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Chapter 1

- INTRODUCTION

Electromagnetic transmission through apertures in a conducting
screen of finite thickness has been studied extensively by many in- ]
vestigators. The effect of screen thickness on the transmission is
of interest in many cases. The simplest model of the problem is a
.‘ two-dimensional one and is the focus of most investigations. Several A
solutions have been developed for the problem of electromagnetic pene- i
tration through an infinitelv long slit in a thick screen [1]-[10].

Both TM and TE cases have been studied, and a variety of techniques
are used. However, most investigators treat only the problem of a slit

with rectangular cross section. Morita [3] and Auckland [10] developed

- solutions for two-~dimensional slits with arbitrary cross sections.
Uslenghi [23] also considered the problem of a two-dimensional gasket
in a screen under several simplifying assumptions.

A three-dimencional problem is of greater complexity. Most of the
related work has been done for the quasistatic case. Akhiezer [11] extended
Bethe's [12] theory to the case of a circular aperture in a2 thick screen.
Garb examined the problem of a narrow rectangular slot in a screen of

4 finite but small thickness [13]. and later studied the polarizability of
,-3 small openings in a thick screen [14]. McDonald [15] cunsidered the
'; polarizabilities of small circular and rectangular apertures in a thick
screen. The methods of solutions usually rely on the assumption that

the aperture is electrically small, and also that the waveguide modes
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N are known for the aperture region inside the screen.

This report considers the more general problem for which an
aperture in a thick screen is rotationally symmetric about an axis
perpendicular to the screen. The method of solution, in general,

- does not depend on the size of the aperture. The formulation is not
limited to the situation where the aperture region in the screen is
a familiar waveguide section for which the characteristic modes are
known. However, this case is also considered and investigated in
detail.

In Chapter 2, we develop the basic formulation of the problem.
The equivalence principle [16, Sec. 3-5] 1s used to separate the
problem into different regions of interests by means of unknown boundary
currents. Field operators and operator equations are then established

for the currents. A modal formulation is used to treat the special case

' when the aperture region is a waveguide region (in our case a cylin-
drical or coaxial region). In the more general case a nonmodal formula-
tion is used. Chapter 3 contains a moment method [17] approach to the solu-
tion of the simultaneous operator equations. Both modal and nonmodal

formulations are given and the measurement matrix is discussed. A low

ﬂé frequency analysis is presented in Chapter 4 for a filled narrow annular
f{. slot. Resonant behavior of the power transmission is observed, and the
:; 1 transmission coefficient and the electric polarizability are discussed.

-

ffg Numerical results are presented in Chapter 5 for several examples.

i; Emphasis is put on the electric and magnetic currents obtained. Modal

[
g

and nonmodal results are compared when both formulations apply. Also,
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numerical results and analytical predictions for low frequency power
transmission are compared. A final discussion is presented together

with gsome recommendations in Chapter 6.
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Chapter 2

PROBLEM FORMULATION

2.1. Problem Specification

The problem to be considered is shown in Fig. 1, which shows
a conducting screen of thickness d situated between the surfaces z=0
and z = d. The regions z > d (denoted region c) and z < 0 (denoted
region a) are coupled through an aperture region (denoted region b)

in the screen. The incident fields E, and Ei’ generated in region a,

i
penetrate through the aperture region and radiate into region c. gi
and H, are the fields produced by the impressed sources gi and M, in
unbounded space filled with the same material as in region a. The

aperture region, region b, is bounded by the following three surfaces:

S.: the interface between regions a and b which lies in

the plane z = 0.

Sz: the interface between regions b and c¢ which lies in the
plane z = d.
S3: the interface between region b and the conducting screen.

Sl’ 52 and S3 are all assumed to be rotationally symmetric about the
z-axis. The three regions are assumed to contain media characterized
by their permittivities and permeabilities, (Ea, ua), (eb, ub) and

(EC. uc). For simplicity, all three regions are assumed lossless.

A cross section of this situation is shown in Fig. 2(a).

For the special case where region b is a cylindrical waveguide
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Fig. 1. Transmission through a rotationally symmetric aperture in

a thick conducting screen.
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Fig. 2(a). Cross section in the y-z plane for a simply connected S3.
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Fig. 2(b). Cross section in the y-z plane for a doubly connected 53.
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region, a conductor in the center of this region can support a TEM
mode and thus increase the power transmission. Therefore, we gen-
eralize our problem of investigation to one for which the boundary

surface S, can be either simply-connected (as shown in Fig. 2(a)) or

3
doubly-connected (as shown in Fig. 2(b)). The boundary surfaces Sl
and 82 are then either circular (when S3 is simply-connected) or
annualar (when 33 is doubly-connected). Since Sl’ S2 and S3 are all
symmetric about the z-axis, their uniomn, § = SlLJSZLJSB, is also sym-~
metric about the axis. In other words, Sl’ SZ’ 83 and their union

are all surfaces of revolution. A generating curve [, as well as its
associated coordinate t, and unit tangent vector £, can be defined for
S. Note that T is open with its end points on the z-axis when 83 is
simply-connected and closes upon itself when S3 is doubly-connected.

I' is the union of the generating curves of Sl’ 82 and 83, denoted Fl, Fz

and T3. A unit normal vector is defined for every point om S as

(2-1).

| et

= ¢ x

|2

Here ¢ is the conventional unit vector associated with the azimuth angle

$. The arrangement described above is illustrated in Figs. 3(a) and 3(b)
for the two possible situations. Furthermore, each boundary surface can
be approached from either of the two regions that the surface separates.
We denote the side of each surface from which the normal vector n points
t_n

by the superscript "+'", and the opposite side by the superscript For

example, according to the convention we use in this work, as shown in

PO RO K 1 el




15

!
!
!
f
1
L

Fig. 3(a). Generating curves of Sl, 52 and S3 and the unit

vectors, S3 simply connected. ‘
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Fig. 3(b). Generating curves of Sl’ S2 and 83 and the unit

vectors, 53 doubly .onnected.
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+
Figs. 3(a) and 3(b), S, denotes the surface immediately next to e just

outside of region b.

2.2. Equivalent Problems

In this section, the equivalent principle [16, Sec. 3-5]) is used
to separate the original problem into three equivalent situations which
exist in the three regions a, b, and ¢. For region a, a magnetic cur-

rent sheet El is placed just inside the conducting plane at z = 0, with

S1 covered with conductor also. The equivalent magnetic current Ml is

defined as

=
|

(S
X
|

(2-2)

where E is the electric field over z 0 in the original problem and

is unknown on Sl' It has zero tangential (to the z = 0 plane) com-
ponent elsewhere in the z = 0 plane. This magnetic current !1, and the im-

pressed sources J,  and yi, radiate in the presence of the complete

1
conducting screen over z = 0 to give the correct fields ga and ga in
region a. This situation is shown in Fig. 4(a). Furthermore, image
sources can be used to account for the effect of the infinite conduct-
ing plane as far as filled in region a are concerned. Therefore, we
have the equivalent situation, shown in Fig. 4(b), established for

together with their images, radiate into

reglon a. Here J Mi’ and M

i’ 1’
unbounded space filled with a medium characterized by (Ea, ua) to create
the correct fields in region a. A similar equivalent situation can be

developed for region c as shown in Fig. 5. Here the equivalent magnetic

current M, defined by

2
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conducting plane
at 2z = 0

.
0y
al:!:

(ea, ua)

! ' Fig. 4(a). Equivalent situation for region a.
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Fig. 5. Equivalent situation for region c.

Fig. 6. Equivalent situation for region b.
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M =EX2_) (2-3)

together with its mirror image with respect to the plane z = d, exist
on S2 and radiate into unbounded space filled with the medium char-

acterized by (ec, uc). These currents give the correct flelds Ec and

Ec in region c. Note that in the two equivalent situations for regions

a and ¢, electromagnetic fields from the equivalent magnetic currents
can be found using the field operators for unbounded space.

For region b, the entire closed boundary S is replaced by a
perfect electric conductor, and equivalent magnetic current sheets —ﬂl
are placed just inside S, and S,, respectively. This situation

2 1 2
is shown in Fig. 6, where —gl and -52 radiate in the presence of the

and -M

closed conductor to give the correct fields Eb and gb in region b. Note
that the use of -Ml'and —gz in this region ensures the continuity of tan-
gential electric field across Sl and Sz. In the special case where
region b is a cylindvical or coaxlal waveguide region, fields can be ex~
pressed in terms of Ml and EZ by means of the waveguide modes. However
in a more general case, it is not possible to obtain the fields in

region b directly from Ml and MZ alone. Therefore, for the general case,
we replace the conducting surface S in Fig. 6 by the electric current,
denoted -J, induced on S by —ﬂl and -gz. This equivalent situation is
shown in Fig. 7, where —ﬂl, -ﬂz, and -J radiate into unbounded space
filled with a medium characterized by (Eb, ub). They give zero fields
just outside S and the correct fields Eb and Bb in region b. Note again

that we have established an equivalent situation in which only the field

operators for unbounded space are needed. To summarize, we have
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developed equivalent situations shown in Figs. 4(b) and 5 for regions a
and c¢ respectively. The equivalent situation shown in Fig. 6 is intended
for the special case where region b represents a waveguide region, while
the equivalent situation shown in Fig. 7 is suited to the general case.

In the special case where region b is a waveguide region, if waveguide
modes are used for the field operators needed in the equivalent situ-~
ation in Fig. 6, we call the formulation a modal formulation. If a gen-
eral treatment corresponding to the equivalent situation in Fig. 7 is used,

we call the formulation a nonmodal formulation.

2.3. Field Operators

From the discussion in the previous section, it is evident that two

types of field operators are needed for our formulation. These are the

potential integrals which give the electric field or magnetic field in an
unbounded medium due to an electric or magnetic surface current distribu-
tion, and the modal representation which gives us the fields inside a

waveguide region when the tangential electric field is specified at the

two end surfaces. In the first case, although both the electric and
magnetic types of currents and fields are considered, because of duality

{16, Sec. 3-2], only the following two basic operators, Lg and LE are

needed:
-jk R -ik R
e iae " L@ awne ®
- - e ! —_ ' -
La(g) ik, J AR da' + N v J ATR da (2-4)
A A
and -jkaR
h J(x"e
= ——————— e ' -
La(i) v x J IR da (2-5)
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The integrations in both (2-4) and (2-5) are over the surface A where

the surface distribution J resides, and

R=|r-r'|-= /92 +o'? - 2pp' cos (¢' - ) + (z - 2')? (2-6)

_ 2 |
ka w uaea (2-7)

If r approaches A from one side of the surface, and if the surface is

assumed to be smooth there, then we can write [21]

~jk R
h 1 A % J(x") x (r-x") (1 + jk R)e
L(J)—'Z'J(E)Xﬁ - h XJ da'
o= = -0 -o 3
A 4TR
+ala - W] (2-8)
-0 0 h

where n, is the unit normal vector of the surface at r which points
toward the side of the surface from which r approaches A. Note that

the component of Lz(i) that is normal to A is not written explicitly
because it is not wused in our operator equations. It follows that
for a surface electric current distribution J and a surface magnetic
current M in an unbounded medium characterized by (Ea’ ua), the electro-

magnetic fields E(J, M) and H(J, M) are given by

_ e _h }
E(J, M) = LS( D) - L' (2-9)
HGI, M) = = (8o + LMD (2-10)
- = ﬂ(i [ M o
where
Ua
" T 5, (2-11)
o

Note that the linearity of the operators is used in (2-9) and (2-10).
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To discuss the modal type of operators we consider the case in which
we have a waveguide region b between z = 0 and z = d formed by two con-
centric cylindrical conductors, located at p = Rin and p = Rout' The
boundary conditions are, from (2-2), (2-3) and the equivalent situation

shown in Fig. 6:

(2-12)

N>
X
[}
=
s+]
Ias
N
]
o

and

zZxE =-M at z = d (2-13)

Also we have the condition that the tangential electric field is zero on the
waveguide walls. Note that when Rin = 0 the problem reduces to one in

which S, is simply connected and the cylinder in the center is missing.

3

To establish the operators in this case we first assume that the Eb and
H_ are generated by two vector potentials, A = Azg_and F = Fzé [16, Sec.
3-12}. A is called the magnetic vector potential and F is called the

electric vector potential. The electric and magnetic fields they generate

are:
"y
= — 4% —_— Ly - 9 o
E, kanbé + i, V(V+4A) -V XxF (2-14)
and
J.kb 1
H-b =- = F+ o YV F) +V x A (2-15)
b I
Az and Fz satisfy the Helmholtz equations
2 2
'.’7 -+ = -
Az kbAz 0 (2-16)
2 2
+ = -
v Fz kaz 0 (2-17)




and the fields they generate satisfy the boundary conditions on the

waveguide walls. Az can be expanded as a linear combination of the

| n=0,%1,%2,...,
nm

+ - +
TEM modes, ATEM and ATEM’ and a set of TM modes, {Anm’ A
m=1,2,3,...}. Fz can be exparied as a linear combination of a set of TE
+ -
modes, {an, anl n=0,%1,#+2,..., m=1,2,3,...}. The waveguide modes are

defined in the following:

A; S - Zt(k »2) (defined only for R, # 0) (2-18)
EM b in
/ln(R /R, )
out 1in
. _om jnd _+ _
A = v ™ 2 a2 (2-19)
+ - € Jnd Lt , . _
Flm wnm(o)e Z (knm,Z) (2-20)
where
o _ p
Nn(xnm)Jn(RO - xnm) Jn(xnm)Nn(R - xnm)
- ou if R, #0
3 in
1 I & m)
F 2(1 - ; LU
a Jn(Yxnm)
wnm(o) = (2-21)
P
2 Jn(Rout: * m)
x |J x )} if Rin =0
nm n+l om
Nl(xl )J ( p x' ) - J'(X' )N ( p x' )
nm’ n R nm n nm” n R ¢ nm
out ou ifR, #0
5 in
1 2 2 J! (x;m)
L 21 - 2 - 1 - ) B 1
n ' v 12 J’Z(Yx' )
nm nm n nm

(2-22)

e —
meO)’
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|
{ + 7
B 2 (k,2) = e K% 4 w40 (2-23a)
+ B}
Z (0,z) =2 (2-23b)
) z (0,2) =1 (2-23¢)
and
R,
Y = in (2-24)
R
out
2 *am |2
: kb - (R ) if kbRout z xnm
out
k =
nm
X
. nm 2 _ 2 ~
J (R ) kb if knRout xnm
out
(2-25)
X
2 “om (2 '
l kb (R ) if kbRout Z-Xnm
out
': k' =

/"' 2 2
) . nm N . ¢ Wt
J (R ) kb if kbRout xnm

Jn, Nn’ J;, N; are the nth order Bessel functions of the first and second

kind, and their respective derivatives. xnm and X;m are the mth lowest

= positive real roots of the following equations:

4 Nn(xnm)Jn(Yxnm) - Jn(xnm)Nn(Yxnm) =0
-3 if Rin #£0 (2-26)
X N i) Ty ) = T4y V53g) = 0

=0 (2-27)
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(
: Note that the TEM modes can only exist when Rin # 0. Now we examine
‘ the electric and magnetic fields associated with each of the modes.
t ~ i Fad
To compute the fields, we substitute ATEME-and A" 2z in (2-14) and (2-15)
. TEM* m*
. for A to obtain their corresponding electric fields E and Em and
TEM* m+ .
their magnetic fields H and H . We substitute F~ z into (2-14)
- —nm nm—

+ +
and (2-15) for F to obtain the corresponding fields E®” and H® . The
- nm -m

results are the following:

v + ik, 2
E?EM « g-TEM o b (2-28a)
5 . + 4
Emi « oM eJn¢'Jkan _ Ynm ( nm )2 "
nm ~nm + jwe, ‘R ATz ifk_ #0 (2-28b)
b out nm— nm
| B It 2t
—m nm—
! i = -
if knm 0 (2-28c)
B« A3
—Tm nm—
et e jing _*.. ., _
Enm x B © YA (knm’ z) (2-28d)
t -
M. _ L op x ptEM (2-29a)
b
m* A mt .
H = -Y z ¥ E if k #0 (2-29b)
—nm + om— —nom nm
k, z
Hm‘*' = - j L 2 ¥ Em+
—m p o
if knm =0 (2-29c)
B = - 2 x ™ ejn¢
~m =  “tm
+ ¥ 1 Yom .2
ez = - t o e: _am A ' -
Enm e Ynmi X Enm jwub (ﬁggz) anE. if knm ¥0 (2-29d)
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[
N

i et 1 N e
H z X E ~ jwe F
~nm ankbz b
if k;m = ( (2-29e)
. &« F 3
~nm nm—
where
TEM 1 e
e = "5 (2-30)
ln(Rout/Rin)
m m' N in m .
SO RN ON (2-31) !
e l_ ~
e = T V(PR U (Dm (2-32)
1 ¢ )
f : xnm kbRout
1- (———~—0
b kbRout
Y o= (2-33)
~ 1
xnm 2 -
. om 2 - N
ny (k R ) 1 if X o kbRout
b out
xl
nm 2
. J/l i (kbR t)
. e if x' < kR
3 nb nm — b out
[ _
Ynm , (2-34)
]
-
.l . n 2
g h| (kbR ) 1
e out if x' > kR
. ﬂb nm kb out
' ‘
> 3 The set of ectors {eTEM, e, Im=1,2,3,...} for a fixed n is an ]
= “nm’ ~nm :

orthonormal set under the inner product:




We now write the electric field E

b in region b as a linear combination

of all possible modes:

d oot T T € jn¢
+ Z E [Ban (knm’z) + Bnmz (knm'z)] Em €

e > ik =z _ —jknmz m
+ Z L (o e +a e e e
- nm nm ~nm
n=-=-° m=]
k #0
nm

an x
- +
+ ) ]« "IN
. nm m
n=—c m=1 n
k =0
nm

(2-36)

From (2-28), (2-29) and (2-36), we can write for ﬂb:
1 jk 2z _ —jkbz
H = (H - 2)z + ﬁ~'(-u e +a e ) h

TEM




constant and

where B is a
nm

the orthonormal relationships among

R
n z” e Am 2
From (2-12), (2-13), (2-36) and
eTEM, em and ee » we obtain
= —nm —nm
- TEM (o}
+ =
a  ta = (T, M)
+ jkbd ~jkbd
ta e = -
o o
af +a =™, MY
nm nm —nm’ —
+ Jknmd —]knmd
e + e
nm nm
d+ = <p" s Mo = - (hm s
nm —nm -1 -Tm
+ - e n
+ =
Bnm Bnm (hnm’ ])
jk' d _ ~jk' d
B+ P
nm nm
- e n
Bnm (hnm’ El)
B d+ 8 = - m, u
nm nm —nm 2
where
2
n_ .n. n_. 1 .
M, = Mipg + M1¢Q < o (p J (Mi
0
or
o0 ‘q)
_ n . n ;. jn
Ei ) (Mioﬁ + Miwg)e

= e (x

TEM

(h

—-jind

si‘/

e
e
-Tnm

for k #0
nm
n
¥
for k =0
nm
for k' # 0
nm
n
M)
for k' =0
nm
2m

(2-38)

(2-39)

do + ¢ J ®, - e ag)

(2-40a)
(2-40D)
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From (2-39), we obtain
' +jk d
. @™ e TP M+ )
o = CRPYT kbd if kbd # m,27,...
(2-41a)
* + ., - _ ,TEM o TEM .o 0 _
ao+ao~ (h ,ﬁl), (h » M) + cos l%d ﬁz) if kbd—'n,ZTr,...
m *ik md n n
+3 @, e ™M M+M)
a = L L 2 if k_d # 0,m,2m
nm 2 sin k d nm yhaE e
nm
(2-41b)
of +al =™, MY, @™, M+ cos k_d M) =0 1f k_d=m,2m,...
nm nm —nm’ —1 nm’ —1 nm —2 nm
+ m n m n o, _ -
anm - (bnm' El)v ("}lﬂm, Ml + mz) 0 if knmd 0
e -;jk['md n n
! t j(hnm’ © M M2)
t_ ,
Bnm > sin k; 3 if knmd # 0,m,2m,...
(2-41c¢)
+ - e n e n ' n, _ ' -
Bom ¥ Bnm (-}lnm’ ﬁl), (b_nm,§1+cosknmd 31_2) 0 if knmd T2l yun
-, M+ D
+  _ nm’ —1 —2 - - e n . -
B 3 y B = (M) 1f k' d =0
We substitute (2-41) into (2-36) and obtain
.‘< TEM 0 o}
o -csc kbd(h ,sinkb(z-d)lil+sink.bz_b12) if sinkbd#o
. E, = (E_*2)z + eTEM
v b A T TEM 0 + -
:_-1 (h s ﬂl)cosk_bz + j((xo-ao)sinkbz if sinkbd=0
B Q o0 [$D]
1 * ! m n n, m _jnd
’ - n}-m mll cse k_d(h ., sink (z-d)M; + sink zM)) e e
3
sink d#0
. nm
¥ . ' d (b8, sink' (z-d)M+sink’ zMMyel eI
l - o m=] esckm® Cam? Snnmz ST am® =2’ Sam
3
& sink' d#0
nm
¢

- -8 il M Senselib REE T - — =

- Jar M o
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Ty m n A . m jné
+ -

) Z [, ﬂl)cosknmz + J(anm a_ )sink zle e
n=-© m=1 nm nm mm
k d=m,2m,...
nm

oC oo
e .n o+ - e
+ ' - [}

_; Z [(Dnm’ﬂl)COSkan + J(Bnm Bnm)sinknmz]e e
n=-© m=] —m
k' d=m,27,...

nm

jnd

. s m n, m jn¢
+

.; Z (hnm’ El)gnm e
n=-© m=]

k =
nm

v 5 e _ 2z _z,.n e jnd
* n:z—on mil (hﬂm' (1 )’M d M )e € (2-42)

k' =0
nm

We substitute (2-41) into (2-37) and obtain

- w - -

. TEM (o} o
LS(kbd( h s coskb(z—d)ﬁ1+coskbzy2) if sinkbd#()

Wsvs _ J . TEM
(Hy*2)z - 3= h

b TEM 0. . . _
(h ’MI)Slnkb° + Cocoskbz if sinkbd-—O
- Z Y § Y csck d(h"_,cosk (z—d)Mn + cosk zMn)hm ejncb
=—«»m;1 nm nm ~—nm nm -1 nm —2 —nm
sink d#0
nm
- 7 ; i Y' csck! d(h® ,cosk' (z-d)M" + cosk' zMn)he ejncb
ﬂ=;"’ m:-:l nm nm -nm nm _'1 nm '_2 -Tm
sink' d#0
nm
- Y Y i Y_I@m" MDsink .+ C_cosk_z]h" Ind
n=o m=1 nm —nm'— L nm nm" —nm
k d=m,2m,
nm
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- 7 T 1Y [ MYsink' z + D cosk' z]n® eI™?
n=—co m=1 nm- -nm’—1 nm nm nm -nm
' =
knmd T, 2Ty eue
© oo _1_ j ¢
m .n m n
- nzlw mzllnb (Enm’ﬂl)kbz + Bnm]hnm €
knm=
e n n
3 e M A M) o g i
S ki © (2-43)
n=-© m=1 b
' -
knm
where
.+ - P - _ st _ a” _
C,6 = - J(rxo -~ ao), Com = JCe o wnm), Do J(Brlm Bnm) (2-44)

L:(agl, -M,) gives the magnetic field inside the waveguide region b for

the equivalent situation in Fig. 6. Note again that the TEM mode can

only exist when R n # 0. Also, we note that in (2-43), corresponding to

i

each undetermined constant (not determined from M1 and MZ but can be de~

termined through other information) CO, B , C or Dnm’ there is a con-

nm nm
dition on the magnetic currents as shown in (2-41). This correspondence
is summarized in Table 1. The z-components of the fields in the above

analysis are not investigated in detail because they are not used in

the operator equations which we introduce in the next section.

aack

cmmm = ein e TSI T T

PO
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Situation Undetermined Condition on the Current
Coefficient
kd =7, 2m, ... c, T, M) = - coskbd(b?E“,gg)
ko = O Bom (E:m’ M;) c T (D:m’ !;)
k d=m, 2m,... c_ (b MDD = - cosk _d(h M)
k! d =, 2m,... D__ (gﬁm, M) = - cosk;md(bsm,ﬂg)

Table 1. Summary of correspondence between undetermined coefficients in

w .
Lb and conditions on the magnetic currents.

2.4, Basic Operator Equations

So far we have developed the equivalent situations for the three
regions a, b and ¢. In each region the electromagnetic fields can be

obtained from the surface equivalent currents through the operators in-

troduced in the last section. For region a, magnetic current Zgl on Sl’
together with the impressed sources gi and gi and their images Ji and gi,
radiate into unbounded medium (v , u_ ) to give E , H , as shown in
a’ "a —a’ —a
Fig. 4(b). Therefore, we have
E - (LS J, + 0.3 - thoar +un) - 2ttar) (2-45)
-a a ‘a1 a—i a—i -1 a' -1
1 e ' h ' 2 .e
= — . + — -
By = o (@ ¥ HD + 1LI0, + n DT+ o L) (2-46)

where the field point is anywhere in the region z < 0, For region c,
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the situation 1s very similar except that no impressed sources are in

this region. Therefore, we have

h
E_= - 2L (M) (2-47)

2 _e
B= g LE(M)) (2-48)

For region b, we have magnetic currents -yl on S1 and _!2 on SZ' These

magnetic currents, together with the electric current on the entire S,

radiate into unbounded medium (Eb, ub) to give Eb’ gb in region b. There-
fore, we have
E = - 15(n.0) + Lha) + Lier) (2-49)
~b b* b b1 b2
_ 1 e e h
Eb = n, [Lb(ﬂi) + Lb(ﬁz) + Lb(nbg)] (2-50)

1f we substitute (2-4) and (2-8) into (2-45) and (2-47), we find that

tangential Ea is zero everywhere on the plane z = 0 except in S In

1
S1» let the field point approach from z < 0 (i.e., ﬁo = - Z in (2-8))

and obtain Z x E = M.. Also z x E_ is zero everywhere on z = d except
= = -1 -~

in S,, let the field pcint approach from z > d (i.e., éo =

|0y

in (2-8)),
and obtain Z X E.=- M,. These boundary conditions are expected because
of the way the equivalent situations were set up for regions a and c. For
region b, however, the condition that fields be zero outside S5 still has
to be enforced. This can be done by requiring either the tangential elec-
tric field or the tangential magnetic field be zero just outside 5. We

choose to use the condition on the electric field.

A A

A x A x (L) + LM - Li( D] =0 ons (2-51)

+ A A
Note that since the field is evaluated ou S , we have n =-1n for L, .
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( If (2-51) 1is satisfied, we immediately have from (2-49) that Z x Eb
, 1s zero on S3 and
2xE =M =2xE in 8, (2-52)
ZXE =-M, =2xXE in §, (2-53)

Therefore, if (2-51) is satisfied, our tangential electric field will
be zero on all conductor surfaces and continuous through the two aper-

ture faces S, and S,. The boundary condition yet to be satisfied is

1 2
the continuity of tangential magnetic field through S1 and SZ' To
compute tangential Eb on S1 and SZ’ we note that when (2-51) is satisfied
Ampere's law states
ax A x Eb =-nxJ in Sl and S2 (2-54)

To compute the tangential Ba in Sl’ we note that the contribution from
the impressed sources and their images is twice that radiated by ii’ gi

into unbounded (ea, ua). Therefore

P Z1%m)] on s (2-55)

=EXEX[2B_1 na 1

=3
x

=3
X

The tangential H in 52 is simply, from (2-48),

- .

> ~ 2 _e

& AXAXH =Aaxax-—LI(M,) onS$ (2-56)
. - - T¢ — T~ n,c= 2

X

‘i Therefore, the continuity of tangential magnetic field can be written in
y“1 the following form:

|

3

- .. . R - PR, [ T T— g T e - =

i et WS
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ﬁXﬁXLe(M)+i§ﬁxJ=-nﬁxﬁxn on § (2-57)
REET RS T BTSRRI 1
AxfaxLem) + ES AxJ=0 on § (2-58)
- = c 2 2 =7 = 2
Equations (2-57), (2-58), and (2-51) rewritten below,
PR h h e _ +
axax [L M)+ 1L, M) -100] =0 on § (2-59)

form the basic operator equations for the general problem, where
gl, M, and J are the unknowns.

When region b represents a waveguide region, the fields in region
b can be written in terms of gl and M, alone. The electric current J
1s no longer needed and the boundary conditions on the waveguide walls

are built into the wavegulde modes. Therefore, all we need to consider

is the continuity of the tangential magnetic field across S1 and SZ:'

n
A A e a/\ ~ ‘;ﬂ = - ~ I\x _
nxnXx La(gl) + 5B xR X Lb(yl, 52) nfxaxH ons (2-60)
AxaxLoM)+-=fxAx LM, M) =0 on S, (2-61)
- - c 2 2 - = b =1’ =2 2

(2-60) and (2-61) are the basic operator equations for the special case

when region b is a waveguide region.

2.5. Fourier Decomposition

So far we have not taken advantage of the rotational symmetry of
the geometry assumed in the problem. In this section this property is
used to reduce the system of equations to a smaller set of equations.

To do this, we first define the Fourier coefficients of the unknowns

as follows:
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{ n n n -~
, | J(e) Jt(t)ﬁ + J¢(t)g¢1

2w ~ o 2m

' £ _ ¢ A -
= | e - 21eI™ ap + — J (3,0 - $1e ™ a0 (2-620)
0 0
. n P N
M) (6) = M (D + ]9
g 2m —jn¢ Q 2m _ —jn¢
= 5 [ﬂl(wb) + tle do + 7 J [gl(t,q;) *dle d¢  (2-62b) s
] 0 j
' My(e) = (t)f + My (t)Q
A 27 2n
£ “gno 2 I
0 0
where n = 0, *1, +2,... . Since the field point in the operator equations
is always on the surface S and only the tangential component 1is used, it is

convenient to define field quantities in the same fashion as for the sources

' in (2-62):
ﬁ 2’“ . A _-jnd) ai
SN = o (L (D« Ele dé + 2—nf (LoD - 817 4o (2-63)
0 0
E 27 ﬁ
hni - = h . -jn¢ + h . R1,-jnd _
(1) ZHI (L (D) - Ele ™ do+ zﬂf (L, (D) * ¢le d¢ (2-64)
0 0

A

+
where for Lgn » the field point is on the side of the surface that n points

away from. L2n~ in the meanwhile, is used for field point on the other side.

Substituting (2-4) and (2-8) into (2-63) and (2-64), we find

L@ = 1Y
_ (.€n ,.n N i
= (L U) + L, ¢ (J¢)]t + [LE <bt(J ) + L ¢¢(J¢)]g (2-65)

Rt g £ " SN
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hnt hnt, n
LY@ = 1A

hnt hnt

n
- (Log, (OD + Loty I+ LMD + 1on (13 (2-66)

What (2-65) and (2-66) mean is that the Fourier coefficient of either the
t or ¢-component of the field is a function of only the Fourier coef-
ficlients of the t and ¢-components of the source in the same mode. The

new operators introduced in (2-65) and (2~66) are defined as:

en - =1 2 1 ' ' XUNFM
Latt(f) o {kaJ [2 sinvsinv (gn+l+gn-1) + cosvcosv gn]f(t Yo'dt
d
+ i J By qt7 dt (p'f(t'))de'} (2-67a) {

en 1 201 _ YAt
Lat¢(f) {ka J 3 sin v(gn+1 gn—l) f(t")p'dt

+ n J gnf(t')dt'} (2-67b)

;L. _ 2 l (] _ ' ' [}
t(f) { ka J sin v (gn+1 gn_l)f(t Yp'dt

a¢ 2m 2
+ % J g, dt (p'£(t'))dt'} (2-67¢)
en =42l VYAt
La¢¢(f) Co2m {ka J 2 (gn+l + gn-l)f(t )plde
- EE [ f(t')de'} (2-674d)
o | En
3
hn gy - 3&2 [o'si '-psinv’ -(z'-z)sinvsinv' 16 f(t')p'dt
Latt() = o p'sinv cosv psinv' cosv-(z'-z)sin nv 3 p
(2-67¢)
k3
Lg:;(f) = % £%§l + 5% J [p' COS\fGl + ((p'-p)cosxr—(z'-z)sinv)GZ]f(t')ddt'
(2-67f)
3
hnt f(t) ka ' TN A 34t
La¢t(f) = ;-—7—-+ T [ocosv'Gl-((p'-o)cosv'—(z'—z)sinv )G2]f(t )p'dt

(2-67g)

. - s ey Itk “Stn o ot R TS

-
[PE=NN . O VS N T - L ST I . S
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( 3
hn Jk '
B La¢¢(f) == J (z' -Z)C f(t")p'dt (2-67h)
where
. cosv=_¢-=-z, sinv=¢ +«p (2-68a)
cos v'= ' z | sin v'= €'+ § (2-68b)
i e—jqu
] — —_— -
gn(t,t ) = J cos n¢ TR d¢ (2-69)
)
0]
Ll -jkaR
(1 + jkaR)e ¢
G,(t,t') = sin cos n¢ d¢ (2-70)
1 3 3 2
k™ R
0 1
-jk R
(1 + jkR)e
{ G, (t,t") = cos ¢ cos nd d¢ (2-71)
2 3.3
k™ R
‘ 0 o
s . -ik R
(1 + jkaR)e
G,(t,t') = sin ¢ cos n¢ d¢ (2-72)
3 3.3
- k™ R
O L
2 2
/(p -p")" + (z - 2")" + 4pp! sinZ% (2-73)
-;f Note that in (2-67), f(t) represents the source function and all integrals
‘}} are along the generating curve where f(t) is not zero. For the orerator

1 LY, if we define

b

(2-74)
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it follows from (2-43) that
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wn _ (wm,mn 1
L, (M), M) = Ly, M)
3 TEM _aym© o,, TEM -
ny csckbd(h ,coskb(z d)§1+coskbzgz)g if n=0, Rinfo and sinkbd#O
_/J 4 (TEM o TEM . ]
e [(h ,ﬂl)sinkbz + Cocoskbz]h if n=0, Rin#O and sinkbd 0
’
0 if n#¥0 or R, =0
in
. m n n,,m
+ j mgl Ynmcsc knmd(hnm’ cos knm(z—d)y_1 + cos knszQ)hnm
51nknmd¢0
: . ' | e ' - n ' Ny, e
+ ] m£1 ! csc k! d(h ., cos k! (z~d)M; + cos k' zM,Dh_
sink' d#0
nm
+3j o Y [(hm s Mn) sin k z + C_ cos k z]hm
m=1 nm —am -l nm nm nm - -nm
k d=m,27,,
nm
+37 Y' [(h€ , M) sin k' z + D__cos k' z]h®
m51 nm ' -1 nm nm nm - -—nm
k' d=w,2n,
nm
m n m , -
[(h ¢’ ﬁl) kbz + Bnq]bnq if there exists knq 0
+ L
Y
(e, Mp o+ M)
9 h if there exists k' =0 (2-75)
kbd -nq ng

T TN ST e e e

N . . T
NP3 SOV 5= NPT, 33
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Note that all X om and x;m for a fixed n are interlaced, and therefore
at most one of all knm and k&m can be zero. Also note that the con~
ditions on the currents as shown in Table 1 should be considered as
part of the definition of the operator.

. From (2-64) to (2-67), we can rewrite (2-57) to (2-59) as:

n
en, n a n _ n _
—La (Ml) + > 1 x J = naﬂi _ on Fl (2-76)
LoDy + le AxJ%=0 on T (2-77)
c =2 2 - = 2
hn+ .. n hnt+, n en n, _ _
“L M) F L (M) - Ly (g I) =0 onT (2-78)

From (2-74) and (2-75), we can rewrite (2-60) and (2-61) as:

n
en, n a _ wn,n .n, _ n _
Ly M) - LMy, My) = nH on Ty (2-79)
Ly - &<Lm(Mn MYy = 0 on T (2-80)
o VU 2 tp Y Dy 2

For both sets of equations above, we have n = 0, *1, *2,... and H: is

defined as

n n . n
= +
. Hy = Hy o+ Hied
Y
- f) 2T’ ‘ zﬂ
> = . Ay .—ind - . Ay.—ind _
N = 77 J (H, = De do + 5= J (H, * De dé (2-81)
] 0 0
n
’ Our problem has now been reduced to solving (2-76) to (2-78) for the
3

general case and solving (2-79) and (2-80) for a special case. Although




{ an infinite number of modes exist, higher order modes are not important
unless frequency 1s high. Also, for axial plane wave incidence, Ei is

rcnstant in S, and therefore, from (2-81), only the n + 1 modes are

1

excited.

TTRTTRTTT T

-
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Chapter 3
NUMERICAL SOLUTION
3.1. Generating Curve, Basis Functions and Symmetric Product
The geometry of our problem can be fully specified by the

generating curve I'. This curve, in general, can be fully described
by a pair of parametric functions

p = hl(t), z = hz(t) (¢ fixed) (3-1)

In our numerical solution, a finite number of points, (pl, Zl)
(pz, 22),..., are specified on the curve. T is approximated by
connecting successive points with straight line segments. ti de~

notes the t-coordinate of the ith point (pi, zi). Therefore, we have

t-t,
= = ————%— ~— -
p=h(t) =p; +( e, ) (Pyyq — Py (3-2)
t - ti
z = hy(t) =z, + C—EE;——) (z;4 — 2y) (3-3)
where
bty =t ™Y (3-4)
T . < . ’
For Tys we have L, <t < ty For Fl, we have tN <t < t For F3
1 2 3
if 53 is doubly connected (if there is a center conductor in region b),
we have ty Lty and ty $t2 Ey 41" If S3 is singly connected,
1 2 3 4
we only have tN <t < tN for F3. This arrangement is shown in Fig.
1 2

8(a) and Fig. 8(b) for the two cases.
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N.+1
t
N2 tN1
tN #
2+1
t, (t )
EN.+1 2 N4+2
3 t
Y,
t ty (ty 41
N, 4

Fig. 8(a). Approximate generating curve, S3 doubly connected.

Fig. 8(b). Approximate generating curve, 83 simply connected.
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We now define a set of basis functions, {Eti' E¢j‘ i= 1’2""Nt’
j=1,2,... N¢}, on §S:
Ti(t)
Yy = 5 t i=1,2, , Nt (3-5)
P(E)
_‘_111)1 = p+ ] i=1,2,. ’N‘b (3-6)
where t
t - ti
for t. <t 7t
ti+1 - ti i i+l
2 ~*
T, (t) = —~ for t. . <t<t (3-7)
i ti+2 1+1 i+l i+2
0 for t elsewhere
1 for t, ot E-ti+1
Pi(c) = (3-8)
0 for t elsewhere
and
+ 1
o=y (0 o) (3-9)
N3 -2 for S3 simply connected
Nt = (3-10)
N4 for 83 doubly connected
N3 -1 for S3 simply connected
‘ N¢ = (3-11)
N[0 for SS doubly connected

Note that when 53 is doubly connected, as shown in Fig. 8(a), we use:

(3-12)

(p y 2 )=(D,Z) (O y 2 )=(p’z)
Na+l N4+l 1 1 NA+2 Na+2 2 2



1
.
]
3

The symmetric product, <a, b> of two vector functions is defined as:

<a, b> = Jg * bpdt (3-13)

3.2. Matrix Equation for the Nonmodal Formulation

The moment method [17] is used to reduce the set of linear

operator equations (2-76) to (2-78) to a matrix equation. To do this,

we first expand our unknowns g;, g; and gﬁ as linear combinations of

the basis functions defined in the last section:

m

W 1 o
M,= ) V u 4t \Y u _ (3-14)
1 =1 ltq t.,q+N2 1 =1 1¢q —(b,q+N2 1
o FE e "
M = v u o+ \Y u (3-15)
2 =1 2tq —tq =1 24q —dq I
[
n,J ) I u + 1 u (3-16)
b= g1t Tta ooy da g
where
T = N3 - Nz—l , m1¢ = N3-N2 » my, = N1-2, m2¢ = Nl—l (3-17)

Note that the boundary conditions that the components of !I and g; normal

to the edge nf the apertures be zero are satisfied by (3-14) and (3-15).

Fquations (-14) to (3-16) are substituted into (2-~78). Next, we test

o TTOTTITTTITTTRITT O T -
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(2-76) with every element in the set {Eti’ E¢jl i= Nz,...,N3—2;

i= Nz, ey N3—1}. In other words, we require that the symmetric

product of both sides of (2~76) with every element in the above set be
equai. Similarly, (2-77) is tested with the set {Eti’ g¢j|i=l,2,...,N1-2;

31 =1,2,..., Nl—l} and (2-78) is tested with the set {Eti’ g¢j|1=1,2,...,Nt;

3= 1,2,0.0, N¢}. This moment method procedure results in the matrix equa-

tion
" _an an 1 17 [sn 7 [ =nT
Zet 2 0 0 Use  Yeo| | Vie Pe
an an 1 1 =n -n
Zoe Lo 0 0 Yse  Uso| | V1o Py
cn cn 2 2 =n
0 0 Ztt Zt¢ Utt Utcb v21: 0
= (3-18)
cn cn 2 2 =n
0 0 Z Z U U v 0
ot oluj dt olo) 26¢
! 1bn 1lbn 2bn 2bn bn bn =n
Ytt Ytd) Ytt ch) Ztt Zt:d) It 0
' 1bn 1bn 2bn 2bn bn bn =-n
! Y Y Y Y Z Z 1 0
< | Vot %0 ot $0 ot o] [ %o | [°]

where the Y's, Z's and U's are submatrices. Their elements in the ith

row and jth column are defined as:

an en
- _ >

5 (20q 13 Uy i, -1’ Fa Qg e, -1
-9 2 2
‘T; P»q = t,0
- P= L2y, my (3-19)
4
_ cn en

Z ., = =<u ., L L )>
r (254145 Ypir Lo (Ugy)
""i‘ P, 9 = t’¢
11 1= 1, 2,000, my
;gi I (3~20)
e
&
5 N

—--,r_'—-.“.-.'?_.?_ -a— r— o e

Ly

. , . . ST .
e SRS ¥ P Y W T L. T




bn en
= - <
Zpglay 7 7 Uper Ty (g
p,q = t,0
L= 1,2, N
3= 12,00, N
1bn - hn+
Yoq 135 = Ypiv Ly (Eq,j+N2-1)>
pP,q = t,¢
f=1,2,..., N
p
j= 1s29 ’ mlq
2bn hot
Y . = <u ., L L)
(Yoq Jiy = “Mpy» Ty Cugy)
P>q9 = t,¢
i=1,2,..., N
P
ji=1,2,..., m2q
n
1 _ _a A
Woalis = an, “p,imm,-10 & 8y
n A
i Gren. 5 ¥ Sy -1,
4n, 0 2’j 2
b j
Na A1+N2—1
N\ F (51+N2-1,j + 9
MpPi4N. -1
2
\_o

Ry
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3
(3-21)
i
[
(3-22)
(3-23)
) if p=t, q=¢
14,-2,5) 1 P ant
if p = q (3-24)
Pyq = t,¢
i= 1,2,...,m1p
1= 12,008
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n
2 c ~
U = ,
Wpalag = Zn Lpev 8% gy
nc A
n, P
b 7]
-nc Ai
= " (6lJ + Gi—l,j + 611 éj’N )  if p=¢ , q=t
4n, p, 4
b i
4] if p = ¢
P»q = t,¢
i=1,2,..., m2p
j=12,..., Nq (3-25)

Note that explicit formulas are obtained for elements of the U's because
the evaluation is very easy. The Kronecker delta is used in (3-24) and
(3-25). The evaluation of (3-19) to (3-23) requires complicated double
integration. Numerical methnds are used in the computation. The evalu-
ation of the g's and G's in (2-69) to (2-72) is important because of the
special care required in handling the singularities of the integrands.
The singular part, or a function that has the same singularity, is inte-
grated analytically for each integrand that has a singularity. The dif-
ference, which is regular, is then integrated numerically. The details

are explained by Mautz and Harrington in [18], [19], and [20].

on =n
it’ V1¢’

\/ ¥, ¥, T" and T, are column matrices defined as

2t 247 't ¢
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isl

i Vis2
T (3-26)

is
1,2

[ %
[

ism

sl

s2
= . (3-27)

£

Their elements are the unknown coefficients of the expansions in (3-14)

to (3-16). 5: and 7" are column matrices of lengths m, and m, K re-

b 1t 1¢

spectively. Their elements are defined as

n n s =t,0

P =n <E . _1° _}_'I_-> (3'28)
sj a S,J+N2 1 i j = 1’2""’m15

A more detalled examination of the "excitation matrix" defined in

(3~-28) is discussed in a later section.

3.3 Matrix Equation for the Modal Formulation

To discuss the modal formulation, we first note that the complete
systems of equations for this formulation consists of the operator equa-

tions (2-79) and (2-80) plus the equations that set the conditions on the
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magnetic currents, when required, as summarized in Table 1. When the

operator L:n is used, a finite number of modes are used instead of

an infinite number of them., The unknown magnetic curretns g: and g;

are expanded as in the last section:

M1t "4
Mtlz =1 vrliti Y ogan- L Vrllcbi Y, 14N -1 (3-29)
i=1 178, 1=1 14N,
n "2t n m2¢ n
¥, = 121 Voes Y1t 121 Voot Yo,1 (3-30)

We substitute (3-29) and (3-30) into (2-79) and (2-80). Equations (2-79)

and (2-80) are then tested by {Eti’ i=N , N,=25 3 = Nz,...,N3—l}

%jl oo Ny
and {Eti’ Y5 -2; § = 1,2,..., Nl—l}, respectively, using
the symmetric product defined in (3-13). The resulting equations can

li=1,2,..., Ny

be written in t he following form:

et gment wme gz o fe ] e

T R N A

el D R R A A

B R e vl A N
_E“ ] (3-31)

where the 2's and V's and p's are defined the same as in (3-26) and

(3-28). The elements in the W's are defined in the following:

——— e T TR N e - e -

I I W o s




} T —
45
{
S wbnll - na %? kb -mlp —mlq+
E}ﬁ— ) PR cot(knmd) xnm X o0
o] b n=1 am
sink d#0
nm
N k! +
+ J-ER oor(k! d) x°LP xeld
m=1 kb nm nm nm
sink' d+#0
nm
-TEM -TEM+
+ cot(kbd) XX (if n=0, Rin#O, sinkbd#o
, and p=q=¢)
1
1 -elp --elq+
L. : t -
+ kbd xnk xnk (if there exists a knk 0)
P, q=t,d (3-32)
m
n N k. +
wbn22 _ 2'c: Z kb cot (k. d) ;mZp xm2q
Pq an m=1 am nm nm nm
sink d#0
nm
e
N
k! +
* Zl BB ot (k! _d) xooP 382
= b nm nm
sink' d#0
nm
-TEM -TEM+
+ cot(kbd) Xy Xy (if n=0, Rin#O, 51nkbd#0
and p=q=¢)
1 -e2p e2q+
- ) .o
+ E;E X Xnk (if there exists a knk 0)
P> Q= t,¢ (3-33)
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m
' bnl2 Na N kb -mlp —m2q+
. W = ST ) T csck_d x X
Pd 2in, =1 k o nm nm  onm
sink d#0
N kg —elp -e2
+ ) 8 csc k' d x°P k€44
m=1 kb om nm
sink' #0
nm
=TEM —TEM+

+ csckbd X%, (if n=0,Rin#0,slnkbd#0, and p=q=¢)

1 elp e2q+
- - . . 1 =
+ i;g X xnk (if there exists a knk 0)

P,a = t,¢ (3-34)

P4 2in n=1 knm CSCkhmd *am *am

sink d#0
nm

m
. n N k _ _ +
wbn21 _ __EL.{ 5 b m2p xmlq
b

N k!

) L k'md
m=1 b o
sink’ d#0
nm

+
£e2p ;elq
nm  nm

+
+ csc k d ;gEM XIFEM (1f n=0, R, #0, sink d#0 and p=q=¢)

1 e?p -elq”
Xk

(if there exists a k', = 0)
nk

bd nk n
4

+
-m2p -mlq -
kbd Xk *nk (if there exists a knk 0)

IS

P,q = tad’ (3-35)

T e T W e = a— o e

N Y P S ey N



-ml -el
p’ X P,..

where Xom m ., etc., are column matrices. Their elements are
defined as
R T é
out i+N, -1 ]
-mlt m . 2 m :
= = ————— -— H
. [xnm ]i ll-1:,1+N2-1’ t—111111> In J o q)nmdp (3-36) :
Rin
1 i=1,2, ,mlt
R P
out i+N,.-1
-m1¢) = < m S = — 2 Im'
(x 0 ki Yy, 14N, -17 o f ¥ Vo 9P (3-37)
- Ry p1+N2-1
i=1,2, ,ml¢
Ro t
. lt . e S = u e'
Com i TS, AN, -1 LI f Ti+N2_1 Uy 40 (3-38)
. Rin
i=1,2,. ,mlt
—el e Rout Pi+N2-l e
[xnm ]]'. = ll‘ba i+N,)—l’ Dnm* = - ]Jjn J ‘—-‘-—‘—‘+ T;Anm dO (3"39)
- R,  Pin -1
in 2
i=12, .,m1¢
. . i+N,_ -1
~TEM TEM_ _ _ 2
{' [xl ]i \_l_ld),i_'_Nz_l’ b = D+ (3-40)
B i+N2—lj In (R /R, )
i i i=1,2, ,m1¢
k]
)
L}
T
\ -m2t, mo Mty m
3 (051, = <u s BT = ~n J = Yo 40 (3-41)
- “in
] i=12 "Mt
¢
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R
P
m2¢p, _ m o out i m'
[xnm ]i - <E¢i’ Llnm> f + UJnmpd p (3-42)
R 5
in
i 1,2, .,m2¢
Rout
~et e _ _ e'
[ nm ]1 <Eti’ hnm> -7 J Ti lj)nm do (3-43)
R,
in
i=1,2, .,m2t
P
-e2d = e _ out i e
[xnm ]i \E¢i’ llnm5 T Tan J + lj)nm de (3-44)
R, Pi
in
i=1,2, ,m2¢
A,
[}—{';EM]i w,, RTEM, _ i (3-45)
pi V/ln (Rout/R )
i= l,._,...,m2¢
wz‘;m, wﬁm, T, and P, are defined in (2-21), (2-22), (3-7) and (3-8). The

superscript "+" on a matrix denotes its complex conjugate transpose. N

e
and N~ are the numbers of TM and TE modes used in the approximation of

L:n. We normally choose them such that w:m(p) and wsm(p) have a number

of oscillations in any given subsection.
The X's and the column matrix C° exist only when at least one

' we mean any of the

"“"cavity resonance'" occurs. By '"cavity resonance,'
; =n
situations listed in Table 1. The elements of the column matrix C are

the unknown coefficients C , B, C , and D__ when their corresponding
o’ nm’ “nm nm

resonance occurs. If such an unknown coefficient exists as the ith ele-

— e e Ty - B




e —

ment of En, then there exists a corresponding ith column in each of

n n n n
the xlt’ X1¢, X2t and X2¢.

following form:

This corresponding column is of the

-1t -
Fna X
n ¢
¥ a
Py - (3-46)
23 n  cos kd x2t
c
-2
os kd
an c X ]

where the x's and Y and k used in (3-46) depend on the particular
"cavity resonance" under consideration. The correspondence between
the unknown coefficients and the x's and Y and k in (3-46) are sum-

marized in Table 2.

is i=1,2
Coefficient Y k
s=t,¢
~TEM for s=¢
o 1/n, k, *1
° 0 for s=t
-m
Bnm ]/nb knm xnm
S c y k x
. nm nm nm nm
o D y! K' x&
’ nm nm nm nm
©n
: ¢ Table 2. Correspondence between x's and Y and k in (,~46) and the
y .
v 3 coefficients associated with cavity resonances.
El Next we consider the conditions on the magnetic currents when
wi cavity resonances occur. Substituting (3-29) and (3-30) into the
A
b
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conditions listed in Table 1, we find
Ne n+ Ne n+ n+ n+ ——n ]
ﬁ; Xlt ﬁ; X1¢ X2t X2¢ Vlt = 0. (3-47)
~n
V1¢
~=n
Vor
=n
[ Vo
Combining (3-38) and (3-54), we obtain, for the modal formulation,
" _an bnll an bnll bnl2 bnl2 n Y[ =n [ -n)
Z + W + W
tt tt zt¢ to wtt wtd) xlt Vlt Pe
an bnll an bnll bnl2 bnl2 n =n -n
VA + W VA + W W W \Y
ot T Mot o6 T Voo ot 99 *16]] “16 Py
bn2l bn2l cn bn22 cn bn22 n =n -
+
wtt wt¢ Ztt wtt Zt¢ + wt¢ X2t V2t 0
bn2l bn2l cn bn22 an bn22 n =n
W W VA + W Z + W \'
ot o0 “or t Yor o0 + Yoo X260 || V2o 0
n+ n+ n+ n+ =n
v
! ca¥1e Vea®10 %ot %26 1 B
(3-48)
where
Voa = nc/na (3-49)

3.4. Far Field Measurement and Plane Wave Excitation

The modal and nonmodal formulation discussed in previous sections
share the same excitation matrix defined in (3-28). The values of the
matrix elements depend upon the specific type of incident field under con-
sideration. In this section we consider plane wave incidence. This

plane wave can be considered as the field radiated by an electric dipole
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located so far away from the aperture region such that the distance
between the dipole and the aperture region is much greater than the
linear dimensjion of the aperture. Therefore, from (3-28), the compu-
tation of the excitation matrix involves calculating the reaction

[16, Sec. 7~7) between the magnetic field due to an electric dipole and
the basis functions of the magnetic current in the aperture Sl' Further-
more, from reciprocity {16, Sec. 3-8] the problem can be thought of as
calculating the reaction between the electric field due to the basis
functions of the magnetic current and the distant electric dipole. This
situation is very similar to the one we have when the far field on the
transmitted side is considered. In that situation, each of the two com-
ponents (tangential to the radiation sphere) of the radiation electric
field can be thought of as the reaction between the electric field due
to a linear combination of the basis functions of the magnetic current

and a distant electric dipole of unit magnitude, pointing in the

appropriate direction. Therefore, the far field measurement and the
plane wave excitation share basically the same analysis.

First, let us consider the plane wave excitation. The plane

.

wave consldered here is of either the O-polarization or the ¢-polari-

(S

<

..
zation. The electric and magnetic fields of these two types are of

;_4 the following form:
> 1
o . ko x
o EO - EG 8 e i

¢ —i o —i
, i O-polarization (3-50)

B 1
. E? - ——-51 =i

Na

<MY el ,

a vV VETE T, -
oy

v XS

AR} —— —

T Y T - = -

- e &
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(
_k.r
S o kTE
g-d e
¢-polarization (3-51)
¢ _ 1 ¢ o)
LMY M
» a
where
T A A (3-52)

§i and Qi are the unit vectors in the spherical coordinate system
at the point, (ri, 61, ¢i), where the distant incident source is
located. This situation is shown in Fig. 9. A general plane wave

is a linear combination of (3-50) and (3-51). Substituting (2~81),

(3-50) and (3~51) into (3-28), we obtain

2m

| W e
Psj = 2n J dee (5'9—s,j+N2—1) [ dols - kyxgy)e
th 0
: s = t,d
q = 0,0 (3-53)

j = 1,2,...,mls

The extra superscript q denotes the type of polarization under con-

sideration. Substituting (3-5), (3-6) and (3-52) into (3-53), we

a obtain
. -jng
- EO e i \
A -ng _ o ﬁtu
: Py 27k n
] a
- -ind
’ —FO . j““i
‘ n0 o ° gt
¢ | ¢ ana

(3-54)




Fig. 9. Coordinates for the incident wave.

P A
- (E,uc) 8
~
%...._..._ at am o e G = wm e e ma e aw mem v ae a— -
\
\ r
B _
\ ) -(_p

Fig. 10. Coordinates for the transmitted far field.
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where the elements of the column matrices, R's, are defined as

t
N
tb n+1 3
an 3 ﬂkacos 61 J Tj+N2—1(t)[Jn+1(kap sin Bi)
tN
2
- Jn—l(kapSin 61)] sin v dt
40 . tN3 Pj+N2—l(t)
an =-3jmw kacos 61 p+ [Jn+1(kap sin Bi)
t N, -1
N2 2
+ Jn—l(kap sin Gi)] pdt
té n tN3
an= j nka J Tj+N2—1(t) [Jn+1(kap sin 61)
tN
2
+ Jn_l(kap sin 81)]sin\)dt
P, )
N j+n, -1
¢¢ _ .ntl 3 v2 ,
an ﬂ ka J -—7;r—————— [Jn+1(kap sin 81)
t J4N, -1
N2 2
- J_ (k0 sin 6.)] pdt (3-55)

The Jn's denote the Bessel functions of the first kind. The definition
of the R's is to link quantities in this work to those in [21].

Next, we consider the far field pattern on the transmitted side.
From the equivalent situation discussed in section 2.2., we know that the

far field is due to 2M

2 in Sz, radiated into the unbounded medium (EC, uc).

By reciprocity, we have
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E - 1l- J L:(Ig) * M, (x')da’ (3-56)
where Lg is an electric dipole situated at the point (r,0,¢) distant

from the aperture in region C. £ is either § or § since it is along

the directions of these two unit vectors that the far field is to be
computed. This situation is shown in Fig. 10. Notice that we have

moved the origin to the center of S2 for convenience. Since either

§ or @ is tangential to the radiation sphere of Ig in the vicinity of

Sz, we can write

. —jkpr
jk (F x 12) e ‘ a '
h,.» - c — — jrer _ _

LC(I&) e e £ =0,¢ (3-57)

From (2-62b) and (2-62c), we obtain
© n n 2, jnd

M = M £ +M e =1,2 3-58

M= L OGS+ p (3-58)
Substituting (3-57), (3-58) and (3-15) into (3-56), we obtain
E . ﬁ = EQ
—r - cr

ik e_chr m’_Nl—Z tN 2w
_ ¢ . n 1 oo ' V81 ufpw B j_ii._g'+jn¢
iR SR { deiTy(eD) Jdd’ Ee(ExLe
i=1 t 0
1
N. -1 t 2n
1 N P.(t") Y )
+ L Vo J Faep! ‘+“"J 4 @ - gx eniErx" I ]
j=1 t, i 0o
(3-59)

Here the extra subscript r denotes radilation field and the superscript

L denotes the component (0 or ¢) of the field. The integrals in (3-59)

are very similar to those in (3-53). It is not difficult to find that

T U S
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(6] [ zt0 200 | [sn
Ecr —jkcr Rn Rn v2t1
-jk o .
St TS e
2nr _
n—-oo
) =tH =40 =n

P | % e ] [V

where the R's are the transpose of the R's defined as in (3-55)

with (ka, 61, th, tN3) changed to (kc, 8, tl, tNl) and the sub-

+
script j+N2-l on T, P and p changed to j. The lengths of the
matrices also change from mlt’ m1¢ to m2t and m2¢ accordingly. Note
gin v is -1 in Sl and is 1 in Sz.
It is appropriate to discuss the symmetry with respect to n

at this time. From (3-56) it is apparent that

ﬁFS Rtq> ﬁte _std
-n -n n n
= (3-61)
§¢9 gho _§¢6 700
-n -n n n
From (3-19) to (3-23) and (2-67) to (2-73), we find
o,-n 0L, =N an _,on
Ztt Zt¢ Ztt Zt¢
= (3-62)
o, -n o, =n an an
bl ’ _Z Z
Zpt Z g ot o6
a = a,b,c

-—————- -y S A e ol ST Cwwe e -

VRTINSV VIS, - VPRSI ¥ U PRPY - SEPETTSORIK 1

-

hnaionbiohin
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{ -
‘ jb,-n jbs-n - jbn jbn
) Ytt Yt¢ Ytt Yt¢
= i=12 (3-63)
. 4b,-n _ib,-n bn bn
d Y Y Y -Y
ot ¢¢ J L ¢t ¢
4
The elements of the U's do not depend on n, as shown in (3-24) and
(3-25). Therefore, from (3-54) and the above discussion, we find
6 6 ) ¢ ‘J'
=-nb _ _&n =-n$ _  cn . - :
Ve =T - Ve Vit §j=1,2 .
=-nb ond =-nd =n¢ . ;
v, = V, s v, = -V, =1,2 3-64
jt i¢ j¢ jt It ( )
f-ne = TI‘IO , T-n(b = ind)
t t t t
i
=-nf -nf --n¢ -nd
I = -1 s I = I
‘ ¢ ¢ ¢ ¢
Here the extra superscripts { and ¢ denote the solution of (3-18) for
the particular polarization of the incidence. From (3-14), (3-15),
(3-58) and (3-64), we obtain
no
o) V .
: i I S 1=1,2,...,m
. 1| e=e n=1 714N 1t
i+N 2
C N 2
Ay
Voﬂ - Vn8
’ )
| M;bl . =ty 7 ML cos o 1=1,2,...0m
. Tle=ti o 1 Piaw - n=l p. o _
1+N2 ] 1+N2 1 i_+N2 1
Vs
» —— sinn ¢ 1=1,2,...,m2t
n=1 oi+1
YT ST e cTw I TN T me e

R . P P IR T -5 s 2T
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Voe - no
6 2 i
M2¢ + = ——%%i + 2 z 201 cos no i= l,2,...,m2¢
t=t p n=l p
i i
V§¢1 = viy
M?t = o t + 2 ; 'b"_t:_' cos n¢ i'—'l;z""!mlt
t=ti+N2 i+N2 n=1 1+N2.
oo Vn(b
MT¢ + = 2j z _%Qi sin n¢ 1= 1’29 ’m1¢
E=t N, -1 n=l Piyn -1
2 2
oo no
vV, ., o Y U,
Mgt = ‘F—)Zs'l + 2 Z OZtl CcCOSs nd) i= 132) . 'szt
t=ti+l i+l n=1 i+l
o s Vrzlii
M, =2j ) —=X= sin nd i=1,2,...,M . (3-65)
ol + 4 + 2¢
t—ti n=1 pi

The extra superscript on M's again denotes the polarization of the

incident wave.

The electric current J exhibits similar behavior.

JS and Jg have the same angular behavior in each mode as that of
M?t and M?¢. Jf and Ji have the same angular behavior in each mode as
8 ¢
that of Mlt and M1¢.
e, I
an?‘ =Sk 1. cos no 1=1,2,..., N,
t=ti+l i+1 n=1 i+l
[ ] In()
nag® =25 7 -2 osinng £ =1,2,...,N
b _ .+ o1 ot ¢
t—ti n=1 Oi

et Vi Sebnalie TEC e

Ty SO

N ) ., . .
a ' L ieler o, a4
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J‘n‘ﬁ; ﬁin;!.

¥,

i i i Tan et L ki e R S R

ng
) - % et
ant = 23 Z sin n¢
= = +
t ti+l n=1 "i+l
Io¢ o Ini
ﬂbJ$ = -—Q—+ +2 ) —% cos n¢
t=ti pi n=1 Di

From (3-60) and (3-64), we obtain

B 7]
EGG E6¢
cr cY
-jk r
. c
] -ch e
2Tr
Lﬁw 09
cr cr |
cos n¢ 0 -§t¢
o n
+2 )
n=1
0 j sin n¢ RO
n
j sin n¢ 0 §t¢
+2 )
n=1
0 cos nd ﬁte

_§¢¢ Voe

() 2¢

i=1,2,...,N

¢
(3-66)
0 ]
=t cod
o) V2t
—
=no
V2t 0
=nb
V2d> 0
_n¢
0 V2t
0 V2¢

The first superscript of ECr denotes the component of the far field

and the second superscript denotes the polarization of the incidence.

(3-67)

> errramgr e

3t A e M
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Chapter 4
EQUIVALENT CIRCUIT AND LOW FREQUENCY APPROXIMATION

OF THE NARROW ANNULAR SLOT

In this chapter, the narrow annular slot shown in Fig. 11 is

considered. Now region b inside the thick screen is a coaxial region.
For simplicity, regions a and ¢ are assumed to be air filled with

k =k =k and n_=n =n_. The word "narrow" means the following:
Cc [o] a C o

The thickness of the screen, d, is assumed to be finite. The power
through any cross section of the coaxial region is the sum of the

powers associated with each coaxial mode. This is due to the ortho-

gonality relationship among the modes. Under condition (4-2}, X m

and x;m defined in (2-26) can be approximated by [22, 23}:

Db st cnlibd. i Seatali it

[T Y




(e

61
Y
A
0’ UO)
Conductor (EO’ UO)
T TT] e b
R R R
_Jift a _Jjn Conductor
A -

Conductor

Fig. 11. A narrow annular slot in a thick screen, cross section in
the y~-z plane.
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x _ _mnm = 0,1,2,...
wn (1-v) m=1,2,...
' _ _mm -
Xom a-y m 1,2,...,
' _ . mw n=1,2,...
x =
n,m+l (1-y) m=1,2,...
xél =n n=1,2,... (4-5)
It 1s then straightforward to see that if (4-1) and (4-2) are true,
and if
< ! = -
kbRout *11 L (4-6)

then the TEM mode is the onlv mode that propagates. Therefore, the

power assoclated with the TEM mode is of special interest since, when

(4-6) is true, it can be responsible for most of the power transmitted.
In the following sections, we develop an equivalent circuit

for the problem based on the analysis of the TEM mode. Resonant be-

havior of the power transmission is observed and the electric polari-

zability is discussed for a small and narrow annular slot in the thick

sCreen.

4.1. Equivalent Circuit

The time averaged power transmitted through the aperture, de-

noted Ptrans’ can be obtained by integrating the complex Poynting

ector over the aperture surface Sz. Therefore, we have

P
trans

o *
= Re I Eb *H + zda=-Re J M ﬂbda (4-7)
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! Substituting (2-43) into 4-7) and retaining only the contribution from

the TEM mode, we obtain

o
trans

*
) (4-8)

= - Re(V2 I2

where the superscript "o'" denotes the contribution from the TEM mode,

and the quantities on the right hand side of (4-8) are defined in the

following:
=—‘j- —. -
12 Y]ESC (kbd)Vl ﬁt cot (kbd)V2 (4-9)
Rout
TEM .o 27 o
v, = v2u (h , M) = [— M, d i = 1,2 4-10
PRI S _ln.YJ CLIN (4-10)
R,
in

Equations (4-9) and (4-10) define three of the four parameters of a

two-port network that we introduce later. The fourth is defined as

3 s -
cse (k AV, (4-11)

:—j—- -—
1 ; cot (kbd)Vl N

b

We now proceed to develop the equivalent circuit of the problem,

"i starting with the operator equations (2-79) and (2-80). Substituting
(2-65), (2-67a) to (2~67d) and (2-75) into (2-79) and 2-80) for n = O,
i
:; and separating the the ¢ and t components, we obtain, for the ¢-component,
N
‘ ~ R i -jk R
jkog out o
¢ cos ¢e "
) . J dp'O'Mi¢(o') f cos ; d¢ - S [cot(kbd)Vl+csc(kbd)V2]ETEM
v 3 o /Z?Y]
2 R, 0 b
. in
.} -3 ; Y [cot(k_d)(h" M%) + csc(k_d) (A" ,M2)In"
o Om om ~ —om’—1 “om®! Bom?=27 1o
»
o =
=7
’ THy 4 (4-12)




~ R Ll -jk R
Jk out o
o do'o"C (p'y | Sos te dg - —3 [ese (k )V, + cot (k, d)V n I EH
™ 2¢ R Jom 1 b 27=—-
° R 0 2m Ny,
in
- m (o] m m o m ]
-j mzl Yom[csc(komd)(hom, ﬁl) + cot(komd)(hom, Hi)]hom q
=0 (4-13)
where
= 2 |2 1
R=/0p"+p'"" - 2pp'cos ¢ (4-14)

Note that for n = 0, the TM modes have only the ¢-component and the

TE modes have only the p-component. Next, we equate the inner products

of h M yith each side of (4-12) and (4-13). The result is

V2 jki Rout Rout o
— J dp [ 8, M1¢(o')p'do'
vV-mlny no R, R
in in
R
J v = 220 [ e (4-15
- }l [cot (kbd)vl + cse bd)\2] = T:t— Hi\p(O)do -15)
b v-1ny
R,
in
V2 jk2 Rout ?out o
—_ J do By My, (h)ptd!
V-miny no R R
in in
_ 4 - -
e [cse (kbd)V1 + cot (kbd)Vzl 0 (4-16)
where
it -jkOR
- cos ¢ e . -
8, [ — k—woR do (4-17)
0
T : T T TN T = - - -

[ 7 «¥ Aca W L S s N
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{ and is the same as defined in (2-69). Under the condition (4-2), 8,

; can be written as

2 ZkoRa
=_ 1 o-p'{ _ T
8y kK R {[1“ 8R 2 J E) (x)dx]
(o] a a
, 0
2k R
sq7 0O a
S
0

where J2 and E2 are the Bessel and Weber functions of the second order.

The proof of (4-18) is given in Appendix A. Substituting (4-18) into

~

(4-15) and (4-16) and using the approximation p' = Ra’ we obtain

o gl

k w 1 2koRa . 2koRa o Rout Rout 2,
2 {[E J J, (x)dx +=21 J E,(x)dx]V, ~ «l———J dpf 1n(eloz0" i )M‘l’ (p')dp’}
) /-1n ¢
mw Y R a

0
0 0 in in

2v3m [out

8]
Hi¢(0)do (4-19)

4

~ *L'{cot(k dYV, + csc(k,d)V,. ] =
Ny b R

2
K

¥
v k w 2koRa 2k R Rout Rout 2

. Ay At

710_“ {[% J Ty () dx+3 [ B, (x)dx]V, JJ—Z-”—J dpJ ln(Lé—g—p—l)Mgd)(p')d '}
) o 0 0 TwY~1ny R R a
in in

S H
. 24 ‘ - -2
3 N [cse (kbd)V1 + cot (kbd)VZ] 0 (4-20)
\."1 b
\”’:b
r,j We now examine the double integral in (4-19). Changing the order of
h ‘
i f integration, we obtain
v 3
g
2
g4
A3
¢
.

T T TR - e — e
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out Rout 2 Rout
-Nn"'
J dp J M‘l’¢<o')1n(5J§E9—l)do' - J M, (PE(P )R (4-21)
a
in Rin Rin
where
Rout 2
L}
£(p") = J ln(S—LgLR-‘&—L)dp
a
Rin
e2
L . _ ] _ ] v v
w ln 8Ra w (Rout P In (Rout P + (o Rin)ln (o Rin)
(4-22)
f(p') is an even function about p' = Ra and has its minimum value
e2w
= - i ' = v =
fmin (w 1ln 8Ra w) occurring at p Rin and p Rout' Its maximum
2
- e w v '
value fmax (w 1In TeR w) occurs at p Ra. When w << Ra’ f(p') is

a

almost constant. Therefore, the value of the double integral in (4-21)

is essentially proportional to the integral of M;¢, i.e., Vl’ and is
insensitive with respect to the actual functional form of M§¢(p').

Various values can be obtained for this integral by assuming different

functional forms for M p'). They converge to the same value as the

1¢(
w
— becomes very small.

R
a

integral involving M

ratio The same argument is valid for the double

G
2¢

written in the following form:

in (4-20). Equations (4-19) and (4-20) are now

h b

+ Yb

s
+ Y = -
YOV RV YRV, < I (4-23
hs b b
VOV, R YV H YV, =0 (4~24

where

)

)
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Yll lew — cot kbd - e csc kbd
b b
= (4-25)
b b 3 J
| Y21 Y22d n csc kbd - A cot kbd j
~ b b
Y - G+ 4B (4-26)
kow 2koRa
G = 2~no J Jz(x)dx (4-27)
0
out
L} 1] ?
J M ap (PDEP"dP
2k R
kow 1 0o a Rin
B=7"13 J Ez(x)dx ~ R (4-28)
(o] 0 out
A 1
v J Mtrial(p )dp
Rin
/— Rout
2v2
1= S f HY, (0)do (4-29)
vV=-1ny R
in
In (4-28), Mtrial represents any particular functional form that we choose
for Hi¢ and Mg¢. If we choose to use a constant, we obtain
kwir o 2k Ry . 172,
B = -ﬁ—{ 5 J Ez(x)dx -3 1n ( B8R )} (4-30)
o) a
0
If we choose to use for Mtrial the quasistatic solution for a narrow

annular slot in a infinitely thin screen [24], then
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M () 1 (4-31)
trial w3 2
- (P -R)
and the result is
kow 1 2koRa 1 e2w
B = e { ) J Ez(x)dx -7 1n (ﬁ—)} (4-32)
o 0 a

Equations (4-23) and (4-24) can be viewed as the equations for the
equivalent circuit shown in Fig. 12. This equivalent circuit can be
used to analyze the TEM mode as long as &-2) holds. The current source

can be computed for plane wave incidence:

=9 -1 = -
Ho=+24; e (4-33)

Note that (4-33) represents the 8-polarized plane wave defined in
(3-50), since a ¢-polarized plane wave does not excite the TEM mode.
Substituting (4-33) and (2-81) into (4-29) and using the condition

(4-1), we obtain

r— )
-j2/22mrwE J,(kR_sin 8))
1° = o 1 o a i (4-34)
nyY=-1ny

In the above analysis we have assumed sin kbd # 0. This is evident
because, when deriving (4-8), (4-12), and (4-13), we used (2-43) and
(2-75) in the case where sin kbd # 0. It is not difficult to show

that when sin k)d = (0, we have the following equations:

t




¢
;%
5

1 Y b
V1 s hs [ Y ] Yhs

Fig. 12. Equivalent circuit for (4-23) and (4-24).

1 : -cos(k,d)
b
+ . _ _

4 I

Fig. 13. Equivalent circuit for a cavity resonance case,
(4-35),(4-36) and (4-37).
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(
’ hs r
+ = -
Y V1 I1 IS (4-35)
hs r _
. YUV, 41, =0 (4-36)
-
V1 + V2 cos kbd =0 (4-37)
where Vl and V2 are defined the same as in (4-10) while I; and I;
are defined as
1 = _ddem (4-38a)
n o
b
r /21 cos kbd
12 i — Co (4-38b)

b

Co is the extra unknown constant associated with the case sin kbd = 0,
introduced in Chapter 2. The equivalent circuit for this case can be
constructed from (4~35) to (4-37) and is shown in Fig. 13. The power L

transmitted can be shown to be

O,T _ r* _
crans Re(v2 I.) (4-39)

2 |

for this case.

.! 4.2, Power Transmission and Resonant Behavior
1
.
‘ The equivalent circuit shown in Fig. 12 is very similar to
-4
3 that of a narrow TE slot in a thick screen [25]. When the thickness
; of the screen is close to a multiple of a half wavelength, the waveguide
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region can "tune" the aperture to transfer peak power. We show this
by considering our equivalent circuit in Fig. 12, From the equivalent

circuit, we obtain the power transmitted as

oyt 1]

trans 272 V1o ¢ (4-40)

Here Y12 is the transfer admittance defined as

1
- _S -
Y12 7 v (4-41)
2
[ and can be solved from the circuit as
‘ hs J hs, 2
= - - - + -
Y19 2Y “cos kbd A [1 (nb Y ) 1lsin kbd (4-42)

b

. Equations (4-40) and (4-42) are valid even when sin kbd is zero. This
can be easily shown by solving the equivalent circuit in Fig. 13.

Substituting (4-26), (4-27), (4-32), (4-34), and (4-42) into (4-40),

we obtain
. 02 2 '
. o i ~)ga| . B BmuR_Jy(k R sin 8,)G
trans o [26"cosk d - 2G'B'sinkbd)]24-[ZB'coskbdi-(1+G'2-B'2)sinkbd]2
(4-43)
where
kow 2koRa
' = B2 —— —
G'=nGC=—3 J 3, (x)dx (4-44)
0
kv HoRa 2 16 (1+y)
(. - 9. < —a= 17 -
B n,B ? { J E,(x)dx + = [In a-v) 2] } (4-45)
0

M Ty TTUTTTTTTTY™ YITT T 0 e e
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For a finite koRa’ under the condition (4-1), we see from (4-44)
and (4-45) that
G' <1, B' << 1 (4-46)

With (4-46) in mind, we see from (4-43) that, when sin kbd is not small,

° is approximately proportional to csczkbd and has its minimum in

trans
n 1 o
= (5 + A
the neighborhood of d (2 4) b Furthermore, Ptrans is large in
the neighborhood of d = L Looking at the denominator of p° in
2'b trans
(4-23), we see that when kbd = nm, the first term of the two is very

insensitive to a small change in kbd and has the approximate value of
4G'2. The second term however, is very sensitive to a change in kbd,
and can be made zero by precisely choosing our kbd. Therefore, the

fs)
maximum of P occurs when
trans

2B'
tan k.bd = = 2 2 ([,_47)
(1 +G'"" -B')

Equation (4-47) is our condition for "slot resonance" described above.

Since B' is small, a first approximation of the solution of (4-47) is

res _ ,n _B' _
d = (2 T )Ab (4-48)
The peak value of P:rqns can be found by substituting (4-47) into
(4-43). The result, after proper approximation, is
IE°|% 27 w R J2(k R_ sin 6.)
o,res _ 0 aloa i (4-49)
trans noc'

The superscript ''res'" that appears in (4-48) and (4~49) denotes the

slot resonance, and is to be distinguished from the superscript "r"
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in (4-35), (4-36), (4~38), and (4-39) where it denotes the situation
when sin kbd is exactly zero.

Another quantity of interest is the width of the power trans-
mission peak just discussed. We define this peak width as the dis-
tance between the two neighboring points of d"®S where half of the

peak power is transmitted. Therefore, we solve the equation

(o}

_1 _o,res -
trans 2 P (4-50)

trans

Substituting (4~43) and (4-49) into (4-50) and using the approxi-

nations
I d = kbdres + 6
n
cos kbd = (-1) (4-51)
. n '
sin kbd = (-1) (§ - 2B") ,
we obtain
§ =+ 2G' (4-52)
Therefore, the half peak power transmission occurs at
_ ,res _ G' |
d=d oA, (4-53)
2G" , . .
and the peak width is f;-xb. Notice that, ir +-£ . <ad (4-52),
§ represents a small number and is to be distinguished from the
Kronecker delta used elsewhere in this work.
The transmission coefficient T is defined as
Ptrans
T = —=— (4-54)

in




where Ptrans is defined in (4-7). Pin is the power that would be
intercepted by the aperture Sl if the incident plane wave were normal.
Therefore,
mwr |02
Pin = n (4-55)

where E° is the magnitude of the incident electric field of the

general plane wave of the form

- (&%
Ei B (Eogi

63 yo-dk,-x
+ E&Qi)e i (4-56)
For the problem discussed in this chapter, 1if (4-6) is valid, we have
~ (o]
Ptrans B Ptrans (4-57)

Substituting (4-43), (4-55), and (4-57) into (4-54), we obtain

|Egl2 AG’Ji(koRasin 8,)

T= 3

IEOIZ [2G'coskbd - ZG'B'sinkbd]2 + [ZB'coskbd-+(1+G' —B'z)sinkbd]2

(4-58)
Similarly, if (4-49) is used instead of (4-43), we obtain, for

the slot resonance,
res |Eg|2 Ji(koRaSin 91)
T = 57 (4-59)
|E"|%c’

4.3. Small Apertures and the Electric Polarizability

If in addition to the conditions (4-1) and (4-2), we assume that

the overall size of the aperture is small, i.e.,

Rgky << 1 (4-60)

C— e T e T T = - mmw

- . - . - -
Sma ke o . ol Rt o W i s ke o

=




g .
R v_ o~
[V S P

e SN o0

+

75

then some of the formulas in the previous sections can be simplified.

These formulas are written below without detailed justification be-

cause they involve mostly simple small argument approximations of re-~
lated functions.
G'=ne=<(kw (kRr)> (4-61)
o 6 [o] o a
k w 32R 3
B' =nNB=— 1ln (—3 (4-62)
o m 2
e'w
I =3 [ 2m koRaw Eiz(o) (4-63) é
s -lny N, j

2
_ meR_(k w) (k R ) [E,_(0)]

[}

Prrans ~ Tin an {[26'cosk, d—2G'B'sink, d]% + [2B'cosk, d+(1+G'2-B'2)sink d]%}
no cosk, s nkb co kb s nkb

(4-64)

2 2 :

lE, (0)]° 3X |

res _ nres - iz ,_© - !
trans T Pin n 4m (4-65)

(o]

In (4-63) to (4-65), Eiz(O) represents the z-component of the incident

electric field evaluated at the aperture S Also, when Ra is small,

1
the fields in region ¢ can be considered as due to an electric dipole
P, in S2 in the presence of the shorted conducting screen. The dipole

can be computed from the magnetic current,

€
O
o= "7 J L X Myda
Sy

X . 2 —T[].nY A
2 - e R /——2 v, 2 (4-66)

Substituting (4-41) and (4-63) into (4-66), we obtain

RO T b, Sahe Sercaldiie - e

LY
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P-e = €°Ote Eiz(o) é (4-67)
where
- 3jm k RZ
0 = —— (4~-68)

e no y12

is the electric polarizability of our narrow annular aperture in the
thick screen. For slot resonance, we have Im(ylz) = 0. Therefore,
replacing (noylz) by (-2G'cos kbd) in (4-68) and using (4-61), we
obtain

res 3j X3 cos kbd
af®® = = (4-69)
e 2
8m

where cos kbd is approximately 1 or -1 depending on the situation.
We notice that (4-69) is a much greater quantity than the electric
polarizability for an annular aperture in an infinitely thin screen [24].
Note that the dipole moment Py is equivalent to an electric current ele-

ment I in the following sense:

L= jw P, (4-70)
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Chapter 5

NUMERICAL RESULTS

The computational results of some typical examples are pre-
sented in this chapter. Five simple configurations are used. The
cross sections of the apertures in the y~z plane for these configu-
rations are shown in Figs. 14(a) to 1l4(e). Two narrow annular aper-
tures shown in Figs. 36(a) and 36(b) are used to demonstrate the
resonant behavior described in Chapter 4. Results from the matrix
solution and the analytical prediction are compared and discussed.

For the current plots, the magnetic current is normalized with re-
spect to the amplitude of the incident E-field, and the electric
current is normalized with respect to the amplitude of the incident
H-field. The horizontal axis represents the variable t along the
generating curve. Tick marks are placed to show how subsections

along the curve are arranged in the matrix solution. The ¢-component
of either the magnetic or the electric current is represented by a
combination of pulses, consistent with the true expansion functions

in the solution. The t-component is represented by a linear func-
tion, constructed by connecting points representing the solution at each
ti's with straight line segments. This is an approximation to the true
expansion because the expansion functions for the t-component are
triangles divided by p. TFor cases to which the modal solution also

apply, the results from both formulations are shown for comparison.

c -
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Fig. 14. Apertures of various cross sections, angles of incidence
considered in each case are specified. The dimensions are
in units of the wavelength in region a. Regions a and ¢
are filled with the same medium. Region b is filled with
the same medium except where explicitly labeled.
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The ¢ and t-components of the modal solution are marked with tri-
angles and squares, respectively, at a number of discrete points.
Figures l4(a) and 14(b) show typical cases where both formulations

are used. For the circular aperture in Fig. 14(a), normal incidence
is considered. Only the n = + ] modes are needed for this case, and
the n = 1 mode currents are shown for an incident E-field polarized

in the -x direction. The azimuth angle of incidence ¢i is assumed to
be zero without loss of generality because of the symmetry. The
magnetic current on the transmitted side shown in Fig. 16 is much
smaller in magnitude than that on the illuminated side shown in Fig. 15,
and the attenuation can be clearly seen from the electric currents,
which represent components of the tangential H-field, in Fig. 17. The
wall thickness in this case greatly reduces power transmission. The
aperture with a filled coaxial region, shown in Fig. 14(b), exhibits
different transmission characteristics. An oblique wave incident

from Gi = 150° is applied. The aperture is small electrically, and
therefore only the n = 0, +1 modes are needed. Figure 18 shows the

circulating magnetic currents on each side of the aperture and the

t~directed electric current on the walls, for n = 0, due to a 6-polarized

incidence. This polarization couples to the TEM mode of the coaxial
region. The effect of this propagating mode is seen in the current dis-
tribution. We don't see the great attenuation observed in the previous
case, where all modes are evanescent. The currents for the n = 1 mode
are also shown in Figs. 19 and 20. The attenuation of this mode is

again present, and therefore the TFM mode transmits most of the energy.

f
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Fig. 17. Ji and —jJé of the example in Fig. l4(a).
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Fig. 21. Ji and -jJ¢ of the example in Fig. 14(b), 6-polarization.
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Currents for the ¢-polarized incidence are shown in Figs. 22 to 24,
The currents for n = 1 mode are shown and they are very similar to
that for 6-polarization. However, these currents are responsible
for most of the energy transmission in this case, since power trans-
mitted by the n = 0 mode is negligible now that it's not coupled to
the TEM mode. The currents for the n = 0 mode in this case are not
shown for this reason. Results for the magnetic currents from both
formulations are compared for the above two configurations. The
overall agreement is very good. The proper edge behavior of the
magnetic current is also observed. One of the simplest geometries
for which the modal approach is not applicable is shown in Fig. 14(c).

The n = 1 mode currents are shown in Figs. 25 to 27 for normal inci-

dence. The magnetic currents again exhibit a distribution similar to
v that which exists in a small circular aperture in a infinitesimally
thin screen. The fields decrease rapidly from one side to the other.
It is interesting to observe that most of the attenuation occurred
before the sharp corner on the inner wall of the aperture. The con-

figuration shown in 14(d) models a gasket in the thick screen. Oblique

- ; incidence of 135° with 6-polarization is considered. Figure 28 shows
?j the circulating magnetic currents and the t-component of the electric
ji current in the n = 0 mode. 1t is apparent that, although our waveguide
‘jg region 1s no longer a straight coaxial region, the existence of the

' ; center conductor still enables the fields to propagate through the

.i% screen. Also, because of the size of the aperture, there 1s propaga-
E;. tion even for the n = 1 mode. This can be seen from Figs. 29 to 31.
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Fig. 24. -jJt and J¢ of the example in Fig. 14(b), ¢~polarization.




-
0. | [ i 1 1 0. -] 4 ! I [
1 T 1 ¥ T — 1 T ¥
D 1 E A 1 1
Fig. 25. Mit and jM}, of the example Fig. 26. M, and -jM;, of the
in Fig. 14(c). example in Fig. 14(c).
IR T T T U T VO O N | ! L 1 e 1 L. 3 811
™1t 1 T e 1 1 1 R ) B B e |
-T -

- -
-}. ;L
I 1
-+ -+
T T
4 1

-1 L4 1111 | L i 1 1 1 1 A A |
Tt T/ T =T 1 | 1 | AN S 0 B R |
A B C D E
Fig. 27. Ji and -jJ; of the example in Fig. l4(c).




86

‘uorjezraetod-g

v

“(P)YT *87a ur ardwexe au3 o |1r| pue | ¥y 1%y gz -81a
vV H 9 4 c) 3 g v
1 1 1 4 1 1 [ [ [l (] 1 | [ 1 1 1 ] 1 i L 1 1 ]
¥ ] I | } I | | LI L] 1 1 L | | ] 1 | ] | i ) 3 | | L I ‘0
1
T
1 i 1 [ § [ 1 L 1 ] 1 1 L m.
| LI | 3R | ] 1 1 ¥ | L S L 1
. . S = - v, T

At w &

4

T e AR

~




2 } :

b od =
e -
Il []

! T
B 1 1 i
Fig. 29. [M1t| and [M1¢| of the

i |
V11

example in Fig. 14(d),
0-polarization.

L 1 & 3t 1 1
vy ¥V T ¥ L LR

I
!

1
'

j '
87
i i
¥ L
-r —_——
T - ‘
i
]
T - !
]
i |
¥ m | =
A

1 1
Fig. 30. IMZtl and |M2¢| of the

1
R

example in Fig. 14(d),
f8-polarization.

1 |
L

U W VU T N T | [
UL L I I e |




88

Again, the ¢-component of the magnetic currents becomes large at
both edges of the aperture as expected. Our last example for cur-
rents 1s shown in Fig. l4(e). The incident wave is O-polarized with
a 135° angle of incidence. Currents for both the n = 0 and n = 1
modes are shown in Figs. 32 to 35. The system is below cutoff and
the screen effectively attenuates th . field.

The transmission coefficient T is computed for the two
narrow annular slots shown in Figs. 36(a) and 36(b). Figure 37
shows the transmission coefficient for the aperture in Fig. 36(a)
as a function of the screen thickness d. The computed results does
show a repeated resonant phenomenon with period %u Since the peaks are
in general very narrow, only the result in the neighborhood of the first
resonance is shown. The solid line represents the result from (4-58)
and the circles represent the result from our modal matrix solution.
The agreement is excellent except that the centers of the peaks are
separated by a few ten thousandths of a wavelength. This can be ex-
plained as follows. From (4-53), the width of our resonant peak is
approximately Z%L Ab. The center of the peak, from (4-48) is %% Ab
away from half wavelength. For our particular problem, G' and B' can
be found, from (4-44) and (4-45), to be roughly 0.00014 and 0.038.
Therefore, a combined error of one percent from the two calculations
of B' can cause the peaks to separate completely from each other.
V1 and VZ’ the voltages defined in (4-10), are computed from the matrix
solution also. They are shown in Fig. 38. The solid lines are the

real and imaginary parts of V The squares and triangles are the real

1
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Rl and imaginary parts of Vz. Note that the peak occurs where the real
parts of V1 and V2 are zero. This is expected because resonance occurs
when the imaginary part of the transfer admittance Y12 is zero and our

current source is imaginary. Also note that, since d is close to % .

V, and V, are almost exactly the same as for the case d = %-shown in

1 2
Table 1. Figures 39 and 40 show the transmission coefficient and the

voltages for the case in Fig. 36(b). Again, the agreement is excellent

1]
~ L a comparable percentage error in B' would

and, this time, since 3 " 20

not cause the pulses to look completely separated.
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Chapter 6

CONCLUSION

A general formulation is developed for solving the problem of
electromagnetic transmission through a rotationally symmetric aperture
in a conducting screen of finite thickness. The solution obtained is
in the form of the Fourier coefficients (in ¢) of the equivalent cur-
rents on the boundary of the aperture region. All field and power
characteristics can be computed from these coefficlents. The number
of Fourier modes needed depends on the size of the aperture and the
nature of the excitatlon. Because of the symmetry of the problem, each
mode can te solved separately. The basic formulation resembles that of
[10), except that our problem is a three-dimensional one. Also, for the

modal fornulation, when the waveguide region is of resonant size, problems

can arise in forming the field operator in this region, as observed in [7].
This problem is solved in Chapter 2 by using the proper constraints

(Table 1) on the magnetic currents and introducing new unknowns. Note
should be made that the case kém = 0 needs to be treated carefully, as
shown in Chapter 2. However, this case does not correspond to a cavity
resonance While the procedures for treating a resonant case may seem
applicabl- to only a few special cases, the concept can be extended to a
more general case because the magnetic currents on the aperture faces

can always be separated into two parts, one a linear combination of wave-

guide modes and the other orthogonal to them. The modal solution can
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also be extended to treat an aperture with region b composed of cascaded
waveguide sections.

In the low frequency discussion of Chapter 4, an equivalent cir-
cult was developed for a narrow annular slot. An effort was made to show
the validity of a one term moment solution in this case, as done in [25].

Also, the assumption was made that only the TEM mode propagates. This limits

the overall size of the aperture as shown by (4-6). 1If the mean radius of
the narrow annular slot is arbitrary, then there may be a propagating mode
for each n, as seen in (4-5). Further study of each of those modes is
recommended to develop the corresponding equivalent circuits for such cases.
Our analysis of the TEM mode remains valid as far as the power transmission

N associated with the particular mode is concerned.

“T*”’Tﬁ:?r-*:.-”w —-—

Py X v . v e .
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; Appendix
PROOF OF EQUATION (4-18)
In this appendix, we prove that
Y = " cos ¢ e_jkg 4o
R
0
2 2kRa
~ 1 e Ig - Q'I i
a a
0
2kRa ,
hlug
+ 3 J2(x)dx}
. :
! when W << Ra. R is defined as
’: 2, 2 :
R=/p" + p'" - 20p' cos ¢ (A-2)
The subscript of k in (4-18) is left out for convenience. Consider
Y as a function of k, and write
k
. (k) = Y(0) + J 4 44 (a-3)
. 0
<
~ From (A-1), we find
R m
& __g_ld: o= - J cos ¢ e IR 44 (A-4)
R Q
' and 0
,,j T
]
% Y(0) = [ 22 ap (A-5)
} 0
J
Y
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Since Y(0) is real, we have
In(Y) = - I da I cos ¢ cos (aR)d¢ (A-6)
0
When w << Ra’ we can obtain, from (A-2),
: [} -
R 2Ra sin 5 (A-7)
Substituting (A-7), and the new variable
1
Y = 5‘(ﬂ - $) (A-8)
into (A-6), we obtain
k m/2
Im(Y) = 2 J da J cos 2y cos (2aRacos P)dy (A-9)
0 0
From 10.11.1. of [26], we obtain
2kR
- a
Im(Y) = - R j Jz(x)dx (A-10)
a
¢}
Now we consider the real part of Y. From (A-3) to (A-5), we obtain
k m
Re(Y) ~ Y(0) = - J dk J cos ¢ sin (oR)d¢ (A-11)
0 0

Substituting (A-7) and (A-8) into (A-11), we find
k m/2
Re(Y) - Y(0) = 2 J da J cos 2y sin (2aRacos P)dy (A-12)
0 0




From 10.11.3. of [26], we obtain

2kR_
Re(Y) - Y(0) = -2%— J E, (x)dx (A-13)
a
0

Finally, we consider Y(0). Substituting (A-2) and (A-8) into (A-5),
we obtain

w2
2, 2 2
-2 p+p' 1 _ Lotp") ’ - g2g402
Y(O) (D+D') J [(zpp' ) 82 5 prl 1 8 sin 111] d‘p
0 Jl - Rsin™y

(A-14)
where
1
B2 = —HB_ 21 (for w<<R) (A-15)
(p+p")
From 17.3.1, 3, 26 of [27), we find, for w << Ra’
- 2y 4
Y(0) = -1 1n (E*UL_iLij (A-16)

R 8R
a a

Combining (A-10), (A-13) and (A-16), we obtain (A-1).

T T T R
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