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Chapter 1

INTRODUCTION

Electromagnetic transmission through apertures in a conducting

screen of finite thickness has been studied extensively by many in-

vestigators. The effect of screen thickness on the transmission is

of interest in many cases. The simplest model of the problem is a

two-dimensional one and is the focus of most investigations. Several

solutions have been developed for the problem of electromagnetic pene-

tration through an infinitely long slit in a thick screen [l]-[10].

Both TM and TE cases have been studied, and a variety of techniques

are used. However, most investigators treat only the problem of a slit

with rectangular cross section. Morita [3] and Auckland [10] developed

solutions for two-dimensional slits with arbitrary cross sections.

Uslenghi [28] also considered the problem of a two-dimensional gasket

in a screen under several simplifying assumptions.

A three-dimenzional problem is of greater complexity. Most of the

related work has been done for the quasistatic case. Akhiezer [11] extended

Bethe's [12] theory to the case of a circular aperture in a thick screen.

Garb examined the problem of a narrow rectangular slot in a screen of

finite but small thickness [131, and later studied the polarizability of

small openings in a thick screen [14). McDonald [15] c:.nsidered the

polarizabilities of small circular and rectangular apertures in a thick

screen. The methods of solutions usually rely on the assumption that

the aperture is electrically small, and also that the waveguide modes

,.
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are known for the aperture region inside the screen.

This report considers the more general problem for which an

aperture in a thick screen is rotationally symmetric about an axis

perpendicular to the screen. The method of solution, in general,

does not depend on the size of the aperture. The formulation is not

limited to the situation where the aperture region in the screen is

a familiar waveguide section for which the characteristic modes are

known. However, this case is also considered and investigated in

detail.

In Chapter 2, we develop the basic formulation of the problem.

The equivalence principle [16, Sec. 3-5] is used to separate the

problem into different regions of interests by means of unknown boundary

currents. Field operators and operator equations are then established

for the currents. A modal formulation is used to treat the special case

when the aperture region is a waveguide region (in our case a cylin-

drical or coaxial region). In the more general case a nonmodal formula-

tion is used. Chapter 3 contains a moment method [17] approach to the solu-

tion of the simultaneous operator equations. Both modal and nonmodal

formulations are given and the measurement matrix is discussed. A low

frequency analysis is presented in Chapter 4 for a filled narrow annular

slot. Resonant behavior of the power transmission is observed, and the

transmission coefficient and the electric polarizability are discussed.

Numerical results are presented in Chapter 5 for several examples.

Emphasis is put on the electric and magnetic currents obtained. Modal

and nonmodal results are compared when both formulations apply. Also,

•I"
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numerical results and analytical predictions for low frequency power

transmission are compared. A final discussion is presented together

with some recommendations in Chapter 6.

I.

.

i
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Chapter 2

PROBLEM FORMULATION

2.1. Problem Specification

The problem to be considered is shown in Fig. 1, which shows

a conducting screen of thickness d situated between the surfaces z = 0

and z - d. The regions z > d (denoted region c) and z < 0 (denoted

region a) are coupled through an aperture region (denoted region b)

in the screen. The incident fields E. and H, generated in region a,

penetrate through the aperture region and radiate into region c. Ei

and H are the fields produced by the impressed sources J. and M. in

unbounded space filled with the same material as in region a. The

aperture region, region b, is bounded by the following three surfaces:

S1 : the interface between regions a and b which lies in

the plane z = 0.

$2 : the interface between regions b and c which lies in the

plane z = d.

S3 : the interface between region b and the conducting screen.

sit S2 and S3 are all assumed to be rotationally symmetric about the

* z-axis. The three regions are assumed to contain media characterized

by their permittivities and permeabilities, (E a, ), (Eb9 lb) and

( c ). For simplicity, all three regions are assumed lossless.

A cross section of this situation is shown in Fig. 2(a).

For the special case where region b is a cylindrical waveguide

aM-r7
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Region a

Fig. 1. Transmission through a rotationally symmetric aperture in

a thick conducting screen.
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Fig. 2(b). Cross section in the y-z plane for a doubly connected S3*
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region, a conductor in the center of this region can support a TEM

mode and thus increase the power transmission. Therefore, we gen-

eralize our problem of investigation to one for which the boundary

surface S3 can be either simply-connected (as shown in Fig. 2(a)) or

doubly-connected (as shown in Fig. 2(b)). The boundary surfaces S

and S2 are then either circular (when S3 is simply-connected) or

annualar (when S3 is doubly-connected). Since S1, S2 and S3 are all

symmetric about the z-axis, their union, S = SI U S2 u $39 is also sym-

metric about the axis. In other words, SI, S2, S3 and their union

are all surfaces of revolution. A generating curve F, as well as its

associated coordinate t, and unit tangent vector E, can be defined for

S. Note that 7 is open with its end points on the z-axis when S3 is

simply-connected and closes upon itself when S3 is doubly-connected.

F is the union of the generating curves of SI, S2 and S39 denoted FI, F2

and F . A unit normal vector is defined for every point on S as

A=x £ (2-1).

Here ) is the conventional unit vector associated with the azimuth angle

4. The arrangement described above is illustrated in Figs. 3(a) and 3(b)

for the two possible situations. Furthermore, each boundary surface can

be approached from either of the two regions that the surface separates.

hWe denote the side of each surface from which the normal vector fi points

by the superscript "+", and the opposite side by the superscript "-". For

example, according to the convention we use in this work, as shown in

_A9
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Fig. 3(a). Generating curves of Si. S2 and S 3and the unit

vectors, S 3 simply connected.

r3
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-
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- --- - - - -------------- Z

Fig. 3(b). Generating curves of SV, S2 and S 3and the unit

vectors, S 3doubly onnec ted.

3-V



9

Figs. 3(a) and 3(b), S+ denotes the surface immediately next to S just

outside of region b.

2.2. Equivalent Problems

In this section, the equivalent principle [16, Sec. 3-5) is used

to separate the original problem into three equivalent situations which

exist in the three regions a, b, and c. For region a, a magnetic cur-

rent sheet M is placed just inside the conducting plane at z = 0, with

S1 covered with conductor also. The equivalent magnetic current M1 is

defined as

M = i x E (2-2)

where E is the electric field over z = 0 in the original problem and

is unknown on S . It has zero tangential (to the z = 0 plane) com-

ponent elsewhere in the z = 0 plane. This magnetic current M , and the im-

pressed sources J and M., radiate in the presence of the complete

conducting screen over z = 0 to give the correct fields E and H in-a -a

region a. This situation is shown in Fig. 4(a). Furthermore, image

sources can be used to account for the effect of the infinite conduct-

ing plane as far as filled in region a are concerned. Therefore, we

have the equivalent situation, shown in Fig. 4(b), established for

region a. Here Ji, M i, and M1, together with their images, radiate into

unbounded space filled with a medium characterized by (Ca, v a ) to create

the correct fields in region a. A similar equivalent situation can be

developed for region c as shown in Fig. 5. Here the equivalent magnetic

current M2 defined by

Ait K L
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conducting plane
at z= 0~E,H

M i

Fig. 4(a). Equivalent situation for region a.

z=O

--a "-a a

M

-l
a 9a

Fig. 4(b). Equivalent situation for region a, using
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z=d

2M 2T Ec  U  
)

2M.2 -c ' -C

(Ic c

Fig. 5. Equivalent situation for region c.

Conductor

-t2

II
(b , Pb )

Fig. 6. Equivalent situation for region b.

i.
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together with its mirror image with respect to the plane z d, exist

on S2 and radiate into unbounded space filled with the medium char-

acterized by (Ec, itc). These currents give the correct fields E and

H in region c. Note that in the two equivalent situations for regions

a and c, electromagnetic fields from the equivalent magnetic currents

can be found using the field operators for unbounded space.

For region b, the entire closed boundary S is replaced by a

perfect electric conductor, and equivalent magnetic current sheets -M

and -M 2 are placed just inside SI and $2P respectively. This situation

is shown in Fig. 6, where -i and -M 2 radiate in the presence of the

closed conductor to give the correct fields E and H in region b. Note--b -binriob.Nt

that the use of -M and -M in this region ensures the continuity of tan-
1 2

gential electric field across S and S In the special case where

region b is a cylindrical or coaxial waveguide region, fields can be ex-

pressed in terms of M and M2 by means of the waveguide modes. However

in a more general case, it is not possible to obtain the fields in

region b directly from M and M 2 alone. Therefore, for the general case,

we replace the conducting surface S in Fig. 6 by the electric current,

denoted -J., induced on S by -MI and -M2. This equivalent situation is

shown in Fig. 7, where -M1i -t2, and -J radiate into unbounded space

filled with a medium characterized by (E b 11b). They give zero fields

just outside S and the correct fields E and H in region b. Note again

that we have established an equivalent situation in which only the field

k Aoperators for unbounded space are needed. To summarize, we have



13

1 b b '

Fig. 7. Equivalent situation for region b.
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4 
. . . . -7=--- . .. .. ..-. .i , ' " 1 ' T , , ~ ; , , _ . . . .. .. . ., , , , ; . ,



14

developed equivalent situations shown in Figs. 4(b) and 5 for regions a

and c respectively. The equivalent situation shown in Fig. 6 is intended

for the special case where region b represents a waveguide region, while

the equivalent situation shown in Fig. 7 is suited to the general case.

In the special case where region b is a waveguide region, if waveguide

modes are used for the field operators needed in the equivalent situ-

ation in Fig. 6, we call the formulation a modal formulation. If a gen-

eral treatment corresponding to the equivalent situation in Fig. 7 is used,

we call the formulation a nonmodal formulation.

2.3. Field Operators

From the discussion in the previous section, it is evident that two

types of field operators are needed for our formulation. These are the

potential integrals which give the electric field or magnetic field in an

unbounded medium due to an electric or magnetic surface current distribu-

tion, and the modal representation which gives us the fields inside a

waveguide region when the tangential electric field is specified at the

two end surfaces. In the first case, although both the electric and

magnetic types of currents and fields are considered, because of duality

[16, Sec. 3-2], only the following two basic operators, Le and Lh are•L a r

needed:
-jk R -jk R

eJ(r')e + (V' J(r'))e
L (J) - jk da' + I da' (2-4)f jk 4rR

A A

and -i k R

h ~ . (r')e aL (J) - V i 4r R - - da' 
(2-5)

at f 47TR
A
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The integrations in both (2-4) and (2-5) are over the surface A where

the surface distribution J resides, and

R P 2 + P, p 2 _ 2pp' cos + (z z- )2 (2-6)

k = 2 C (2-7)

If r approaches A from one side of the surface, and if the surface is

assumed to be smooth there, then we can write [21]

-jk OtR

h 1 r0 :x J(r') x (r-r') (1 + jk R)e
L Cc J) = 2 1 r) X f - -- fJ7T da'

A

+ fi [fi *i L hJMl (2-8)

where n is the unit normal vector of the surface at r which points

toward the side of the surface from which r approaches A. Note that

the component of L hJ) that is normal to A is not written explicitly

because it is not used in our operator equations. It follows that

for a surface electric current distribution J and a surface magnetic

current M in an unbounded medium characterized by (C~ OL, ),c the electro-

magnetic fields E(J, M) and H(J, M) are given by

= _ _ = Le()2J -L

E(J, M) (M) (2-9)

[ ) 1×  L e(M) + L (rh (J) (2-10)
T1 t 0.-

where

+•h(2-11)
Neoo

Nthtthe linearent of J th sormaltos is used itn -9)andcitly)
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To discuss the modal type of operators we consider the case inwhich

we have a waveguide region b between z = 0 and z = d formed by two con-

centric cylindrical conductors, located at p = Rin and p - R out  The

boundary conditions are, from (2-2), (2-3) and the equivalent situation

shown in Fig. 6:

xE = M at z = 0 (2-12)
= b -1

and

xE =- M at z = d (2-13)
-:-b -:2

Also we have the condition that the tangential electric field is zero on the

waveguide walls. Note that when R. = 0 the problem reduces to one inin

which S3 is simply connected and the cylinder in the center is missing.

To establish the operators in this case we first assume that the E and
=b

Hb are generated by two vector potentials, A = A 2 and F = F z_ [16, Sec.

3-12]. A is called the magnetic vector potential and F is called the

electric vector potential. The electric and magnetic fields they generate

are:

E JkbribA + V C(\- . A) - V x F (2-14)

and
k kb 1

H b - -F+ V(. F)+Vx A (2-15)
b r)ib b(-5

A and F satisfy the Helmholtz equations
Z Z

4 2A + k2A = 0 (2-16)
z bz

SV2F + k2F =0 (2-17)z z
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and the fields they generate satisfy the boundary conditions on the

waveguide walls. A can be expanded as a linear combination of the
z

+
TEM modes, AEM and ATEM , and a set of TM modes, {An , A n=0,±l,2,...,

TEM'nm nLM

m=1,2,3,...}. F can be expanied as a linear combination of a set of TEz

modes, {F+ , Fn I n=O,±l,+2,..., m=1,2,3, ...}. The waveguide modes are

defined in the following:

4EM Z+-(kbz) (defined only for Rin # 0) (2-18)

ATE j~(Rout /Rin )Z Wi

+ m eJn+ +

A = m (p)e Z (k ,Z) (2-19)
fnp nm nm

F (P)ej n  Z(k' ,z) (2-20)
nm nm in

where

n(xnm n(R nm n(xnm )NnR Xnm
out out ifR # 0

9 in2 
(x )

i /2( _ n nm)7JT n (yxnm)
n (P) = (2-21)

2 Jn( ---x nm)out
out if R. 0

Xnm i Jn+l (Xnm) in

N'(x' )Jn(- x' ) - Jn(x')Nn( --x')
n nm nR nm n n out m)

out outif R #0

42 2 j,2 (x')
1 211 n n j ) n ]m

,2 (i 3' ,2yx, )
e x m x m J n em

Inm (P) =n nm (2-22)

(-0J x'
n (R-- nm

out 
if R =0

2 in

nm- n n(Xnm)

? T
,

. . . . .. . . . .. ... . . .. - . .. . .. . .
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Z-(k,z) = e±jkz if k # 0 (2-23a)

Z+(Oz) = z (2-23b)

Z (Oz) = 1 (2-23c)

and
R.

y n (2-24)

out

k 2 n--- if kbRou t > X

flot- nm

out
k
rn

n out rim

(2-25)

xv
2 nm 2
k -( )if kbR*o~t xb Rriout

k'
n2

R b bout nmout

Jn' Nn J', N' are the nth order Bessel functions of the first and second
n9 n9 n n

kind, and their respective derivatives. x and x' are the mth lowest

positive real roots of the following equations:

N'(x' )J'(yx' ) -J'(x )N'yx' ) = 0

N nim n rim n xnm Nn nm

SJj(jnm) = 0 if R = 0 (2-27)in
Jn(xnm)J 'm 0n(')

n(x rim

if. R in~ 0 (227
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Note that the TEM modes can only exist when R # 0. Now we examine

the electric and magnetic fields associated with each of the modes.
+ +

To compute the fields, we substitute AE4 and A nm_ in (2-14) and (2-15)

for A to obtain their corresponding electric fields E T EM  and Em', and
-m

TEM± +
their magnetic fields HT EM ± and H +. We substitute F± ^ into (2-14)

- --re nnr-
and (2-15) for F to obtain the corresponding fields E and H -. The

-- nm -- m

results are the following:

+ ±Jkbz
ETEM- TEM b
E e e (2-28a)

Em t --ne m e Rotjn ±jk A + z

rim -mm -t-wE A!z if k #0 (2-28b)

jWb out Lui-- m

Em+ em e j 2 +
--nm cce A nuz

M- if k = 0 (2-28c)

mm nmr-

Eee e n  Z + (k , z) (2-28d)
nm -nMm m

4+

TEM 1 . TEM (2-29a)
+f b

y if k # 0 (2-29b)
--nm + nm - -nm nm

M+  b b z × +

H- =-j_----z em  ~ q
-m -- - -zr x ,nm b

if k 0 (2-29c)

Hm ~ ~nm
-mm -n-m

e+ et+ 1 (x'm)
HE +, i_ Xm E- F tM if k' #0 (2-29d)M + nm- ni JWIjb R out nm

I i . . . - '' . - . ... . ,. . , . " : ' - , ' '' ' ,
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e+1 e+ +
H x - E - j F z
-n ib --nm b rim-

if k' 0 (2-29e)

-n nim-

where

TEM 1
e n (2-30)

ln(R ouIR in)

em  m' nm(p). + jn ,m (P) (2-31)
-rim rm - p nm i

e -n e . e(e m - nm (P)! + nm( )l (2-32)
--e 'O m

Sif x k R
nm b out

b  
1 mn__) 2

Y = (2-33)
nm 1

Rm 2 ifx >kR

x kR m -1ou
outm out

xf'
rm

k RkbRout if x' < kbR

ib nm- out

Y = (2-34)
nm

.nm ) 2
nutt JR)2 if X' > kR

rb  m out

TEM mt
The set of -ectors {e , e , ee im 1,2,3 .... for a fixed n is an

-- +-m --nm

orthonormal set under the inner product:

j.:

- +. ..-. .. . . ... . . . . . ..
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Rout

(a, b) = a* b PdQ (2--35)

R in

We now write the electric field Eb in region b as a linear combination

of all possible modes:

J(E + kz + -Jkbz TEM

++ ( k,+ + e e e jn
+ [+nm z+ (k'z) + nZ(knm' z)] -nme e

n=-- m=l

- a, jk z -jk z
+ (I+ e nm + a- e m e m  ejn

nm nm --rim
n=- ° m=1
k #0
nm

+ + m jn

a no e e (2-36)
n = -  m=l m n

k =0
nm

From (2-28), (2-29) and (2-36), we can write for H
b

jkbzJkbZ) hTEMH= (Hb •*i) +-1(_ e +o e )h
-b -b o -

.. .. + jk z -jk nmZ eJn
Y nm + X- e hm e

1 nm nm nm -nmrr=-,-, m1l
k #0
nm

"I jk' z -Jk' z
+ Y' (- + e n + - e nm he e

nm nm nm --timn=-. m=1

k' #0
nm

+ (k- z (x + B )hm eJn

n- 1 b nm nm -nm

k =0
nm

+ + (2-37)
y 4-i l k nm -nm e(-7n=- m=l b -b i

k' =0
nm

_ . --- ..- - - . . .- -r - ...
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where B is a constant and
nm

TEM TEM m m e e
h x e , h z x e , h M e (2-38)_ -- Tm - -nm -un - --run(23m

From (2-12), (2-13), (2-36) and the orthonormal relationships among

TEM m e
e , e and e , we obtain

+ - (hTEM 0
cc0 +a0 (h-

+ b -Jkbd (hTEM, oa e + cc e = (- M )
0 0 -

+ +x- (h N
nm nm -nm

for k #0
+ jk d jk d nm+ knmd - -knm " _ m Mn)

A e + (t e -(h- M
nm nm -nm -2

h+ 5 Mn (hm , ) for k =0
nm --nm -n -2 nm

3+ ~ =(h M)
nm nm -n -Mr k)for k' # 0

jk' d -jk' d nm
+ e + L- e nM n ( 2
nnm m-i ' )

m (he m M )

n' for k' =0

nm
S+d + = (hem, M')  (2-39)
rn nin -m- -2

where

q~7 n- n f', )M i 
0  i M i. 2T " wj M i ~ - n * d (Mi • V~e-3 n' dfi]

0 0
or i = 1,2 (2-40a)

.. i = 1,2, (2-40b)

n-I--- -

m" " -'; : ;.I , ... ... .. - . .. . " - - -" ..
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From (2-39), we obtain

TEM +jkbd± +j(h T E , e M1 + M )

r c- 1 if kd # ,2Tr,...
o -2 sinkbdb

b (2-41a)
+ +  o- -- M -- -

L + (hTEM, (hTEM,MI + cos kbd M ) if kbd =7T,21r...

M +jk nmdn n
+ J (h, eknm M+2

tnm 2 sin k d if k d 0,7,27,...
nm

(2-41b)

+ - m n m n n
t+ + cx = ( ) (h m, M 1 + o dM ) = 0 if k d=Tr,22T,.nm nm -'i -1 ~~m2C nm -2

+ m n m n M
=t (hm M (hhm, MI + M =20 if k d = 0

nun --m (h ,M nm

+jk' d

Se nm n Mn~(hn m , e M + 1)

-- 1 - if k' d # 0,,27,...
mm 2 sin k' d rum

nm
(2-41c)

i + - e I M leM 2 n=~ i
+ n = (h ,), (he ,Mn+cosk' d M n 0 if k' d = Tr,2..+ :nm nm -- rim - - nm n u

+n = 
(h  m  M l n n)- = e M

nm 1 + (he M ) if k'd = 0

nm d ni n m m-1 run

We substitute (2-41) into (2-36) and obtain

"4 i TEN 0 0 i~

"TEM -csc kbd(h ,sinkb(z-d)Ml+sinkbzM2 ) if sink.d#0

?~~TE o Eb = Eb• -+e' +o
-bL(h T EM , M0 )coskz + J(cx-oto)sinkz if sinkbd=O

co ) n" n m jn
esc k d(hm sink (z-d )M + sinknmzM ) em e

nm -nm n - --, n=_11 m=l

sink d#O
nm

e n n e Jn
cscknmd (h m sink' (z-d) +sink' zM ee

nm -m mm. - nm - i e-- n= _- ,' m= ]

sink' d#0
tm

it
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+ e IhM)cosk z l a+ )sink ziem einl
n-c ml m I m nri m rn -rum

knm d=7r,27....

00 00

+ e 7 n ,M)cosk' z + j(e -6 )ik zee e jn'
-n;m-1 nm nm- si n' -e

n=-co m1ln m-n
k' d=1T,21T,...
rim

+ Z y (4hm m n)e m  jn4q)
n=-o' m~1 nm 1 -nm

k = 0
rim

+ 7 (he, (1-z ~)n z n )~e e e jn (2-42)
n=cml -rm d -1 d -2 -rm

k' = 0

We substitute (2-41) into (2-37) and obtain

I = LW (-MI,-
-b b -

- H - E CsCk bd( h TE cosk b(z-d)tM I+CoskbzM ) if sink.d 00

_--)b ~ TM ' o)sinkbz + C cosk z if sink.d=O0
o b

- 7 YjY ,,ck d~hm ,cosk (z-d)M!, + cosk zM )h e
n~xm1 nm rim -rm rm -1rm -2 --nm

sink di0
nm

- 7 7 j Y' csck' d(h ,cosk' (-d)M + ok z I e eml
flnr~m m rim -tim rimz -1 os nm --ruhn

sink' d#0
rim

- zjY y 1(0 ,)sink 4- C cosk zlh me n
n-ml nm l) nm nmn -rim

k l d=TT,2T7,..

-Uli rim
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I Y J Y' [(he ,M)sink' z + D cosk' zlhe eCn

n=- m=1 nm nm nm nm

k' d-T,2Tf ...rm

-l~' bb (hMm M)kbz + Bnm]hmm ejnc
n ,- ° m 1 -nm n

k =0
nm

e ne n(hX i -__1 __2 h . e eJnd (2-43)

n=-0 m=l TIb kbd -nm

k' =0
nm

where

C j (io - Ao ) ' C = - j( +  - n), D J (B - n + ) (2-44)
o o o0 u nm nm nm nm nm

Lb(-M 1 , -M2 ) gives the magnetic field inside the waveguide region b for

the equivalent situation in Fig. 6. Note again that the TEM mode can

only exist when Rin # 0. Also, we note that in (2-43), corresponding to

each undetermined constant (not determined from M and M2 but can be de-

termined through other information) Co, Bnm, C or D , there is a con-o mm nm'

dition on the magnetic currents as shown in (2-41). This correspondence

is summarized in Table 1. The z-components of the fields in the above

analysis are not investigated in detail because they are not used in

the operator equations which we introduce in the next section.

%

t
P 1
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Situation Undetermined Condition on the Current
Coefficient

TEM M)

kbd= r, 2r,... C (h coskbd(h

k =0 B~ h tm, ) - - (htm  !j)

m n\ m n
kn d = Tr, 2Tr .... Cnm (h m , = - cosk d(h mM 2

k' d = Ti, 21T .... D (hem ) = - cosk' d(he , )
nm nm -n -m -nm:-2

Table 1. Summary of correspondence between undetermined coefficients in

Lw and conditions on the magnetic currents.
b

2.4. Basic Operator Equations

So far we have developed the equivalent situations for the three

regions a, b and c. In each region the electromagnetic fields can be

obtained from the surface equivalent currents through the operators in-

troduced in the last section. For region a, magnetic current 2MI on SI.

together with the impressed sources J and M and their images V and M
SZ-i -i

radiate into unbounded medium (ia, a  ) to give E a , H , as shown in

Fig. 4(h). Therefore, we have

E _ [Le(qJ + n J') - Lh (Mi + M')] - 2 Lh(M (2-45)
-a a-i a-i a - i- a ( 5

H - [Le(M + M) + ]h(na i  + +2 Le(Ml )  (2-46)
-a fI a -i -i ~a a-i a- r a-

3a a

where the field point is anywhere in the region z < 0. For region c,

'. 7
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the situation is very similar except that no impressed sources are in

this region. Therefore, we have

E = 2L h(M2 ) (2-47)
H =  c -2- (2

H 2 L'e(M) (2-48)
- n c c-2

c

For region b, we have magnetic currents -MI on S and -M 2 on S . These

magnetic currents, together with the electric current on the entire S,

radiate into unbounded medium (Ebl 1b) to give E, H in region b. There-

fore, we have

Eb L e L(ni ) + L h(M ) + L h(M) (2-49)

1e e
[Lb(Ml) + L Lb(nJ)] (2-50)

b'-b2b b-)

if we substitute (2-4) and (2-B) into (2-45) and (2-47), we find that

tangential E is zero everywhere on the plane z = 0 except in SI. In

S1. let the field point approach from z < 0 (i.e., ii = - z in (2-8))

and obtain i x E = M . Also z X E is zero everywhere on z = d except- -a -l Alo -Ec s eeyweeo

in S2, let the field peint approach from z > d (i.e., f-o = - in (2-8)),

and obtain i x E = - M. These boundary conditions are expected because

of the way the equivalent situations were set up for regions a and c. For

region b, however, the condition that fields be zero outside S still has

to be enforced. This can be done by requiring either the tangential elec-

tric field or the tangential magnetic field be zero just outside S. We

choose to use the condition on the electric field.

x × xa [L h(M1 ) + L (M2) - Le(n)i = 0 on (2-51)

+ h
Note that since the field is evaluated oi, S+  we have h n for L, wehav-0 - o b.

t

- ~ ~ ~ ~ ~ ~ ~ ~ ~ 7 7 -- - --- --- ~' -. . .
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If (2-51) is satisfied, we immediately have from (2-49) that x K

is zero on S3 and

xE MI =2 x E in SI  (2-52)
-b - - -- a1

z x E =- M = x E in S (2-53)
- b :-2 - -c 2 (-3

Therefore, if (2-51) is satisfied, our tangential electric field will

be zero on all conductor surfaces and continuous through the two aper-

ture faces S1 and S The boundary condition yet to be satisfied is

the continuity of tangential magnetic field through SI and S2. To

compute tangential H on S and S we note that when (2-51) is satisfied
-:-b 1 2

Ampere's law states

x _ x fl-H x J in S and S (2-54)
- --b - -1 2 (-4

To compute the tangential Ha in S1, we note that the contribution from

the impressed sources and their images is twice that radiated by Ji Mi

into unbounded (6 ,a I)" Therefore

x fi x H = Y fi x [2Hi + 2- Le(M1 )] on SI  (2-55)
a

The tangential H in S2 is simply, from (2-48),--c 2

i H = × 2 Le(M2 on S (2-56)
- c - - c -2 2

Therefore, the continuity of tangential magnetic field can be written in

the following form:

II 7
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e a,

fx x LeI(M,) + x J =-n fixi x H on S (2-57)
. a. 2 a- -

x x L (M) +  S x i X 0 on S2  2-58)
c -2 2 on22-8

Equations (2-57), (2-58), and (2-51) rewritten below,

fi x [L(M 1 ) + L (M2) - L'(nJ)] = 0 on S (2-59)

form the basic operator equations for the general problem, where

HI, M2 and J are the unknowns.

When region b represents a waveguide region, the fields in region

b can be written in terms of M and M 2 alone. The electric current J

is no longer needed and the boundary conditions on the waveguide walls

are built into the waveguide modes. Therefore, all we need to consider

is the continuity of the tangential magnetic field across S1 and S2

1 2

Lxnx Le(M) +  x n' x LXM -(MM 2) x- fix XH onS (2-60)
. 1 2.b-l' 2 a-- i I

Li x ×fLe(M 2 ) + x L × n w Lb(MI, I = 0 on S2 (2
c- -2 2 b.. .. .22

(2-60) and (2-61) are the basic operator equations for the special case

when region b is a waveguide region.

2.5. Fourier Decomposition

So far we have not taken advantage of the rotational symmetry of

the geometry assumed in the problem. In this section this property is

used to reduce the system of equations to a smaller set of equations.

To do this, we first define the Fourier coefficients of the unknowns

as follows:

t
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Jn(t) .J(t) +
it

21T 2T

f [J(t,p) • _ - n 2 d + [J(t,O) "±Ie -jn  dO (2-62a)

0 0

elBt) M"~(t)L + 1

= - f [MI(t,) _ d + - MI(t,O) "le -J nO do (2-62b)

o 0

2(t) M (t)t + Mn(t)i

= -Jl~e d~ + 2 (tO Il~e"' d# (2-62c)

0 0

where n = 0, ±1, t2,.... Since the field point in the operator equations

is always on the surface S and only the tangential component is used, it is

convenient to define field quantities in the same fashion as for the sources

in (2-62):

Len(j) = -f [Le()j)"]ein d- + [Le(J) " e -inO d (2-63)

0 0

hn+ -t h L _Jn tdp (j h d-n
L [L (J) fi ] nd+ T- [Lh(j) e -  d (2-64)

0 0

hn+where for Lh  , the field point is on the side of the surface that fi points

away from. Lhn - in the meanwhile, is used for field point on the other side.

Substituting (2-4) and (2-8) into (2-63) and (2-64), we find

L en en(J) = L n(J)

= en n en (jn)], + en n en n
= L (It (i (Jt + E L a (3 ) + L 40(J M)2-5f~rt - aOt" t" L O ((-65

. . : . ' ,; : . ' . •
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Lhn
+(J) - Lhn(jn

- oLhn (jn+ Lhn± (Jn),E + hn±(Jn) hn n)1 (2-66)L att t +  CtO oL t(t + L c4)4 0( ) -

What (2-65) and (2-66) mean is that the Fourier coefficient of either the

t or -component of the field is a function of only the Fourier coef-

ficients of the t and 0-components of the source in the same mode. The

new operators introduced in (2-65) and (2-66) are defined as:

Len (f) {k 2 I sinvsinv' (gn+g + cosvcosv' g nf(t )j'dtt

+ gn --4- (P'f(t'))dt'1 (2-67a)

Lten(f) = 1 {k2  I sin V(g - f(t')P'dt'Otto 2r 0, 2 nl g-

+ n f gnf(t')dt'} (2-67b)

Len (f) = 2 2  
-- sin vI(g - gn)f(t')p'dt'(lo4t 2Tr at j 2 n+I - n-l

d n d (p'f(t'))dt'} (2-67c)

en n {k2 1

L () en a 2 (gn + gn)f(t')P'dt'

n 2r
-P- gnf(t')dt'} (2-67d)

Lhn jkcL
Satt(f) = 2 ['sinvcosv' -psinv' cosv-(z'-z)snvsinv' IG3f(t')p'dt

3 (2-67e)

hn+ ft) +ct f ctsvGIL -(f) = f(t) + [Q' cosvG + ((p'-p)cosv-(z'-z)sinv)G2]f(tl) dt'O tto) 2 2Tr f 2

(2-67f)

hnif f(t) 2L t(f + Ct f Ip [ cosv'GI-((p'-p)cosv' -(z'-z)sinv')G2]f(t')p'dt'

(2-67g)

* I-- * - - .+'
* +

: .. . " .. . .- ' , " + + ,, . . . t . . +'
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.3

L (f) = (z'-z)G f(t')P'dt' (2-67h)
7 27 3

where

Cos v = £ • , sin v = _ • (2-68a)

Cos v'= f'" 2 sin v'= V' (2-68b)

7r -jk R

gn(tt') =f cos n ekR d (2-69)

-jk R
S(l+jkR)e 2

Gl(t,t') ( k R3 sin2  cos n d4 (2-70)
1 k R 32

0 C

71r -jk R
(1 + jk R)e

Gk(tt') - + R cos p cos n d4 (2-71)

0 a

-jk RS (1 + jkR)e

G (t,t') f ( sin c cos no d (2-72)
k3 R3

0 k

R (p -P,)2 + (z - ,)2 + 4pp' sin 2 (2-73)

Note that in (2-67), f(t) represents the source function and all integrals

are along the generating curve where f(t) is not zero. For the orerator

w
Lb, if we define

27TLb (-0 12 = - Lb(M--l M2  Al -]-Jnd0 d0
b -2 T b- -

0

A + 2JT L -(MI,2) •* en d4 (2-74)

0

°M
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it follows from (2-43) that

- dTEM- o o TEM #0 and itd#O
csckbd(h ,coskb(z-d)Ml+coskhZM2)h if na0, Rinrib  b ... .- i

- - [(hTEM,Mo)sink z + CocoslbzWhTEM  if n=0, Rn#0 and sinkd=O
rib -- 1 b-I

0 if n#O or Ri=0

ml n n m ii n
sinknmin

+ J Y csc k d(h, cos k (z-d)M + cos knzM )h
Mm nm nm nm +l coskm -2y -M

sink d#0
nm

+ YnCs( kn'd(hL cos k' (zd) + cos k,
rim n -M -1 zWM2 )he

sink' iO
nm

+ j Y [(hm, MI) sin k z + C cos k z]h e

m1  -nm nm nmT nm --nm
m=1 ,2m, ...nm

+ [(Yhqh Mn) sin k' z + D cos k n z h
mlrm nm -I rm nm nm -rim

k' d=TT,2r,...
rim

' k + MI h if there exists k 0
-- kb k -nq nq

++ ) .
kd h if there exists k' 0(2-)

kb dnq
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Note that all x and x' for a fixed n are interlaced, and therefore
nml nm

at most one of all k and k' can be zero. Also note that the con-nm nm

ditions on the currents as shown in Table 1 should be considered as

part of the definition of the operator.

From (2-64) to (2-67), we can rewrite (2-57) to (2-59) as:

en na . n n-L (M ) + --- n x = nH on F (2-76)
a -l a-i1

en n cLc (M2) + 2- jn = 0 on 1'2 (2-77)

hn+ n hn+( n en n
b - +Lb -Lb ( n) =0 onF (2-78)

From (2-74) and (2-75), we can rewrite (2-60) and (2-61) as:

TI
en n a wnn n n-L (M) - Ln(M M2) = H. on F (2-79)
a -1 2 a -1' -2 a7-1 12-9

en n c wn n n
L (M - L b(M M2) = 0 on r2 (2-80)

n i
For both sets of equations above, we have n = 0 I, ±+2 .... and H n is

i

defined as

Hn n +1-1 = H. p+H

f (H. " O)e d$ + -J (H1 ")e dO (2-81)

0 0

Our problem has now been reduced to solving (2-76) to (2-78) for the

general case and solving (2-79) and (2-80) for a special case. Although

AL
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an infinite number of modes exist, higher order modes are not important

unless frequency is high. Also, for axial plane wave incidence, H is

ec.nstant in S1 and therefore, from (2-81), only the n + 1 modes are

excited.

I

V,

ti
Iq
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Chapter 3

NUMERICAL SOLUTION

3.1. Generating Curve, Basis Functions and Symmetric Product

The geometry of our problem can be fully specified by the

generating curve F. This curve, in general, can be fully described

by a pair of parametric functions

P = hI(t), z h2 (t) ( fixed) (3-1)

In our numerical solution, a finite number of points, (PI, zI)

(P2, z2) .... are specified on the curve. F is approximated by

connecting successive points with straight line segments. ti de-

notes the t-coordinate of the ith point (pi, zi). Therefore, we have

t - t.

P = hi(t) =P i + At. (i+ I - Pi) (3-2)

t - ti

z = h2 (t) = z i + i ) (z - z.) (3-3)

where

At, = ti+1 - t1 (3-4)

For F2 , we have tI < t < t N" For PI, we have tN2 < t < tN3" For F3,

if S3 is doubly connected (if there is a center conductor in region b),

we have t < t < t and tN < t < tN+ If S is singly connected,
NN1 N,+l 3

we only have tN < t < tN for F. This arrangement is shown in Fig.

8(a) and Fig. 8(b) for the two cases.

- ' ., 1• "
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tNN t

t 40
Ylq

tt

N2+

t 2 (tN4+2)

N 4 t (t
t N 4+

Fig. 8(a). Approximate generating curve, S3 doubly connected.

tNl tN1

11

22

tN2+

t3 ti

~~1

Fig. 8(b). Approximate generating curve, S3 simply connected.

- 7

• " I, " -
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We now define a set of basis functions, {u t i- i 1,2,...N t;

j 1,2 .... N¢}, on S:

T i(t)
ut= 1 I - 1,2,..., Nt  (3-5)

P (t)
+ 1=1,2 N (3-6)

where

t for t. < t _ t

+ 1 - i+l

t i+2 t
T(t) +2for t t < t (3-7)
i -i+ 1 +1 i+1 - -1+2 (7

0 for t elsewhere

1 for ti< t <i - - i+l

Pi(t) (3-8)

0 for t elsewhere

and+ S+ (3-9)

i 2 i i+l

N - 2 for S3 simply connected

Nt (3-10)

N 4  for S3 doubly connected

N - 1 for S3 simply connected

N4  for S 3 doubly connected

Note that when S3 is doubly connected, as shown in Fig. 8(a), we use:

(ON4+1, ZN4l) = (+ 1, z1) (N4+2' ZN 4+2) (02, z2) (3-12)
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The symmetric product, <a, b> of two vector functions is defined as:

<a, b> = f a • bpdt (3-13)

3.2. Matrix Equation for the Nonmodal Formulation

The moment method [171 is used to reduce the set of linear

operator equations (2-76) to (2-78) to a matrix equation. To do this,

we first expand our unknowns Ml, 11 and _n as linear combinations of

the basis functions defined in the last section:

mit m1'n = n ut

M1 V itq u t,q+N-1 + 2 V Iq u,q+N -l (3-14)
q=1 2 q=l 2

m 2t m 2q
n

q tq +  V  n (3-15)
--2 -tq 24q - q

Nt  N,

ql u I + 1 I u (3-16)

where

Iit = N3 - N2 -l , ml = N3-N2  9 m2t = N1-2, m2  NI-l (3-17)

Note that the boundary conditions that the components of Mn and Mn normal
-1 2

to the edge of the apertures be zero are satisfied by (3-14) and (3-15).

Equations k-14) to (3-16) are substituted into (2-78). Next, we test

-3

t
O.
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(2-76) with every element in the set {u tiu i - N2,...,N3-2 ;

j = N2, .... N 3-1). In other words, we require that the symmetric

product of both sides of (2-76) with every element in the above set be

equal. Similarly, (2-77) is tested with the set {2i' yJji-l,2,''''Ni-2;

J = 1,2, ..., NI-1} and (2-78) is tested with the set {mi, YJli=l,2'.'',Nt;

j = 1,2,..., N } This moment method procedure results in the matrix equa-

tion

zz a zn 1 n -n
tt t tt t4 it t

zan an 0n 0n
4)t Z404 0 0 t U 0l$ P

0 0 zcn Zcn U2  U2 -n 0
tt t0 tt t4 2t

0en20 I (3-18)0 0 Z cn zcn U 2  U2 -n0

t 4Z4 4t 44) 24)

ylbn ylbn y2bn y2bn zbn zbn -n 0
tt t tt t tt t t

ylbn .Ibn y2bn .2bn zbn zbn n
_ )t 4) 4)t 4 4t z ) 4 L

where the Y's, Z's and U's are submatrices. Their elements in the ith

row and jth column are defined as:

an I ":u Len )>
[Zpq ij -p,i+N 2-a' L (Uj+N2-1

p~q = t,

j =1,2, ..., ml (3-19)

Zc n ]  e Ln(
1Z pqlij -pi ' c U j ) >

p,q = t,

1 2 , .... , m 2p
j 1,2,..., m2q (3-20)
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[Zbnpq U~i ' Lb (,!qj)>

p,q

I=1,2,..., N
p

j1,2,..., N (3-21)
q

lbn hn+[Y pq..=j<uI, L b(u q. +N)>

p,q

Np

j = l,,.,mq (3-22)

[ bn L hn+(u>
1p ) -Pi b --qj

p,q=

1 = ,2,..,N
p

j m 12..m 2q (3-73)

fu Aqi n-pi+N~ (6 in 2-, x u i+ -2j j>Ip

4b -+N' -1

"J+if p-t q - 24

4TI~ ~ ~ 1,2,..tj i+ -1,
b = 12, ~~
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2 cl
(U u X_[U lij 2= ---b i -q

4n _-- + ( ij + 6 i+lj ) if p-t, q-w

4bi
Iq Pi + ij +  i-l,j + 6ii J,N 4 )  f i, -

0 if p q

p,q =

i = 1,2..., m2p

j = 1,2,..., N (3-25)
q

Note that explicit formulas are obtained for elements of the U's because

the evaluation is very easy. The Kronecker delta is used in (3-24) and

(3-25). The evaluation of (3-19) to (3-23) requires complicated double

integration. Numerical methods are used in the computation. The evalu-

ation of the g's and G's in (2-69) to (2-72) is important because of the

special care required in handling the singularities of the integrands.

The singular part, or a function that has the same singularity, is inte-

grated analytically for each integrand that has a singularity. The dif-

ference, which is regular, is then integrated numerically. The details

are explained by Mautz and Harrington in (181, [191, and (20].

-n -n V-n -n nt and -n
V iad V2 , are column matrices defined as

i7i
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vn
vsl

vnVis2
Vs (3-26)

is
1= 1,2

n t, 

n
sl

n
s2

In = (3-27)S
s =t

n
sN

S "

Their elements are the unknown coefficients of the expansions in (3-14)
-n -n

to (3-16). Pt and p are column matrices of lengths mlt and ml re-

spectively. Their elements are defined as

ns
= t, t

n=a sTj<u + H (3-28)-s a-s,j+N 2-1 -i = 1,2,...,m ls

A more detailed examination of the "excitation matrix" defined in

(3-28) is discussed in a later section.

3.3 Matrix Equation for the Modal Formulation

To discuss the modal formulation, we first note that the complete

systems of equations for this formulation consists of the operator equa-

tions (2-79) and (2-80) plus the equations that set the conditions on the

_A
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magnetic currents, when required, as summarized in Table 1. When the

operator Lb  is used, a finite number of modes are used instead of

an infinite number of them. The unknown magnetic curretns I and

are expanded as in the last section:
mlit m lo

il =  .= Vlti -u,i+N-1 + X Vl1 i n i+N -1 (3-29)

-l =1 ~ ' 2 i=l ' 2

m2t m2

Mn = 2ti + v 4  ,i (3-30)-2 i= 2 1i

We substitute (3-29) and (3-30) into (2-79) and (2-80). Equations (2-79)

and (2-80) are then tested by {u uji = N .... N3-2; j = N N3-1}
ti -4j NV.. N3 - 2""' 3

and {u ,iu ji = 1,2,..., NI-2; j = 1,2,..., N -11, respectively, using
-ti' -74 J1 1

the symmetric product defined in (3-13). The resulting equations can

be written in the following form:

an nll an bnll wbnl2 wbnl2 xn t
tt i t t+ t4' tt t4t Pt

an +wbnll an + bnll wbnl2 .bnl2 n -n -n
4 t + t z 0+ 14 4't w o X14 V14 p

Wbn2l W W bn21  en n2 cn + bn22 n
tt to tt to t to 2t 2t

wbn2l bn2l Zcn wbn22 cn +.bn22 n -n 0
_ t W4' 4t +  4t Z4 + W X 2 _2

Cn (3-31)

where the Z's and V's and p's are defined the same as in (3-26) and

(3-28). The elements in the W's are defined in the following:

J. .. .
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Wn1 a N - k cot(k d) -mip mlq+
kq 2 T nm run rn

sink d#0
nm

+ e k' -elp -elq-cot(k' d)x x
M~ kb nm rn ran

sink' dO0
nm

+ ct~kd)-TEM -TEM++ Ct~k)x 1  x 1  (if n=0, R in0, sinkbd#O
and p-q-F)

+ --ep -lq (if there exists a k' 0)
kbd xnk 'nk nk

p, q=t,4 (3-32)

wbn22 - if N kb co~ )-m2p -m2q+
wpq 2jrn b __L X - krmk nm d)xnm n rm

sink nmd#O

+ I n tm k -e2p -e2q+
m1l k b Co~~ d) X n x m

sink' dO0
nml

+ cot (kbd) XLA2 x 2 (if n0O, R 00, sinkbdO0

and pq=)

+~ Xn xn (if there exists a kI ep~eq 0)

p, q t4(3-33)
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bn12 n a ~ N' k b l mq+
w i- csck d -mi -mxWpq 2j m=1 bn-L m rm m n

sink d*O
rim

N e k' +
+ mn~8  k' elp -e 2 q
M1l k rim run m

sink' 00
m

-TEM -TEM + =,.#,in # n
+ csckbd X1I X 2  (if n=,Rin 10 ikb Oadpq

+ _j_ x-elp -e2q +ni hr xssak 0)
k bd Xnk Xnk (inhr xssakb

p,q =t4(3-34)

bn2l c N kb +~ -l
twJpq = JTILmi csck d -mx -m

sink d#O
m

N e k' +

al-1 b m nm nm

sink' d#0
m

-T E M - 'rE M ( i n , R # O s n k d # a d p q )
+ csc kbd X2  x1 (i =,Ri 0 ikd adpq

e npel (if there exists a k' 0)

nk nk nk

kbd x xn (if there exists a k =k 0)

p,q =t (3-35)

II
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where X nm nm ., etc., are column matrices. Their elements are

defined as

-Mlt 'mR otT i+N2_I

t, <ti+N - hm >= jn -l mdp (3-36)rim 2 m2- -

R in

i=i,2, .. .m

R P.

nhm o ut i+N2-1 ml

[nm . f ,+N2_1 , -rn"  J + nm
R in i+N 2 -1

i=1,2 ..... mlq

Rit e out e'

nm V h1ne f T.±N - dp (3-38)nm -t,i+N21' m

R.2
in

i = 1,2,...,mlt

R P+N_

el I U 1e - jn Re d (3-39)
[nm ] i i+Nl -n f + ;;nm

R.in i+N1 -1

in

ThM. = TEM =i+N 2- 1

xI  Ii i+N2- h_ + (3-40)

i+N2-1 in (Rout/R in)

Routii

-m2t ,
m  

.m

[x -'u -_in J dp (-1rinm i ti-nm j p nm (3-41)
R in

i = 1,2,..m~

2tl

A-b



RRf2 out P.
m2X <u hm > =--I qP dP (3-42)tnm J -<~'-nm f -+ nm Odp(-2

Rin i

i =2

Rlo eut el'
Irent I Ut hen > T - T nm dp (3-43)
Xnm 1 i <ti -nm i~T'd

R.
in

-e2 eout P.

nm jn i --i -rm-I n d P (3-44)

R. Pi

in

•-TEM, =TEM > A i (-5S2 h + (3-45)
--. /in (Rou/Rin)

1 outlRi

i = ,

'mm, 'e T and P are defined in (2-21), (2-22) (3-7) and (3-8) The
nmt nm9 1 12) 37 nd(-) h

superscript "+" on a matrix denotes its complex conjugate transpose. Nm

and Ne are the numbers of TM and TE modes used in the approximation of

wnm e
L We normally choose them such that Pnm (P) and nm(p) have a number

of oscillations in any given subsection.

The X's and the column matrix C exist only when at least one

"cavity resonance" occurs. By "cavity resonance," we mean ay of the

situations listed in Table 1. The elements of the column matrix n are

the unknown coefficients C , B nm' C nm, and Dnm when their corresponding

resonance occurs. If such an unknown coefficient exists as the ith ele-
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ment of Cn, then there exists a corresponding ith column in each of

the Xn Xn xn2 and X .n This corresponding column is of the

following form:

-Itn x
a

T) x
2-2 

(3-46)Scos kd2t

n cos kd 2

where the x's and Y and k used in (3-46) depend on the particular

"cavity resonance" under consideration. The correspondence between

the unknown coefficients and the x's and Y and k in (3-46) are sum-

marized in Table 2.

cos i=1,2

Coefficient k k -
s=t ,4

-TEM for s=0

0o 0 for s=t

B ]/nb k xnm bnm rnm

* -m
C Y k x
nm nm nm nm

Y1 -e
D Y' k' x
nm nm nm nm

Table 2. Correspondence between x's and Y and k in (,-46) and the

coefficients associated with cavity resonances.

Next we consider the conditions on the magnetic currents when

cavity resonances occur. Substituting (3-29) and (3-30) into the

- ] li...
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conditions listed in Table 1, we find

n +a C c n + + n +] "

" n  X X2J Vt 0 (3-47)[rait ria Xl$ 2t 2

-n

-n
V2t

-n
'2t-

Combining (3-38) and (3-54), we obtain, for the modal formulation,

zan + wbnll xan + wbnll wbnl2 wbnl2 n -V t ntt tt t0 t0 tt t0 It Pt_

zan +wbnlI zan +.bnll wbnl2 Wbnl2 Xn n n
4t +  t zoo +  4 pO t w1 X4 lq.

wbn21 wbn2l Zcn + wbn22 Zcn +wbn22 Xn -n 0tt to tt tt t t 2t i 2ti

bn2l _bn2l Zcn +wbn22 zan +_bn22 Xn n 0
+ + + +

nXn n -n

L ca It ca 14 2t X2 J LC 0

(3-48)

where
ca= nc/Ta (3-49)

3.4. Far Field Measurement and Plane Wave Excitation

The modal and nonmodal formulation discussed in previous sections

share the same excitation matrix defined in (3-28). The values of the

matrix elements depend upon the specific type of incident field under con-

sideration. In this section we consider plane wave incidence. This

plane wave can be considered as the field radiated by an electric dipole

3 L1
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located so far away from the aperture region such that the distance

between the dipole and the aperture region is much greater than the

linear dimension of the aperture. Therefore, from (3-28), the compu-

tation of the excitation matrix involves calculating the reaction

[16, Sec. 7-7] between the magnetic field due to an electric dipole and

the basis functions of the magnetic current in the aperture S I  Further-

more, from reciprocity (16, Sec. 3-81 the problem can be thought of as

calculating the reaction between the electric field due to the basis

functions of the magnetic current and the distant electric dipole. This

situation is very similar to the one we have when the far field on the

transmitted side is considered. In that situation, each of the two com-

ponents (tangential to the radiation sphere) of the radiation electric

field can be thought of as the reaction between the electric field due

to a linear combination of the basis functions of the magnetic current

and a distant electric dipole of unit magnitude, pointing in the

appropriate direction. Therefore, the far field measurement and the

plane wave excitation share basically the same analysis.

First, let us consider the plane wave excitation. The plane

wave considered here is of either the 0-polarization or the 4-polari-

zation. The electric and magnetic fields of these two types are of

the following form:

-jk. r

EO  . e -
i o-i1

O-polarization (3-50)

H . -- Ki

T)

2 -..
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4E ) e

_-polarization (3-51)

where

1= jix 0_ , k kki (3-52)

% and are the unit vectors in the spherical coordinate system

at the point, (ri , 01. 4i), where the distant incident source is

located. This situation is shown in Fig. 9. A general plane wave

is a linear combination of (3-50) and (3-51). Substituting (2-81),

(3-50) and (3-51) into (3-28), we obtain

Eq t N3 2 -jki  r-jn)

nq 0 --°+2) d -1(
Psj = _2a fj dto 6 • u dsj+N 2-_ ie

tN2 0

s = t,4)

q = 0,4 (3-53)

j = 1,2,...,m ls

The extra superscript q denotes the type of polarization under con-

sideration. Substituting (3-5), (3-6) and (3-52) into (3-53), we

obtain

Fe

-Pt 2nk n

! a', q -nO -E e!¢

. ~ P7 2ka n

0 -Jn (3-54)
E4  tO

P 2Trk n
_E¢eJntI

= n 0 e 4)
i .2 ka  n

IL,7
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z

Fig. 9. Coordinates for the incident wave.

x

C C

y

Fig. 10. Coordinates for the transmitted far field.
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where the elements of the column matrices, R's, are defined as

Rto =n+l aN 3
Rnj TkaCoso f Tj+N2 1 (t)[Jn+l (kap sin 8i)

tN2

- Jn-l(ka sin 0 i)] sinvdt

R = jn kcos N3 P J+N 2- 1(t)

nj+ [Jn+laP sin 0)

tN j+N 2 -1

RtnO =  n ika  3 T W2_~t [Jn (kaP sin 0i

2

+ J n(ka p sin si)]sin dt

ROt i njlTrk 3 [ (k p sin 

nj a f Pk + [,Tn+l a i
tN2  J+N2-I

- J n-(k aP sin 0i )s] pdt (3-55)

The J 's denote the Bessel functions of the first kind. The definitionn
of the R's is to Bink quantities in this work to those in [21].

Next, we consider the far field pattern on the transmitted side.

From the equivalent situation discussed in section 2.2., we know that the

far field is due to 2M in S radiated into the unbounded medium (Ec, P).-2 ~29 c

By reciprocity, we have

.wr - V

V~~
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E • f= L (I,) 2 (r')da' (3-56)

S2

where Ik is an electric dipole situated at the point (r,O,4) distant

from the aperture in region C. _ is either _ or j since it is along

the directions of these two unit vectors that the far field is to be

computed. This situation is shown in Fig. 10. Notice that we have

moved the origin to the center of S2 for convenience. Since either

_ or is tangential to the radiation sphere of I0 in the vicinity of

S2 , we can write
-jk r

(k ( x I .) e C

c =4r er-- £ = r,' (3-57)

From (2-62b) and (2-62c), we obtain

-P [Mn C + M n ] jn p 1,2  (3-58)

Substituting (3-57), (3-58) and (3-15) into (3-56), we obtain

E -9=Ez
-r - cr

-j k r t2ir

jk e c r rNI-2 n  N 1 2 j r'+Jn
L Y V J dt'T (t') fd'' × e-

2Trr n=- j=l I f d

tI  0

SNI-I n Nd .(.. 2 *•x 9 )e- i£ r+n1
+ nvI I +-- 'jn

j=l O
t j 0

(3-59)

Here the extra subscript r denotes radiation field and the superscript

Z denotes the component (0 or ) of the field. The integrals in (3-59)

are very similar to those in (3-53). It is not difficult to find that

• LO . . . .. . I, - r j V . . .... . '" .r. .' i " - , , - , ... ... . ..,,. ,, .. ..
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cr - jkcr n n 2t
-ik e e

2rr n=-oo

=:to 8 -n
cr n n 2

where the i's are the transpose of the R's defined as in (3-55)

with (ka, 01, tN2 tN3 ) changed to (kc , 0, tit tN1) and the sub-

script J+N 2-1 on T, P and p+ changed to j. The lengths of the

matrices also change from mIt' ml to m2t and m accordingly. Note

sinv is -1 in S and is 1 in S2 .

It is appropriate to discuss the symmetry with respect to n

at this time. From (3-56) it is apparent that

R-n R n 1nn

J J(3-61)
L-n -n i n

From (3-19) to (3-23) and (2-67) to (2-73), we find

Z O -n Z(t, -nI z Z n  Z n

* I- t t4
n =(3-62)

(Y., -n Zi, Zn n  a~n

LZt L tZ

= a,b,c

and

-. " -,2j -2 ... '.. .... . -,,: ---, .'_, .. . ..., ,,- ,.. - o , -
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yjb,-n y jb,-n _y Jbn g Jbn

tt ttt

j 1,2 (3-63)

jb,-n yjb,-n yJbn -Jbn

The elements of the U's do not depend on n, as shown in (3-24) and

(3-25). Therefore, from (3-54) and the above discussion, we find

--nO -nO -n o

-- nO = _nO V-no = _ V j1 (3-64)
jt jt . , t

-- nO = nO T-no = _ Tno

t t t t

--nO -nO -no jno

Here the extra superscripts G and o denote the solution of (3-18) for

the particular polarization of the incidence. From (3-14), (3-15),

(3-58) and (3-64), we obtain

nO

M 2j Vlt sin n i=1
t i+Ni+N 2 'n n2lt

00 V) nO

M -4 + 2 l cos no i1,2,..
MI4 + + + , + l0

tti+N 2-I i+N2-1 n21 i+N 2-1

2 2t2

M= 2j 2ti sin n i--,2,...,m2t
t=t n=1 0 i+li+l

I-
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M8  0600 Vn
24 m . + 2 y 2+  cos n i=1,2,...,m2
t t=ti P i n=l Pi

~t + = 2j sin n4 i=1,2n= I P.+2_ = , It ,

i+N2-l1 L n-l

MO = 2j si i sn n i=1,2,...,M 24 (3-65)

The extra superscript on M's again denotes the polarization of the

incident wave. The electric current .I exhibits similar behavior.

i °N P, i n -

2 2

and J t hav the sam an u a behai o in e c m d as that .. of

dt=t i+ 1  i+l n-l-i+1

= 1 iI
oO _n

t10dJI hav the siengua beavo =nec oea hto

It

nb t=ti n=l O

ME
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n,

001tinbJ - 2j Z I  sin 0= 1,2,...,Nt
b t=t i n1 i+I

-= +2 2 j cosn i=1,2 .N
b t't+ P + n=l P +

S i1(3-66)

From (3-60) and (3-64), we obtain

E 8 E@4 _R -o0 0
cr cr o 24)

-jk r
-jkc e C

2T r

CC
cr cr o 2t

cos n4) 0 t4 n6

n n n2t
+ 2

0 j sin n)1  to i4e v ne 0

n n 20

[i sin n4) 0 1 F~4  0 2t

+2 
1

n=l ol1 0 osn L~tO o)RJ o2 (3-67)

The first superscript of E denotes the component of the far field
cr

and the second superscript denotes the polarization of the incidence.
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Chapter 4

EQUIVALENT CIRCUIT AND LOW FREQUENCY APPROXIMATION

OF THE NARROW ANNULAR SLOT

In this chapter, the narrow annular slot shown in Fig. 11 is

considered. Now region b inside the thick screen is a coaxial region.

For simplicity, regions a and c are assumed to be air filled with

k a k = k and ni = i = . The word "narrow" means the following:
a c o a c o

kW < , kbW << i (4-1)

w << R (y 1) (4-2)a

where w and R are the width and the mean radius of the slot.a

w R - R. (4-3)out i~n

R =(R +R (4-4)
a 2 out in

The thickness of the screen, d, is assumed to be finite. The power

through any cross section of the coaxial region is the sum of the

powers associated with each coaxial mode. This is due to the ortho-

gonality relationship among the modes. Under condition (4-2), x

and x' defined in (2-26) can be approximated by [22, 23]:
nm

1l

771

1Ag



61

(co YI0

iy

Conductor (E 0 9 O)

I bl lb) I w
T T

out a in Conductor

d

Conductor

Fig. 11. A narrow annular slot in a thick screen, cross section in
the y-z plane.
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- mIT n 0,1,2,...
n (1-y) m = 1,2,...

mIT
om (1-y) m = 1,2,...,

xmT= _ n = 1,2,...
n,m+l (1-Y) m = 1,2 ....

x = n n = 1,2 .... (4-5)

It is then straightforward to see that if (4-1) and (4-2) are true,

and if

kbRout <xll 1, (4-6)

then the TEM mode is the only mode that propagates. Therefore, the

power associated with the TEM mode is of special interest since, when

(4-6) is true, it can be responsible for most of the power transmitted.

In the following sections, we develop an equivalent circuit

for the problem based on the analysis of the TEM mode. Resonant be-

havior of the power transmission is observed and the electric polari-

zability is discussed for a small and narrow annular slot in the thick

screen.

4.1. Equivalent Circuit

The time averaged power transmitted through the aperture, de-

noted Ptrns' can be obtained by integrating the complex Poynting

ector over the aperture surface S2 . Therefore, we have

P F Re f b b da= M Re 2 _bda (4-7)
trans 2

S 2 2
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Substituting (2-43) into 4-7) and retaining only the contribution from

the TEM mode, we obtain

P0  - _ Re(V 1 (4-8)
trans 2 2

where the superscript "o" denotes the contribution from the TEM mode,

and the quantities on the right hand side of (4-8) are defined in the

following:

12 = -csc (kbd)V I - cot (kbd)V2  (4-9)
nb

T_ R
TEM o) 2 rout

riT(h M.-----n Md j = 1,2 (4-10)
J n -j J

R.
in

Equations (4-9) and (4-10) define three of the four parameters of a

two-port network that we introduce later. The fourth is defined as

1 cot (kbd)V - cs d)V (4-11)
1 = 1 b b 2(4-

We now proceed to develop the equivalent circuit of the problem,

starting with the operator equations (2-79) and (2-80). Substituting

(2-65), (2-67a) to (2-67d) and (2-75) into (2-79) and 2-80) for n = 0,

and separating the the $ and t components, we obtain, for the $-component,

R ou TT -jk R
f)otdr0Mol() - R d - [cot(kbd)Vl+csc(kbd)V2lh

TEM

R. 0 2- bb

in

-j Y [cot(k d)(hnm IM 0  + csc(k d)(hm JI 0)]h m
m=l  om om om -1 om -om -om

?H (4-12)

, ~ - .~- --.-- - ---- ~ 0i~~~- -
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RT -jk Rjk otdpI pM20(P,) cos je 0d, _ [csc (kd)Vl + cot (kbd)V hTEM
0 RE° 0 v 2r rib

in

-j Y Y [csc(k d)(hm M0) + cot(k M d)(h , M0)]hm
m=l om om -m 1 om -am -1 -am

=0 (4-13)

where

R = I2 + P 2 _ 2pp'cos c (4-14)

Note that for n = 0, the TM modes have only the d-component and the

TE modes have only the p-component. Next, we equate the inner products

of hTEM with each side of (4-12) and (4-13). The result is

v2j o k ut out
0 indp o g, M1 (p')O'dP'

o R. Rin in

R

--J- [cot (kbd)Vl + csc (khd)V2 ] 2 ju H7 (P)dP (4-15)
b -n- R

in

r' j 2  R0  ~ Rk out d out )0

¢r- onyfl R. R.
in in

- i[csc (k bd)VI + Cot (kbd)V2 = 0 (4-16)

rl
b

where
- T -.jk° R

9 c-- -e -d (4-17)
k kR

0 0

ALtL-
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and is the same as defined in (2-69). Under the condition (4-2), g,

can be written as

2 2k R9 ~ (I . _ E2(x)dx]k R 8R 2 (0

oaa 0 2 x~x

2kJ+xd (4-18)

0

where J2 and E2 are the Bessel and Weber functions of the second order.

The proof of (4-18) is given in Appendix A. Substituting (4-18) into

(4-15) and (4-16) and using the approximation p' Ra, we obtain

2k R 2kR R R
kw Ii o a out out 2 )1

-[ J2 (x)dx + E(x)dx]V - fos dp in 'M (P )dp
o 2 LT lTw/-l ny R Ra

S0 Ri n in

R
2 T out

- [cot(k bd)V 1 + csc(kbd)V] 2- - I H (P)d (4-19)
R.

in

2k R 2k R R RkW l Ia fa ,- rout lOUt 2 , ,

oE 2 (x V2 -o d(x)ine d- )d
- J -n 2R )M 2'f )d

o 0 0 ITiw lnyR a

- [csc (kbd)Vl + cot (kbd)V 2
1  0 (4-20)

rb

We now examine the double integral in (4-19). Changing the order of

integration, we obtain



66

R R R
do M0  (e  = M (p')f(p')dp' (4-21)

R p R ou mi P ) n a Rd' f MiRin Rin Rin

where

f(P') =  ouin (-!21P ,I )do

R aR
Rin

2
= w - W + (R - p')In (R - p') + (p' - R )1n (P' - Rn)

i8P out out in ina

(4-22)

f(p') is an even function about P' = Ra and has its minimum value

2
fmn = (w in 8-R w) occurring at R' Rn and P' = R out. Its maximum

a
2

value f = (w In e w w) occurs at f' = R . When w << R , f(p') is
max 16R a aa

almost constant. Therefore, the value of the double integral in (4-21)

is essentially proportional. to the integral of Mo0 1 i.e., V1. and is
I'

insensitive with respect to the actual functional form of MI0(P').41
Various values can be obtained for this integral by assuming different

functional forms for M0 (p'). They converge to the same value as the

ratio -- becomes very small. The same argument is valid for the double
R
a

integral involving M in (4-20). Equations (4-19) and (4-20) are now

written in the following form:

yhs b yb +yb
VI +Y VI + Y 12 V2 = (4-23)

+b + Y bv2 = 0 (4-24)

where

'1-l -I | i ' , . . . : . . . . : : " . -
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rY. br cot kd - csc k d
ll 12 r b  b

=, (4-25)

b- - - csc kd -- cot k dLY21 Y22 1r Tb -b b b

yhS G + jB (4-26)

2kfo aJ2(x)dx29 J_ (4-27)2n =  
2q

0

R
out

2koR 
u M jtrial (P') f( ')dp'

k 0r w o aRliB E fO~r (4-28)B n q 2 j E2xd - Rou

tiw aMtrial(P')dP'
R In

R

ois Hi ( 1)dP (4-29)

U- R 

l "in
In (4-28), M trial represents any particular functional form that we choose

for 1.1 0 and M2 . If we choose to use a constant, we obtain

kw 2kR1/

Bf a o E2(x)dx - w -R--] (4-30)

0) 2 - T a0

If we choose to use for M the quasistatic solution for a narrow

annular slot in a infinitely thin screen [24], then

j,

t
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M trial1() (4-31)
2ia(P R w22

2 a

and the result is

kwr 2k R 2k2k o a e2w.a

B= o E i n w-[-- (4-32)B~7 1- " ER()dJ

0

Equations (4-23) and (4-24) can be viewed as the equations for the

equivalent circuit shown in Fig. 12. This equivalent circuit can be

used to analyze the TEM mode as long as (4-2) holds. The current source

can be computed for plane wave incidence:

-E -jk. • r
H. e e (4-33)

Note that (4-33) represents the 0-polarized plane wave defined in

(3-50), since a -polarized plane wave does not excite the TEM mode.

Substituting (4-33) and (2-81) into (4-29) and using the condition

(4-1), we obtain

22= - j 2 w E' J (k R sin )
o 1 oa (4-34)rj 0 V ny

In the above analysis we have assumed sin k bd # 0. This is evident

because, when deriving (4-8), (4-12), and (4-13), we used (2-43) and

(2-75) in the case where sin kd # 0. It is not difficult to show

that when sin kbd = 0, we have the following equations:

- Vm
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*+ 1k .4

V1  I s hs [tb] Y hs V 2

Fig. 12. Equivalent circuit for (4-23) and (4-24).

+ 
1 :-cos(kbd)

11 12

VI IT YhsY V2

Fig. 13. Equivalent circuit for a cavity resonance case,
(4-35),(4-36) and (4-37).

'1

ism-
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yhsl rh V I + 1 (4-35)
I s

yhSv rY + i =0 (4-36)

V + V cos kd =0 (4-37)
1 2 b

r r

where V and V are defined the same as in (4-10) while I and Ir
1 2 1 2

are defined as

Ir J 27 C (4-38a)r b

j v27 cos kb d
= - b C (4-38b)

2 T1b0

C is the extra unknown constant associated with the case sin k bd = 0,

introduced in Chapter 2. The equivalent circuit for this case can be

constructed from (4-35) to (4-37) and is shown in Fig. 13. The power

transmitted can be shown to be

pO,rn = - Re(V 2  2)(-9

P o ~ eV I ) (4-39)trans 2 2

for this case.

4.2. Power Transmission and Resonant Behavior

The equivalent circuit shown In Fig. 12 is very similar to

that of a narrow TE slot in a thick screen [25]. When the thickness

- of the screen is close to a multiple of a half wavelength, the waveguide

Aw
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region can "tune" the aperture to transfer peak power. We show this

by considering our equivalent circuit in Fig. 12. From the equivalent

circuit, we obtain the power transmitted as

* = s 2
trans 0 G (4-40)

Here yI2 is the transfer admittance defined as

I

Y12 = V2  (4-41)

and can be solved from the circuit as

hs hs 2
YI2 = - 2Y cos kbd - b [1 + (n Y ) ]sin kbd (4-42)

Equations (4-40) and (4-42) are valid even when sin k bd is zero. This

can be easily shown by solving the equivalent circuit in Fig. 13.

Substituting (4-26), (4-27), (4-32), (4-34), and (4-42) into (4-40),

we obtain

Eo, 2  87wR J2(k R sin 0i)G'
0 a I__ o oa i

P trans - r 2 2_ 2 2
n o 2G'cosk bd - 2G'B'sink bd)] + [2B'cosk.d+ (l+G' -B' )sinkbd] 2

(4-43)

where
2kR

k w io a

G'= G = J(x)dx  (4-44)
0 2 f 2

0
kwL2kR

B2kw 2 o° a F 2 [in 162l+In)(l-y) 21 (4-45)
S nB = -F(x)dx + 1 )

0
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For a finite k R , under the condition (4-1), we see from (4-44)
oa

and (4-45) that

G' << , B' << 1 (4-46)

With (4-46) in mind, we see from (4-43) that, when sin kbd is not small,

P is approximately proportional to csc2 kbd and has its minimum in
trans

the neighborhood of d = (2 + 4)Xb" Furthermore, PO is large in2 4 b*trans

the neighborhood of d = 2!b" Looking at the denominator of P0  in
2 b trans

(4-23), we see that when kbd n7 , the first term of the two is very

insensitive to a small change in kbd and has the approximate value of

2
4G' . The second term however, is very sensitive to a change in kbd,

and can be made zero by precisely choosing our kbd. Therefore, the

maximum of P0  occurs when
trans

2B'
tan kbd 23 (/-47)

(1 + G' - B'2 )

Equation (4-47) is our condition for "slot resonance" described above.

Since B' is small, a first approximation of the solution of (4-47) is

dres n -B'2 -)b (4-48)

The peak value of P0 t can be found by substituting (4-47) into" trans

(4-43). The result, after proper approximation, is

poes E 2 2 w RJ2 (ko R  sin 0
P o~res aJ1(oakR4-9
trans fl G' (449)

The superscript "res" that appears in (4-48) and (4-49) denotes the

slot resonance, and is to be distinguished from the superscript "r"

• -.A• , ..
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in (4-35), (4-36), (4-38), and (4-39) where it denotes the situation

when sin kbd is exactly zero.

Another quantity of interest is the width of the power trans-

mission peak just discussed. We define this peak width as the dis-

tance between the two neighboring points of d res where half of the

peak power is transmitted. Therefore, we solve the equation

p 0 = 1 po,res (4-50)

trans 2 trans

Substituting (4-43) and (4-49) into (4-50) and using the approxi-

nations

kd = kbd r  +6

cos kbd = (-i)n (4-51)

sin k d = (-1)n(6 - 2B')
b

we obtain

6 = + 2G' (4-52)

Therefore, the half peak power transmission occurs at

G''
d=d r e s+-b (4-53)

and the peak width is 2G' Notice that, ir #-S .nd (4-52),

6 represents a small number and is to be distinguished from the

Kronecker delta used elsewhere in this work.

The transmission coefficient T is defined as

T trans (4-54)Pin
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where Ptrans is defined in (4-7). Pin is the power that would be

intercepted by the aperture S if the incident plane wave were normal.

Therefore,

2Tr w R aIE1 2

P = a (4-55)

0

where E is the magnitude of the incident electric field of the

general plane wave of the form

E = (E 0  + Eo )e -1- (4-56)
-i 0-:i o i

For the problem discussed in this chapter, if (4-6) is valid, we have

P p pO (4-57)

trans trans

Substituting (4-43), (4-55), and (4-57) into (4-54), we obtain

IE01 2 4G'J2 (k R sin ei)
T0 1 o a i

IE° 2 [2G'coskd - 2G'B'sind 2 + [2B'coskbd+(l+G'
2 -B' 2 )sinkbd] 2

(4-58)
Similarly, if (4-49) is used instead of (4-43), we obtain, for

the slot resonance,

Tres=IE 12 J2 (koRasin )T Eol 12g '  (4-59)

4.3. Small Apertures and the Electric Polarizability

If in addition to the conditions (4-1) and (4-2), we assume that

the overall size of the aperture is small, i.e.,

k R a<< (4-60)
"IONa

* . ,-.---
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then some of the formulas in the previous sections can be simplified.

These formulas are written below without detailed justification be-

cause they involve mostly simple small argument approximations of re-

lated functions.

i 3
G' = oG = (kow) (kR (4-61)

k w 32R
B ln( ) (4-62)

0 = 2e w

j 2 koRaw E z(0)= r oa iz(4-63)

s -lny o

WT a kwRa (k W)(kR) 
5 Ez (O)1 2

trans 0in 3o{[2G'coskbd_2G'B'sinkd] 2 + [2B'coskbd+(l+G' 2 B'2)sinkbd]2}

(4-64)

Ei (0)1
2  3X2

pres =Tres P in - (4-65)
trans Pin n 47T4-5

0

In (4-63) to (4-65), E iz(0) represents the z-component of the incident

electric field evaluated at the aperture S Also, when Ra is small,

the fields in region c can be considered as due to an electric dipole

Pe in S2 in the presence of the shorted conducting screen. The dipole

can be computed from the magnetic current,

- r Ma

-e 2 f

S2

L a 2 -IN 2 (4-66)
- o a F-2T 2

Substituting (4-41) and (4-63) into (4-66), we obtain

I . F' ' !" 1 - . . .... .. .. .- ... -' : . . .. ..
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Pe Foae Eiz (0) _ (4-67)

where

- j k 3

ea (4-68)
o 12

is the electric polarizability of our narrow annular aperture in the

thick screen. For slot resonance, we have Im(y1 2) = 0. Therefore,

replacing (noY12) by (-2G'cos kbd) in (4-68) and using (4-61), we

obtain

3j X3 cos kbd
jes= o b (4-69)

e 872

where cos k.d is approximately 1 or -1 depending on the situation.

We notice that (4-69) is a much greater quantity than the electric

polarizability for an annular aperture in an infinitely thin screen [241.

Note that the dipole moment pe is equivalent to an electric current ele-

ment If. in the following sense:

Ik = jt) pe (4-70)

4J

Ii | " , ""

j'P-

,,o
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Chapter 5

NUMERICAL RESULTS

The computational results of some typical examples are pre-

sented in this chapter. Five simple configurations are used. The

cross sections of the apertures in the y-z plane for these configu-

rations are shown in Figs. 14(a) to 14(e). Two narrow annular aper-

tures shown in Figs. 36(a) and 36(b) are used to demonstrate the

resonant behavior described in Chapter 4. Results from the matrix

solution and the analytical prediction are compared and discussed.

For the current plots, the magnetic current is normalized with re-

spect to the amplitude of the incident E-field, and the electric

current is normalized with respect to the amplitude of the incident

H-field. The horizontal axis represents the variable t along the

generating curve. Tick marks are placed to show how subsections

along the curve are arranged in the matrix solution. The f-component

of either the magnetic or the electric current is represented by a

combination of pulses, consistent with the true expansion functions

in the solution. The t-component is represented by a linear func-

tion, constructed by connecting points representing the solution at each

ti's with straight line segments. This is an approximation to the true

expansion because the expansion functions for the t-component are

triangles divided by p. For cases to which the modal solution also

apply, the results from both formulations are shown for comparison.
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Fig. 14, Apertures of various cross sections, angles of incidence
considered in each case are specified. The dimensions are
in units of the wavelength in region a. Region's a and c
are filled with the same medium. Region b is filled with
the same medium except where explicitly labeled.
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The * and t-components of the modal solution are marked with tri-
angles and squares, respectively, at a number of discrete points.

Figures 14(a) and 14(b) show typical cases where both formulations

are used. For the circular aperture in Fig. 14(a), normal incidence

is considered. Only the n = + 1 modes are needed for this case, and

the n = I mode currents are shown for an incident E-field polarized

in the -x direction. The azimuth angle of incidence 4i is assumed to

be zero without loss of generality because of the symmetry. The

magnetic current on the transmitted side shown in Fig. 16 is much

smaller in magnitude than that on the illuminated side shown in Fig. 15,

and the attenuation can be clearly seen from the electric currents,

which represent components of the tangential H-field, in Fig. 17. The

wall thickness in this case greatly reduces power transmission. The

aperture with a filled coaxial region, shown in Fig. 14(b), exhibits

different transmission characteristics. An oblique wave incident

from 0. 150' is applied. The aperture is small electrically, and

therefore only the n = 0, +] modes are needed. Figure 18 shows the

circulating magnetic currents on each side of the aperture and the

t-directed electric current on the walls, for n = 0, due to a 0-polarized

incidence. This polarization couples to the TEM mode of the coaxial

region. The effect of this propagating mode is seen in the current dis-

tribution. We don't see the great attenuation observed in the previous

case, where all modes are evanescent. The currents for the n = 1 mode

are also shown in Figs. 19 and 20. The attenuation of this mode is

again present, and therefore the TEM mode transmits most of the energy.

1 1/
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Fig. 15. M and M 1 of the example Fig. 16. M 1 and -MIof the
it W2t2

in Fig. 14(a). example in Fig. 14(a).
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Fig. 17. J and -JJof the example in Fig. 14(a).
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Fig. 19. M 1 and J ofthe example Fig. 20. Mt 1 ad 41J of the example

in Fig. (b), 8-polarization, in Fig. 14(b), 8-polarization.
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Fig. 21. and - of the example in Fig. 14(b), 8-polarization.
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Currents for the 4-polarized incidence are shown in Figs. 22 to 24.

The currents for n = 1 mode are shown and they are very similar to

that for e-polarization. However, these currents are responsible

for most of the energy transmission in this case, since power trans-

mitted by the n - 0 mode is negligible now that it's not coupled to

the TEM mode. The currents for the n = 0 mode in this case are not

shown for this reason. Results for the magnetic currents from both

formulations are compared for the above two configurations. The

overall agreement is very good. The proper edge behavior of the

magnetic current is also observed. One of the simplest geometries

for which the modal approach is not applicable is shown in Fig. 14(c).

The n = 1 mode currents are shown in Figs. 25 to 27 for normal inci-

dence. The magnetic currents again exhibit a distribution similar to

that which exists in a small circular aperture in a infinitesimally

thin screen. The fields decrease rapidly from one side to the other.

It is interesting to observe that most of the attenuation occurred

before the sharp corner on the inner wall of the aperture. The con-

figuration shown in 14(d) models a gasket in the thick screen. Oblique

incidence of 1350 with 6-polarization is considered. Figure 28 shows

the circulating magnetic currents and the t-component of the electric

current in the n = 0 mode. It is apparent that, although our waveguide

region is no longer a straight coaxial region, the existence of the

center conductor still enables the fields to propagate through the

screen. Also, because of the size of the aperture, there is propaga-

tion even for the n = I mode. This can be seen from Figs. 29 to 31.
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in Fig. 14(b), 4-polarization, in Fig. 14(b), 4-polarization.
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Fig. 24. -3% and J of the example in Fig. 14(b), 4-polarization.4)
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in Fig. 14(c). example in Fig. 14(c).
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Fig. 27. J 1and -JJ of the example in Fig. 14(c).
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example in Fig. 14(d), example in Fig. 14(d),
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Fig. 31. 1J 1 ,i-d 1J41 of the example in Fig. 14(d), 8-polarization.
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Again, the O-component of the magnetic currents becomes large at

both edges of the aperture as expected. Our last example for cur-

rents is shown in Fig. 14(e). The incident wave is 0-polarized with

a 135' angle of incidence. Currents for both the n = 0 and n = I

modes are shown in Figs. 32 to 35. The system is below cutoff and

the screen effectively attenuates th, field.

The transmission coefficient T is computed for the two

narrow annular slots shown in Figs. 36(a) and 36(b). Figure 37

shows the transmission coefficient for the aperture in Fig. 36(a)

as a function of the screen thickness d. The computed results does
A

show a repeated resonant phenomenon with period - Since the peaks are

in general very narrow, only the result in the neighborhood of the first

resonance is shown. The solid line represents the result from (4-58)

and the circles represent the result from our modal matrix solution.

The agreement is excellent except that the centers of the peaks are

separated by a few ten thousandths of a wavelength. This can be ex-

plained as follows. From (4-53), the width of our resonant peak is
2G' B

approximately -G The center of the peak, from (4-48) is A- X
TT b* IT b

away from half wavelength. For our particular problem, G' and B' can

be found, from (4-44) and (4-45), to be roughly 0.00014 and 0.038.

Therefore, a combined error of one percent from the two calculations

of B' can cause the peaks to separate completely from each other.

V and V2 , the voltages defined in (4-10), are computed from the matrix

solution also. They are shown in Fig. 38. The solid lines are the

real and imaginary parts of V1. The squares and triangles are the real

Jt
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example in Fig. 14(e), example in Fig. 14(e),
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Fig. 36. Two narrow annular slots.
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R " . 045233511X
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Fig. 37. Transmission coefficient of the aperture in Fig. 36(a),
as a function of the screen thickness.
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-12. 5 Real V1/XbE -

Imaginary V /Ab E 0

- Real and imaginary V2/bE 
0

-24.-

.4876 d/X .4883b

Fig. 38. V1 and V2, voltages of the equivalent circuit of the
aperture in Fig. 36(a), normalized with respect to

ax b E , as functions of the screen thickness.
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and imaginary parts of V2. Note that the peak occurs where the real

parts of V and V2 are zero. This is expected because resonance occurs

when the imaginary part of the transfer admittance Y12 is zero and our

current source is imaginary. Also note that, since d is close to A

2V 1 and V 2 are almost exactly the same as for the case d - shown in

Table 1. Figures 39 and 40 show the transmission coefficient and the

voltages for the case in Fig. 36(b). Again, the agreement is excellent
G' 1

and, this time, since G 2 a comparable percentage error in B' would

not cause the pulses to look completely separated.

A

I!

I
t

• '. .-..-- - . -
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Fig. 39. Transmission coefficient of the aperture in Fig. 36(b),

as a function of the screen thickness.
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Fig. 40. Vi and V2, voltages of the equivalent circuit of the
aperture in Fig. 36(h), normalized with respect to
X EO, as functions of the screen thickness.
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Chapter 6

CONCLUSION

A general formulation is developed for solving the problem of

electromagnetic transmission through a rotationally symmetric aperture

in a conducting screen of finite thickness. The solution obtained is

in the form of the Fourier coefficients (in ) of the equivalent cur-

rents on the boundary of the aperture region. All field and power

characteristics can be computed from these coefficients. The number

of Fourier modes needed depends on the size of the aperture and the

nature of the excitation. Because of the symmetry of the problem, each

mode can be solved separately. The basic formulation resembles that of

[101, exccpt that our problem is a three-dimensional one. Also, for the

modal fornulation, when the waveguide region is of resonant size, problems

can arise in forming the field operator in this region, as observed in (7].

This problem is solved in Chapter 2 by using the proper constraints

(Table 1) on the magnetic currents and introducing new unknowns. Note

should be made that the case k' = 0 needs to be treated carefully, asnm

A shown in Chapter 2. However, this case does not correspond to a cavity

resonance While the procedures for treating a resonant case may seem

applicabl, to only a few special cases, the concept can be extended to a

more general case because the magnetic currents on the aperture faces

can always be separated into two parts, one a linear combination of wave-

guide modos and the other orthogonal to them. The modal solution can
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also be extended to treat an aperture with region b composed of cascaded

waveguide sections.

In the low frequency discussion of Chapter 4, an equivalent cir-

cuit was developed for a narrow annular slot. An effort was made to show

the validity of a one term moment solution in this case, as done in [251.

Also, the assumption was made that only the TEM mode propagates. This limits

the overall size of the aperture as shown by (4-6). If the mean radius of

the narrow annular slot is arbitrary, then there may be a propagating mode

for each n, as seen in (4-5). Further study of each of those modes is

recommended to develop the corresponding equivalent circuits for such cases.

Our analysis of the TEM mode remains valid as far as the power transmission

associated with the particular mode is concerned.

II

"',& ' -
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Appendix

PROOF OF EQUATION (4-18)

In this appendix, we prove that

-jkR
y J os oeR -do

0

2kR
S- [ I nR a  - E (x)dx] (A-i)

0

2kR2,9a
+ -LIT J2 (x)dxj0

when W « R R is defined as
a

R - + p'2 - 2pp' cos (A-2)

The subscript of k in (4-18) is left out for convenience. Consider

Y as a function of k, and write

k

Y(k) Y(0) + J ' do (A-3)j da

0

From (A-i), we find

7T

Y (q) - j cos 4 e- Ja R do (A-4)dot

and 0

7T

rr

Y(O) cos---~ do (A-5)

0
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Since Y(O) is real, we have

k

Im(Y) f - da f cos coo (cR)do (A-6)

0

When w << Ra, we can obtain, from (A-2),

R 2R sin (A-7)

a 2

Substituting (A-7), and the new variable

p= 7-(A-8)

into (A-6), we obtain

k 7T/2

Im(Y) - 2 J dct J coB 2' cos (2 R a cos p)d (A-9)

0 0

From 10.11.1. of [26], we obtain

2kR

lm(Y) - a J2 (x)dx (A-10)

0

Now we consider the real part of Y. From (A-3) to (A-5), we obtain

k

Re(Y) - Y(0) = - f dk f cos 0 sin (aR)do (A-11)

0 0

Substituting (A-7) and (A-B) into (A-ll), we find

k 7T/2

Re(Y) Y(0) = 2 c Co 21p sin (2ctR cos P)d (A-12)
f f a
0 0

If
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From 10.11.3. of [26], we obtain

2kR

1T ra
Re(Y) - Y(0) A J E2 (x)dx (A-13)

0

Finally, we consider Y(O). Substituting (A-2) and (A-8) into (A-5),

we obtain

1T/ 2 2 21,22 (p 2,-'  1 (P+l) 21 2 - 2n d
Y(0) I2[ ' 1 1 in d

f 2p2 2pp'
0 i- sin 2

(A-14)

where
2 4pp' 2 1 1 (for w << R ) (A-15)

(p + p')a

From 17.3.1, 3, 26 of [27], we find, for w << Ra'

Y(0) In (e 8R (A-16)
a a

Combining (A-10), (A-13) and (A-16), we obtain (A-1).

Mur

4

-w -.

, e
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