

Peat, Marwick, Mitchell & Co.

P.O. Box 8007 San Francisco International Airport San Francisco, California 94128

(415) 347-9521

August 26, 1980

Mr. Michael M. Scott, ATF-4 Federal Aviation Administration 800 Independence Avenue, S.W. Washington, D.C. 20591

Re: St. Louis Data Packages No. 6 and No. 7

Dear Mike:

Enclosed are twenty-five copies of Data Packages No. 6 and No. 7 for Lambert-St. Louis International Airport. Data Package No. 6 presents the improvement benefit descriptions and summarizes the results of the delay analyses. All the supporting data for Data Package No. 6 are presented in Data Package No. 7.

The St. Louis Task Force should review both data packages during the meeting scheduled for August 28, 1980.

Sincerely,

Stephen L. M. Hockaday Manager

SLMH/db Enclosure

No. of Concession, Name

cc: Mr. J. R. Dupree (ALG-312) (w/o enclosure) Mr. M. J. Fischer (ACE-610)

	According
	Accession For
	NTIS G &I
	DEFE TAD
1	Untilities and
1	Justific tion
1	100
ſ	Py
.	Distribution/
1	Availability Codes
	Avail and/or
T.	list Special
	1

LAMBERT-ST. LOUIS INTERNATIONAL AIRPORT

DATA PACKAGE NO. 7

Airport Improvement Task Force Delay Studies

prepared by

1

Peat, Marwick, Mitchell & Co. San Francisco, Calífornia

August 1980

CONTENTS /

Attachment A	EXPERIMENTAL DESIGN
Attachment B	SUMMARY OF RESULTS OF ANNUAL DELAY MODEL EXPERIMENTS
Attachment C	SUMMARY OF RESULTS OF AIRFIELD SIMULATION MODEL EXPERIMENTS
3 to the second of the second se	A C CIIMDET ON C

Attachment D ASSUMPTIONS,

1

.

.

1

- 13 e.

JA 3

Attachment A

1

.

.

•

EXPERIMENTAL DESIGN

Table A-1

•

.

1

•

,

.

. •

•

2

• •

i

REVISED DESCRIPTION OF EXPERIMENTS Lambert-St. Louis International Airport Airport Improvement Task Force Delay Studies

Experiment		Arrival	Departure				
number	Model	LIUMAAA2	runways	Weather	Demand	ATC	Laprovements
1	ASM	12R,12L	12R,12L	VFR	1979 Demand and Mix	Present	Baseline
2	ASM	12R, 12L	12R, 121	IFRL	1979 Demand and Mix	Present	Baseline
3	ASM	12R,12L	12R, 12L	IFR2	1979 Demand and Mix	Present	Baseline
4	ASM	30R, 30L	30R, 30L	VFR	1979 Demand and Mix	Present	Baseline
5	asm	30R, 30L	JOR, JOL	IFRL	1979 Jemand and Mix	Present	Baseline
6	ASM	30R, 30L	30R, 30L	IFP2	1979 Demand and Mix	Present	Baseline
?	asm	30R, 30L, 24	30R, 30L	IFRL	1979 Demand and Mix	Present	Baseline
7 a	ASM	30R, 30L, 24	30R, 30L	VFR	1979 Demand and Mix	Present	Baseline
3 3	ASM	12R,12L	6,12R,12L	VFR IFPL	1979 Demand and Mix 1979 Demand and Mix	Present Present	Baseline Baseline
	ASK	128,121	6,12R,12L				
10 11	ASM	12R,12L 24	6,12R,12L 24	IFR2 IFR2	1979 Demand and Mix 1979 Demand and Mix	Present Present	Baseline Baseline
12	asm Asm	12R,12L,17	12R, 12L	VFR	1979 Demand and Mix	Present	Baseline
13	ASM	12R,12L,17	128,121	IFRI	1979 Demand and Mix	Present	Baseline
14	ASM	12R, 12L	122,12L	VFR	1979 Demand and Mix	Present	A/F Development
15	ASM	12R,12L	12R,12L	IFRL	1979 Demand and Mix	Present	A/F Development
16	ASM	JOR, JOL	30R, 30L	VFR	1979 Demand and Mix	Present	A/F Development
17	ASM	30R, 30L	30R, 30L	IFRL	1979 Demand and Mix	Present	A/F Development
18	ASM	30R, 30L, 24	30R, 30L	IFRL	1979 Demand and MIX	Present	A/F Development
134	ASM	30R, 30L, 24	JOR, JOL	VFR	1979 Demand and Mix	Present	A/F Development
19	ASM	12R,12L	5,12R,12L	VFR	1979 Demand and Mix	Present	A/F Development
20	ASM	12R,12L	6,12R,12L	IFRI	1979 Demand and Mix	Present	A/F Development
21	asm	12R,12L,17	122,12L	VFR	1979 Demand and Mix	Present	A/F Development
22	ASM	12R,12L,17	12R, 12L	IFRL	1979 Demand and Mix	Present	A/F Development
23	ASM	30R, 30L	30R, 30L	IFRL	1979 Demand and Mix	Present	LDA Approach
24	ASM	30R,30L,21	30R, 30L	IFRL	1979 Demand and Mix	Present	LDA Approach
24a	ASM	30R, 30L, 24	30R, 30L	VER	1979 Demand and Mix	Present	LDA Approach
25	ASM	12R,12L	5,12R,12L	IFR1	1979 Demand and Mix	Present	LDA Approach
25 27	ASM	12R,12L	12R, 12L	VFR	1985 Demand and Mix 1985 Demand and Mix	Present Present	Baseline Baseline
	ASM	12R,12L	12R, 12L	IFRI			
28 29	ASM	12R,12L	12R,12L	IFR2	1985 Demand and Mix 1985 Demand and Mix	Present	Baseline Baseline
30	asm Asm	30R,30L 30R,30L	30R, 30L 3CR, JCL	vfr Ifrl	1985 Demand and Mix	Present Present	Baseline
31	ASM	JOR, JOL	30R, 30L	IFR2	1985 Demand and Mix	Present	Baseline
32	ASM	30R, 36L, 24	30R, 30L	IFRL	1985 Demand and Mix	Present	Baseline
33	ASM	12R, 12L	6,12R,12L	IFRL	1985 Jemand and Mix	Present	Baseline
34	ASM	12R,12L,17	12R,12L	IFRI	1985 Demand and Mix	Present	Baseline
35	ASM	. 2R,12L	127.12L	VER	1985 Demand and Mix	Present	A/F Development
36	ASM	12R, 12L	128,127	IFRL	1985 Demand and Mix	Present	A/F Development
37	ASM	30R, 30L	30R, 30L	VFR	1985 Demand and Mix	Present	A/F Development
38	ASM	30R,30L	30R,30L	IFRL	1985 Demand and Mix	Present	A/F Development
33	ASM	30R, 30L, 24	JCR. JOL	IFRL	1985 Demand and Mix	Present	A/F Development
40	ASM	12R,12L	12R,12L,5	IFR1	1985 Demand and Mix	Present	A/F Development
41	ASM	30R, 30L	30R, 30L	IFRL	1985 Demand and Mix	Present	LDA Approach
÷2	1SM	30R, 30L, 24	ICR, JOL	IFRI	1985 Demand and Mix	Present	LDA Approach
43	ASM	12R,12L	12R,12L,6	IFRL	1985 Demand and Mix	Present	LDA Approach
+4	ASM	12R,12L	128,121	VFR	1985 Demand and Mix	Present	Terminal Expansion
45	A SM	30R,30L 30R,30L,24	30R, 30L	IFRL	1985 Increase Heavy Mix	Present	A/F Development
46 47	asm Asm	30R,30L,14	30R, 30L 30R, 30L	IFR1 IFR1	1985 Increase Heavy Mix 1985 Increase Heavy Mix	Present Present	A/F Development LDA Approach
48	ASM	30R, 3CL	30R, 30L	IFRL	1985 Decrease GA Mix	Present	A/F Development
43	ASM	30R.30L,24	30R, JOL	IFRI	1985 Decrease GA Mix	Present	A/F Development
50	ASM	30R,30L	30R, 30L	IFRL	1985 Decrease JA Mix	Present	LDA Approach
51	4.SM	128,121	12R,12L	VER	1990 Demand and Mix	Present	WF Development
12	asm	128,121	12R,12L	1721	1990 Demand and Mix	Present	A/F Development
f3	4.SM	122,121	129,12L	IFR2	1990 Demand and Mix	Present	A/F Development
54	ASM	36 P,3CL	30R, 30L		1990 Demand and Mix	Present	A/F Development
55	150	30R, 30L	COR, 20L	1791	1990 Demand and Mix	Present	A.F. Development
16	ASM	30R, 3CL	JOR, JOL	IFR2	1990 Demand and Mix	Present	WF Development
	asm	24,30R,30L	30R, 30L	IFR1	1990 Temand and Mix	Fresent	A.F. Jevelopment
53	ASM	118,121	122,121,6	IFPL	1990 Demand and "1x	Present	A/F Development
53	131	123,122,17	128,121	IFRI TP	.990 Demand and Mix	Present	A/F Sevelopment
5)a	ASM NEM	128,121,17	128.12L	·	1390 Demand and Mix	Present	V.F Sevelopment
÷:	1.3M 1.3M	30R,30L 24,30P,30L	308,30L 308,30L	IF91 IFR1	1990 Demand and Mix 1990 Demand and Mix	Present	LDA Approach LDA Approach
52	ASM	12R.12L	12L,12L,6	1791	1990 Demand and Mix	Present Present	IDA Approach

12. 5

• • •

.

Table A-1 (Continued)

ŧ

.

•

ļ Ç, 1 ٩ 4 . .

1

. .

.

Se

11

REVISED DESCRIPTION OF EXPERIMENTS Lembert-St. Louis International Airport Airport Improvement Task Force Delay Studies

Experiment	Model	Arrival runways	Departure runways	Weather		Demand	_ATC	Improvements
63	ASM	12R,12L	12R,12L	VER	1990	Demand and Mix	Present	Terminal Expansion
54	λSM	12R,12L	12R,12L	VFR	1990	Demand and Mix	Present	Relocate Midcoast Aviation
64 a	asm	12R, 12L, 17	12R,12L	VER	1990	Demand and Mix	Present	Relocate Midcoast Aviation
65	ASM	JOR, JOL	30R, 30L	IFRI	1990	Increase Heavy Mix	Present	A/F Development
66	asm	24,20R,30L	30R, 30L	IFR1	1990	Increase Heavy Mix	Present	A/F Development
57	ASM	30R, 30L	30R, 30L	IFRL	1990	Increase Heavy Mix	Present	LDA Approach
68	ASM	30R, 30L	30R, 30L	IFRI	1990	Decrease GA Mix	Present	A/F Development
69	ASM	24, 30R, 30L	30R, 30L	IFRL	1990	Decrease GA Mix	Present	A/F Development
69a	ASM	24	24	IFR2	1990	Decrease GA Mix	Present	Baseline
70	ASM	30R,30L	30R,30L	IFRL	1990	Decrease GA Mix	Present	LDA Approach
71	ASM	12R,12L	12R,12L	VFR	1990	Demand and Mix	Future	A/F Development
72	ASM	12R.12L	12R,12L	IFR1	1990	Demand and Mix	Future	A/F Development
73	ASM	12R,12L	12R.12L	IFR2	1990	Demand and Mix	Future	A/F Development
74	ASM	JOR. JOL	30R, 30L	VFR	1990	Demand and Mix	Future	A/F Development
75	ASM	30R, 30L	30R, 30L	IFRL	1990	Demand and Mix	Future	A/F Development
76	ASM	30R, 30L	30R, 30L	IFR2	1990	Demand and Mix	Future	A/F Development
77	asm	30R, 30L, 24	30R, 30L	IFRL	1990	Demand and Mix	Future	A/F Development
78	ASM	12R.12L	12R,12L,6	IFRI	1990	Demand and Mix	future	A/F Development
79	ASM	12R, 12L, 17	12R,12L	IFRL	1990	Demand and Mix	Future	A/F Development

A A

a. Airfield Simulation Model.
b. 1979 ATC Separations for VFR and IFR are taken from FAA Document 78-8A.
c. 1990 ATC Separations for VFR and IFR are taken from FAA Document 78-8A.

Table A-la

DESCRIPTION OF EXPERIMENTS Lambert-St. Louis International Airport Airport Improvement Task Force Delay Studies

Experiment number	Model	Demand	Improvements	ATC
81	ADMa	1979 Demand and Mix	Baseline	Present ^b
81a	ADM	1979 Demand and Mix	Airfield Development	Present
82	ADM	1985 Demand and Mix	Baseline	Present
83	ADM	1985 Demand and Mix	Airfield Development	Present
84	ADM	1985 Demand and Mix	LDA Approach Procedures	Present
85	ADM	1985 Increase Heavy Mix	A/F Development	Present
86	ADM	1985 Decreased GA Mix	A/F Development	Present
87	ADM	1990 Demand and Mix	Baseline	Present
88	ADM	1990 Demand and Mix	Airfield Development	Present
89	ADM	1990 Demand and Mix	LDA Approach Procedures	Present
90	ADM	1990 Increase Heavy Mix	Airfield Development	Present
91	ADM	1990 Decreased GA Mix	Airfield Development	Present
92	ADM	1990 Demand and Mix	Airfield Development	Future ^C
93	ADM	1990 Increase Heavy Mix	Airfield Development	Future
94	ADM	1990 Decrease GA Mix	Airfield Development	Future

a. Annual Delay Model.

(

٩.

Ĵ

b. 1979 ATC Separations for VFR and IFR are taken from FAA Document 78-8A.

c. 1990 ATC Separations for VFR and IFR are taken from FAA Document 78-8A.

- 2

NA B

.

A-3

2. SEMBITIVITY ANALYSIS WITH DIFFERENT NOISE ABATEMENT SCENARIOS.

• • •

.

۹.

ي مور د

3. SENSITIVITY ANALYSIS WITH DIFFERENT LEVELS OF GENERAL AVIATION REDUCTION

a ma mar and in the case of the case of the

	[
	Γ		1979	DE	MAI	ND.									1985	DE	MAN	ID
			1	979	MIX				1	985	MIX			11	NCRE	EASI	EHE	A \
AT IN BOOL JOE		BASELINE	A/F DEVELOPMENT	LDA APPROACH	NOISE ABATEMENT 2			BASELINE	A/F DEVELOPMENT	LDA APPROACH	TERMINAL EXPANSION			BASELINE	A/F DEVELOPMENT	LDA APPROACH	TERMINAL EXPANSION	
	VFR	1			1 A			26	35		44				35A			
	1FR1	2						27	36	41								
	IFR2+3	3						28										<u> </u>
30	VFR	4			4 A			29										
₽ ~~~~ ₽	IFR1	5						30	38									
	(FR2+3	6						31										Ĺ
24 30	VFR	7A						32A	39A									
	IFR1	7						32	39	42								
	IFR2+3															L		
1	VFR	8			<u> </u>													Γ
12	IFR1	9			1			33	40	43								
. 6	IFR2+3	10																
 //24	VFR							Γ		[Γ		[Γ
	IFR1				1	†												Γ
	IFR2+3	11																
 \''	VFR	12									1			[<u> </u>	Ţ	T	Γ
	IFR1	13	<u> </u>		<u>†</u>	+	†	34		ţ					1			Γ
	IFR2+3																	
ANNUAL DELAY (ALL)	IALL	812	B 1A	J		T		82	83	84	T		Ţ	Γ	85		T	Τ

:

LAMBERT-ST. LOUIS INTERNATIONAL AIRPORT EXPERIMENTAL DESIGN Airport Improvement Task Force Delay Studies

Peat, Marwick, Mitchell & Co. August 1980

) 		-												_	<u> </u>													
	PF	RESE	ENT	ATC			<u> </u>																					
ND														19	90 D	EM/	AND											
IEAVY		DEC	REA	SE (GA			19	990 1	NIX			1	NCR	EAS	EH	EAV	Y		DEC		ASE	GΑ				1990	MIX
	BASELINE	A/F DEVELOPMENT	LDA APPROACH	TERMINAL EXPANSION			BASELINE	A/F DEVELOPMENT	LDA APPROACH	TERMINAL EXPANSION	MIDCOAST		BASELINE	A/F DEVELOPMENT	LDA APPROACH	TERMINAL EXPANSION			BASELINE	A/F DEVELOPMENT	LDA APPROACH	TERMINAL EXPANSION			BASELINE	A/F DEVELOPMENT	LDA APPROACH	TERMINAL EXPANSION
TT		35B	-					51		63	64			51A						51 B					Ī			
								52	60		·															72		
												 												<u> </u>	<u> </u>			
╺╉╶╌┼╌╌								55																	<u> </u>			
╺╉╶╶┼╴╌																												╎╴╎
					<u></u>			57A	<u></u>			 		<u> </u>		 		<u> </u>	<u> </u>						<u></u>			
┥┤					┣—-			57	61									┢										╞╌┨
╺┽─┼─╴	┠─┤										<u> </u>							┼							┢──			┝╌╂
╺╋╼┶								L	L			Ļ	L	L	L	L	<u> </u>		L r	1 T		L	L	L T	<u>ا</u> ۲	<u> </u>	L	
					 								┣				<u> </u>	<u> </u>						┣—				╎─┤
┥┥					_			58	62					_			┣	_				<u> </u>		_	┨			├
								<u> </u>						<u> </u>				<u> </u>		<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>			
														 										<u> </u>				
↓↓				ļ	ļ					 		Ļ_		ļ							 	 	 	 				
					[[64 A																	
		8 6 ³					87	88 ²	89					90						91 ³				[92		
			L	L	L	<u> </u>	L	100	<u> </u>	L	L	L	L	L	L	<u> </u>			L	<u> </u>	L	L	L	L	L	1	L	باسمعا

L GATES NECESSARY TO ACCOMODATE FUTURE DEMAND.

 $1 \cdot \Sigma$

TIONS.

NTAL DESIGN

										r —–												<u></u>				, 	
											-,,-					F			ATC								
_	EM/					=				ļ			<u> </u>						EMA			r					
		EAV	Y T		DEC		ASE	GA				1990	MIX	(·			EAS			/ i		DEC	REA	SE (3A 	
LDA APPROACH	TERMINAL EXPANSION			BASELINE	A/F DEVELOPMENT	LDA APPROACH	TERMINAL EXPANSION			BASELINE	A/F DEVELOPMENT	LDA APPROACH	TERMINAL EXPANSION			BASELINE	A/F DEVELOPMENT	LDA APFROACH	TERMINAL EXPANSION			BASELINE	A/F DEVELOPMENT	LDA APPROACH	TERMINAL EXPANSION		
					51B																						
											72								i								
-							<u> </u>																				
<u> </u>	╂──																								<u> </u>		
	<u>†</u>		<u> </u>				}															 	<u> </u>				
_	<u>+</u>		L T	l		l	I T	l 		L 		<u> </u>			[[]	[] 			L: 		<u></u>	l 	L	l 		
	╂──																										
_	<u> </u>		<u> </u>			L									L	L						l r	ļ ,		ļ		
	 		ļ																 								;
	 						 											i 									<u> </u>
	<u> </u>														<u> </u>	<u> </u>						<u> </u>					
_																					L		l				[
			<u> </u>													Γ						Γ					
	†		†						<u> </u>						 		<u> </u>										
	1		†				 																		1		
	1		<u> </u>		91 ³		<u> </u>				92	1			<u> </u>		93	1					94				
-	<u></u>	L	1	I	<u> </u>	L	1	L	L	L	L	L	L	Ĺ	L	L	<u> </u>	L	L	L	L	<u> </u>	<u> </u>	L	L	لـــــا	
																											~
																											<

Attachment B

SUMMARY OF RESULTS OF ANNUAL DELAY MODEL EXPERIMENTS

Con

Table B-1

SUMMARY OF ANNUAL DELAY MODEL EXPERIMENTS Lambert-St. Louis International Airport

Experiment No.	Demand ³	ATC scenario	Description	Annual delay (hours)	Average aircraft delay (minutes)
S1	1979 ⁵	1979	Baseline	4,722 ^{°°}	0.8
3ln	1979	1979	Noise abatement	5,708	1.0
31 A	1979	1979	Airfield development	4,746	0.3
82	1985	1979	Baseline	9,399	1.6
83	1985	1979	Airfield development	7,522	1.3
	1985	1979	Airfield development		
			and new runway use	6,150	1.1
93n	1985	1979	Noise abatement	10,010	1.8
34	1985	1979	LDA approach	6,792	1.2
35	1985	1979	Increased heavy jets	8,464	1.5
36	1985	1979	25% reduction in		
			general aviation	5,604	1.0
	1985	1979	50% reduction in		
			general aviation	4,100	0.3
	1985	1979	75% reduction in		
			general aviation	3,208	0.7
37	1990	1979	Baseline	40,273	6.5
38	1990	1979	Airfield development	27,542	4.4
	1990	1979	Airfield development		
			and new runway use	12,234	2.0
98n	1990	1979	Noise abatement	35,586	5.7
39	1990	1979	LDA approach	25,267	4.1
90	1990	1979	Increased heavy jets	26,661	4.7
91	1990	197 9	25% reduction in		
			general aviation	17,309	2.9
	1990	197 9	50% reduction in		
			general aviation	13,007	2.3
	1990	1979	75% reduction in		
			general aviation	11,247	2.2
92	1990	Future	Airfield development	18,337	2.9
93	1990	Future	Increased heavy jets	12,274	2.2
34	1990	Future	50% reduction in		
			general aviation	3,561	1.5

a. Annual demand: 1979 = 344,600

والمتقاف والمتعادية فالمتحد والمتعادين والمناقب والمتعاون والمتعاولات والمتعاقبات والمعادية والمعادية

N

T, 3

1

1985 = 344,000 (unconstrained)

= 336,000 (increased heavy jets)

= 322,750 (25% reduction in general aviation)

= 301,500 (50% reduction in general aviation)

= 280,250 (75% reduction in general aviation)

1990 = 374,000 (unconstrained)

- = 339,000 (increased heavy jets) = 354,000 (25% reduction in general aviation)
- # 334,300 (50% reduction in general aviation) = 314,000 (75% reduction in general aviation)

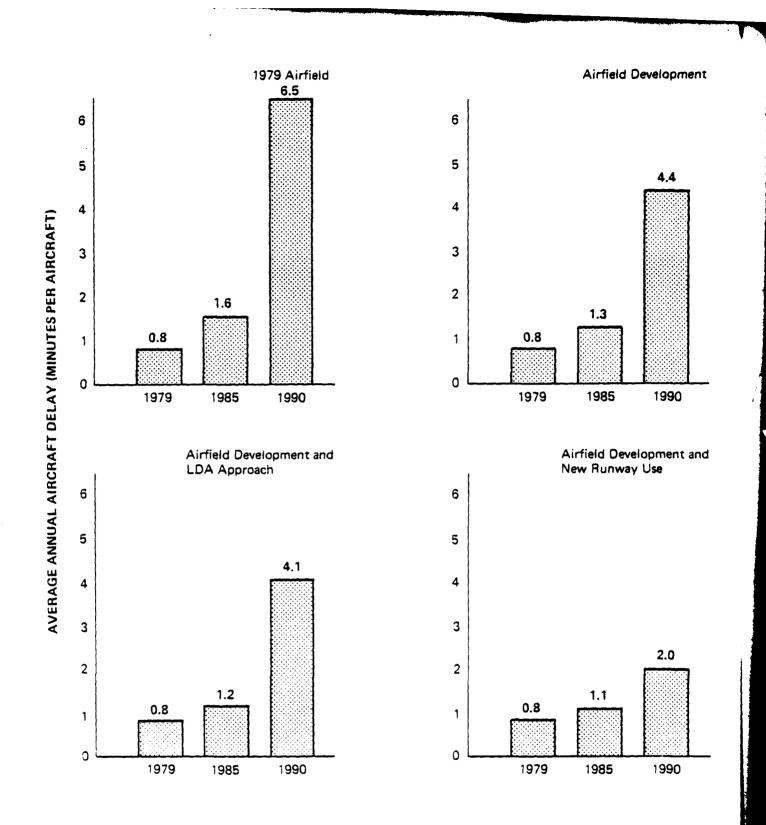
b. Annual demand for 1979 assumes no Czark Air Lines strike. The actual demand

was 136,578 with the Dzark Air Lines strike. 5. Actual felays in 1979 may be lower than this value because of the Dzark Air Lines strike.

Table B-2

COMPARISON OF ANNUAL DELAY RESULTS FOR VARIOUS IMPROVEMENT OPTIONS

	•	e annual airc ainutes per air	-
Improvement options	1979	Post-1985	Post-1990
1979 airfield	0.8	1.6	6.5
Airfield development		1.3	4.4
LDA approach ^a		1.2	4.1
New runway use ^a		1.1	2.0
General aviation reduction ^a			
25%		1.0	2.9
50%		0.8	2.3
75%		0.7	2.2
Increase heavy jets ^a		1.5	4.7
Future ATC system ^a			2.9
Future ATC system and increase heavy jets ^a			2.2
Future ATC system and 50% general aviation reduction ^a			1.5


a. Includes airfield development.

A Start France

1

•

Source: Peat, Marwick, Mitchell & Co.

* - -----

· ~ v

でた

- 11 C

Attachment C

SUMMARY OF RESULTS OF AIRFIELD SIMULATION MODEL EXPERIMENTS

Table C-1

ł

1

ļ

-1 1

l

SUMMARY OF SIMULATION EXPERIMENT RESULTS Lambert-St. Louis International Airport

A. A

•

							Flow rates					Runway delays (minutes)	vs (minutes	()
Experiment		RUNWAY USE	Y use		AV	Average daily	To the		Peak hour	Loton .	Avera	Average daily	Peak	Peak hour
2	Z	VELAVAL	5	nepat rut e	TBATTIN	no hat rate	TOTAT	TRATIC	nehat rute	10101	TITTAT		VILLAT	
1	124,	12L	12R,	12L	9 0 .9	31.0	61.9	49.0	33.3	82.3	0.30	1.24	0.51	2.37
I-Noise I	12R,		12R,		9.06	0.16	61.9	49.0	32.8	81.8	0.29	1.23	0.43	2.50
l-Noise 2	12 R ,	121.	12R,	121.	9.05	31.0	61.9	40.0	47.0	87.0	0.29	1.76	0.47	3.05
1-Noise 3	12R,	12L	12R,	12L	30.9	31.0	61.9	41.1	29.0	70.1	0.29	6.39	0.16	17.06
2	12R,	12L	12R,	12L	27.3	27.7	55.0	29.7	32.9	62.6	16.71	2.20	41.93	2.34
ń	12R,	12L	12R,		24.0	25.3	49.3	26.0	30.6	56.6	8.39	6.83	26.64	12.87
4	30R,	30L	30R,	301.	9.0E	31.0	61.9	49.0	32.2	81.2	0.32	1.22	0.56	2.48
4-Noise 1	30R,	301.	30R,	JOE	9.06	31.0	61.9	49.0	32.2	81.2	0.29	1.29	0.45	3.50
4-Noise 2	30R,	301.	30R,	.10E	30.9	0.16	61.9	49.0	31.5	80.5	0.29	1.71	0.43	3.65
4-Noise 3	30R,	30L	30R,	30L	30.9	31.0	61.9	29.0	40.6	. 9. 69	0.30	5.95	0.17	15.63
ŝ	30R,	301.	30R,	30L	27.2	27.8	55.0	29.6	32.0	61.6	17.32	2.05	42.98	2.41
ę	30R,	301.	30R,	301.	23.9	25.3	49.2	26.0	30.2	56.2	9.51	7.56	28.39	13.87
74	30R,	30L, 24	30R,	301,	9.06	31.0	61.9	39.9	47 6	87.5	0.33	1.18	0.74	1.95
7	30R,	301., 24	30R,	30L	27.2	27.8	55.0	30.0	37.2	67.2	1.29	2.59	5.79	2.39
æ	12k,	121.	12R,	121., 6	31.0	31.0	62.0	49.0	33.9	82.9	0.44	0.61	0.58	1.29
6	12R,	12L	12R,	12L, 6	27.3	27.7	55.0	29.4	31.8	61.2	16.72	0.29	41.76	0.36
10	12R,	121.	12R,	12L, 6	24.0	25.3	49.3	29.0	35.4	64.4	3.76	1.60	8.13	3.58
11	24		24		23.8	24.7	48.5	26.1	24.4	50.5	19.30	16.32	55.18	20.79
12	12R,	12L,	12R,	12L	30.9	31.0	61.9	39.5	47.2	86.7	0.30	1.30	0.46	2.35
13	12K,	12L, 17	12R,	12L	27.3	27.8	55.1	31.0	7.86	64.7	11.77	2.31	31.84	2.63
26	12R,	121.	12K,	12L	30.7	30.9	61.6	4.16	41.6	73.0	16.0	2.10	1.71	4.43
27	12R,	121.	12R,	12L	27.7	28.2	55.9	29.2	27.5	56.7	25.71	3.04	60.87	1.66
28	12R,	121.	12R,	12L	25.2	26.0	51.2	25.5	28.5	54.0	18.84	8.21	49.77	13.15
29	30R,	30L	30R,	30L	30.7	9.06	61.6	37.0	38.9	75.9	0.92	2.10	1.40	4.05
90	30R,	301.	30R,	301.	27.8	28.3	56.1	30.3	30.0	60.3	25.12	3.11	56.74	2.97
31	308,	306.	30R,	30L	25.1	25.9	51.0	25.1	27.9	0.62	19.22	8.83	48.25	17.61
32A	30R,	301., 24	30R,	30L	30.8	1.16	61.9	32.2	40.9	73.1	0.83	2.26	2.20	4.59
32	30R,		30R,		28.1	28.7	56.8	31.5	37.5	69.0	3.98	5.00	14.79	11.01
	12R,	12L	12R,		27.8	28.3	56.1	28.5	29.0	57.5	25.70	0.54	59.39	0.44
34	12R,	121, 17	12R,	12L	28.1	28.6	56.7	29.8	32.2	62.0	18.71	3.32	42.54	6.25

a. The peak hour varies from experiment to experiment.

Table C-1 (Continued) SUMMARY OF SIMULATION EXPERIMENT RESULTS Lambert-St. Louis International Airport

.

16

.

1

÷.

;

•

-

!							Flow rates					Runway delays (minutes)	s (minutes	
Experiment	}	Runwa	Runway use		Ā	Average daily			Peak hourd		Averag	Average daily	Feak hour	hour"
NO.	Ar	Arrival	Del	Departure	Arrival	Departure	Total	Arrival	Departure	<u>rotal</u>	Arrival	Departure	Arrival	Departure
15	12R,	, 12L	12R,	, 12L	30.8	91.0	61.8	41.8	44.6	86.4	0.77	2.21	1.27	4.14
156	12R,	, 12L	12R,	12R, 12L	30.8	30.8	61.6	31.2	42.4	73.6	0, 50 ^b	1.00 ^C	0.80^{b}	1.40 ^C
154	12R,	, 12L	12R,	, 12L	30.1	30.1	60.2	29.0	40.8	69.8	0.85	2.10	1.26	4.68
358	1 2 R,		12K,	, 12L	28.6	29.0	57.6	40.9	43.3	84.2	0.56	l.74	0.80	3.27
36	128,	. 126	12R,	, 12L	28.0	28.4	56.4	29.0	28.0	57.0	25.80	0.49	59.33	0.34
38	30R,	301	30R,	, 30L	27.9	28.3	56.2	28.5	28.2	56.7	26.12	0.46	60.16	0. 38
A 66	30R,	30L, 24	30R,	, 30L	30.7	30.9	61.6	38.2	47.3	85.5	0.67	2.54	1.26	5.35
99	30R,	, 30L, 24	30R,	, 30L	28.0	28.5	56.5	41.7	40.1	81.8	1.95	1.85	3.65	2.74
40	1 2R,	. 12L	12R,	, 12L, 6	27.8	28.3	56.1	28.5	27.3	55.8	26.52	0.25	62.37	0.17
41	12R,	121.	12R,	, 12L	28.1	28.5	56.6	30.4	41.1	71.5	1.20	2.78	1.21	7.15
42	30R,	30L, 24	30R,	, 30L	28.1	28.5	56.6	40.2	41.4	81.6	1.03	2.29	2.49	3.86
43	12R.	, 12L	12R,	, 121, 6	28.1	28.5	56.6	39.6	44.5	84.1	1.25	0.71	2.54	1.25
44	12R,		12R,	, 12L	30,8	30.8	61.6	31.8	41.6	73.4	0. 30 ^b	0,90 ⁰	1.00^{b}	1.20 ^C
51	12R,		12R,	, 121	13.7	33.7	67.4	38.9	47.2	86.1	1.78	3.08	4.51	6.42
51A	12R,		12R,	, 12L	30.4	30.6	61.0	35.7	41.5	77.2	1.96	3.12	4.68	6.32
518	12R,	, 12L	12R,	, 121.	31.2	31.4	62.6	32.4	40.8	73.2	1.23	2.50	2.43	4.68
52	12R,	, 12L	128,	, 12L	28.0	29.8	57.8	28.2	26.9	55.1	60.59	0.79	141.92	0.47
55	30R,	, 30L	30R,	, 30L	28.0	29.6	57.6	27.8	26.4	54.2	60.15	0.74	141.44	0.45
57A	30R,	30L, 24	30R,	30R, 30L	33.7	33.8	67.5	37.6	44.9	82.5	1.50	4.47	8.24	11.22
57	30R,		30R,	, 30L	31.3	31.5	62.8	35.0	43.5	78.5	5.29	2.73	12.08	6.36
58	12R,	, 12L	12R,	, 12L, 6	28.1	29.7	57.8	28.5	25.8	54.3	59.68	0.30	140.65	0.26
60	12R,	, 12L	12R,	12R, 12L	31.3	31.5	62.8	34.7	41.7	76.4	2.63	5.63	5.92	14.95
61	30R,			, 30L	31.3	31.6	62.9	34.6	45.8	80.4	2.11	4.25	4.13	11.12
62	12R,		12R,	, 121., 6	51.3	31.5	62.8	45.3	50.0	95.3	2.41	1.30	5.15	2.51
63	12R,		12R,	, 121.	33.6	33.6	67.2	45.6	44.1	89.7	0.4b	1.50 ^C	1.20	2.10
4	12R,	, 12L	12R,	, 12L	33.6	33.6	67.2	36.5	47.5	84.0	1.57	3.05	4.91	6.77
64A	12R	12L, 17	12R,	, 121.	13.6	33.6	67.2	38.4	45.1	83.5	1.43	2.89	2.57	6.49
72	12R,	. 121.	12R,	12R, 12L	31.2	31.3	62.5	12.9	27.3	60.2	21.81	0.65	57.12	n. 50

a. The peak hour varies from experiment to experiment.
 b. Taxi-in delays.
 c. Taxi-out delays.

Į.

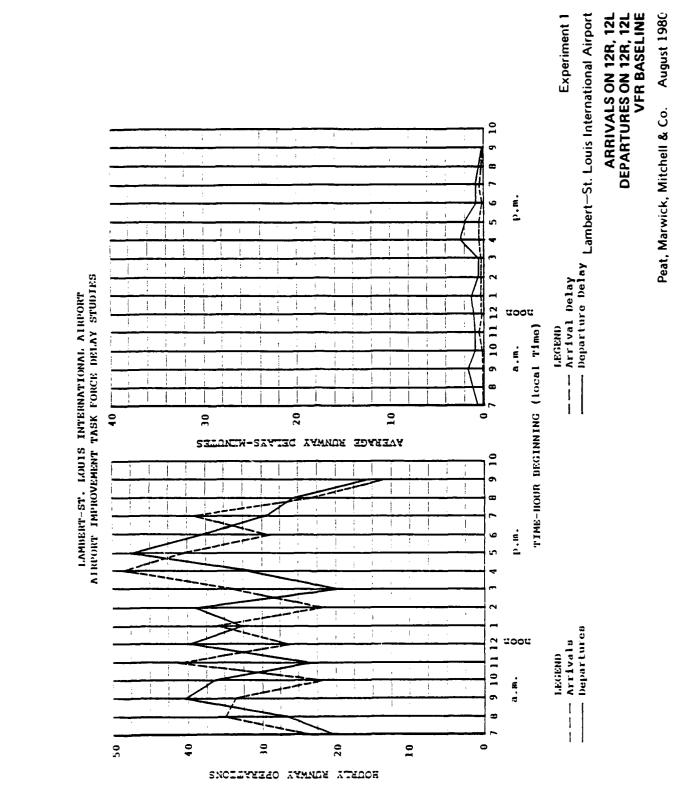
C-1

Experiment No. 1

Scenario:

This experiment is a baseline case using the existing airfield layout. Demand is at 1979 levels, and 1979 ATC Procedures are in effect in VFR conditions for the following runway configuration:

Arrival runways	Departure runways
12R, 12L	12R, 12L


Length and Level of Detail of Simulation Run:

From 0700 to 2200 with 1-hour summaries.

Results:

The tabulation below shows selected results for the average values and the peak-delay hour, 1600-1700 hours, over the 15-hour simulation period.

Operation type	Performance measure	Units	Average	Peak
Arrival	Flow rate	a/c per hr	30.9	49.0
Arrival	Air delay	minute	0.3	0.5
Departure	Flow rate	a/c per hr	31.0	33.3
Departure	Runway delay	minute	1.2	2.4

1

.

l

14

1935

.

Experiment No. 1 - Noise 1

Scenario:

This experiment is used to evaluate the effect of noise abatement procedures on aircraft delays. Demand is at 1979 levels, and 1979 ATC Procedures are in effect in VFR conditions for the following runway configuration:

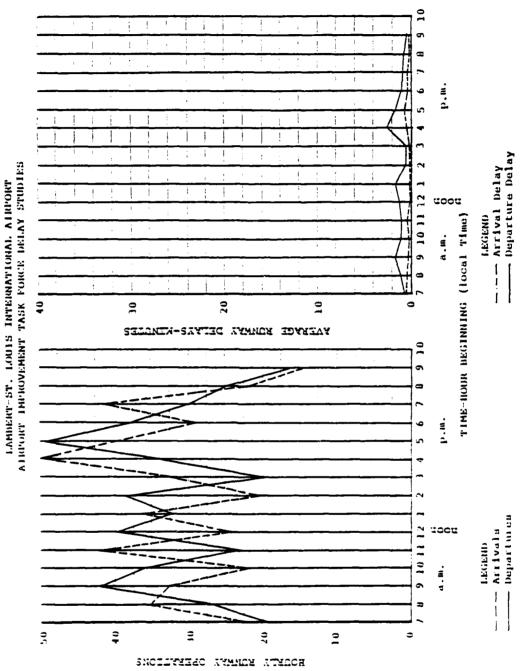
Arrival runways	Departure runways
12R, 12L	12R, 12L

Length and Level of Detail of Simulation Run:

From 0700 to 2200 with 1-hour summaries.

Results:

The tabulation below shows selected results for the average values and the peak-delay hour, 1700-1800 hours, over the 15-hour simulation period.


Operation type	Performance measure	Units	Average	Peak
Arrival	Flow rate	a/c per hr	30.9	49.0
Arrival	Air delay	minute	0.3	0.4
Departure	Flow rate	a/c per hr	31.0	32.8
Departure	Runway delay	minute	1.2	2.5

Peat, Marwick, Mitchell & Co. August 1980

ARRIVALS ON 12R, 12L DEPARTURES ON 12R, 12L

Lambert-St. Louis International Airport

VFR Noise Scenario 1

4

4

Ş

1 - **2** - 2

Experiment No. 1 - Noise 2

Scenario:

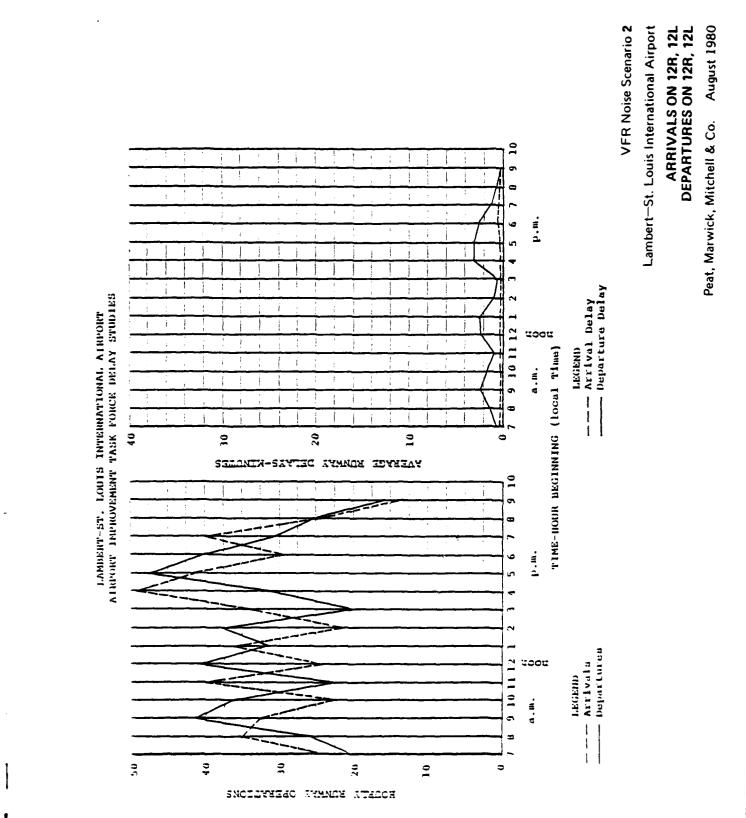
t

.

This experiment is used to evaluate the effect of noise abatement procedures on aircraft delays. Demand is at 1979 levels, and 1979 ATC Procedures are in effect in VFR conditions for the following runway configuration:

Arrival runways	Departure runways
12R, 12L	12R, 12L

Length and Level of Detail of Simulation Run:


From 0700 to 2200 with 1-hour summaries.

Results:

The tabulation below shows selected results for the average values and the peak-delay hour, 1700-1800 hours, over the 15-hour simulation period.

Operation type	Performance measure	Units	Average	Peak
Arrival	Flow rate	a/c per hr	30.9	40.0
Arrival	Air delay	minute	0.3	
Departure	Flow rate	a/c per hr	31.0	47.0
Departure	Runway delay	minute	1.8	3.1

C-5

-

J.

Experiment No. 1 - Noise 3

Scenario:

This experiment is used to evaluate the effect of noise abatement procedures on aircraft delays. Demand is at 1979 levels, and 1979 ATC Procedures are in effect in VFR conditions for the following runway configuration:

Arrival runways	Departure runways
12R, 12L	12R, 12L

Length and Level of Detail of Simulation Run:

From 0700 to 2200 with 1-hour summaries.

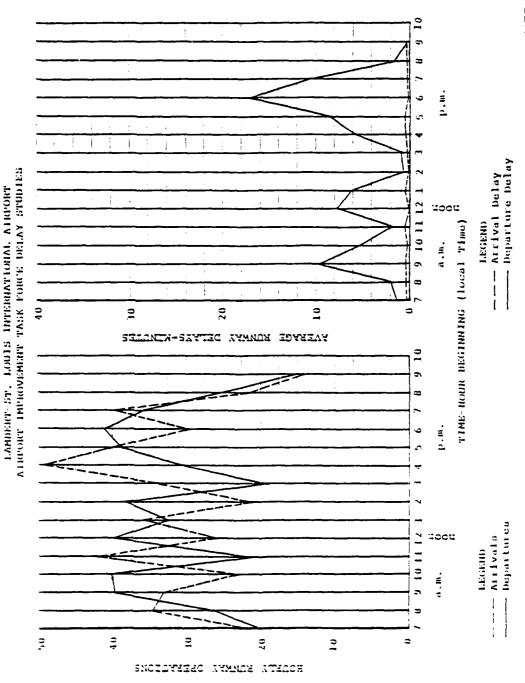
Results:

in the second 111

.

The tabulation below shows selected results for the average values and the peak-delay hour, 1800-1900 hours, over the 15-hour simulation period.

Operation type	Performance measure	Units	Average	Peak
Arrival	Flow rate	a/c per hr	30.9	41.1
Arrival	Air delay	minute	0.3	0.2
Departure	Flow rate	a/c per hr	31.0	29.0
Departure	Runway delay	minute	6.4	17.1


August 1980 Peat, Marwick, Mitchell & Co.

ARRIVALS ON 12R, 12L DEPARTURES ON 12R, 12L

\$

Lambert-St. Louis International Airport

VFR Noise Scenario 3

Ĩ

Experiment No. 2

Scenario:

This experiment is a baseline case using the existing airfield layout. Demand is at 1979 levels, and 1979 ATC Procedures are in effect in IFRL conditions for the following runway configuration:

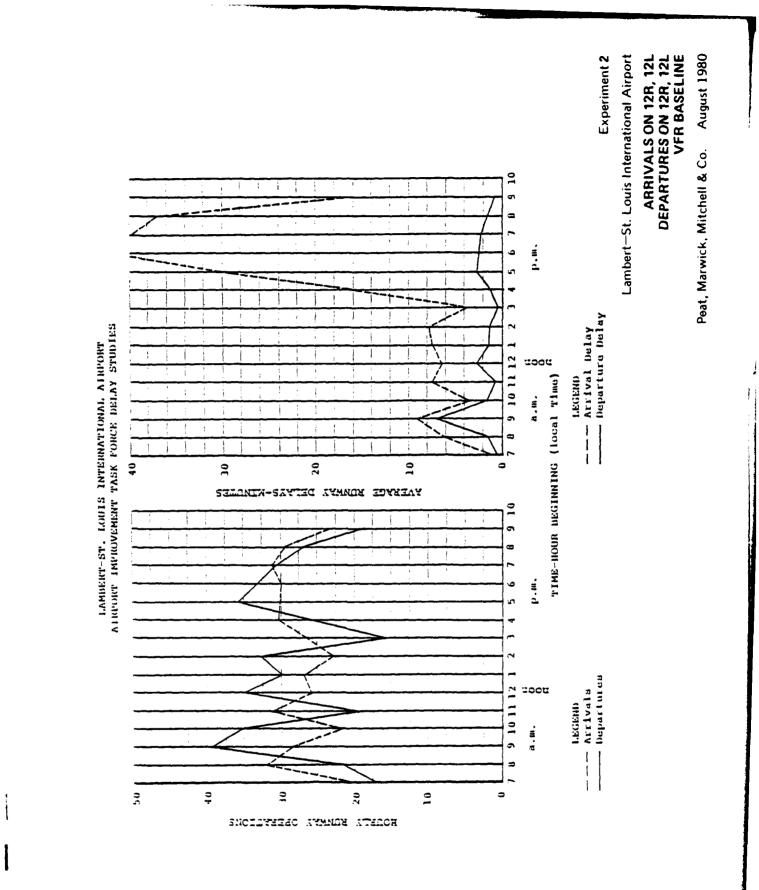
Arrival runways	Departure runways
12R, 12L	12R, 12L

Length and Level of Detail of Simulation Run:

From 0700 to 2200 with 1-hour summaries.

Results:

.


3

1

k

The tabulation below shows selected results for the average values and the peak-delay hour, 1800-1900 hours, over the 15-hour simulation period.

Operation type	Performance measure	Units	Average	Peak
Arrival	Flow rate	a/c per hr	27.3	29.7
Arrival	Air delay	minute	16.7	41.9
Departure	Flow rate	a/c per hr	27.7	32.9
Departure	Runway delay	minute		2.3

ſ,

1

•

Ê

3.

1.25

Experiment No. 3

Scenario:

This experiment is a baseline case using the existing airfield layout. Demand is at 1979 levels, and 1979 ATC Procedures are in effect in IFR2 and IFR3 conditions for the following runway configuration:

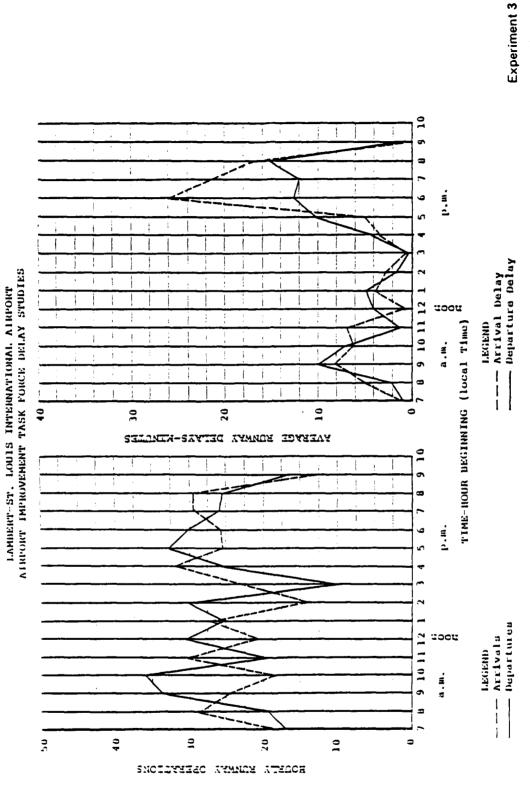
Arrival	runways	Departure runways
12R,	12L	12R, 12L

Length and Level of Detail of Simulation Run:

From 0700 to 2200 with 1-hour summaries.

Results:

 The tabulation below shows selected results for the average values and the peak-delay hour, 1800-1900 hours, over the 15-hour simulation period.


Operation type	Performance measure	Units	Average	Peak
Arrival	Flow rate	a/c per hr	24.0	26.0
Arrival	Air delay	minute	8.4	26.6
Departure	Flow rate	a/c per hr	25.3	30.6
Departure	Runway delay	minute	6.8	12.9

C-11

Peat, Marwick, Mitchell & Co. August 1980

ARRIVALS ON 12R, 12L DEPARTURES ON 12R, 12L IFR 2+3 BASELINE

Lambert-St. Louis International Airport

こう

1

4

3

い度に

JT.

Experiment No. 4

Scenario:

This experiment is a baseline case using the existing airfield layout. Demand is at 1979 levels, and 1979 ATC Procedures are in effect in VFR conditions for the following runway configuration:

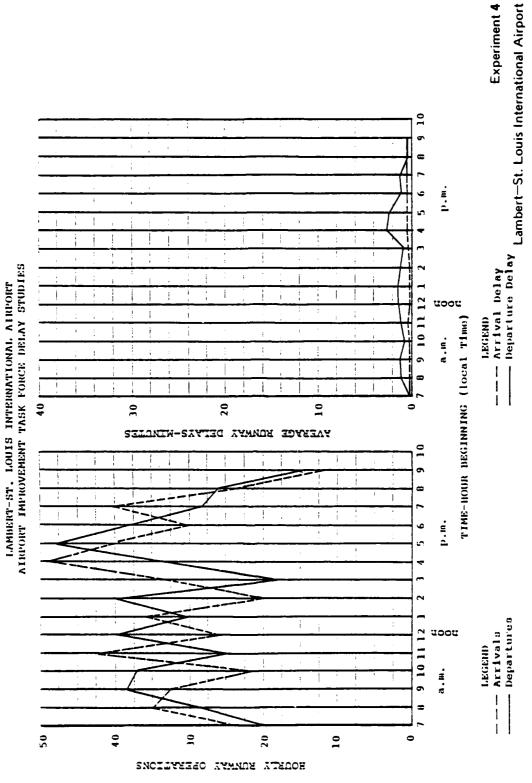
Arrival runways	Departure runways
30R, 30L	30R, 30L

Length and Level of Detail of Simulation Run:

From 0700 to 2200 with 1-hour summaries.

Results:

3


The tabulation below shows selected results for the average values and the peak-delay hour, 1700-1800 hours, over the 15-hour simulation period.

Operation type	Performance measure	Units	Average	Peak
Arrival	Flow rate	a/c per hr	30.9	49.0
Arrival	Air delay	minute	0.3	0.6
Departure	Flow rate	a/c per hr	31.0	32.2
Departure	Runway delay	minute	1.2	2.5

Peat, Marwick, Mitchell & Co. August 1980

ARRIVALS ON 30R, 30L DEPARTURES ON 30R, 30L VFR BASELINE

.

1

1

Î

3

• 23

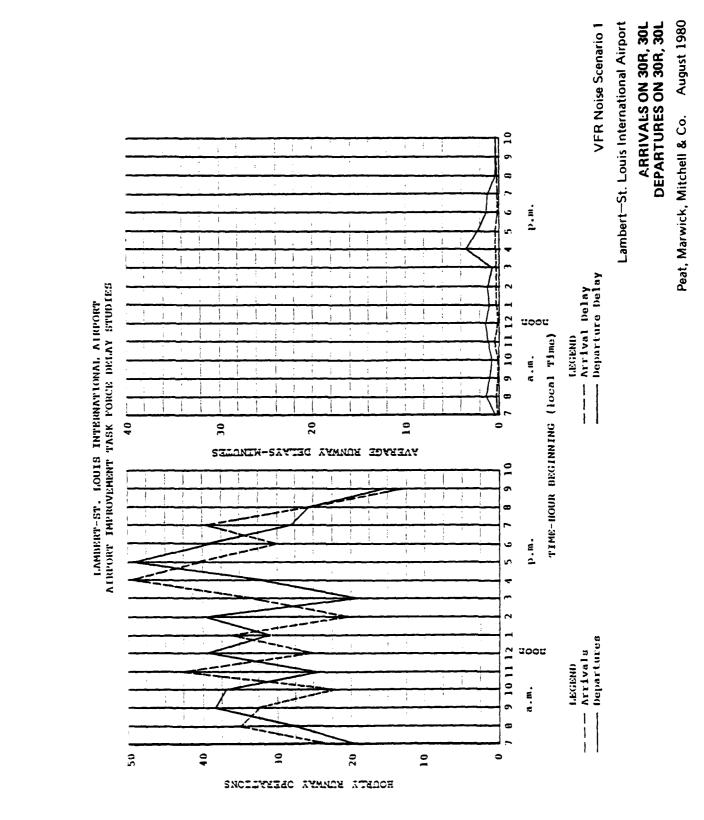
sЪ

Experiment No. 4 - Noise 1

Scenario:

This experiment is used to evaluate the effect of noise abatement procedures on aircraft delays. Demand is at 1979 levels, and 1979 ATC Procedures are in effect in VFR conditions for the following runway configuration:

Arrival runways	Departure runways		
30R, 30L	30R, 30L		


Length and Level of Detail of Simulation Run:

From 0700 to 2200 with 1-hour summaries.

Results:

The tabulation below shows selected results for the average values and the peak-delay hour, 1700-1800 hours, over the 15-hour simulation period.

Operation type	Performance 	<u> Units </u>	Average	Peak
Arrival	Flow rate	a/c per hr	30.9	40.0
Arrival	Air delay	minute	0.3	0.5
Departure	Flow rate	a/c per hr	31.0	49.0
Departure		minute	1.3	2.3

- 14

. .

とたと

1

J.

1

+

Experiment No. 4 - Noise 2

Scenario:

This experiment is used to evaluate the effect of noise abatement procedures on aircraft delays. Demand is at 1979 levels, and 1979 ATC Procedures are in effect in VFR conditions for the following runway configuration:

<u>Arrival runways</u>	Departure runways
30R, 30L	30R, 30L

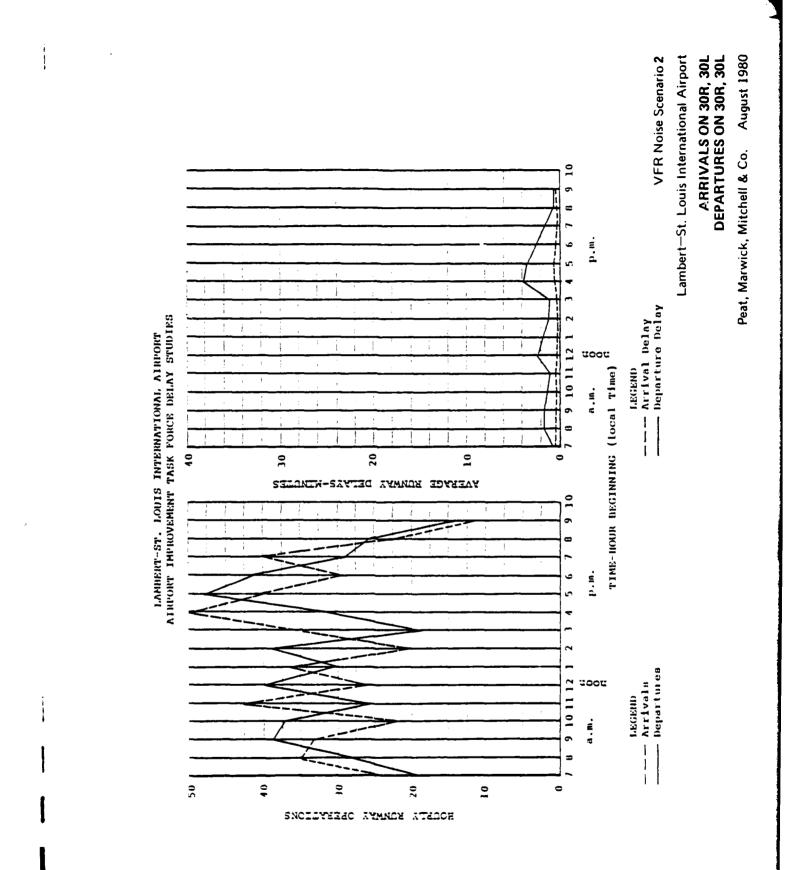
Length and Level of Detail of Simulation Run:

From 0700 to 2200 with 1-hour summaries.

Results:

14

Ĵ,


1

3

The tabulation below shows selected results for the average values and the peak-delay hour, 1700-1800 hours, over the 15-hour simulation period.

Operation type	Performance measure	Units	Average	Peak
Arrival	Flow rate	a/c per hr	30.9	40.0
Arrival	Air delay	minute	0.3	0.5
Departure	Flow rate	a/c per hr	31.0	47.3
Departure	Runway delay	minute	1.7	3.2

C-17

(

- 7

Experiment No. 4 - Noise 3

Scenario:

٦

1

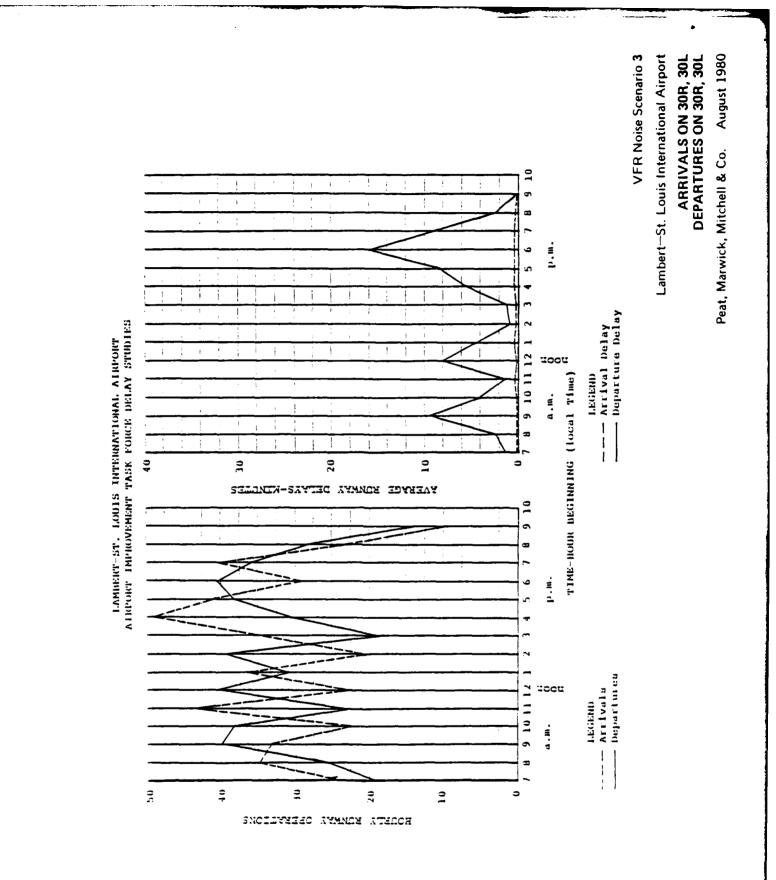
.3

AL.

Ĩ

This experiment is used to evaluate the effect of noise abatement procedures on aircraft delays. Demand is at 1979 levels, and 1979 ATC Procedures are in effect in VFR conditions for the following runway configuration:

Arrival runways	Departure runways
30R, 30L	30R, 30L


Length and Level of Detail of Simulation Run:

From 0700 to 2200 with 1-hour summaries.

Results:

The tabulation below shows selected results for the average values and the peak-delay hour, 1700-1800 hours, over the 15-hour simulation period.

Operation type	Performance measure	Units	Average	Peak
Arrival	Flow rate	a/c per hr	30.9	40.0
Arrival	Air delay	minute	0.3	0.5
Departure	Flow rate	a/c per hr	31.0	38.7
Departure	Runway delay	minute	6.0	9.0

1

Ĵ

11 × 4

4

- **3**

14

Experiment No. 5

Scenario:

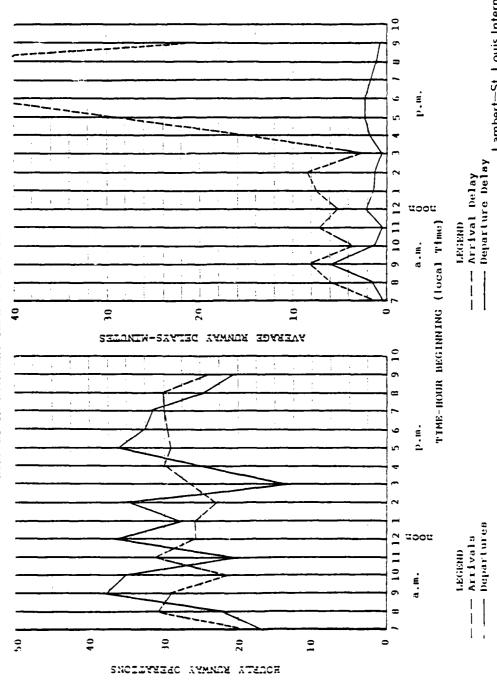
This experiment is a baseline case using the existing airfield layout. Demand is at 1979 levels, and 1979 ATC Procedures are in effect in IFRL conditions for the following runway configuration:

Arrival	runways	Departure	runways
30R,	30L	30R, 3	OL

Length and Level of Detail of Simulation Run:

From 0700 to 2200 with 1-hour summaries.

Results:


The tabulation below shows selected results for the average values and the peak-delay hour, 1800-1900 hours, over the 15-hour simulation period.

Operation type	Performance measure	Units	Average	Peak
Arrival	Flow rate	a/c per hr	27.2	29.6
Arrival	Air delay	minute	17.3	43.0
Departure	Flow rate	a/c per hr	27.8	32.0
Departure	Runway delay	minute	2.1	2.4

August 1980 Peat, Marwick, Mitchell & Co.

ARRIVALS ON 30R, 30L DEPARTURES ON 30R, 30L **IFR1 BASELINE**

Experiment 5 Lambert-St. Louis International Airport Departure Delay Arrival Delay

LAMBERT-ST. LOUIS INTERNATIONAL AIRPORT AIRPORT IMPROVEMENT TASK FORCE DELAY STUDIES

23

٨

Experiment No. 6

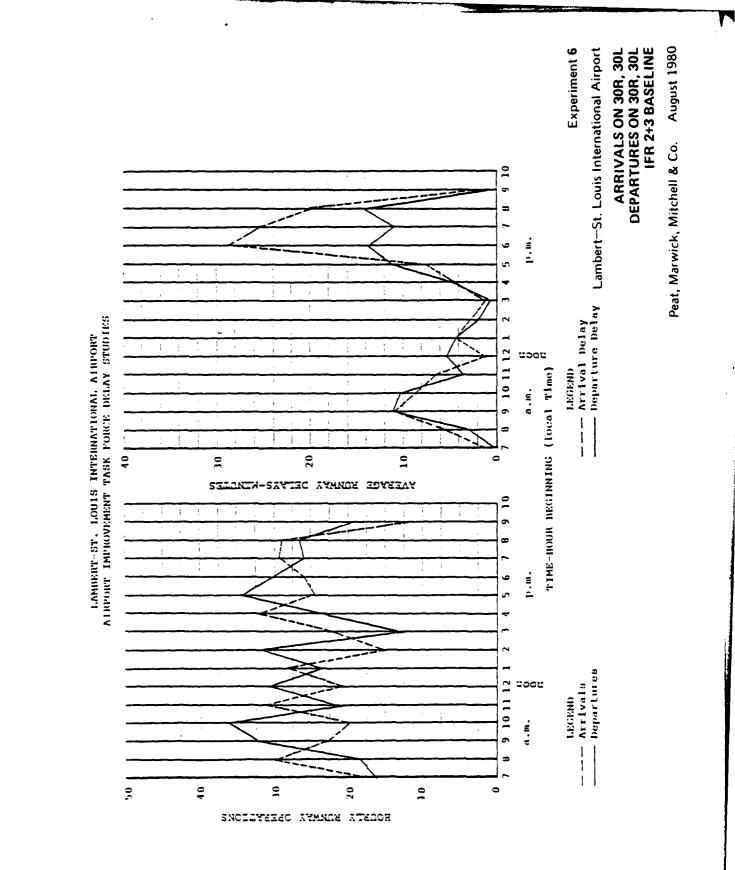
Scenario:

This experiment is a baseline case using the existing airfield layout. Demand is at 1979 levels, and 1979 ATC Procedures are in effect in IFR2 and IFR3 conditions for the following runway configuration:

Arrival	runways	Departur	e runways
30R,	30L	30R,	30L

Length and Level of Detail of Simulation Run:

From 0700 to 2200 with 1-hour summaries.


Results:

Ĩ

2

The tabulation below shows selected results for the average values and the peak-delay hour, 1800-1900 hours, over the 15-hour simulation period.

Operation type	Performance measure	Units	Average	Peak
Arrival	Flow rate	a/c per hr	23.9	26.0
Arrival	Air delay	minute	9.5	28.4
Departure	Flow rate	a/c per hr	25.3	30.2
Departure	Runway delay	minute	7.6	13.9

1

٠.

1.1.1

1

ų

٩

.7

, in the second second

でまる

Experiment No. 7A

Scenario:

f

This experiment is a baseline case using the existing airfield layout. Demand is at 1979 levels, and 1979 ATC Procedures are in effect in VFR conditions for the following runway configuration:

Arrival runways	Departure runways
30R, 30L, 24	30R, 30L

Length and Level of Detail of Simulation Run:

From 0700 to 2200 with 1-hour summaries.

Results:

The tabulation below shows selected results for the average values and the peak-delay hour, 1700-1800 hours, over the 15-hour simulation period.

Operation type	Performance measure	Units	Average	Peak
Arrival	Flow rate	a/c per hr	30.9	39.9
Arrival	Air delay	minute	0.3	0.7
Departure	Flow rate	a/c per hr.	31.0	47.6
Departure	Runway delay	minute	1.2	2.0

ARRIVALS ON 30R, 30L, AND 24 DEPARTURES ON 30R, 30L VFR BASELINE Peat, Marwick, Mitchell & Co. August 1980 Experiment 7A Lambert—St. Louis International Airport 9 10 Ì i i ł ł . 1 i. ~ p.m. و ŝ ł -- Departuro Delay ~ LEGEND Arrival Delay 9 10 11 12 1 2002 ł TIME-HOUR BEGINNING (local Time) à.W. } | | Ð 1 ~ 10 30 20 0 AVERAGE RUNWAY DELAYS-MENUTES 10 5 8 p.m. و 3 4 -2 _ Departures ucou 9 10 11 12 Arrivalu **URADA.I** d.m. I 3 Ì 1 40 10 20 20 0 ROLLYNER STREAM STELONS

LAMBERT-ST. LOUIS INTERNATIONAL AIRPORT ALROWET IMPROVEMENT TASK FORCE DELAY STUDIES

40

95

1.12

5

Experiment No. 7

Scenario:

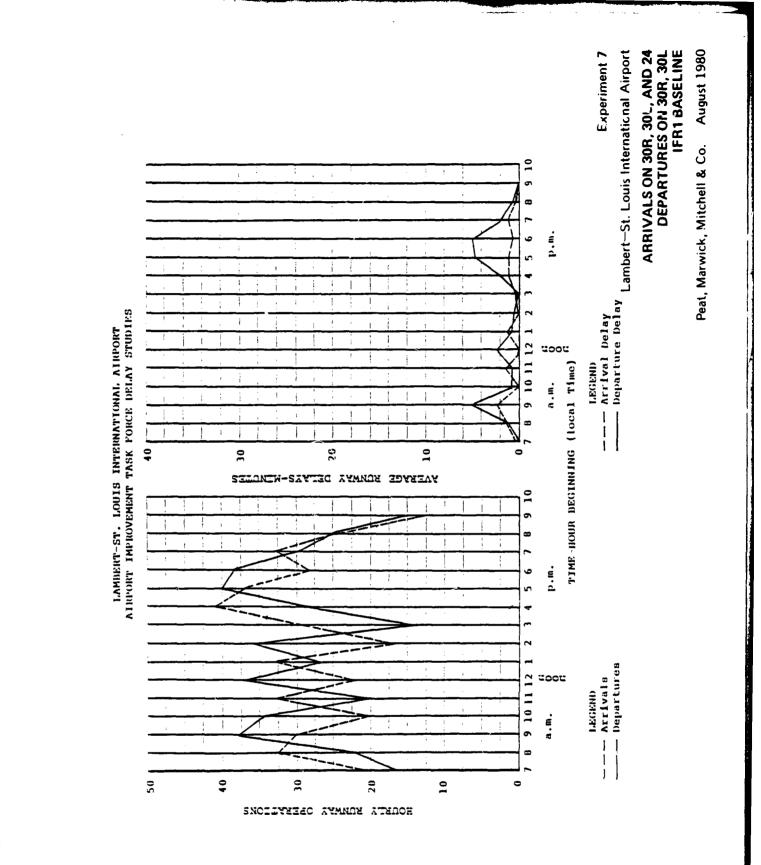
This experiment is a baseline case using the existing airfield layout. Demand is at 1979 levels, and 1979 ATC Procedures are in effect in IFR1 conditions for the following runway configuration:

Arrival runways	Departure runways
30R, 30L, 24	30R, 30L

Length and Level of Detail of Simulation Run:

From 0700 to 2200 with 1-hour summaries.

Results:


Ĵ

1

NR, 11

The tabulation below shows selected results for the average values and the peak-delay hour, 1700-1800 hours, over the 15-hour simulation period.

Operation type	Performance measure	Units	Average	Peak
Arrival	Flow rate	a/c per hr	27.2	36.8
Arrival	Air delay	minute	1.3	1.6
Departure	Flow rate	a/c per hr	27.8	39.6
Departure	Runway delay	minute	2.6	5.0

Ĩ

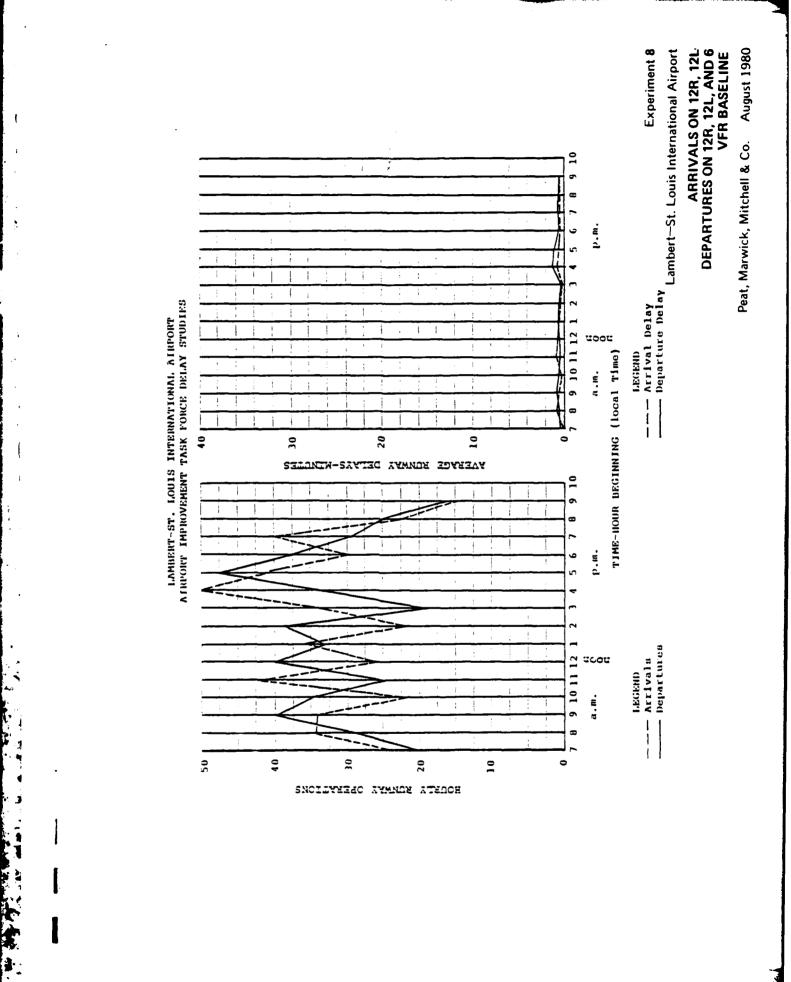
Experiment No. 8

Scenario:

This experiment is a baseline case using the existing airfield layout. Demand is at 1979 levels, and 1979 ATC Procedures are in effect in VFR conditions for the following runway configuration:

Arrival	runways	Departur	e runways
12R,	12L	12R,	12L, 6

Length and Level of Detail of Simulation Run:


From 0700 to 2200 with 1-hour summaries.

Results:

sТ

The tabulation below shows selected results for the average values and the peak-delay hour, 1600-1700 hours, over the 15-hour simulation period.

Operation type	Performance measure	Units	Average	Peak
Arrival	Flow rate	a/c per hr	31.0	49.0
Arrival	Air delay	minute	0.4	0.6
Departure	Flow rate	a/c per hr	31.0	33.9
Departure	Runway delay	minute	0.6	1.3

1.1

Experiment No. 9

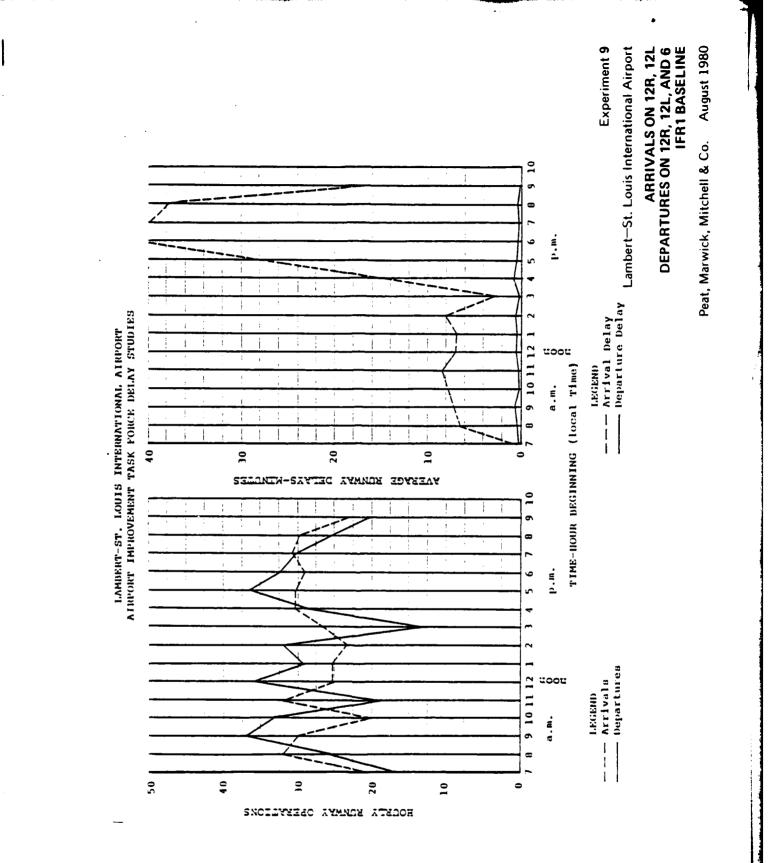
Scenario:

This experiment is a baseline case using the existing airfield layout. Demand is at 1979 levels, and 1979 ATC Procedures are in effect in IFR1 conditions for the following runway configuration:

Arrival runways	Departure runways
12R, 12L	12R, 12L, 6

Length and Level of Detail of Simulation Run:

From 0700 to 2200 with 1-hour summaries.


Results:

JE.

 The tabulation below shows selected results for the average values and the peak-delay hour, 1800-1900 hours, over the 15-hour simulation period.

Operation type	Performance measure	Units	Average	Peak
Arrival	Flow rate	a/c per hr	27.3	29.4
Arrival	Air delay	minute	16.7	41.8
Departure	Flow rate	a/c per hr	27.7	31.8
Departure	Runway delay	minute	0.3	0.4

C-31

1.1

1

.

F - 1

Experiment No. 10

Scenario:

This experiment is a baseline case using the existing airfield layout. Demand is at 1979 levels, and 1979 ATC Procedures are in effect in IFR2 and IFR3 conditions for the following runway configuration:

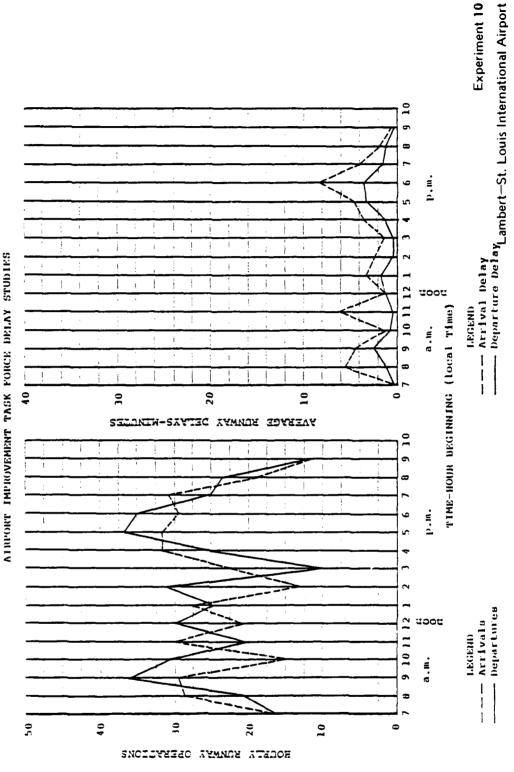
Arrival runways	Departure runways
12R, 12L	12R, 12L, 6

Length and Level of Detail of Simulation Run:

From 0700 to 2200 with 1-hour summaries.

Results:

1


The tabulation below shows selected results for the average values and the peak-delay hour, 1800-1900 hours, over the 15-hour simulation period.

Operation type	Performance measure	Units	Average	Peak
Arrival	Flow rate	a/c per hr	24.0	29.0
Arrival	Air delay	minute	3.8	8.1
Departure	Flow rate	a/c per hr	25.3	35.4
Departure	Runway delay	minute	1.6	3.6

C-33

Peat, Marwick, Mitchell & Co. August 1980

ARRIVALS ON 12R, 12L DEPARTURES ON 12R, 12L, AND 6 IFR 2+3 BASELINE

LAMBERT-ST, LOUIS INTERNATIONAL ALBORT ATREORT IMPROVEMENT TASK FORCE DELAY STUDIES

14

19 **8** 20

-{

1 I

Ą

Ĩ

à

C

The Area and the second of the

Experiment No. 11

Scenario:

This experiment is a baseline case using the existing airfield layout. Demand is at 1979 levels, and 1979 ATC Procedures are in effect in IFR2 and IFR3 conditions for the following runway configuration:

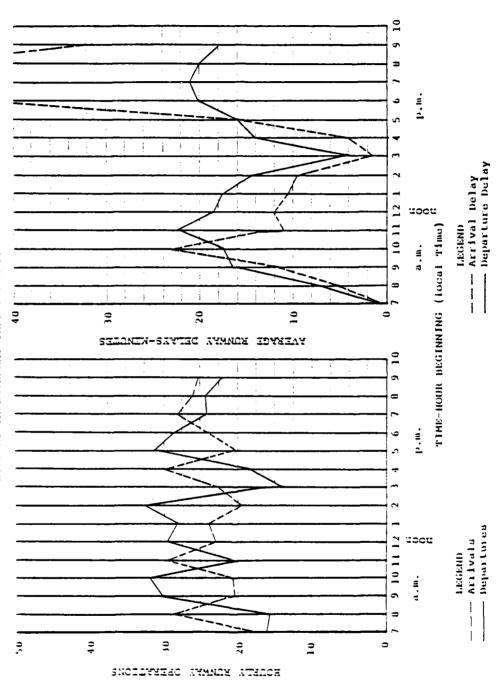
 Arrival runways 	Departure runways
24	24

Length and Level of Detail of Simulation Run:

From 0700 to 2200 with 1-hour summaries.

Results:

The tabulation below shows selected results for the average values and the peak-delay hour, 2000-2100 hours, over the 15-hour simulation period.


Operation type	Performance measure	<u>Units</u>	Average	Peak
Arrival	Flow rate	a/c per hr	23.9	26.1
Arrival	Air delay	minute	19.3	55.2
Departure	Flow rate	a/c per hr	24.7	24.4
Departure	Runway delay	minute	16.3	20.8

Peat, Marwick, Mitchell & Co. August 1980

ARRIVALS ON 24 DEPARTURES ON 24 IFR 2+3 BASELINE

Lambert—St. Louis International Airport

Experiment 11

LAMBERT-ST. LOUIS INTERNATIONAL AIRPORT AIRPORT IMPROVEMENT TASK FORCE DELAY STUDIES

1

2

Experiment No. 12

Scenario:

This experiment is a baseline case using the existing airfield layout. Demand is at 1979 levels, and 1979 ATC Procedures are in effect in VFR conditions for the following runway configuration:

Arrival runways Departure runways 12R, 12L 12R, 12L GA Operations on 17

Length and Level of Detail of Simulation Run:

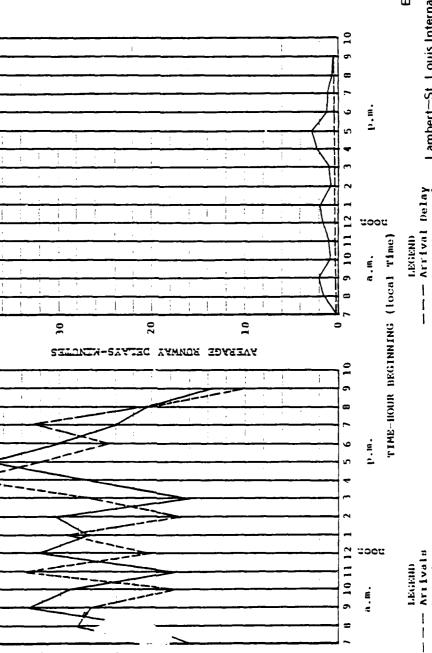
From 0700 to 2200 with 1-hour summaries.

Results:

 The tabulation below shows selected results for the average values and the peak-delay hour, 1700-1800 hours, over the 15-hour simulation period.

Operation type	Performance measure	Units	Average	Peak
Arrival	Flow rate	a/c per hr	30.9	39.5
Arrival	Air delay	minute	0.3	0.5
Departure	Flow rate	a/c per hr	31.0	47.2
Departure	Runway delay	minute	1.3	2.4

August 1980 Peat, Marwick, Mitchell & Co.


GENERAL AVIATION ON 17 DEPARTURES ON 12R, 12L VFR BASELINE

Lambert-St. Louis International Airport **ARRIVALS ON 12R, 12L**

- - ---

Experiment 12

TEGEND 11

SNOILTHEEC AMMNDE ATEROR

20

2

LAMBERT-ST. LOUIS INTERNATIONAL AIRPORT AIRPORT IMPROVEMENT TASK FORCE DELAY STUDIES

1

Ĩ

2

r

ある

40

50

25

40

Arrival Delay Departure Delay

Art Ivals Departares

10

Experiment No. 13

Scenario:

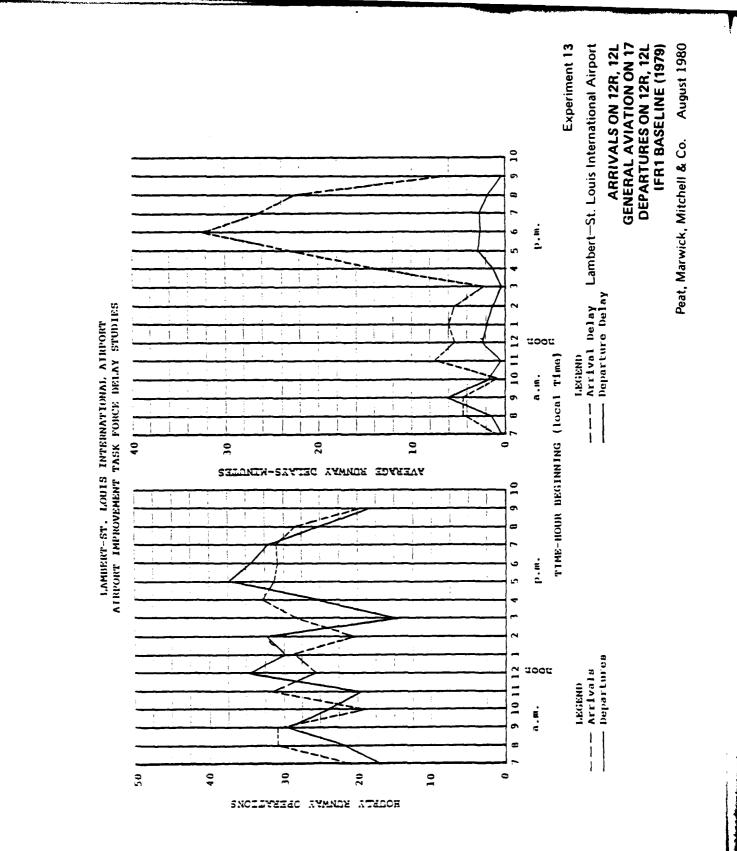
This experiment is a baseline case using the existing airfield layout. Demand is at 1979 levels, and 1979 ATC Procedures are in effect in IFR1 conditions for the following runway configuration:

Arrival runways	Departure runways
12R, 12L GA Operations on 17	12R, 12L

Length and Level of Detail of Simulation Run:

From 0700 to 2200 with 1-hour summaries.

Results:


Ĩ

Ę.

ė

The tabulation below shows selected results for the average values and the peak-delay hour, 1800-1900 hours, over the 15-hour simulation period.

Operation type	Performance measure	Units	Average	Peak
Arrival	Flow rate	a/c per hr	27.3	31.0
Arrival	Air delay	minute	11.8	31.8
Departure	Flow rate	a/c per hr	27.8	33.7
Departure	Runway delay	minute	2.3	2.6

•

Ĩ

i,

Experiment No. 26

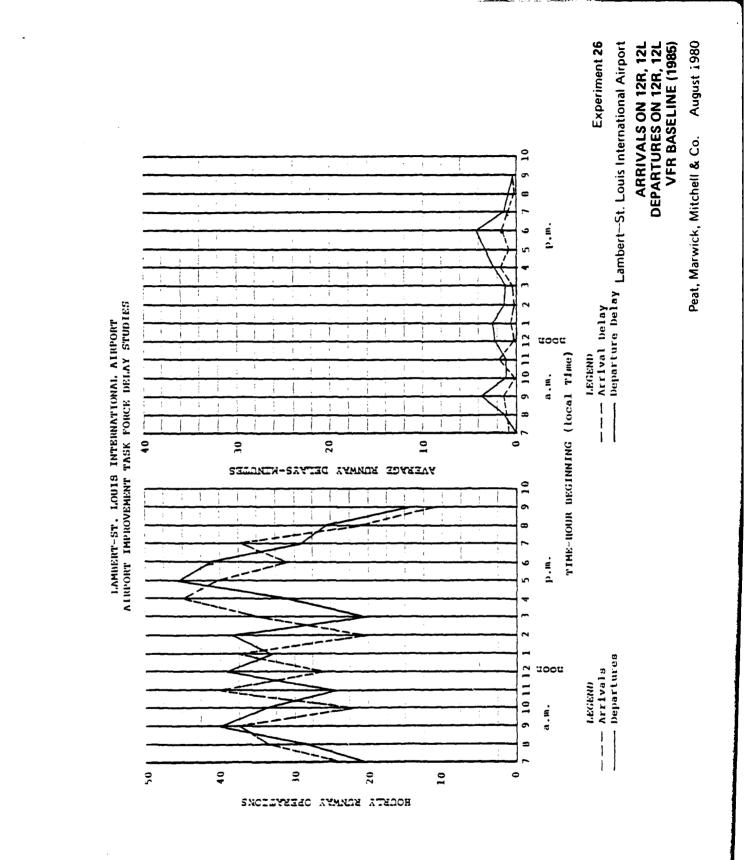
Scenario:

This experiment is a baseline case using the existing airfield layout. Demand is at 1985 levels, and 1979 ATC Procedures are in effect in VFR conditions for the following runway configuration:

Arrival runways	Departure runways
12R, 12L	12R, 12L

Length and Level of Detail of Simulation Run:

From 0700 to 2200 with 1-hour summaries.


Results:

1

12

The tabulation below shows selected results for the average values and the peak-delay hour, 1800-1900 hours, over the 15-hour simulation period.

Operation type	Performance measure	Units	Average	Peak
Arrival	Flow rate	a/c per hr	30.7	31.4
Arrival	Air delay	minute	0.9	1.7
Departure	Flow rate	a/c per hr	30.9	41.6
Departure	Runway delay	minute	2.1	4.4

f

1

-

1

÷.

1.1

Experiment No. 27

Scenario:

1

5 40 m

This experiment is a baseline case using the existing airfield layout. Demand is at 1985 levels, and 1979 ATC Procedures are in effect in IFR1 conditions for the following runway configuration:

<u>Arrival runways</u>	Departure runways
12R, 12L	12R, 12L

Length and Level of Detail of Simulation Run:

From 0700 to 2200 with 1-hour summaries.

Results:

The tabulation below shows selected results for the average values and the peak-delay hour, 1800-1900 hours, over the 15-hour simulation period.

Operation type	Performance measure	Units	Average	Peak
Arrival	Flow rate	a/c per hr	27.7	28.2
Arrival	Air delay	minute	25.7	54.8
Departure	Flow rate	a/c per hr	28.2	31.8
Departure	Runway delay	minute	3.0	5.1

August 1980 Peat, Marwick, Mitchell & Co.

ARRIVALS ON 12R, 12L DEPARTURES ON 12R, 12L IFR1 BASELINE (1985)

LEGEND Arrival Delay Departure Delay Lambert-St. Louis International Airport 10 Ŷ æ p.m. 9 ŝ ~ ~ 9 10 11 12 uoou TIME-HOUR DEGINNING (local Time) A.M. ļ œ I ~ ł 20 10 0 AVERAGE ROUWAY DELAYS-MINUTES 9 10 1 ł 8 ~ .ու.գ و ŝ ~ ~ 2 Departures LEGEND Arrivals 9 10 11 12 ೮೦೦೮ ţ a.m. 1 ≈ ł 1 30 0 20 10

1

HOLEY'S SCHWAY OFERALIONS

LAMMERT-ST. LOUIS INTERNATIONAL AIRPORT AIRPORT IMPROVEMENT TASK FORCE DELAY STUDIES

۰,

ļ 1

ŗ

40

50

1

40

ţ

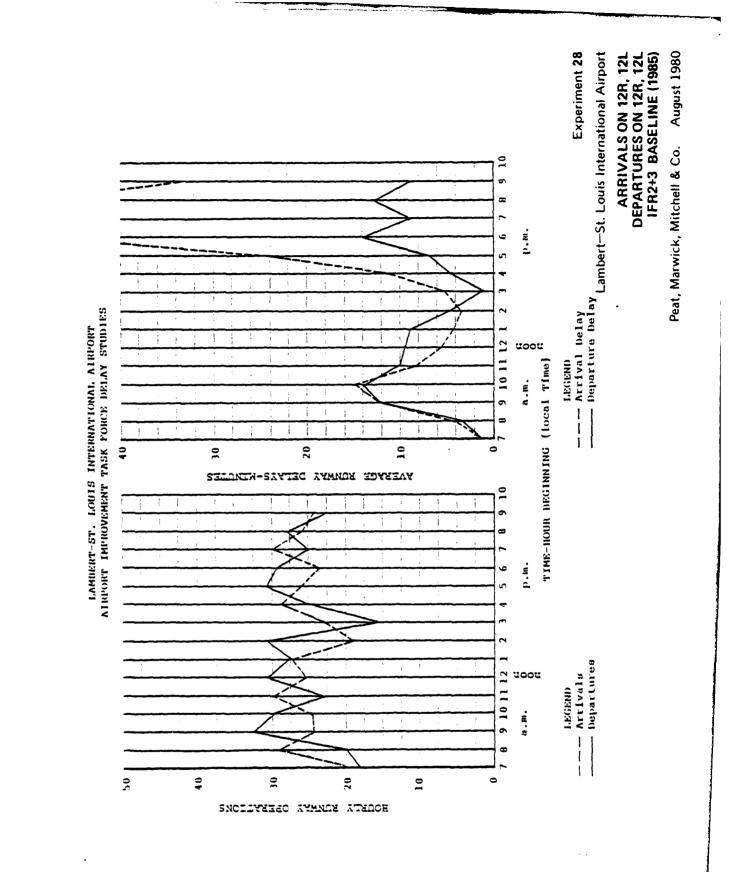
Experiment No. 28

Scenario:

This experiment is a baseline case using the existing airfield layout. Demand is at 1985 levels, and 1979 ATC Procedures are in effect in IFR2 and IFR3 conditions for the following runway configuration:

Arrival runways	Departure runways
12R, 12L	12R, 12L

Length and Level of Detail of Simulation Run:


From 0700 to 2200 with 1-hour summaries.

Results:

12

The tabulation below shows selected results for the average values and the peak-delay hour, 2000-2100 hours, over the 15-hour simulation period.

Operation type	Performance measure	Units	Average	Peak
Arrival	Flow rate	a/c per hr	25.2	25.5
Arrival	Air delay	minute	18.8	49.8
Departure	Flow rate	a/c per hr	26.0	28.5
Departure	Runway delay	minute	8.2	13.2

7

С' Э

T. 200

Experiment No. 29

Scenario:

•

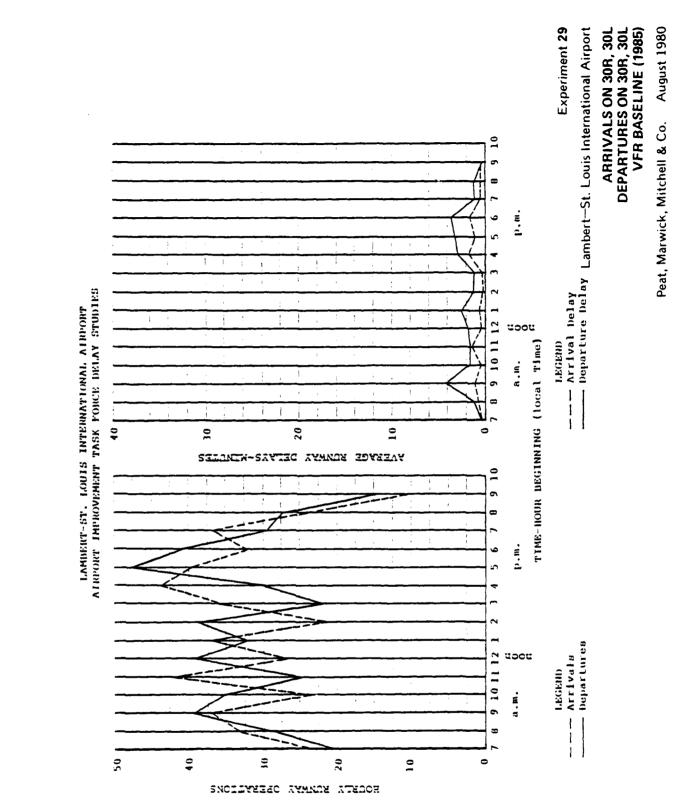
This experiment is a baseline case using the existing airfield layout. Demand is at 1985 levels, and 1979 ATC Procedures are in effect in VFR conditions for the following runway configuration:

Arrival runways	Departure runways
30R, 30L	30R, 30L

Length and Level of Detail of Simulation Run:

From 0700 to 2200 with 1-hour summaries.

Results:


11. 5

1.1

The tabulation below shows selected results for the average values and the peak-delay hour, 0900-1000 hours, over the 15-hour simulation period.

Operation type	Performance measure	Units	Average	Peak
Arrival	Flow rate	a/c per hr	30.7	37.0
Arrival	Air delay	minute	0.9	1.4
Departure	Flow rate	a/c per hr	30.9	38.9
Departure	Runway delay	minute	2.1	4.1

C-47

I

1

1

3

\$

- 12

14

•

Experiment No. 30

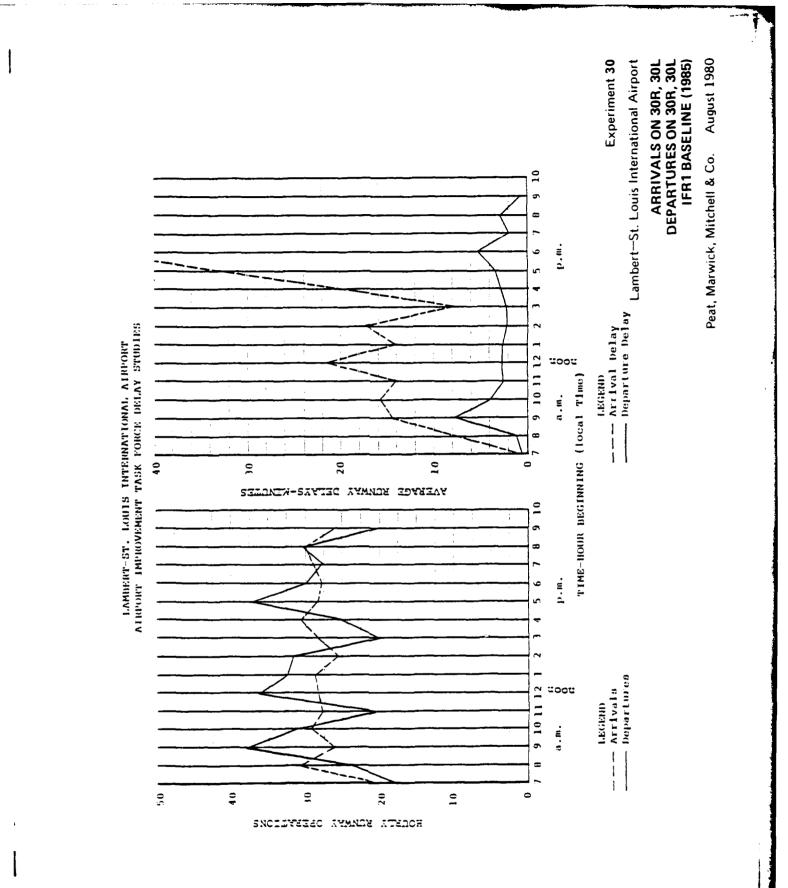
Scenario:

This experiment is a baseline case using the existing airfield layout. Demand is at 1985 levels, and 1979 ATC Procedures are in effect in IFRL conditions for the following runway configuration:

Arrival runways	Departure runways
30R, 30L	30R, 30L

Length and Level of Detail of Simulation Run:

From 0700 to 2200 with 1-hour summaries.


Results:

٠.

かちょう

The tabulation below shows selected results for the average values and the peak-delay hour, 1800-1900 hours, over the 15-hour simulation period.

Operation type	Performance measure	Units	Average	Peak
Arrival	Flow rate	a/c per hr	27.8	27.5
Arrival	Air delay	minute	25.1	51.7
Departure	Flow rate	a/c per hr	28.3	30.5
Departure	Runway delay	minute	3.1	5.4

Ĩ

から

335

.

Experiment No. 31

Scenario:

This experiment is a baseline case using the existing airfield layout. Demand is at 1985 levels, and 1979 ATC Procedures are in effect in IFR2 and IFR3 conditions for the following runway configuration:

<u>Arrival</u>	runways	Departur	ce runways
30R,		30R,	30L

Length and Level of Detail of Simulation Run:

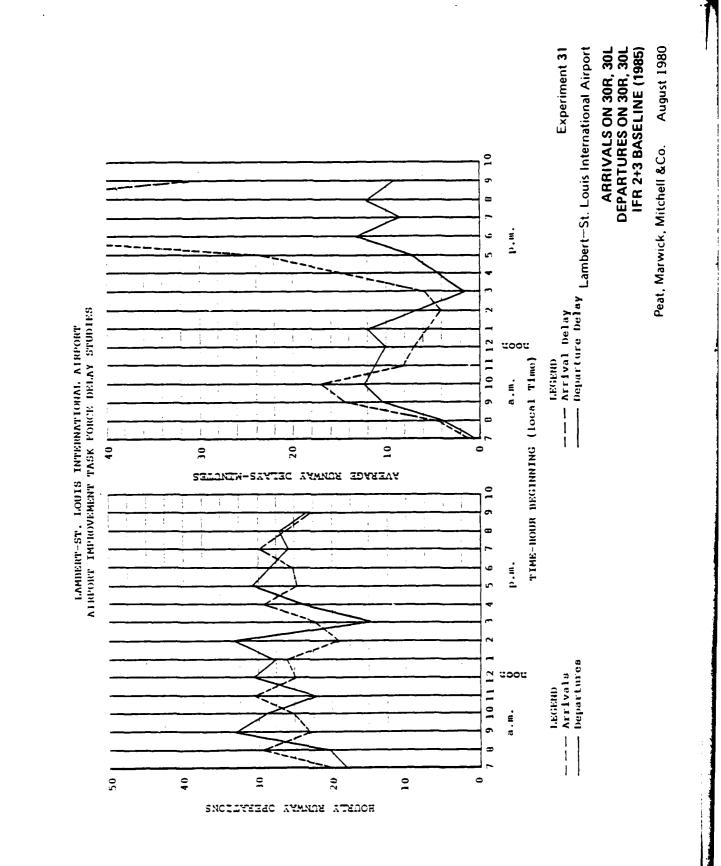
From 0700 to 2200 with 1-hour summaries.

Results:

ιÂ.

~

•


¢

3

The tabulation below shows selected results for the average values and the peak-delay hour, 1800-1900 hours, over the 15-hour simulation period.

Operation type	Performance measure	<u>Units</u>	Average	Peak
Arrival	Flow rate	a/c per hr	25.1	25.1
Arrival	Air delay	minute	19.2	48.3
Departure	Flow rate	a/c per hr	25.9	27.9
Departure	Runway delay	minute	8.8	13.7

C-51

たちょ

Experiment No. 32A

Scenario:

This experiment is a baseline case using the existing airfield layout. Demand is at 1985 levels, and 1979 ATC Procedures are in effect in VFR conditions for the following runway configuration:

Arrival runways	Departure runways
30R, 30L, 24	30R, 30L

Length and Level of Detail of Simulation Run:

From 0700 to 2200 with 1-hour summaries.

Results:

Å.;

F1

 The tabulation below shows selected results for the average values and the peak-delay hour, 1800-1900 hours, over the 15-hour simulation period.

Operation type	Performance measure	Units	Average	Peak
Arrival	Flow rate	a/c per hr	30.8	32.2
Arrival	Air delay	minute	0.8	2.2
Departure	Flow rate	a/c per hr	31.1	40.9
Departure	Runway delay	minute		4.6

ARRIVALS ON 30R, 30L, AND 24 DEPARTURES ON 30R, 30L VFR BASELINE (1985) August 1980 Experiment 32A Lambert-St. Louis International Airport Peat, Marwick, Mitchell & Co. 10 5 0 ~ p.m. ى ŝ Departure belay ł í LANDERT-ST. LOUIS INTERNATIONAL ALREORT ALREORT IMPROVEMENT TASK FORCE DELAY STUDIES 2 LEGEND Arrival Delay 9 10 11 12 1 ţ uoou TIME-HOUR BEGINNING (local Time) ť a.m. 1 į | | | 8 40 30 20 10 0 AVERAGE RUNWAY DELAYS-MINUTES 10 ð, i 8 p.m. و ŝ ~ ~ 2 Departures LEGEND Arrivals TOOL 9 10 11 12 ā.m. 1 -1 9 10 20 C 50 0 SNOILVEELD AMMNAY ATEACE

ŧ.

1

1

4

3

Ĩ

544

1.5

12.

Experiment No. 32

Scenario:

•

ĩ

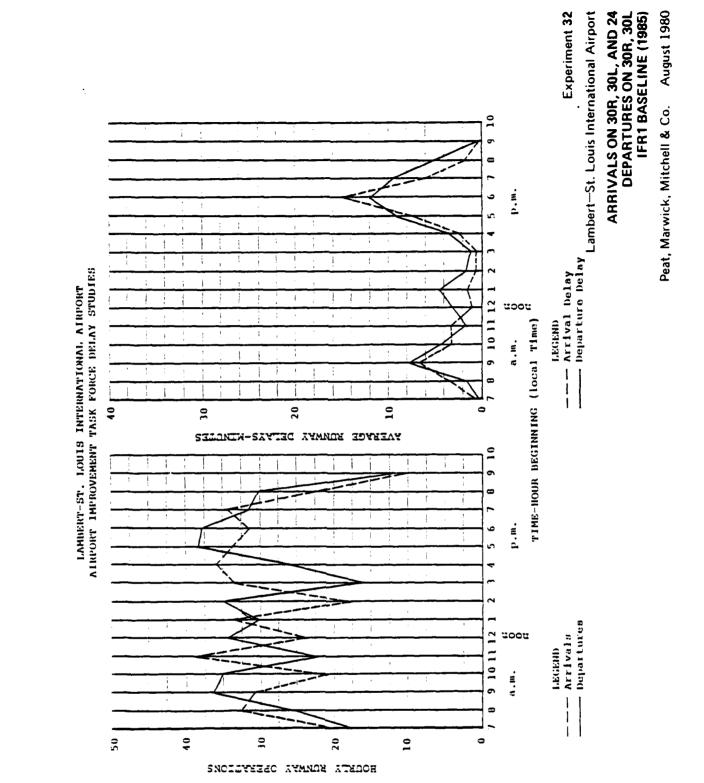
1.1

ł This experiment is a baseline case using the existing airfield layout. Demand is at 1985 levels, and 1979 ATC Procedures are in effect in IFR1 conditions for the following runway configuration:

Arrival runways	Departure runways
30R, 30L, 24	30R, 30L

Length and Level of Detail of Simulation Run:

From 0700 to 2200 with 1-hour summaries.



Results:

The tabulation below shows selected results for the average values and the peak-delay hour, 1800-1900 hours, over the 15-hour simulation period.

Operation type	Performance measure	Units	Average	Peak
Arríval	Flow rate	a/c per hr	28.1	31.5
Arríval	Air delay	minute	4.0	14.8
Departure	Flow rate	a/c per hr	28.7	37.5
Departure	Runway delay	minute	5.0	11.8

C-55

ĩ

ため

3

1.25

Experiment No. 33

Scenario:

1

-

「日本」の

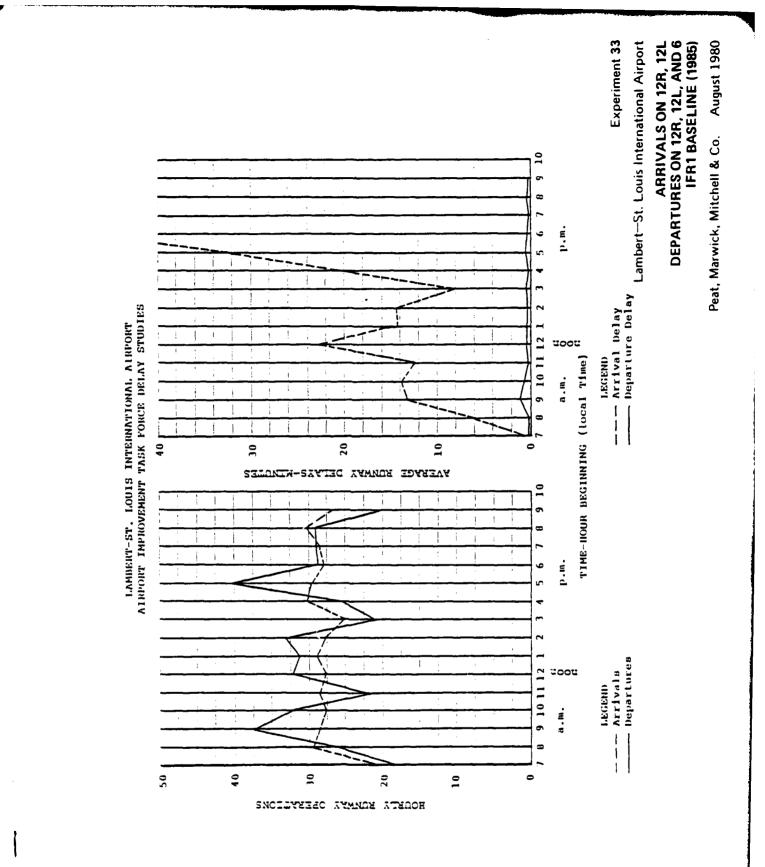
}_

- 14 s d

12

This experiment is a baseline case using the existing airfield layout. Demand is at 1985 levels, and 1979 ATC Procedures are in effect in IFR1 conditions for the following runway configuration:

Arrival runways	Departure runways
12R, 12L	12R, 12L, 6


Length and Level of Detail of Simulation Run:

From 0700 to 2200 with 1-hour summaries.

Results:

The tabulation below shows selected results for the average values and the peak-delay hour, 1900-2000 hours, over the 15-hour simulation period.

Operation type	Performance measure	Units	Average	Peak
Arrival	Flow rate	a/c per hr	27.8	28.5
Arrival	Air delay	minute	25.7	59.4
Departure	Flow rate	a/c per hr	28.3	29.0
Departure	Runway delay	minute	0.5	0.4

1

·. . ```

4.;

1

.....

¢

くちょ

19.2<u>5</u>

54

.

Experiment No. 34

Scenario:

This experiment is a baseline case using the existing airfield layout. Demand is at 1985 levels, and 1979 ATC Procedures are in effect in IFR1 conditions for the following runway configuration:

Arrival runways	Departure runways
12R, 12L GA Operations on 17	12R, 12L

Length and Level of Detail of Simulation Run:

From 0700 to 2200 with 1-hour summaries.

Results:

1

.

. .

1 10

The tabulation below shows selected results for the average values and the peak-delay hour, 1800-1900 hours, over the 15-hour simulation period.

Operation type	Performance measure	Units	Average	_Peak_
Arrival	Flow rate	a/c per hr	28.1	29.8
Arrival	Air delay	minute	18.7	42.5
Departure	Flow rate	a/c per hr	28.6	32.2
Departure	Runway delay	minute	3.3	6.3

ARRIVALS ON 12R, 12L GENERAL AVIATION ON 17 DEPARTURES ON 12R, 12L IFR1 BASELINE (1985) Experiment 34 Departure Delay Lambert-St. Louis International Airport August 1980 Peat, Marwick, Mitchell & Co. 9 10 • ~ p.m. و ŝ 1 i LAMBERT-ST. LOUIS INTERNATIONAL AIRPORT AIRPORT IMPROVEMENT TASK FORCE DELAY STUDIES 2 LEGEND Arrival Delay -9 10 11 12 uoou TIME-ROOM BEGINNING (local Time) a.m. ł 8 İ 1 ~ 10 30 20 0 40 AVERAGE RUNWAY DELAYS-MINUTES 10 s -i p.n. و ŝ < ~ 2 Departures LECEND Arrivals 11 12 uoou а.m. 6 I Ð 1 -50 40 20 20 0 10 SNCILVERC AMMANA ATEROR

1

1

3

Ĩ

7

 ~ 1

Experiment No. 35

Scenario:

٩

•

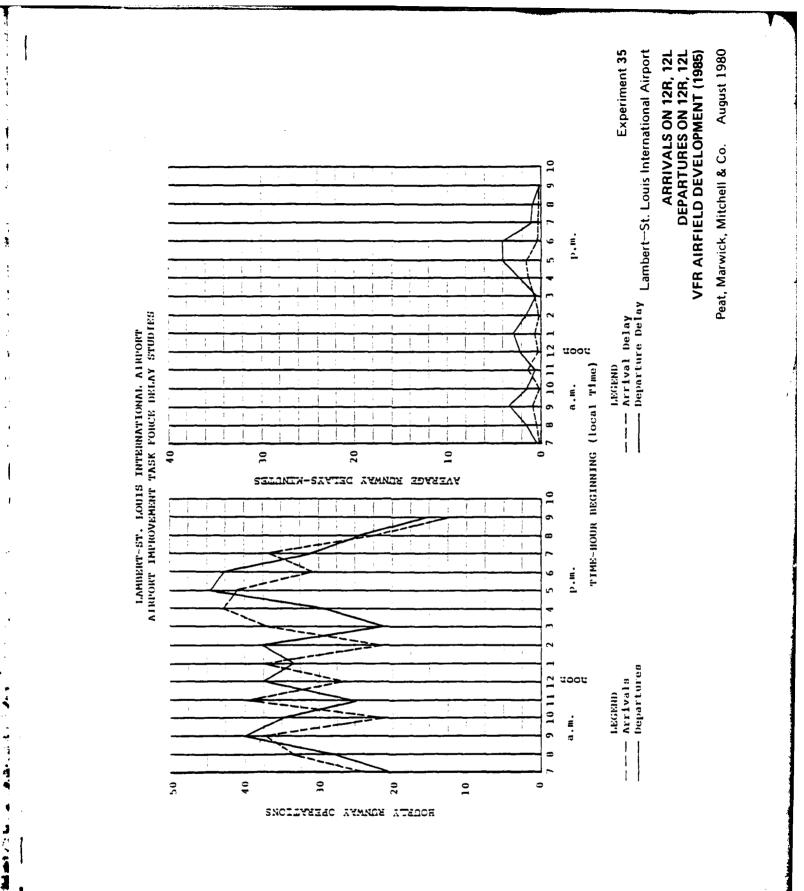
Î

•

This experiment is used to evaluate the effect of planned airfield developments on aircraft delays. Demand is at 1985 levels, and 1979 ATC Procedures are in effect in VFR conditions for the following runway configuration:

Arrival runways	Departure runways
12R, 12L	12R, 12L

Length and Level of Detail of Simulation Run:


From 0700 to 2200 with 1-hour summaries.

Results:

12

The tabulation below shows selected results for the average values and the peak-delay hour, 1700-1800 hours, over the 15-hour simulation period.

Operation type	Performance measure	Units	Average	Peak
Arrival	Flow rate	a/c per hr	30.8	41.8
Arrival	Air delay	minute	0.8	1.3
Departure	Flow rate	a/c per hr	31.0	44.6
Departure	Runway delay	minute	2.2	4.1

.

Experiment No. 35G

Scenario:

This experiment is used as a baseline to evaluate the effect of proposed terminal expansion on aircraft delays. Demand is at 1985 levels, and 1979 ATC Procedures are in effect in VFR conditions for the following runway configuration:

Arrival runways	Departure runways
12R, 12L	12R, 12L

Length and Level of Detail of Simulation Run:

From 0700 to 2200 with 1-hour summaries.

Results:

· / 2

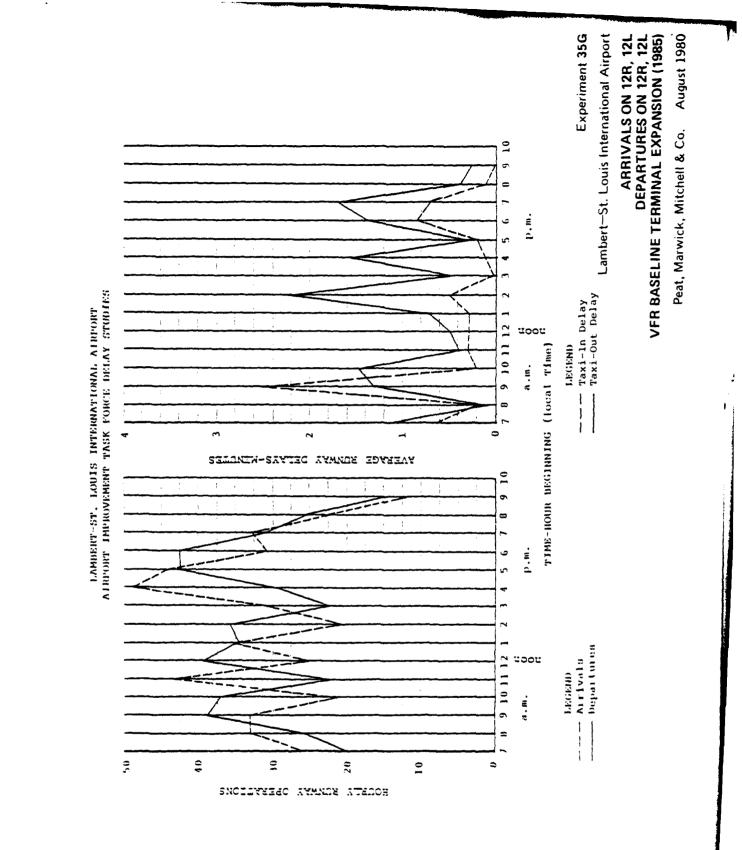
.

. .

ŀ,

3

۹ . ع


Ī

The tabulation below shows selected results for the average values and the peak-delay hour, 1300-1900 hours, over the 15-hour simulation period.

Operation type	Performance measure	Units	Average	Peak
Arrival	Flow rate	a/c per	30.8	31.2
Arrival	Taxi-in delay	minute	0.5	0.8
Departure	Flow rate	a/c per hr	30.8	42.4
Departure	Taxi-out delay	minute	1.0	1.4

Number of aircraft delayed because of gate congestion: 7.

Average gate congestion delays incurred by these aircraft: 20.9 minutes.

.

3 - F**S**

1

1

. .

Experiment No. 35A

Scenario:

This experiment is used to evaluate the effect of increasing the proportion of heavy jets in the aircraft mix on aircraft delays. It was assumed in this experiment that the planned airfield developments were in place. Demand is at 1985 levels, and 1979 ATC Procedures are in effect in VFR conditions for the following runway configuration:

Arrival	runways	Departure runways
12R,	12L	12R, 12L

Length and Level of Detail of Simulation Run:

From 0700 to 2200 with 1-hour summaries.

Results:

C

£

The tabulation below shows selected results for the average values and the peak-delay hour, 1800-1900 hours, over the 15-hour simulation period.

Operation type	Performance measure	Units	Average	Peak
Arrival	Flow rate	a/c per hr	30.1	29.0
Arrival	Air delay	minute	0.9	1.3
Departure	Flow rate	a/c per hr	30.1	40.8
Departure	Runway delay	minute	2.1	4.7

ARRIVALS ON 12R, 12L DEPARTURES ON 12R, 12L VFR AIRFIELD DEVELOPMENT Experiment 35A Lambert-St. Louis International Airport August 1980 INCREASED HEAVY (1985) Peat, Marwick, Mitchell & Co. 10 1 ł 5 0 -m-d ۍ ŝ Departure Delay LAMBERT-ST. LOUIS INTERNATIONAL ALRORT ALRORT IMPROVEMENT TASK FORCE DELAY STUDIES ---- Arrival Delay 9 10 11 12 1 į i uoou TIME-NOUR BEGINNING (local Time) GNECEND а.m. T 8 1 1 20 10 0 40 30 AVERAGE RUNWAY DELAYS-MINUTES 9 10 • р. ш. ە ŝ ÷ 2 Arrivala Departuren 101112 200C **URBOBI** d.M. 5 1 Ð 1 3 940 2 0 07 10 SHOILYMIIA ATMANN ATMAOH

1

3

111

k

5

i 1

Experiment No. 35B

Scenario:

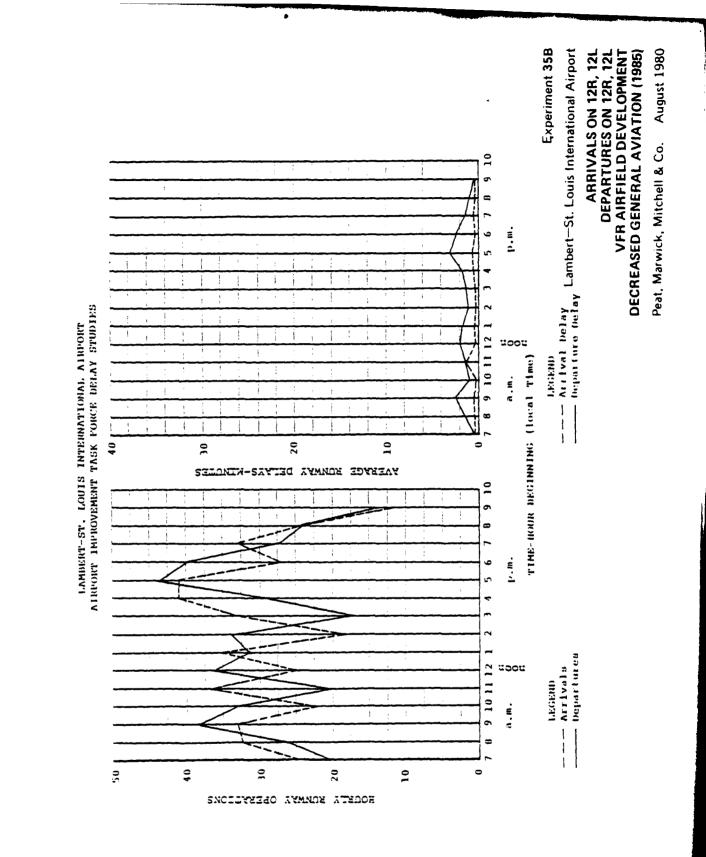
This experiment is used to evaluate the effect of decreasing the proportion of general aviation aircraft in the mix on aircraft delays. It was assumed in this experiment that the planned airfield developments were in place. Demand is at 1985 levels, and 1979 ATC Procedures are in effect in VFR conditions for the following runway configuration:

Arrival runways	Departure runways
12R, 12L	12R, 12L

Length and Level of Detail of Simulation Run:

From 0700 to 2200 with 1-hour summaries.

Results:


÷...

• د ا

r

The tabulation below shows selected results for the average values and the peak-delay hour, 1700-1800 hours, over the 15-hour simulation period.

Operation type	Performance measure	Units	Average	Peak
Arrival	Flow rate	a/c per hr	28.6	40.9
Arrival	Air delay	minute	0.6	0.8
Departure	Flow rate	a/c per hr	29.0	43.3
Departure	Runway delay	minute	1.7	3.3

1

7.4.4

3

1.12

X

Experiment No. 36

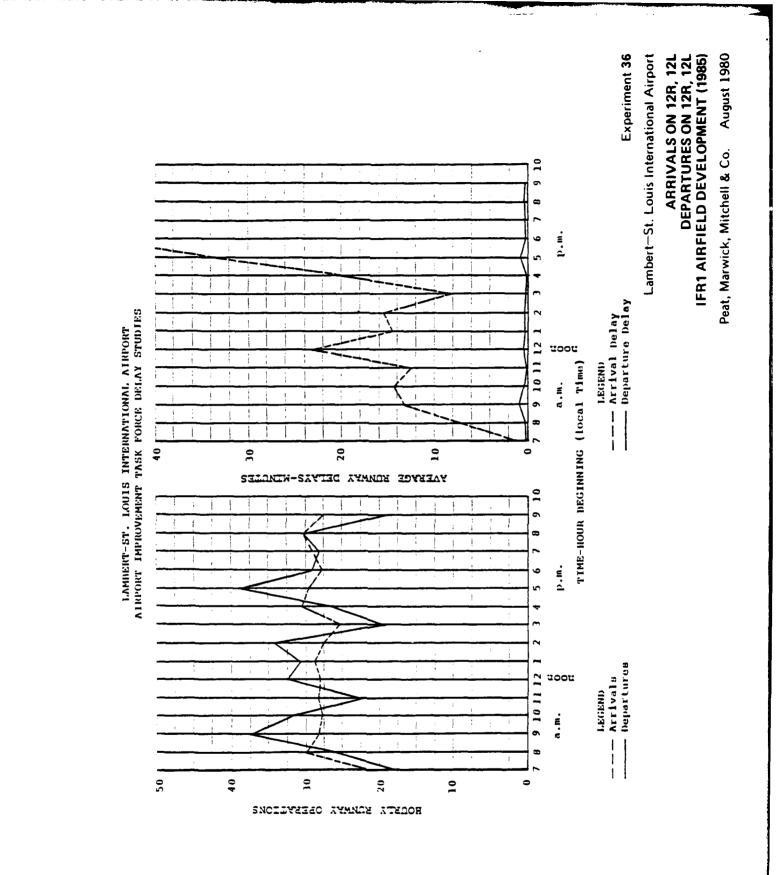
Scenario:

This experiment is used to evaluate the effect of planned airfield developments on aircraft delays. Demand is at 1985 levels, and 1979 ATC Procedures are in effect in IFR1 conditions for the following runway configuration:

Arrival runways	Departure runways
12R, 12L	12R, 12L

Length and Level of Detail of Simulation Run:

From 0700 to 2200 with 1-hour summaries.


Results:

33

1

The tabulation below shows selected results for the average values and the peak-delay hour, 1900-2000 hours, over the 15-hour simulation period.

Operation type	Performance measure	Units	Average	Peak
Arríval	Flow rate	a/c per hr	28.0	29.0
Arrival	Air delay	minute	25.8	59.3
Departure	Flow rate	a/c per hr	28.4	28.0
Departure	Runway delay	minute	0.5	0.3

58

ŧ

•

1

1

1.1

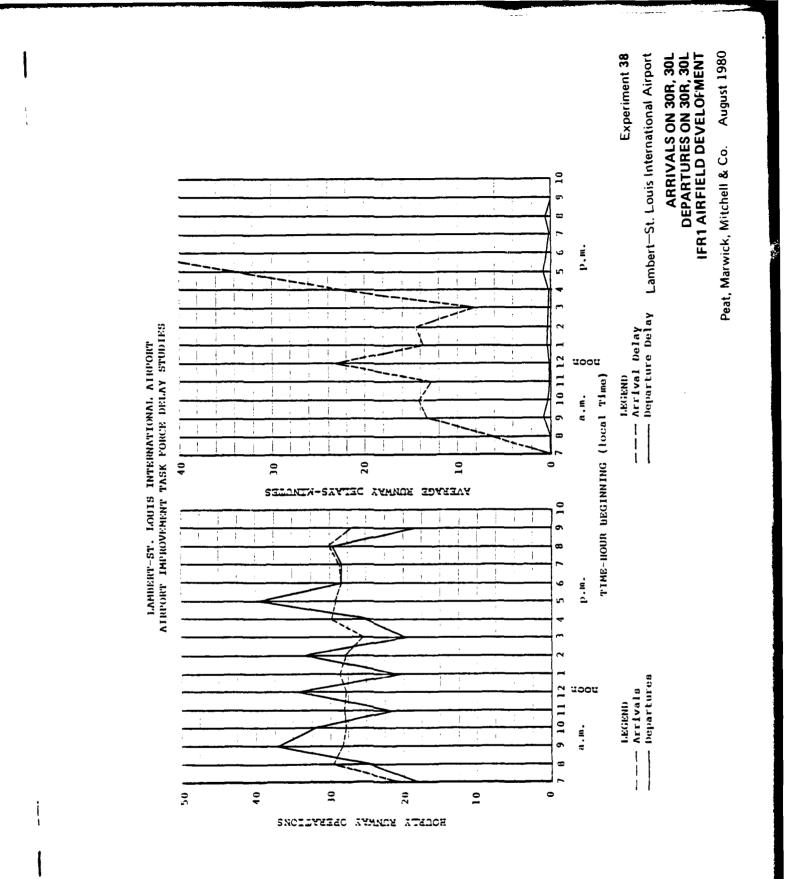
₽ ₽

Experiment No. 38

Scenario:

This experiment is used to evaluate the effect of planned airfield developments on aircraft delays. Demand is at 1985 levels, and 1979 ATC Procedures are in effect in IFRL conditions for the following runway configuration:

Arrival runways	Departure runways
30R, 30L	30R, 30L


Length and Level of Detail of Simulation Run:

From 0700 to 2200 with 1-hour summaries.

Results:

in the second
The tabulation below shows selected results for the average values and the peak-delay hour, 1900-2000 hours, over the 15-hour simulation period.

Operation type	Performance measure	Units	Average	Peak
Arrival	Flow rate	a/c per hr	27.9	28.5
Arrival	Air delay	minute	26.1	60.2
Departure	Flow rate	a/c per hr	26.1	28.2
Departure	Runway delay	minute	0.5	0.4

1

「「「

7

.

Experiment No. 39A

Scenario:

1

•;

1-

This experiment is used to evaluate the effect of planned airfield developments on aircraft delays. Demand is at 1985 levels, and 1979 ATC Procedures are in effect in VFR conditions for the following runway configuration:

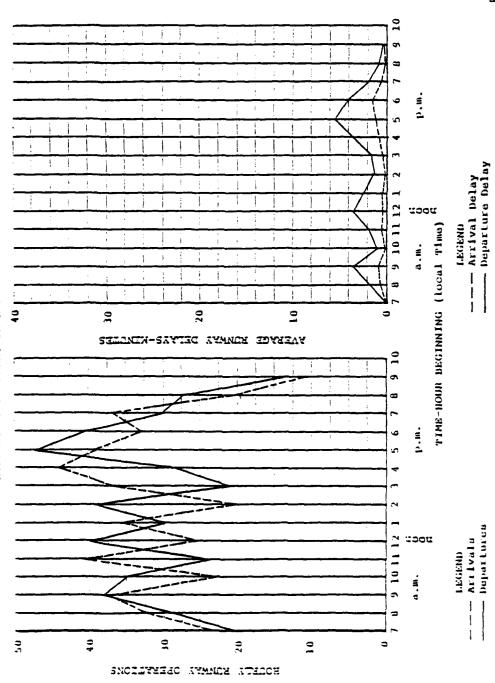
Arrival runways	Departure runways
30R, 30L, 24	30R, 30L

Length and Level of Detail of Simulation Run:

From 0700 to 2200 with 1-hour summaries.

Results:

The tabulation below shows selected results for the average values and the peak-delay hour, 1700-1800 hours, over the 15-hour simulation period.


Operation type	Performance measure	Units	Average	Peak
Arrival	Flow rate	a/c per hr	30.7	38.2
Arrival	Air delay	minute	0.7	1.3
Departure	Flow rate	a/c per hr	30.9	47.3
Departure	Runway delay	minute	2.5	5.4

and been

August 1980 Peat, Marwick, Mitchell & Co.

ARRIVALS ON 30R, 30L, AND 24 DEPARTURES ON 30R, 30L VFR AIRFIELD DEVELOPMENT (1985)

Experiment 39A Lambert-St. Louis International Airport

LAMBERT-ST. LOUIS INTERNATIONAL AIRPORT AFRPORT IMPROVEMENT TASK FORCE DELAY STUDIES

JA.

S.

Experiment No. 39

Scenario:

This experiment is used to evaluate the effect of planned airfield developments on aircraft delays. Demand is at 1985 levels, and 1979 ATC Procedures are in effect in IFR1 conditions for the following runway configuration:

Arrival runways	Departure runways
30R, 30L, 24	30R, 30L

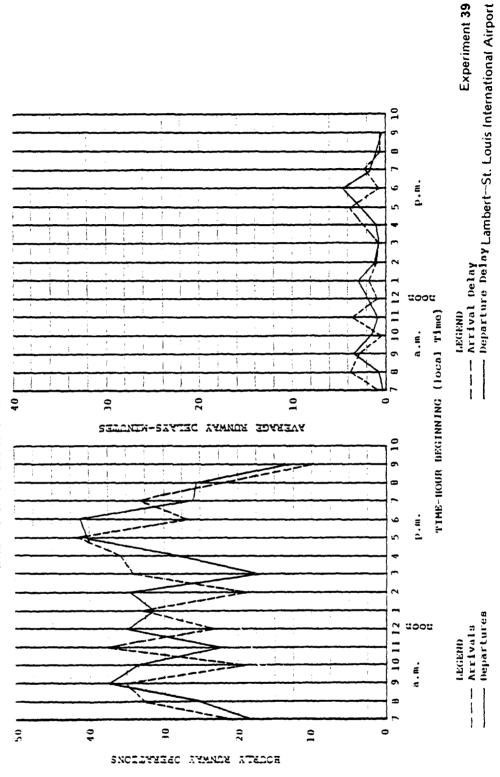
Length and Level of Detail of Simulation Run:

From 0700 to 2200 with 1-hour summaries.

Results:

1

1


The tabulation below shows selected results for the average values and the peak-delay hour, 0900-1000 hours, over the 15-hour simulation period.

Operation type	Performance measure	<u>Units</u>	Average	Peak
Arrival	Flow rate	a/c per hr	28.0	35.0
Arrival	Air delay	minute	1.9	3.1
Departure	Flow rate	a/c per hr	28.5	38.0
Departure	Runway delay	minute	2.0	3.4

Peat, Marwick, Mitchell & Co. August 1980

DEPARTURES ON 30R, 30L IFR1 AIRFIELD DEVELOPMENT (1985)

ARRIVALS ON 30R, 30L, AND 24

T

....

LAMBERT-ST. LOUIS INTERNATIONAL AIRPORT AIRPORT IMPROVEMENT TASK FORCE DELAY STUDIES

A. F

1.2.5

Experiment No. 40

Scenario:

This experiment is used to evaluate the effect of planned airfield developments on aircraft delays. Demand is at 1985 levels, and 1979 ATC Procedures are in effect in IFR1 conditions for the following runway configuration:

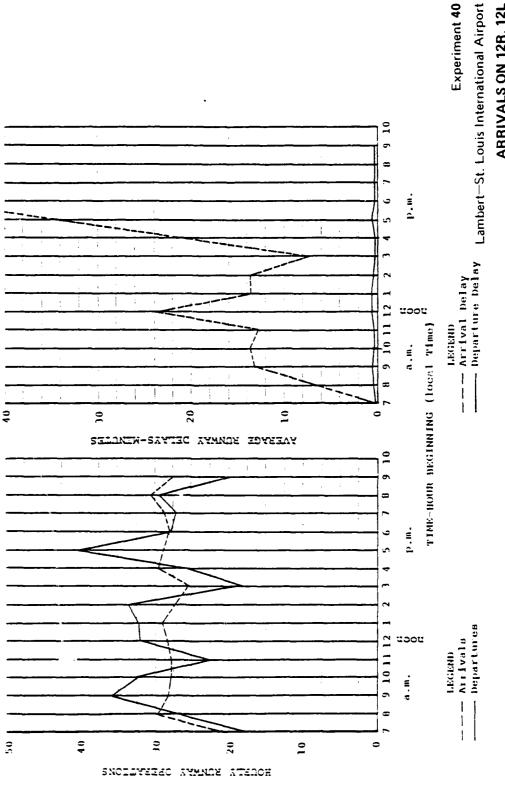
Arrival	runways	Departur	e ru	ways
12R,	12L	12R,	12L,	6

Length and Level of Detail of Simulation Run:

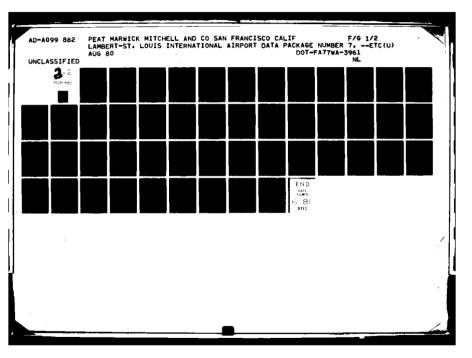
From 0700 to 2200 with 1-hour summaries.

Results:

111


1

The tabulation below shows selected results for the average values and the peak-delay hour, 1900-2000 hours, over the 15-hour simulation period.


Operation type	Performance measure	Units	Average	Peak
Arrival	Flow rate	a/c per hr	27.8	28.5
Arrival	Air delay	minute	26.5	62.4
Departure	Flow rate	a/c per hr	28.3	27.3
Departure	Runway delay	minute	0.3	0.2

Peat, Marwick, Mitchell & Co. August 1980

ARRIVALS ON 12R, 12L DEPARTURES ON 30R, 30L, AND 6 IFR1 AIRFIELD DEVELOPMENT (1985)

LAMBERT ST. LOUIS INTERNATIONAL ALBORT ALBORT INPROVEMENT TASK FORCE DELAY STUDIES

Experiment No. 41

Scenario:

1

This experiment is used to evaluate the effect of the proposed LDA approach on aircraft delays. It was assumed in this experiment that the planned airfield developments were in place. Demand is at 1985 levels, and 1979 ATC Procedures are in effect in IFRL conditions for the following runway configuration:

Arrival runways	Departure runways
30R, 30L	30R, 30L

Length and Level of Detail of Simulation Run:

From 0700 to 2200 with 1-hour summaries.

Results:

JA.

The tabulation below shows selected results for the average values and the peak-delay hour, 1800-1900 hours, over the 15-hour simulation period.

Operation type	Performance measure	Units	Average	Peak
Arrival	Flow rate	a/c per hr	28.1	30.4
Arrival	Air delay	minute	1.2	1.2
Departure	Flow rate	a/c per hr	28.5	41.1
Departure	Runway delay	minute	2.8	7.2

Departure Delay Lambert-St. Louis International Airport ARRIVALS ON 12R, 12L DEPARTURES ON 12R, 12L IFR1 LDA APPROACH (1985) August 1980 Experiment 41 Peat, Marwick, Mitchell & Co. 9 10 ł æ 7 p.m. و ŝ LAMBERT-ST. LOUIS INTERNATIONAL AIRPORT AIRPORT IMPROVEMENT TASK FORCE DELAY STUDIES 2 LEGEND Arrival Delay 1 i 9 10 11 12 1 2002 TIME-HOUR BEGINNING (local Time) a.n. | | | a ł 40 30 20 10 0 AVERAGE RUNWAY DELAYS-MINUTES 9 10 8 ÷ ł p.m. و ŝ 2 ---bepart web LEGEND Arrivals 9 10 11 12 2002 а.m. ţ 0 1 Ł 50 | 40 0 20 10 0 HOLET'S SUMMY'S OPERATIONS

Ĵ

111

-

3

Experiment No. 42

Scenario:

2

This experiment is used to evaluate the effect of the proposed LDA approach on aircraft delays. It was assumed in this experiment that the planned airfield developments were in place. Demand is at 1985 levels, and 1979 ATC Procedures are in effect in IFR1 conditions for the following runway configuration:

Arrival run	ways	Departur	e runways
30R, 30L,	24	30R,	30L

Length and Level of Detail of Simulation Run:

From 0700 to 2200 with 1-hour summaries.

Results:

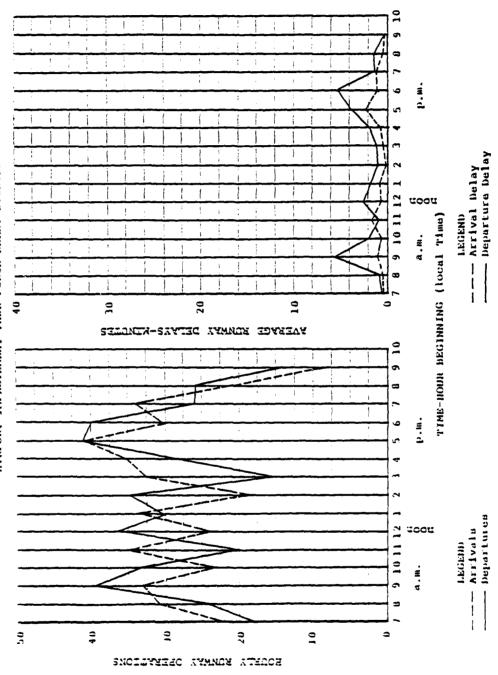
- 23

33

. .

The tabulation below shows selected results for the average values and the peak-delay hour, 1700-1800 hours, over the 15-hour simulation period.

Operation type	Performance measure	Units	Average	Peak
Arrival	Flow rate	a/c per hr	28.1	40.2
Arrival	Air delay	minute	1.0	
Departure	Flow rate	a/c per hr	28.5	41.4
Departure	Runway delay	minute	2.3	3.9


C-79

Peat, Marwick, Mitchell & Co.

ARRIVALS ON 30R, 30L, AND 24 DEPARTURES ON 30R, 30L IFR1 LDA APPROACH (1985)

Lambert-St. Louis International Airport

Experiment 42

LAMBERT-ST. LOUIS INTERNATIONAL AIRPORT AIRPORT JAPHOVEMENT TASK FORCE DELAY STUDIES

SA

1

•

. هر:

1

j

August 1980

Experiment No. 43

Scenario:

This experiment is used to evaluate the effect of the proposed LDA approach on aircraft delays. It was assumed in this experiment that the planned airfield developments were in place. Demand is at 1985 levels, and 1979 ATC Procedures are in effect in IFR1 conditions for the following runway configuration:

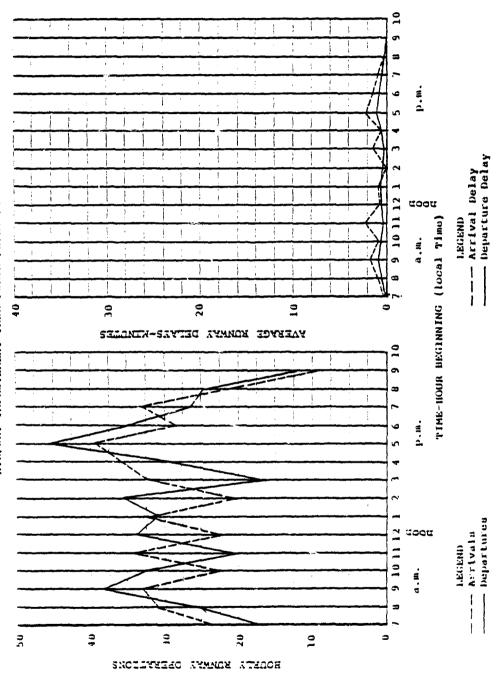
Arrival	runways	Departure runways
12R,	12L	12R, 12L, 6

Length and Level of Detail of Simulation Run:

From 0700 to 2200 with 1-hour summaries.

Results:

The tabulation below shows selected results for the average values and the peak-delay hour, 1700-1800 hours, over the 15-hour simulation period.


Operation type	Performance measure	Units	Average	Peak
Arrival	Flow rate	a/c per hr	28.1	39.6
Arrival	Air delay	minute	1.3	2.5
Departure	Flow rate	a/c per hr	28.5	44.5
Departure	Runway delay	minute	0.7	1.3

August 1980 Peat, Marwick, Mitchell & Co.

ARRIVALS ON 12R, 12L DEPARTURES ON 12R, 12L, AND 6 IFR1 LDA APPROACH (1985)

Lambert-St. Louis International Airport

Experiment 43

LAMBERT-ST. LOUIS INTERNATIONAL AIRPORT AFREDRE IMPROVEMENT TASK FORCE DELAY STUDIES

「「「「「」」」

1 4

,

4

J.

Experiment No. 44

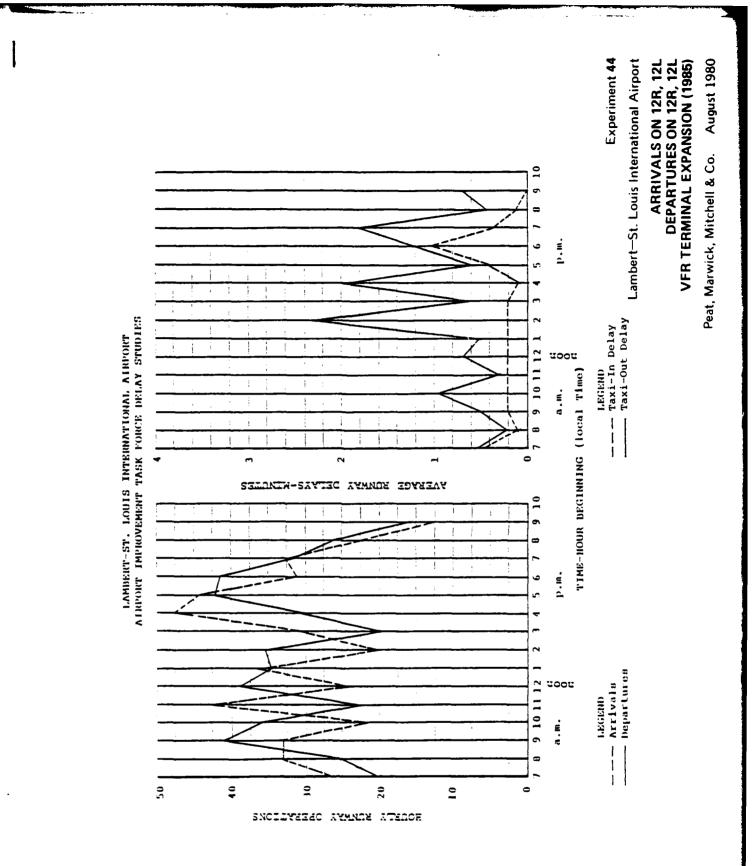
Scenario:

This experiment is used to evaluate the effect of proposed terminal expansion on aircraft delays. Demand is at 1985 levels, and 1979 ATC Procedures are in effect in VFR conditions for the following runway configuration:

Arrival	runways	Departure	runways
12R,	12L	12R,	12L

Length and Level of Detail of Simulation Run:

From 0700 to 2200 with 1-hour summaries.


Results:

The tabulation below shows selected results for the average values and the peak-delay hour, 1800-1900 hours, over the 15-hour simulation period.

operation type	measure	Units	Average	Peak
Arrival	Flow rate	a/c per hr	30.8	31.8
Arrival	Taxi-in delay	minute	0.3	1.0
Departure	Flow rate	a/c per hr	30.8	41.6
Departure	Taxi-out delay	minute	0.9	1.2

Number of aircraft delayed because of gate congestion: 0.

Average gate congestion delays incurred by these aircraft: 0.0 minute.

•

•:

1

•

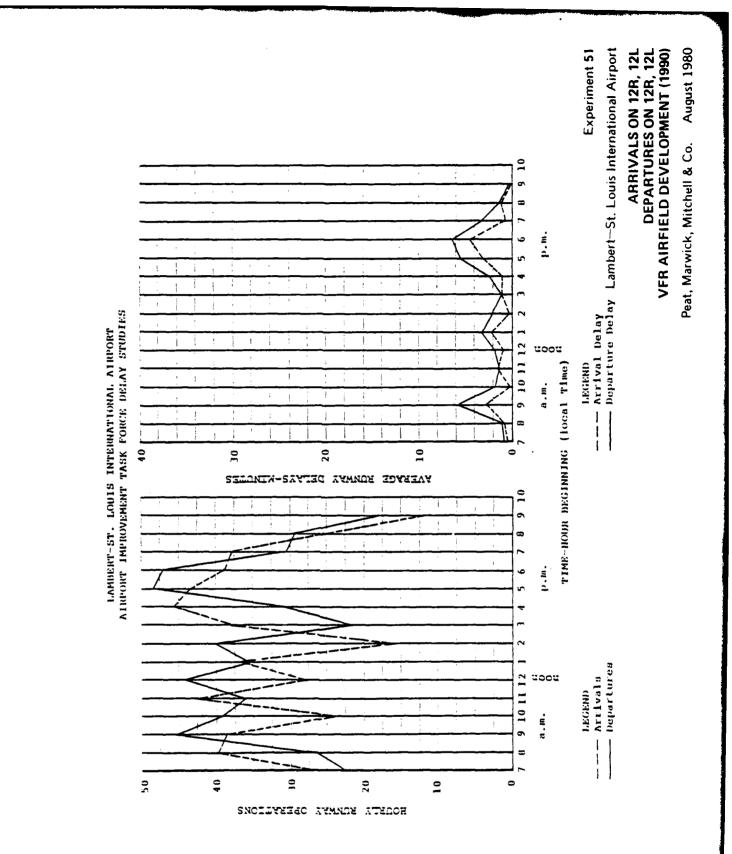
JA.

Experiment No. 51

Scenario:

This experiment is used to evaluate the effect of planned airfield developments on aircraft delays. Demand is at 1990 levels, and 1979 ATC Procedures are in effect in VFR conditions for the following runway configuration:

Arrival runways	Departure runways
12R, 12L	12R, 12L


Length and Level of Detail of Simulation Run:

From 0700 to 2200 with 1-hour summaries.

Results:

The tabulation below shows selected results for the average values and the peak-delay hour, 1800-1900 hours, over the 15-hour simulation period.

Operation type	Performance measure	<u> Units </u>	Average	Peak
Arrival	Flow rate	a/c per hr	33.7	38.9
Arrival	Air delay	minute	1.8	4.5
Departure	Flow rate	a/c per hr	33.7	47.2
Departure	Runway delay	minute	3.1	6.4

1

}

- - F

Experiment No. 51A

Scenario:

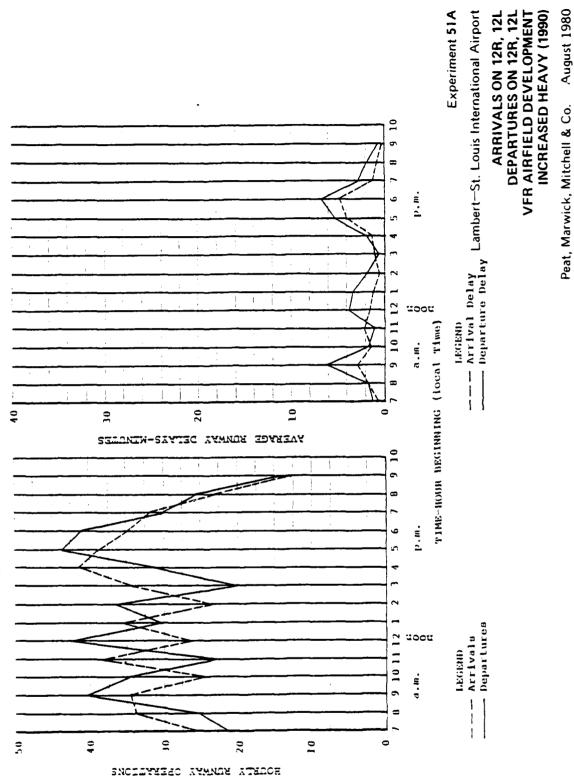
1

3

This experiment is used to evaluate the effect of an increase in the proportion of heavy jets in the aircraft mix on aircraft delays. It was assumed in this experiment that the planned airfield developments were in place. Demand is at 1990 levels, and 1979 ATC Procedures are in effect in VFR conditions for the following runway configuration:

<u>Arrival runways</u>	Departure runways
12R. 12L	12R. 12L

Length and Level of Detail of Simulation Run:


From 0700 to 2200 with 1-hour summaries.

Results:

s'A.

The tabulation below shows selected results for the average values and the peak-delay hour, 1800-1900 hours, over the 15-hour simulation period.

Operation type	Performance measure	Units	Average	Peak
Arrival	Flow rate	a/c per hr	30.4	35.7
Arrival	Air delay	minute	2.0	4.7
Departure	Flow rate	a/c per hr	30.6	41.5
Departure	Runway delay	minute	3.1	6.3

LAMBERT-ST. LOUIS INTERNATIONAL AIRPORT AIRPORT IMPROVEMENT TASK FORCE DELAY STUDIES

Experiment No. 51B

Scenario:

This experiment is used to evaluate the effect of decreasing the proportion of general aviation aircraft in the mix on aircraft delays. It was assumed in this experiment that the planned airfield developments were in place. Demand is at 1990 levels, and 1979 ATC Procedures are in effect in VFR conditions for the following runway configuration:

<u>Arrival runways</u>	Departure runways
12R, 12L	12R, 12L

Length and Level of Detail of Simulation Run:

From 0700 to 2200 with 1-hour summaries.

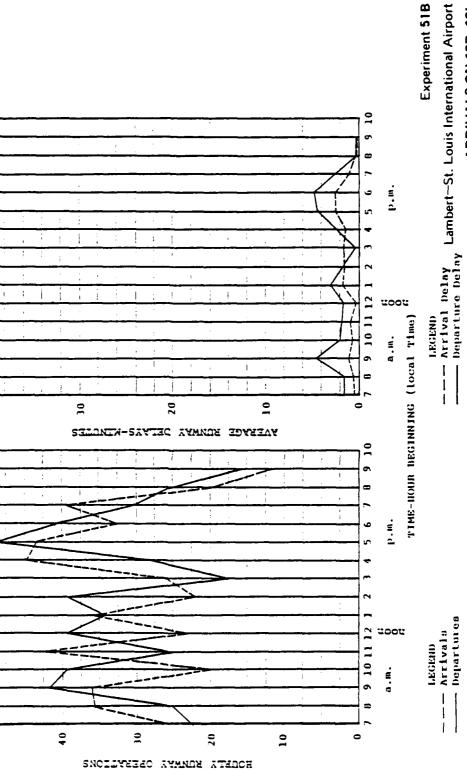
Results:

in the second

<u>د</u> م

The second second

È.


•

The tabulation below shows selected results for the average values and the peak-delay hour, 1700-1800 hours, over the 15-hour simulation period.

Operation type	Performance measure	Units	Average	Peak
Arrival	Flow rate	a/c per hr	31.2	43.0
Arrival	Air delay	minute	1.2	2.2
Departure	Flow rate	a/c per hr	31.5	47.9
Departure	Runway delay	minute	2.5	4.4

August 1980 Peat, Marwick, Mitchell & Co.

ARRIVALS ON 12R, 12L DEPARTURES ON 12R, 12L VFR AIRFIELD DEVELOPMENT **DECREASED GENERAL AVIATION (1990)**

LAMBERT-ST. LOUIS INTERNATIONAL AIRPORT AIRPORT IMPROVEMENT TASK FORCE DELAY STUDIES

40

20

2

-

*

Experiment No. 52

Scenario:

This experiment is used to evaluate the effect of the planned airfield developments on aircraft delays. Demand is at 1990 levels, and 1979 ATC Procedures are in effect in IFRl conditions for the following runway configuration:

<u>Arrival runways</u>	Departure runways
12R, 12L	12R, 12L

Length and Level of Detail of Simulation Run:

From 0700 to 2200 with 1-hour summaries.

Results:

The tabulation below shows selected results for the average values and the peak-delay hour, 2100-2200 hours, over the 15-hour simulation period.

Operation type	Performance measure	Units	Average	Peak
Arrival	Flow rate	a/c per hr	28.0	28.2
Arrival	Air delay	minute	60.6	141.9
Departure	Flow rate	a/c per hr	29.6	26.9
Departure	Runway delay	minute	0.8	0.5

August 1980 ARRIVALS ON 12R, 12L DEPARTURES ON 12R, 12L IFR1 AIRFIELD DEVELOPMENT (1990) Experiment 52 Lambert-St. Louis International Airport Peat, Marwick, Mitchell & Co. 10 i i i 5 ļ 1 i. æ p.m. و 5 - Departure De**lay** LAMBERT-ST. LOUIS INTERNATIONAL ALRPORT ALRORT IMPROVEMENT TASK FORCE DELAY STUDIES ---- Arrival Delay -9 10 11 12 roor TIME-HOUR BEGINNING (loca) Time) UNADAJI + ä.M. T į. 8 I. ł 10 40 20 0 30 AVERAGE RUNWAY DELAYS-MINUTES 9 10 ł II II i. T -9 -.ա. գ ۍ ŝ 4 -2 -Departures LEGEND Arrivals 9 10 11 12 roor d. M. ł æ l ~ Ł 2 0 40 10 **0**2 07 SNOILVHERO AVMNAN ATEACH

(

ð,

7 - 3

JT.

Experiment No. 55

Scenario:

ť

Ę.

1

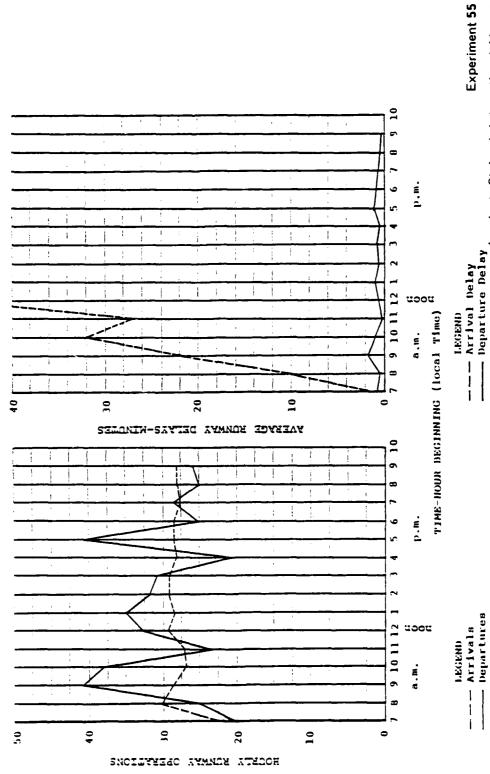
This experiment is used to evaluate the effect of the planned airfield developments on aircraft delays. Demand is at 1990 levels, and 1979 ATC Procedures are in effect in IFR1 conditions for the following runway configuration:

Arrival runways	Departure runways
30R, 30L	30R, 30L

Length and Level of Detail of Simulation Run:

From 0700 to 2200 with 1-hour summaries.

Results:


The tabulation below shows selected results for the average values and the peak-delay hour, 2100-2200 hours, over the 15-hour simulation period.

Operation type	Performance measure	Units	Average	Peak
Arrival	Flow rate	a/c per hr	28.0	27.8
Arrival	Air delay	minute	60.2	141.4
Departure	Flow rate	a/c per hr	29.6	26.4
Departure	Runway delay	minute	0.7	0.5

Peat, Marwick, Mitchell & Co. August 1980

ARRIVALS ON 30R, 30L DEPARTURES ON 30R, 30L IFR1 AIRFIELD DEVELOPMENT (1990)

Lambert-St. Louis International Airport

LAMBERT-ST. LOUIS INTERNATIONAL AIRPORT AIRPORT IMPROVEMENT TASK FORCE DELAY STUDIES

- 1

ιT.

ţ

1

3

Ĩ

THE AVE

Experiment No. 57A

Scenario:

This experiment is used to evaluate the effect of planned airfield developments on aircraft delays. Demand is at 1990 levels, and 1979 ATC Procedures are in effect in VFR conditions for the following runway configuration:

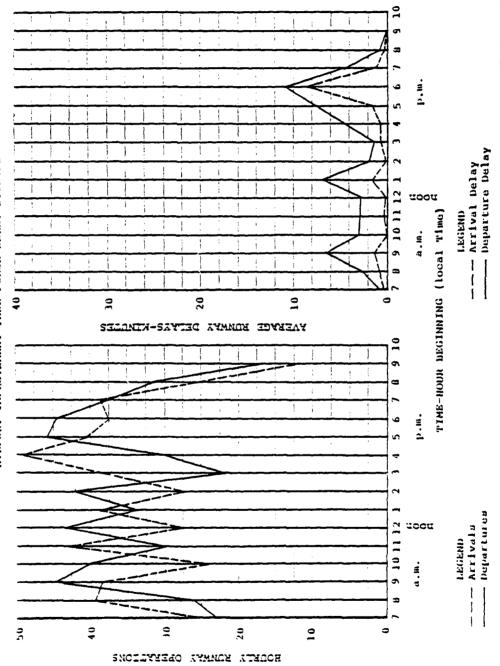
> Arrival runways Departure runways

30R, 30L, 24 30R, 30L

Length and Level of Detail of Simulation Run:

From 0700 to 2200 with 1-hour summaries.

Results:


1.1

The tabulation below shows selected results for the average values and the peak-delay hour, 1800-1900 hours, over the 15-hour simulation period.

Operation type	Performance measure	Units	Average	Peak
Arrival	Flow rate	a/c per hr	33.7	37.6
Arrival	Air delay	minute	1.5	8.2
Departure	Flow rate	a/c per hr	33.8	44.9
Departure	Runway delay	minute	4.5	11.2

Lambert-St. Louis International Airport ARRIVALS ON 30R, 30L, AND 24 DEPARTURES ON 30R, 30L VFR AIRFIELD DEVELOPMENT (1990) Peat, Marwick, Mitchell & Co. August 1980

Experiment 57A

LAMMERT-ST. LOUIS INTERNATIONAL AIRPORT AIRPORT IMPROVEMENT TASK FORCE DELAY STUDIES

(

•;

いい

¢

1.1

÷.

1

 17

į

.

Experiment No. 57

Scenario:

This experiment is used to evaluate the effect of planned airfield developments on aircraft delays. Demand is at 1990 levels, and 1979 ATC Procedures are in effect in IFR1 conditions for the following runway configuration:

Arrival runways	Departure runways
30R, 30L, 24	30R, 30L

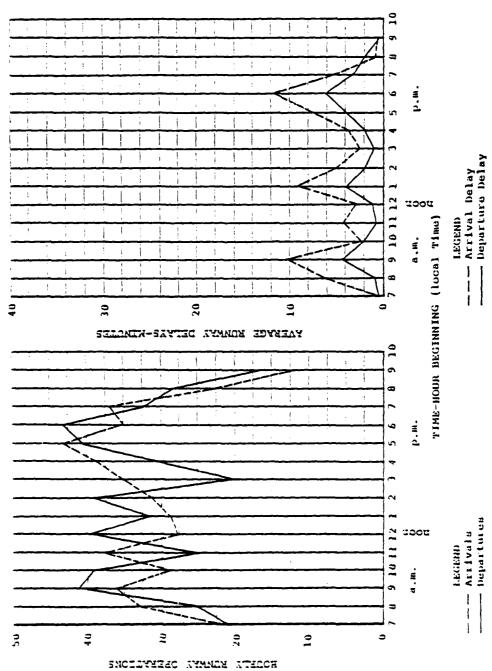
Length and Level of Detail of Simulation Run:

From 0700 to 2200 with 1-hour summaries.

Results:

The tabulation below shows selected results for the average values and the peak-delay hour, 1800-1900 hours, over the 15-hour simulation period.

Operation type	Performance measure	<u>Units</u>	Average	Peak
Arrival	Flow rate	a/c per hr	31.3	35.0
Arrival	Air delay	minute	5.3	12.1
Departure	Flow rate	a/c per hr	31.5	43.5
Departure	Runway delay	minute	2.7	6.4


C-97

Peat, Marwick, Mitchell & Co. August 1980

ARRIVALS ON 30R, 30L, AND 24 DEPARTURES ON 30R, 30L IFR 1 AIRFIELD DEVELOPMENT (1990)

Lambert-St. Louis International Airport

Experiment 57

LAMMERT-ST. LOUIS INTERNATIONAL AIRPORT AIRPORT IMPROVEMENT TASK FORCE DELAY STUDIES

2-2

J.

1

2

•

「「「「」」」」

Experiment No. 58

Scenario:

20 mar

1

٠

A STATEMENT

This experiment is used to evaluate the effect of planned airfield developments on aircraft delays. Demand is at 1990 levels, and 1979 ATC Procedures are in effect in IFR1 conditions for the following runway configuration:

Arrival runways	Departure runways
12R, 12L	12R, 12L, 6

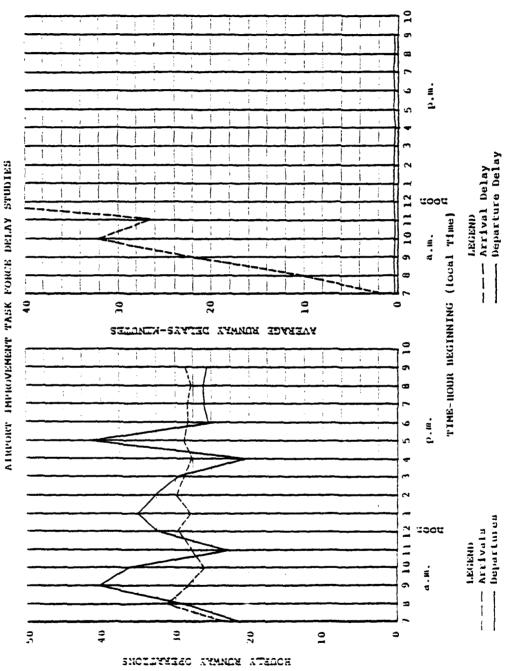
Length and Level of Detail of Simulation Run:

From 0700 to 2200 with 1-hour summaries.

Results:

The tabulation below shows selected results for the average values and the peak-delay hour, 2100-2200 hours, over the 15-hour simulation period.

Operation type	Performance measure	Units	Average	Peak
Arrival	Flow rate	a/c per hr	28.1	28.5
Arrival	Air delay	minute	59.7	140.7
Departure	Flow rate	a/c per hr	29.7	25.8
Departure	Runway delay	minute	0.3	0.3


C-99

Peat, Marwick, Mitchell & Co. August 1980

ARRIVALS ON 12R, 12L DEPARTURES ON 12R, 12L, AND 6 IFR1 AIRFIELD DEVELOPMENT (1990)

Lambert-St. Louis International Airport

Experiment 58

1

3

1

14

LAMBERT-ST. LOUIS INTERNATIONAL ADRPORT

Experiment No. 60

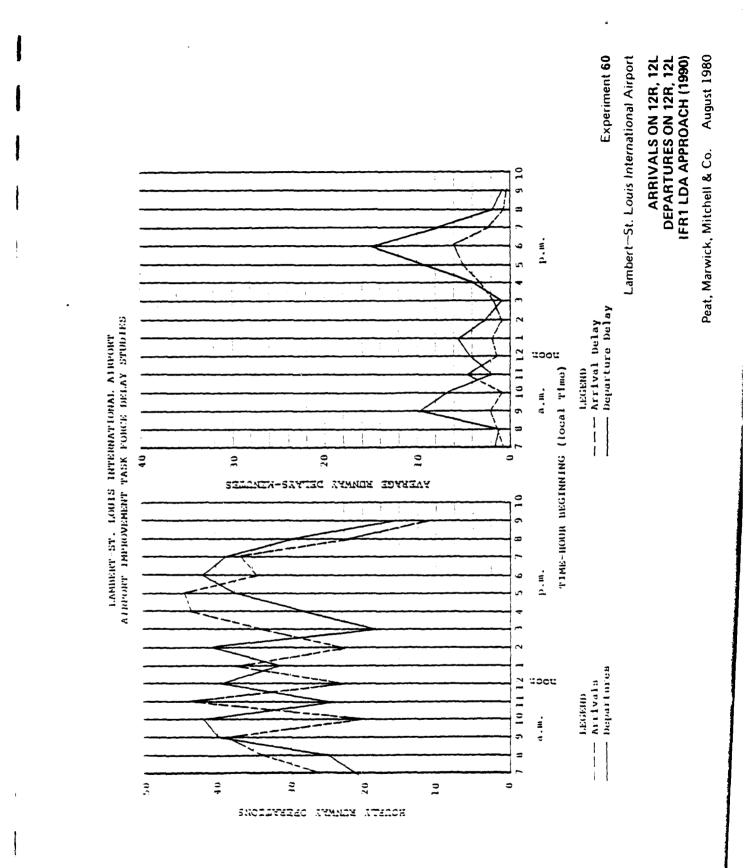
Scenario:

This experiment is used to evaluate the effect of the proposed LDA approach on aircraft delays. It was assumed in this experiment that the planned airfield developments were in place. Demand is at 1990 levels, and 1979 ATC Procedures are in effect in IFR1 conditions for the following runway configuration:

Arrival runways	Departure runways
30R, 30L	30R, 30L

Length and Level of Detail of Simulation Run:

From 0700 to 2200 with 1-hour summaries.


Results:

Ļ

The second s

The tabulation below shows selected results for the average values and the peak-delay hour, 1800-1900 hours, over the 15-hour simulation period.

Operation type	Performance measure	Units	Average	Peak
Arrival	Flow rate	a/c per hr	31.3	34.7
Arrival	Air delay	minute	2.6	5.9
Departure	Flow rate	a/c per hr	31.5	41.7
Departure	Runway delay	minute	5.6	15.0

1

たまい

: Ā

Experiment No. 61

Scenario:

This experiment is used to evaluate the effect of the proposed LDA approach on aircraft delays. It was assumed in this experiment that the planned airfield developments were in place. Demand is at 1990 levels, and 1979 ATC Procedures are in effect in IFR1 conditions for the following runway configuration:

Arrival runways	Departure runways
30R, 30L, 24	30R, 30L

Length and Level of Detail of Simulation Run:

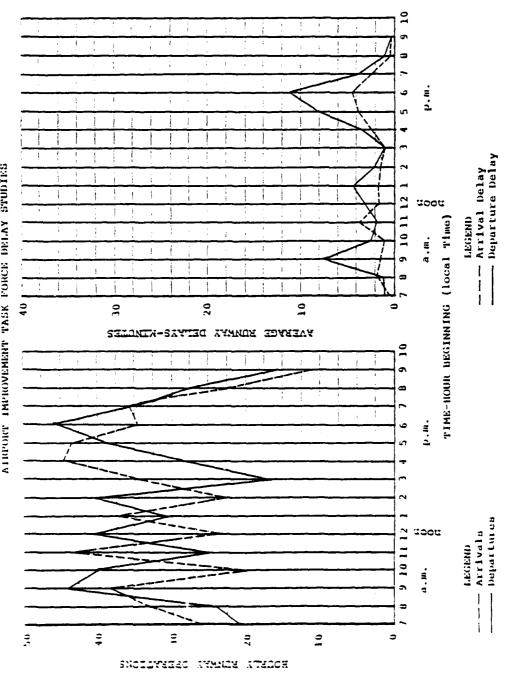
From 0700 to 2200 with 1-hour summaries.

Results:

and the second second

fic.

*


The tabulation below shows selected results for the average values and the peak-delay hour, 1800-1900 hours, over the 15-hour simulation period.

Operation type	Performance measure	Units	Average	Peak
Arrival	Flow rate	a/c per hr	31.3	34.6
Arrival	Air delay	minute	2.6	4.1
Departure	Flow rate	a/c per hr	31.6	45.8
Departure	Runway delay	minute	4.3	11.1

August 1980 Peat, Marwick, Mitchell & Co.

ARRIVALS ON 30R, 30L, AND 24 DEPARTURES ON 30R, 30L

Experiment 61

LAMMERT-ST. LOUIS INTERNATIONAL ALRFORT ALRFORT IMPROVEMENT TASK FORCE DELAY STUDIES

13

1

Ĩ

1

C

5 }

Experiment No. 62

Scenario:

This experiment is used to evaluate the effect of the proposed LDA approach on aircraft delays. It was assumed in this experiment that the planned airfield developments were in place. Demand is at 1990 levels, and 1979 ATC Procedures are in effect in IFR1 conditions for the following runway configuration:

Arrival	runways	Departur	e runways
12R,	12L	12R,	12L, 6

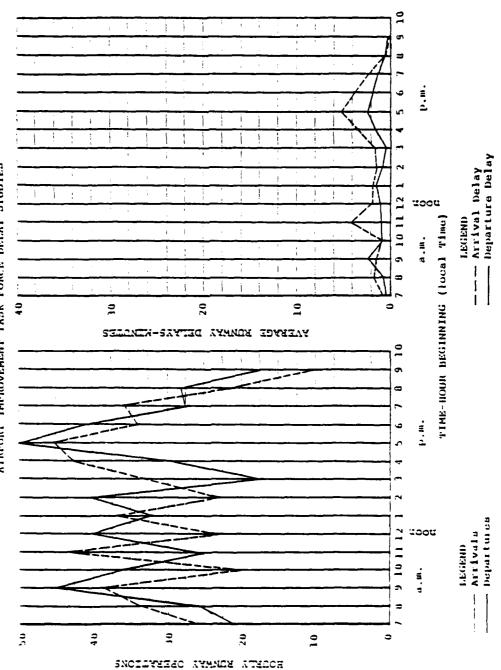
Length and Level of Detail of Simulation Run:

From 0700 to 2200 with 1-hour summaries.

Results:

The tabulation below shows selected results for the average values and the peak-delay hour, 1700-1800 hours, over the 15-hour simulation period.

Operation type	Performance measure	Units	Average	Peak
Arrival	Flow rate	a/c per hr	31.2	45.3
Arrival	Air delay	minute	2.4	5.2
Departure	Flow rate	a/c per hr	31.5	50.0
Departure	Runway delay	minute		2.5


Peat, Marwick, Mitchell & Co. August 1980

ARRIVALS ON 12R, 12L DEPARTURES ON 12R, 12L, AND 6 IFR1 LDA APPROACH (1990)

Lambert-St. Louis International Airport

Experiment 62

- ----

A

(

•

Experiment No. 63

Scenario:

This experiment is used to evaluate the effect of proposed terminal expansion on aircraft delays. Demand is at 1990 levels, and 1979 ATC Procedures are in effect in VFR conditions for the following runway configuration:

Arrival	runways	Departure	runways
12R,	12L	12R,	12L

Length and Level of Detail of Simulation Run:

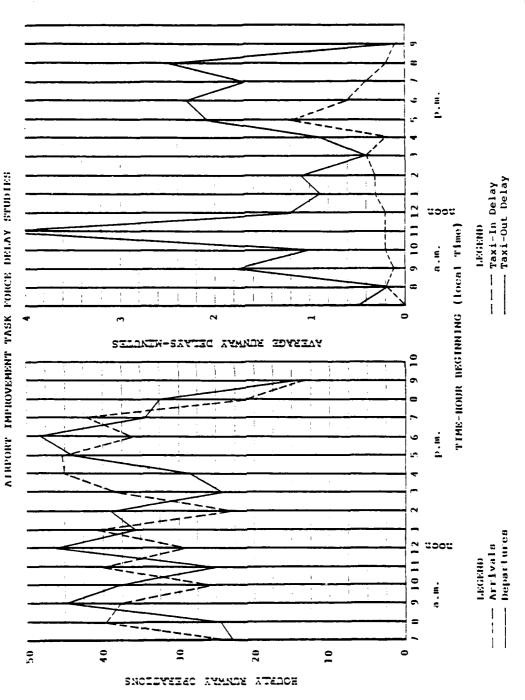
From 0700 to 2200 with 1-hour summaries.

Results:

The tabulation below shows selected results for the average values and the peak-delay hour, 1700-1800 hours, over the 15-hour simulation period.

Operation type	measure	Units	Average	Peak
Arrival	Flow rate	a/c per hr	33.6	45.6
Arrival	Taxi-in delay	minute	0.4	1.2
Departure	Flow rate	a/c per hr	33.6	44.1 2.1
Departure	Taxi-out delay	minute	1.5	

Number of aircraft delayed because of gate congestion: 2.


Average gate congestion delays incurred by these aircraft: 12.5 minutes.

Peat, Marwick, Mitchell & Co. August 1980

ARRIVALS ON 12R, 12L DEPARTURES ON 12R, 12L VFR TERMINAL EXPANSION (1990)

Lambert-St. Louis International Airport

Experiment 63

1

;

•

A STATE

LAMBERT-ST. LOUIS INTERNATIONAL ALRPORT

Experiment No. 64

Scenario:

This experiment is used to evaluate the effect of relocating the general aviation airfield on aircraft delays. Demand is at 1990 levels, and 1979 ATC Procedures are in effect in VFR conditions for the following runway configuration:

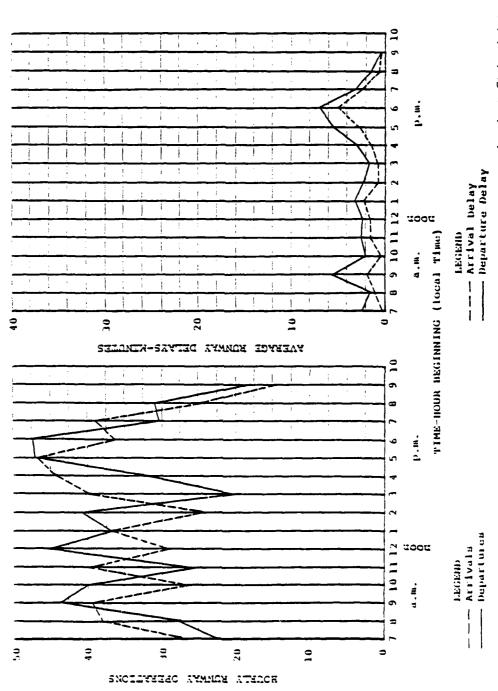
Arrival	runways	Departure runways
12R,	, 12L	12R, 12L

Length and Level of Detail of Simulation Run:

From 0700 to 2200 with 1-hour summaries.

Results:

The tabulation below shows selected results for the average values and the peak-delay hour, 1800-1900 hours, over the 15-hour simulation period.


Operation type	Performance measure	Units	Average	Peak
Arrival	Flow rate	a/c per hr	33.7	36.5
Arrival	Air delay	minute	1.6	4.9
Departure	Flow rate	a/c per hr	33.7	47.5
Departure	Runway delay	minute	3.1	6.8

Peat, Marwick, Mitchell & Co. August 1980

ARRIVALS ON 12R, 12L DEPARTURES ON 12R, 12L VFR MIDCOAST (1990)

Lambert-St. Louis International Airport

Experiment 64

LAMMERT-ST. LOUIS INTERNATIONAL AIRPORT AIRFORT IMPROVEMENT TASK FORCE DELAY STUDIES

- - E

.

1

Experiment No. 64A

Scenario:

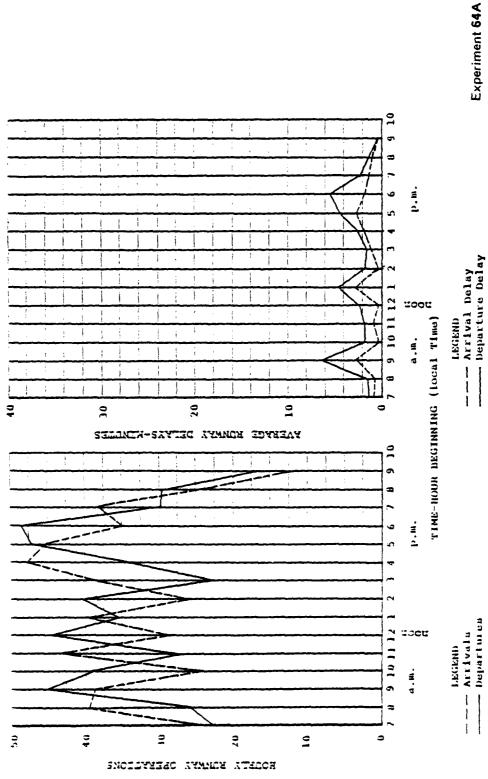
This experiment is used to evaluate the effect of relocating the general aviation airfield on aircraft delays. Demand is at 1990 levels, and 1979 ATC Procedures are in effect in VFR conditions for the following runway configuration:

Arrival runways	Departure runways
12R, 12L GA Operations on 17	12R, 12L

Length and Level of Detail of Simulation Run:

From 0700 to 2200 with 1-hour summaries.

Results:


The tabulation below shows selected results for the average values and the peak-delay hour, 0900-1000 hours, over the 15-hour simulation period.

Operation type	Performance measure	Units	Average	Peak
Arrival	Flow rate	a/c per hr	33.6	38.4
Arrival	Air delay	minute	1.4	2.6
Departure	Flow rate	a/c per hr	33.6	45.1
Departure	Runway delay	minute	2.9	6.5

August 1980 Peat, Marwick, Mitchell & Co.

GENERAL AVIATION ON 17 DEPARTURES ON 12R, 12L VFR MIDCOAST (1990) **ARRIVALS ON 12R, 12L**

Lambert-St. Louis International Airport

ATREORY IMPROVEMENT TASK FORCE DELAY STUDJES LAMBERT-ST. LOUIS INTERNATIONAL ALRPORT

278

1

دنها

(

Experiment No. 72

Scenario:

This experiment is used to evaluate the effect of planned airfield developments on aircraft delays. Demand is at 1990 levels, and Future ATC Procedures are in effect in IFRL conditions for the following runway configuration:

Arrival runways	Departure runways
12R, 12L	12R, 12L

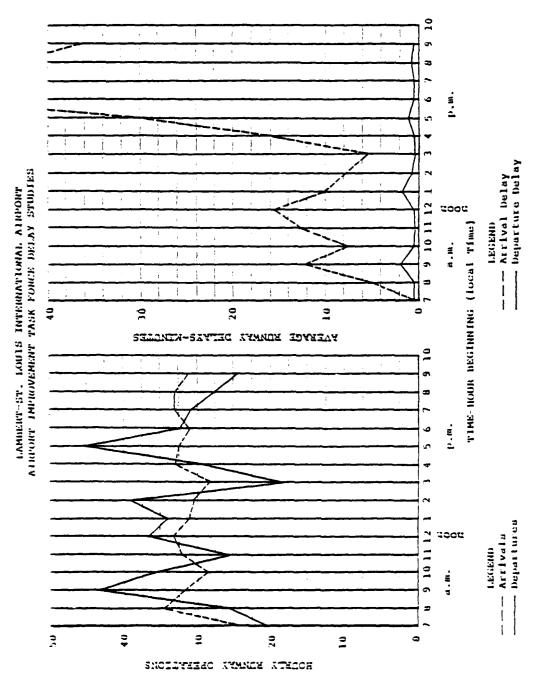
Length and Level of Detail of Simulation Run:

From 0700 to 2200 with 1-hour summaries.

Results:

The tabulation below shows selected results for the average values and the peak-delay hour, 2000-2100 hours, over the 15-hour simulation period.

Operation type	Performance measure	Units	Average	Peak
Arrival	Flow rate	a/c per hr	31.2	32.9
Arrival	Air delay	minute	21.8	57.1
Departure	Flow rate	a/c per hr	31.3	27.3
Departure	Runway delay	minute	0.7	0.5


Peat, Marwick, Mitchell & Co. August 1980

ARRIVALS ON 12R, 12L DEPARTURES ON 12R, 12L IFR FUTURE ATC, AIRFIELD DEVELOPMENT (1990)

Lambert-St. Louis International Airport

Experiment 72

N OF

1

2

140

5.

Attachment D

1

3

•

ASSUMPTIONS

ASSUMPTIONS

The assumptions and inputs used in performing the simulation experiments for the Lambert-St. Louis International Airport Improvement Task Force Delay Study were presented in Data Package No. 5. The following contains additions and revisions to those assumptions and inputs.

1. Separations on Parallel Runways (Present ATC Rules)

Arrival-Arrival Air Separation (nautical miles). The average time separation between successive arrivals as they cross the runway threshold.

VFR

		Trail Airc		raft	Class
		A	B	C	D
Lead Aircraft Class	A B C D	1.8 1.8 1.8 5.3	1.8 1.8 1.9 5.5	1.8 1.8 3.0 4.7	1.8 1.8 3.1 3.9

IFR

		Trail Aircraft Class				
		A	В	С	D	
Lead	А	3.2	3.2	4.1	4.2	
Aircraft	в	3.2	3.2	4.1	4.2	
Class	С	4.2	4.2	3.6	3.6	
	D	6.8	7.0	5.3	4.6	

Departure-Departure Air Separation (seconds). The average time separation between successive departures (on the same runway) as they start their takeoff roll.

Different Flight Tracks

VFR and IFR1 (above 800/2)

		Trail	Aircraft		Class	
		A	В	C	D	
Lead	A	46	38	45	50	
Aircraft	в	39	38	45	50	
Class	С	40	38	45	50	
	D	120	120	120	70	

D-1

IFR2 (800/2 - 300/0.75)

		Trai	Trail Aircraft		
		A	В	C	D
Lead Aircraft Class	A B C	62 51 50	65 55 55	70 61 60	72 63 62
	D	120	120	120	80

IFR3 (below 300/0.75): Same as separations for same flight track.

Same Flight Track

All weather categories

		Trai	Trail Aircraft		Class	
		A	B	<u>_</u>	D	
Lead	A	79	93	95	95	
Aircraft	В	62	70	77	77	
Class	С	60	60	74	74	
	D	120	120	120	90	

2. Separations for Two Intersecting Runways

Departure-Arrival Separation for Intersecting Runways (nautical miles). The average time for a departing aircraft to clear the intersection of runways.

Existing Airfield Layout

Aria and

Departure-arrival separation between lead aircraft on Eunway 30R and trail aircraft on Runway 24.

		Trail Aircraft Class			
		<u>A</u>	В	C	D
Lead Aircraft Class	A B C D	1.6 ^a 1.5 ^a 1.4 ^a 1.4 ^a	1.6 1.5 1.4 1.4	1.7 1.6 1.5 1.5	1.9 1.7 1.6 1.6

a. These separations are assumed to be zero in VFR weather.

Departure-arrival separation between lead aircraft on Runway 30L and trail aircraft on Runway 24.

		Trail Aircraft Class				
		A	В	C	D	
Lead Aircraft Class	A B C D	1.8 ^a 1.8 ^a 1.6 ^a 1.6	1.8 ^a 1.8 ^a 1.6 ^a 1.6 ^a	1.8 1.8 1.6 1.6	1.9 1.9 1.8 1.8	

a. These separations are assumed to be zero in VFR weather.

Airfield Development

and the second se

4

Ĩ

Departure-arrival separation between lead aircraft on Runway 30R and trail aircraft on Runway 24.

		Trail Aircraft Class				
		A	_ <u>B</u>	<u> </u>	D	
Lead Aircraft Class	A B C D	$1.8^{b}_{b}_{1.7^{b}_{b}}_{1.4^{b}_{b}}_{1.4^{b}_{b}}$	2.3 2.1 1.7 1.7	2.5 2.3 1.9 1.9	2.7 2.5 2.1 2.1	

Departure-arrival separation between lead aircraft on Runway 30L and trail aircraft on Runway 24.

		Trail Aircraft Class			
		A	B	C	D
Lead Aircraft Class	A B C D	1.7b 1.5b 1.4b 1.4	2.2 ^b 1.9 ^b 1.7 ^b 1.7 ^b	2.3 2.0 1.8 1.8	2.5 2.2 2.0 2.0

b. These separations are assumed to be zero in VFR weather.

Separations on Parallel Runways (Future ATC Rules) 3.

Arrival-Arrival Air Separation (nautical miles). The average time separation between successive arrivals as they cross the runway threshold.

IFR

		Trai	Trail Aircraft			
		A	B	<u> </u>	D	
Lead	A	3.2	3.2	3.4	3.5	
Aircraft	В	3.2	3.2	3.4	3.5	
Class	С	3.7	3.9	3.4	3.5	
	D	4.2	4.4	3.9	3.5	

Departure-Departure Air Separation (seconds).

Different Flight Tracks

VFR and IFR1

		Trai	Trail Aircraft Class					
		A	В	C	D			
Lead	A	46	38	45	50			
Aircraft	B	39	38	45	50			
Class	С	40	38	45	50			
	D	90	90	90	60			

Same Flight Track

X

and the second se Ĩ

All weather categories

		Trai	Trail Aircraft Class						
		A	В	C	D				
Lead	A	79	93	95	95				
Aircraft	в	62	70	77	77				
Class	С	60	60	74	74				
	D	90	90	90	74				

4. Arrival Runway Occupancy Times (seconds)

The average elapsed time between the time an arrival crosses the runway threshold and the time when it clears the runway. These data have been coordinated with St. Louis control tower staff.

Existing Airfield Layout

	Weighted aver	cage
Aircraft	Runway occupancy	(seconds)
Class	<u>30R</u>	<u>30L</u>
А	36	35
В	47	44
С	52	49
D	56	55

	Weighted ave:	
Aircraft	Runway occupancy	(seconds)
<u>Class</u>	<u>12L</u>	<u>12R</u>
А	34	40
В	44	43
С	56	45
D	61	50

Aircraft	Weighted Runway occup	average ancy (seconds)
Class	24	<u>17</u>
А	48	35
В	45	
С	52	
D	59	

Airfield Development

	Weighted							
Aircraft	Runway occupa	Runway occupancy (seconds)						
Class	<u>30R</u>	<u>30L</u>						
А	37	35						
B	47	43						
С	52	49						
D	59	56						

D-5

Aircraft	Weighted & Runway occupa:	
Class	<u>12L</u>	<u>12R</u>
A	34	40
В	44	43
С	56	45
D	61	50

5. Runway Assignments

I

3

C

The following tables show runway assignments assumed for all experiments, for the existing and airfield development layouts.

Table D-1

RUNWAY ASSIGNMENT--EXISTING AIRFIELD LAYOUT

Ę.

3

ŧ

E. Sa

Experiment			Arrivals				aircraft Departures			
No.	Runway	A	B	С	D	A	В	C	D	
1, 1A, 26	12L	90	70	35		90	70	35		
, ,	12R	10	30	65	100	10	30	65	100	
2, 27	12L					100	100	35		
	12R	100	100	100	100			65	100	
3, 28	12L					100	100	35		
	12R	100	100	100	100			65	100	
4, 4A, 29	30R	90	70	35		90	70	35	~-	
	30L	10	30	65	100	10	30	65	100	
5, 30	30R					100	100	35		
	30L	100	100	100	100			65	100	
6, 31	30R					100	100	35		
	30L	100	100	100	100			65	100	
7A, 32A	30R		70	35		9 0	70	35		
	30L	100	30	65	100	10	30	65	100	
	24	100								
7, 32	30R					100	100	30		
	30L 24	100	100	100	100			70	100	
_										
8	6 12L	 90	 70	20		100	20 80	80 20		
	12B 12R	10	30	80	100				100	
9, 33	6					~-	20	70		
	12L					100	80	30		
	12R	100	100	100	100	~		**	100	
10	6						20	80		
	12L 12R	100	100	 100	100	100	80	20 	100	
11	24	100	100	100	100	100	100	100	100	
12	12L		90	35		100	90	30		
	12R 17	100	10	65 	100		10	70 	100	
••										
13, 34	12L 12R		100	100	100	100	100	30 70	100	
	17	100								

Table D-2

_					cent of	aircr			
-		Arrivals				Depar			
Experiment No.	Runway	<u>A</u>	<u> </u>	<u> </u>	_ <u>D</u>	<u>A</u>	B	<u> </u>	_ <u>D</u>
35, 35A ,35B	12L	50	50	50	50	50	50	50	50
44, 51, 51A, 51B, 63	12R	50	50	50	50	50	50	50	50
36, 52, 72	12L					100	100	100	100
	12R	100	100	100	100				~-
38, 55	30R					100	100	100	100
	30L	100	100	100	100				~-
39A, 57A	30R	50	50	30	50	35	35	35	35
	30L	~~		10	50	65	65	65	65
	24	50	50	60					
39, 57	30R					100	100	80	80
	30L			100	100			20	20
	24	100	100						
40, 58	6					60	60	60	
	12L					40	40	40	100
	12R	100	100	100	100				
41, 60	30R	50	50	50	50	50	50	50	50
	30L	50	50	50	50	50	50	50	50
42, 61	30R			50	50	50	50	50	50
	30L			50	50	50	50	50	50
	24	100	100						
43, 62	6					60	60	60	
	12L	50	50	50	50	20	20	20	50
	12R	50	50	50	50	20	20	20	50
64	12L	50	50	50	50	50	50	50	50
	12R	50	50	50	50	50	50	50	50
64A	12L		80	40	40	100	80	30	30
	12R		20	60	60	~-	20	70	70
	17	100				~-			

RUNWAY ASSIGNMENT--AIRFIELD DEVELOPMENT LAYOUT

t

3

1

٩

Ηx

6. Effect of Weather Conditions on Demand

It is assumed that during IFR1 weather, 57% of general aviation Class A operations and 37% of general aviation Class B operations would not occur. During IFR2 weather, it is assumed that 86% of general aviation Class A operations, 63% of general aviation Class B operations, and 100% of the military operations would not occur.

7. Localizer Directional Aid (LDA) Operations

In LDA experiments, IFRI separations are utilized, and the arrivals on parallel runways are assumed to be independent, with the exception of wake turbulence dependency. When there is a third arrival stream on Runway 24, it is assumed that only Class A arrivals occur on this runway and will hold short of Runway 30R. Therefore, the three arrival streams are assumed to be independent.

8. Noise Abatement Scenarios

There are three scenarios studied for two runway uses in VFR: Runways 12L and 12R and Runways 30L and 30R, with the existing airfield layout. The simulation runs are performed without stretching the arrival gaps. In scenarios 2 and 3, the noise abatement procedure is not in effect during the departure peak hour (2 p.m. local time).

Scenario 1. In this scenario, the departures on both runways are assumed to make their turns as soon as the aircraft is airborne and stabilized.

Scenario 2. In this scenario, the departures on Runway 12L (or 30R) are assumed to make their turns as soon as the aircraft is airborne and stabilized. Departures on Runway 12R (or 30L) are assumed to go straight out until they reach an altitude of 1,500 feet AGL* (2,000 feet MSL**).

Scenario 3. In this scenario, the departures on both runways are assumed to follow the same flight path until they reach an altitude of 1,500 feet AGL (2,000 feet MSL).

*Above ground level. **Mean sea level. D-9

9. Terminal Expansion

On the basis of discussions with St. Louis Airport staff, it was decided that the current best estimate for the total number of gates resulting from terminal expansion is 73, which implies that there will be no unit terminal.

The future number of gates for each airline is estimated to be proportional to the projected traffic growth of that airline.

It is also assumed that no widebody aircraft can be accommodated by the gates situated between concourse 'C' and the expanded terminal facilities.

10. Runway Interarrival Gap

F 1

The arrival separations increase from the specified values to 4 minutes when the departure queue length in VFR weather exceeds 6 aircraft on Runway 12R-30L, 4 aircraft on Runway 12L-30R, and 6 aircraft on Runway 6-24. During IFR weather, arrival separations increase when the departure queue length exceeds 8 aircraft on all runways.

