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THE PROBABILITY OF HITTING A POLYGONAL TARGET
1. INTRODUCTION

Military targets are generally represented by simple geometric
shapes in performance models which require the conputation of hit probabil-
ity. Circles and especially rectangles whose sides are parallel to the
coordinate axes of the weapon delivery error distribution are the most
commonly used shapes. A much more realistic representaion of target shape
would frequently be possible through the use of a polygon. However, with
such a representation the calculation of hit probability becomes much more
difficult. The purpose of this report is to present a simple algorithm for
the computation of such probabilities.

2. DISCUSSION

The following paragraphs state the problem, the assumptions made,
and develop the computational algorithm.

2.1 Assumptions.

The target representation will be assumed to be a general n-sided
planar polygon. The weapon delivery error will be assumed to be bivariate
in the plane of the target. The general algorithm to be presented does not
require that the delivery errors be normally distributed, but the FORTRAN
subroutine and numerical examples included will be based on that further
assumption.

2.2 Problem Statement.

The problem is to derive an algorithm which computes Py, the
probability that a random shot from the assumed bivariate delivery error
distribution hits the polygonal target.

2.3 Method of Solution.

The basic building block for this algorithm is the integral of
the probability density function of delivery errors over a region consisting
of the entire target plane "below" a specified line segment. Specifically,
given a line segment connecting point i whose coordinates are (xj,yj) with
point j whose coordinates are (xj,y-), we Wwill need to integrate the delivery
error distribution over the region ﬂ defined by

x between x;i and xj

R: j~Yi
y less than y; + (x=x3) « (1)
Xj=Xj




r—

Such a region is shown as the shaded area in Figure 1. If f(x,y) denotes
the probability density function for the bivariate distribution of weapon
delivery error, this integral is given by

. Yj-Yi (
i Vi Xj'xi) x=x)

N
Fi,j = f(x,y) dy dx

This integral will be positive when xj>xj, and in that case will be the
probability of hitting the region R. "However, in the present application,
this inequality will not always hold, so we will not, in general, refer to
this integral as a probability.

Applying the rule for interchanging the upper and lower limits of
integration, it follows that

Fi,j = <Fj.i (3)
This relationship will be important in simplifying subsequent results.

The next step is to determine how these Fj o 's can be used to
determine the probability of hitting a triangular target. The result for
the triangle will be used in a mathematical induction development to extend
the result to a general n-sided polygon.

There are two possible types of triangles that must be considered.
In the first of these (Figure 2a), the "upper boundary" consists of two
sides, and the “lower" boundary consists of one side. In the second type
(Figure 2b), the "upper" boundary consists of one side and the "lower"
boundary consists of two sides. The probabilities of hitting these two
types of triangles will be derived in terms of the F function, and it will
be shown that the same formal expression can be used for each.

For triangular targets, the hit probability is the probability of
hitting between the “upper" boundary and the "lower" boundary. This can be
axpressed as the probability of hitting below the "upper” boundary, minus the
aronability of hitting below the "lower" boundary. In the first type of
triangle this probability is:

Py(Type a) = F1 2+ Fa3 - F1.3, (4)

where Fy 2 + F 3 is the probability of hitting below the "upper" boundary,
and Fy 3°1s the’probability of hitting below the "lower” boundary, with the
verticés labeled consecutively in the clockwise direction around the
triangle. Similarly, for the second type of triangle,

%
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Figure 1 Description of Basic Probability Building Block.
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Figure 2. The Two Possible Types of Triangles.
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Py (Type b) =F*2-(F1.3+F3 2) =F12-F1,3-F32 (5)
where F1 o is the probabilfty of hitting below thé “upper™ boundary and
Fl’? + F3 2 is the probability of hitting below the "lower" boundary.
Applying fﬁe relation F; j = <Fj,i (Equation 3) to each of the "lower"
boundary teris in these two expréssions,

Py (Type a) = Fy 2 + Fp 3 + F3 ) ) (6)
an
Py (Type b)

Fl,2 + F2,3 + F3,1 « (7)
Thus, the two types of triangles can be treated the same formally: the
sunmation of the F's proceeds in a cyclic fashion around the triangle,
taking the sides in turn and integrating in each case from the first value
of x to the next value in the cyclic order. The relative magnitudes of the
x's themselves will automatically determine the proper sign for the associated
value of F, so that the F's can always be added to obtain the desired
result. Therefore, for any triangle target with the vertices ordered con-
secutively in a clockwise order, the hit probability is

Py (3) = F1,2 + F2,3 + F3,1 (8)

This result can be rewritten as

3
Py (3) =_Zl Fi,imod3+1 (9)
'|=

where imod 3 denotes the remainder when i is divided by 3.
Actually desired is the extension of this result to a simple n-

sided polygon, that is, one whose sides never cross each other. Since such
a polygon also has n vertices, the desired extension is:

n
Py(n) =_Zl Fi,imodn+1 (10)
'|=
This result will be established using mathenatical induction. In
particular, it mst be shown that:

I: The result holds for n=3, the polygon with the least possible
nunber of sides, and

II: Assuning the result true for a polygon of (k-1) sides, show
that this leads to its truth for a polygon of k sides.

Part I has already been demonstrated, leaving only Part II. At this point
tw additional propositions are required. These are




) An% k-sided Eol gon can be partitioned into a triangle and a
polygon of ( -f{ sides, and

o Given two polygons that share a common side, a traversing of the
perimeter of each polygon in the clockwise direction results in
the common side being traversed in one direction as one polygon
is being traversed, and in the opposite direction as the other
polygon is being traversed.

In “Analytic Function Theory, Vol. 1" by Einar Hille, Blaisdell
Publishing Company, 1959, there is a proof (page 286) that every simple
closed polygon can be triangulated, that is, partitioned into triangles.

This result establishes proposition (1). Figure 3 shows a number of poly-
gons, some more odd shaped than others, with each partitioned into a triangle
and a polygon of one less side. Figure 4 illustrates the idea of the side
somwon to a pair of polygons being traversed in opposite directions as each
polygon is traversed in a clockwise motion. A proof of proposition (2) has
not been found, but its truth is almost obvious, and will be assumed.

The proof of Part Il of the mathematical induction proceeds as
follows: Partition the k-sided polygon into a triangle and a polygon of
(k-1) sides. This is possible by proposition (1). This is accomplished by
connecting a pair of vertices of the k-sided polygon which are separated by

a single vertex. Denote the vertices connected in this way as vertices m
and m2.

By the assumption of Part II of the induction, the probability of
hitting the (k-1) sided polygon is

PH(k-l) = Fl ’2+F2’3+...+Fm_1’m+Fm’"l+2+F"H.2’[m3+oo.+Fk’1 . (11)

By the result of Part I of the induction, the probability of
hitting the triangle is

P(3) = Fmyme1 + Fmel,m2 + Fme2,m - (12)

Proposition (2) insures that the side common to the (k-1)-sided polygon and
the triangle (the side connecting vertices m and m+2) will be traversed in
opposite directions in the development of Py(k-1) and Py(3). Thus, wnen
these two probabilities are added to obtain Py(k), Equation {(3) insures

that Fio m2 and Fru2 p cancel each other, establishing the desired result,
namely, that

PH(k) = Fl,2+F2’3+000+Fm_1’m+Fm’m+1+Fm+1’tn+2+o-o-o.+Fk.1 . (13)

k
= 1 Fi, imodk+l
i=1

This completes the proof that establishes Equation (10). This
result depends only on the coordinates of the vertices of the polygonal
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Figure 3. Example of Partitioning Polygons.
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Figore 4. Illustration of Opposite Motion Along Common
Side of Two Adjacent Polygons
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target. It becomes extremely easy to apply, requiring only a means for
calculating the function Fi, defined in Equation (2). When presented with
a general polygonal target, %he vertices are numbered consecutively in a
clockwise rotation around the polygon, starting at an arbitrarily chosen
vertex. The values of the F; ,j function for the sides, taken in order, are
then summed to obtain the h1t *probability.

3. COMPUTATIONAL FORM

The basis for this hit probability formulation is the function
Fi,j defined in Equation (2), and repeated here as Equation (14).

¥ ¥1
X x Xj (x- xi)
J ‘ (14)
Fi,j = x,y) dy dx

X-X-| y"w

Weapon delivery error is generally assumed to be distributed according to
an uncorrelated bivariate normal distribution. Under this assumption,

f(x,y) = ! ¢ A ) {:E_ (15)
Ox Oy Oy oy

where (A,B) is the mean impact point, oy and are the standard
deviations of the delivery error in the x and y directions respectively,
and

2

[ad

1
v 2m

for 411 t, the unit normal probability density function. Thus

~|

o(t) = e

j y1+(yj-Yi) (x-x5)

Xj'xi

1 x=A y-8
Fij = ¢ —-- ———\dy dx
°x°y cx Oy

(16)

1




x-A y-B
Make the changes of variable u = and v = ____, and let
Ox %
Yj-¥i xj-A Xj-A Yi-B .
miy = s S , Sj = .—---and T; = ---- then this integral can be
xj‘xi Ox ox Oy
Wwritten as
5
Fi,j = f ¢(U)Q(T] + mij[u-Si])du
u=s~i Gy

Z
whera o{Z) = [ ¢{t)dt, for all Z, the cumilative nornal probability

t=-w

function.

In general, this integrati~» must be perforwed numerically. How-
ever, there are two special cases wh.re this is not necessary. In the
first, identified by xj=xj (or S$j=5;), the upper and lower limits of
integration are the same and F;y ; = 0. This is consistent with the notion
that Fy j is the integral of the probability density function “under" the
Tine segment connecting (xi,yi) and (xj,yj). In this special case, the
conaecting segnent is vertical, and thus %as no :easurable area "under" it,
In the second special case, identified by Yi=yj (or m1j=0), the integral
reduces to

S.
Fi,3 =UIS%¢(U)0(T1)du = o(Tj)[e(s5)-0(sy)] o)
N

The function ¢ is available on most computers. In the yeneral
case requiring numerical integration to evaluate F; j» one further siupli-
fication is useful. The function ¢(u) is essentia11y zero-valued for
P!>, Thus, the numerical integrasion can be mde wre officient by
ad justing the values of Sj and S so that no integration steps oulside the
ittarrval (-4< u < 4) are inc]udeé.

\ FORTRAN subroutine for calculating the probability of nitting 4
oodzgal Larget using this wethod, along with instructions as to how to
t5 2 nads o sioroautine in d FORTRAN progrean, are iazlid2d ia bhe Appondix,

4, SA®LE CALCULATIONS

The polygonal target shown in Figure 5 was used 4s 4 basis for
chieniag Bhis procedure and the associated FORTRAN s.oroutine. The proba-
bility of nitting this polygon was easily hand-calculated 9y partitioning
it into rectangles each of whose sides are parallel to the coordinate axes.

"

—

o

e

A

e g



-1

Figure 5. Polygon for Sample Computation.

Figure 6. Polygon Rotated 30°
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This result was then compared to the result from the approach of this report.
As the polygon appears in Figure 5, the two special cases of the

method apply - for the vertical sides (such as the side connecting vertex

11 and vertex 12) the function Fi,j=0 and for the horizontal sides

(such as the side connecting vertex 10 and vertex 11) Equation (18) applies.
The agreement between the hand computation and the subroutine result was
established. Then the polygon was rotated 30° about the origin, as shown

in Figure 6. As long as oy=o, and A=B=0, the probability of hitting

the rotated polygon should be the same as that for the unrotated polygon.

In this case, however, the general expression for Fj j applies for all

sides since none of them are parallel to the coordinate axes. The resulting
probability was the same as that for the unrotated polygon. Figure 7 shows
the probability of hitting this rotated polygon for A=B=0 and as a function
of ox=ay.

14
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Figuore 7 Probability of Hitting Rotated Polygon.
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APPEND IX
FORTRAN FUNCTIONS

This appendix presents the following three FORTRAN functions
required for the use of this method for computing the probability of hittiny
a polygonal target. These functions are

1. PHIT (called by user's main progran)
2. FI (called by PHIT)
3. FUN (called by FI1J)

The user must include all three of these in his inain program, but needs
anly to call PHIT, The arguments in the call statement are

N = number of sides in the polygonal target

X = array name holding X coordinates of vertices of polygon
Y = array name holding Y coordinates of vertices of polygon
XB = X coordinate of mean of hit distribution

YB = Y coordinate of mean of hit distribution

SX = standard deviation of hit distribution in «x

SY = standard deviation of hit distribution iny

The size of the x and y arrays (>N) must be established with a D IMENSION
statement in the calling program.

The actual numerical integration is accomplished with a Simson
integration subroutine (SIMSON), which requires the function FUN to calcu-
late values of the integrand. SIMSON is resident on the CDC computer at
Aberdeen Proving Ground, but users of other computers may have to substitute
another integration subroutine. In the subroutine used here, a relative
error of 0.001 has been specified. This should provide values of Fj_;
accurate to the third decimal place. The accuracy of the hit probab”ities
depend on the number of these F's that must be added, but in general should
be good to at least two places, and probably more.

17
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FUNCTION PMIT(N,XsYs»XByYB,SX, SY)

THIS FIPICTIVI CMPUTES THE PROBABILITY 7 HITTING AN
H=SIDE'Y POLYGINAL TARGET, THE CNORDINATFS NF THE YERTICFS
OF THC POLYGON ARE STOPED IN THE X AMD Y ARPAYS IM
CONSECYUTIVE CLOCKWISE NRDER ARNUND THE PNLYGNN, T
DELIVEZRY ERRIR DISTRIRITINY IS ASSUMED TN KT BIVARLATE
HORYAL “YITH MEAN (XB,YB) AND WITH CTANDAPD DCVIATINNS

SX AND SY RESPECTIVELY.,

DIMENSIM X(1l),Y(1)
FIRMAT(® BATH SX AND SY MUST BL GPLATEP THAM 2fPN0e/
L S s 'H,Fl)edy? SY = %,F10,.3)
IFISXeGT60s s ANDe SYWGT,0,)61TN S
"RIMNT 1, SX,SY
ST1o
PHITeD,
DN 10 Isl,N
JeHID(I,N) e}
PHITe YHITEFIIIXATI)pYUI)oX(I)aY (I} XR, Y ,SX,SY)
CONTINUE
KECTHRY
£ND

FUMCTIO FIJ(XIaYIoXJaYIaXBoYBrSX»SY)

THIT FPICTIT! PERFIRMS THE IMNTEGPATINN ‘W THE LTIVAF IATF
"WIR AL DENSITY FUNCTION *19DFRY THE DIPFCTEN LIMF SEGHCHT
FROM PIINT (NXI,YI) T2 THE PQINT (XJeYJd).

CYLVNL 7ABCZ A,B,S1

EXTERIAL Fil

FlJe),

IF (XIeEQeXJIPETHIRY

Sis{YI=-XB)/5X

SIP=7]

SIPsAIAXI(SIM,y=4,)

SIPEAIINL(TIPy4,)

Sd=(XJ=(8)/°Y

SJ"=SJ

CIPaNIAXL{SIP,=4,)

SIPsLHTII(TIP,4,)

IF(SI®.CNeSIM)PLT IR

Aa{YI=YR) /Y

DaSX®(YJ=YIV/(SY*(XJ=-XI))

ITAYILENYI) FIJsFHDULAYSL{FNDLSII=FUDLIST))
IFAYI MO, YJ) CALL SIMSOUTI L FY ), SIn,SdP,oCCloL)
prCTYye:|

TN

FRICTI N FI(S)

CYVVIY) 24817 A,B8,C

F'llng3 1872228068 " XN (= FaSaS )& IN{A¢RE (=) )
PIZT RN

eMp
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