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A now approach for ansiyzing :

geophysical acoustic reftection data’

has been developed. The sppresch, .

iﬂulcd 2 "moments® appresch, provides
. & simple method of estimuting sowrce te

recelver travel times for & latéraily

Komogensous medium with an arditrary !

sound speed versus depth relationship.

Estimating a sound speed versus depth

relationship from measured travel time

data is also addressed. The effort

described in this document was per-

formed in support of NORDA's Deep-

Towed Geophysical Array System

Program.
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. Executive Summary

This publication presents a new
approach developed for analyzing
geophysical acoustic reflection data.
The forward problem of estimating

' source to receiver travel time, and the
inverse problem of estimating a sound
speed versus depth relationship are

, addressed using a moments approach.
The moments approach provides a simple
tool for estimating source to receiver
reflection path travel time for a
laterally homogeneous medium with an
arbitrary sound speed versus depth
relationship. The moments approach
also provides a useful tool for
inverting reflection data to obtain an
estimate of the sound speed versus
depth relationship. A nearly closed
form technique for estimating a linear
sound speed versus depth relationship

. is presented. Derivation of the

moments approach and numerical examples
are included.
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A Moments Approach for
Analyzing Geophysical Reflection

l. Introduction

Geophysical reflection data can be
analyzed to estimate compressional
sound speed as a function of depth.
Utility of such data may be subtie or
quite straightforward; exact details
are beyond the scope of this document.
Analysis presented in this report is
confined to a laterally homogeneous
medium with non-sloping reflecting
boundaries.

Acoustic reflection data are typically
acquired using a measurement system
geometry similar to that shown in

Figure 1. The source provides a series
of acoustic energy pulses which prop-
agate through the medium of interest

to an array of acoustic receivers. The
distinctive feature of acoustic reflec-
tion data is that the received energy
arrives via a reflection phenomenon.

The refiection phenomenon is caused by
an abrupt change in acoustic impedance
at layer boundaries. Example reflection
paths are illustrated by paths SR|,1,
SR3 1, SRy, of Figure 1, where SR
denotes the reflection path from source to
receiver i from reflecting boundary j.

Analyzing acoustic retlection data to
determine sound speed as a function of
depth (; coordinate in Figure 1)
requires two important tools. The
first tool is a technique for estima-
ting reflection path travel time from
source to receiver for candidate sound
speed versus depth relationships. The
second tool is the inverse of the
first, in that the second tool is a
technique for processing measured
travel time data to estimate the sound
speed versus depth relationship. This
report describes a moments approach for
handling the forward problem (travel
time from known sound speed profile)
and inverse problem (sound speed
profile from known travel time data).

... ot |

Data

The forward problem is handled in a
general sense by considering an
arbitrary sound speed versus depth
relationship. Treatment of the inverse
problem is not so general, but is dis-
tinguished in that a nearly closed form
technique of estimating a linear sound
speed versus depth relationship is pre-
sented. The following sections of this
report define the "moments" of a sound
speed versus depth relationship and
illustrate utility of the approach for
processing geophysical acoustic reflec-
tion data.

Il. Moments of a Sound Speed Profile -

The compressional sound speed profile
will be denoted by Vz(g) where is

the depth coordinate = 0 at the
source). As discussed earlier, the
analysis presented in-this report
considers the case where sound speed is
a function of depth only (laterally
homogeneous medium).

Moments of a sound speed versus depth
relationship, Vz(g), for a particular
measurement configuration are defined
with the aid of Figure 2. The ith
moment*, M;, is defined as follows.

*Moments of a sound speed vs. depth
relationship should not be confused
with moments of a probability density
function (statistics) or moments of a
mass distribution (mechanics). The
particular label "moments" was chosen
because of slight similarities to
statistical and mechanical definitions.
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function of ;,
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4 { coordinate of reflecting
oundary and

A . .
Dy = coordinate of acoustic
receiver.

For the case where source and receiver
are at the same deonth (D, = 0), the
moments definition reduces to

D

2
M &2 f Vzi(;)d; (1b)
0

‘/ithout regard to their utility, it is
beneficial to notice the simplicity of
computing moments for a sound speed
profile Vz(g). As an example, con-
sider the source and receiver seometry
of Figure 3 with a Vz(g) consisting

of a constant gradient (linear sound
sneed versus depth relationship) layer
and a constant sound speed layer. From
defining equation (1b), M; for the
case displayed in Figure 3 becomes

D, D
My = 2 f (Vg * g;)‘ dg + 2 f vc‘ dz (2)
0 1

Evalfuating equation (2) results in the
following.

+ gD; 2(D, - Dy)
My = 2o (--0 ) 4 ol for i = -1 and

Y Ve

G+ 1y

it i+
M, = [(Vv‘ te) oY

i .
+V (D, - D1)] for i # -1,

where 2n{.) denotes natural log.

Additional examples are given in
Anpendix A. The important feature to
be noted is that moments can be cal-
culated quite easily for virtually any
VZ(;) (sound soeed vs. depth).

lll. Estimating Source to Receiver Reflection
Path Travel Time (Forward Problem)

A. Problem Definition

The "forward problem" associated with
analyzing reflection data is defined

as estimating the source to receiver
reflection nath travel time for a given
measurement geometry and VZ(;)' A
sample measurement geometry “is shown in
Figure 3. In this case (Fig. 3), the
forward oroblem is to estimate the
source to receiver reflection path
travel time as a function of source to
receiver horizontal "offset" distance
x. The travel time as a function of x,
T(x), is cormonly labeled "moveout".

Computine T(x) for a geometry consist-
ing of a sincle constant sound speed
layer, as shown in Figure 4a, is quite
simnle and results in the hyperbolic
"moveout" T(x) as shown below and in
Figure 4b.

T(x) = (T7(0) + X' v.)%

4

source to receiver
horizontal offset,

where X

nes

sound speed in layer
(constant in this case)
and

T(0) = Normal incidence reflec-
tion path travel time.
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Figure 4a. Single Constant Sound Speed Layer

Figure 4b. T(x) for Single Constant Sound Speed Layer
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Comrutine T(x) for a general VZ(;) is
much more difficult. The most
straigchtforward approach for comouting
T(x) for a general VZ(}) is the ray
trace technique, which approximates
Vzg;) by a series of simple functions
and then incorpborates Snell's law to
determine an approximate travel time
and distance as a function of sound ray
departure angle. Error in the
approximation can be made small at the
expense of computational burden by
increasing the number of simple func-—
tions approximating Vz(g). It is
precisely the computational burden
associated with ray tracing that
motivated develooment of the moments
approach for estimating T{x).

B. Moments Approach for Estimating T(x)

The moments approach for estimating
"moveout", T(x), avproximates T(x) by
the square root of a finite order
Maclaurin series about the normal
incidence reflection path, viz.

T(x) = (C +Cx+Cx + Lx +0x --=)2 (3)

source to receiver
horizontal offset and

z
=2
o
-
o
bt
1]

C;j = function of measurement
gceometry and VZ(})-

By symmetry, it is easily shown (May

and Straley |1]) that odd-ordered coef-
ficients Cy, C3, etc., are identically
zero. Deleting zero valued coefficients
and squaring eauation (3) results in

The series anproximation is no dif-
ferent from that of Taner and Koehler
{2] and May and Straley [1]. The
moments approach differs, however, in
that it addresses the 20 i'v1r; Vz(g)
as opposed to layers «f constant sound
speed. A further advantage of the

moments aporoach, vhirh will be
e ITT T T. T

discussed later, is that it lends
itself more readily to the inverse
problem.,

Clearly the challenge associated with
implementing equation (4) is deter-
mining the coefficients C;j. A prin-
cipal feature of the moments approach
is that it allows the coefficients,
C;, to be computed quite easily.

Coefficient Co can be related to
physical conditions by evaluating
equation (4) at zero offset (x = 0),
i.e.,

C =T {(x=0). {5)

Referring to the ceneral conficuration
of Figure 5 leads to the following
equation for T(x=0).

D, .
T(x=0)={ v‘j‘f})‘* / v‘zfﬂ (6)

D
r

Comnarine equations (6) and (la)
reveals that T(x=0) and therefore Cj
can be expressed identically in terms
of moments by

Differentiatine equation (4) with
respect to x2 and taking the limit as

x goes to zero results in the followins
expression for Co.

C = Lim ar_(x) (8)
’ x+0 dx

Evaluating dT2/dx2 in terms of
physical parameters can be simplified
by apolying a mathematical identity to
obtain

ar T Vd.T_/ dx (9)
dx x
cw m e e ey e -
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Afso, dT/dx can be expressed by

ar _ ST/
dx  dx/dy,

{10}

Referring to the notation defined in
Figure 5, expressions for x and T can
be derived to yietld

0
'3
X = f tan ,,(;) dy (11a)
0
D;
+ tan (g) d and
X f 5 g
E
- ! dz
T= !‘ Vﬁ;hms%j? (11p)
0
‘ d
F st
r
where B9 4 initial departure ansie

of sound ray and

W

sound cay angle at depth
for a ray departing with
angle 8.

8(;)

Differentiating equations {11a) and
{¥ o) with respect to By results in

D d‘é'%;.)' D. d‘[;_()})
0 €05 \;) Dr cos f)(;)
and
b Sin;é}_)_d_w
di ' (12b)

AN R |
d 4 Vz(;)cos (3 ’

From Sneli's ftaw, the followine
relationshivs can be obtained.

8

vo(3)

sinu(;) = VlégY sinu, and (13a)
z

do(g) . Velg) costy (130)

4 T VT Goss)

Substituting equations {(13) into equa-
tions (12) results in the following
expressions for dx/dBg and 4T/dBg

o
LN
. cos ()

. 0 J[Q
d-, v,5(0) 4 COSBO(;)

{14a)
and
ar siny, cosy VZ(;)
o Y e
z 0 4
Q
. Vi3 4z
Dr cos*a(;) (16b)

Substituting equations (14) into
equation {10} vields the following
familiar expression (Rutherford {3]).

a7 ~ sin‘m
& VoToy (15)
Sabstitutine envations (13) into
equation (11a) resulits in the following
equation for x as a function of fg.

0

sin -
il

0}

b

Yy f V(g

(ms";) 4t COSTT;) dp| &
D

r

An exnression for AT2/dx2 can now

he obtained by substitutine eauations
(16), (15), and (11b) into ecuation
(9), viz.

-— g e Ml st N -
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¢ @ d
T _.g V,(7 cso 4{0 T;ﬂ%%ﬂ;)

LUNYAL (17}

V(519 ‘/D iy dy
0 cosa 7 * cBEET}T

r

9-b

To evaluate coefficient Cq (ecuatlon
(8)), we need the limit of AT2/dx?

as x aoproaches zero. Realizine that
OO approaching zero is enquivalent to
x approaching zero, allows equation
(17) to be evaluated in the limit to
yield

iy DQ
d d
2 '/0’D "é(;) +'/D‘r V';(;)

LimdT _ (18)

R D
x+0 dx I()DQVZ(’)d’ + b[ .VZ(;)d;
r

Comparine equation (18) with defining
equation (l1a) reveals that equation
{18) and therefore coefficient Cy
(via equation (8)) can be expressed
identically in terms of moments by

Co= gy (19)

It is easily shown (see section IV.
7.5) that (C)-1/2 is identically
the I¥iS sound speed for the normal
incidence (x=0) reflection nath from
source to receiver, vhere the RS
speed, Vpms, is defined by

1 jJn '
Varrs = Tn A Vo (t)dt
where Tn e Normal incidence reflec-
tion path travel time
and
VT(t) = Sound speed as

function of time.

An interestine bv-sroduct of this
result is that the Dix [4] arproach for
determining PMS sound soeed of a layer
is exact (as onposed to apnroximate)
for an arbitrary Vz(g), providing

that "array velocity", Vp, is defined
as follows.

1

y. & Lim dT T
A x 0

Hisher order coefficients of the
T2(x) nolynomial are derived in
Annendix ™. For brevity, only the
results are presented here.

Co= (M) (20a)
M
C: = M__‘ (ZOD)
. MM
C, = -~ ] - -t (20c)
am, My
[ -
| 2M M
Co= = | T M M- MM (204)
g, !
1 . 20M. M
Co= -Fop | OMS My« 28M MM o
64M] 1
SAM M -5 M MM (20e)

The techninue nresented in Annendix N
can be used to derive higher order
coefficients (Clo, etc.). Practical
experience, however, has indicated that
an eighth order "moveout" Tz(x) noly-
nomial is more than adequate to obtain
accuracy comparable to a practical ray
trace algorithm,




The important feature of this deriva-
tion is that the finite order T2(x)
polynomial can be generated easily
using the moments approach for vir-
tually any VZ(}) of interest.

C. Accuracy of the Moments Approach for-
Estimating T(x)

Accuracy of the moments approach for
estimating reflection path "moveout”
was investigated by comparing T(x)
computed from the moments approach,
Tm{x), with that computed from a
standard ray trace algorithm, Tp(x).
Experiments were conducted for a
variety of sound speed profiles, a few
of which are presented here.

The first experiment considers a single
200 m thick layer with a sound speed
gradient of 1.5 sec-. Figure 6a
displays the measurement configuration
and sound speed profile. Figure 6b
displays the error (difference between
ray trace and moments approach) as a
function of source to receiver hor-
izontal offset x. Errors for the
second order through eighth order
moments approach are presented. Notice
that an eighth order approximation
estimates T(x) to within 2 micro-
seconds.

The second experiment involves a more
detailed sound speed profile as shown
in Figure 7a. Performance of the
moments approach is illustrated in
Figure 7b.

The third experiment is designed to
show versot /7Ly and corrutational
srwings offered by the moments approach
for handling a more general VZ(;)- A
quadratic sound speed versus depth

relationship, as shown in Figure 8a, is
considered. In order to implement the
ray trace algorithm, it was necessary
to upp roximat.o the guadratic VZ(;) by

a set of N linear sound speed versus
depth relationships. Accuracy of the
ray trace algorithm improves, of
course, with increasing N. Figure 8b
displays the difference (T(x) esti-
mates) between ray trace and the eighth
order moments aproach as a ftunction of

N for a source to receiver offset of

950 m. Notice that as N becomes large,
the ray trace estimate, Tg, converges
near the moments approach estimate.
Computational savings offered by the
moments approach over ray trace for
N=100 is approximately two orders of
magnitudef

Iv. Estimating Vz{z) from Reflection Data
(Inverse Problem)

A. Problem Definition

The "inverse problem" of estimating a
sound speed versus depth relationship
from acoustic reflection travel time
data is considerably more difficult
than the forward problem. The level of
difficulty increases with generality of
the solution. As an example, the Dix
{4] approach for estimating RMS sound
sneed of a layer is quite simple,
whereas estimating a linear sound speed
versus depth relationship (Gibson,
Odegard and Sutton |5]) can be orders
of magnitude more difficult, The Dix
approach, therefore, features simplic-
ity at the expense of only estimating
RMS sound speed (1 parameter) of the
layer of interest. The technique used
by Gibson et al.[5] features more
generality (linear sound speed versus
depth relationship) at the expense of
additional computational burden. The
particular approach used by Gibson et
al. {5] uses a ray trace technique
coupled with a nonlinear estimation
algorithm to determine layer character-
istics (thickness, gradient, etc.)
necessary to mat>/1 the observed
moveout, T(x). The moments approach
inversion technique presented in this
report features generality (linear
sound speed versus depth relationship)
with only a slight increase in
computational burden.

*Actual results, using available
software, indicated a 400 to 1 time
reduction in computational burden
using the moments approach.

o P
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B. Moments Approach for Estimating a
Linear Sound Speed Versus Depth
Relationship (Single Layer Case)

The moments approach offers a very
simple technique for estimating a
linear sound speed versus depth rela-
tionship from acoustic reflection data.
Specifically, the approach estimates
the following parameters describing the
fayer of interest.

o Thickness (H)

o Sound speed at "top" of the layer
(V1)

0o Sound speed at "bottom" of the layer
(VR)

o Sound speed gradient, dvz/d;, (g)

o RMS sound speed (Vpmg)

For simplicity, the algorithm will be
first derived for a single layer case.
Also, for simplicity, the algorithm is
derived for the case where source and
receiver (or an array of receivers) are
at the same depth. Measurement
geometry and VZ(}) for the single
layer case are shown in Figure 9. The
source and receiver (or array of
receivers) is used to measure the
reflection path travel time T(x) where
x is the source to receiver horizontal
offset.

The procedure for estimating layer
parameters from measured T(x) (denoted
by Tmeas(X)) is very much the reverse
of estimating T(x) from known layer
parameters. More specifically, the
procedure follows in steps as outlined
below.

Step 1: Relate moveout polynomial

coefficients, C;, to
measured travel time data.

Step 2: Relate moments, f1,, to
coefficients C;.

Step 3: Relate layer parameters, H,
V1, etc., to moments.

1. Step 1 (Determine Polynomial
Coefficients)

The [Irst step is simply "fitting" a
polynomial to the measured moveout

squared, T2 .,s(x). Performing
this step results in a polynomial
expression as shown below,
T;eas(x) = Cp + Coxs + Cux* + Coxb .,
A .
where Theas(x) = Measured reflection
path trave! time as
a function of source
to receiver horizon-
tal offset, x.

Many techniques (l!east squares etc.)
exist for determining the coefficients,
Ci. Details of these techniques will
not be described here. For a linear
sound speed versus depth relationship,
only coefficients Cp, Co and C4

are needed.

2. Step 2 (Compute Moments)

The second step relates moments of the
sound speed profile to coefficients,
Ci, determined in step 1. For a
linear sound speed versus depth rela-
tionship, only moments M_;, M; and

M3 need be computed. Equations (20)
can be solved to yield the following
expressions for relating moments to
polynomia{ coefficients.

c? C,
mo={ —|1- 4, —
5 C -

3. Step 3 (Closed Form Approximate

The third step, relating layer param-
eters to moments, is somewhat more
difficult. Relating moments to layer
parameters, for a linear sound speed
versus depth relationship, using equa-
tion (1b) results in the following.

vV
= 2 B
M—l = q ln [ﬁ] (Zla)
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M= g (Vg - Vq) (21b)
D U R

M, = % (Vg - Vq) (21c)

where Vy é Sound speed at "top" of
the layer,

Vg = Sound speed at "bottom" of
A the layer,
g = Sound speed gradient and

&n(.) denotes natural logarithm.

Substituting for g (g =(vg - Vy)/H)
where H is the layer thickness, results
in a more convenient form.

v
2H B
M =5— fIni —~ (22a)
-1 Vg-Vg Vi
My = (VT + VB)H (22b)

(Vo + V) (Vo7 + Voo )H
M= I —BT 8 (22¢)

Inverting equations (22) to find layer
parameters as a function of moments,
involves the solution of nonlinear
algebraic equations. Unfortunately, no
closed form solution has been found., A
closed form approximate solution can be
obtained, however, by expanding the
natural ltog function of equation (22a)
about Vy/vg = 1 (Ref. [6]). Per-
forming this expansion, and introducing
a correction factor, N, results in the
following representation for equation
(22a).

- __4nH

(24)
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Unfortunately, equation (24) involves

the wnknown parameters Vy and Vg.

Equation (24) will be used, however, in
the iterative solution presented in the

next section. For practical cases

will be very nearly unity.

Equations (23), (22b) and (22c) can be

solved in closed form to yield the

following expressions relating layer

parameter estimates (H, etc.) to
moments.

V() =
n}) = —=—
T 2H
iy (1) =
Vp, (M) = ——
B 24
Ms M-, 2
where Q = K( - -rh2)
K =+ 1 (See Section B.6,

page 20)

The closed form approximate solution

' N

assumes N _is identically unity. With

this assumption, the closed form
approximate solution becomes

%

o [ M
e ()

S
T L
T2
vo=M*Q
B
A
where Q = K (M3 M_; - M;2)% and
K=+ 1 (See Section B.6,

page 20)

4, Step 3 (lterative Solution)

For many applications, the closed form
approximate solution of equations (25)

provides acceptable results, If

greater accuracy is desired, the 7tera~
tive solution described in Figure 10

can be used.

—— ey —— -..‘-T':. R L I .

NI ™ S P S T

(25a)

(25b)

(25¢)
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The "loop" from Block (E) to Block (:)
of Figure 10 is repeated until esti-

mates for VT, VB: and A converge.

As an exampie, consider a layer des-
cribed by the following parameters.

H= 100m
Vy = 1500 m/sec
Vg = 1600 m/sec
Table 1 illustrates properties of the

iterative solution by tabulating H,
VT, and VB as a function of the
number of iterations. Results of the
closed form approximate solution are
shown as zero iterations.

5. Estimating Gradient and RMS Sound
Speed

Once VT, Vg and H are determined,

an estimate of sound speed gradient
follows directly from the definition of
gradient for a constant gradient layer,
i.e.,

g= (Vg - Vy)/H (26)

The RMS sound speed, Vpgyg, of the
layer is defined as the root-mean-
square speed of a sound ray travel-
ling at normal incidence, i.e.,

‘2

T
1 C

;f Vi (t) dt (27
-0

|

L
Vams ~

|

where Ty = Normal incidence (one
© way) travel time from 2=0
to;=D£ of Figure 9 and

Vr(t) Speed of a sound ray

traveling at normal
incidence as a function
of time, t.

Rearranging the integration of equation
(27) allows Vgms to be expressed by

D "
YA :

The function Vy(t(g)) is, of course,
identically VZ(})°

Also the function t(;) can be expressed
by

7
tig - J’%Xz-m : (30)
0

Differentiating equation (30) with
respect to and solving for the dif-

ferential (t(;)) results in
d(t(p) = ‘\’égy - (31)

Table 1. Example of Closed Form Approximate and lterative Solution (Singie Layer Case)

~

Number of lterations H (m)
0 (Closed form 100.017
approx. solution)
1 99.994
2 100.002
3 99.999
4 100.000

19
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VI (m/sec) Vg {m/sec)
1491.994 1607.468
1502.958 1597.222
1499.048 1600.892
1500.322 1599.698
1499.893 1600.100




Substituting equations (31) and (29)
into equation (28) results in the
following expression for Vpms.

5

D
‘ Vews = | + J Vy(poz (32a)
“

Relating equation (32a) to moments
yields

1

Z

Voo (M2
RMS M /2

1/2.

which is identically (Cp)2.

Therefore, an estimate of RMS sound
speed of the layer can be obtained
immediately after Step 1, viz.

i ) :
u Vous = (C) (32b)

where Co is a coefficient in the
moveout polynomial. Equation (32b) is
true for any sound speed versus depth
relationship, whereas Equation (26) is
; true only for a constant gradient case.

6. Ambiguity

An unfortunate ambiguity exists when
"inverting" reflection path travel time
data from a constant gradient layer.

To explain the ambiguity, equations for
moments of a constant gradient layer
are repeated here.

v
.2 B
M‘ L "j‘ [n [V‘{] (336)

2 [v‘*} vi+]] .
Mi = (Txija' B - T ig=1 (33b)

— - -VI’- .-
Y A o X la at

e i o o

where V1 = Sound speed at "top" of
layer and
Vg = Sound speed at "bottom" of

fayer

Notice from equations (33) that if Vg
and Vg are interchanged (g becomes -g)
the moments, M;, remain unchanged.
Consequently, the moveout, T(x), for
reflection path data, is not a function
of the polarity of the sound speed gra-
dient., Therefore, successful "inver-—
sion" depends on a priori knowledge of
the polarity of sound speed gradients

in constant gradient layers. In view of
this, the rules for picking K of equations
(25) and Figure 10 become

K = +1 For sound speed increasing with
increasing depth and

K = -1 For sound speed decreasing with
increasing depth.

7. Sunmary (Single Layer Case)

For clarity, the procedure for esti-
mating a linear sound speed versus
depth relationship from reflection path J
travel time data is summarized here.

Step 1: Fit polynomial to measured
moveout data Tymeas(X) to obtain coef-
ficients, Cj, of the moveout poly-
nomial

T (X) = CO + C]X? + Cuxh + nge .

meas

Step 2: Compute moments from moveout
polynomial coefficients.,

Moo= (C)
c. 'z
M = T
C
Cn'2 Lo
wo= =1 fi-ac
G- (5
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Step 3 (Closed Form Approximate

Solution): Compute estimates of layer

parameters from moments.

: (M, M_, )'2
H= \—g—

{/T=’1L;_Q_
2H
M+ Q
V, =
B o
where Q = k(M. M_ - M)

K = +1 for sound speed increas-
ing with increasing depth

K = -1 for sound speed decreas-
ing with increasing depth

Step 3 (lterative Solution): To
improve accuracy of Step 3, the itera-
tive solution described in Figure 10
may be used.

Estimating gradient and RMS sound speed

is performed very simply by:

C. Moments Approach for Estimating a
Linear Sound Speed Versus Depth
Relationship (Multilayer Case)

Extending the moments approach to
estimate a linear sound speed versus
depth relationship for the multilayer
case is reasonably simple. Basically,
the extension involves processing two
measured moveouts, T(x), to determ.ne
moments for the layer of interest.,

Figure 11 illustrates the general meas-
urement configuration and a multilayer
sound speed profile. Moveout data for
the upper reflecting boundary, Tu(x],
and lower reflecting boundary, Ty (x),
are used to compute moments, M;, of
the layer of interest. The moments,
M;, are then used to estimate layer
parameters by incorporating the single
layer procedure derived in previous
sections.

21

The procedure for estimating layer
parameters of interest follows in steps
and is described below.

1. Step 1 (Determine "Upper" Moments)

Observe moveout, JU__(x), of the
reflection path associated with the
urper reflecting boundary (see Fig.
11). Compute polynomial coefficients,
Cuj, describing measured moveout to
satisfy

%gas(y) =Cu. t Cux +Cu,x + Cux ... 4

Compute "upper" moments, Mu;, from
coefficients Cuj. As in the single

layer case, only 3 moments are required "
for the linear sound speed versus depth
relationship. ]
1
Mu_. = (Cu.)* (34a)
Cu 2
u- ?
I T (34b)
12
Cug
_ Cu- .
Moo=t o (340)
CG: 1-4cCu -
Cu~

2. Step 2 (Determine "Lower" Moments})

Observe moveout, IX_ _(x), of the
reflection path assoliated with the
lower reflecting boundary (see Fig.
11). Compute polynomial coefficients,
Chj, describing measured moveout to
satisfy

};{as (x) = Ci- +# Cox +Cox* +Cix

Compute "lower" moments, Mg;, from
coefficients CRj.

Mo = (Ce)? (35a)




o 4

N 454
)
- . A' L S

LY

L—-y ..‘a.‘ .«

]— ;\ " [RECEIVER 3 Z
D -
r

SOURCE V !

:
v

WA

(Arbitrary)

BOUNDARY
/

LAYER OF INTEREST

!
l
1 UPPER REFLECTING
|
)
l

LOWER REFLECTING .
/BOUNDARY us 3= 0

Figure 11. Multilayer Sound Speed Profile (General Model)

22




‘L'?

Mz, (35b)

Mo, = (E’lfx) (1 - 4Cy —2-"-) (35¢)
2 Lo
Ci Ce,

3. Step 3 (Compute Moments)

Compute moments, M;, for the layer of
interest using the upper and lower
moments.

Moo= My - Mug o §o= -1,1,3 (36)

4. Step 4 (Closed Form Approximate

Solution)

Relate layer parameters of interest to
moments computed from step 3.

Vo = M_L;_Q (37'3)

T M

VB =M tQ (37¢)
2

g = (Vg -Vy) /H (38)

‘2

~ Ml

v = (39)

RMS (M_I)

where

Q= K (M M, - M7 )2

K = +1 for sound speed increas—
ing with increasing depth

K = -1 for sound speed decreas-
ing with increasing depth

5. Step 4 (lterative Solution)

In many cases, the closed form approx-
imate solution of equations (37) is
accurate enough. |If better accuracy is
desired, the iterative solution of
Figure 10 can be incorporated. In
either case (closed form approximate or
iterative) estimates of sound speed
gradient, g, and RMS sound speed,

VRMs., are given by equations (38) and
(39).

6. Derivation of Step 3

Steps 1, 2 and 4 are essentially iden-
tical to their single layer case coun-
terparts and therefore will not be dis~
cussed further.

Step 3, specifically equation (36),
will now be derived. The moments of
interest describe the layer of interest
and are therefore defined by

0

14 .
M= 2 J ‘J‘Z(;)d; (40)

Dy

where D, and Dy are depths of the
upper and lower reflecting boundaries
(see Fig. 11). The "upper" moments,
Mu;, computed in step 1 describe
Vz(g) for OﬁiiDu' The "lower"
moments, Mg;, computed in step 2
describe VZ(;) for 0< <Dg. There-
fore, Mu; and ML, represent the
following |nformat|on.

DU . DU :
s [ e [V e (41)
0 Dl"
Dr . D\, <
Mej = f v, (3)dz + f V. (50 (41b)
0 D
r

Subtracting equation (41a) from (41b)
therefore results in the moment: of
interest, i.e.,

e

. Rt Bt d e Sadi b m e = e
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M= M. - M, (42)

7. Multilayer Example

Figure 12 displays an example measure-
ment system geometry and multilayer
sound speed profile. The layer of
interest is described by

H= 60m,

V1

1560 m/sec, and

VB

i

1650 m/sec.

Steps 1, 2 and 3 were executed to
obtain three moments (M_1, Mp,

M3) for the layer of interest. Step

4 was executed to obtain the closed
form approximate and iterative solution
for layer parameters. Results of step
4 are displayed in Table 2. Results of
the closed form approximate solution
are displayed as O iterations.

8. Features of the Solution

Notice from the derivations that com-
putations for M; depend only on move-
out data from reflecting boundaries
directly above and below the layer of
interest, Therefore, the moments
approach for estimating a linear sound
speed versus depth relationship is
similar to the Dix (4] approach for
estimating S sound speed. The sig-
nificance of this similarity is that
only errors (measurement or otherwise)
associated with two sets of measurement
data intluence the parameter estimates
for the layer of interest.

fable 2 Exomple of Closed Form Approximate and iterative Solution (Multilayer Case)

~

Number of lterations H (m)
0 (Closed torm 60.008
approx. solution)
1 59.997
2 60.001
3 60.000
4 60.000

Y

Also notice that while a lZnear sound
speed versus depth relationship Vz(g)
is assumed for the layer of interest,
absolutely no constraining assumption
is made concerning VZ(}) outside the
layer of interest.

V. Summary and Recommendations

A "moments" approach has been developed
for processing geophysical acoustic
reflection data. The major feature of
the moments approach is a tremendous
reduction in computational burden over
standard ray trace techniques. The
"forward" problem of computing reflec-
tion path travel time has been solved
using the moments approach for the case
of an arbitrary sound speed versus
depth relationship. The "inverse"
problem of estimating a sound speed
versus depth realtionship from measured
reflection data has also been addressed
using the moments approach. A closed
form approximate solution and an
iterative solution has been developed
for estimating a [ineq? sound speed
versus depth relationship (constant
gradient). The derivation makes no
constraining assumption concerning the
sound speed versus depth relationship
cutside the layer of interest. All
derivations, forward and inverse,
assume a laterally homogeneous medium
with nonsloping boundaries.

Additional efforts should be directed
toward extending the moments approach
to sloping boundaries and perhaps
laterally nonhomoseneous mediums.
Also, an extension to higher order
(higher than linear sound speed versus

QT (m/sec) QB (m/sec)

1552.827 1656.753
1562.649 1647.491
1559.148 1650.805
1560.288 1649.728
1559.904 1650.090
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depth relationships) inversion tech-
niques should be investigated along
with error analyses for al!l reflection
data inversion techniques.
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Appendix A.
Moments for Example Souna Speed Profiles

I. Series of Constant Sound Speed Layers

A sound speed versus depth relation-
ship, VZ(Z , consisting of N constant
sound speed layers is shown in Figure
A-1. From defining equation (la) of
the text, moments M; of the sound
speed profile (for the given measure-
ment configuration) are given by

Dy Ox
M. - / v"Z(,) dg + / Vy(p) oz (A.1)
0 D,

where Dy is receiver depth and Dy

is depth of the reflecting boundary of
interest. Substituting the sound speed
profile, Vz(g), illustrated by Figure
A-1 into equation (A.1), results in the
following.

M-y 3 vid R i
DI R A DI ML
;oo =0

Sound speed, V;, being constant over
the specified integration intervals
allows M; to be expressed by

Rearranging, and noticing (Di - Di—l)

is identically Hi' results in the more
convenient form

N .
1 1
= . . - A.Za
M= 2 Z Vi Hy -V H (R.2a)
3=

27

For the case where receiver depth is
same as source depth (D;=0) equation
{(A.2a) reduces to

N .
_ 1
URED LS (A.2b)
=t

Substituting the moments of equation
(A.2b) into equations (20) of the text
results in moveout, T(x), polynomial
coefficients which agree (to within
obvious typographical errors) with that
reported by Taner and Koehler |Al1].

ll. Series of Constant Gradient Layers

A sound speed profile, (Vz(g), consist-
ing of N constant gradient “layers is
shown in Figure A-2, From defining
equation (l1a) of the text, moments, M;,
of the sound speed profile (for the
given measurement configuration) are
given by

N i O i
M= SV () ap e [TV, () dg (A.3)
0 D

1

where Dy is receiver depth and Dy

is depth of the reflecting boundary of
interest. Adopting the notation Vti
and Vb; are velocities at the "top"

and "bottom", respectively, of layer j,
allfows the moments to be expressed by

N Vb, Vb
- 1 _Jl.1 1 (o
M, =2 2 3, In [th] g, ln[Vt]] for i=-1

J=1
(A.4a)
and
, & witt ooyt
= - 3
M1 G+7) " g:j
j=1
. "
vty
T for i # -1 . (A.4b)

— T -y .Tw?:-»»-..«. i RN
' . 2 RO 1y . :
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For the case where receiver depth is the
same as source depth (Dy=0) equations
(A.4) reduce to

N 1 Véi ‘
Moc 2 2 é_fﬂ vi | for i=-1  and (A.5a)
FErie J
Nowp't oot
.2 g I I i4-
M‘. = r‘-'ﬁ Z for lf 1 (ASD)

; 9

J=-

. More General Vv, (;)

Con 1uing the list of examples is

som at pointless, since it is

do .tful that an example will fully
me<et the requirements of an actual
opplication. Moments for more general
sound speed versus depth relationship
can be computed directly from defining
equations (1) of the text.
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[1) Taner, M.T. and Koehler, F., Veloc-
ity Spectra-Digital Computer Derivation
and Applications of Velocity Functions,
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Appendix B.
Derivation of T2(x) Polynomial

-
I. Relating Coefficients to Derivatives

The "moveout" polynomial squared is
approximatedf by a finite order Taylor
series about the normal!l incidence
reflection travel path; viz.

T{x) = C +Cx +Cx“+Cx*+Cx

N

(B.1)

Coetficients of the expansion can be
refated to T2(x) and its derivatives
to yield the following equations.

C = Lim T (x) (B.2a)
} S

C = Lim d—L (B.2b)
X dx

¢ ouel e (6.2¢)
X - dx dx’

( Lim % d. _pk QI (B.Zd)
X - dx dx  dx’

N
1 4 []
L IRT I SR — (B.2e)
NN dix )N

1. Notation

Deriving the derivative expression of
equations (B.2) in terms of physical

considerations (measurement geommtry

and sound speed versus depth, VZ(,

is greatly simplified by defining” the
following notation:

31

.

< D VZ(;) d; D, V (;) dy
8.7 I [

(B.3)
5 cosd( cosJo(;)
A
where F-: Depth below source [see
Fig. B-1]
VZ(;) = Sound speed at depﬂ1;
[see Fig. B-1]
A
8o = Initial sound ray
departure angle [see
Fig. B-1]

6(;) = Sound ray angle with
respect to vertical at
depth ; for an initial
departure angle Og
|see Fig. B-1]

nes

D2 coordinate of
reflecting boundary of
interest [see Fig. B-1]

"es

coordinate of
receiver {see Fig. B-1]

Dy

Differentiating equation (B.3) with
respect to fig and applying Snell's
law [VZ(0) sin 9(;) = vz(;) sin fgl
results in the following useful rela-
tionship.

|
- 1, - $
By 7 gt t 0,

1.J Wt

. sin Cos
where Q- - - -
VZ(O)

Reflection path travel time and x direc-
tion travel distance as a function of
sound ray initial departure angle H
can be expressed by |see Fig. B-1]
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Applying Snell's law [Vz(0) sin 6(;) =

VZ(}) sin 6pg] to equation (B.5)
yields

sin - 0 v (g)d D, V.(g)
23 f A 4
R PN [ Gos(3) ¥ [ @t dz|-

r

(B.7)

Using the notation of defining equation
(B.3), equations (B.6) and (B.7) and
their derivatives with respect to fg
can be expressed by

AU R (B.8)
IR sin COs
;' ot where . (3.9
vz(o)
Sin
X S )
VZ(O)L ) (B.10)
[

da

Qe (8.11)

The derivative dT(x) /dx can now be
evaluated quite easily. Expanding dT/dx
rn terms of dT/d¢g and dx/dfig, and

using equations (B.9) and (B.11) yields

o dla sin-
dx dlr/.d - v'_"(’_') . (B 12)
[S

. Determining Cq

Coefficient Cop is simply the normal
inci1dent reflection path (source to

receiver x=0) travel time squared.
Therefore, Co can be expressed as
follows.

?

(B.13)

D
2 | [P d jr” d
v | i)

Equation (B.13) can also be expressed in
terms of moments by

C, = (M)

where moments, M;, are defined by
L 0 D, i
N f vz(;)d; +/ vz(;)d;
Dr

IV. Determining C,

(B.14)

Coefficient Cy is expressed in terms of
d72/dx2in equation (R.2b). The deri-
vative, dT2/dx2, can be expanded (by
identity) to yield

al. T dT/dx (B.15)
dx x

Substituting equations (B.8), (B.10)
and (B.12) into equation (B.15) yields
the following expression for dT2/dx2.
dar E-.u

" (B.16)
dx E‘.

Substituting equation (B.16) into (B.2b)
yields

¢ ermEiff
X - i

(B.17)

The limit as x > 0 in equation (B.17) is
identically the same as the limit as

g » 0. Incorporating this identity and
the moments definition |see equation
(B.14) ] results in
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ket .

P e

¢ = -1 . (B.18)

V. Determining C,

From equation (B.2c), coefficient Cq is
given by

¢ - Lim Zl-d_ a ). (8.19)
X102 gy \dx

To evaluate d(dT2/dx?)/dx2, let Ro
be defined as dT2/dx2. This allows
d(dT2/dx2)/dx2 to be expressed by

. dR dR_/dx
o L B (8.20a)
dx” \dx’ dx’

Expanding dRp/dx in terms of dR,/dfp
and dx/dfg allows

a far . p RS (B.20b)
dx dx’ 2 x dx/dy,

The variable Ry is defined as dT2/dx2
which is related to "E; ;" notation in
eauation (B.16). Incorporating the
"Ei " notation allows

d fdr "
RO LI TR S L (8.20c)
dx (dx') 2 x dx/d7,

d ~l,!
Expanding 9" (Elﬁ > results in the
following equation

B BB

7

a fa NPl
A ? x dx/du,

d
where superscript ~ denotes dfg.
Substituting for EZy ¢ and Ej 4
(see equation (B.4)) results in

£ £ E
1,0 -1, R

d (?TZ)_ sino, coss E]LL Ei']
N\ ) ? d i,
ZVZ(O) x dx/dy,

dx2 dx?

Substituting for x and dx/dBg from
equations (B.10) and (B.11) and re-
arranging results in the following
expression for d(de/dxz)/dx2

2 £ E,
_Qy(%l_) = % } - ai 3,3 (8.21)

dx’ X"

Taking the limit as x goes to zero and
substituting into equation (B.2c)
results in the following expression for
Cq in terms of moments.

MM
c, = -l-[l- ~l%-e] (8.22)

Vi. Determining Cb

From equation (B.2d), coefficient Cg
is given by

A -l bl (8.23)
P dx \dx dx’

Defining R4 as d(dT2/dx2)/dx2,
which is given by equation (R.21),
allows the derivatives of equation
(R.23) to be expressed as

L(.d_dl_> RCEP (8.24a)

dx’ dx dx dx

Followving the same steps as in the
previous section from equations (B.20a)
to (B.20c), results in the following

d fa ar ) |_1
dx’ \dx~ dx 2x 9%

R I ¢ S E;h* Eh‘ (B.24b)
m% ? El }

"'lIIIIl.'-'-!l'""“--I----—---.‘




Rearranging and substituting for x and
dx/dBg from equations (R.10) and (R.11)
results in

2
4 (4 ar). 5(0)
d \dx’ dx’ ) |4 singg cosey By B

13

d -2 ! ]
’ [deg'(E1,1 BB s BB )J (B.24c)

Performing the indicated differentia-
tion with respect to 8¢ yields the
following equation for d[d(dT2/dx2)/
dx2]/dx2

4 fd ar\| 3 N
dx \dx dx'/|a E? | Ei ‘ R
£ E E
Ty =1,1 3,5 "=1,1 340
SE LBt 3 +
’ 1,1 1,13
(B.25)

Taking the |imit as x approachs zero,
and substituting into equation (P.23)
vields the following equation for Cg

Lo
o R M_l] (8.26)

VIl. Determining Cg

Coefficient Cg can be derived using a

procedure identical to that for lower

order coefficients. For brevity, only
the result is shown here

C.= -t om m +2am m M
64M, ' |
24M.M_, ;
R AM M- SM M, (8.27)

Vill. Summary

The polynomial moveout coefficients are
related to moments by the followine«
expressions

35

_ 2
¢, -(M_J
M
-1
C = o~
2 M1
. __1—1-M’1r43
u 2 7
4Ml M1
. [ZM?M1 ]
C, = —— LM oM, - MM
6 SMf M1 1 5 -
1 e
C, = —— [QM M.+ 24M. M_ M
3 9 3 3 Mg
64M,
3
2, My M m7 - 5M M
- M:-ﬁﬁ' 5 ) T Yy -1M1

vhere the moments, M;, are defined by

. Di . Da X
M, '{ V' (pdz *JD v, (7)dz .
r
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