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THE PROBABILITY OF HITTING A POLYGONAL TARGET

1. INTRODUCTION

Military targets are generally represented by simple geometric
shapes in performance models which require the computation of hit probabil-
ity. Circles and especially rectangles whose sides are parallel to the
coordinate axes of the weapon delivery error distribution are the most
commonly used shapes. A much more realistic representaion of target shape
would frequently be possible through the use of a polygon. However, with
such a representation the calculation of hit probability becomes much more
difficult. The purpose of this report is to present a simple algorithm for
the computation of such probabilities.

2. DISCUSSION

The following paragraphs state the problem, the assumptions made,
and develop the computational algorithm.

2.1 Assumptions.

The target representation will be assumd to be a general n-sided
planar polygon. The weapon delivery error will be assumed to be bivariate
in the plane of the target. The general algorithm to be presented does not
require that the delivery errors be normally distributed, but the FORTRAN
subroutine and numerical examples included will be based on that further
assumption.

2.2 Problem Statement.

The problem is to derive an algorithm which computes PH, the
probability that a random shot from the assumed bivariate delivery error
distribution hits the polygonal target.

2.3 Method of Solution.

The basic building block for this algorithm is the integral of
the probability density function of delivery errors over a region consisting
of the entire target plane "below" a specified line segment. Specifically,
given a line segment connecting point i whose coordinates are (xi,yi) with
point j whose coordinates are (xj,yi), we will need to integrate the delivery
error distribution over the region R defined byI x between xi and

y less than yi +  19 (x-xi) .
(I)
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Such a region is shown as the shaded area in Figure 1. If f(x,y) denotes
the probability density function for the bivariate distribution of weapon
delivery error, this integral is given by

xj Yi yI-xi)
F(2))

Fij J f(x,y) dy dx

X=xi ya--

This integral will be positive when xj>x i, and in that case will be the
probability of hitting the region R. However, in the present application,
this inequality will not always hold; so we will not, in general, refer to
this integral as a probability.

Applying the rule for interchanging the upper and lower limits of
integration, it follows that

Fi j = -Fj,i (3)

This relationship will be important in simplifying subsequent results.

The next step is to determine how these Fi ,'s can be used to
determine the probability of hitting a triangular target. The result for
the triangle will be used in a mathematical induction development to extend
the result to a general n-sided polygon.

There are two possible types of triangles that must be considered.
In the first of these (Figure 2a), the "upper boundary" consists of two
sides, and the "lower" boundary consists of one side. In the second type
(Figure 2b), the "upper" boundary consists of one side and the "lower"
boundary consists of two sides. The probabilities of hitting these two
types of triangles will be derived in term of the F function, and it will
be shown thdt the sane formal expression can be used for each.

For triangular targets, the hit probability is the probability of
hitting between the "upper" boundary and the "lower" boundary. This can be
!xoressed as the probability of hitting below the "upper" boundary, minus the
.,w)').)ility of hitting below the "lower" boundary. In the first type of
triangle this probability is:

PH( Type d) = F1 , 2 + F2 , 3 - F1 , 3 , (4)

where F1,? + F2,3 is the probability of hitting below the "upper" boundary,
and F1 ,3 is the probability of hitting below the "lower" boundary, with the
vertices labeled consecutively in the clockwise direction around the
triangle. Similarly, for the second type of triangle,
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PH (Type b) F F1 2 - F1, 3 + F3.2) F1,2.- F1,, F3 2  (5)

where F1 2 is the probabiity of hitting below th "upper boundary and
F,3 + F3~, is the probability of hitting below the "lower" boundary.
Applyi ng !e relation Fi i=-Fi i (Equation 3) to each of the "lower"
boundary terms in these two expressions,

PH (Type a) = F1 ,2 + F2,3 + F3 ,1  (6)

and
PH (Type b) = F1,2 + F2 ,3 + F3,1 . (7)

Thus, the two types of triangles can be treated the same formally: the
sunmation of the F's proceeds in a cyclic fashion around the triangle,
taking the sides in turn and integrating in each case from the first value
of x to the next value in the cyclic order. The relative magnitudes of the
x's themselves will aut iiaYt-Ially determine the proper sign for the associated
value of F, so that the F's can always be added to obtain the desired
result. Therefore, for any triangle target with the vertices ordered con-
secutively in a clockwise order, the hit probability is

PH (3) = F1,2 + F2 ,3 + F3 ,1  (8)

This result can be rewritten as

3
PH (3) = Fi,imod3+1 (9)i=1

where imod 3 denotes the remainder when i is divided by 3.

Actually desired is the extension of this result to a simple n-
sided polygon, that is, one whose sides never cross each other. Since such
a polygon also has n vertices, the desired extension is:

n
PH(n) = Fi,imodn+l (10)

i=1

This result will be established using mathematical induction. In
particular, it inust be shown that:

I: The result holds for n=3, the polygon with the least possible
number of sides, and

II: Assuming the result true for a polygon of (k-i) sides, show
that this leads to its truth for a polygon of k sides.

Part I has already been demonstrated, leaving only Part II. At this point
t*) ddditiondl propositions are required. These are
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e Any k-sided pol gon can be partitioned into a triangle and apolygon of (k-1) sides, and

s Given two polygons that share a common side, a traversing of the
perimeter of each polygon in the clockwise direction results in
the common side being traversed in one direction as one polygon
is being traversed, and in the opposite direction as the other
polygon is being traversed.

In "Analytic Function Theory, Vol. 1" by Einar Hille, Blaisdell
Publishing Company, 1959, there is a proof (page 286) that every simple
closed polygon can be triangulated, that is, partitioned into triangles.
This result establishes proposition (1). Figure 3 shows a nunber of poly-
gons, some more odd shaped than others, with each partitioned into a triangle
arid a polygon of one less side. Figure 4 illustrates the idea of the side
.-011,W) to a pair of polygons being traversed in opposite directions as each
polygon is traversed in a clockwise motion. A proof of proposition (2) has
not been found, but its truth is almost obvious, and will be assumed.

The proof of Part I of the mathematical induction proceeds as
follows: Partition the k-sided polygon into a triangle and a polygon of
(k-i) sides. This is possible by proposition (1). This is accomplished by
connecting a pair of vertices of the k-sided polygon which are separated by
a single vertex. Denote the vertices connected in this way as vertices 0)
and mi-2.

By the assumption of Part II of the induction, the probability of

hitting the (k-i) sided polygon is

PH(k-) = F1 ,2+F2,3 + ...+Fm. ,m+Fm,m+2+Fm+2 ,m+3+ .•.+F k ,1 (11)

By the result of Part I of the induction, the probability of
hitting the triangle is

PH(3) = Fm,m+I + Fm+l,m+2 + Fm+2,m . (12)

Proposition (2) insures that the side common to the (k-1)-sided polygon arid
the triangle (the side connecting vertices in and m+2) will be traversed in
,);osite directions in the developinent of PH.(k-1) and PH( 3 ). Thus, when
these two probabilities are added to obtain PH(k), Equation (3) insures
that Fin,+2 and Fro+2, m cancel each other, establishing the desired result,
namely, that

PH(k) F1,2+F2,3+...+Fm- l ,m+Fm,m+1+Fm+1,i + 2 ........ +Fk,1 • (13)

k
= Fi,imodk+1i=1

This completes the proof that establishes Equation (10). This
result depends only on the coordinates of the vertices of the polygonal

9
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Figure 3. Example of Frtitioning Polygons.

Figure 4. Illustration of Opposite Motion Along Common
Side of Two Adjacent Polygons
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target. It becomes extremely easy to apply, requiring only a means for
calculating the function Fii defined in Equation (2). When presented with
a general polygonal target,'the vertices are numbered consecutively in a
clockwise rotation around the polygon, starting at an arbitrarily chosen
vertex. The values of the Fi i function for the sides, taken in order, are
then summed to obtain the hit'probability.

3. COMPUTATIONAL FORM

The basis for this hit probability formulation is the function
Fi, j defined in Equation (2), and repeated here as Equation (14).

xj (1YI, i (x-xi)
~(14)

Fi, j  f(x,y) dy dx

x=x i y--

Weapon deivery error is generally assumed to be distributed according to
an uncorrelated bivariate normal distribution. Under this assuirption,

f(x,y) = _x.Y * ( _ (15)
0rx y kax a\y/

where (A,B) is the mean iirpact point, ax and a are the standard
deviations of the delivery error in the x and y directions respectively,
and

t 2

(t)---e 2

for all t, the unit normal probability density function. Thus

xj ~Y j'Yi \X-
xxi (x-xi ) (16)

1 ( x-A B dy x
Filj:i

axoy OX X

X=X i y=--
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x-A y-B
Make the changes of variable u = and v = _, and let

ax y

Yj-Yi xi - A  xj-A yi-B
Mij Si S . and Ti  then this integrdl can be

*SSi an Txj-xi Ox  Ox Oy

w4ritten as

Fi f i *(u) t(Ti + C- mij[u-Si])du
u=S i  Oy

Z
,.',ere €(Z) J "(t)dt, for all Z, the cuinulative norinal probability

t=
function.

In general, this integrat 4 -' irust be )erfor,,ed nuinerically. How-
ever, there are two special cases wh-re this is not necessary. In the
first, identified by xi=xi (or Si=Si), the upper and lower limits of
integration are the same and F i j-0. This is consistent with the notion
That Fi j is the integral of the probability density function "under" the
ii~ie segent connecting (xi,yi) and (xjy). In this special case, the
cot.i)ecting seg.rent is vertical, and thus nas no :ieasurable area "under" it.
In the second special case, identified by yi=Yj (or mij=O), the integral
reduces to

Si
Fi j =f *(u)o(Ti)du = o(Ti)[s(Sj)-:(Si)]

u=S i

The function $ is available on most computers. In the general
case requiring numerical integration to evaluate F i j, one further simpli-
Fiatiun is useful. The function *(u), is es~entially zero-valued for

," 4. Thus, the numnerical integra, o, ao '.%, ,iade ))re ,fFicient by
adjusting the values of Si and S so that no intejrat ion sleids ouL;ide the
i il,_rvl (-44 u < 4) are include.

% FORTRAN subroutine For calculating the probabili 7y )F hitting d
Jljj)iil target using this mthod, along with instruictions as to how to

• . , ', s rutine in a FORT14N pro ri,, ar-,r! r2i1 0 ,J in 1-h,! ,

4. SAW: CALGULTIONS

The polygonal target shown in Figure 5 was used -As ia aisis for
,iec',t itis )roceure and the associated FORTRAN sibroutine. The proba-
)ili'y of hitting this polygon was easily han-cal('clated :)y partitioning
it into rectangles each of whose sides are parallel to the coordinate axes.

12
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Figure 5. Rblygon for Sample Computation.

y

Figure 6. Polygon Rotated 30*
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This result was then compared to the result from the approach of this report.
As the polygon appears in Figure 5, the two special cases of the
method apply - for the vertical sides (such as the side connecting vertex
11 and vertex 12) the function Fi =O and for-the horizontal sides
(such as the side connecting vertex 10 and vertex 11) Equation (18) applies.
The agreement between the hand computation and the subroutine result was
established. Then the polygon was rotated 300 about the origin, as shown
in Figure 6. As long as ox=y and A=B=O, the probability of hitting
the rotated polygon should be the same as that for the unrotated polygon.
In this case, however, the general expression for Fi i applies for all
sides since none of them are parallel to the coordinS1e axes. The resulting
probability was the sane as that for the unrotated polygon. Figure 7 shows
the probability of hitting this rotated polygon for A=B=O and as a function
of Ox=cly.

14
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7 -APPENDIX
FORTRAN RNCTIONS

This appendix presents the following three FORTRAN functions
required for the use of this method for coalputing the probability of hitting
d polygonal target. These functions are

1. PHIT (called by user's main progran)
2. FIJ (called by PHIT)
3. FUN (called by FIJ)

The user must include all three of these in his main program, but needs

only to call PHIT. The argtmnents in the call statemtint are

N = number of sides in the polygonal target

X z array name holding X coordinates of vertices of polygon

Y - array name holding Y coordinates of vertices of polygon

XB = X coordinate of iean of hit distribution

YB = Y coordinate of mean of hit distribution

SX = standard deviation of hit distribution in x

SY - standard deviation of hit distribution in y

The size of the x and y arrays (;'N) must be established with a DIMENSION
statement in the calling program.

The actual numerical integration is accomplished with a Simson
integration subroutine (SDISON), which requires the function FUN to calcu-
late values of the integrand. SIMSON is resident on the CDC computer at
Aberdeen Proving Ground, but users of other couputers may have to substittute
another integration subroutine. In the subroutine used here, a relative
error of 0.001 has been specified. This should provide values of Ft,
accurate to the third decimal place. The accuracy of the hit probabilities
depend on the number of these F's that must be added, but in general should
be good to at least two places, and probably more.

17
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FUNCTION P'tIT(NjXyvXS9 Y9SKSy)
C ***

T'IZS F'J'ICTI1'l CIII9 UTES TtlE PRORABILITY 'Ir 1ITTING AN
C li-SIDE1 POLYG'1NAL TARGET* THE C')OUPCINATFS (I7 THE ',CRTICrS
C OF T11C POLYGON ARE STOR.ED IN TIIE X ANID V APPAYS Il
C COSCJTIVE CUICKWUSE (IRDER AWq1l'1D THE PnLYGlN. T1lC
C DELIVERY EP.R1R DISTRIP11TIO 105 ASsuNFD TI rtr RiVAPIATE
C I!RUIL '4ITtl 'EAtl (XBYB) AND WTI !ANrIARD tDC"ATIl~e
C SX AND SY RESPECTIVELY.
C *

DIIEMS!1tt X(1)*Y(3.)
~FIR!IAT(I BIT1l SX APID Sv 41itiST BE GREATEP TflAtI zrp~rit/

sS ( - lF1J. 3#3 S Y a epF10.3)
!F(e4XG~e0. eAND. S~oGT.O*)Gl~n 5

414tT 1, SXSY
ST 1-1

5 P'IIT-as
rI 1.0 Islol1

f Tl IIRT Is

111t~r' Tr , (x I Y~J~J X (jy j10X %#Y. X S)

C TIll: F'IICTI1'I PERrlR'IS T'lC Z'IT!4;PATIfhI 'Ir TIM LTVAF IATr
'l1P 1AL JEIIS!TY lItCTInti ''PtjrRl T~r flIPrCTEf) L!MF Ztr'ItlT

C FR'11 P )INT (XI#YI) T'J THE POINT1 (XJPYJ).

C I')l ABC/ AFB, S1
EXTERIAL roll
FPIJu)*
IF (XIeFQ*XJ)P.ET'lR'l

SJ,,.SJ

:JP stiI'l ("J P,-' 0

~aZX*yJ!Y)/SY*(xJ-Xz))
irf(fIsEl*Yj) FIj.FHIDIA)*(FHID( )-F'ID(ZI))
jrCY! .'IE.YJ) CALL IS1lFJIrJsnSr,.CD

r'"ICT : MI FlItI$S
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