient factual and

declarative knowledge about a learning problem, but would lack

procedural skill and this would weaken their ability to learn from

their available knowledge.

A knowledge-based conception of intelligence could have

implications for how individuals might be taught to be more effective

learners. Such an attempt would de-emphasize the possibility of

influencing mental processing skill (i.e., developing better methods

for searching memory). Improved ability to learn would be developed

through a knowledge strategy in which individuals would be taught ways

in which their available knowledge can be recognized and manipulated.

Improvement in the skills of learning might take place through the

exercise of procedural (problem-solving) knowledge in the context of
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specific knowledge domains. To date, conceptions of intelligence have

been highly process oriented, reminiscent of earlier notions of powers

of mind. If, in contrast, one did take a kno~wledge-emphasis approach

to the differences between high and low performers in school learning,

then one might begin to conduct investigations of knowledge structure

and problem representation in the way that we have begun to do in the

expert-novice studies described in this chapter. This orientation

might provide new insights into the nature of the expert performance

we define as intelligence.
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Table 2

Problem Categories

Principles

Momentum
Surface Structure Forces Energy (Linear or Angular)

Pulley with hanging blocks 20t

11 19t

14" 3*t

Spring 7

18 16 1

17+

9 6,

Inclined Plane 14* 3"t

5

Rotational 15 2

13

Single hanging block 12

Block on block 8

Collisions (Bullet-"Block"

or Block-Block) 4

6-

10-

Noire. * Problems with more zhan one salient surface feature. L.s-ed multiy by feature.
t Problems that could be solved using either of two princ:oies. energy ,, force.
+ Two-step problems, momentum plus energy.

A, •,L
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Table 3

Problem Categories and Explanations for Novice H. P.

Group 1: 2, 15 "Rotation"

Group 2: 11, 12, 16", 19 "Always a block of some mass hanging down"

Group 3: 4, 10 "Velocity problems" (collisions)

Group 4: 13t, 17 "Conservation of Energy"

Group 5: 6, 7. 9, 18 "Spring"

Group 6: 3, 5, 14 "Inclined plane"

Groups 7, 8, 9 were singletons

\ore. ° Problem discrepant with our prior surface analysis a6 indicatec in Table 3
t Problems disrepant with our prior principles analysis as noicated ;n Table 3.

Table 4

Problem Categories and Explanations for Expert V. V.

Group 1: 2, 13 "Conservation of Angular Momentum'

Group 2: 18 "Newton's Thirc Law"

Group 3: 1, 4 "Conservation of L near Momentum"

Group 4: 19, 5. 20, 16, 7 "Conservation of Energy"

Group 5: 12, 15, 9t. 11. 8, 3, 14 "Application of eauations of motion ' F MA

5roup 6: 6, 10, 17 "Two-step oroolems: Conservation of L -e3 ,

Momentum oius an energy calculation of
some sort"

\,re. t Problem discrepant wth our orior principles analysis.
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Table 5

Problem Categories and Excplanations for Advanced Novice M. H.

Group 1: !4, 20 "Pulley"

Group 2: 1, 4, 6. 10. 12t "Conservation of Momentum" (collision)

Group 3: 9. 13t, 1' ] 8t ''Conservation of Energy" (springs)

Group 4: 19. 11 'Force problems which involve a massless
pulley" (pulley)

Group 5: 2.1t"Conservation of Angular Momentum'
(rotation)

Group 6: 7t, 16t "Force problems that involve springs"
(spring)

Group 7: 8, JSt. 3 "Force problems" (inclined plane,

NVote. Italic numbers mean that these problems share a similar surface feature, which is indicated

in the parentheses, if the feature is not explicitly stated by the subject.

t Problems discrepant with our prior principles analysis.
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Table 6

Newton's Third Law and Its Decomposition

"To every action there is always opposed an equal reaction; or the mutual actions of two
bodies upon each other are always equal, and directed to contrary parts."

Components of the Third Law

(1) The law applies to two general bodies (or particles)

a) Discussion must mention 2 bodies, and

b) These must be general bodies or particles
(Particular example bodies alone are not sufficient to meet this condition, although
example bodies are allowed to be present)

(2) Action and reaction refer to Forces exerted by each body on the other, where these
forces need not be of any particular type

a) Must be an explicit statement that each body (however body is discussed) exerts a
"force" on the other; and

b) "Force" must be in general terms (particular example forces, such as kick, push,
alone won't do although such examples are allowed to be present)

(3) Reaction (however stated) is equal in magnitude

(4) Reaction (however stated) is opposite in direction

(5) Line of action/reaction is in a straight line between two bodies
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Table 7

,Newton's Third Law Decomposed into Five Components and Twvo Samoie Protocols

Novice Expert

K.D. S.B. J.W. C.H. 0.G. M.V. S.D. B.P

Reaction opposite in direction X X X X X X X X

Reaction equal in magnitude X X X X X X X

'Action- Reaction involves two
generai bodies X x x

Action-Reaction are general
forces extended by each body
on tne other X X

Direction of Action-Reaction
,s a straignt line

Examples of Subjects' Summary Protocol

Nov. S.B. "And his third lay, states that 'or every action there's an opposite reacl cn 'o ,t.

Exp. O.G. "The third law. . . states that for every action there is an eouai ana ooposite reaction, or in othter
words, if Body A exerts a force on body B, then Body B-exer-s 4orce on Bocy A in a directior
which is along the line joining the two points. When you say bocies in :'is chapter, you mean they
are really particles, point masses."



PAGE 106

Table 8

Newton's First Law: "Every body persists in its state of rest or of uniform motion in a straight line
unless it is compelled to change that state by forces acting on it."

Novice Expert

J.V. S.B. K.D. C.H. S.D. O.G. M V B.P

No Net Unbalanced Force X X X X X X X

Rest X X X

Uniform Motion X X X X X

Straiant Lne X X X

Examples of Subjects' Summary Protocol
r

Nov. J.VV. 'The first one is inertia, which ,s that a body tends to stay in a certain state unless a force acts
'jpon it."

Nov. S.B. "First of all there's, the body wants to stay at rest, the body just. t s resistance toward any otter
motion."

Exp. B.P. "His first law is a statement :hat 3 body is moving in a uniform veioc;:v n a given straight line or

statics. It will keep moving or stay where it is unless some external 'orces are applied."

Exp. O.G. "The first law is called the law of inertia. And it states that a bodv oersists in its motion along a
straight line of a uniform rate unless a net unbalanced force acts uoon :he body."

?,a
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Table 9

Expert Productions Converted from Protocols

M.S.

1. IF problem involves an inclined plane
THEN a) expect something rolling or sliding up or down

b) use F = MA
c) use Newton's 3rd Law

*2. IF plane is smooth
THEN use Conservation of Mechanical Energy

3. If plane is not smooth
THEN use work done by friction

4. IF problem involves objects connected by string and one object being pulled bV the other
THEN consider string tension

5. IF string is not taut
THEN consider objects as independent

M.G.

1. (IF problem involves inclined plane)a
THEN a) use Newton's Law

b) draw force diagram

*2. (IF problem involves inclined plane)l
THEN can use Energy Conservation

3. IF there is something on plane
THEN determine if there is friction

4. IF there is friction
THEN put it in diagram

5. (IF drawing diagram)a
THEN put in all forces - gravity, force up plane, friction, reaction force

6. (IF all forces in diagram)a
THEN write Newton's Law's

7. IF equilibrium problem
THEN a) IF=0

b) decide on coordinate axes

8. IF acceleration is involved
THEN use F = MA

9. IF "that's done" (drawing diagram, putting in forces, choosing axesl a

THEN sum Components of forces

a Statements in parentheses were not said explicitly by the subject but are indicated by the context.

41
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Table 10

Novice Productions Converted from Protocols

H.P.

1 . (IF problem involves inclined plane)'
THEN find angle of incline with horizontal

02. If block resting on plane
THEN all find mass of block

b) determine if plane is frictionless or not

3. IF plane has friction
THEN determine coefficients of static and kinetic friction

4. IF there are any forces on the block
THEN ..

5. IF the block is atrest
THEN ..

6. IF the block has an initial speed
THEN ..

7. IF the plane is frictionless
THEN the problem is simplified

8. IF problem would involve Conservation of Energy and height of block, lenqth of plane, height of plane
are known
THEN could solve for potential and kinetic energies

P.D.

*1. (IF problem involves an inclined plane)8
THEN a) figure out what type of device is used

b) find out what masses are given
c0 find outside forces besides force coming from pulley

2. IF pulley involved
THEN try to neglect it

3. IF trying to find coefficient of friction
THEN slowly increase angle until block on it starts moving

4. IF two frictionless inclined planes face each other and a ball is rolled from a height on one side
THEN ball will roll to same height on other side

5. IF something goes down frictionless surface
THEN can find acceleration of gravity on the incline using trigonometry

6. IF want to have collision
THEN can use incline to accelerate one object

Statements in parentheses were not said explicitly by the subject but are indicated by the context.
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Table 11

Key Features Cited by Experts and Novices

Experts

V. V. J. L.

Given initial conditions 9 3
Before and after situations 3 4

-Spring 0 5
No external force 4 1
Don't need details of motion 4 1

- Given final conditions 5 0
Asked something at an instant in time 4 1

- Asked same characteristics of final condition 4 0
- Interacting objects 0 4

- Speed - distance relation 0 4

- Inelastic collision 2 2
- No initial conditions 4 0

No final conditions 4 0
Energy easy to calculate at two points 1 2
No friction or dissipation 3 1

- Force too complicated 0 3
Momentum easy to calculate at two points 2 1

* Compare initial and final conditions 2 0
- Can compute work done by external force 2 0

Given distance 1 1
* Rotational component 0 2
- Energy yields direct relation 0 2
- No before and after 2 0
- Asked about force 2 0

Nov ces

P.D. J. W.

Friction 3 5
Gravity 3 3
Pulley 3 3
Inclined plane 3 2
Spring 2 3
Given masses 3 2

Coin on turntable 1 1
Given forces 1 1

*Force - velocity relation 0

*Asterisks indicate features mentioned by only one of the two subjects.
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Table 12

Decomposition of a Problem Statement into Propositions

Problem No. 8

1. A block of mass M1

2. is put on top of a I block of mass M2

*3. In order to cause the top block to slip on the bottom one,

*4. a I horizontal force F 1 must be applied to the top block

5. Assume a rfrictionless table.

*6. Find the Imaximum horizoal force F2

7. which can be applied to the lower block

*8. so that both blocks will move together 1

WWo
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Table 13

Proportion of Response Types

Novices Experts

Abstract Principle 9% 30%
"straightforward application of Newton's

Second Law"
"collision problem, use Conservation of

Momentum"
"no friction, no dissipative forces, just

apply Energy Conservation"

Problem Characteristics 330 35%
"'frictionless, problem is simplified"
"massless spring simplifies problem"
"pulley introduces difficulty"

Nonohysics Related Characteristics 40% 280 6
"problem is difficult to visualize"
'easy calculations but hard to understand"

"many factors to consider, make orobiem
difficult"

Nonoroblem related Characteristics 180 7%
"never did problems like this"
'numbers instead of symbols"'
must consider units"

'diagram distracting"

ail our problems used symbols for 6nown quantities rather than actual numerical values

U
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Table 14

Inferences Generated from Literal and Derived Cues

Literal Cue Derived Cue Inference

Frictionless Conservation of Momentum
Frictionless No dissipative forces

No dissipative forces Conservation of Momentum
No dissipative system Conservation of Energy

Frictionless No dissipative force Conservation of Energy
Frictionless Na dissipative force Conservation Laws

Energy not consumed Conservation of Momentum
then calculate new Energy

Frictionless Only force is restoring Newton's Second Law
farce

Center of Mass No external forces IMI VI I='M 2V 2t
at rest

Center of Mass
at rest

Center of Mass Relative Momentum - 0
at rest

Pulley must be taken Newton's Second Law for
into account translation and rotation

Mass and Radius Consider Rotational
of Pulley Kinetic Energy

Pulley -an't be neglected Rotational Dynamics
Mass of Pulley Rotational Energy
Massive Pulley Rotational Dynamics
Compressing Spring Think Energy
Motion Energy Analysis
Slip and Force Friction
M + M 2 Collide Conservation of Energy

" Stps aterand Momentum

2distance LWokEeg

Speed Newton's Second Law to
Find Acceleration then
Equation of Motion

Merry-Go-Rourd Rotational Motion Conservation of Angular
Momentum
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H. William Greenup 12 Defense Technical Information Center

Education Advisor (E031) Cameron Station, Bldg 5

Education Center, MCDEC Alexandria, VA 22314

Quantico, VA 22134 Attn: TC

Special Assistant for Marine 1 Military Assistant for Training and

Corps Matters Personnel Technology

Code lOOM Office of the Under Secretary of Defense

Office of Naval Research for Research & Engineering

800 N. Quincy St. Room 3D129, The Pentagon

Arlington, VA 22217 Washington, DC 20301

DR. A.L. SLAFKOSKY 1 DARPA
SCIENTIFIC ADVISOR (CODE RD-i) 1400 Wilson Blvd.

HQ, U.S. MARINE CORPS Arlington, VA 22209

WASHINGTON, DC 20380
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Civil Govt Non Govt

Dr. Susan Chipman 1 Dr. John R. Anderson
Learning and Development Department of Psychology
National Institute of Education Carnegie Mellon University
1200 19th Street NW Pittsburgh, ?A 15213
Washington, DC 20208

1 Anderson, Thomas H., Ph.D.
Dr. Joseph I. Lipson Center for the Study of Reading
SEDR W-638 174 Children's Research Center
National Science Foundation 51 Gerty Drive
Washington, DC 20550 Champiagn, IL 61820

William J. McLaurin 1 Dr. John Annett
Rm. 301, Internal Revenue Service Department of Psychology
2221 Jefferson Davis Highway University of Warwick
Arlington, VA 22202 Coventry CV4 7AL

ENGLAND
Dr. Arthur Melmed
National Intitute of Education 1 DR. MICHAEL ATWOOD
1200 19th Street NW SCIENCE APPLICATIONS INSTITUTE
Washington, DC 20208 40 DENVER TECH. CENTER WEST

7935 E. PRENTICE AVENUE
Dr. Andrew R. Molnar ENGLEWOOD, CO 80110
Science Education Dev.

and Research 1 1 psychological research unit
National Science Foundation Dept. of Defense (Army Office)
Washington, DC 20550 Campbell Park Offices

Canberra ACT 2600, Australia
Dr. Frank Withrow
U. S. Office of Education 1 Dr. Alan Baddeley
400 Maryland Ave. SW Medical Research Council
Washington, DC 20202 Applied Psychology Unit

15 Chaucer Road
Dr. Joseph i.. Young, Director Cambridge CB2 2EF
Memory & Cognitive Processes ENGLAND
National Science Foundation
Washington, DC 20550 1 Dr. Patricia Baggett

Department of Psychology
University of Denver
University Park
Denver, CC 30208

1 Mr Avron Barr
Department of Computer Science
Stanford University
Stanford, CA 94305
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Non Govt Non Govt

Dr. Nicholas A. Bond 1 Dr. William Clancey
Dept. of Psychology Department of Computer Science
Sacramento State College Stanford University
600 Jay Street Stanford, CA 9 4 3 05
Sacramento, CA 95819

1 Dr. Allan 'A. Collins
Dr. Lyle Bourne Bolt Beranek & Newman, Inc.
Department of Psychology 50 Moulton Street
University of Colorado Cambridge, ',Ia 02138
Boulder, CO 80309

1 Dr. Lynn A. Cooper
Dr. John S. Brown LRDC
XEROX Palo Alto Research Center University of Pittsburgh
3333 Coyote Road 3939 O'Hara Street
Palo Alto. CA 94304 Pittsburgh, DA 15213

Dr. Bruce Buchanan I Dr. Meredith P. Crawford
Department of Computer Science American Psychological Association
Stanford University 1200 17th Street, N.W.
Stanford, CA 94305 Washington, DC 20036

DR. C. VICTOR BUNDERSON 1 Dr. Kenneth B. Cross
WICAT :NC. Anacapa Sciences, Inc.
UNIVERSITY PLAZA, SUITE 10 P.O. Drawer Q
1160 So. STATE ST. Santa Barbara, CA 93102

OREM, JT 34057
1 Dr. Hubert Dreyfus

Dr. Pat Carpenter Department of Philosophy
Department of Psychology University of California
Carnegie-Mellon University Berkely, CA ?a7P0
Pittsburgh, PA 15213

1 LCOL J. C. Eggenberger
Dr. John B. Carroll DIRECTORATE 'F PERSONNEL APPLIED REZEARC

Psychometric Lab NATIONAL DEFENCE HQ
Univ. of No. Carolina 101 COLONEL 9Y DRIVE

Davie Hall 013A OTTAWA, CANADA KIA OK2
Chapel Hill, NC 27514

1 Dr. Ed Feigenbaum
Charles *Myers Library Department if Computer Science
Livingstone House Stanford 'Jnlversity
Livingstone Road Stanford. CA ?4305
Stratford
London £15 2LJ 1 Dr. Richard ". Ferguson
ENGLAND The American College Testing Program

P.O. Box iP
Dr. William Chase Iowa City. -A 52240
Department of Psychology
Carnegie Mellon University
Pittsburgh, PA 15213



Pittsburgh/Chi May 7, 1981 Page 7

Non Govt Non Govt

Mr. Wallace Feurzeig 1 Dr. Harold Hawkins
Bolt Beranek & Newman, Inc. Department of Psychology
50 Moulton St. University of Oregon
Cambridge, MA 02138 Eugene OR 97403

Dr. Victor Fields 1 Dr. James R. Hoffman
Dept. of Psychology Department of Psychology
'Montgomery College University of Delaware
Rockville, MD 20850 Newark, DE 19711

Dr. John R. Frederiksen 1 Glenda 'reenwald, Ed.
Bolt Beranek & Newman "Human Intelligence Newsletter"
50 oulton Street P. 0. Box 1163
Cambridge, MA 02138 Birmingham, MI 480i2

Dr. Alinda Friedman 1 Dr. Earl Hunt
Department of Psychology Dept. of Psychology
University of Alberta University of Washington
F monton, Alberta Seattle, WA 98105
L NADA T6G 2E9

1 Dr. Steven W. Keele
Dr. R. Edward Geiselman Dept. of Psychology
Department of Psychology University of Oregon
University of California Eugene, OR 97403
Los Angeles, CA 90024

1 Dr. Walter Kintsch
DR. ROBERT GLASER Department of Psychology
LRDC University of Colorado
UNIVERSITY OF PITTSBURGH Boulder, CO 80302
9--9 J'HARA STREET
PITTSBURGH, PA 15213 1 Dr. David Kieras

Department of Psychology
Dr. Marvin D. Glock University of Arizona
2" 3tone Hall Tuscon, AZ 35721
.ornell University
ithaca, NY 14853 1 Dr. Kenneth A. Klivington

Prograc COfficer
Dr. -Daniel Gopher Alfred ?. Sloan Foundation
:ncustrial & Management Engineering 630 Fifth Avenue
.ecnnion-Israel Institute of Technology New York, '1Y 10111

Ha fa
:SRAEL 1 Dr. Stephen Kosslyn

Harvard Jn iver jity
DR. ;AMES G. GREENO Department of Psychology
L?DC 33 KirkI3nd Street
'JNVERSITY OF PITTSBURGH Cambridge, MA 02138
9T'? )'HARA STREET
PITTSBURGH, PA 15213

A
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Non Govt Non Govt

Mr. Marlin Kroger 1 Dr. Donald A Norman
1117 Via Goleta Dept. of Psychology C-009
Palos Verdes Estates, CA 90274 Univ. of California, San Diego

La Jolla, CA 92093
Dr. Jill Larkin
Department of Psychology 1 Dr. Jesse Orlansky
Carnegie Mellon University Institute for Defense Analyses
Pi ttsburgh, PA 15213 00 Army N1avy Drive

Arlington, VA 22202
Dr. Alan Lesgold
Learning R&D Center 1 Dr. Seymour A. Papert
University of Pittsburgh Massachusetts Institute of Technology
Pittsburgh, PA 15260 Artificial Intelligence Lab

545 Technology Square

Dr. Michael Levine Cambridge, MA 02139
Department of Educational Psychology
210 Education Bldg. 1 Dr. James A. Paulson
University of Illinois Portland State University
Champaign, IL 61801 P.O. Box 751

Portland, OR 97207
Dr. Robert A. Levit
Director, Behavioral Sciences 1 MR. LUIGI PETRULLO
The BDM Corporation 2431 N. EDGEWOOD STREET
7915 Jones Branch Drive ARLINGTON, VA 22207
McClean, VA 22101

1 Dr. Martha Polson
Dr. Charles Lewis Department of Psychology
Faculteit Sociale Wetenschappen University of Colorado
RiJksuniversiteit Groningen Boulder, CO 8030"
nude Boteringestraat
roningen 1 DR. PETER POLSON
NETHERLANDS DEPT. OF PSYCHOLOGY

UNIVERSITY OF COLORADO
Dr. Erik McWilliams BOULDER, CO 80309
Science Education Dev. and Research
National Science Foundation 1 Dr. Steven E. Poltrock
4ashington, DC 20550 Department of Psychology

University of Denver
Dr. 'ark Miller DenverCO 30208
omputer Science Laboratory

Texas Instruments, Inc. 1 MINRAT M. L. RAUCH
Mail Station 371, P.O. Box 225936 P Ii U
Dallas, TX 75265 BUNDESMNITSTERIUM DER VERTED:GUNG

POS7FACH- '328
Dr. Allen Munro D-53 BCNN 1 GERMANY
Behavioral Technology Laboratories
1845 Elena Ave., Fourth Floor

Redondo Beach, CA 90277
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Non Govt Non Govt

Dr. Fred Reif 1 Dr. Richard Snow
SESAME School of Education
c/o Physics Department Stanford University
University of California Stanford, CA 94305
Berkely, CA 94720

1 Dr. Robert Sternberg
Dr. Andrew M. Rose Dept. of Psychology
American Institutes for Research Yale University
1055 Thomas Jefferson St. NW Box 11A, Yale Stition
Washington, DC 20007 New Haven, CT 06520

Dr. Ernst Z. Rothkopf 1 DR. ALBERT STEVENS
Bell Laboratories BOLT BERANEK & NEWMAN, INC.
600 Mountain Avenue 50 MOULTON STREET
Murray Hill, NJ 07974 CAMBRIDGE, MA 02138

DR. WALTER SCHNEIDER 1 David E. Stone, Ph.D.
DEPT. OF PSYCHOLOGY Hazeltine Corporation
NIVERSITY OF ILLINOIS 7680 Old Springhouse Road
CHAMPAIGN, IL 61820 McLean, VA 22102

Dr. Alan Schoenfeld 1 DR. PATRICK SUPPES
Department of Mathematics INSTITUTE FOR MATHEMATICAL STUDIES IN
Hamilton College THE SOCIAL SCIENCES
Clinton, NY 13323 STANFORD UNIVERSITY

STANFORD, CA 94305
Committee on Cognitive Research
% Dr. Lonnie R. Sherrod 1 Dr. Kikumi Tatsuoka
Social Science Research Council Computer Based Education Research
605 Third Avenue Laboratory
New York, NY 10016 252 Engineering Research Laboratory

University of Illinois
Robert S. Siegler Urbana, IL 61801
Associate Professor
Carnegie-Mellon University 1 Dr. John Thomas
Department of Psychology IBM Thomas J. Watson Research Center
Schenley Park ?.O. Box 218
Pittsburgh, PA 15213 Yorktown Heights, NY 10598

Dr. Edward E. Smith 1 Dr. Douglas Towne
Bolt Beranek & Newnan, Inc. Univ. of So. California
5C Moulton Street Behavioral Technology Labs
Cambridge, MA 02138 1845 S. Elena Ave.

Redondo Beach, CA 90277
Dr. Robert Smith
Department of Computer Science 1 Dr. J. Uhlaner
Rutgers University Perceptronics, Inc.
4ew Brunswick, NJ 08903 6271 lariel Avenue

Woodland Hills, CA 91364
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Non Govt

Dr. Benton J. Underwood
Dept. of Psychology
Northwestern University
Evanston, IL 60201

Dr. Phyllis Weaver
Graduate School of Education
Harvard University
200 Larsen Hall, Appian Way
Cambridge, MA 02138

Dr. David J. Weiss
N660 Elliott Hall
University of Minnesota
75 E. River Road
Minneapolis, MN 55455

DR. GERSHON WELTMAN
PERCEPTRONICS INC.
6271 VARIEL AVE.
WOODLAND HILLS, CA 91367

Dr. Keith T. Wescourt
Information Sciences Dept.
The Rand Corporation
1700 Main St.

me




