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1. Introduction

Recently Stewart and Ludford (1980) and Lu and Ludford (1980) have put for-

ward a theory of one-dimensional steady combustion waves that travel faster than

justifies the use of the combustion approximation; where it is assumed that the

Mach number, flame speed divided by a characteristic sound speed, is vanishing-

ly small. When the combustion approximation is abandoned the momentum equation

is retained and coupled with the energy equation. This coupling is essential

in the description of any combustion phenomena where the Mach number is not small.

Among the topics treated in these papers are fast deflagrations and detonations

respectively and are described using large activation-energy asymptotics. The

aim is to lay down the groundwork for a theoretical treatment of the general prob-

lem of transition from deflagration to detonation.

In narticular Stewart and Ludford show that the solution of fast deflagra-

tions has a very simple form when the heat release during reaction is small.

This limit is useful in the sense that it allows explicit formulas to be devel-

oped, whereas, otherwise numerical integrations must be performed. The present

paper adds to Stewart and Ludford's original results and uses the small heat re-

lease limit of the results for large activation energy to analyze the combustion

waves discussed in the previous papers; fast deflagrations and weak and strong

detonations. An interesting result from detonation theory, made explicit in the

small heat release limit, is that the minimum wave speed of a detonation is al-

most always greater than the Chapman-Jouget value.

2. The governing equations

The present paper will cite some details from the two mentioned papers.

Stewart and Ludford and Lu and Ludford will be referred to as I and II respec-

tively. The equations used here are those in I and are in fact valid for the

description of both steady waves of combustion theory, deflagrations and deton-

ations. Tn particular P, v, T and Y are the dimensionless density, fluid
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velocity, temperature and mass fraction of the deficient reactant, so that O,

v, T, Y 1 1, 0, 1, Y; or quiescent values; as the steady wave frame coordin-

ate s --. The problem of one-dimensional steady combustion has a special

formulation whenever the Prandit and Lewis numbers are set equal to one and is

governed by

yM2dV/ds = yMo(V-l) + (TV-1-I) (1)
00

dT/ds = d2T/ds2 + aAYe -e/T (2)

= T -(y-I)M 2V 2/2(322 (3)
0

T + ayY1 + B + (Y-I)Mo/2 with 8= Y (h)

PV =  . (5)

In the present formulation V and r are the independent variables and

the temperature T and mass fraction Y serve as auxillary variables defined

by (3) and (4). Equation (5) defines the density p and the pressure has been

eliminated by use of the ideal gas law. The other parameters that appear, y,

M29 a, A, a are explained in Ukble 1.

Thus equation (1) and (2) are to be solved under the condition that

2
(V,T) I (l,l+(y-l)M /2) [corresponding to (T,Y) (1,Y) as s o-] and that

the solution is bounded as s + +c.

3. Activation-energy asymptotics

In this section we summarize the results of I and II that describe the so-

lutions for deflagrations and detonations in the limit of large activation energy,

e - . First a review of the basic properties and differences of deflagration

and detonation waves is appropriate.



Both waves represent transition solutions of equations (1) and (2) that leave

2
the point (V,T) (1,1+(y-1)M /2) at s = and flow into the point (V,T) =

(V ,T) at s = +o. In determining the fixed points of equation (1) and (2) we

find that

= 1 + 8 + (y-l)M2/2 (6)

however the:re are two possible choices for V given by

V = V+ = ( M+) 2 _M2)2 -2( Y+l)OM-]/(Yfl)M2 (7)= Pv 0 -0

The reality of V, requires that for a given 8 the wave speed be restricted

so that

(-M
2 )2

>1 (8)

2(y-l)M 2 
-0

Equality refers to the Chapman-Jouget wave speeds. Equation (8) represents a

quadratic in M2  and thu6 there are two possible steady waves
0

0 < M2 < M2  [l+(Y+l)$- fl+( -)B] 2-11 1 (9)-o - ocJ-

corresponding tc deflagrations and

i < = [I+(Y+I)a + I+(-1)B2-1 M2o (10)

corresponding to detonations.

As we shall see for deflagrations, the point (V_,T) is associated with

a weak deflagration and is accessible, while (V+,T0 ), corresponding to strong

deflagrations is not. For detonations (V_,T.) corresponds to strong detonations

and is almost always accessible while (V+,rT) corresponding to weak detonations

Is accessible for only very special ccnditions.

21"
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3.a The asymptotic structure of fast deflagrations

It was shown in I, that a description of fast deflagration waves for

0 < M 2  oJ- was uniformly valid in the limit 6 for Daiak6hler numbers
0 ocJ-

D of the form

2 2. M m
D 22 0 (2exp((/T,)

2T*

where T = T(M 2 ) is a determined function of M2 , implicitly defining the00

flame speed M2  in terms of the flame temperature T*.
0

By expanding all dependent quantities as

U=u + -1 u +... (12)

-l
it was shown that the leading order solutions for To, and V in the e- I

expansion, herein denoted by the zero subscriptpould be constructed by solving

reactionless equations (1) and (2) subject to jump conditions across the flame

sheet located at s = 0. The conditions derivable from a flame sheet analysis

are that T and V and hence dV /ds are continuous and that To = T* at

s 0. Thus

T 1+ Be + (y-l)M 0 /2 for s < 0 (13)

" )M2/
and To 1 + $ + (y-1 2 for s > 0 (14)

V satisfies the differential equations

2dV (y-l)M +2= y+l l (V - + 0 )(Vo-I) +  for s < 0 (15)
ds 2y V  (y+l)M YMV

0 0 0

and

dV _V )(V ) for s > 0 (16)

ds 2y V 0 + 0-
) 0



The problem has been reduced to solving equations (15) and (16) under the condi-

tion that V 0(--) = 1 and V (0+ )  V (C).

Integrating the latter equation is straightforward and we find that for

S > 0
V

2Y 1 IVo-V l+1
Svn V + c (17)

y+ V+-V_ V '
0%L -

where c is a constant. Since V+ - V_ is positive V° - V_ as s - +o which

is appropriate for weak deflagrations.

As noted in I, we cannot integrate (15) without further assumption because

sthe right hand side explicitly contains e . However we discern some informa-
s

tion by replacing e in (15) with 0. Then the solution to

do/ds = (18)

and equation (15) and (16) for s < 0 and s > 0 respectively define a trajec-

tory in the (Vo,€ ) phase plane. The trajectory starts at (1,0) at s =

The local solutions in the neighborhood of the starting point are easily seen to

be a linear combination of M2_1

Tu (10 i a d e i e M (19)
0

Thus (1,0) is a saddle point (since M2 <1) and we leave along a unique inte-

gral curve. Then s = 0 corresponds to a point (V*,I) accordingly. (See

Fig. 1.) Since Vo(0)= V (y,8, M2 ) is determined by the integration for s < 0,an

hence as a function of the parameters y,8 and M, constant c is fixed and

T (0) = T. has the value

T* = 1 + + + (y-1)M2(1-V2)/2 (20)

0 
2which determines the flame temperature T* as a unique function of M2 .
0

" .-- .- - - • • , i,
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3.b The asymptotic structure of detonations

The general theory of detonations developed in II is completely analogous

to the theory of fast deflagrations except for one important aspect; there is not

necessarily a unique wave speed corresponding to an acceptable D. As before

D is considered specified generally as

D = C6e2exp(e/T.) , C - Oft) (21)

where C and T* characterize D.

Then the construction of the zeroth order solution follows as before. Equa-

tions (13) and (lh) are correct for T and V satisfies (15) and (16) respec-

tively. However for detonations ( 0> 1) the character of the initial point0

(V ,€) = (1,0) is that of a source. There is not a unique curve, but in fact

a one-parameter family of curves leaving the point. In particular the curves

that intersect 0 = I at some V (0) = V. can be assigned a flame temperature

T. which serves as a parametrization. (See Fig. 2.) For a given wave speed,

M2 M2
> the velocity structure in front of the flame sheet is not uniquely0 - ocJ+'

determined as it is for deflagrations. Instead, for a given fixed M2, speci-

fication of T. identifies V* uniquely from equation (20) and hence the appro-

priate velocity structure.

The restrictions on the existence of detonation structure are essentially

2
those from asking, for fixed what values of V* are attainable, and for

this set of V. does there exist a velocity adjustment behind the flame (s > 0)?

In II it was shown that V. has the permissible values

Vmn < V, V+ ; min < V (22)

• V



V*min corresuonds to the value of V, found by assuming the velocity given

by the adiabatic shock, which ad.lusts the solution from (Vol) = (1,0) to

(Vs,0) = ([(y-l)M2 +2]/(y+l)M,0), followed by the integration from the end state

of the shock (Vs,0) to (V4min'l). The last integration is uniquely determined

as (Vs,0) is a saddle point for detonations.

The weak detonation has V, = V+ and V° = V+ is the solution for the

velocity for s > 0. In II it is shown that V* = V+ represents the maximum

possible velocity at the flame sheet and that there are no solutions possible for

V. > V+. Again this observation can be made simply by examining the nature of

the point (V+,l).

Thus for every V must be determined by a numerical0 C+ V*min
integration from the saddle point (Vs,0). For a given T, then (22) represents

a complicated restriction on M2  rewritten as0

*min (M) . (23)

0

h. The limit of small heat release; $ << 1

The smallness of the heat release may be due either to a small heat of reac-

tion or to a small amount of reactant. The main advantage from a theoretical

point of view is that the limit allows analytical expressions to be developed for

the structure of deflagration and detonations as outlined in Section 2, which

otherwise have to be derived by numerical integration.

For 8<< 1, conditions (9) and (10) become

0 < M < M 1 - - 1/2+. (2h)

0 - ocJ-

for deflagrations, and
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2 , 1 + 2(y+-T l/2 ... (25)

for detonations. T is still given by (6), where as

(y-l)M+2 (26)V+ =1-_ 02 2  (26
(y+l)M2 0 l-M0

V = i + s/(l-M2 ) +... (27)
0

for deflagrations, and for detonations we interchange V+ and V in the above

formulas. The apparent non-uniformity near M2 = 1 is resolved by noting that
0

there are no steady solutions possible for

M2  <M 2 <NM2  (28)
ocJ- 0 ocJ+

Thus M2  is bounded away from one by 0( 1/2) and V are uniformly close
0 +

to one as 8 - 0 as required.

Also we note that if we were to set B = 0, the theory presented so far

collapses to that of the adiabatic shock. The solution of which is given by

equation (17) where V+ are found by setting 8 = 0 appropriately. With the

condition that Vo(-c) = 1 there is a non-constant solution only if M2 > 1.
00

In which case (17) predicts that V ( ) = [(y-l)M +2]/(y-I)M . Taylor's classi-
0 00

cal analysis of the weak shock wave assumed that

M 2 - 1 = e << 1 and V = 1 + ev' +... (29)
o 0

Directly from equation (8) we can anticipate Taylor-like shock structure only

when the heat release is sufficiently small. We will see that this is the case.

4 .a Deflagrations

Following I, for N2  not close to one, we write
0

V = 1 + BV' To = 1 + (y-l)M0/2 + ST' , (30)

, -L
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so that

T = 1 + 8(T'-(y-I)M2 V') +... (31)

0 0

and

yM 2 dV'/ds = -(l-M 2 )V' + t' (32)
0 0(

The solution which vanishes at s = - and is continuous at s = 0 correspon-

ding to deflagrations is

)[+(y-l)M 2[+_ e efor s < 0

=)[1-M~ oi fM 2[l+( -l)M 2 Ylo e for s > 0

For small heat release the flame temperature must be represented as

To = 1 + at* (34)

and the condition that T (0) = T, then leads to

t l = 1/(l+(y-l)M) (35)
0

,M2 .
For a given t, equation (35) serves to determine the wave speed, i.e., M2

However as we have indicated, the formula (33) clearly shows a non-uniformity

as M2 - 1. From the expansion of the Chapman-Jouget Mach number, equation

(24) we see that to resolve this difficulty we must take

M 1 + a$/2 , 0< - !y+ < 0 (36)0

We consider the expansion

V =1 + 81/2vi + v2 +... (37)
0,
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and substitution of (37) into (15) and (16) leads to the conclusions that

V1  0 v V2 =e s/y for s <0 and (38)

V1  0 v 2 =(s+l)/y for s >0 .(39)

The unboundedness of v 2  as s - c suggests that we consider a change of

scale for s > 0 (also suggested by the Taylor shock wave). So let

1/ (40)

and then there is a nontrivial balance for v 1  given by

dv1  Y+ (v,-+(,, 
(1

dn 2y

where

v ±+ ~-[ ±l2yl/ 2  (42)

The only solution to equation (41) that satisfies the condition v 1(0) 0

is found to be vvtf

l- (V /v-e6

where 6 4Y / 4 ri2(y+i) .(44)

(y+l) 
2

We note as a consequence of solution (43), a strong deflagration (i.e. v, - v

as n ~+~ is not a possibility.

Finally for the Chapsian-Jouget value aJ 7 2 Y__,v , n ov

ing (41) again gives

v = ( -1(45)
1 y+l (-y+l)/2n/y+l
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4.b Detonations

If we proceed to analyze detonations using expansions (30) then equation

(32) is valid. The corresponding solution for V' that vanishes at s = --

and is continuous at s = 0 is then

_(M2 _1)
[y 2 exp( 0 s+lm)s

0

Vt  [l+(y-l)M 2](l-M) for <(46)
0 o

I 1 for s > 0
0

Again the flame temperature is represented as in (34) and

t = (1-yM2)/(1-M2 ) (47)

Thus the detonation structure described here has a unique speed determined by

the flame temperature exactly like the deflagration. In fact the deflagration

and detonation analyzed in this way correspond to the weak deflagration and weak

detonations, i.e.

2
V - 1 + /(l-M)+... as s+

0 0

The fact that the above analysis does not yield a description of the strong

detonation, (strong deflagration) is not suprising since it would require the

strong end point lie close to V = 1, or

i2

[(y-1)M +2l/(y+l)M 1 (48)
0 0

aI



212

which is only true if M 2  1.
0

Thus to recover the description of the strong detonation it is again neces-

sary to consider the distinguished limit given by (36) where

a > /2(y+l) > 0 (49)

Expanding V as in (37) we find in particular that
0

,= V v (V= y (va+ ) s + e + v2 , for s < 0 , (50)

where v, is a constant.
We note that for v, # 0, then we must have a Taylor adjustment region downstream

as well as the upstream adjustment that we encountered earlier. We assume the

stretch (40) and the equation for vI  becomes

dv(
1 y+l vl(v +-) for n<0an 2yfor < 0(51)

dn 2Y 1 1 y+l

and the equation (41) holds for n > 0.

The solution of (51) is given by

Vl = -2a ()+Ae- Wyh)-i l (52)1 +l

Since a > 0, v1 - 0 as n - satisfying the required boundary condition

for any value of A # 0. In fact (52) is Taylor's solution of the weak adiabatic

shock mentioned at the end of section 3. The value of the constant A is not

determined and its choice then defines the strength of the shock, i.e. the value

of the velocity v, at the flame sheet. Clearly to describe the shock transi-

tion we require

A > 0 ; (53)

otherwise we will encounter an infinity for v1  at some negative but finite

value of n. Matching requires that

-;' I

S- ] I-(54)

~ ~ ~ ~ + 1 +A' - "
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hus (53) implies that

2o < v < 0 (55)
y+l

The downstream adjustment region, n > 0, is again found by solving (41),

so that the solution is generally given by

v+-[(v+-v*)/(v_-v)]v e(-, (56)

In order to ensure a uniformly bounded solution as n " it is necessary to re-

strict v* so that

[(v+-v)/(v_-v)] > 1 (57)

Since v_ < v+ < 0, equation (57) implies that

.v* < v+ (58)

We note that, as one would expect, that (56) also contains the simplest solutions

of (41) namely

v = v* = v_ or v+ for n > 0  (59)

Finally the Chapman-Jouget detonation occurs when

v = v_ and y+l (6o)

Its solution downstream, n > 0, is found to be

=, [v -1i Y+l ]-1 / (61)Vlz 2y n -
V+l



i - --

Thus we have found that if

2 -< v, < v+ (62)
: ~y+l -

we bave a proper description of the velocity structure and hence the entirety of

the detonation wave. We note that the lower limit in (62) represents the maximum

velocity difference that the adiabatic shock can attain while the upper limit repre-

sents the maximum velocity allowable at the flame sheet such that there is a velo-

city adjustment region behind the flame sheet.

Equation (62) then implies a restriction of the flame temperature T, = 1 +

B 1/2t, where t* is related to v, simply by

t. = -(y+l)v, (63)

In the present theory, t, is assumed to be specified so that (62) should in fact

be interpreted as a restriction on a (i.e. the Mach number corresponding to the

wave speed). The two inequalities expressed in (62) lead to the conclusion that

for a given t,

> (2 + (Y+l) t2 ) (64)
2t, (Y-1)2

The minimum wave speed is found by differentiating the right hand side of (E6)

and setting the result equal to zero. Thus we find that when

t= (Y-l)27y+l , min = acj = ' . (65)

Thus the minimum wave speed is precisely the Chapman-Jouget speed. (See Fig. 3.)

Since specification of T, characterizes the Damkohler number D, we are

lead to the conclusion that in the context of the small heat release assumption,

detonations nearly always travel faster than the Chapman-Jouget wave speed. And

foi- a tdiven gas, (i.e. t,) the minimum wave speed possible is nearly always great-

er than the Chapman-Jouet wave speed.

-~I
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Finally, the work presented here can be extended to Pr, Le # 1. Full de-

tails of this extension concerning deflagrations are given in I. We have carried

out the work for deflagrations near the Chapman-Jouget vave speed and for all

detonations which can be described in the small heat release limit and we have found

the differences minor enough as to regard the discussion presented here as quite

general.

-I

I.!~~1*
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TABLE 1

y Ratio of specific heats.

M Mach number of flame with respectto the undisturbed speed.

Nondimensional heat of reaction.

e Activation energy.

D Damk~hler number.

A = DM 2

P = Reference mass flux.
.4i

*1i
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CAPTIONS

Fig. 1. The Vo phase plane shown for deflagrations. Note that equation (15)

with dV/ds = 0 defines a parabola whose intersection with * = 0 and

1 = define the fixed points of the system.

Fig. 2. The Vo , 0 phase plane shown for detonations. Permissible V, lie in

a range V, min < V, < V+. The weak detonation goes directly into V+ and

has no downstream adjustment.

Fig. 3. Shaded region shows permissible wave speeds a. For a given t., a < a

where amin  is nearly always greater than cJ"

X
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