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Executive Summary

This report presents data compilations
to aid in planning and site selection
for the Marine Seismic System (MSS).
Data are compiled for two geographic
areas: the Northwest Pacific (40-56°N,
145-170°E) and the Kuril-Kamchatka

earthquake region. Included for the
Northwest Pacific are cultural, meteor-
ological, oceanographic, geological,

geophysical and seismological data to
define the environment in which the
potential MSS will operate. Huril-
Kamchat%a earthquake zone data consist
of .cismic velocity structure of the
crust and upper mantle and earthquake
hypocenters.

Northwest Pacific cultural data
(political geography and ship traffic)
favor MSS sites in areas of the east
central Northwest Pacifice The 200
mile Iimit from Soviet territory forms
a northwestern boundary. Merchant
shipping and fishing density are lowest
toward the northeast.

Severest meteorological and ocean-
ographic conditions exist during winter
and are concentrated in the northern
areas. Current speeds are probably
greatest in the eastward-flowing
Kuroshio current to the south of the
Northwest Pacific and in the
southwestward-flowing Kamchatka current
to the northwest. On the basis of
meteorology and oceanography, potential
MSS sites should be located as far
south as possible without being in the
Kuroshio current.

The Northwest Pacific seafloor is a
province of abyssal hills bordered on
the west by the Kuril-Kamchatka Trench
and on the east by the Emperor Sea-
mounts. Unconsolidated sediments in
the area are generaily post-Oligocene
and vary from 0-600 m in thickness.
These sediments are primarily
siliceous clays interspersed with ash

layers and characterized by low
rigidity. Beneath the unconsolidated
sediments, a smooth acoustic basement
is probably composed of cherty deposits
in southern Northwest Pacific areas,
and of secondary volcanics in eastern
areas. Acoustic basement may be true
oceanic basement where seamounts
outcrop or in areas where the basement
is rough.

The Kuril-Kamchatka earthquake region
has complex geology. Seismic velocity
structure, heat flow, and gravity all
vary considerably. Earthquakes gener-
ally decrease in activity and deepen to
the northwest; however, this trend is
marked by local exceptions. For
example, earthquakes are absent under
the Kuril Basin; deepest earthquakes
(greater than 300 km) are shallower in
the southern region near Sakhalin than
in the north under the Sea of Okhotsk;
and shallow earthquakes are densest
east of the Southern Kurils.

Two M.,5 site areas are proposed
primarily for their advantageous local
geology. Site area 1 is located east
of the Southern Kurils, This location
is favorable for most environmental
parameters except ship traffic, fishing
and major current speeds, all of which
create ambient acoustic noise. Site .
area 2 is located centrally opposite
the Kuril-Kamchatka earthquake region.
Major environmental pr 'lems at this
site consist of harsher weather
conditions than at site area 1.

buth site areas fall into a seismic
"shadow zone" as evaluated by Hart et
al. (1980). This concurrence could
require major revision in site selec—
tion. Three additional sites (3-5)
were designated outside the "shadow
zone', but the authors feel that these
sites are inferior to sites 1 and 2.
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Environmental Report of the Northwest Pacific
for the Marine Seismic System (MSS)

I. Introduction

This report is a compilation of envi-
ronmental data that are critical to the
selection of an installation site for
the Marine Seismic System (MSS) in the
Northwest Pacific. The area described
in this report is the Northwest Pacific
Ocean between 40°N and 56°N. It is
bounded by the 170°E Meridian on the
east and the Kuril-Kamchatka earthquake
region on the west. Environmental
parameters are grouped according to
cultural, oceanographic/meteorologic
and geolcgical/geophysical topics.

Data have been assembled from published
literature and data banks of major
oceanographic institutions. The mapped
data are presented at a uni form page-
size scale to allow maximum comparison
of data parameters. Extensive bibliog-
raphies and large-scale geological/
geophysical maps are also included.

Il. Cultural Features

A. Political Geography

The area of study is bounded on the
north and the west by the U.S.S.R., on
the southwest by Japan, on the north-
east by the U.S. and on the south and
east by the Pacific Ocean (Fig. 1).

The Kuril Islands, Kamchatka, and the
Komandorskie Islands are territories of
the U.S.S.R., Hokkaido is Japanese, and
the Aleutians are American. The
nearest accessible ports are on
Hokkaido, Japan, and Adak, Alaska.
Nationally claimed waters extend 200 mm
from national territory. Soviet waters
line the western and northern borders
of the Northwest Pacific (Figs. 1, 2
and large-scale maps).

B. Ship Traffic

Ship traffic near potential MSS sites
exposes instruments and cables in the

water to the threats of damage and
vandalism, and to ambient noise gen-
erated by ship engines. Merchant ships
are generally confined to great circle
routes between major ports (Fig. 1);
however, the Northwest Pacific routes
vary with seasons and currents.
Merchant ships are potential noise
sources, while fishing ships threaten
potential MSS sites with damage and
vandalism in addition to noise. Unpub-
lished data from models of Planning
Systems, Inc., were compiled to show the
instantaneous number of ships distrib-
uted by one degree squares. Figures 3,
4, and 7 present distributions of
merchant ships, fishing ships, and
composite traffic, respectively.

1. Merchant Ships

Distribution of merchant ships is shown
in Figure 3. The densest merchant
shipping occurs in the southern areas
adjacent to major great circle shipping
routes (Fig. 1) and in the area
traversed by the Kuroshio Current
(Figs. 5 and 6). Merchant shipping
shifts to the north in summer and to
the south én winter in response to the
same seasonal shifts of the Kuroshio.
The lowest concentrations of merchant
ships occur in winter when the instan-
taneous number exceeds 0.20 only in
areas south of 43°N. Except in the
southwest, spring through fall routes
are generally contained north of 40°N.
The dense area from the southwest
corner to 45°N, 170°E reflects the
overlapping spring, summer and fall
route. The dense area between 40°N,
157°E and 43°N, 170°E is largely
attributable to the overlap of winter
routes with spring and fall routes.

2. Fishing Ships

Fishing ship density (Fig. 4) is
greatest in areas where the Kuroshio




and Kamchatka ..irents converge (Figs.
5 and 6). The greatest density is
generally northwest of the merchant
shipping routes (Fig. 3). Summer fish-
ing is more intense north of the
western central regions, while winter
fishing is densest in the southwest.

3. Composite Traffic

The composite traffic map (Fig. 7)
combines the merchant ship and fishing
ship instantaneous numbers, but the
fishing value is doubled because of the
greater problem that fishing ships
present. Density of the composite
traffic is greatest in the southwest
and lowest in the north. Summer
traffic is greatest from the southwest
to about 45°N, 170°E. Winter traffic
is mainly south of 43°N,

IIl. Meteorology and Oceanography

Topics covered in this section present
the critical meteorologic/oceanographic
constraints to the MSS, Due to a vol-
uminous amount of data that are often
irrelevent to a MSS installation, a
complete picture of the meteorology/
oceanography is not attempted. The
reader is referred to the bibliography
sections for more comprehensive
information.

Both the air and the upper ocean of the
Northwest Pacific are part of a dynamic
system that is dependent to a large
extent on geography and seasons.

Sunmer anticyclonic air circulation is
controlled by a high-pressure cell
centered about 40°N, 150°W. Winter
cyclonic movement is caused by a more
local low-pressure cell centered at
50°M, 180°W (Fig. 1). These pressure
cells trigger wind and surface cur-
rents. Wind directions are synonymous
with the atmospheric circulation,
whereas surface currents are the
product of Ekman transport and
geostrophic flow., Intermediate and
deep-ocean circulation in the Northwest
Pacific is poorly understood, and
seasonal effects on circulation are
likely to be insignificant below

1500 m.

A. Storms

Figure 8 is a condensation of monthly
cyclone (low pressure area) maps
showing cyclone paths and the percent
of time an area is covered by cyclones
(Gorshkov, 1974). Month abbreviations
are plotted to represent the highest
concentrations of cyclones for specific
months. Storms occur most frexuently
during winter months and are moie
prevalent in the north adjacent to the
major winter low pressure cell (Fig.
1). Paths for the low pressure fronts
generally move from southwest to
northeast, but their paths, which
represent averages, do not necessarily
coincide with major storm concentra-
tions.,

B. Winds

Compiled from Gorshkov (1974), Figure 9
is a synthesis based on monthly wind
distributions and displays the percent
of time that winds are greater than

16 m/sec (31 kn). The figure shows
this percentage for the months with the
highest winds, November through March;
the month abbreviations are centered at
areas with maximum monthly winds.
Strong winds (greater than 16 m/sec)
are more prevalent in the west, south-
east aud northeast. The average direc-
tion of winter winds is northeasterly
in the north and northwesterly in the
south. While winter winds are cyclonic
and are generated by a major low-
pressure cell, summer winds are anti-
cyclonic and generated by a major high
pressure cell (Fig. 1). Summer winds
are not as strong as winter winds, and
are nearly opposite in direction.

C. Icing

Ilcing of equipment exposed to air can
be a significant problem in the North-
west Pacific. Figures 10 and 11 show
the number of months when sea surface
temperatures drop below 0°C and -8°C,
respectively (Gorshkov, 1974). The
distribution of -8°C is presented to
delineate the extent of extremely cold
temperatures. The freezing temper-
atures, coupled with the intense winter



storm activity (Fig. 8), should produce
icing in all areas of the Northwest
Pacific. The least icing problem
should occur in the southeast, the
severest in the north and northwest.

D. Wave Heights

Wave heights in the Northwest Pacific
can exceed 17.5 m (Fig. 12) and highest
waves occur in non-summer months in the
southeastern areas.

E. Surface Water Temperature

Surface water temperatures vary
seasonally. Figure 13 shows the
average water temperature for the
coldest month (February), coupled with
the annual variation in temperature of
surface waters (Gorshkov, 1974).
Warmest temperatures can be calculated
by adding the annual variation to the
February temperatures.

Winter cooling at surface waters pro-
duces a reversal in the temperature
profile for the Northwest Pacific. The
depth of the temperature maximum pro-
duced by this cooling and the temper-
ature at the maximum are plotted in
Figure 14 (Reid, 1973). The depth of
the maximum indicates the extent of
penetration of February or winter cold
temperatures in the water column.
Maximum warmest waters are present in
the southern area where the Kuroshio
Current is located.

F. Surface Currents

Surface current circulation in the
Nortitwest Pacific consists of the
eastward-flowing warm water of the
Kuroshio Current at about 40°N and the
southward-flowing cold water of the
Kamchatka Current (also called Oyashio
south of Kamchatka) that borders
western land masses. In winter, the
Kamchatka Current is squeezed westward
and the Kuroshio is pushed southward as
a result of seasonal Ekman transport
caused by northerly winds (Fig. 5). In
summer, the Kamchatka Current expands
eastward and the Kuroshio northward due
to prevailing southerly winds (Fig. 6).

wr

G. Current Speeds

Maximum surface current speeds are to
be expected within the major current
areas, in the eddies adjacent to major
currents, and during the winter when
strongest winds occur. Figure 15
depicts surface current speeds that are
based on reported ship drift for the
months having the highest average value
(U.S. Navy, 1977). The data show high
speeds in a band on the west where the
Kamchatka Current is constricted in
winter and also in spotty areas in the
rath of the Kuroshio Current to the
south. Since the data are averaged
values, they are only useful to show
general current speed distribution.

Figure 16 is a histogram of the highest
monthly average surface current speed
for one degree squares, the same data
as that presented in Figure 15. Speeds
are 'ess than 0.8 kn for most one
degrev square locations; however, a
fraction of the speeds exceeds 3.0 kn.
Maximum surface current speeds will
exceed these averaged measured speeds.

Figure 17 presents a maximum current
speed profile based upon the model used
by the Naval Oceanographic Office
(NAVOCEANO) to evaluate current speeds
for mooring design (Joseph Tamul, pers.
comm.). The NAVOCEANO model states
that maximum speed is at the sea sur-
face and decreases linearly to one-
third its original value at 400 m
depth. From 400 m to the bottom, the
speed decreases linearly to 0. The
profile represented by a dashed line in
Figure 17 depicts a maximum surface
speed of 4 kn as observed in major
ocean currents. This speed decreases
linearly to 1.3 kn at 400 m and
decreases linearly to 0.4 kn from 490 m
to the bottom. The bottom speed is an
assumed maximum bottom current speed
based upon bottom photographs of the
Northwest Pacific. Since bottom
currents are evident in some areas of
the Northwest Pacific, the zero bottan
speed used in the NAVOCEANO model
cannot be used as a maximum speed for
the mode! in Figure 17.



To supplement the maximum current speed
model, Figure 17 also shows measured
current speeds. Current speeds derived
from unpublished Ekman current meter
measurements collected by NAYOCEANO
(1930-1975) are plotted for the upper
500 m of the model. Eighty percent of
these measurements have speeds repre-
sented by the darker shading, while the
remaining 20% are represented by the
lighter shading (Fig. 17). Although
the measurements are biased because
most data were collected in the calmer
summer months, the slope of the current
speed profile parallels the maximum
speed model. Speeds at intermediate
depth, as represented by solid black
bars on Figure 17, are calculated from
the geopotential anomaly maps of Reid
et al. (1975). These values represent
speeds averaged for large areas over
long, periods of time.

H. Sound Speed

Sound speed in the water column of the
Northwest Pacific varies both season-
ally and geographically. For stations
plotted on Figure 18, Figure 19 shows
sound speed profiles for the upper

1600 m of the water column (Senior,
1976, and NAVOCEANO, 1978). The
profiles show that sound speed varies
considerably in the upper 800 m of the
water column. The April profiles 1A
and B) show that sound speed increases
steadily with depth from a surface
minimum, except in the region of the
Kuroshio Current where surface sound
speeds decrease to a minimum at about
500 m. The July profiles (C) display a
thin, temperature-induced, high-
velocity surface layer which grades
into a velocity minimum at about 200 m.

The sound channel axis is defined as
the depth of the sound velocity
minimum. Figures 20 and 21, respec-
tively, depict the winter and the sum-
mer sound channel depths. The maps are
synthesized from upper water column
sound velocity contour maps for dis-
crete depths (Gorshkov, 1974). In
winter, the sound channel is deepest in
southeastern areas traversed by the
Kuroshio Current. Figure 20 shows that

in winter two sound channels exist in
the southeastern sections of the area.
The sound channel is either poorly
defined or absent in the remaining
areas because the cold surface waters
create a velocity minimum near the
surface. The summer sound channel
ranges from about 200 m to 500 m in
depth and deepens toward the southeast.

I. Biological Fouling

Biological fouling of exposed MSS
equipment should not be a problem in
the Northwest Pacific (John DePalma,
pers. comm.). The most intense fouling
occurs in the upper 25 m with the
accumulation of about onc pound of
barnacles per sguare foot of equipment
surface per year. Algae will produce
films on equipment in the upper 25 m
and could only cause problems to light
transmitting, transparent or movable
parts. Bottowi fouling should be
insignificant., Cables, however, should
be protected with Teredo shields for
the surface 25 m and near the ocean
bottom.

IV. Geology and Geophysics

Because the Geology/Geophysics section
is long and complex, an organizational
summary is offered. The section is
introduced with a REGIONAL SETTING
which outlines the geology of the
Northwest Pacific and adjacent seas and
continental areas. This section is
followed by extensive geological com-
pilations. The general subject trend
of these compilations begins with the
ocean bottom ind proceeds through the
sediment column, crustal rock and
mantle. In BOTTOM ROUGHNESS, the
topography of the ocean bottom is clas-
sified and mapped according to relief
and slopes. Next, SURFACE SEDIMENTS
presents the sedimentary character-
istics of the ocean bottom.

The following sections deal with the
sediment column. DSDP CORES presents
extensive sediment data for the DSDP
cores drillted in the area. Supplemen-
ting the DSDP CORES, ACOUSTIC STRATIG-
RAPHY offers mapped acoustic horizons




and sediment thickness. Finally,
GEOLOGIC HISTORY explains crustal
formation and past sedimentary environ-
ments of the Northwest Pacific. In
addition to describing the occurrence
of sediments found in DSDP cores, this
section discusses the sediment column
in poorly surveyed areas.

The remainder of "he Geolosy/Ge. Wys-
ics section conc. the geographic
areas where seism’'c waves traverse to
reach a potential MSS. In SEISMIC
ACTIVITY, the seismic sources are
located. DEEP SEISMIC VELOCITY STRUC-
TURE outlines velocity structure of the
areas between the seismic sources and
the potential MSS and presents gen-
eralized crust and mantle velocity
profiles for the Kuril-Kamchatka region
and the Northwest Pacific Ocean. The
final section, GRAVITY AND HEAT FLOW,
provides additional data about the deep
structure of the area.

A. Regional Setting

The geographic scope of this section
includes the Northwest Pacific, as well
as adjacent seas and continental areas.
The regional divisions in this section
are used primarily to define these
areas in discussion and do not repre-
sent absolute geological or seismolog—
ical provinces. The Kuril-Kamchatka
earthquake region, the Western Aleutian
earthquake region and the Emperor Sea-
mounts (Fig. 1) are discussed mainly as
peripheral areas to the Northwest
Pacific regions, which are mapped as
physiographic subprovinces (Fig. 22).
These subprovinces are the focus for
most of the research presented in this
report.

1. Kuril-Kamchatka Earthquake Region

From east to west the Kuril-Kamchatka
earthquake region includes the Kuril-
Kamchatka Trench, the Southern
Kamchatka Feninsula, the Kuril Island
Arc, and vhe Sea of Okhotsk. The
trench reaches depths over 9000 m and
marks a plate boundary where the
Pacific oceanic lithosphere under-
thrusts the Asian plate (see Seismic

Activity section). Parallel to and
west of the trench is a line of
volcanoes located on the Kuril Island
Arc an? Eastern Kamchatka. The Bussol
Proliv is a submarine pass (Map I)
which transects the island arc at 47°N.
It connects the Sea of Okhotsk to the
Northwest Pacific at a depth of 2500 m.
The Kruzenshterna Proliv is 2nother
pass, located at about 48.5°N, which
connecvs the same water bodies at a
depth ot 1500 m. The passes serve as
cnannels for cold water exchange
between the Sea of Okhotsk and the
Northwest Pacific Ocean. West of the
Kuril island Arc, the Kuril Basin is
the only deep ocean basin in the Sea of
Okhotsk. The Basin has an average
depth of 3200 m and connects with the
Pacific Ocean through the Bussol
Proliv.

2. Western Aleutian Earthquake Region

The western Aleutian earthquake region
is a trench and island arc system;
however, the tectonic mechanism of this
region is strike-slip movement between
the Pacific and North American Plates
(Cormi‘er, 1976). The western Aleutian
trench averages 6500 m in depth and is
generally shoaler than ihe Kuril-
Kamchatka Trench. The Aleutian

trench is floored with thick, ponded
sediments, whereas the Kuril-Kamchaika
Trench rarely contains ponded sed-
iments. The two trenches connect in an
inverted "V" south of the Kamchatka
Strait. This strait has a depth of
3000 m and connects the <amchatka Basin
of the Bering Sea to the Pacific Ocean.
Since the Kamchatka Basin also averages
3000 m, the Kamchatka Strait is an
impor tant area for water exchange, and
acts as a conduit that channels Bering
Sea sediment into the Northwest
Pacific.

3. Emperor Seamounts

The Emperor Seamounts, located on the
east of the Northwest Pacific abyssal
hills province, have a northern limit
just southward of the Kamchatka Strait
and seaward of the Aleutian and
Kamchatka Trenches. The northernmost

——




crest of the Emperor chain is Meiji
Guyot (Map 1), an elongated plateau
which has a minimum depth ¢« about

3000 m and bears a thick sediment cover
on its northeastern slopes. Meiji
Guyot trends N45°W, whereas the remain-
ing Emperor Seamounts trend N20°W as
far south as 40°N.

The Emperors are thought to have formed
as the Pacific plate moved to the
northwest across a "hot spot" (Clague
and jarrard, 1973). This hypothesis
would date Meiji as the oldest existing
seamount and the bathymetric trend can
be explained by contemporaneous plate
movement. The seamounts decrease in
age southward and generally have
shoaler crests and sparser sediment
cover to the south. The Emperor
Seamounts are listed from north to
south, with their corresponding minimum
depth:

Meiji 2923 m
Detroit 2239 m
Tenchi 2349 m
Jinmu 1275 m
Suiko 1106 m
Nintoku 943 m

Deep latitudinal gaps traverse the
Emperor Seamount chain. They are
located in southern regions between
Jimmu and Suiko, Suiko and Nintoku, and
south of Nintoku. These gaps may be
related to geologic trends in the adja-
cent Northwest Pacific abyssal hills
province and they could serve as passes
for deep water transport.

4. Hokkaido Rise

The Hokkaido Rise is a northeast/
southwest-trending structure elevated
3000 m above the Kuril-Kamchatka Trench
on the northwest and from 400-800 m
above Pacific crust on the southeast
(Fige 22 and Map 1). The structure
parallels the Kuril-Kamchatka Trench
and trends perpendicularly to presumed
present Pacific plate movement
(Lancelot, 1978). Greatest topographic
expression is present at 45-48°N where
the average depth is about 4900 m.

The Rise is transected by several

depressions. Located in the south are
two depressions (40-41°N, 149°E) which
may be northern sections of the
proposed Nakwe Channel (Mammerickx,
1980).

Another depression transects the Rise
at 44°N., A saddle located at 48-49°N
has an average depth of 5500 m, which
is up to 500 m deeper than the Rise to
the south. This saddle and the
southern depressions could be areas of
deep water exchange between the trench
area and the Northwest Pacific abyssal
hills province. North of the saddle
the Rise displays the northwest-
southeast bathymetric trends that
parallel the Emperor Seamounts south of
Meiiji.

Two anomalous structures cr .ss the
Hokkaido Rise between 44°N and 48°N.
First, a trough which connects with the
Hokkaido Trough appears to cut the
eastern Hokkaido Rise with a relief of
up to 400 m. The trough extends east-
ward from 155°E and trends roughly
east-west. Second, a N30°W-trending
line of seamounts crosses the Hokkaido
Rise and the Hokkaido Trough (Map 1).
These seamounts could extend south of
the trough and east of the rise with a
N40°W trend.

According to McAdoo et al. (1979), the
rise is of secondary origin due to the
buckling of an elastic lithosphere as
it descends into the Kuril-Kamchatka
Trench. Small-scale faulting that
trends northeast-southwest is apparent
on continuous seismic reflection pro-
files; however, detailed mapping of the
faults is difficult due to lack of
profile coverage. These faults tend to
support the McAdoo et al. proposal.

5. Hokkaido Trough

This report contains the most compre-
hensive mapping of the Hokkaido Trough
yet compiled (Map 1). The sinuous
trough appears to trend roughly east-
west from the Hokkaido Rise toward the
Emperor Seamounts. The trough also
appears to extend toward the Bussol
Proliv of the Kuril Island cha.n to the
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west and toward the gap between Suik.
and Jimmu of the Emperor Seamounts.
From 161°E to 165°E the trough consists
of a series of parallel ridges and
troughs, suggesting a series of faulted
blocks. At 161°E the trough bends
slightly to the northwest. Farther
west the trough branches into two
troughs of lesser relief. One trough
extends into the Hokkaido Rise and the
other bends southwest-northeast, paral-
lel to the Hokkaido Rise. Relief
varies from as little as 100 m in
speculative southwestern extensions of
the trough to over 1400 m where ridges
parallel the trough. Continuous seis-
mic reflection profiles collected west
of 160°E show that the trough contains
a maximum thickness of 0.5 seconds
(two-way travel time) of ponded
sediment, while flanking ridges have
almost n sediment (Fig. 24, CC'). No
adequate explanations are available as
to the origin of this feature.

Magnetic data now being processed
reveal large anomalies across the
trough and parallel ridges. Further
collection and analysis of magnetics,
bathymetry, and seismic reflection
profiles are needed.

6. Basin Between Southern Hokkaido Rise

and Shatsky Rise

This region is characterized by broad
parallel, small amplitude (200 m)
northeast/southwest-trending ridges and
depressions (Map |). Typical depths
are 5400 to 5700 m. Geological data
coverage of the area is better than for
other Northwest Pacific provinces.
Magnetic anomalies mapped by Hilde
{1975) show magnetic isochrons that are
roughly parallel to the bathymetric
trends. DSDP drill sites 303 and 304
are located in this province, and both
drill holes penetrated basaltic base-
ment of middle Cretaceous age., In the
north, the province appears to be cut
by the seamount chain mentioned in the.
Hokkaido Rise section as well as the
Hokkaido Trough. North of the trough
to about 47°N, the bottom apparently
continues to have the same bathymetric
character as the southern area;
however, data coverage is sparse.

7. Northern Shatskyv Rise

The northern exten<.on of the Shatsky
Rise is located in the southeastern
corner of the survey area. The rise is
elevated about 700 m above the sur-
rounding ocean floor and has an average
depth of 5000 m. The bathymetric trend
of the Rise parallels the northeast-
southwest trends of the surroundin
basins and the Hokkaido Rise.

The Shatsky Rise is a north/south-
trending feature which appears to
extend from 30°N to 45°N; however, the
major section of this feature is south
of 40°N. Although sediment and acous-
tic velocity studies have been con-
ducted jn the major portion of the
Rise, the northern extension remains
largely unstudied. Speculations
concerning the northern extension
should not be based on knowledge of the
southern section until 1ore is known
about the area.

8. Provinces Adjacent to the Emperor
Seamounts

Bathymetric trends change from a
northeast-southwest trend to a
northwest-southeast orientation near
the Emperor Seamounts (Map 1). This
orientation, which parallels the
Emperor Seamounts south of Meiji, is
most prominent southwest of the Meiji
Guyot, where parallel ridges and
troughs with relief of 500 m to over
1000 m extend as far west as 162°E.

The parallel ridges generally have thin
sediment cover (0.2-0.4 sec), while the
troughs have flat, ponded sediments
thick as 1.0 sec. One trough appears
to extend southward from the Meiji area
to 45°N. Agapova et al. (1973)
describe their discovery of northwest-
southeast parallel fracture zones as
far west as 162°E in the region from
46-52°N. This area has poor bathy-
metric track coverage, morcsover, the
Russian data extracted from a small-
scale illustration does not fit well
with other available data. More data
are needed to adequately map the
morphology of this region.




B. Bottom Roughness

For this report, BOTTOM ROUGHNESS is a
relative measure of slopes and relief
of bottom topography as perceived from
continuous seismic reflection records.
Bathymetric contours (Map 1) on'y show
reliefs which exceed the contour inter-
val (100 m). Slopes computed from
these contours are generally averaged
because they cannot measure the low
amplitude short wavelength topography.
Bottom roughness is a measure of this
short wavelength topography, which,
when superimposed upon the bathymetric
contours (Map IV), will reflect the
bottom topography in more detail.

Bottom roughness classifies ali slopes
and relief into three empirically-based
groups which divide the Northwest
Pacific into three relatively equal
areas. The three roughness divisions
by increasing relative roughness are:

o Low roughness — relief less than
200 m in a 20 km span and/or slopes
less than 3-4°.

o Intermediate roughness — slopes of
3-10°, Intermediate roughness is
intended as an overlap division.

o Greatest roughness - relief dif-
ferences greater than 200 m in a
20 km span and/or slopes greater
than the 6-10° range.

The slopes of the bottom topography can
vary somewhat, regardless of the
relief. If an area has low relief, but
a large amount of short wavelength
topography, the slopes of the topog-
raphy can be great. On the other hand,
high relief arcas may have broad
gradual slopes. Usually high relief
areas have greater roughness than low
relief areas. For this reason, the
high relief represented by bathymetric
contours, which have more extensive
track coverage than the bottom rough-
ness, can be used to imply high rough-
ness in areas with poor seismic reflec-
tion coverage.

For most purposes, low roughness areas
are advantageous to the MSS and
greatest roughness areas are to be

avoided. Major areas outside the 200
mile Iimit that have low roughness are
located in a broad band east of the
southern Hokkaido Rise, in a smaller
area adjacent to the eastern flank of
the Hokkaido Rise at about 47°N, and in
troughs both adjacent and parallel to
the Emperor Seamounts (Map '/).
Roughest areas are the seamount prov-
inces and faulted areas on the Hokkaido
Rise and the shatskv Rise. Areas
adjacent to tne Meiji Guyot and the
Hokkaido Trough are assumed to be rough
on the basis of high relief bathymetry.
Figures 24-26 show seismic reflection
profiles for lines indexed on Figure
23, Profiles A, E, F, G and | repre-
sent smooth bottom. Profile H shows
intermediate bottom and profiles B, C,
D and } show rough bottom.

C. Surface Sediments

Surface sediment types of the Northwest
Pacific have been classified and mapped
by Frazer et al. (1972). This classi-
fication is the outcome of a compila-
tion of data, analyses, and sediment
descriptions that are not always
directly compatible. As a result, the
classification contains ambiguities,
but nevertheless serves as a useful
summary of general sediment types.
Surface sediments of the Northwest
Pacific consist of combinations of six
basic components:

o Clay - fine grained (<4 um), <30%
biogenic sediments.

o Calcareous coze - >30% biogenic
carbonate.

o Sand and silt - size of sediment
particles predominantly 4 um to
2000 um, <30% biogenic sediments.

o Mud - terrigenous deposits, gener-
ally fine grained, but containing
significant components of sand and

silt,
o Siliceous ooze - <30% biogenic
silica.

o Volcanic sediment — containing
detectible amounts of ash, glass
shards, pumice or other volcanic
materials.
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Ideally, a sediment should be clas-
sified by size, source and composition;
the Frazer et al. (1972) classifica-
tion is based upon a partial combina-
tion of the three criteria. The clay
and sand/silt components are size
classifications, whereas mud, an

undi f ferentiated mixture of predom-
inantly clay with sand/silt, is clas-
sified by both size and source. The
biogenic (organically derived silica or
carbonate) and volcanic components are
both compositional and source classi-
fications, and may encompass all three
size classes.

Adapted from the Frazer et al. map,
Figures 27 and 28 show that most

sur face sediments are combinations of
the six major types. Major combina-
tions of sediment type on Figure 23 are
listed in Table 1.

Because volcanic constituents are
usually present in small amounts,
sediments containing them are named
with the adjective "volcanic" to the
far left, for example: volcanic
siliceous mud. Vhen sediments con-
taining 10-30% biogenic material appear
in combination with muds, clays, or
sand and silt, they are no longer
designated as oozes; rather the predom-
inant biogenic material becomes an
adjective modi fier of the size term
such as calcareous silt or siliceous
clay.

Distribution patterns of surface
sediment can indicate sediment sources.
Sands and silts are generally found on
the continentai margins close to the
terrigenous source. In the Meiji area,
where sedimentation is dominated by
currents carrying large amounts of
terrigenous material, terrigenous muds
extend seaward of the trenches (Scholl,
et al., 1977). Clays are present in
areas isolated from sources of terrig-
enous sediments. Calcareous oozes
produced by planktonic foraminifera are
present atop seamounts with depths

shal lower than the carbonate compensa-
tion depth. Sificeous components in
sediments are ubiquitous because the
Northwest Pacific is located within the

high latitude, diatom-producing zone.
Volcanic materials appear throughout
the area as a result of Kuril-Kamchatka
volcanism. They are dispersed in small
quantities in most sediments or are
locally concentrated in thin ash
fayers.

1. Grain Size of Sediments

Soviet scientists have studied the
grain size distribution of surface
sediments in the Northwest Pacific more
extensively than the American or
Japanese scientists, particularly in
the western areas. Unfortunately, the
Soviets do not employ the Udden-
V/lentworth scale used by most western
sedimentologists; therefore, their
results are not directly comparable to
other works. |Instead, they use a grain
size scale based on magnitudes of 10,
the major divisions of which are sand,
100-1000 um; aleurite, 10-100 um,
pelite, 1-10{ m; and subcolloidal,

<1 um. This contrasts with the major
Udden-Wentworth scale divisions of
sand, 62-2000 um; silt, 4-62 um; and
clay <4 um. The two classifications
are rodughly equivalent and the Soviet
system will be used only in this
section.

Generalized grain size distributions of
surface sediments extracted from Soviet
maps of Kort (1970) are listed in Table
11 by size class for each of the phys-
iographic provinces classified in this
report.

Coarse sediments on the Emperor Sea-
mounts and Meiji Guyot are probably due
to a coarse carbonate fraction and
volcanic material. On the Hokkaido
Rise, sediment coarsens toward the
Kuril-Kamchatka Trench due to increas-
ing proximity to volcanic and terrig-
enous sources. Conversely, sediments
become progressively finer on the
southeastern side of the rise.

The mean diameter of surface sediment
grains (Horn et al., 1970) is illus-
trated in Figure 27. VWith the excep-
tion of the Emperor Seamounts, mean
diameter decreases southeastward, from



greater than 3 um near the trench to
less than 2 um in the southeast. The
Horn et al., study is based upon Lamont-
Doherty Geological Observatory cores
plotted on Figure 29. Additional LDGO
cores collected since the Horn et al.
stuay reveal similar grain size data
(unpublished LDGO core descriptions).
Surface sediments in the Northwest
Pacific abyssal hills province are
essentially clay size, with the
coarsest material nearer to land or
local volcanic sources.

Grain size analyses conducted by the
Naval Oceanographic Office in the
vicinity of Meiji Guyot (Loomis et
al., 1972) (Fig. 29) show surface
sediments there to be clays and silts.
The sediments are coarser than basin
sediments. Variation of grain size
with depth in the sediment column is
listed for DSDP cores in the Physical
Properties section.

2. Clay Minerals

The mineralogy of clays suggests both
the origin of sediment and the mech-
anism by which it was transported.
Griffin et al. (1968) have mapped
percentages of chlorite, montmoril-
lonite, iflite, and kaolinite for the
less than 2 um size fraction of sur-
face sediments. The iess than 2 um
size fraction is probably less than 50%
of the sediments in the Northwest
Pacific. In contrast, Griffin et al.
(1968) assign typica! Pacific pelagic
sediment as 61% less than 2 um, hence,
Northwest Pacific sediments are coarser
than the normal pelagic sediments.
Typical red clay provinces in the North
Pacific have greater than 50% illite
compnsition., The Northwest Facific
illite content varies from 20-50% and
decreases northwesterly toward the
Kuril Trench. The clay minerals which
replace illite as major constituents
are chlorite (20-30% and montmoril-
lonite (30-50%). By comparison,
typical North Pacific red clays contain
10-20% chlorite and 20-30% montmoril-
lonite. The chlorite and montmoril-
lonite contents increase northwesterly
toward the trench. The higher content
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of chlorite indicates low intensity
weathering of terrigenous material and
glacial transport; the higher montmor-
illonite indicates influx from a vol-
canic regime on in situ alteration of
volcanic ash (Griffin et al., 1968).

3. Coarse Fraction

Coarse fractior sediments vary through
time in respon.e to glacial input,
biogenic production, volcanism, and
terrigenous weathering processes. The
coarse fraction varies considerably
within cores. Values as high as 90% or
as sow as 10% coarse material may be
present in ash layers. Greatest abun-
dances occur on Meiji Guyot and near
land sources. Connolly et al. (1970)
studied 20 m piston cores from the

Nor thwest Pacific and found 50-80% of
the coarse fraction to be of volcanic
origin in the form of glass shards and
pumice. Plagicclase, volcanic rock
fragments, and ice-rafted detritus are
important minor constituents which
comprise less than 20% of the coarse
fraction. These constituents are
largely current-transported from
terrigenous provenances. Pebbles
greater than 5 mm are rare, and are
assumed to be due to ice-rafting.
lce-rafted material in quantities
greater than 1% of the coarse fraction
are present north of 45°N with greatest
concentrations in the vicinity of Meiji
Guyot. Biogenic silica, which com-
prises 10-20% of Northwest Pacific
surface sediments, contains a variable
but high percentage of the coarse
fraction.

D. DSDP Cores

DSDP core data for all sites in the
immediate vicinity of the Northwest
Pacific are listed in Table 111, Only
cores 192, 303, 304 and 436 have sed-
iment sec:ions representative of the
Northwest Pacific abyssal hills
province. Sites 192 and 436 have the
best core recovery rates while sites
303 and 304 have inadequate recovery
for Miocene and younger sediments.

-
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Cores 303, 304, and 436 are all located
in the southern area (Fig. 2). Cores
303 and 304 are located east of the
Hokkaido Rise in the southern abyssal
hills province where sediments are
generally thin. Core 436 is situated
on the Hokkaido Rise east of the
northern Japan Trench and the core

contains a thicker sediment column than
303 and 304. Cores 431, 432, and 433
are all located on the Emperor Sea-

mounts where sediments are sparse (Maps
I and I1).

Core 193 contains only a short section
of sedimen. and is incomplete for
Pleistocene and older sediments.

reader should consult Figures 32-35 for
general summaries of the data collected
for cores 303, 304, 192 and 193.

-
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Core 192, taken atop the sediment-
capped Meiji Guyot, is the only
available sample for sediments in the
northern areas. This core is atypical
because the sedimentary regime has
always been above the Carbonate
Compensation Depth and the Kamchatka
Current is a likely transport agent for
the bulk of Miocene and younger sed-
iments (Scholl et al., 1977). As a
result, sedimentation rates have been
higher atop Meiji Guyot than on adja-
cent basin areas, largely due to the
influx of current-transported terrig-
eneous material. Abyssal hills areas
are likely to have higher proportions
of volcanically derived sediments due

to the more dominant volcanic influx.
1. Time Correlation
Time correlation of DSDP lithologic

units in Northwest Pacific cores
reveals general depositional environ-
ments (Figs. 30 and 31). In Miocene
and younger sediments, basic sediment
components are pelagic clay, muds,
biogenic silica and volcanic material.
Older sediments include claystones,
pelagic clays, cherts and carbonate
sediments.

Pre~Miocene sediments show great
geographic variation in lithology.
Sediments immediately overlying basalt
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basement were recovered at sites 303,
304, and 192. At sites 303 and 304,
basal units of upper Cretaceous age
consist of nanno ooze, chert and
pelagic clays; Paleocene through
Miocene sediments were not retrieved.
At site 436, dark~brown, banded cherts
of late Cretaceous age were cored.
Paleocene through Middle Miocene
sediments consist of 20 m of dark-
brown, manganese-rich clay. In
contrast, site 192, cored in younger
Cretaceous crust, consists of late
Cretaceous to lower Miocene chalks and
claystones. The presence of carbonate
sediments indicates deposition above
the carbonate compensation depth.

The bulk of sediments in the Northwest
Pacific are post-Qligocene. Miocene
claystones are present at core 436, and
core 192 contains early and middle
Miocene claystones. Sediments at site
192 are late Miocene diatom-rich clays
tha. grade into Pliocene diatom ooze,
typical of Pliocene sediments in all
cores. The ooze at site 192 contains
more than 60% biogenic silica, while a
similar unit at site 436 averages
30-40%. The short, incomplete,
Pliocene sediment section recovered at
site 303 is also diatom ooze. Pleisto-
cene sediments at both sites 436 and
192 are generally siliceous volcanic
clays interspersed with diatom oozes
and ash layers; similar sediments are
likely at sites 303 and 304, where only
small portions of the Pleistocene
section were recovered. The Pleisto-
cene sediments at site 192 are probably
urrent-derived terrigenous detritus
choll et al., 1977), while site 436

diments are largely derived from
volcanic ash from Japan and the Kuril
Islands.,

2. Sedimentation Rates

Sedimentation rates in the Northwest
Pacific Basin vary with time and
geography. Rates at DSDP core sites
are labeled on the time columns (Fig.
30) and thickness columns (Fig. 31).
Recent sedimentation rates have been
calculated by Ninkovich (1975) from
piston cores (Figs. 29-31). Rates are



higher nearest to land sources and
lowest seaward. Ninkovich's rates vary
from about 3.0 ¢cm/1000 yrs near the
Emperor Seamounts to greater than

6.0 ¢cm/1000 yrs near the Kuril Trench.
These rates are compatible with
Pleistocene sedimentation rates
measured in DSDP cores. At site 436,
Pleistocene rates are presently at a
maximum of 7.0 ¢cm/1000 yrs and rates at
site 192 average 6.0 cm/1000 yrs.
Ninkovich proposed that the present
sedimentation rate be projected for the
total sediment column. In areas near
DSDP cores this assumption is not
valid. Site 436 has a present maximum
rate which decreases with age due to
increasing distance from volcanic
sources. At site 192 rates increase
with age into the Pliocene due to
increased diatom productivity, while
the general terrigenous component
retains a steady rate from middle
Mioccene through the present. Rates of
pre-Miocene sediments are less than

1.0 ¢cm/1000 yrs at all DSDP sites. Due
to low sediment retrieval at sites 303
and 304, only an average mid-Miocene to
present rate of 1.6-1.7 c¢cm/1000 yrs is
proposed (Larson et al., 1975). Sed-
imentation here is probably similar to
that at site 436 in that greater rates
occur for younger sediment.

3. Physical Properties

Measurements of physical properties for
Northwest Pacific sediments are scarce
and unreliable. Related North Pacific
studies (Richards, 1961; Moore, 1962;
Keller, 19¢9; and Keller et al., 1970)
consist of analyses of piston and
gravity core sediments. Studies are
extensive on DSDP cores 192 and 193
(Lee, 1973) and sparse on cores 303 and
304 (Larson et al., 1975). Because
DSDP cores are disturbed by drilling,
the ensuing laboratory tests could be
in error. The reader should consult
the references to evaluate the quality
of the data.

Data on physical properties are
extracted from various sources and
listed in Tables IV-VIIl. Table IV
(Keller et al., 1970) lists the mass
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physical properties for Pacific sed-
iments and averaged values for world
ocean terrigenous and red clay sed-
iments. Unfortunately Northwest
Pacific sediments are not typical of
any of the three groups, and pertinent
values lie between the wide ranges
listed. Table V (Moore, 1962) lists
physical properties and calculated
bearing capacities for North Pacific
cores located east of the Emperor
Seamounts. These sediments are similar
in grain size and composition to North-
west Pacific sediments and may be
representative physical properties at
MSS sites.

DSDP data on physical properties are
included for cores 303, 304, 192 and
193. Minimal data exist for cores 303
and 304 (Larson et al., 1975). Exten-
sive data are available for cores 192
and 193; however, core 192 is not
typical of the Northwest Pacific
abyssal hills sediments, since it is)
located atop Meiji Guyot. Core 193
contains typical abyssal hills sed-
iment, so physical properties measure-
ments of this core are probably most
representative of those to be encoun-
tered at an MSS site. Unfortunately,
less than 100 m of sediment were
retrieved at site 193,

Figures 32-35 present summaries of the
DSDP core physical properties cor-
related to the depth in the core,
sediment lithologies, and acoustic
measurements. Tables VI and VIl (Lee,
1973, and Larsen et al., 1975) list
DSDP grain size and density/porosity
data. Figure 36 shows measured vane
shear strengths for DSDP 192 and 193
sediments plotted according to depth in
the cores (Lee, 1973). In modeling for
pore pressure, lLee estimated in situ
vane shear strengths versus depth from
his measured values (Fig. 36b). For a
more thorough analysis of the methods
and the results of this study, the
reader should consult Lee (1973).

E. Acoustic Stratigraphy

The acoustic stratigraphy of the North-
west Pacific consists of acoustic
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horizons that have been identified and
mapped on the basis of visual inspec-
tion ef continuous seismic reflection
profiles. These data are supplemented
by wide angle reflection, refraction
and sediment data to allow estimates of
seismic velocity and composition of the
acoustic horizons.
Acoustic horizons for the Northwest
Pacific have been identified in
previous studies. Ewing et al. (1968)
outlined the general acoustic stratig-
raphy for the Western Pacific. For the
Northwest Pacific, they proposed an
upper transparent layer underlain by
either a smooth opaque layer or a rough
layer believed to be oceanic basement.
They also discovered a transparent
layer beneath the opaque layer, gener-
ally in areas south of the Northwest
Pacific. Houtz et al. (1979) achieved
greater acoustic penetration on their
continuous seismic profiles and dis-
covered that the lower transparent
layer is more widespread than proposed
by Ewing et al. (1968). Houtz et al.
(1979) combined the terms opaque layer
and lower transparent layer into the
term reverberant layer and mapped its
presence on the southern Hokkaido Rise
and on areas near the Emperor Seamounts
and Shatsky Rise. Under most of the
Northwest Pacific the acoustic stratig-
raphy consists of the upper transparent
layer and an acoustic basement which is
either the opaque layer, reverberant
layer when smooth, or true ocean
basement when rough.

The acoustic horizons are not readily
correlated to the oceanic layer scheme,
based on sediment and refraction data
(Ludwig et al., 1970; Houtz et al.,
1976). Corresponding to the depth
range of the acoustic horizons are
layer 1 (sediments) and layer 2 (true
ocean basement). The upper transparent
layer consists of low velocity mate-~
rial, probably unconsolidated sediments
classified as layer 1A (Ludwig et al.,
1970). The opaque layer and the rever—
berant layer are either consolidated
sediments (layer 1B) or oceanic basalt,
which is not necessarily true basement
(layers 2 or 2A) (Houtz et al., 1976).
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Rough acoustic basement might be true
oceanic basement (layer 2),

1. Transparent Layer

The transparent layer corresponds to
low velocity sediments. From wide
angle reflection data, the trans-
parent layer averages 1.74 km/sec for
the Western Pacific (Houtz et al.,
1979). This value is higher than the
average velocity of 1.63 km/sec meas—
ured for Northwest Pacific DSDP sed-
iments. Low velocity sediments are
siliceous volcanic clays and muds ,
siliceous and calcareous oozes, and
claystones predominantly of mid-Miocene
and younger age. The base of the
transparent layer is assumed to be
where acoustic velocities increase
suddenly to over 2.0 km/sec. In DSDP
cores (Fig. 31), this interface coin-
cides with chert layers in cores 436,
303 and 304. At 192, the interface
could be true basement.

2. Sediment Thickness Map

Thickness of the transparent layer
based upon digitized seismic reflection
profiles is displayed on Map Il. The
map is more reliably interpreted in
areas of dense track coverage. Compar-
isons with bathymetry, which has denser
track coverage, allow sediment thick-
ness interpretation where seismic pro-
files are scarce (Map VI).

The apparent thickness of the trans—
parent layer varies from 0 to over

1.0 seconds of two-way travel t'me and
averages about 0.4 to 0.5 seconds.
Sediments generally thin southeastward
away from the Kuril Trench. They
thicken extensively over the Hokkaido
Rise, particularly in the southwest,
and thin on either side of the Rise.
To the southeast, this thinning is due
to the greater distance from volcanic
and terrigenous sources. To the west
of the Rise, the thinning may be due to
slumping of sediments on the steep
slope leading into the Kuril trench.

Kuril-Kamchatka Trench sediments are
rarely turbidite-ponded. At one




isolated area, located about 51-52°N,
0.3-0.4 seconds c¢f ponded sediments are
apparent in the trench at the base of a
large continental margin canyon (see
Map 1). Except for isolated locations
within the trench, turbidites are
absent in the Northwest Pacific.

Several areas of sediment ponding are
probably due to local sedimentation.
Near isolated seamounts, ponding
generally occurs near the base. On a
gentle western slope of the Shatsky
Rise at about 41°N is a basin with over
0.5 seconds of sediment thickness that
partially fills a bathymetric depres-
sion. A similar but larger sediment
pond extends along the western side of
the Emperor Seamount chain. Though
seismic reflection coverage is poor,
the Hokkaido Trough appears to be
filled with flat-lying sediments in
excess of 0.5 seconds. The trough is
lined by seamounts, which could be a
local source for the thick sediments.

Sediment distribution around the Meiji
Guyot area, studied by Buffington
(1973) and Scholl et al. (1973, 1977),
has been updated in Map II. Sediment
wedges are prominent in areas south of
the Meiji area. The greatest sediment
thicknesses are northeast of the Meiji
Guyot crest although small wedges of
thick sediment fill bathymetric .ows
which parallel the Emperor Seamounts
south of Meiji Guyot.

3. Acoustic Basement

The acoustic basement seen on Northwest
Pacific seismic reflection profiles can
be one of three acoustic horizons.
Smooth basement is either the opaque
layer or the reverberant layer; rough
basement is probably true oceanic base-—
ment.

Lying beneath the transparent layer,
the opaque layer probably rests
directly on true oceanic basement. The
opaque layer is composed of either low
velocity basalt or consolidated sed-
iments, As revealed from refraction
work (Houtz et al., 1976, 1979), the
basaltic opaque layer (layer 2A) has an
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average velocity of 2.43 km/sec. Since
the low velocity basalt is suspected to
exist most commionly near seamounts, it
is probably secondary volcanic material
and not ridge-crest basalt. Basal
chert layers (layer 1B) found at DSDP
sites 436, 303, and 304 produce the
opiique layer in the southern regions
and have acoustic velocities of 2.7 km/
sec. The thickness of the chert layer
at site 303 is about 30 m. Thickness
of the opaque chert layer may be less
at other Northwest Pacific locations
because the crust is younger and has
passed through less of the equatorial
silica-producing zone (see Geologic
History).

Consolidated carbonates are present in
areas where sediments were deposited
above the carbonate compensation depth.
At site 192, for example, a carbonate
basal layer lying on basalt has veloc-
ities of 2.2-3.5 km/sec. This carbon-
ate layer, however, is not identified
as the opaque layer. It lies directly
on basalt and the basalt is identifiet
as the acoustic basement. Similar
carbonate layers are likely to be found
on seamounts in the Northwest Pacific.

The reverberant layer is essentially a
thick opaque layer and has similar
origins and composition. The rever-
berant layer is generally thinner than
0.1 second north of 40°N, where it
probably consists of banded cherts or
secondary volcanic material at the base
of seamounts. The reverberant layer is
greater than 0.1 second in the south-
west section of the study area (Houtz
et al., 1979) and adjacent to the west
slope of the Emperor Seamounts and
northern Shatsky Rise (Fig. 25, EE';
FF').

True oceanic basement (layer 2) is
composed of basalt and has acoustic
velocities greater than 4.0 km/sec.
True basement is assumed to be the
rough acoustic basement in the North-
west Pacific because typical oceanic
basement is rough. When acoustic
basement is smooth, the true basement
lies beneath and is not distinguishable
from the lower velocity cover. True
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basemeni as acoustic basement can be
inferred from the basement roughness
map (Map V).

4. Basement Roughness Map

Map V shows basement roughness with
depth to acoustic basement super-
imposed. The smooth southern areas may
correlate with the cherty acoustic
basement. Smooth areas adjacent to the
Emperor Seamounts could have secondary
volcanic acoustic basements. Areas of
rough basement, particularly on sea-
mounts, appear to represent oceanic
basement.

5. Structure Contour Map of the Acous-
tic Basement

The structure contour map (Map 111),
which was constructed from continuous
seismic reflection records, prescnts
the depth to the acoustic basement from
the sea surface in two-way trave! time.
The contours represent the surface of
the Northwest Pacific before the
deposition of post-Oligocene trans-
parent sediments.

Since much of the transparent layer
sediment is draped, the general base-
ment morphology is similar to that of
the bathymetry map. Because data
coverage is poor in most areas, recog-
nition of structural features is nearly
impossible. Small scale faulting,
particularly on the Hokkaido Rise where
coverage is good, apparently strikes
northeast-s;outhwest. In the Meiji
Guyot area, the nature of the sediment-
filled troughs is revealed on the
structure contour map. One structural
basin located northeast of Meiji Guyot
is presently completely filled with
over 1.0 second of sediment, while
other basins generally have greater
than 0.4 second of sediment.

6. Representative Seismic Reflection
Profiles

Figures 24-26 show representative seis-
mic reflection profiles which depict
regional variation of bottom roughness,
sediment thickness, and acoustic
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basement. Figure 23 shows the
locations where the profiles were
collected.

Profile AA' (From R/V ROBERT CONRAD 12,
1968)

Typical of the southern abyssal hills
subprovince, profile AA' shows smooth
stratified sediments overlying a sr oth
acoustic basement. The acoustic base-
ment is probably chert resting on true
basement as revealed at the adjacent
DSDP site 303.

Profile BB'
1971)

(R/V ROBERT CONRAD 14,

Profile BB!' depicts the faulted central
Hokkaido Rise, which typically has
rough bottom and acoustic basement with
variable sediment thickness.

Profile CC!' (R/V VEMA 21, 1965)

On profile CC', the Hokkaido Trough is
depicted as a V-shaped feature in
cross—-section. The trough has steep,
sediment-free walls and flat-lying
sediments ponded in its deepest parts.

Profile DD' (from USNS BARTLETT, 1972)

Profile DD' illustrates the ch:racter
of the Shatsky Rise in the Northwest
Pacific. It is typically rough with
thin or no sediment cover.

Profiles EE' (USNS BARTLETT, 1972) und
FF' (R/V VEMA 20, 1965)

These profiles show the presence ¢ the

reverberant layer adjacent to the 1
Emperor Seamounts (Houtz et al., 1979). |
The reverberant layer probably consists

largely of secondary volcanics derived

from the adjacer.t Emperor Seamounts and

Shatsky Rise.,

Profiles GG' (R/V VEMA 21, 1965) and
HH' (R/V ROBERT CONRAD 14, 1971)
These profiles are typical of the
Hokkaido Rise north of the rough

central Rise and Hokkaido Trough. Both

profiles have conformable sediments



resting on acoustic basement. Profile
HH' has intermediate bottom and base-
ment roughness, which is probably due
to small scale faulting. Areas of
smoother bottom and basement, as shown
in profile GG', are located generally
south of the areas with intermediate
roughness.

Profile 11' (R/V ROBERT CONRAD 14,
1971)
Profile I1' transects the sediment-

filled troughs and associated ridges to
the southwest of Meiji Guyot. While
the ridges have thin or no sediments
resting upon rough basement, the
troughs have thick, flat-lying sed-
iments resting upon smooth acoustic
basement. Acoustic basement may be
true basement under the ridges, but the
acoustic basement under the troughs is
probably composed of secondary
volcanics.

Profile JJ' (R/V VEMA 21, 1965)

The Meiji area is illustrated by
profile J)J*« The south slope of Meiji
Guyot generally has thin sediments,
while thick sediments rest on the crest
and northern slope of Meiji Guyot. In
the south are the parallel ridges and
the sediment-filled troughs shown in
profile 11",

F. Geologic History

As the Northwest Pacific is underlain
entirely by oceanic crust, a recon-
struction of its evolution requires the
application of the concepts of plate
tectonics, magnetic anomaly patterns
and the sedimentary record. Unfortu-
nately, knowledge of magnetic anomalies
in the Northwest Pacific is incomplete
and plate movements are still hypo-
thetical. However, the combination of
magnetic data with CSDP stratigraphy
produces a reasonably well-documented
geologic history.

This section presents oceanic crustal
ages based on magnetic isochrons,
fossil plate rotations and sedimentary
events based upon DSDP data. The
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nature of sediments and basement in
poorly surveyed areas can be inferred
by an understanding of geologic
history. The assumptions derived from
the geological history will help to
predict the nature of the materials
that will be drilled for the MSS
installation.

) — po—

1. Magnetics ¢

Mapping of m-gnetic anomalies helps
establish crustal age and geologic
structure and enables the projection of
sea floor age to areas where the
magnetics have not been deciphered. In
an early study, Uyeda et al. (1967)
demonstrated that magnetic anomalies
trend generally northeast-southwest in
the southern areas of the Northwest
Pacific (Fig. 37). Solov'yeva et al.
(1963) mapped aeromagnetic data in the
northern areas and discovered low
intensity anomalies thot trend parallel
to the Kuril Trench, a trend which is
more northerly than that of Uyeda et
al. Of interest is an anomaly located
at about 45°N,162°E (as mapped by
Solov'yeva). It coincides with the
position of the Hokkaido Trough.

Though roughly parallel to the trend of
Uyeda's anomalies to the south, this
anomaly probably is caused by the
structure of the trough and parallel
ridges.

Hilde (1976) offers the most complete
published study of seafloor spreading
as based on magnetic anomalies (Fig.
37). Hilde shows that the crust ages
toward the southeast. Mesozoic anom-
alies plotted on his map are displayed
with respect to time in Figure 30.
Anomalies south of about 45°N are large
amplitude and their trends are well~
documented (Fig. 37). The CL anomaly
is the youngest identifiable Mesozoic
anomaly and dates at about 109 mybp.
The CL anomalies coincide with the
newly mapped Hokkaido Trough and may
actually repiesent structural anomalies
at this location. North of the trough
area, magnetic anomalies are not
decipherable because of very low
amplitude and poor coverage. This area
may very well be the Cretaceous quiet




zone, which is fate Mesozoic crust with
fow amplitude magnetic anomalies. One
hypothesis is that the Hokkaido Trough
represents a structural boundary and
that crust of unknown age lies to the
north 'D. W. Handschumacher, pers.
conm. ).

Northwest Pacific magnetic data are
presently being compiled by the first

author to better define map trends in
the south and to decipher the crust to
the north. For this report, it is

assumed that the northern area
represents crust formed during the
Cretaceous quiet zone as proposed by
Hiltde (1976}.

2. Plate Rotations

Positioning of Northwest Pacific crust
through geologic time is achieved by
adjusting the plate rotations formu-
fated by Lanceliot (1978). Lancelot's
plate rotations are based upon thre
apparent trends of Pacific island and
seamount chains, and the rotations are
compativble to formation paleolatitudes
from magnetic signatures of DSDP
basalts. The three rotations are:

o 125 to 70 mybp: clockwise rotation
around a pole at 30°N and 97°W at a
rate of 0.69°/my. This pole is
presently located in central Texas.

o 70 to 40 mybp: clockwise rotation
around a pole at 11°N and 89°W at a
rate of 0.57°/my. This pole is
presently located just west of
Nicaragua and Costa Rica.

o 40 my to present: clockwise rotation
around a pole at 67°N and 45°W at a
rate of 0.5°/my. This pole is
presently located in southern
Greenland.

The rotations have been adapted for the
Northwest Pacific by the authors.

Figure 38a traces the movement of
Northwest Pacific crust. Northwest
Pacific oceanic crust was first
produced in the Cretaceous from the
Kula Ridge, an east/west-trending
spreading ridge which was subducted
into North Pacific trenches. This
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crust formed the southern flank of the
ridge and moved southward relative to
ite. However, the actual movement of
Pacific crust was to the northeast, as
indicated by Figure 38a. By 115 mybp,
the M-3 magnetic isochron was forming
at the ridge crest, and basalt at DSDP
sites 303 and 304 had formed. The
Cretaceous quiet zone crust or present
crust north of about 45°N began forming
at about 105 mybp and presumably had
formed before 80 mybp. At 72 mybp,
Meiji Guyot formed from . "hot spot" on
previously formed oceanic crust, and
Suiko Seamount followed at 58 mybp.
Present plate movement began at 40 mybp
when the collision of Pacific crust
with Japan and Kamchatka was initiated.
The subduction of the Kula spreading
center into North Pacific trenches
roughly coincides with this change in
plate movement (Hilde, 1977). The
present-day MNorthwest Pacific is a
portion of the southern fiank of the
Kula Ridge.

3. Sedimentary History

The sedimentary history is compatible
with the geographic constraints of the
plate rotations. Figure 38b illus-
trates sedimentary environments of
Northwest Pacific crust as it formed
from the Kula Ridge and the "hot spot".
Each of the four major sediment
components is affected by either
geography or water depth. Silica
production is latitudinaily controlled,
whereas carbonate sedimentation occurs
only above the carbonate compensation
depth. Terrigenous and volcanic sed-
iments are dependent on proximity to
the sediment source. Figure 30, show-
ing the time distribution of sediment
types from DSDP cores, should be refer-
red to in the following discussion.

Northwest Pacific crust traversed the
equatorial silica biogenic zone between
5°N and 5°S up to 105 mybp (Fig. 38b).
in the sediment record (Fig. 30) DSDP
cores 303, 304, and 436 have prominent
basal chert layers. More chert is
nresent at the o'!der site 304 than at
site 303, probably because site 304
traversed a greater distance through



the biogenic zone. Consequently, basal
chert should be either sparse or absent
on <rust younger than 105 mybp, such as
that north of 45°N,

Northwest Pacific crust was formed by
the subducted Kula Ridge up to about

80 mybp. Since ridge crests often have
depths above the carbonate compensation
depth (CCD), the initial crust formed
on the Kula Ridge wa: likely to have
carbonate sediments; however, as the
intial crust moved away from the ridge
crest, it fell below the CCD and
subsequent carbonate sediment dis-—
solved. This sequence is demonstrated
at DSDP sites 303 and 304 where chalks
and nanno ooze occur only as basal
sediments, and carbonates are rare
throughout the remaining column.

TJypical deep-sea sediments were
deposited from 105-15 mybp because
Northwest Pacific crust was present
north of the equatorial silica biogenic
zone, was deeper than the CCD, and was
far from terrigenous sediment sources.
Sedimentation was slow and resulted in
20 m of manganiferal clays at site 436.
Sites 303 and 304 have a sediment
hiatus in this time period indicating
low deposition rates and erosion,

A "hot spot" created Meiji Guyot about
72 mybp and Suiko about 58 mybp; the
southern Emperor Seamounts are younger
than 58 mybp. Deposits near the newly
forming seamounts probably contained
locally derived volcanic sediments.
Carbonate sediments are common on
seamounts that have d:cpths above the
CCD and where the carbonate sediments
are not diluted by abhundant terrigenous
or volcanic sediments. Basal sediments
atop Meiji Guyot {DSDP site 192)
consist of nanno ooze and chalks and
are mixed with claystone that is
probably of altered volcanic¢ and
pelagic origin.

At about 15 mybp, sedimentation rates
in the Northwest Pacific increased due
to influx of biogenic silica and
volcanic materials., Large quantities
of biogenic silica were deposited as
the Pacific Plate moved into the high
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latitude biogenic silica zone. As the
plate then moved westward, it neared
the volcanic sources of the Kuril
Islands, Kamchatka and Japan.
Ninkovich {1975), who attributes large
quantities of sediments to Kuril-
Kamchatka volcanism, states that a
period of maximum explosive volcanism
occurred at 10 mybp. Abundant deposi-
tion of volcanics and biogenic silica
continues today.

G. Seismic Activity

The Kuril-Kamchatka earthquake region
is characterized by a tabular block of
earthquake foci dipping landward from
the Kuril-Kamchatka Trench., Under
Kamchatka, the dip of this block is
50-60° for earthquakes having focal
depths of 220 km or less and 75° for
deeper ones. The focal zone block
measures 40-50 km in thickness
(Fedotov, 1968). A line of active
volcanoes parallels the Kuril-Kamchatka
Trench at an average distance of 200-
2€0 km northwest of the trench axis.
Beneath the volcanic zone the depth of
the earthquakes averages 100 km under
Kamchatka and 120 km under the Southern
Kuril Islands. Deeper earthquakes
occur underneath the southern Kuril
volcanoes than those und:r the northern
Kuril volcanoes. Deepest eartnquakes
occur where the block dips beneath the
Sea of Okhotsk, and all earthquake
activity ends where the block appar-
ently terminates under continental
areas of Sakhalin and Siberia at depths
in excess of 400 km.

1. Seism{¢ Studies

The seismicity of the Kuril region is
dramatic and has been studied by
Russian, japanese, and western scien-
tists. By analyzing focal mechanisms
and magnitudes of earthquakes,
Averyanova (1965, 1975) has mapped
areas of horizontal and vertical
conpression and tension in the crust
and upper mantle, and nas correlated
the zones with the repetition rates of
earthquakes. Fedotov (1968, 1963)
postulates velocity structures in
various regions of the earthquake
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Zones. e states that there is a
ten-fold decrease in earthquakes from
the upper 20 km to 125 km and from

125 km to 250 km. Tar 2kanov and Leviy
(1968) plotted earthquake magnitude vs.
depth for all recorded world earth-
quakes and found intervals where high
magnitude earthquakes are absent.

These zones of |ow magnitude earth-
quakes (60-90 km, 120-160 km, 220-

300 km and 370-430 km) were suggested
to be low velocity and strength zones
in the upper mantle of the Kuril
region. Kasahara and Harvey (1976)
reported results from an ocean-bottom
seismometer (OBS) installed in the
southern region of the Kuril Trench;
they give velocity data based upon
earthquakes occurring in the Kuril and
Japan earthquake systems. Veith (1974)
mow .led the velocity structure of the
region based upon earthquake data.
Ukawa (1979) also gives velocity models
of the upper mantle under the Kuril-
Japan Trench and refutes the idea of a
continuous low velocity layer paral-
leling the down-go‘ng s'ab. FEarth-
quake data are compiied by the National
Earthquake Information Service (NEIS),
Boulder, Colorado, and analyses of
these data are given in this report,

2. Earthquake Epicenters

Somewhat at variance with the usual
seismological conventions, earthquake
epicenters are plotted here in discrete
depth intervals of 0-40 km, 40-70 km,
70-120 km, 120-200 km, 200-300 km,
300-400 km, and Breater than 400 km
using 1965-1975 data compiled by NEIS.
Earthquakes plotted have magnitudes of
four or greater. The position of the
depth bands of earthquakes is corre-
lated with the geography and the
geology of the Kuril-Kamchatka region
to disclose the seismic trends and
inhomogeneities. Plots are presented
in Figures 39-45,

Skallow earthquakes form the upper
boundary of the focal Zone and they
occur in scattered areas outside the
focal zone (Fig. 39). For the purposes
ot this report, shallow earthquakes are
defined as those occurring at a depth

of 0-40 km. Earthquake focal depths
cannot be resolved in the 0-10 km dep.h
range. Most "shallow" earthquakes
occur west of 1he Kuril-Kamchatka
trench. In rhe vicinity of the trench,
focai mechanism solutions indicate that
the earthquakes are Caused mainly by
dip slip fault displacement or ten-
sional stress (Aver'yanova, 1965).

Other zones of shallow earthquakes are
located along Sakhalin and in the
Western Aleutian area. The Southern
Kuril region has the highest concentra-
tion of shallow earthquakes, while the
Sparsest concentration is at about
50°N, coincident with the location of
an upper mantle bulge to be discussed.
The Bussol Prolijy region (47°N) is
aseismic,

The 40-70 km earthquakes form a nar-
rower band than the shallower earth-
quakes (Fig. 40). Greatest concentra-
tions are again located in the Southern
Kuril region, while the smallest con-
centration is in and north of the
Bussol Proliv area. The Western
Aleutian earthquakes diminish jn
concentration pPresumably because the
mechanism responsible for the Western
Aleutian earthquakes is a strike slip
movement along the trench (Cormier,
1975) rather than an underthrusting as
in the Kuril region. In this depth
range, earthquake mechanisms change
from the tensional stress and normal
fault displacement to compressional
stress and thrust faulting
(Aver'yanova, 1965).

Intermediate depth earthquakes occur-
ring between 70 and 120 km are shown in
Figure 41. This Compact earthquake
band is centered over the Vityaz Ridge
in the Southern Kuril area and lies
just east of the volcanic belt in the
Northern Kurils and Kamchatka. Concen-
trations are only slightly higher in
the Southern Kurils,

The 120-200 km depth earthquake band
(Fig. 42) underlies the volcanic belt
in the Southern Kuril area and lies
just west of the volcanic belt of the
Northern Kurils and Kamchatka. In the




Southern Kurils, the earthquakes are
also scattered near the trench. This
may be due to errors of locating the
epicenters (R. Jacobson, pers. comm.).
Concentrations are lowest under
Kamchatka.

As compared to earthquakes shallower
than 0-200 km, earthquakes deeper than
200 km (Fig. 43) exhibit obviously
different distributions and concentra-
tions. The 200-300 km earthquakes are
concentrated in two regions: west of
Hokkaido and west of the Northern Kuril
Islands, with a gap existing between
the two in the Kuril Basin. In sum-
marizing the works of Russian authors,
Sykes et al. (1968) agree that normal
faulting is occurring in these deeper
earthquakes and along the outer wall of
the focal zone, whereas the shallower
earthquakes are largely accompanied by
thrust faulting.

The 300-400 km zone of epicenters (Fig.
44) is also concentrated in two
regions: west of the Southern Kurils
adjacent to the area where the gap in
the 200-300 km quakes occurs, and west
of Kamchatka where earthquakes are
sparser. Gaps in earthquake distribu-
tion are found west of Hokkaido, where
the highest concentrations of 200-

300 km earthquakes occurred, and in the
region of 49°N.

Earthquakes with depths of 400 km or
more (Fig. 45) are scattered sparsely
in a continuous zone that trends
northeast-southwest from about 47°N to
54°N. The southern end of the zone
lies beneath Sakhalin. The deepest
earthquakes appear to end about 600-
700 km west of the trench axis.

H. Deep Seismic Velocity Structure

The layering and associated seismic
velocities which constitute the deep
structure are presented for the fol-
lowing three areas: the seismically
active area or focal zone, the areas
beneath, and east of, the focal zone;
and the areas above, and west of, the
focal zone (Fig. 53). These gross
areas cover all possible paths that

seismic waves from the seismically
active areas might travel in reaching
an MSS at the candidate sites.

Although nuclear testing is not likely
to occur deeper than 10 km, earthquakes
in the active region can occur at any
depth to 500 km or more. While the

pr imary concern of this report is to
research shallow events, the deep
structure may influence the propagation
patterns of even the shallowest events.
For this reason, it is necessary to
concern oneself with the deep earth-
quakes whose ray paths would enter the
same volumes within the earth.

In addition to the seismological
overview, related geophysical param-
eters, namely, free-air gravity and
heat flow, are included in this sec-
tion. A series of maps are used to
organize the large quantities of
information into a convenient, easily
comparable format.

1. Deep Velocity Structure Beneath and
East of the Focal Zone

Since the proposed MSS will be moored
in Northwest Pacific oceanic crust,
extensive knowledge of the deep struc-
ture is required to reliably explain
local effects on incoming seismic
waves. Unfortunately, specific data
needed for study is not available.
Generally, only large scale models can
be formulated from the available data.
Works by Lamont-Doherty Geological
Observatory give generalized informa-
tion for overall Northwest Pacific
crustal velocities that is based upon
seismic reflection and refraction work
with sonobuoys. Soviet crust and upper
mantle studies based upon deep seismic
sounding (DSS) data yield crustal layer
models different from those of Lamont
scientists. OBS studies by the Hawaii
Institute of Geophysics and Japan have
resulted in upper mantle velocity meas-
urements and models of the southern
Kuril Islands.

From seismic refraction and reflection
studies (Den et al., 1969; Houtz et
al., 1970; Shor et al., 1970; Houtz,
1976; Houtz et al., 1976; and Houtz et




al., 1979), crustal models have been
proposed for regionis of the Pacific
Ocean. General crustal sections are
located in Figure 46 and are depicted
in Figure 47. The basic profile is
divided into layers 1 through 3 with
sublayers. Layer 1 is unconsolidated
sediment with an average velocity of
1.74 km/s (Houtz, 1979). Layer 2A is
oceanic basalt that is possibly capped
by consolidated sediments (layer 1B)
and/or volcanic material (Houtz, 1976).
Layers 2B, 2C, and 3 are oceanic
crustal materials. Average Pacific
crustal velocities for layers 2A
through 3 are: 2A, 3.6 km/s; 2B, 5.2;
2C, 6.1; 3, 6.9 (Houtz, 1976). The
profiles reveal that boundaries between
2A, 2B, and 2C are often difficult to
delineate. Layer 2A velocities may
approach layer 2B velocities in older
crust (Houtz, 1976). Profile D in
Figure 47 shows the crustal model used
by Kasahara et al. (1976) for their OBS
study on the oceanic crust adjacent to
Hokkaido. The model is based upon Den
et al. (1969) and Ludwig et al. (1966).

Soviet models of oceanic crust, based
upon deep seismic sounding (DSS), are
presented in Profiles T and A, respec-
tively (Tuyezov, 1970, and Zverev,
1977). These models differ f om LDGO
profiles by the omission of layer 2 and
by deeper penetration in the Soviet
models. Of note is that oceanic ¢, ust
in Tuyezov's (1970) model is thicker
than the surrounding profiles.

Zverev's model of the Northwest Pacific
introduces a deeper (9.0 km/sec) bound-
ary at a depth of 29 km, which he calls
the true crust-mantle boundary. Though
obvious differences occur between
American and Soviet crustal models, the
isostatic equilibrium of the models is
not in dispute. The Soviet 6.3 km/sec
to 7.0 km/sec "oceanic" layer appears
to be an average of the LDGO layers 2
and 3.

2. Velocities in the Focal Zone

In general, the focal zone is the
seismically active region wheie the
downgoing oceanic slab of the Pacific
plate underthrusts the Kuril Islands of
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the Asian plate. Specific seismic
velocities are difficult to measure for
the focal zone, and measurements
presented in this section represent
some kind of overlap with areas above
and below the focal zone.

Upper mantle models for regions seaward
of the Kuril focal zone are presented
by Kasahara et al. (1976), and include
results from the works of Ukawa (1979)
and Fedotov (1965, 1968). Velocities
of P waves from two Kuril earthquakes
have been measured through the upper
mantle seaward of the southern Kuril
Islands by an OBS moored on oceanic
crust off Hokkaido (Kasahara et al.,
1976); for positions of the earthquakes
see Figure 46. Assuming a homogeneous
upper mantle, Vp velocities of 8.97 +
0.34 km/s for a 137 km deep earthquake
(Q-2) and 8.12 + 0.28 km/s for a

0-60 km earthquake (Q-1) were obtained.
Based upon the seismic waves arriving
at the OBS from focal zone earthquakes
Kasahara et al. concluded that Vp
increased with depth in the upper man-
tle and that the average velocity for
the upper 230 km is greater than

8.5 km/sec. Fedotov (1965) measured
velocities of 8.2-9.0 under oceanic
crust east of the southern Kuril
Islands. He states that mantle veloc-
ities under oceanic crust are consist-
ently higher than mantle velocities
under the Kuril Island arc and the Sea
of Okhotsk. Ukawa (1979) proposes ihat
the low velocity layer beneath the
Kuril Trench is not paraliel to the
downgoing slab. He describes a low
velocity layer at 90-200 km depth that
has 1-5% lower P wave and 5-10% lower S
wave velocities than those found imme-
diately above the layer. Adjacent to
the focal area the low velocity layer
thirs, and no velocity gradient exists
down to 30 km heneath the high velocity
downgoing lithospheric slab. Ukawa's
velocity model NVL is to be contrasted
with the Japanese Trench model ARC-TR
of Fukao (1977). Figure 48B shows that
earthquake waves converging upon the
Hawaiian OBS of Kasahara et al. (1976)
would have to originate at focal depths
greater than 200 km in order to pen-
etrate the anomalous low velocity
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gradient layer or no-velocity gradient
layer. For the proposed MSS sites,
earthquakes shallower than 100 km would
not penetrate the low-velocity or no-
velocity gradient layers. This model
is probably false, since we did not
consider the effects of refraction
through the medium.

Focal zone models are presented by
Tarakanov et al. (1968) and Veith
(1974). Tarakanov et al. (1968)
plotted high-magnitude earthquakes
against depth and found that, at the
following four intervals of focal
depth, earthquakes were sparse: 60-
90 km; 120-160 km; 220-300 km; and
370-430 km. They suggest that these
depth ranges have low seismic velocity
and material strength. Veith's (1974)
focal zone model, Figure 48A, shows
that seismic velocities are consist-
ently greater within the focal zone
than at equivalcini depths on either
side of the focal zone.

3. Seismic Velocities West of and Above

the Focal Zone

This section deals with seismic veloc-
ity structures located geographically
west of Kuril Trench and above the
downgoing slab. The velocity struc-
tures in this area are important
because shallow earthquakes are often
scattered outside the focal zone, and
potential nuclear tests may ouccur on
Kamchatka, near Sakhalin, or within the
broad band of shallow ::-thquakes
between the trench ana volcanic
regions. Seismic wave ray paths of
earthquakes occurring in those regions
must travel through the crust and
mantle above, and landward of, the
focal area before reaching the proposed
MSS site; hence, the velocity struc-
tures should be known.

Most velocity studies of the crust and
mantle above the Kuril-Kamchatka focal
zone were conducted by Russian scien-—
tists using the "deep seismic sounding"
(DSS) method. Th: DSS method is de-
scribed in Kosminskaya et al. (1968),
and early DSS data were compiled by
Kosminskaya et al. (1964). Cross
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sections of velocity layers, contour
maps of thicknesses of velocity layers,
velocities used to delineate layers,
and depths of the layers are presented
in Figures 49 through 53. The cross
sections (Fig. 49) are based upon DSS
interpretations of Weizman (1965),
Zverev (1977), Tuyezov (1970), Tuyezov
et al. (1968), Sychev (1977), and
Gayanov (1968). Contour maps (Fig.
50-53) are based upon the same DSS data
interpreted by Sergeyev (1977).

The Russian scientists generally divide
the crust into the following velocity
layers: an upper 2.0 to 2.8 km/s uncon-
solidated sediment layer; a "granitic"
layer or "layer complexy" with veloc-
ities of 4,3 to 6.0 km/s; and an
"oceanic" layer or "layer complexsy"
with velocities of 6.0 to 6.9 km/s.

The principally terrigenous source of
the sediment layer explains the higher
velocities as compared to the 2,0 km/s
oceanic sediments, since terrigenous
sediment is generally more consolidated
than deep ocean sediments.

Scientists disagree on the nature of
the "granitic" layer, which is thickest
under continental type crust. Tuyezov
et al. (1968) believe that the '"gra-
nitic" layer of the Kuril Islands is
actually a consolidated sediment layer.
This explanation was adopted by
Sergeyev (1977), and this material is
included in his estimate of the thick-
ness of the lower sedimentary layer
(Fig. 53). Markinin (1968) proposed
that andesitic volcanics constitute
much of this layer.

Whatever the true nature of the

5.5 km/s average velocity layer, its
occurrence is thickest under the conti-
nental crust of Kamchatka and Sakhalin,
with lesser thicknesses under the Sea
of Okhotsk and Kuril Islands. The
layer is absent from Russian profiles
of oceanic crust an' the suboceanic
Kuril Basin. Layer coiplexg, which

has an average velocity of 6.6 km/s, is
the thickest crustal layer except in
continental crust. It is present in
oceanic crust and is thickest under the
region between the trench and island

-
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arc. Under the suboceanic Kuril Basin
layer 2 is thin, but it constitutes the
total solid crust (Profile H-H", Fig.
49). For a more explicit description
of thicknesses of the crustal layers
and the velocities used to define them,
consult Figures 49-53,

Crustal thickness varies over the
Kuril-Kamchatka focal zone (Sergeyev,
1977) (shown as depth to Moho in Fig.
50). Moho depths of 35 km under North
and South Kuril Islands and Sakhalin,
30 km under much of the Sea of Okhotsk,
and 40 km under Kamchatka are repre-
sentative of subcontinental and conti-
nental type crust. Lesser Moho depths
of 15 km under the Kuril Basin and

20 km under much of the central Kuril
Island arc region represent suboceanic
type crust. A region of anomalous,
shallow Moho depth near the Bussol
Proliv (see Map 1), which connects to
the Kuril Basin, represents a sub-
oceanic type crust bridging the
Northwest Pacific to the Kuril Basin.
Profile FF' (Figs. 46 and 49) illus-
trates the shallow Moho depth and its
oceanic velocity structure.

Upper mantle velocities defining the
Moho and presenting the deeper mantle
velocities described in the works of
Fedotov (1963, 1968) appear in Figure
48. Generally, upper mantle velocities
are greater under the Northwest Pacific
than under the Kuril-Kamchatka focal
zone; both regions are characterized by
velocities greater than 8,0 km/sec.
Above the focal zone, velocities are
generally 8.0 km/s or less. An excep-
tion to this rule is shown in Profile
AA' of Figure 49, where Kamchatka is
shown to have 8.2-8.5 km/s upper mantle
velocities. This profile represents
continental crust on Kamchatka, but its
location is actually north of the
seismic zone., Fedotov (1963), refer-
enced in Sykes et al. (1968), presents
increasing upper mantle velocities of
7.6 to 8.1 in descending order beneath
the southern Kuril volcanic belt (Fig.
48).
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l. Gruvity and Heat Flow

Free-air gravity anomalies (Watts,
1976) (Fig. 54) and heat flow (Uyeda et
al., 1968) (Fig. 55) are related to
velocity structures. Large positive
gravity anomalies generally occur over
regions of thick crust that is jso-
statically too heavy, as between the
volcanic arc and trench where the crust
has been thrust upward. Large nep ~ve
anomal ies are present over the trencn
areas in response to the under thrusting
of the downgoing slab. 1In the North-
west Pacific another large positive
anomaly is located over the Emperor
Seamounts. This anomaly is probably
due to the isostatic surplus of vol-
canic material deposited. The sea-
mounts are flanked by large negative
anomalies, representing edge effects of
the Emperor Seamounts. The anomalie:
are probably due to downwarping of the
lithosphere caused by the load of the
seamounts. Minor positive anomalies
exist over the Hokkaido Rise; isostatic
surplus of crust here can be explained
by the buckling of the oceanic crust
before it descends into the trench.

The Shatsky Rise exhibits only a slight
gravity anomaly, an occurrence indi-
cating that the rise may be isostat-
ically equalized.

Nor thwest Pacific crust generally has
low heat flow; however, west of the
Kuril Trench, the heat flow increases.
Based upon the flow and conductivity
measurements of Langseth et al. (1970),
calculated borehole temperatures sho.id
not exceed 40°C, assuming the borehole
is in an area that has less than 500 m
of unconsolidated sediment cover.

Uyeda et al. (1968) (Fig. 55) show i at
areas of highest heat flow occur in the
Kuril Basin in the Sea of Okhotsk. The
regions of known higher heat flow are
located west of the Kuril Trench.

V. Discussion and Site Selection

The purpose of this discussion is to
evaluate environmental parameters and
propose potential MSS sites. Because
environmental parameters vary in their
relative importance to the MSS they



should be weighted for th. selection of
the best site. Parameters can be
weighted according to the extent that
they vary geographically, as well as
how critical they are to MSS planning.
Sorme parameters vary geographically,
while others are essentially constant
throughout the study areas. Some
parameters pose no special constraints
upon MSS engineering, while others
require special attention.

Some environmental parameters which
have less impact upon MSS site selec-
tion are those that are not critical to
present MSS specifications or those
that do not geographically vary. In
our opinion, neither fouling nor heat
flow pose serious problems to MSS
engineering in any Northwest Pacific
location. On the other hand, surface
sediment types and surface sediment
physical properties do not vary
geographically, but these parameters
pose MSS bottom mooring problems
throughout the study becase of low
sediment rigidity.

Geographically varying parameters
influencing MSS site selection are
those that: (1) threaten MSS equipment,
(2) cause acoustic noise, (3) specify
better local environment, and (4)
specify better regional location.

A. Environment Threats to MSS Equipment

Severe or catastrophic environmental
conditions most likely to threaten MSS
equipment include weather, sea states,
icing, currents and vandalism. Gener-
ally, the severest weather, sea states,
and icing occur in northern areas of
the Northwest Pacific during the
winter. Conditions become less severe
to the southeast.

Vandalism poses a threat in areas of
densest fishing because of either
intentional or inadvertant fouling of
MSS cables and buoys by long lines.
Because fishing activity is greatest in
the west and least to the nortneast, it
is not a likely threat east of the
territorial limits (approximately

370 km).
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Both wind stress and geostrophic

currents will impact MSS design and
implantation techniques. Winter storms
will generate excessive surface

currents and severely ice surface
exposed instrumentation. Thus, a sub-
mersible buoy design must be considered
as a means of protecting the installa-
tion and de-icing surface equipment.
Minimum wind speeds and maximum water
temperature increase the viability of
the de-icing procedure.

B. Acoustic Noise Sources

Acoustic noise is caused by ship
engines and current flow past suspended
and bottom-mounted instruments. Local
low-level seismicity could also be
defined as noise in the MSS context.
Noise caused by shipping and currents
is greatest in the southern Northwest
Pacific where the Kuroshio current
dominates. An MSS site should be north
of about 42°N to avoid this region of
greatest noise. Geomorphologically
constricted areas should be avoided in
site selection because of possible
intensified bottom currents. Possible
areas of low seismicity might be the
Hokkaido Rise and toward the Kuril-
Kamchatka Trench area.

C. Optimum Local Environment

Ideal local environmental parameters
consist of low bottom roughness,
sediment thickness greater than 200 m,
and homogeneous geologic features.
Because installation of the MSS
involves drilling through sediment and
installing a seismometer in crustal
rock, the local environment should also
have a predictable geologic column
which will not create drilling prob-
lems. Two site areas were chosen on
the basis of their ideal local geology
(Figs 2). Site area 1 is a well-~
surveyed area but probably has chert
at the base of the unconsolidated sed-
iment. Although site area 2 is not as
well-surveyed, chert beds there are
probably either thinner or missing.
Since drilling chert poses difficui-
ties, site 2 may be the better loca-
tion.




D. Optimum Regional Location

The authors assumed that the best
regional criteria for an MSS location
were:

0 to stay outside the 200 mile limit
of foreign territories.

o to be as close as possible to the
Kuril-Kamchatka earthquake region to
limit reception of seismic waves
from other major seismic areas.

0 to be centered geographically
opposite the Kuril-Kamchatka region
to best receive uniform seismicity
coverage.

0 to compliment existing earthquake
monitoring stations on Japan, the
Aleutians and Hawaii.

Based upon these criteria, the site
areas chosen are adequate for an MSS
installation.

Hart et al. (1980) have evaluated
seismic propagation paths and suggested
that highest energy received from
Kuril-Kamchatka seismic occurrences for
all depths are generally greatest in
eastern regions of the Northwest
Pacific which are greater than 500 km

from the Kuril-Kamchatka Trench axis.
Areas less than about 500 km from the
trench are likely to fall in a seismic

shadow zone, which might be an unfavor-
able condition for an MSS site. Unfor-
tunately areas outside the shadow zone
are poorly surveyed and are geolog-
ically complex. These areas are the
northern Shatsky Rise, the Emperor
Seamounts, and adjacent western basins,
all of which have unpredictable
acoustic basement.

Three additional sites outside the
shadow zone have been selected. They
are site 3 (41°N, 162.5°E), site 4
(44.8°N, 168°E) and site 5 (47.2°N,
166.5°E). All three sites are located
on smooth bottom with a reverberant
layer acoustic basement. The locations
were selected for areas where this
layer appears to thin, but data and
control are poor for all three loca-
tions. Because the locations are
farther from the trench than sites 1
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and 2, more complex geologic structures
exist between each site and the earth-
quake region. Site 3 is similar to
site 1 in acoustic stratigraphy, sed-
iment thickness, weather, and current
conditions. Likely problems at site 3
are acoustic noise from currents and
ships, unpredictable basement, and
large seismic energy input for earth-
quakes from th Japan Trench. Sites 4
and 5 are more centrally located
opposite the Kuril-Kamchatka Trench,
but each have only about 200 m of
sediment and are very poorly surveyed.
Acoustic noise due to shipping and
currents are less likely to be a
problem, and weather conditions are
slightly more severe than at site 3.

VI. Recommendations

In summary, the areas selected on the
basis of environmental parameters are
plotted on Figure 2. Sites 1 and 2
were chosen primarily because they have
the best available local geological
environments. Relative to other North-
west Pacific locations, site 1 has mild
weather conditions and high acoustic
noise, and is located south of the
geographic center of the Kuril-
Kamchatka seismic zone. On the other
hand, site 2 has moderate weather con-
ditions, moderate acoustic noise, and
is centered geographically opposite the
seismic zone. Sites 1 and 2 are
located within the seismic "shadow
zone" positioned by Hart et al., (1980).
Three sites outside the shadow zone
have been designated but in the opinion
of the authors the sites are inferior
to sites 1 and 2.
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