ATC Report No. R-92100/9CR-61 Contract No. N00019-78-C-0599

THE EFFECT OF ENVIRONMENT ON THE MECHANICAL BEHAVIOR OF AS/3501-6 GRAPHITE/EPOXY MATERIAL PHASE II

: 🔪

17

LEVELI

T. HO

<u>1</u>

000

AD A 09

Vought Corporation Advanced Technology Center Dallas, Texas 75266

10 January 1980

Final Report for Period I September 1978 to 31 August 1979

Approved for public release; distribution unlimited

Prepared for:

Department of the Navy Naval Air Systems Command Washington, D.C. 20361

المشارع المريحية

VOUGINT CORPORATION Advanced technology center

6 ng

	READ INSTRUCTIONS BEFORE COMPLETING FORM
REPORT NUMBER 2. GOVT ACCESSION	NO. 3. RECIPIENT'S CATALOG NUMBER
AD-A0998	371
TITLE (and Subtitie)	TYPE OF REPORT & PERIOD COVERE
The Effect of Environment on the Mechanical /	Final Report.
Behavior of AS/3501-6 Graphite/Epoxy	L Sept 7978 - 31 Aug 1079
Material, Phase II	- R-92100/9CR-61 / On Ph
7-AUTHOR(*)	
T. Ho (N00019-78-C-0599
	1
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
P 0 Box 226144	121721
Dallas, Texas 75266	
11. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE
Department of the Navy	/// 10 January 1980
Washington D C 20361	RQ
14. MONITORING AGENCY NAME & ADDRESS(II dillerent from Controlling Office) 15. SECURITY CLASS. (Jf this report)
	UNCLASSIFIED
	154. DECLASSIFICATION/DOWNGRADING
Approval for public release; distribution unli	mited
Approval for public release; distribution unli 17. DISTRIBUTION STATEMENT (of the abstract watered in Block 20, 11 different	nited from Report)
Approval for public release; distribution unli 17. DISTRIBUTION STATEMENT (of the abetract untered in Block 20, 11 different 18. SUPPLEMENTARY NOTES	nited from Report)
Approval for public release; distribution unli Approval for public release; distribution unli 7. DISTRIBUTION STATEMENT (of the obstract untered in Block 20, 11 different 18. SUPPLEMENTARY NOTES 9. KEY WORDS (Continue on reverse side if necessary and identify by block number 19. KEY WORDS (Continue on reverse side if necessary and identify by block number)	nited from Report)
Approval for public release; distribution unli Approval for public release; distribution unli 17. DISTRIBUTION STATEMENT (of the abstract writered in Block 20, 11 different 18. SUPPLEMENTARY NOTES 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse eide if necessary and identify by block number 1 + 1 + 45) $1 + 2 + 45$	nited from Report)
Approval for public release; distribution unli Approval for public release; distribution unli 17. DISTRIBUTION STATEMENT (of the obstract untered in Block 20, if different 18. SUPPLEMENTARY NOTES 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse eide if necessary and identify by block num (+, -45) = (-2) Composite, Temperature, Humidity, Fatigue, Cree Viscoelasticity	nited from Report) p, Crack Propagation,
Approval for public release; distribution unli Approval for public release; distribution unli 7. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, if different 18. SUPPLEMENTARY NOTES 9. KEY WORDS (Continue on reverse elde if necessary and identify by block number (-45) = -2 Composite, Temperature, Humidity, Fatigue, Cree Viscoelasticity 10. ABSTRACT (Continue on reverse elde II necessary and identify by block number The effect of temperature and moisture on the AS/3501-6 composite was explored. This includes specimen, its fabrication procedure, displacement technique, and analysis/data correlation. The s [90] ₂₀ and [±45] ₂₀ . The fatigue load ratio was	<pre>mited from Repor() p, Crack Propagation, ev he fatigue properties of the design of a fatigue t and temperature monitoring peciment used were of layup set at 0.1 and the cyclic</pre>

ł

- Annual -

UNCLASSIFIED

LURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

temperature increases at various environments. Test data from a fatigue tension test was generated to supplement the analysis of predicting the temperature distribution in the specimen due to continuous heat generation experienced by the (45) specimen. A probabilistic fatigue failure model derived from the concept of crack propagation in viscoelastic material was used for the data analysis. The temperature effect and moisture effect was accounted for by this analysis model.

FOREWORD

This study for the Phase II program entitled "The Effect of Environment on Mechanical Behavior of AS/3501-6 Graphite/Epoxy Material" was conducted by Vought Corporation Advanced Technology Center and was sponsored by the Naval Air Systems Command under Contract Number N00019-7%-C-0599.

Mr. M. Stander was the Navy Project Manager and Dr. W. J. Renton was the Vought Program Manager. Other key personnel are Dr. T. Ho, Principal Investigator, Dr. D. H. Petersen, Technical Coordinator, and Dr. R. A. Schapery, Technical Consultant.

This study was conducted from September 1978 through August 1979.

Accession For NTIS GRA&I FFIC TAB Unannounced Justification. By Distribution/ Availab lity Coles Av(1) and/or Dist Special 1

LIST OF FIGURES

1Typical Fatigue Specimen2Fatigue Specimen Fabrication Procedure3Specimen Edge Surface Finishes Obtained Through Various Kinds of Cutting Techniques4Fresh GR/EP Surface Obtained From Wafering Cutter Method5The Porosity Defect and the Carbide Cut Surface Defect In the Specimens6The Surface Peel Defect in the Specimen7Cracks in Specimens That Were Conditioned in 200°F/95% R.H. Environment8Moisture Absorption of 90°-Specimen Under 170°F/95% R.H. Environment	E NO.
 Fatigue Specimen Fabrication Procedure Specimen Edge Surface Finishes Obtained Through Various Kinds of Cutting Techniques Fresh GR/EP Surface Obtained From Wafering Cutter Method The Porosity Defect and the Carbide Cut Surface Defect In the Specimens The Surface Peel Defect in the Specimen Cracks in Specimens That Were Conditioned in 200°F/95% R.H. Environment Moisture Absorption of 90°-Specimen Under 170°F/95% R.H. Environment 	5
 Specimen Edge Surface Finishes Obtained Through Various Kinds of Cutting Techniques Fresh GR/EP Surface Obtained From Wafering Cutter Method The Porosity Defect and the Carbide Cut Surface Defect In the Specimens The Surface Peel Defect in the Specimen Cracks in Specimens That Were Conditioned in 200°F/95% R.H. Environment Moisture Absorption of 90°-Specimen Under 170°F/95% R.H. Environment 	6
 Fresh GR/EP Surface Obtained From Wafering Cutter Method The Porosity Defect and the Carbide Cut Surface Defect In the Specimens The Surface Peel Defect in the Specimen Cracks in Specimens That Were Conditioned in 200°F/95% R.H. Environment Moisture Absorption of 90°-Specimen Under 170°F/95% R.H. Environment 	7
 The Porosity Defect and the Carbide Cut Surface Defect In the Specimens The Surface Peel Defect in the Specimen Cracks in Specimens That Were Conditioned in 200°F/95% R.H. Environment Moisture Absorption of 90°-Specimen Under 170°F/95% R.H. Environment 	9
 The Surface Peel Defect in the Specimen Cracks in Specimens That Were Conditioned in 200°F/95% R.H. Environment Moisture Absorption of 90°-Specimen Under 170°F/95% R.H. Environment 	10
 Cracks in Specimens That Were Conditioned in 200°F/95% R.H. Environment Moisture Absorption of 90°-Specimen Under 170°F/95% R.H. Environment 	11
8 Moisture Absorption of 90°-Specimen Under 170°F/95% R.H. Environment	12
	14
9 Calibration of LVDT	17
10 Temperature Sensor Mounted on Specimen in the Environ- mental Test Chamber	18
11 Creep-Recovery Test and Data Aquisition System	20
12 Long Term Creep-Recovery Test of a ± 45° Specimen Under 176°F/50% R.H. Environment	21
13 Straight Line Analysis for Power Law Equation	22
14 Three Failure Modes of 90° Specimens	26
15 Stress-Strain Curves for 90° Specimens Within Three Environments	27
16 Uitimate Strength of 90° Specimens Within Various Environments	28
17 Ultimate Strain of 90° Specimens Within Various Environments	28
18 Failure Modes of ± 45° Specimens	29
19 Stress-Strain Curves for ± 45° Specimens Within Three Environments	20

LIST OF FIGURES (Continued)

60.00

÷.,

a the state of the s

2124425

PERSONAL PROPERTY.

FIGURE		PAGE NO.
20	Ultimate Strength of \pm 45° Specimens Within Various Environments	32
21	Ultimate Strain of ± 45° Specimens Within Various Environments	32
22	Extensometer and Temperature Sensors on Fatigue Specimen	33
23	Fatigue Test Arrangement and Data Aquisition System	34
24	Fue and Related Creep of 90° Specimen Tested at 1/o`F/95% R.H. Environment	35
25	Typical Strip Chart Recording of Load and Displacements for ± 45° Specimen During Fatigue	36
26	The S-N Curve of \pm 90° Specimen at Various Environments	48
27	The S-N Curve of \pm 45° Specimen at Various Environments	49
28	Strip Chart Recording of Load and Displacement of ± 45° Specimen During Hysteresis Test at 170°F/50% R.H. Envi- ronment and 60% of Ultimate Strength	51
29	Typical Hysteresis Loops From X-Y Recorder for Fatigue Specimens Tested Under 60% of Ultimate Strength With Load Ratio at 0.1 for 0.1 Hz	53
30	Geometry of Hysteresis Loop For Composite Under Ramp Load	54
31	Sensor Arrangement for Temperature Profile Test	57
32	Temperature Rise on ± 45° Specimen Surfaces When Fati- gue Tested in an 75°F/50% R.H. Environment	60
33	Temperature Rise on \pm 45° Specimen Surfaces When Fati- gue Tested in an 132°F/50% R.H. Environment	62
34	Temperature Rise on ± 45° Specimen Surfaces When Fati- gue Tested in an 132°F/95% R.H. Environment	63
35	Temperature Rise on ± 45° Specimen Surfaces When Fati- gue Tested in an 170°F/50% R.H. Environment	64
36	Temperature Rise on ± 45° Specimen Surfaces When Fati- gue Tested in an 170°F/95% R.H. Environment.	65

LIST OF FIGURES (Continued)

FIGURE		PAGE NO.
37	Fatigue Failure From Quality 90° Specimen	67
38	Porosity That Involved the Fatigue Failure of 90° Specimen	68
39	Machine Defects That involved the Fatigue Failure of 90° Specimen	69

LIST OF TABLES

ship the best and a the ship with the second

sich

ن ، ب

Cherry Start

STREET ST

(Care Carlos)

÷t.

distant in the local line of the local line is the local line of the line of the local line of the loc

ALL AND A

Sec.

2. 15 8.

and the second second

TABLE		PAGE NO.
1	Composite Panels For the Program	4
2	The Layup Procedure and Cure Cycle For AS/3501-6	4
3	Mechanical Properties of Process Control Panel	5
4	Test Matrix For Phase II Program	16
5	Static Properties of 90° Specimens in Various Environments	2.4
6	Static Properties of ± 45° Specimens in Various Environments	25
7	Fatigue Test Results For 90° Specimen Within A 75°F/50% R.H. Environment	38
8	Fatigue Test Results For 90° Specimen Within A 132°F/50% R.H. Environment	39
9	Fatigue Test Results For 90° Specimen Within A 132°F/95% R.H. Environment	40
10	Fatigue Test Results For 90° Specimen Within A 170°F/50% R.H. Environment	41
11	Fatigue Test Results For 90° Specimen Within A 170°F/95% R.H. Environment	42
12	Fatigue Test Results For ±45° Specimen Within A 75°F/50% R.H. Environment	43
13	Fatigue Test Results For ±45° Sp acimen Within A 132°F/50% R.H. Environment	44
14	Fatigue Test Results For ±45° Specimen Within A 132°F/95 % R.H. Environment	45
15	Fatigue Test Results For ±45° Specimen Within A 170°F/50% K.H. Environment	46
16	Fatigue Test Results For ±45° Specimen Within A 170°F/95% R.H. Environment	47

LIST OF TABLES (Continued)

an and have been and the second s

Ŧ

e ved ar inter and more of the deliver desired decision of

And Surger

TABLE		PAGE NO.
17	Hysteresis Test Matrix	50
18	Environmental Effect on the Characteristics of Hysteresis Loops at 0.1 Hz Frequency	55
19	Temperature Profile Test of \pm 45° Specimen	58
20	Test/Analysis Correlation Study	73

TABLE OF CONTENTS

NALISING SINGLANS

÷1

的复数形式

i i ne

ti se s

* 6', -44

з,

٦,

	PAGE NO.
FOREWORD	i
LIST OF FIGURES	TI
LIST OF TABLES	v
1.0 INTRODUCTION	1
2.0 SPECIMEN FABRICATION AND CONDITIONING	3
2.1 SPECIMEN FABR:CATION AND QUALITY ANALYSIS 2.2 MOISTURE ABSORPTION STUDY AND SPECIMEN CONDITIONING	3 8
3.0 HECHANICAL TEST	15
 3.1 TEST MATRIX AND TEST INSTRUMENTATION 3.2 CREEP-RECOVERY TESTS 3.3 STATIC TESTS 3.4 FATIGUE TESTS 3.5 HYSTERESIS TESTS 	15 15 19 31 37
4.0 ANALYSIS OF TEST RESULTS	56
4.1 THERMAL ANALYSIS 4.2 FATIGUE ANALYSIS	56 66
5.0 DISCUSSIONS AND CONCLUSIONS	74
6.0 REFERENCES	76

PRECEDING PAGE BLANK-NOT FILMED

1.0 INTRODUCTION

Wide usage of advanced composite materials in aerospace systems is projected to become a reality over the next ten years. A V/STOL fighter aircraft is one of several Navy articles projected to be increasingly dependent on composite materials for primary and secondary structural components.

Presently, it is known that many realistic service loads and environments have a significant adverse effect on the performance of advanced composite materials. The material's response characterization procedures in severe environments and related fatigue lifetime prediction methods are presently insufficient. This complete research program will assist in resolving this deficiency in the technology base. This in turn will help to ensure that confident usage of advanced composite materials by the stress analyst and designer can be attained in the near future.

The overall objectives of this research program are:

- 0 To ascertain if the mechanical response of AS/3501-6 graphite/epoxy composite material, subject to various time, temperature and moisture effects, can be characterized using traditional viscoelastic shift factors, and to formulate a master curve of material property dependence on time, temperature and humidity.
- 0 To ascertain the feasibility of predicting fatigue failure of a composite material by accounting for the linear viscoelastic behavior of the resin in various temperature and humidity environments.
- O To determine if a specific thermal conditioning environment can be directly substituted for a specific moisture conditioning environment over a prescribed temperature vs. humidity range for AS/3501-6 graphite/epoxy material, and obtain an equivalent moisture effect on mechanical and fatigue properties. If this can be shown, a substantial cost and time savings in moisture conditioning of the test specimen can be achieved and possibly extended to other composite specimens.

During the first phase of this program, the basic static properties of AS/3501-6 graphite/epoxy composite material, subjected to various temperature and humidity environments, was characterized through linear viscoelastic theory. The first and third objectives were achieved, at least for the environments investigated. This report covers exploratory research to study the second objective, which calls for the fatigue characterization of composite material in various temperature and humidity environments. Tests of fatigue specimens with basic laminate layups of 90° and \pm 45° were successfully conducted within several severe environments. Internal damping of the \pm 45° specimens created a considerable temperature rise in the course of fatigue cycling.

An analytical study of fatigue failure prediction methodology based on the fatigue test results was begun in Phase II and will be pursued during the Phase III segment of this program, and thereby initially determine the extent to which iscoelastic behavior is a necessary factor in predicting the fatigue failure of composite materials.

2.0 SPECIMEN FABRICATION AND CONDITIONING

2.1 SPECIMEN FABRICATION AND QUALITY ANALYSIS

Hercules AS/3501-6 prepreg tape was used to prepare the specimens for this program. Four composite panels, as shown in Table 1, were fabricated by Vought's Manufacturing Research and Development Division per the fabrication procedure in Table 2 recommended by Hercules. Panels A and B of Table 1 were for 90° specimens c, d panels C and D were for $\pm 45^{\circ}$ specimens. Each panel was inspected with ultrasonic C-scan by a 5-MHz transducer (40 dB level for 90° panels and 45 dB level for $\pm 45^{\circ}$ panels). Only panel A was shown to possess a defect area. A process control panel was separately made to evaluate the quality of the panels. The mechanical properties of the specimens from the process control panel are summarized in Table 3. The flexural strength, flexural modulus and short beam shear results indicate that our panels yield acceptable properties as compared with vendor published values for AS/3501-6 composite.

A typical fatigue specimen 7.0" long by .75" wide is shown in Figure 1. A specimen fabrication procedure that is capable of minimizing the edge defects was developed as shown in Figure 2. A comparison of the composite's finished cut surfaces as obtained from using different cutting techniques is shown in Figure 3. Upon inspection of the 40X photomicrograph, it becomes apparent that a wafering diamond cutter produces a better surface finish than those produced by a carbide bandsaw, radial diamond saw, or 400 grit fine sandpaper. Most machining defects seem to have disappeared on the wafering cut surface, including the edge area. Approximately 130 90°-specimens and 130 $\pm 45°$ -specimens were subsequently fabricated according to Figure 2 and used for testing in this program.

The finished thickness of the 90° -specimen is approximately 0.10 inches (20 plies) which is considered to be thick enough to avoid normal handling damage of 90° -specimens. The thickness of the $\pm 45^{\circ}$ -specimens is around 0.04 inches (8 plies) which is designed to be thinner than that of the 90° -specimens in order to transfer sufficient load through the bonded tab area without inducing a bond tab failure during the fatigue test.

PANEL NO.	LAYUP ORIENTATION	DIMENSION	C-SCAN READING
A	[90°] ₂₀	48" x 16" x .1"	One Defect Area With Size 5" x 1"
В	[90°] ₂₀	20" x 16" x .1"	No Defect
С	[±45°] ₂₅	48" x 16" x .04"	No Defect
D	[±45°] _{2S}	20" × 16" × .04"	No Defect

TABLE 1.	COMPOSITE	PANELS	FOR	THE	PROGRAM

TABLE 2. THE LAYUP PROCEDURE AND CURE CYCLE FOR AS/3501-6

The layup procedure was: o Clean all tooling Apply a mold release agent to the tooling ο o Cover both surfaces of the layup with peel ply Cover both surfaces of the layup with TX-1040 ο Position the layup on the tool ο Apply the cork dam and 6 bleeder plies 0 Cover the layup with nylon film ο Cover the layup with two plies of fiberglass bleeder cloth C Install the layup in a vacuum bag and place in an autoclave 0 The cure cycle was: o Apply 25" Hg minimum vacuum o Apply 10 psi autoclave pressure Heat to $350 \pm 5^{\circ}F$ (5-10°F/min rate) 0 Apply 90 ± 5 psi autoclave pressure when the panel reaches 0 $275 \pm 5^{\circ}F$ (DO NOT VENT) o Maintain the laminate at 350 \pm 5°F for 120 \pm 5 minutes o Cool slowly to below 150°F (Cool no faster than 5°F per minute -Cool down should take approximately 45 minutes)

TABLE	3.	MECHANICAL	PROPERTIES	0F	PROCESS	CONTROL	PANEL.

SHORT BEAM SHEAR (PSI)	FLEXURAL STRENGTH (PSI)	FLEXURAL MODULUS (10 ⁶ PSI)
22,018	287,770	21.17
26,181	340,166	21.99
27,143	340,529	24.89
AVE. 25,114(17,500)	322,822(260 000)	22.68(20.6)

NOTE 1: Average Fiber Volume Content is 62.4% For The Panels

2: Vendor Data Are in Parentheses For a 62% Fiber Volume Per AS/3501-6 Data Sheet

FIGURE 1. TYPICAL FATIGUE SPECIMEN.

(a) Surface Finish by Wafering Diamond Cutter (40X)

(b) Surface Finish by Radial Diamond Saw (40X)

THE REAL PROPERTY OF THE PARTY OF

(c) Surface Finish by Carbide Band Saw (40X)

(d) Surface Finish by 400 Grit Sand Paper (40X)

FIGURE 3. SPECIMEN EDGE SURFACE FINISHES OBTAINED THROUGH VARIOUS KINDS OF CUTTING TECHNIQUES. Each individual specimen was examined under a microscope (16X or 25X magnification) to ascertain the presence of porosity and/or possible machining defects. The texture of the edge of a typical specimen is shown in Figure 4. Those surfaces were prepared using a wafering cutter. Most specimens were of high quality. This is a good indication that machining defects have been minimized in the preparation of the current batch of specimens and that the scatter of data would also be more confined.

Although care was taken in specimen preparation, certain defects still existed in some specimens, especially 90° -specimens. Those defects are classified as porosity, carbide cut and surface peel and are shown in Figures 5 and 6 respectively. All three types of defects represent flaws or notches that may have a bearing on the crack propagation in the fatigue specimens. The surface peel defects result from removing the peel ply from the surface of the cured panels. Surface peel defects were found in only two incidents. The average void content in the 90° -specimens was 1.3% based on the photomicrograph pictures. Porosity defects are normally found in only those specimens that have void content in excess of roughly 2.5%. Porosity defects were not found in the $\pm 45^{\circ}$ specimens. Carbide cut defects were created by accidently touching the carbide bandsaw to the edge of the specimen during the cutting of the tabs. Both the carbide cut defect and surface peel defect will be called machine defect in the future quality analysis discussion.

Carbide cut defects on 90° -specimens were removed by sanding the defect surface using 400 grid sandpaper. Porosity defects and surface peel defects were left untreated. The purpose of the above defect observations was to understand the specimen quality and to identify the parameters that might cause a relatively large fatigue data scatter.

2.2 MOISTURE ABSORPTION STUDY AND SPECIMEN CONDITIONING

In the process of conditioning the specimens at elevated temperatures and humidities, microcracks may be created in the specimen. Since this program is primarily a fatigue life study, it is important to not introduce any significant damage from conditioning. Several specimens were examined after they had been conditioned to moisture saturation at 200°F. As shown in Figure 7, cracks

FIGURE 4. FRESH GR/EP SURFACE OBTAINED FROM WAFERING CUTTER METHOD

a. $\pm 45^{\circ}$ SPECIMEN (25X)

b. 90° SPECIMEN (16X)

FIGURE 4. FRESH GR/EP SURFACE OBTAINED FROM WAFERING CUTTER METHOD

FIGURE 5. THE POROSITY DEFECT AND THE CARBIDE CUT SURFACE DEFECT IN THE SPECIMENS

4 . 1.2 . .

FIGURE 6. THE SURFACE PEEL DEFECT IN THE SPECIMEN

(a) Cracks in 90° Specimen (590X)

(b) Cracks in \pm 45° Specimen (590X)

FIGURE 7. CRACKS IN SPECIMENS THAT WERE CONDITIONED IN 200°F/95% R.H. ENVIRONMENT. were observed in both the \pm 45° and 90° specimens conditioned in the 200°F/ 95% R.H. environment. Cracks were not observed in specimens from Phase I program that were conditioned in the 200°F/71% R.H. environment or room temperature environment. Thus, specimens designated for testing at various temperatures in a 50% and 95% R.H. environments were conditioned for moisture absorption in a 170°F.

the state of a state of the state of the state of the

144

An enclosed glass chamber and a forced air oven were used to environmentally condition the specimens to the desired moisture level. A saturated aqueous solution of Sodium Bromide (NaBr) in contact with a solid phase of the salt at 170[°]F temperature was used to generate the 50% relative humidity level and that of Sodium Fluoride (NaF) was used to generate the 95% relative humidity level. The length of time required to attain 95% saturation was determined by moisture absorption tests. Two square samples with dimensions 0.75" x 0.75" x 0.1" were placed in the 170⁰F/95% R.H. environment for conditioning. The moisture absorption result is shown in Figure 8. It is apparent that 85 days of conditioning is necessary to insure that the specimens with a 0.10" thickness attain at least 95% saturation at the 170°F temperature environment. Based on results from Shen and Springer², eighty-five days of conditioning for a specimen with a 0.10" thickness will translate to fifteen days of conditioning for $+45^{\circ}$ specimens which have a 0.04" thickness. Thus the 90⁰-specimens were conditioned for at least 85 days and the +45° specimens for a minimum of 15 days in the 170° F environments (either 95% R.H. or 50% R.H.) before initiating the physical tests.

During the environmental conditioning, fatigue specimens were positioned in three-level steel racks in the glass chamber. The three-level steel racks can house up to forty-eight specimens and were designed for ease of specimen tracking and handling. Before conditioning, tab areas of all the specimens were coated with Ecco-coat VE on top of the scotch tape to prevent adhesive degradation by moisture ingress so that the bonding strength of the adhesive in the tab area could be maintained at the desired level (around 5000 psi for the bonding adhesive) during the fatigue test.

3.0 MECHANICAL TESTS

Tating and and a set of the set o

3.1 TEST MATRIX AND TEST INSTRUMENTATION

Specific tests that were conducted in this program are shown in the test matrix, Table 4. Baseline data on the fatigue load levels employed in test item C, were determined by static strength tests from ITEM A of the test matrix. Hysteresis tests (Item B) were conducted at various stress levels and frequencies within various environments to evaluate the temperature rise due to heat generation. Fatigue tests (Item C) were conducted at various environments by keeping the mean stress level and environment unchanged during the cycling. Creep-recovery tests (Item D) were conducted to verify that the long term creep-recovery results are predictable from previous obtained short-term data.

Half of the fatigue specimens had their displacement monitored continuously during testing with the environmental extensometer which Vought developed for the Phase I program. Each extensometer was conditioned in a $180^{\circ}F$ dry environment for two weeks to study the long term exposure effect on its data gathering accuracy. As shown in Figure 9, the calibration of the LVDT after the conditioning duplicates its calibration before the conditioning. Thus, extensometer readings were assumed to remain stable throughout the test program. Two sets of extensometers were used alternately. All the $\pm 45^{\circ}$ -specimens and selected 90° specimens had one resistor type temperature sensor (ETG-50B from Micro-Measurements) to monitor the continuous temperature reading of the specimen during fatigue cycling. The temperature sensor was encapsulated between two pieces of $0.5^{\circ} \times 0.5^{\circ} \times 0.004^{\circ}$ stainless steel plates, as shown in Figure 10, and is attached to one side of the specimen by using a small U-shape steel spring clamp.

3.2 CREEP-RECOVERY TESTS

Numerous creep-recovery tests were conducted in the Phase I program to study the effect of environment on the mechanical behavior of AS/3501-6 composite material. Those creep-recovery tests were all one hour in duration - 15 minutes loading and 45 minutes unloading. In order to validate the applicability of the test results from a one-hour test to the accurate prediction of long term composite material properties, creep-recovery tests with a one-day loaded and three days unloaded profile, were conducted at the $176^{\circ}F/50$ % R.H. environment which is one of the environments used in the Phase I program. The specimen used was a $+45^{\circ}$

TABLE 4. TEST MATRIX FOR PHASE II PROGRAM

Indian with

.

こうちょう そうちょう しょうしょう しょうしょう

TES"	TYPE OF TEST	TE ST E NV I RONMENT (°F/% R.H.)	REPLICAS PER Test	NO. OF 90° SPECIMENS	NO. OF ± 45° SPECIMENS	REMARKS
4	Static Test	AS FAB 75/50 132/50 132/95 170/50 170/95	2	~~~~~	~~~~	To Establish Base- line Data For Fatigue Load Level
۵	Hysteresis Test	170/95 170/95 132/95 132/50 70/50 AS FAB	3 Stress × 3 Frequency × 1	-		To Correlate Tempe- rature rise to fatigue loading
υ	Fatigue at Single Load and Single Temperature	170/95 170/50 132/95 132/50 75/50	3 Stress x 6	81 81 18 18 18	81 81 81 81 81 81 81 81 81 81	To Investigate Basic Fatigue Behavicr
۵	Creep-Recove ry	176/50	2			To Study Long Tern Creep-Recovery Be- havior

Contraction of the contraction of the

FIGURE 9. CALIBRATION OF LVDT.

FIGURE 10. TEMPERATURE SENSOR MOUNTED ON SPECIMEN IN THE ENVIRONMENTAL TEST CHAMBER.

specimen which had been cycled in creep-recovery several times in short duration (two cycles per minutes). The creep-recovery test setup is shown in Figure 11. Due to the capability of the test equipment, two creep-recovery cycles were completed. The 8-day creep-recovery test result is shown in Figure 12. The second cycle is used for data analysis. Based on the discussion in the Phase I program, (section 6.0 of Reference 1) the creep compliance, ϵ/σ , of AS/3501-6 composite material can be represented by the power law equation:

$$D = D(t, T, H) = D_0 + D_1 t^n = D_0 + D_1 \left(\frac{t}{a_T a_H}\right)^n$$

By plotting the creep data vs. various values of n, we were able to find, from the compliance D vs. t^n plots in Figure 13, that n = 0.18 gives the best straight line data fit based on creep-recovery data of the second cycle in Figure 12. That is, 0.18 is the best value for the exponent in the power law equation (1) at 176°F/50% R.H. environment. The exponent value, 0.18 was also the result from short term creep-recovery test data developed in the Phase I program and It is a value that is appropriate for the environments studied (there are small fluctuations of n value at different environments). By using equation (1) and Figure 13, one can obtain values of initial compliance D and transient compliance D₁. Together with the data from the Phase I program, the power law constants presently obtained are shown in Figure 13. If the creep-recovery test had been continued into the third or fourth cycle, the values of D and D_1 may have been closer to those found previously. But, as noted below, there is a difference in conditioning environments for the earlier and current tests, which could account for at least some of the difference in the values of D and D₁.

3.3 STATIC TESTS

Since a new procedure was used to fabricate the Phase II specimens and the specimens were conditioned in the 170°F wet environment instead of the 200°F wet environment used in Phase I, new static tests in tension were conducted. The load rate for the static tests was set at 250 lb/min and the displacement in the gage section of the specimen was monitored by using the extensometer system that was developed in Phase I. Before testing, specimens were moisture saturated to their

.

and the stand of a second barren in and the second second a second second second そのないないたいななないないないないないないないないないない、 とうさいないでいたいでくない たたいたいないないがいでく FIGURE 72. LONG TERM CREEP-RECOVERY TEST OF A ±45° SPECIMEN UNDER 176°F/50% R.H. ENVIRONMENT.

2

1999 B. S. S.

あるかないないと

and the second state and the s

FIGURE 13. STRAIGHT LINE ANALYSIS FOR POWER LAW EQUATION.

respective moisture level in the 170° F wet environment for at least eighty-five days for 90° -specimens and at least fifteen days for $\pm 45^{\circ}$ -specimens to attain at least a 95% moisture saturation level. The test results for the 90° -specimens and $\pm 45^{\circ}$ -specimens are listed in Tables 5 and 6. The static results from reference 1 are also listed for comparison. The specimens which were tested in the "AS FAB" condition were specimens that were kept and tested within the test laboratory environment within one month after fabrication.

Three distinct types of failure modes, namely edge, gage and hole, were used to describe the failure location within the 90° -specimen. They are described by the pictures in Figure 14. The strength of the 90° -specimens was improved roughly 4% through use of the new fabrication procedure. Its typical stress-strain curves are shown in Figure 15. The material response gradually becomes non-linear when it approaches the failure point. From Table 5, the secant stiffness of the 90° -specimen (secant modulus at 2000 µin/in) decreases as the temperature and relative humidity becomes more severe. Ultimate strength and ultimate strain of the material in Figures 16 and 17 reflect an effect of residual stress (inherited from 350°F curing).

Failure modes of gage type and edge type were observed on $\pm 45^{\circ}$ -specimens under static load (Figure 18). A gage type failure mode is one where the failure area is confined between two end tabs. An edge type of failure means that the tab end of the specimen is adjacent to the failure location. Edge delamination was observed to start forming around 65% of the ultimate load level for "AS FAB" specimens. The failure location and the worst delamination area do not necessarily coincide.

Typical stress-strain curves for $\pm 45^{\circ}$ specimens within three environments are shown in Figure 19. Material behavior is highly nonlinear after approximately a 7500 psi stress level is attained. The sample can sometimes be stretched to 90,000 µin/in before failure and creates a necked-down shape over the gage section of the specimen. Secant moduli at various environments are calculated at a 5000 µin/in, is train level and are also shown in Table 6. The strain level, 5000 µin/in, is an upper strain region for comfortable design application. Based on the results of Table 6, static failure of $\pm 45^{\circ}$ specimens tended to be gage failures. This phenomenon is probably due to the tab constraining the surface from peeling in the tab area and the necking of the gage section. The static results indicate that specimens made by using a wafering cutter technique did not improve properties significantly over those specimens that were made by using

TABLE 5. STATIC PROPERTIES OF 90°-SPECIMENS IN VARIOUS ENVIRONMENTS.

in providence of a ser by so

ALT LAND MANNER

- True with

CONDITIONING ENVIRONMENT STREN
TEMP. HUM (°F) (% F
•
1
170 5
170 3
170 9
170 5
170
170 9
170 9
170 9
170 5
170 5(
170 95
170 9.
TEST RESULT
1
200
200
200
200

N. S. Contraction

AND STREET

ALAN PROPERTY AND

.

24

.

TABLE 6. STATIC PROPERTIES OF ±45°-SPECTMENS IN VARIOUS ENVIRONMENTS.

States and lot of

	TEST EN	V I RONMENT	CONDI	T I ON I NG RONMENT	ULTIMATE	ULTIMATE	SECANT YOUNG'S	FA	ILURE MO	DE
SPECIMEN	TEMP. (°F)	HUMIDITY (% R.H.)	TEMP. (°F)	HUMIDITY (% R.H.)	STRENGTH (KSI)	STRAIN (µin/in)	MODULUS (PS1)	EDGE	GAGE	HOLE
45-88-3	75	AS FAB	ł	1	29.8	95400	2.80		×	
45-A6-1	75	50	170	50	27.1	62900	2.70		×	
45-A3-2	75	50	170	50	29.5	76600	2.66	×		
45-A1-1	75	95	170	95	31.9	89300	2.44		×	
45-A1-2	75	95	170	95	28.3	87300	2.44		×	
45-A3-5	132	50	170	50	28.0	88900	2.56		×	
45-A3-3	132	50	170	50	30.5	90700	2.44	×		
45-A1-3	132	<u>95</u>	170	95	28.3	72000	2.38	×		
45-A1-4	132	95	170	95	23.6	74700	2.18		×	
45-A2-4	170	20	170	50	25.1	88400	1.90		×	
45-A2-1	170	50	170	50	28.2	93600	2.10		×	
45-2-3	170	95	170	95	26.1	90700	2.08		×	
45-A2-2	170	95	170	95	25.6	82900	2.04		×	
			TEST R	ESULT FROM	PHASE I PRC	IGRAM (REFERE	ENCE 1)			
45-12	75	55	200	55	27.7	1	I		×	
45-13	75	55	200	55	27.8	1	1		×	
<u>45-16</u>	132	95	200	95	26.1	I	1		×	
1-54	132	95	200	95	24.5	1	1		×	
43-54	200	95	200	95	18.2	1	1		×	
45-15	200	95	200	95	23.0	1	1		×	
* Modulus is	Calculat	ted at 5000	µ Strai	c						

CALLS STATE TO THE R.

2.22.2

.

FIGURE 14. THREE FAILURE MODES OF 90° SPECIMENS

ないたというというできたのでいたとうないできたので、そのないであるとない

ALC: NOT

S. Alle AMA ALSA

a. Gage Fallure

enter an and the second sec

100.00

Contraction and a second second second

and a second with the second state of the second state of the second second second second second second second

b. Edge Failure

FIGURE 18. FAILURE MODES OF ±45°-SPECIMEN.

a carbide bandsaw technique. This is because the machine defects or cracks as caused by higher temperature conditioning of the specimen will effect the crack propagation mechanism most in fatigue loading mode. The effect of environment on the ultimate strength and ultimate s' ain are shown in Figures 20 and 21 respectively.

3.4 FATIGUE TESTS

States and a state of the second states and the se

1

All the fatigue specimens were tested using a pin-load type loading fixture within the Shore Western Environmental Test Machine. They had 0.25" holes drilled through the two end tabs before they were put into the controlled envi-ronments for molsture absorption.

The fatigue test frequency was set at 3 Hertz with the load ratio being .1. Two specimens were tested at the same time. Specimens tested at one hydraulic station had a temperature sensor attached to it. The specimen tested at the other hydraulic station had both a temperature sensor and an extensometer attached to it. Diagrams deficting the fatigue test set-up are shown in Figures 22 and 23. The displacement in each specimen is measured by the extensometer. The LVDT signals in the extensometer are recorded on the strip chart recorder. The temperature in the specimen is monitored by the temperature sensor (ETG-50B from Micro-Measurements) and is recorded on the strip chart through the Vishay 2120 amplifier. Maximum fatigue stress levels were 70%, 60%, and 45% of the ultimate tensile strength and the environments were 75°F/ 50% R.H., $132^{\circ}F/50\%$ R.H., $132^{\circ}F/95\%$ R.H., $170^{\circ}F/50\%$ R.H. and $170^{\circ}F/95\%$ R.H., The selected stress levels produced fatigue tests of adequate duration.

A typical displacement history for a 90° specimen during fatigue testing is shown in Figure 24 (reproduced from Reference 1). The two black lines are LVDT traces and their average is the displacement of the two inch gage section of the specimen. Typical load and displacement curves for a \pm 45° specimen are shown in Figure 25. The creep of displacement under combined mean and oscillating load is obvious for the \pm 45° specimen. It demonstrates essentially the viscoelastic shear response of the composite under axial tensile load.

いってい いってい へんともいう

ENVIRONMENTS.

and Institute

the second and second second a second a second a second with the second second and the

FIGURE 23. FATIGUE TEST ARRANGEMENT AND DATA ACQUISITION SYSTEM

- N. MARTING TOLST

1

ł

FATIGUE AND RELATED CREEP OF 90° SPECIMEN TESTED AT 176°F/95% R.H. ENVIRONMENT. FIGURE 24.

S. Contra Stream

FIGURE 25. TYPICAL STRIP CHART RECORDING OF LOAD AND DISPLACEMENTS FOR $\pm 45^\circ$ -SPECIMEN DURING FATIGUE.

A summary of the fatigue test results is tabulated in Tables 7 to 16. The failure mode definition for fatigue is identical to that for the static specimens shown in Figures 14 and 18. Residual strength tests of unfailed fatigue specimens were conducted only if unusual circumstances happened in the test laboratory (such as equipment malfunction or electric power disruption). Most fatigue failed specimens were compared for defects vs. those defects observed while they were in their as-fabricated state as discussed in Section 2.1

The defect analysis of the as-fabricated specimens, such as high porosity obtained from C-scan results or photomicrographs and machining defects observed in microscope examination, is described in Tables 7 to 16 in the specimen quality column. By excluding the data obtained from the defective specimens, specimens that failed in the hole area and specimens that failed by laboratory incidences, the conventional S-N curves based on data in Tables 7 to 16 is shown in Figures 26 and 27.

3.5 HYSTERESIS TESTS

Under a cyclic driving force, the internal damping of a viscoelastic material will cause a hysteresis loop in the stress-strain curve. This hyteresis is associated with a heat buildup in the test specimen. The +45°-specimen fatique test results indicated that a significant heat buildup had been generated in the form of a temperature rise at the various test environments. To study this thermal behavior of the composite, hysteresis tests were conducted using the Shorewestern Test Machine at various environments and stress levels as shown in the hysteresis test matrix, Table 17. Frequencies were set at 0.1Hz, 0.5 Hz and 1.0 Hz at various environments and stress levels. The effect of a one-hour fatigue test at a 60% ultimate strength level at 3 Hz was also investigated. The Hewlett-Packard 3300A function generator was used to generate the sine wave load. The instrumentation for load and displacement in hysteresis tests was the same as that for fatigue test (see Figure 23). Additionally, two X-Y plotters, one for each LVDT, were used to record the actual hysteresis loop for the load-displacement relation. A typical wave generated by the H-P function generator is of the trapezoidal shape shown in Figure 28 along with the corresponding displacement curves from the two LVDT's.

	FATIGUE	STRESS	0 H I J A J	FA	ILURE MOD	ш	RESIDUAL	SURFACE	SPEC IMEN
	MAX. STRESS (PS1)	% of F _{tu}	C - L - Z	EDGE	GAGE	HOLE	STRENGTH (PSI)	I EMPERAIURE RISE (°F)	QUALITY
2	3275	71.5	60	×			1	1	c.f(168)
~	3228	Z0.5	234		×		8	1	c.f(168)
2	3173	69.3	285		×		ľ	1	U
	3183	69.5	604		×		l	1	U
2	3156	68.9	1097	×			8	1	0
4	3183	69.5	15	×			1	1	σ
-	2721	59.4	1050	×			ł	1	U
2	2712	59.2	3850		×		I	1	U
-	2715	59.3	8110	X			8	8	U
5	2728	59.6	370		×		ſ	l	q
_	2619	57.3	1836		×		B	1	c.f(168)
4	2577	56.3	26158	×			I	6	c,f(169)
7	2573	56.2	805	×			1	E	d,f(169)
	7576	56.3	3373		×		L	1	υ
	2596	56.7	01621		×		8	8	υ
5	2290	50.	53604		×		8	8	c.f(190)
و	2290	50.	4657		×		1	I	c.f(190)
5	2290	50.	1127	X			1	1	d.f(118)
ñ	2290	50.	6238		X		1	8	d.f(118)
ñ	2290	50.	536		×		1	ł	d.f(118)
len Di ature re Lo	d Not Fall in Sensor Was o cation	l 1 Fatigue 1 The Fatigu		c: No Mac d: With M e: With H	hine Defe achine De igh Prîor	icts fects ity	f: Spec conc days	cimen that has ditioned for (X	been ()
	·								

And the second second

TABLE 8. FATIGUE TEST RESULTS FOR 90°-SPECIMEN WITHIN A 132°F/50% R.H. ENVIRONMENT.

1

;

÷

きゅうさ い

......

तर र `1.

2.31 2.31

क्स्ट्रियन

X

ale a construction of the second s

e and a second

SPECIMEN	FATIGUE	STRESS	CACLES	FA	I LURE MOD	ų	RESIDUAL	SURFACE	SPECIMEN
2	MAX. STRESS (PS1)	% of F _{tu}		EDGE	ĠAGE	HOLE	STRENGTH (PSI)	RISE (°E)	QUALITY
0-A18-2	3115	65.2	2222	×					U
0-A18-3	3142	65.8	75	×				-	
0-A18-4	3115	65.9	882		×		ł	1	
0-A18-5	3088	64.6	1011	×				1	
0-81-5	3293	68.9	5245	×			-	•	
0-A18-6	3088	64.6	040	×			-	•) U
0-A1-2	2702	56.5	13409		×			1	U
0-A1-1	2652	55.5	10921	×			I	1	U
0-A1-3	2777	58.1	9468		×			•	, U
0-A1-4	2670	55.9	4630	×			•	•	U
)-A1-5	2698	56.4	2404	×				1	0
)-A1-6	2674	55.9	10411	×			1		υ
-A2-4	2391	50.0	18790	×			1	1	υ
-A2-5	2387	49.9	9840	×			1	1	υ
-A2-6	2387	6.94	8400	×			1	1	υ
-81-1	2406	50.3	90000a	×			5088	1	υ
-81-3	2387	6.94	37170	×			1		υ
						-			
pecimen Di	id Not Fail in	n Fatigue	U	ü	No Mach	ine Defect	S		
emperature	e Sensor Was o	on The Fatigu	e	;p	With Ma	chine Defe	scts		
rai lure Lo	ocation			е:	WI CU HI	gh Porosit	Y.		

39

the the second

1 4 H H H H H H H H

SURFACE SPECIMEN	EMPERATURE QUALITY RISE QUALITY (°F)				י ט ו		• P	- U	1	<u>ب</u>	ט ו	ں ۱	a) 1	ں ۱	1	ບ 1	U 1	о -	ט י	U 1	ບ ,		
RESIDUAL	STRENGTH (PSI)	l	1	1	3	1	1	5689		1	•	1	8	8	1	t	4973	3656		1	1		ts
ш	HOLE																						nine Defec
I LURE MODI	GAGE	×														×							: No Mact
FA	EDGE		×	×	×	×	×	×	×	×	×	×	×	×	×		×	×	×	×	×		0-
U VLI E C	C 1C LE 3	12940	210	30	2620	934	35	45000 ^a	10550	1 5000	5710	13243	300	61519	 29950	64800	45000ª	45000 ^a	20670	25722	947574		•
STRESS	% of F _{tu}	76.5	78.5	77.1	76.2	75.2	78.1	65.6	65.5	68.0	69.8	69.7	67.8	65.5	 56.0	57.5	59.7	57.5	55.8	55.8	54.5		Fatigue
FATIGUE	MAX. STRESS (PSI)	2546	2614	2568	2539	2539	2601	2183	2180	2264	2324	2321	2258	2180	1 865	1914	1987	1917	1857	1857	1815	 	d Not Fail in
SPECIMEN	Q	90-A12-1	90-A12-2	50-A12-3	90-A12-4	90-A12-5	90-A12-6	90-A17-5	90-A17-6	90-A11-2	90-A11-1	90-A11-3	90-A11-4	30-A6-5	90-82-1	90-B2-3	90-85-1	90-85-2	90-A6-2	90-A6-3	90-A6-4		Specimen Di

TABLE 9. FATIGUE TEST RESULTS FOR 90°-SPECIMEN WITHIN A 132°F/95% R.H. ENVIRONMENT.

40

7 47 - 23

. . .

¥7 🛠

13. Th

SPEC I MEN	QUAL I TY	υ	υ	Û	U	U	υ	ບ	q	P	υ	υ	υ	υ	υ	υ	υ					
SURFACE TEMPERATURE	RISE (°F)	1	1	1	I	ı	t	I	I	1	ı	T	I	8	T	T	5					
RESIDUAL	STRENGIH (PSI)	1	ſ	t	1	ı	1	1	B	I	ŧ	ł	I	8	8	1	L				ects efects	sity
1.11	HOLE																				schine Def Machine D	High Poro
LURE MODI	GAGE	×	×	×	x	X	×	X						×							c: No Ma d: With	e: With
FA	EDGE								×	×	×	×	×		×	×	×					
	C	1445	2050	25	255	017	7435	195	30	17.	4535	2442	6183	14350	1735	15632	0069].	an
STRESS	% of F _{tu}	70.8	67.7	67.7	72.3	67.7	59.0	58.6	59.2	59.2	62.4	60.8	49.4	49.0	0.64	49.0	49.0				in Fatigue	on the ratig
FATIGUE	MAX. STRESS	3775	3606	3606	3853	3606	3144	3123	3157	3155	3324	3241	2635	2612	2612	2612	2612				Did Not Fail	e Sensor Was Mation
SPECIMEN	0	90-A15-2	90-A7-6	90-A9-1	90-A9-3	90-A9-4	90-83-1	90-A9-5	90-A15-4	90~A15-5	90-A8-1	90-A15-3	90-A8-2	90-A8-3	90-A8-4	90-A8-5	5 J-A8-6				a: Specimen [b: Temperatur

TABLE 10. FATIGUE TEST RESULTS FOR 90°- SPECIMEN WITHIN A 170°F/50% R.H. ENVIRONMENT.

í ;

and the second second states and the second of the second second second second second second second second second

k Za

.

Temperature Sensor Was on The Fatigue Failure Location

	SPEC IMEN	OUAL ITY		υ	υ	υ	U	υ	ļ) () 7	5		5		, u	,			, ,	5				een
INVI RONMENT.	SURFACE	TEMPERATURE	(~F)	•	1	1	B	1	1	E	1	1	1		1	1		1	1			-			nen that has b tioned for (X)
70°F/95% R.H. E	RESIDUAL	STRENGTH (PSI)			•	1	ł	8	1			1	1		1	I			8	2846	1	1			f: Speci condi
I HIN A I	ш	HOLE	>	<	×	×		×							×	×								<u> </u>	ts ects
PECIMEN W	I LURE MOD	GAGE							×	×	×		×					×	×	×	×	×	†		ine Defec chine Def
ruk yu S	FA	EDGE					×					×													: No Mach : With Ma
	22122	¢ 1¢ 1¢	400	00.7	074	051	540	1500	23677	10585	275	14451	14653		1500	1875		671120	435408	236447 ^a	345767	416178			9
	STRESS	% of F _{tu}	70.4	68 C		۲۰ 00	68.6	68.7	62.7	60.7	59.3	59.6	59.6		55.2	55.1		49.1	49.6	50.3	49.4	49.8		 	n Fatigue on The Fatigu
	FATIGUE	MAX. STRESS	2443	2376	2276	0/07	2380	2383	2174	2108	2058	2068	2068		1914	1912		1704	1721	1746	1714	1727		· · · ·	d Not Fail i Sensor Was
	SPECIMEN	0	90-A14-2	90-A11-5	90-A11-6	0 0 0 00	30-A1 5-2	90-A13-1	90-NA1-1	90-NA1-3	90-NA2-1	90-NA3-3	90-NA3-4		90-85-4	90-85-3		90-NA2-2	90-NA3-5	90-NA4-1	90-NA2-5	90-NA2-4			: Specimen Di : Temperature Failure Loc

-30

SPECIMEN	FATIGUE	STRESS	CYCI ES	FAI	LURE MOP	u	RESIDUAL	SURFACE	SPFC IMFN
0	MAX. STRESS (PSI)	% OF F _{tu}		EDGE	GAGE	HOLE	STRENGTH (PSI)	TEMPERATURE RISE (°F)	QUALITY
45-84-1	1961	69.4	396		×		8	14	υ
45-84-2	19641	69.4	1080		×		l	19	υ
45-83-4	19641	69.4	2241		×			49h	υ
45-83-5	19577	69.2	2960	×			1	34	v
45-83-2	20100	0.17	1177	 	×		1	46h	υ
45-83-3	20100	0.17	2098		×		t	26	υ
45-AA7-3	19092	67.5	697	×			I	18	υ
45-83-1	17233	60.9	8280		×		1	29	υ
45-82-4	16840	59.5	15605		×		1	73 ^b	υ
45-82-1	16768	59.3	5546		×		I	45	υ
45-82-2	16768	59.3	12277	×				42	υ
45-81-6	16371	57.8	3517		×		-	dez	υ
45-A5-2	17675	52.5	8644		×		1	40	υ
45-86-2	13979	49.4	35280		×		3	16 ^b	υ
45-86-3	13979	4.64	36326		×		1	13 ^b	υ
45-DD-1	12848	45.4	73605		×		1	2	υ
45-00-2	12848	45.4	128569		×		I	16 ^b	υ
45-EE-1	12848	45.4	74823		×		t	!	υ
45-EE-2	12848	45.4	189274		×		ĩ	22 ^b	U
45-cc-4	12848	45.4	92276		×		I	10	υ
45-cc-5	12848	45.4	168426		×		1	26b	υ
a. Specime b. Tempera Locatio	n Did Not Fail ture Sensor Wa on	l in Fatigue 35 on The Fati	igue Failure	ບ ໍ ບ	No Mac With M With H	hine Defe achine Def	cts fects i ty		

下 下 上

ENVI PONMENT 75 °E/50% R H TABLE 12. FATIGUE TEST RESULTS FOR +65°-SPECIMEN WITHIN A

1

The second

43

Swith & Calledon and

SPEC IMEN	QUAL I TY	υ	υ	υ	ק	υ	υ	υ	υ	υ	υ	υ	υ	υ	υ	υ	υ	υ	υ			
SURFACE	RISE (°F)	28	29	18	27 ^b	41	32	 25 ^b	1	33		30	37	12	12	6	7	5	27b			
RESIDUAL	SIKENGIH (PSI)	1	1	1	1	1	1	1	3	8	8	8	1	9	24900	1	1	I	I			ects efects s i ty
	НОГЕ												×									chine Defe Machine De High Poros
LURE MODI	GAGE			x	x	х		X									×		×			c. No Ma d. With I e. With I
FAI	EDGE	×	×				×		×	×	×	×		 ×	×	×		×				
CYCLES		1108	1410	1758	180	2775	1048	 4048	4457	2.248	4043	2636	3270	49475	57905a	49700	91813	155910	58735			igue Failure
STRESS	% OF F _{tu}	68.6	68.4	63.4	69.7	69.6	68.0	60.0	60.0	59.7	59.7	59.7	59.7	44.8	6.44	44.7	44.8	44.8	44.8			in Fatigue is On The Fati
FATIGUE	MAX. STRESS (PSI)	20098	20032	20032	20418	20391	19920	17566	17566	17496	964/1	967/1	17496	13114	13148	13096	13114	13114	13114			L L L L L L L L L L L L L L L L L L L
SPECIMEN	0	45-A4-1	45-A4-2	45-88-4	45-AA-4	45-AA-5	45-AA-6	45-86-4	45-86-5	45-00-3	45-00-4	45-DD-5	45-DD-6	45-cc-2	45-cc-3	45-cc-1	45-88-6	45-88-4	45-88-5			a. Specimer b. Temperat Locatio

TE S

TABLE 13. FATIGUE TEST RESULTS FOR ±45°-SPECIMEN WITHIN A 132°F/50% R.H. ENVIRONMENT.

herne akkom må ger *

÷

ar New York William ・スキン学会

「「「「「「「「「「」」」」

		·····					******		 .		_				 						 			
SPEC IMEN	QUALITY	U	U	d	υ	υ	ა	υ	υ	υ	υ	υ	υ	υ	υ	סי	υ	υ	υ	υ	υ	υ		
SURFACE	TEMPERATURE RISE (°F)	17 ^b	4	7	20	19 ^b	23	13	13	ດ	13	12	1	13	16	2	6	16	180	5	m	6		
RESIDUAL	STRENGTH (PSI)	1 -	1	1	•		8		1	1	l	8	1	1	ł	t	•	8		1	ł	8	ts	ects tv
iut	HOLE																					×	ine Defec	ichine Def ab Porosi
ILURE MOD	GAGE	X		x		×	×	×	×		×	×			×	×	×	×	×	×	×		No Mach	With Ma With Hi
FA	EDGE		x		x					×			×	x									ບັ	ہ م
CYCLES		812	225	60	700	2109	1121	558	1253	:161	3939	6100	4333	11893	31374	360	44261	19718	18666	10627	45645	162666		igue Failure
STRESS	% OF F _{tu}	71.8	6.17	71.2	71.7	73.5	70.0	71.6	60.2	59.9	60.1	61.4	59.2	60.6	49.8	51.8	6*6†	49.8	3.64	49.8	45.8	46.0	l in Fatigue	as on The Fat
FATIGUE	MAX. STRESS (PSI)	18658	18683	18509	18633	11161	18203	18608	 15639	15577	15618	15966	15391	15766	12941	13479	12923	12958	12941	12941	11903	1 1950	r Did Not Fai	ture Sensor W
SPECIMEN	01	45-A2-5	45-A3-4	45-A4-3	45-A5-1	45-A5-3	45-A6-2	45-AA6-2	45-A6-3	45-A7-2	45-A7-1	45-A7-3	45-A8-1	45-A8-2	45-A8-3	45-A8-4	45-82-3	45-82-5	45-85-1	45-85-2	45-66-2	45-66-3	a. Specime	b. Tempera

TABLE 14. FATIGUE TEST RESULTS FOR ±45°-SPECIMEN WITHIN A 132°F/95% R.H. ENVIRONMENT.

ſ

いたいであるのである

: : :

Contraction of the second

· · · · · · · · · · ·

C. Street

1

45

AST THEY

ENV I RONMENT.
Р. Н.
170°F/50%
A
WI TH IN
±45°-SPECIMEN
FOR
RESULTS
TEST
FATIGUE
15.
TABLE

ter star whether the second

								 						T			·7				 	_	
SPEC IMEN	QUALITY	υ	υ	υ	v	υ	υ	υ	υ	υ	υ	υ	υ	U	υ	q	υ	υ	υ	υ			
SURFACE	RISE (°F)	;		35	27	33	26	26	21	28	25	20	20	23 ^b	10 ^b	6	8b	13	5	16			
RESIDUAL	SIKENUIA (PSI)	1	1	1	ł	1	1	ı	1	1	1	1	1	1	1	1	ſ	I	t	g			tts fects ity
	HOLE								×				×										nine Defec achine Def igh Porosi
ILURE MODI	GAGE	×	×		×	×	×	×						×	×		×		×	×			No Mach With Ma With Hi
SE .	EDGE			×						×	×	×				×		×					טיטט
CACLES		952	533	1673	180	979	1251	7323	6164	1756	7300	414	5564	2274	126875	158469	233967	959929	16943	750740			igue Failure
STRESS	% OF F _{tu}	69.69	68.0	68.0	69.5	70.0	4.69	59.6	59.6	63.3	59.6	59.6	59.6	59.9	42.3	42.3	42.3	42.3	42.3	6.14			in Fatigue is on The Fati
FATIGUE	MAX. STRESS (PSI)	18584	18149	18149	18559	18683	18534	15903	1 5903	16913	1 5903	15903	1 5903	1 5990	11288	11288	11303	11288	11288	11176			Did Not Fail ure Sensor Wa on
SPECIMEN	0	45-86-6	45-87-5	45-87-6	45-FF-2	45-AA7-2	45-AA7-1	45-EE-3	45-EE-4	45-AA-3	45-EE-5	45-cc-6	45-FF-1	45-87-4	45-88-3	45-88-2	45-DD-1	45-AA-1	45-AA-2	45-AA8-1			a. Specimen b. Temperati Locatio

46

• •

and the state of the

ALTER ALE ALE ALE ALE

TABLE 16. FATIGUE TEST RESULTS FOR ±45°-SPECIMEN WITHIN A 170°F/95% R.H. ENVIRONMENT.

-

a star a star and a star and a star a sta

r			1				· · · · ·	· · · · ·	1	· ····	·	· · · · · ·	1		 · · · · ·			<u> </u>	<u> </u>	·····		 1	
SPEC IMEN	QUALITY	υ	C	υ	υ	υ	υ		q	р	υ	q	υ	υ	υ	υ		υ	υ	υ	υ		
SURFACE	TEMPERATURE RISE (°F)	10	8	8	6	9	3		3	2	و	5 ^b	9	6	8			5	7	2	6		
RESIDUAL	STRENGTH (PSI)	1	ĩ	£	8	1	-		1		1	1		l	1	1		1	1	1	1	ts	ects ty
щ	HOLE			×	×									×	×							hine Defec	achine Defigh Porosi
ILURE MOD	GAGE		×				×		x		×	×	×			×		×				No Mac	With M With H
FA	EDGE	×				x				×									×	×	×	· Ŭ	Ŭ Ŭ
CYCI FS		374	194	200	160	366	360		537	1300	i422	332	1080	1095	14879	2145		37029	130497	137777	25942		igue Failure
STRESS	% OF F _{tu}	72.4	71.4	73.1	71.3	71.3	71.4		58.2	58.3	58.2	58.2	61.1	61.0	49.4	49.3		46.9	45.8	45.8	46.0	in Fatigue	is on The Fati
FATIGUE	MAX. STRESS (PSI)	18758	18484	18932	18459	18459	18484		15070	15090	15 070	1 5070	15824	15803	12795	12778		12143	1 1868	11853	1915	Did Not Fail	ure Sensor Wa n
SPECIMEN	0	45-B8-2	45-81-1	45-66-1	45-FF-6	45-HH-3	45-HH-2		45-81-2	45-81-4	45-81-3	45-81-5	45-FF-4	45-FF-5	45-85-3	45-85-5		45-66-4	1-HH-54	45-HH-4	45-AA1-1	a. Specimen	b. Temperat Locatîo

AND DATE

A set of the production of the

FIGURE 26. THE S-N CURVE OF 90°-SPECIMENS AT VARIOUS ENVIRONMENTS.

and the many and a share a direction of the

MAXIMUM FATIGUE STRESS, 0(KSI)

LOAD LEVEL FREQUENCY (HZ)	20% F _{tu}	45% F _{tu}	60% F _{tu}
0.1	x	x	x
0.5	x	x	x
1.0	X	x	x
(After One 1.0 Hour Fatigue)			x

TABLE 17. HYSTERESIS TEST MATRIX.

NOTE: a. The environments for the above hysteresis matrix are AS-FAB; 75°F/50% R.H., 132°F/50% R.H., 132°F/95% R.H. 170° F/50% RH, 170° F/95% RH.

b. The ultimate tensile strength (F_{tu}) of the cyclic load level is based on the following table with units in psi:

SPECIMENS	T 75/DRY	75/50	132/50	132/95	170/50	170/95
<u>+</u> 45°	29,800	28,300	29,300	26,000	26,700	25,900
90°	6,970	4,580	4,780	3,330	5,330	3,470

STRIP CHART RECORDING OF LOAD AND DISPLACEMENT OF ±45°-SPECIMEN DURING HYSTERESIS TEST AT 170°F/50% R.H. ENVIRONMENT AND 60% OF ULTIMATE STRENGTH. FIGURE 28.

Based on the results in Figure 28, a gradual distortion on the flat section of the trapezoidal wave at 0.5 Hz frequency which became more severe at 1.0 Hz is probably due to the inertia effect of the hydraulic loading system. Hence, subsequent data analysis was confined to 0.1 Hz frequency results. Typical hysteresis curves at 0.1 Hz, recorded by the X-Y plotters, are shown in Figure 29. The creep in displacement under mean cyclic load from cycle to cycle is apparent at the $170^{\circ}F/95\%$ R.H. environment for a \pm 45° specimen. For data analysis purposes, those hysteresis curves can be idealized to the shape shown in Figure 30 together with the dimensions that characterize the hysteresis. Table 18 gives a list of dimensions of hysteresis loops at various environments and stress levels. The dynamic modulus is defined in the last cyclic loading. Both 90° and \pm 45° specimens became stiffer after being fatigue loaded for one hour at 60% Ftu and 3 Hz frequency.

1.0

. . .

Typical Hysteresis Loops From X-Y Recorder for Fatigue Specimens Tested Under 60% of Ultimate Strength with Load Ratio at 0.1 FIGURE 29. For .10 Hz.

FIGURE 30. Geometry Of Hysteresis Loop for Composite Under Ramp Load

TABLE 18. ENVIRONMENTAL EFFECT ON THE CHARACTERISTICS OF HYSTERESIS LOOPS AT 0.1 Hz FREQUENCY.

いたない

:

:

and an and a start of the start

ł

1

as the second second

4

•

Name in the second second

.

منعد

martin a sub-

. . .

.

TEST ENVIRONMENT	CYCLIC STRESS LEVEL	а	р	∆۷	ΔH	$E = \frac{\Delta V}{10^6} PSI$
(OF/% RH)	KSI	(NI/N)	(и IN/IN)	(PSI)	(μ ^I N∕ IN)	
90 ⁰ - 132/95	.901	0	0	810.	623.	1.32
	1.843	34.0	34.0	1,659.	1,395.	1.20
	2.404	40.7	40.7	2,164.	1,795.	1.25
	2.404(after fatigue)	40.7	40.7	2,164.	1,747.	1.25
<u>+</u> 45 [°] - AS-FAB	9.27	85.	85.	8,334.	2,984.	2.83
	18.25	171.	373.	16,420.	6,951.	2.39
	28.20	543.	1,560.	25,376.	10,850.	2.37
	28.20(after fatigue)	289.	882.	25,376.	10,308.	2.49
<u>+</u> 45° - 75/50	6.35 15.20 19.77 19.77(after fatigue)	69. 171. 340.	69. 611. 780.	5,722. 13,683. 17,787. 17,787.	2,305. 6,443. 8,985. 8,478.	2.52 2.15 2.00 2.13
<u>+</u> 45 ⁰ - 132/50	5.80	102.	102.	5,224.	2,136.	2.48
	15.75	238.	678.	14,180.	7,121.	2.02
	20.33	882.	2,171.	18,310.	10,952.	1.69
	20. 38 (after fatigue)	611.	1,696.	18,883.	10,647.	1.80
<u>+</u> 45° - 132/95	6.92	136.	136.	5,722.	2,442.	2.38
	14.10	289.	645.	12,688.	6,272.	2.05
	18.19	645.	1,814.	17,016.	10,138.	1.70
	18.19(after fatigue)	576.	1,611.	17,016.	9,698.	1.78
+ 4 50 - 170/50	5.81 14.37 16.46 (after fatigue)	136. 475. 1,085. 	136. 1,425. 3,052.	5,231. 12,928. 14,820. 	2,374. 7,799. 11,325.	2.23 1.68 1.31
	6.07 14.04 19.29 (after fatigue)	204. 645. 1,798.	204. 1,425. 4,171. 	5,464. 12,639. 17,362.	2,543. 7, 9 69. 12,241.	2.18 1.61 1.43

4.0 ANALYSIS OF TEST RESULTS

4.1 THERMAL ANALYSIS

Based on the temperature results in Tables 7 through 16, a significant temperature rise in the $\pm 45^{\circ}$ -specimen was recorded during fatigue testing at various environments. The 90° specimens experienced at most a 2°F temperature increase. This temperature rise is important in data analysis for visoelastic material where the temperature shift factor is effected. To explore this phenomenon, temperature profile tests for $\pm 45^{\circ}$ -specimens were conducted by attaching four temperature sensors to the specimen in the arrangements shown in Figure 31 with three configurations. The temperature profile test results are shown in Table 19. Unless the sensor was close to the failure location of the specimen, temperature variations on the surface of the specimens may be due to free edge effects and the inhomogeneity in the specimen and between specimens. The temperature field on the surface can be considered uniform during fatigue cycling for reasons to be **discussed** below.

Definition of the exact temperature variation across the thickness of a specimen is difficult. Therefore, the heat conduction equation for a cycle-average temperature field was used (e.g. Schapery³):

$$\frac{\partial^2 T}{\partial x^2} = \frac{c}{K} \frac{\partial T}{\partial t} - \frac{\sigma_0^2 \omega D}{2K}$$
(2)

where T is the temperature at location x ($^{\circ}F$)

c is the specific heat $(In-Lb/In^{3}-{}^{O}F)$

K is the transverse thermal conductivity (In-Lb/In-Sec-^OF)

 σ_{o} is the amplitude of the applied cyclic stress (psi)

 ω is the cyclic frequency (radian/sec); stress is assumed minusoidal

- D^{ii} is the imaginary part of the Jynamic compliance $D^{\#} = D^{i} + i D^{ii}$
- t is the time

By assuming steady state thermal conduction, euqation (2) can be solved without the time dependent term. Thus, the maximum temperature difference in the specimen with thickness 2h is between the center of the specimen and its surface or $\frac{2}{\alpha} \frac{2}{2} \frac{2}{\alpha} \frac{2}{2} \frac{1}{\alpha}$

$$\theta_{\text{max}} = T_{\text{c}} - T_{\text{s}} = \frac{\theta_{\text{o}}^{\text{own}} B}{4K}$$
(3)

and the a share a share and a share a share a share a share a share a share a Charles States States and the second s

March March

FIGURE 31. SENSOR ARRANGEMENT FOR TEMPERATURE PROFILE TEST.

and the set of the second

ad server - Will share and the many strike

TABLE 19. TEMPERATURE PROFILE TEST OF ±45° SPECIMEN

こうちょうちょう ちょうちょう ちょうちょう たちょうちちちょうちょうちょうちょう ちょうちょう ちょうちょう しょうちょう

;

:

ł

:

TEMPERATURE	V V D E C I M E V	TEST	MAXIMUM	TE	MPERAT	URE RI SENSO	SE IN RS (°F)	SENSORS THAT WERE CLOSE
ARRANGEMENT	01	(°F /% RH)	(psi)		2	m	4	TO FAILURE LOCATION
CONFIGURATION A OF FIGURE 31	446-2 447-2 448-1	132/95 170/50 170/50	18608 18683 11176	10 32 17	33 33 16	6 29 22	7 27 20	3 2
CONFIGURATION B OF FIGURE 31	B7-4	170/50	1 5990	19	17	23	22	3,4
CONFIGURATION C OF FIGURE 31	AA7-3 AA7-1 AA1-1	75/50 170/50 170/95	19092 18534 11915	18 26 6	18 26 5	16 31 6	13 25 6	1 00 1

×

where D^{II} is related to the energy dissipation \overline{W} (in-lb/in³) by

$$D^{11} = \frac{\overline{W}}{\pi \sigma_0^2}$$
(4)

By using Figure 29a, the energy that is converted to heat per cycle is calculated as 12.361 in-lb/in³. When values of parameters

K = 0.1684 In-1b/In-Sec-°F
c = 2240 In-1b/1b°F

$$a_T = a_H = 1$$
 (for 75°F/50% R.H. environment)
 $\sigma_0 = 7278$ Psi
ω = 0.1 x 2π Rad/Sec

are substituted into equations (4) and (3), the maximum temperature difference in the \pm 45° specimen is approximately 0.001°F. To justify the steady state assumption in the above arguments, we find that the time required to attain 95% of the steady state condition, according to Schneider⁵ and Equation (2), is

$$t = \frac{12h^2c}{\pi^2\kappa}$$
(5)

and is 6.47 seconds for the \pm 45° specimen. The short duration to reach a steady state condition and the small difference in temperature between center and surface of the specimen indicates that the temperature field through the thickness of the specimen can be assumed essentially uniform throughout its fatigue life.

The specimen's surface temperature was monitored continuously by temperature sensors and the results for \pm 45° specimens at various environments and approximate stress levels are shown in Figures 32 through 36. Steady state temperature was reached in only a few cases. Temperature data scatter from specimen to specimen at each environment is typical. Several factors contributed to the scatte'.

a. The temperature sensor location during testing was not always in the area where the specimen failed. Usually a 3°F or more temperature jump was observed seconds before failing at the failure location.

FIGURE 32. TEMPERATURE RISE ON $\pm45^\circ\text{-}SPECIMEN$ SURFACES WHEN FAT GUE TESTED IN AN 75°F/50% R.H. ENVIRONMENT.

こうちょう いっかい いいいち うしろう いいちかいち ちんち しんちゅう いちょういちん

ころが、 ちんごうちょうないとうない ちゅうちょうちょう きんちょう たんちょうしょう あんない ちょうちょう ちょうちょう しょうちょう ちょうちょう しょうちょう しょうちょう

.

Construction and a state was been able to be and the same

こちろきをもちになるない、なんなななないできたちなんないをきまたなな、強ななない

FIGURE 33. TEMPERATURE RISE ON $\pm 45^{\circ}$ -SPECIMEN SURFACES WHEN FATIGUE TESTED IN AN 132°F/50% R.H. ENVIRONMENT.

「読いいいいいないというとうしょう い

į.

こうこうに、うちまないい、したうなになって、このないないないないなななると

and here have

Service Service

大いないないないないないないない

- b. Edge effects and the cross sectional area difference between specimens made the applied fatigue stress field different.
- c. The probabilistic nature of microcrack distribution between specimens creates various fatigue failure processes at various locations within the specimens.

4.2 FATIGUE ANALYSIS

いきっとうち しきくちゃう たちらんしていたい いした きいたい

The initiation of the failure process was not observable as the test assembly was enclosed in the metaï excased environmental test chamber. The fatigue failure surface of 90° specimens usually yields a clean cut edge appearance such as those shown in Figure 14. The correlation between failure surface and specimen quaiity can be readily established. Typical failure edges of quality 90° specimens are shown in Figure 37. Porosity and machine defects have an effect on the specimen's low fatigue life as seen by comparing Figures 38 and 39 with test results in 90° specimen fatigue (Tables 7-11). Especially subpanels A9 and A18 were in the neighborhood of the C-scan void area of the original big A-panel of Table 1. Also, by comparing the fatigue tables of 90° specimens, specimens from panel A show reduced fatigue life. Specimens made from subpanels NA suffered a lot of carbide cut defects and rendered only minimum fatigue life. These are indications that the fatigue behavior of 90° specimens is highly sensitive to its fabricated quality.

The surface appearance of $\pm 45^{\circ}$ specimens that failed in fatigue, shown in Figure 18, were similar to those of the static failure specimens. The static failure process for $\pm 45^{\circ}$ specimens seem to be initiated from the edge area with the peeling of surface layers along a 45° direction. Final failure ran along the worst peeled area. The fatigue failure process is believed to start by microcrack growth throughout the specimen including the edge area. Final rupture occurred after the crack grew to an unstable size. The similarity of failure appearance between static and fatigue $\pm 45^{\circ}$ specimens is to be noted. The $\pm 45^{\circ}$ panels of Table 1 did not show either the C-scan voids or visual type porosity (under 25X microscope inspection). The fatigue life of $\pm 45^{\circ}$ specimens showed significantly less scatter than that of the 90° specimens.

a. FAILURE OF SPECIMEN 90-A16-5 TESTED AT 75°F/50% R.H. (16X)

AND ADDRESS OF ADDRESS OF ADDRESS OF

1990 - 1997 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 -1999 - 1999 - 1999 - 1999 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 -1999 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 -

b. FAILURE OF SPECIMEN 90-A15-2 TESTED AT 170°F/50% R.H.

FIGURE 37. FATIGUE FAILURE FROM QUALITY 90°-SPECIMEN.

 POROSITY THAT INITIATED GAGE FAILURE OF SPECIMEN 90-A9-1 TESTED AT 170°F/50% R.H. (16X)

b. POROSITY THAT INITIATED EDGE FAILURE OF SPECIMEN 90-All-4 TESTED AT 132°F/95% R.H. (16X)

FIGURE 38. POROSITY THAT INVOLVED THE FATIGUE FAILURE OF 90°- SPECIMEN.

a. DELAMINATION THAT INITIATED EDGE FAILURE OF SPECIMEN 90-A15-4 TESTED AT 170°F/ 50% R.H. (16X).

- b. DELAMINATION THAT INITIATED EDGE FAILURE OF SPECIMEN 90-A12-6 TESTED AT 132°F/ 95% R.H. (16X).
- FIGURE 39. MACHINE DEFECTS THAT INVOLVED THE FATIGUE FAILURE OF 90°-SPECIMEN.

C. EDGE GROVES THAT REDUCED THE FATIGUE LIFE OF SPECIMEN 90-NA5-3 TESTED AT 75°F/50% R.H. (16X)

d. EDGE GROVES THAT REDUCED THE FATIGUE LIFE OF SPECIMEN 90-NA7-3 TESTED AT 75°F/50% R.H.

FIGURE 39 (Continued). MACHINE DEFECTS THAT INVOLVED THE FAILURE OF 90°- SPECIMEN.

Since the effect of temperature and humidity on the mechanical properties of Gr/Ep can not be ignored¹, a fatigue theory, proposed by Schapery⁶, that incorporates the viscoelastic effect will be adopted here to study the fatigue crack growth response of the composite. In its simplest form, this fatigue theory involves the application of the power law for opening-mode crack growth,

$$\frac{da}{dN} = c(\Delta K_{i})^{q}, \qquad (6)$$

to a so-called dominant flaw or crack. Here, N is the number of cycles, a is the crack size and q is a positive constant. The coefficient c can be expected to depend on frequency, temperature, humidity, R-value and probably other parameters, such as mean strain. The amplitude of stress intensity factor, ΔK_1 , is related to the amplitude of stress level $\Delta \sigma$ by

$$\Delta K_{\mu} = k \sqrt{a} \Delta \sigma \tag{7}$$

where k is a crack geometry parameter.

We now consider a set of specimens which are identical except for their distribution of initial dominant flaws. Allowing for variation of the c and k values from specimen to specimen, the dominant crack in the ith specimen will have

$$c_{i} = c_{oi} C$$

$$k_{i} = k_{oi} K$$
(8)

where subscripts "o" and "i" indicate quantities for the initial value and for the ith specimen respectively. If the specimen fails at $N = N_{fi}$ as defined by $a \rightarrow \infty$, we predict, from equations (6), (7), and (8),

$$\int_{0}^{N} f_{i} CK^{q} (\Delta \sigma)^{q} dN = e^{F_{i}}$$
(9)

By definition,

$$e^{F_{i}} \equiv (ps_{oi}^{p} c_{oi}^{k} k_{oi}^{q})^{-1}, p \equiv \frac{q}{2} - 1$$
(10)

It is seen that the effect of separate statistical distributions of a₀, c₀, and k₀ on failure is through a single statistical distribution parameter, F which is

$$\mathbf{F} = \log\left[\int_{0}^{N} \mathbf{C}^{\dagger} \mathbf{K}^{\hat{\mathbf{q}}} \left(\Delta \sigma\right)^{\mathbf{q}} \cdot \frac{\partial \mathbf{N}}{\partial \mathbf{T}_{H}}\right], \quad \mathbf{\hat{C}} = \mathbf{\hat{C}}^{\dagger} / \mathbf{a}_{T\hat{H}}$$
(11))

(12)

The temperature and humidity effects are introduced through the time-shift factor a_{TH}. If the values cland k are assumed constant during the constant amplitude fatigue tests, equation (11) becomes

log.N + q. Ĵõg Δσ ≡ ξ + log ä_{ru}

At each temperature and humidity; the quantity, $F + \log a_{TH}$ is a statistical quantity. Equation (12) is a good starting point for fatigue data analysis. By looking for the proper q value that will minimize the square error of quantities $F_{\rm H}$ + log $a_{\rm TH}$ from the statistical mean value F + log $a_{\rm TH}$, equation (12) can be analyzed by linear regression techniques. Thus, the fatigue data in Tables 7 through 16 were analyzed by equation (12) and results are listed in Table 20. The sequence of environmental sevenity is defined by the corresponding log $a_{\rm TH}$ value. The value of the quantities log N and log $a_{\rm TH}$ are in the order of 1 ~ 5 and that of q log $\Delta \sigma$ and F are in the order of 20 ~ 50. It is obvious that the balance of equation (7) is dominated by the exponent q and log $\Delta \sigma$. The exponent q, the unknown quantity, can be determined from the slope of the log N vs. log $\Delta \sigma$ curve.

TABLE 20. TEST/ANALYSIS CORRELATION STUDY

CDEL INENC	ENVIRONNENT (°F/2 R.H.)	75/50	132/50	170/50	132/95	170/95
	HLe DOT	0	-1.1	-2.7	-3.2	-3.8
	SAMPLE SIZE	71	51	01	- 4 1	51
°06	EXPONENC 9	13.20	7.87	3.67	11.70	17.37
	F + LOG aTH	48.81	30.79	16.42	43.16	64•19
• • • • •	SAMPLE SIZE	20	91	91	61	
÷45°	EXPONENT q	9.83	9.32	11.38	62.6	11.43
	F + LOG aTH	35.41	43.41	د ال الالالية الم	44.66	51.12

5.0 DISCUSSIONS AND CONCLUSIONS

The basic mechanical properties of AS/3501-6 Gr/Ep composite under combined temperature and humidity environments has been characterized in Reference 1 based on the creep-recovery tests and viscoelastic theory. Under the combined effects of temperature and humidity, short term results from Reference 1 can be used to predict the long term behavior of AS/3501-6. Their validity to long term behavior prediction has been verified by conducting a creep-recovery test with four days per cycle.

The main objective of this Phase II program was to investigate fatigue response of the basic laminates $(90^{\circ})_{20}$ and $(\pm 45^{\circ})_{25}$ and relate it to realistic laminate prediction through viscoelastic analysis. In order to minimize the variables that might effect the fatigue result, the septimen quality and its condition before testing were of vital importance to the final data analysis. Microcracks might be created during the moisture soaking process. But by conditioning the specimens in a 170°F environment as described in Section 2.1, rather than at a higher temperature, no apparent flaws were produced. Defects that might be created by improper machining of the specimen were eliminated by using a new specimen fabrication procedure. Porosities in the specimen were also studied under the microscope and the results were related to the fatigue test data in the fatigue tables.

Fatigue data has been generated for laminates $(90^{\circ})_{20}$ and $(\pm 45^{\circ})_{2S}$ at various environments and stress levels. In the process of fatigue testing, a significant temperature rise in the $\pm 45^{\circ}$ specimens was observed. Temperature profile tests were subsequently conducted to investigate the transient temperature state within the specimen and the homogeneity of the temperature field. The test data together with the analysis method indicate that the temperature distribution in the fatigue specimens can be considered uniform through the specimen. The continuous rate change of temperature rise on most of the specimen indicates that thermal equilibrium between specimen and environment was not reached during fatigue testing.

Hysteresis tests were conducted at various environments and stress levels to study the energy dissipation associated with each fatigue load-unload cycle. Hysteresis data for the 90° specimen agrees with the temperature prediction of negligible increase. The amount of energy loss in \pm 45° specimens increased as the stress level and/or temperature level became severe. The dynamic modulus increased in magnitude after one hour of fatigue testing.

5

From preliminary analysis of the fatigue data, it seems that heating may have a strong bearing on composite's failure mechanism. This fact seems to fit in explaining the temperature rise phenomenon of 90° and \pm 45° specimens. For 90° specimens, there was always a dominant flaw among a distribution of cracks and volds. This dominant flaw suffered continuous crack tip heat build-up due to the fatigue cycling. This heat build-up was confined locally to the low thermal conductivity of polymer. On the other hand, the \pm 45° specimen was under cyclic in-plane and interlaminar shearing load during the uniaxial fatigue testing. The cross-ply layup of \pm 45° specimen tends to constrain any single dominant flaw to grow to unstable state. As a result of this constraining action, less dominant flaws gradually grew to become large flaws one by one. Final fatigue failure happened from the coalescence of those large flaws. As the population of large flaws grew, more local heating area were exposed to the surface area. This explains the temperature rise phenomenon detected by temperature sensor on \pm 45° specimen.

Also, from preliminary fatigue analysis, the parameter q of equation (6) is probably the dominant factor in introducing the effect of temperature and humidity on fatigue behavior of Gr/Ep composite, together with the time shift factor a_{TH} . The proper fatigue analysis technique hinges on a clear understanding of q. The parameter c of equation (6) will also be investirated for its possible role in our crack propagation model.

6.0 REFERENCES

- Renton, W. J. and Ho, T. L., "The Effect of Environment on the Mechanical Behavior of AS/3501-6 Graphite/Epoxy Material", Final PHase I Report, NASC Contract No. N00019-77-C-0369, June 1978.
- 2. Shen, Chi-hung and Springer, G. S., "Hoisture Absorption and Desorption of Composite Materials", J. Composite Materials, Vol. 10, 1976.
- 3. Schapery, R. A., "Effect of Cyclic Loading on the Temperature in Viscoelastic Media with Variable Properties", AIAA, Vol. 2, May 1964.
- 4. Dally, J. W. and Brontman, L. J., "Frequency Effect on the Fatigue of Glass Reinforced Plastics", J. Composite Materials, Vol. 1, 1967.
- 5. Schneider, P. J., "Conduction Heat Transfer", Addison-Wesley, 1955.
- Schapery, R. A., "Deformation and Failure Analysis of Viscoelastic Composite Materials", Proceedings of ASME National Meeting, Special Session on Inelastic Behavior of Composite Materials, AMD Vol. 13, December 1975.

DISTRIBUTION LIST

.

.

1

Ì

ę,

	No. of Coples
Naval Air Systems Command Attn: Code AlR-5163D3 Washington, DC 20361	8
Office of Naval Research (Code 472) Washington, DC 20350	1
Office of Naval Research, Boston 495 Summer St. Boston, MA 02210 ATTN: Dr. L. H. Peebles	١
Naval Research Laboratory Codes 6306 and 6120 Washington, DC 20350	2
Naval Surface Weapons Center Code R-31 White Oak, Silver Spring, MD 20910	1
Naval Air Propulsion Test Center ATTN: J. Glatz Trenton, NJ 08628	1
Commander U. S. Naval Weapons Center China Lake, CA 92555	١
Navil Ship R60 Center ATTN: Mr. M. Krenzke, Code 727 Washington, DC	1
Naval Sea Systems Command Navy Dept. Codes 05R and 05D23 Washington, DC 20360	2
Commander Naval Air Development Center ATTN: Aero Materials Lab Aero Structures Div Radomes Section Warminster, PA 18974	3

DISTRIBUTION LIST (Cont'd) No. of Copies 4 Air Force Materials Laboratory ATTN: Codes LC (1 copy) LN (" " LTF (" ") LAE (" ") Wright-Patterson AFB, OH 45433 Air Force Flight Dynamics Laboratory 1 ATTN: Code FDTC Wright-Patterson AFB, OH 45433 U. S. Applied Technology Laboratory 1 U. S. Army Development Laboratories (AVRADCOM) ATTN: DAVDL-ATL-ATS Fort Eustis, VA 23604 Director 1 Plastics Technical Evaluation Center Picatinny Arsenal Dover, NJ 07801 Department of the Army 1 Army Materials & Mechanics Research Center Watertown, MA 02172 NASA 1 Langley Research Center Hampton, VA 1 **NASA Headquarters** Code RV-2 (Mr. N. Mayer) 600 Independence Ave., SW Washington, DC 20546 AVCO Corporation 1 Applied Technology Division Lowell, MA 01851 1 Bell Aerospace Co. ATTN: Mr. F. M. Anthony Buffalo, NY 14240 The Boeing Company 1 Aerospace Division P. 0. Box 3707 Seattle, WA 98124 Boeing-Vertol Co. 1 P. 0. Box 16858 ATTN: Dept. 1951 19142 Philadelphia, PA

and an and a second and the second and the second second second second second second second second second secon

DISTRIBUTION LIST (Cont'd)

and the set of the second of the state of the second of th

and a state of the second state of the state

Brunswick Corporation Technical Products Division 325 Brunswick Lane Marion, VA 24354

Celanese Research Company Box 1000 ATTN: Mr. R. J. Leal Summit, NJ 07901

Defense Ceramic Information Center Battelle Memorial Institute 505 King Ave Columbus, OH 43201

E. I. DuPont de Nemours & Co. Textile Fibers Dept. Wilmington, DE 19898

Ewald Associates, Inc. 105 Skyline Drive Morristown, NJ 07960

Fiber Materials, Inc. ATTN: Mr. J. Herrick Biddeford Industrial Park Biddeford, ME

General Dynamics Convair Aerospace Division ATTN: Tech Library P. O. Box 748 Fort Worth, TX 76101

General Dynamics Convair Division ATTN: Mr. W. Scheck; Dept. 572-10 P. O. Box 1128 San Diego, CA 92138

General Electric R&D Center ATTN: Mr. W. Hillig Box 8 Schnectady, NY 12301

General Electric Company Valley Forge Space Center Philadelphia, PA 13101 No. of Copies

1

1

1

1

1

1

1

1

I

DISTRIBUTION LIST (Cont'd)

and the second second

	No. of Copies
B. F. Goodrich Aerospace & Defense Products 500 South Main St Akron, OH 44318	1
Graftex Division EXXON Industries 2917 Highwoods Blvd. Raleigh, NC 27604	1
Great Lakes Research Corporation P. O. Box 1031 Elizabethton, TN	1
Grumman Aerospace Corp ATTN: Hr. G. Lubin Bethpage, Ll, NY 11714	
Hercules Incorporated ATTN: Mr. E. G. Crossland Magua, UT 84044	1
HITCO 1600 W. 135th St Gardena, VA 90406	1
Illinois Institute of Technology Research Center ATTN: Dr. K. Hofer 10 West 35th St. Chicago, IL 60616	1
Lockheed Calitornia Co. ATTN: Mr J. H. Wooley Box 551 Burbank, CA 91520	I
Lockheed-Georgia Co. ATTN: Mr. L. E. Meade Marietta, GA 30063	ł
Lockheed Missiles & Space Co. ATIN: Mr. H. H. Armstrong, Dept. 62-60 Sunnyvale, CA 94088	ł
Material Sciences Corporation 1777 Walton Road Blue Bell, PA 19422	2

DISTRIBUTION LIST (Cont'd)

McDonnell Douglas Corp. McDonnell Aircraft Co. ATTN: Mr. J. Juergens P. O. Box 516 St. Louis, MO 63166

McDonnell-Douglas Corp. Douglas Aircraft Co. ATTN: Mr. R. J. Palmer 3855 Lakewood Blvd. Long Beach, CA 90801

Monsanto Research Corp. 1515 Nicholas Road Dayton, OH 45407

North American Aviation Columbus Division 4300 E. Fifth Ave Columbos, OH 43216

Northrop Corp. 3901 W. Broadway ATTN: Mr. G. Grimes, Mail Code 3852-82 Hawthorne, CA 90250

Philco-Ford Corp. Aeronutronic Division Ford Road Newport Beach, CA 92663

Rockwell International Corp. ATTN: Mr. C. R. Rousseau 12214 Lakewood Blvd Downey, CA 90241

Stanford Research Institute ATTN: Mr. M. Maximovich 333 Ravenswood Ave, Bldg 1028 Marlo Park, CA 94025

TRW, Inc. Systems Group One Space Park, Bldg. Ol; Rm 2171 Redondo Beach, CA 90278

TRW, Inc. 23555 Euclid Ave Cleveland, OH 44117 No. of Copies

1

1

1

1

1

ł.

1

1

1

- and -

وي المعلوم المعلم المحالية المعالم المعالية المعالية المعالية المحالية المحالية المحالية المحالية المحالية الم المحالية الم

DISTRIBUTION LIST (Cont'd)	No. of Copies
Union Carbide Corporation Chemicals & Plastics One River Road Bound Brook, NJ	1
Union Carbide Corporation Carbon Products Division P. O. Box 6116 Cleveland, OH 44101	1
United Aircraft Corporation United Aircraft Research Laboratories E. Hartford, CT 06108	1
United Aircraft Corporation Pratt & Whitney Aircraft Division East Hartford, CT 06108	1
United Aircraft Corporation Hamilton-Standard Division ATTN: Mr. T. Zajac Windsor Locks, CT	1
United Aircraft Corporation Sikorsky Aircraft Division ATTN: Mr. J. Ray Stratford, CT 06602	1
University of California Lawrence Livermore Laboratory ATTN: Mr. T. T. Chiao P. O. Box 808 Livermore, CA 94550	1
University of Maryland ATTN: Dr. W. J. Bailey College Park, MD 20742	1
University of Wyoming Mechanical Engineering Dept. ATTN: Dr. D. F. Adams Laramee, WY 82071	1
Westinghouse R&D Center ATTN: Mr. Z. Sanjana 1310 Beulah Road Churchill Boro Pittsburgh, PA 15235	1

arn.

TO A DE LA CALLE

. . .