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ABSTRACT

An axiomatic model of production technology under uncertainty is
formulated from a purely technical point of view as a generaliza-
tion of Shephard [1970-al and Shephard/FUre [1980]'s framework for
a general theory of production. The uncertain technical feasibility
of production is characterized by inversely related stochastic input
and output correspondences. This model of technology is then syn-
thesized with a Radner [19681 type model of information for a
formulation of production policies. This synthesis is used to give
formulations of laws of returns under uncertainty. Finally, a
generalized notion of homothetic production correspondences is
developed to give special-structured stochastic production models
which allow explicit consideration of optimal production policies.
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INTRODUCTION

In economic theory, a model of production is a mathematical system

which characterizes the technical relationship between the outputs of a

production system and the inputs of the factors of production. Tradi-

tionally, production is modelled by production functions, the chief

purpose of which is to display the possibility of substitution between

the factors of production to achieve a certain output. However, in

actual production, it is common to have multiple products with possibil-

ities of substitution between them. Furthermore, many production pro-

cesses are dynamic in nature, and greatly influenced by unforseen forces

of the environment of production. In such cases, the framework of pro-

duction functions is woefully inadequate as a model of production.

Shephard [1970-a] and Jacobsen [1970] developed a theory of production

correspondences to model steady state production systems with multiple

products. Recently, Krug [1976] gave a model of stochastic production

correspondences; and Shephard/Fire (1980] extended the framework of

production correspondences to model dynamic production systems. Building

upon these development, it is the purpose of this paper to develop a

framework for the modelling of dynamic production under uncertainty as

a further step towards a general theory of production.

In economic literature, there had been much emphasis that a produc-

tion model is relevant only to a particular production unit; that the

capital stock should be carefully distinguished from the flow comodities;

that the long-run production function is fundamentally different from the

short-run production function; that free goods should be excluded from

the model; and the information concerning the production environment
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available to the producer plays a role in the structure of the production

model. But, ideally, a production model is a collection of statements

characterizing the purely technical alternatives under various environ-

ments of production without regard to their execution!

The viewpoint taken in this paper and described below was first

expounded definitively in Shephard [1967]: - Neither the exclusion of

free goods, nor the requirement that the production model expresses the

variable, substitutional, consumable character or the limitational,

fixed stock character of the productive factors, nor the information

and organization structures, as qualifications peculiar to a particular

production unit, are logically necessary for the formulation of a

production model.

A production model is a mathematical construction describing some

well defined production technology. This production technology consists

of a family of conceivable engineering arrangements, possibly over time,

which are feasible under appropriate production environments. This

family is not restricted necessarily to particular arrangements realized

in practice. It possibly spans over historical changes and adaptations

to the changing environment. Once defined, the technology implies a

certain set of factors of production and outputs. No limitation will

be put upon the availability of the productive factors. Thus, the pro-

duction model will be taken to describe the unconstrained technical

possibilities of production without being limited to any existing or

planned production unit.

If a production model is to claracterize purely technical possibil-

ities, the available or projected means of a production unit and its
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organization/information structure are not relevant. Such a particular

unit merely prescribes a particular realization of the technology which

may be considered by imposing constraints on the input and output flows

and the choice of production programs compatible with the information

available to the production unit.

In the following chapters, the forgoing conceptions of a model of

production in stochastic terms are developed in some detail as a

generalization of Shephard (1970-a] and Shephard/Fire [1980]. Chapter 1

gives an axiomatic formulation of a stochastic production technology.

It also discusses, in a general setting, the information aspects of

production and the notion of production policies. The synthesis of the

notions of technology and information in Chapter 2 gives some formulations

of laws of returns under uncertainty. Chapter 3 uses a generalized notion

of homotheticity to give special-structured stochastic models of produc-

tion whose simplicity enables explicit formulations of production

policies.

..
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CHAPTER 1

MODEL OF THE TECHNOLOGY

1.1 Framework of the Model

The model of production proposed in this paper characterizes a

wel defined technology by stating all the technically feasible alterna-

tives of transforming factors of production (inputs) into net outputs

under the various environments of production whose exact realization is

possibly not forseen (i.e., there may be uncertainty about the environ-

ment).

The environment of production is described in terms of environmental

variables which are not controlled by any producer. Following the termi-

nology of statistical decision theory, a complete specification of the

production environment is called a state of nature. A state of nature,

or simply a state, is a complete description of the production environ-

ment from the beginning to the end of the production processes being

studied. The collection of all the possible states of nature is called

a 8tate space, and is denoted by S . The state space is taken to be a

probability space (S,A, P) with a-algebra A and probability measure

It. An element of the a-algebra A describing some aspect of the

environment is called an event . It is tacitly assumed that V is an

objective probability measure on the events of the environment as

prescribed by the statistical laws of nature.

A will be assumed to be the finest a-algebra that is ever distin-

guishable by any producer. This means if (S,;, ) represents the

subjective assessment of the likelihood of the events of nature by a

producer, the a-algebra is a sub-algebra of . . Of course, a

.. .. .........
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producer is entitled to have his own beliefs, hence need not be a

restriction of on the sub-algebra 2 .

In an abstract model of production, there is no need to impose

further conditions on the state space (S,A,P) . However, in applica-

tions, quantitative descriptions of the environment will usually require

S to be a metric space. For mathematical expediance, it will be

assumed that (S,dcP) is a complete probability space.

The collection of inputs relevant to a technology being modelled

will be denoted generically by X , and called an input space. In order

for a space X to be meaningfully defined as an input space, every

element in it must be "non-negative" and has a measure of "size".

Furthermore, scalar multiplication and addition must be well defined on

X ; and X should be complete in some sense. So, an input space X

will be taken to be the non-negative orthant of a complete normed vector

space. Similar reasoning applies to the definition of an output space,

generically denoted by U . Once specified, the input and output spaces

dictate that a certain set of goods and services as input factors, and

another set of goods and serivces as net outputs. It is assumed that

both these sets are finite and their cardinality are denoted by n and

m respectively.

The following pairs of input and output spaces X and U are

frequently used:

(a) For single period or steady state production models: R n & .
+ 4

T n iTm
(b) For finite (T) period production models: (1:)n & ( T)+

n +

(c) For infinite period production models: (1)+ &

(d) For infinite horizon continuous time production models:
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X-I- CL,1+, gILI))+ x +x : (L)

& U (L (+,rl,p1)) + x x (L.(]+,rm,pm)) + M (t)m

where L,(CR+,zi,.i ) and L,(R+,rj,p ) are Lebesgue spaces with

(%+,Ji,p i ) and (R+,rIP ) being positive a-finite measure spaces

(on the time axis R+). Denoting If I as the norm of fi e

(R+ jqi) , the norm for the product space (L.)+ may be taken as:

IfI :- Max Of I for f -- (fit .... fn) E (L)n

The above input and output spaces are the non-negative orthants of well-

known Banach spaces Rn , (1.)n and (L. )n etc. whose definitions and

properties may be found in Dunford/Schwartz [1957]. Note that in cases

(b), (c) and (d), the inputs and outputs are functions (in time).

Occasionally, they are referred to as input histories and output

histories in order to stress their dynamic nature. The spaces in (a)

are used in Shephard [1970-a]; those of (d) are used in Shephard/Fire

[1980]; and (b), (c) are discrete-time versions of (d).

Since X and U in general are the non-negative orthant of

product Banach spaces, the meaning of their null element 0 should be

unambiguous. Furthermore, with the standard representation of vectors

x- , (x ... , xa) , x 6 X and u= (Ul, ... , uM) , u e U ; the

meaning of the usual partial ordering on vector spaces, namely ,

and > , should be clear. For a more detailed exposition of these

notations, see Shephard/Fire [1980].

With the above preliminaries, a stochastic production technology

may now be formally defined as:
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(1.1.1) Definition: A stoohastio production technoZogy, or more

specifically a stochastic teohnioaZ feasibiZity set, T is a subset

of the product space X x S x U such that (x,s,u) F 7 if and only if

output u is attainable with the input x under state s

1.2 The Output Correspondences

A stochastic technology 7 may be represented in various ways.

As a useful representation, output correspondences are defined herewith:

(1.2.1) Definition: A stochastio output correspondence P of a

stochastic technology '7 is a correspondence P: X x S - 2(U) defined

by:

(xs) E X x S I-. P(xs) : {u e U I (x,s,u) e67

where 2(U) is the power set of the space U

Clearly, the set P(x,s) is the collection of all the outputs attainable

with input x under state s . It is convenient to define two restricted

correspondences as follows:

(1.2.2) For each x E X , s e S '- P (s) : - P(xs)

(1.2.3) For each s 6 S , x ( X '-p Ps(X) : - P(x,s)

1.3 Axioms on the Technology

A stochastic model of a production technology is now completed by

specification of properties. This will be done by stating a set of

axioms which are imposed on its associated output correspondence P

(and Px ; P ). For this purpose, first define:
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(1.3.1) Definition: A correspondence H from a measurable space

(S,A) to a topological space U is said to be measuable if the

inverse image

H- (F) :- (s E S I H(s) n F }

belongs to d for every closed set F in U

The use of closed sets in the above definition is convenient since

every singleton (u) in U is a closed set.

The following properties (some of which are stated with various

strength) are to be taken as axioms on the output correspondence of a

technology:

Measurability

PO For each x ( X , the correspondence Px (see (1.2.2)) is

measurable.

Nothing from Nothing

P1 For each state s 6 S , P(x - 0 , s) - {0} The null output 0

belongs to P(x,s) for all x E X and s 6 S

Bounds on Outputs

P2 For each state s 6 S and input x 6 X , P(x,s) is bounded;

i.e., there exists B E (0,+-) such that the norm Jul I B for

all u 6 P(xs)

P2.1 For each x E X , the correspondence Px is integrably bounded;

i.e., there exists a non-negative integrable function g : S - R+

such that for each output u 6 U and state s 6 S , u E P(x,s)
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implies Jul Cf (s)

P2.S For each state s G S and input x 6 X , P(x,s) is totally

bounded.

Disposability of Inputs

P3 For each s 6 S and x 6 X , P(x,s) C P(X*x,s) if X 1 

P3.S For each s C S and x E X , y Z x implies P(x,s) C P(y,s)

Attainability of Outputs

P4.1 For each i 6 {1, ..., m) there is an output u 6 U with

ui # 0 , an input x E X and an event A C- with P(A) > 0

such that u e P(x,s) for each s E A .

P4.2 Suppose an output u 0 0 and u 6 P(x,s). Then for each

positive scaling factor 8 , there is a positive scalar

(depending on x , u and s) such that e.u 6 P(XLx,s)

P4.2.T For every input x 6 X and positive scaling factor 0 , there

is a function X0 ,: S * such that for every output

u 6 P(x,s) , 8.u E P(x B,x(s)x,s) ; and the function Xe, x  is

integrable.

Closure and Continuity Property

P5 For each state s 6 S , the graph of the correspondence P5

(see (1.2.3)) is closed; i.e., xk - x 0 , uk . u°  and

uk 6 P(xk,s) for all k implies uo 6 P(x°,s) .

P5.C For each state s 6 S , the correspondence Ps is upper-hemi-

continuous (u.h.c.); i.e., for each x 6 X and every open

neighborhood G of P(x,s) there is a neighborhood Z of x

such that P(x,s) C G for every x 6 Z
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Disposability of Outputs

P6 For each state s e S and x rE X , if u e P(x,s) and

e E [0,1] , then 8u E P(x,s)

P6.S For each state s E S and x E X , if u e P(x,s) and

u > v E U , then v E P(x,s)

The above set of axioms is a direct stochastic extension of those

given in Shepherd [1970-a], Shephard (1974] and Shephard/Fire [1980].

The readers are referred to them for a discussion of the economic

meaning of P1, P2, P2.S, P3, P3.S, P4.1, P4.2, P6 and P6.S.

Particular to a stochastic model of production, Axiom PO guarantees

that for every closed set F in the output space, it is meaningful to

speak of the probability that outputs in F are attainable. Axiom

P2.1 gives a uniform (over the states of nature) boundedness condition

on the output sets, while Axiom P4.2.1 gives a uniform scaling condition

on the attainability of outputs.

Axiom PS on the closure of the graph of P (s E S) is essentially
s

a technical assumption. In particular, it guarantees that the output

set P(x,s) is closed for all x E X and s E S . Whatever impression

of continuity P5 conveys is formalized by P5.C, the upper-hemi-continuity

of P " This notion of continuity is quite useful in establishing some

interesting propositions in later sections. Otherwise, P5 is sufficient

for most models of technology.

(1.3.2) Remark: Notice that some of the axioms stated are concerned

with the vector properties of the output correspondence P while

others are topological in nature. Since both the input space X and

the output space U are taken to be subsets of Banach spaces, they have
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the natural norm topology. However, sometimes a weaker topology is

desirable. For example, when U = (La): the weak* topology on U

may be more convenient for application (e.g., the boundedness (P2) of

an output set P(x,s) implies it is totally-bounded (P2.S) under the

weak topology). See Shephard/Fre [1980] for a construction of the

weak topology on (L.) n and the price interpretation of its dual space.

(1.3.3) Remark: If there is only one state of nature (i.e., there can

be no uncertainty concerning the realization of the production environ-

ment), then Axiom PO is superfluous. The axiom structure (P1, P2, P3,

P4.1, P4.2, P5 & P61 reduces naturally to the production model formulated

in Shephard (1974] and Shephard/Fire (1980] with the appropriate choice

of the input and output spaces.

1.4 Freedom of Axioms from Contradiction and their Independence

An axiom system as a model for production technology is free from

contradiction if there is a technology which satisfies all the axioms

in the system. Examples of stochastic output correspondences

P : X x S * 2(U) are given below. They are based on widely used

deterministic models of production. As a by-product, the axioms given

in the last section are shown to be free from contradiction.

(1.4.1) Example: Cobb-Douglas production structure with random

disturbances.

The following production model was used by Schmidt/Lovell (19791 in

their estimation of the technical and allocative inefficiency of U.S.

steam-electric generating plants:

A state s E S 3 (-*, ) is given as the sum of two terms:
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s a: y + B • The random variable y measures the random disturbances

due to nature and is normally distributed, N(O,a) The random
Y

variable -8 measures technical inefficiency. It is nonnegative and

half-normal; i.e., it is the absolute value of a random variable normally

distributed, N(O,a) . Clearly, the Sorel field of the real line may

be taken as the o-algebra A

n
The input space is X - R; and the output space is U -

The output correspondence P: X x S - 2(U) is defined by

(Z' a) F- 1 --R+ X- P(x~s) - R
nn a

qAs TIx

where A and m 's are positive constants, Emi a 1 ; and • is the

exponential constant.

It is straight forward to verify tlat P satisfies Axioms PO to P6.

For details, see Appendix item (1.9.1) 0

(1.4.2) Example: Linear Activity Analysis Model

Let there be K ( 1) productive activities which employ in total

n types of exoagenous inputs and yield a types of products. Let the

state space be (S,A,V) • For each states a G S , the non-negative

a x K matrix B(s) and the non-negative n x K matrix A(s) denote

respectively the output and input coefficient matrix; Bjk(s) and

Aik(s) are the amount of the J-th output and the required i-th input

for activity k operating with unit intensity under state s

Clearly, X I Rn and U I Ra . The following assumptions are

imposed:
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The matrix-valued functions s - B(s) and s i- A(s) are

(1.4.2.1) measurable via the homeomorphism between their range spaces

nKand E RmK , , respectively.

Each unit activity employs some minimal inputs under all

possible states. Formally, for each k E {U, ... , K) there
(1.4.2.2) n

is a scalar ck > 0 such that Z A ik(S) > k  for allk ~i-I i

seS

The unit activities produce only finite outputs under all

possible states. Formally, for each j E {U, ..., m) there
(1.4.2.3) K

is a scalar M < +- such that L B (s) < M for all
i k 1 jk W -

sES.

Each activity produces some output, and each output is

attainable. Formally, for each k E {i, ... , K) ,
(1.4.2.4) m

ES I Bk(s) * j l n o ac C{,.. l

The output correspondence P x S "1 2(3t+) is defined by:

m KP(x's) : - {u E l z e N. , A (s) -z I x , B (s) z > u

where z denotes a vector of intensity of operation for the K

activities.

Again, to verify that this production structure satisfies the

axioms stated in the last section is straight forward; see Appendix

item (1.9.2) C
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Examples (1.4.1) and (1.4.2) are not dynamic production models.

Example (1.4.2) may be easily generalized to a dynamic model. The

following exmaple is a natural stochastic extension of the dynamic ship-

building production function formulated in Shephard et al. [1977]:

(1.4.3) Example: Dynamic Linear Activity Analysis Model

Suppose the K production activities in (1.4.2) may be operative

at all time periods, labelled t = 1,2, .... Production in period t

is contingent upon the state of nature prevailing in that period. The

state space relevant for period t being a probability space

(St t , t) . Let the state space for the infinite horizon production

technology be (S, , ) where S = x S and A is the corresponding
tul t

product a-algebra and 0 the completion of the product measure.

The model here is different from (1.4.2) in that transfer of goods

and services from one period to the next is allowed as intermediate

products. Let a non-negative m x K matrix C (s) = C (s ) be the
t t t

intermediate product requirement coefficient matrix for period t under

state s , t - 1,2, .... A history of transferred product is denoted
1, .. , , .. ) , e (t - 1,2, ... ) . An exogenous

byput Vitr i2 (V V2 .. y 12 t mt

input history is x2 (w ;y ,1 , ...,y , ...) where w E is the

initial endowment of intermediate products available for the commence-

ment of production at period 1; y t C (t - 1,2, ...) denotes the

exogenous inputs in period t . Similarly, an output history is denoted

Us, .. , ... ) U t e Km (t - 1,2, ... ) . Thus, it is

convenient to let the input space X be R x (1)n and the output
1)m . 1)nspacebe (l) + The norm of x B (w;y) E R+ x ( may be taken

mpas w an y teas
, msax (IwI,IyI) where jwl is the Euclidean norm of w and lyl the•
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(1,.) norm of y

The input and output coefficient matrices in period t are denoted

by At(s) - At(st) and Bt(s) S Bt(s t ) respectively. It is assumed

for all t , the matrix-valued functions st 6 St i- Bt (st) and

ste St  A (s t ) satisfy assumptions (1.4.2.1) to (1.4.2.4) where the

scalars sks and M 's are constant over t . The function s t C St b,*

Ct(st) satisfies conditions analogous to (1.4.2.1) and (1.4.2.2).

The output correspondence P: X x S - 2(U) is defined by:

for t - 1,2, ... ; z 1

At(s t )-Zt yt
(X (W;y) , a) -P(xs) : uC (1.)+ Ut + t. t (st)'z

Cs t t-l 0Ct(st).Zt < Vt-  V°  w.
t t V ;

Verification of the axioms is given in Appendix item (1.9.3) 0

Examples (1.4.1), (1.4.2) and (1.4.3) establish the following:

(1.4.4) Proposition: Axioms (PO, Pl, P2, P2.1, P2.S, P3, P3.S, P4.1,

P4.2, P4.2.1, P5, P6, P6.S} as a system is free from contradiction; and

every subsystem of it is, of course, also free from contradiction.

An axiom in an axiom system is said to be independent in the system

If there is a case where it is not fulfilled while all other axioms in

the system are satisfied.

(1.4.5) Proposition: The axiom system (PO, P2, P2.1, P3, P4.1, P4.2,

PS, P6 contains only independent axioms.

Proof: Note that Pl is not included in the system since P4.2 and P2
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implies Pl. Axiom P4.2.1 is not included because it is not difficult

to show that P2.S, P5 and P4.2 together implies the first part of

P4.2.I; and P4.2.1 by itself is stronger than P4.2.

In the following, stochastic production technologies are defined

such that exactly one axiom in the system fails. The construction

follows closely that given in Shephard/Fire (1980]. Since only the

logical relationship between the axioms is of concern, it suffices

to let both the input and output spaces be Euclidean. As notation,

let the line segment between two points y and z in an Euclidean

space be

(y,z): - {8-y + (1 - 8).z 1 e C (0,1].

The verification of the following is trivial and will be left out.

(1.4.5.1) PO fails: S B (0,1] with Borel measure. P: 1R+ x S - 2(3+)

((0,2x) ,if s is irrational;
((0,x) , if s is rational.

(1.4.5.2) P2 fails: S - [0,1] with Borel measure. P: R+ S 2(M;)

{01 if x- o ;
(x,s)' P(x's) := , if s 1 and x 0 0

1(0,x) , if x 0 0 and s C [0,1)

(1.4.5.3) P2.1 fails: S 3 (0,1] with Borel measure. P : x S

(x,s) P(xs) : (O,x/s)
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(1.4.5.4) P3 fails: S [ 0,1] with Borel measure. Suppose a function

f :S XR+ I+ is def ined by:

I2ca/(l + s) , a (: 0 , s + 1]

(s, a) '-* f (s a) : 3 - a + s , a C: (s + 1 ,s + 2]

K -1+ a - s , a r= (s + 2, )

For a fixed s r= S the graph of the function f(s,-) looks

like:

2

s s +1 s+ 2

PIR + x S 2 (3R;) is defined by P(x,s) -(0,f(sIxl)*x>

(1.4.5.5) P4.1 fails,: For each e r= [0,fT/2] , let v(8) be the vector

in R; with Iv(8) - 1 which substains an angle e (in

radian) with the first axis. S =-(0,i/2] with A its Borel

a-algebra. For each event A e Ad , the probability measure

is MWA :a* 2u&(A/i where uz is the Borel measure on S

P :R 2 x S - 2 I2 is defined by P(x,s) : -(0,Ixu.v(s))
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(1.4.5.6) P4.2 fails: S - (0,1] with Borel measure. P: x S
2 (IR;):

(x,s) P- P(xs) - 0.(xs) • - > )

where S(x,s) :- Min (lxi , s + 11

(1.4.5.7) P5 fails: S 3 [0,1] with Borel measure. P x S 2(3 )
IR; +

(x,s) '-p P(x,s) : 0

1(0,s-x) , if |xI > 1

(1.4.5.8) P6 fails: S S [0,1] with Borel measure. P : n. 5 20 R n

(Xs) I P(x,s) : = , x , if lx _ s ;

1(0) , if otherwise. C

Following Shephard (1974], define

(1.4.6) Definition: The axiom system {PO, Pl, P2, P3, P4.1, P4.2, P5 &

P6) will be called the stochastic weak axioms for a stochastic produc-

tion technology.

The system of stochastic weak axioms serves as a minimal core of

the properties one would impose on a stochastic production technology.

Stronger versions of the axioms are to be invoked only when the need

arises.

1.5 Input Correspondence and its Measurability

As an alternative representation of a stochastic technology ,

define:
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(1.5.1) Definition: A stochastic input correspondence L of a

technology 73 is a correspondence L : U x S - 2(X) defined by:

(u,s) E U x S - L(u,s) - {x E X I (x,s,u) E7}

Note that (x,s,u) G T4 u e P(x,s) - x E L(u,s) . Thus P and L

may be taken as inversely related representations of a stochastic

technology:

L(u,s) - (x G X I u E P(xs)} ; P(x,s) = {u E U I x 6 L(u,s)}

It is again convenient to define two restricted correspondences as

follows:

(1.5.2) For each u C U , s ( S - L (s) : - L(u,s)

(1.5.3) For each s E S , u E U .-. Ls(U) : - L(u,s)

The inverse relationship between P and L allows the properties

of L to be derived from the axioms on P stated in Section 1.3. They

are as follows:

Li For each state s E S , L(u - 0 , s) - X ; if u # 0 , 0 L(u,s)

L2 For each state s E S and each infinite sequence of outputs

(u k } with uk -. + , f L(uk's) is empty.
k

L2.I For each event A GA with OP(A) > 0 , luki I m implies

0 C) L(u ,s) is empty.
sEA k

L2.S For each non-null subset of outputs V which is not totally

bounded, Q L(u,s) is empty for all s e S
UEV
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L3 For each state s E S , every u E U , x E L(u,s) implies

X x E L(u,s) for all A E [1,+-)

L3.S For each state s E S , every u E U , x E L(u,s) and y > x

implies y E L(u,s) .

L4.1 For each i E {1, ..., m} there is an output u E U with

u # 0 and an event A E.B with P(A) > 0 such that

'n L(u,s) # 0
SEA

L4.2 For each s E S and each u E U , if x E L(u,s) and x # 0

then L(e.u,s) 0 {X-x I A x e+} is not empty for all E I+..

L4.2.I For each fixed 8 E R.,+ , if (x,s,u) E X x S x U is such that

x 6 L(u,s) , let g, x(s,u) :- Inf {% E ]R+ I a'x E L(O"u,s)}

For each x E X , define a function X8 , : S - R+ by

X,x (s) : - Sup {g8 ,x(s,u) I x E L(u,s)} The function

XA x  is integrable for each x E X .

L5 For each state s 6 S , the graph of the correspondence L

(see (1.5.3)) is closed.

L6 For each s E S and each u E U , x E L(u,s) implies

x E L(8"u,s) for all e C (0,11

L6.S For each s E S and each u 6 U , x E L(u,s) and v < u

implies x 6 L(v,s)

To deduce the properties of the input correspondence L listed

above from the axioms on P , the arguments needed parallel those given

in Shephard/Fire (1980], with the exception of L2.1 and L4.2.1; hence

they will not be given here. However, L2.1 is merely a restatement of

P2.1, and L4.2.1 gives an explicit form for the scaling function X ,x
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of Axiom P4.2.1. Conversely, the axioms on P may be deduced from the

corresponding properties on L . Hence, the properties listed above

may be alternatively taken as axioms on a stochastic technology.

One certainly would like to have the following measurability

property on L to complement Axiom PO.

LO For each u E U , the correspondence Lu  (see (1.5.2)) is

measurable; i.e., for every closed subset F in X

Lu (F): - (s E S I Lu(s) 0 F F# id.

If LO holds, then it is meaningful to speak of the event that a closed

subset of inputs is sufficient to yield an output u . Unfortunately,

LO cannot be deduced from the stochastic weak axioms (1.4.6) on P

This is demonstrated by the following:

(1.5.4) Example: S - [O,w/2] with A being the Borel a-algebra. The

input space X is For each x E R.2 , O(x) is defined to be the

angle (in radian) substained by x with the xl-axis. An output

2 2correspondence P: 3+ x [0,1T/2] - 2CR) .q deftnp-4 Sy

(O,x) , if s is rational or 8(x) s
P(x s) 2:=j j < xx{y E R j Iy" _ lxi , 8(y) < O(x)} , if otherwise.

Schematically, for inputs x , x + 3R ; states of nature s , s E

[O,w/2] with 8(i) i and -8(x), and both s, s irrational:
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u2 , x2

x

P (x S

u 1 , X1

That the output correspondence defined above satisfies Axioms P1,

P2, P4.1, P4.2, P5 and P6 may be easily verified. As for Axiom PO,

2 2consider an arbitrary x E R; and a closed subset F C R;+ . if

(O,x) r) F is not empty, then P- (F) - S by definition. If (O,x) n F
x

is empty, there are two cases to consider: - (i) if O(x) is rational

or if F fl {y lyl < x , e(y) I 6(x)} is empty, then P- (F) is

empty; (ii) i 6(x) is irrational and F n {y I Uyl < IxI , e(y) < e(x)}

is not empty, then P (F) - {6(x)) , a singleton in S . In any case,

Px(F) belongs to the Bore1 a-algebra . , verifying PO.

2 2The input correspondence L : 3t; x [0,ir/2] - 2(1 %) inversely related

to P is given by

[X-u [I X> 1), if s is rational; or

6(u) " w/2 ; or

L(u,s) - s is irrational and s < 8(u);

({Xu I )> 1) U (S0V 1 8 , lv n lul , 8(V) n S,

if otherwise
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Axioms Li, L2, L3, L4.1, L4.2, L5 and L6 may be easily verified for the

correspondence L . As for LO, fix an arbitrary output u with u > 0

(i.e., 8(u) E (0,n/2)) . Consider the following closed set in the

input space X = R

F:- {X + I 2 x1 - luU , (x) F [B(u) + e , Ir/2]}

where e > 0 and 6(u) + e < w/2 Observe that the set

LIF) (s E S I L(u,s) (), F
U

- {s E [O,r/2] I s E [6(u) + e , w/2] and s irrational}

which is clearly not an element of the Borel a-algebra of [O,i/2] .

Hence LO does not hold 0

Since it is desirable to have the input correspondences satisfy LO,

from now on, LO wiZl be taken as an axiom on production technologies,

even though LO is not implied by PO. As in Definition (1.4.6), the

system {LO, Ll, L2, L3, L4.1, L4.2, L5 & L6} will be referred to as the

stochastic weak axioms on the stochastic input correspondences.

In the remainder of this section, some sufficient conditions for

the validity of LO are given. First, a useful measurability property

on correspondences is stated (Notation: M(M) denotes the Borel a-algebra

of a metric space M e denotes the oparation of forming product

a-algebra):

(1.5.5) Proposition: (Hildenbrand [1972, D.U.3-4]): Let H be a

correspondence from a complete measure space (S,A) to a complete

separable metric space X
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(a) If the graph of H belongs to A 0 G(M) , then for every

B C&(M) , (s r S H (s) 0 B #B } d.

(b) If for every open subset B of M , the set {sE S I H(s) riB i'0}

belongs to A , then the graph of the closed-valued correspondence

defined by: s S -. . ; belongs to 6 0 8(M)

(c) Statement (b) is valid if "open" is replaced by "closed".

(1.5.6) Proposition: Suppose Axiom P3 is replaced by the stronger

axiom of free disposal of inputs P3.S in the system of stochastic weak

axioms (1.4.6). Then a technology with a complete separable metric

space X as its input space satisfies LO.

Proof: Consider an arbitrary open set G in the input space X and an

arbitrary output u = U . Let Z be a countable dense subset of G

Such a set Z exists since X is separable. It is obvious that

U {s ES I z L(u,s)} C {s 6 S L(u,s) () G 01z4EZ

To show the converse inclusion, consider an arbitrary state s 6 S

for which there exists an input y belonging to L(u,s) r) G . Since

G is open, there is an open ball B centered at y with B C G . The

free disposal of inputs (P3.S) implies {w E X I w > y} C L(u,s)

Clearly, the intersection set {w 6 X I w > y} r) B has a non-empty

interior. Consequently, by the denseness of Z in G , there is a

z 6 Z 0 B with z 6 L(u,s) ; establishing the converse inclusion.

Axiom PO ensures that for the arbitrarily chosen u , and every

z E Z , the set (s G S I z 6 L(u,s)} - {s 6 S I u l P(z,s)} is an

element of A . Hence, the set {s 6 S I L(u,s) n G 0 01 , being a

countable union of events, also belongs to .
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Now Axiom P5 states that the correspondence L :S 2(X) isU

closed-valued. By applying Proposition (1.5.5.c), then (1.5.5.a), it is

seen that Lu  is measurable. The proof is complete since u was

arbitrarily chosen C

The simplest examples of complete separable metric spaces are R+

and (1i)+ . Another example is (L1(R+,(R+),u))+ , the non-negative

orthant of the space of Borel integrable functions. Other examples

include the (finite) product of the above spaces.

Since P3.S is not valid for many production systems, it is desirable

to have sufficient conditions for LO without assuming P3.S. For this

purpose, the following is useful:

(1.5.7) Proposition: Suppose X and U are both complete separable

metric spaces. If an output correspondence P : X x S - 2(U) not only

satisfies the weak axioms (1.4.6) but also has each correspondence P5

(s G S) continuous (i.e., both upper and lower-hemi-continuous) and

compact-valued, then LO holds.

Proof: Let Z be a countable dense subset of X . For each z e Z

denote by B k(z) the open ball (x G X I 1z - xN < 1/k} centered at z

with radius i/k , k - 1,2, .... Let F be a non-empty closed subset

of U For k - 1,2, ..., let an open set D k(F) be defined by

Dk(F) : {u e U I d(u,F) < i/k} where d(u,F) is the distance of the

point u from the closed set F .

The continuity of the correspondences Ps (s E S) implies: for

the output correspondence P , the inverse of F is given as:
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P-(F) :- (x,s) 6 X X S P(xs) n F 0}

; U~ L Bk(z) x{s 6 S IP(Z.S) CDk(F) 0 0)]
k-1 z=

First, it will be shown that the first set above is contained in the

second. Let (x°,s°) C (x,s) I P(xs) r F € 01 Then by the defini-

tion of Dk(F) , P(x°,s°) fl Dk(F) is not empty for each index k

Since Dk(F) is open, and P 0  is l.h.c., there exists for each k

a neighborhood N of x°  such that w E N. implies P(w,s0 ) 1' Dk(F)k

0 . Since the set Z is dense in X , there exists for each k an

input z with zk I Z () Nk and x° r Bk(zk) For this zk , clearly

(x°,s° ) 6 Bk(zk) x {s 6 S IP(,s) fl DkcF) ) 01 . Hence (xO,s)

belongs to the second set.

To show the converse inclusion, let (x ,s ) belongs to the

second set. Then there is an infinite sequence {z k C Z with

(x0 , s) Bk(zk) x s S I P(zk,s) r) Dk(F) # 0} , k - 1,2...

Clearly, {zk} converges to x° . Let {vkI be an infinite sequence

with v E p(zsk ) i Dk() Since the correspondence P is compact-

valued and u.h.c., there is a subsequence { C (vk } converging to

a limit v0 E P(x°,s ° ) ; (see Hildenbrand [1972, B. M, Theorem 1]).

Recall that d(vJ,F) < 1/j for each j ; and F is closed. Thus

* v°  implies v° 6 F . Consequently, P(x ,so) f F # 0 , establishing

the converse inclusion.

Using Axioms PO, P5 and Proposition (1.5.5.c), one obtains that for

each z 6 Z the graph of the correspondence Pz belongs to A 0 I(U)

Then it follows from Proposition (1.5.5.a) that {s E S P(z,s) n Dk(F)

0) 6 . for all z E Z . Hence the set [B k(z) x (s E S P(z,s) r)

D k(F) # 0}] belongs to S(X) 0 A for all z E Z . Thus P- (F) belongs
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to Z(X) 9 6 since it may be obtained by countable union/intersection

of elements of M(X) 9 A. This conclusion is trivially true if F - .

Since the correspondence P: X x S - 2(U) is closed-valued (Axiom

P5), and it was shown that P- (F) C- (X) A S for all closed subset F

of U , Proposition (1.5.5.c) applies to show that the graph of P

(which is the technical feasibility set I ) belongs to (6(X) 94) 9 6(U)

Now let Y be an arbitrary closed subset of X , and u an

arbitrary output in U . It follows from above that (Y x S x [u)) nf

belongs to 6(X) 9 A 0 S(U) . For the input correspondence L :S - 2(X),u

the inverse image of Y is

L1(Y) : is e S I L(u,s) fy 0}

- Projs {(y x S x {ul) fl .

Since (S,A) is assumed to be a complete measure space, and X x U is

a complete separable metric space, then the projection theorem (see

Hildenbrand [1972, D.I.11]) applies to show that L(Y) E 4. Since Yu

and u are arbitrary, LO is established C3

Up until now, the only structure imposed on (S,.j) is that it is a

complete measure space. If the state space S is a metric space, then

the following assumption on a technology is meaningful:

P5.S The graph of the output correspondence P: X x S * 2(U) is

closed; i.e., the technical feasibility set 7 is closed.

(1.5.8) Proposition: Suppose S is a complete metric space. Further-

more, suppose P5.S above holds for a compact-valued output correspon-

dence P: X x S * 2(U) . If the Borel a-algebra B(S) is a sub-a-algebra
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of A and both X and U are complete separable metric spaces, then

LO holds.

Proof: First it will be shown that P is measurable with respect

to the a-algebra S(X) 9 G(S) . Suppose not so, then there exists a

closed subset F of U whose inverse under P , namely the set

P-l(F) {(xs) 6 X x S I P(x,s) r) F € 0} , is not an element of

6(X) e((S) . In particular, it is not a closed subset of X x S

Hence, there is convergent sequence ((xk,sk)} C P 1 (F) with a limit

(x°,s°) , P-(F) . However, (x°,s°) 6 X x S since both X and S

are complete. Since P(x° ,s° ) 0 F - 0 , F is closed and P(x° ,s) is

compact, there is an open set G with P(x° ,Os) C G but G r) F -0

Now since p(xksk) fl F 0 0 for each k , p(xk) G . Hence P

cannot be u.h.c. at (x°,s°) ; contradicting the hypothesis of the

proposition.

With the measurability of P with respect to 6(X) @ B(S) , an

argument identical to the last part of the proof of Proposition (1.5.7)

may be used to complete the proof since (S) C A

1.6 Technical Efficiency

Given a stochastic technology , an input-output pair (xu) E X K U

is called a techni lZ fe.aibZe production program under state s if

(x,s,u) 6 7'. To evaluate the efficiency of the production programs,

the following notion is useful:

(1.6.1) Definition: The collection of technically efficient inputs

which may yield an output u under state s is called an input efficient

eubset and is defined by: *for all u E U , s E S
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E(u,s) : - {x E L(us) y < x implies y I L(u,s).

To ensure that technical efficiency is not a vacuous concept, it

is important to ascertain whether the efficient subsets as defined are

not empty.

(1.6.2) Proposition (Shephard 119701): If the input space of a technology

is finite dimensiona.l, then E(u,s) is not empty whenever L(u,s) is

not empty.

However, if the input space is not finite dimensional, the input

efficient subset may very well be empty, as demonstrated by the following:

(1.6.3) Example: Let functions fk :+. 1+ be defined by:

k1 , t E (0,k)f (t) :=-~ / k+ (k = 1,2, ..
1+ l/k , t 6 (k,+-)

Clearly, the functions fk a are elements in (Lu)+ , and they are

decreasing; i.e., fk > fk+1  for all k

Suppose a state space S is given as S E [1,2] with the Borel

measure on the interval. With the input and output spaces X - U (L)+

define an input correspondence L: U x S - 2(X) by

x 6 (L.)+ z a ).fk where X a -lul

L(u,s) : - = + and k 6 (1,2, .. if u 0

S(L..)+ , if u = 0 .

That the correspondence L satisfies the stochastic weak axioms {LO, LI,

L2, 3, L4.1, 14.2, L5 and L6} may be easily verified. Consider an
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arbitrary output u with Iul > 0 . Clearly L(u,s) # 0 for all

s 6 S . For an arbitrary state s E S and an arbitrary input x e

L(us) , P -°fP for some > > s-ul and some integer p By the

definition of L , the inputs j-fq G L(u,s) for all q I p Since

the functions f s are decreasing, x cannot be an efficient input.

Since x , u and ; were arbitrarily chosen E(u,s) is empty for all

sES and u#OO3

If the input space X is infinite dimensional, a weaker topology

(than the norm topology) on X may ensure the non-emptiness of E(u,s)

For instance:

(1.6.4) Proposition: Suppose a stochastic technology satisfies L5
* n

(equivalently P5) as stated with the weak topology on X = (L .) n

The efficient subset E(u,s) is not empty if L(u,s) is not empty.

Proof: Suppose x 6 L(u,s) . Define the set

*: L(u,s) 0 {y 6 (L.)+ y < xj

Note that since the {y 6 (Lm) n y I x) is weak closed, and L(u,s)

is also weak closed (by L.5), D is weak closed.x

For each element w in Dx , define analogously Dw : - L(u,s) r

(y e (L.)n I y I w) . Denote the collection of all such sets by Ui.

Partially order the sets D 's in 2 by set inclusion. By theV

Rausdorff Maximality Theorem, there is & maximal linearly ordered sub-

collection U of i. Obviously, the sub-collection U has the

finite intersection property. Note that each D in is weak

closed. Furthermore, by the theorem of Alaoglu, they are actually weak
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compact. Consequently, the intersection set n {Dw , Dw 6 J} is not

empty. Let w be an element of this intersection set. Clearly

w E L(u,s) Suppose w 4 E(u,s) . Then there exists an input

z 6 L(u,s) with z < w Then the set Dz :- L(u,s) r) fy J y z}

is non-empty and is a proper subset of every element of , contra-

dicting the maximality of H Hence w E E(u,s) C

The general condition under which the technical efficient subset

being non-empty is not known. However, in almost all models of

production, the non-emptiness of the efficient subset is assumed. This

practice will be followed in the subsequent exposition.

The following straight forward fact will be useful later:

(1.6.5) Fact: Suppose E(u,s) 0 , then L(u,s) C E(u,s) + X

Intuitively speaking, technical efficiency cannot prevail when

inputs of infinitely large size are used to yield a finite output.

This notion is formalized by the following synmetT,-ec axiom on the

input correspondences.

E For each state s e S and u E U , E(u,s) is bounded.

For a detailed discussion of the significance of this axiom, see Shephard

(1970-a]. Here, it is remarked if X B (L.) and L5 is stated with

* n *
the weak topology on (L.)+ , then Axiom E implies that the weak

,
closure of E(u,s) is weak compact. This fact will be useful in the

next Chapter.
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1.7 Confidence Indexed Production Correspondences

In applications, one may not be interested in the total structure

of the stochastic production correspondence P . Rather, one could be

primarily concerned with the issues:

(1.7.1) With what probability a certain subset of outputs may be

obtained from a specified subset of inputs?

(1.7.2) Given that a certain level of outputs is to be attained with

at least a probability , what inputs are feasible?

To address these issues, it is convenient to define:

(1.7.3) Definition: For a stochastic technology T represented by

an output correspondence P : X x S - 2(U) , its associated confidence

indexed output correspondence CP is given by:

(x,4) r X X [0,1] '-. CP(x,&) : - {u E U 1 'Ps E S I u E P(x,s)} >

The word "confidence" need not pertain to the subjective belief of any

producer; it is used simply to denote a probability measure of certain

events.

For each scalar r E [0,1] , let .(&) be the collection of events

{A EI P(A) > }. Then the confidence indexed output sets CP(x,&)

may be equivalently defined as:

CP(x,&) - U r) P(x,s) , all xGX , G[0,i]
AEA(&) sEA

The following properties for the correspondence CP are suggested by

the axioms on P
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CPl 0 CP(x, ) for all x E X and E [0,1] ; CP(x - 0 , ) (0f

if >0 ; and CP(x , -0) U for all x E X

CP2 For all x E X , CP(x, ) is bounded if > 0

CP3 For all x e X and E e [0,1] , CP(x, ) C CP(X-x,,) if X > 1

CP3.S For all E E (0,I] , CP(x,E) C CP(y,&) if y I x

CP4.1 For each i E i, ..., ml , there exists an output u with

ui # 0 , an input x and a confidence level E > 0 such that

u E CP(x,)

CP4.2 If an output u 0 0 and u E CP(x,E) , then for every scalar

8 > 0 there exists a positive scalar X,, such that eu E

CP(A 6-&x,&)

k o
CP5 The graph of the correspondence CP is closed; i.e., x - x

u k - u 0 ~k o and uk G CP(xk, k) for each k implies

0 0 0u E-P(x ,

CP6 For every E (0,1] and x E X , u E CP(x, ) and 8 E (0,1]

implies 6-u E P(x, )

CP6.S For every e E [0,1] and x ( X , u E CP(x,) and v < u

implies v G CP(x,&)

CP7 For every x E X , implies CP(x, ) C CP(x,& )

Note that other than having the confidence index & , properties CP1

to CP6 are almost identical to the axioms on a deterministic technology

formulated in Shephard (1974] and Shephard/Fire (1980]. In this sense,

the confidence index may be regarded as an "input" to production,
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with the peculiar monotonicity property CP7.

(1.7.4) Proposition: The properties CPI, CP2, CP3 (CP3.S), CP4.1,

CP6 (CP6.S) and CP7 may be derived from the axioms P0, P1, P2, P3 (P3.S),

P4.1, P4.2 and P6 (P6.S).

Proof: (CPI) Since 0 E P(x,s) for every x E X and s E S

0 E CP(x,r) for every x E X and G [0,1] . Moreover, since

P(x - 0 , s) = (0} for each state s e S , CP(x - 0 , () - (01 for

all Z > 0 . By P0 and the assumption that (S,A,1) is complete,

for each fixed input x E X and output u E U , the set {s E S uE

P(x,s)} is an event and has at least zero probability. Hence

CP(x , 0) - U for each x E X , including the case of x =0 .

(CP2) Consider an arbitrary fixed input x E X . For each

positive scalar K define a set A(K) :- Is E S I P(x,s) .1 {u E U

lul > K) # 01 . Since the set {u e U IO > K} is closed, by P0,

A(K) E A for all K E E + It is to be shown that for each a E (0,1)

there exists a positive scalar K (depending also on x) with (A(K)) <

a . Suppose otherwise, then there is an increasing sequence iKj } C R+

diverging to +- but f(A(KJ)) I a for each index j . Since (KjB is

increasing, the sequence of events {A(KJ)} is non-increasing. By the

sequential continuity of probability measures, the set A: - f A(Ki) isj
an event and has probability (A) Z a . Clearly, P(x,s) is not

bounded for each s E A ; contradicting Axiom P2. Hence, for every

confidence level 6 (0,1) , CP(x,t) is bounded (in norm) by the

positive scalar K(I_ )  Finally, by property CP7 (to be shown later),

CP(x , - 1) C CP(x, ) if & < 1 . Hence CP(x,l) is also bounded.

Since the input x was arbitrarily chosen, CP2 is established.

1. J
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(CP3, CP3.S, CP4.1, CP6, CP6.S) If u E CP(x,) , then there

is an event A with P(A) > such that u E P(x,s) for each s G A

Axiom P3 states that for all X > 1 , u E P(A.x,s) for each s E A

Hence, u 6 CP(X-x,) ; establishing CP3. Analogously, CP3.S follows

from P3.S. Similar arguments may be used to establish CP6 and CP6.S

from P6 and P6.S. Property CP4.1 is merely a restatement of P4.1.

(CP7) Recall the definition of the collection A() of events.

For it is clear that A(e) CAC ') . Thus, for every x G X

CP(x,) - u fl P(x,s) C U r) P(x,s) - CP(x, ) C
Ar=(() sEA A" ') sEA

To ensure the property CP5 and CP4.2 to be valid, stronger condi-

tions than those of the stochastic weak axioms on the technology seem

to be necessary. A derivation of CP5 is given in the next proposition.

(1.7.5) Proposition: Suppose the output correspondence P: X x S 2(U)

is upper-hemi-continuous, and the input space X is a separable metric

space. Then the confidence indexed correspondence CP associated with

P has property CP5.

k k k
Proof: Suppose infinite sequences {x } C X , {u } C X and ( C} C 0,1]

have xk - xo , u uo , k o and u' E CP(xk, k) for all k ; it

is to be shown that u° E CP(x°,& °) . Since CP(x , - 0) U (property

CPl) for all x E X , one may assume without loss of generality that

F60>0.

Let d be the norm metric on X . Define a function f by:

00s E S - f(s) : - Inf d(u ,v) v E P(x°,s)}

Note that for all a E , (s G 5 I f(s) < a) {s e S I B(u°,a) r)

I_= m
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0 0
P(x°,s) # 01 where B(u°,a) is the closed ball centered at u0  with

radius a . By Axiom PO as applied on the correspondence P

is E S f(s) < al E A for all a E R,+ . This, together with the fact

that f is non-negative-valued, implies that f is a measurable func-

tion on S

Next, define a sequence of events:

A :- {s e S Iuk e P(xk,s)} , k - o,1,2,....

Consider the restriction of f to the complement of A; i.e.,

(A)c: - S\A ° , the following claim is made: For each e E (0,1] there

exists a 6 E R4+ such that the event D(6): - (s E (A0)c I f(s) < 6}

has probability i(D(6)) < c .

To show the claim, suppose it is false. Then there is a monotone

sequence of scalars {6J } C R+ decreasing to 0 such that 0(D(SJ)) > c

for each index j . By definition, D(SJ+l) C D(6j) for all j Then

by the sequential continuity of probability measures, the set D: - t D(6J )J
is an event and O(D) e > 0 . It follows from the definition of f

that for each s E D , there is no open ball B(u ) centered at u°

with B(u0 ) C U\P(x°,s) . This contradicts the fact that D C (Ao)c

(i.e., u° 0 P(x°,s) for all s E D) and P(x°,s) is closed for all

sES.

Now let an e E (0,1] be arbitrarily fixed together with an

associated 6 and event D(6) . Let B(u° ,6/4) be the open ball

centered at u° with radius 6/4 . By construction, B(u ,6/4) r)

P(x°,s) - 0 for each s E (A )c\D(6) . Let G be the open set defined

0 0 0by G: - U\B(u° ,6/2) where B(u, 6/2) is the closed ball at u with

radius 6/2 . Since for all s E (A )c\D(6) , every element of
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B(u°,6/4) is at least of distance 36/4 from P(x°,s) , it follows

that P(x ,s) C G on (Ao)c\D(6)

The following fact (to be proved as the next proposition) results

from the u.h.c. of the correspondences Ps at x0 : there exists for

each 8 E (0,1] an event Ha contained in (Ao)C\D(6) with 4(H8) a

such that for some neighborhood N of x° , P(w,s) C G for each w E N

and s 6 (Ao)c\D(6)\Ha

Without loss of generality, let B - e . Furthermore, let H and

N be an event and neighborhood for which the conclusion of the above

fact holds. Since xk -I x0 and uk _ u0 , there is an integer K

such that for all k Z K , uk 6 B(u°,6/4) and xk E N Then it follows

0 c kthat for all k > K and all s E (A°)c\D(6)\H , P(x ,s) C G ; conse-

k k 0quently u 4 P(x ,s) since B(u ,6/4) C GC by construction. Recalling

the definition of the events Ak one then has: for all k > K

(0) \D(6)\H C (Ak)c . In other words, Ak C A? U D(6) U H since

D(6)C(A°)C and H - (A°)c\D(6) . Hence c< k o ) + o +

C c a
for all k > K . Since 9k 0 , at the limit, Co < 1(Ao) + 2c

By letting e become arbitrarily small, it is seen that P(Ao) > o

i.e., u 0 CP(Xo,4o) C

The unproved fact invoked in the above proof is of independent

interest, and is stated here as:

(1.7.6) Proposition: Let (S,.,T) be a probability space, X a

separable metric space and U a topological space. Suppose a correspon-

dence P : X x S - 2(U) satisfies: (a) for each s E S , the correspon-

dence x 6 X -, Ps(x) :- P(x,s) is u.h.c.; (b) for each x e X , the

correspondence a E S - P (S) : - P(x,s) is measurable.
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Consider arbitrarily an x E X , an open subset G of U and an

event A 6 . If P(i,s) C G for all s e A , then for every

0 E (0,1] there exists an event H C A with I(H) _ B and a neighbor-

hood N of x such that for all w E N and s E A\H , P(w,s) C G

Proof: Let x E X , open G C U and A E i satisfy P(x,s) C G for

all s e A Define (while focusing attention to the restriction of A

on A) a function g : A -[ R +

s E A-- g(s):=Sup {r(E- R+ I P(ys) CG for all y e B(x,r)}

where B(i,r) is the open ball centered at x with radius r . The

positive-valued function g is well-defined since the correspondences

P are u.h.c. on A . To show that g is measurable on A , first

note that

(1.7.6.1) {s E A g(s) > r} - {s 6 A I P(y,s) C G for all y E B(x,r)}

for all r 6 E. + . Fix an arbitrary Z r R,+ and let Z be a countable

dense subset of B(x,r) . Clearly,

{s ( A I P(y,s) C G for all y e B(x,r)} C n {s E A I P(z,s) C G}zez

To show the converse inclusion, let ; belong to the intersection set

on the right. Since the correspondence P_ is u.h.c., there exists
s

for each z 6 Z an neighborhood N of z such that P(ws) C G for
z

all w E N . Since Z is dense in B(x,i) , it may be verified that
z

the collection (N ; z 6 ZI is an open covering of B(x,r-) . Hence
z

P(y,s) C G for all y E B(x,r) ; establishing the converse inclusion.

Now, for each z I Z , the set is E A P(z,s) C G} belongs to A
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since it is equal to A\{s r A I P(z,s) n Gc # 01 which is an element

of A according to assumption (b) . Hence, the set (s e S I g(s) > r}
EA since it is a countable intersection of elements in A . Since r

was arbitrarily chosen and g is positive-valued, g is measurable on

A.

A contra-positive argument is now used to complete the proof.

Suppose the conclusion of the proposition is not true for some 0 E (0,1]

Without loss of generality, assume t?(A) > B > 0 . Then for every

positive integer k and its corresponding open ball B(x,l/k)

{s E A I P(y,s) CG for all y E B(-,l/k)} < &(A) -8

Define Wk:- {s E Al g(s) Z 1/kI , k - 1,2, .... Since g is

measurable, Wk EA ; and recalling identity (1.7.6.1), the above

inequality is equivalent to: (W k ) < V(A) - B , k - 1,2 ..... Clearly

Wk~l for all k . Let W: - U Wk . By the sequential continuity
k

of probability, V(W) I P(A) - B • In other words, P{s 6 A I g(s) > 0}

O(W) 1 1(A) - 8 < P(A) since S > 0 . This contradicts the fact that g
L

is positive-valued on A 03

As for the property CP4.2, the following shows that it is almost

always valid:

(1.7.7) Proposition: CP4.2 holds for the confidence index - 0 . For

the case > ' 0 , suppose u # 0 and ; E CP(x,t) Then for every

8rR and every i e , there exists a X E such that

0o; 6 CP eXiis0

Proof: The first statement is trivially true since CP(x,0) EU .Let
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> 0 and ; C CP(x,) Suppose 86 11-o.and E r [0,) is such that

for all X 6 R + , 6-u f CP(A'x,&) Let an infinite sequence {A I C R4+

diverges + . Define for each index k , Wk :- {s 6 S I P(o kx,s) r)

(a -; 8} # 1 . By Axiom PO, Wk E A for all k since the set

{a-; a > 9} is closed in U . By the contra-positive hypothesis,

6k$( for all k . Now clearly the sequence of events (W } is

kmonotone non-decreasing. Let W: - U W By the sequential continuity
k

of probability measures, T(W) < . Hence the complement of W

namely W , is not empty. Note that Wc has a non-empty intersection

with the event {s I SI u e P(x,s)} Consider an arbitrary s 6 Wc

with ; e P(x,s) . The fact that s E Wc implies there does not exist r

A 6 R- with i.u e P(A.x,s) ; contradicting Axiom P4.2 0

The following straightforward fact (proof omitted) shows that property

CP4.2 for CP is guaranteed if one is willing to impose a considerably

stronger attainability assumption on P than P4.2:

(1.7.8) Fact: Property CP4.2 holds if and only if for every x e X

u E U and 86 e R * , there exists an almost surely bounded function

A: S * 11+ such that O.u 6 P(A(s).x,s) on the event {s E S I u E P(x,s)}

Although the properties CP4.2 and CP5 cannot be derived from the

set of stochastic weak axioms on P , in view of (1.7.5) and (1.7.8),

they nevertheless appear to be reasonable for the confidence indexed

output correspondence of many real-world stochastic production technologies.

With the construction of the correspondence CP from P , the

questions (1.7.1) and (1.7.2) posed at the beginning of this section may

be answered. For ease of exposition, let the graph of the correspondence

CP , i.e., ((x, ,u) E X x [0,1] x u r CP(x,&)} , be denoted by AT.
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The set , may be regarded as the confidence indexed technical

feasibility set.

Given a set of outputs V C U and a set of inputs Y C X

consider the intersection set D: -(Y x [0,1] x V) n 47. Note that by

property CP7, the set 2(Y,V): ( (0,1] 1 for some y C Y and

v 6 V , (y,gv) C D) is an interval containing 0. If both V and Y

are closed sets, then D is closed; and thus so is 2(Y,V) if CP5

holds. Then the least upper bound of (Y,V) ; ., the maximal

probability with which some output in V may be obtained using inputs

from the set Y , is actually attained. Thus, question (1.7.1) is

resolved. Question (1.7.2) may be addressed in a similar manner.

It is interesting to relate the notion of a confidence indexed

output correspondence to that of a stochastic production function.

Suppose a technology has an input space X and an output space

U B R+, and its confidence indexed output correspondence satisfies

properties CPl to CP7. Consider an arbitrary input x6n Define+

a function F byx

u 6 R+- F x(u) :-Max {t G [0,1] u CP(x,&)1

The function F is well defined since according to CPS, the graph of

CP is closed. Furthermore, it has the following properties as may be,

easily verified:

(i) Fx(0)- ;

(ii) Fx(u) > Fx(v) if v u;

(iii) F (u) + 0 as u +

(iv) Fx  is upper-semi-continuous (u.s.c.).

............. ,.
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Note that the function F resembles the distribution of a non-x

negative random variable. In fact, for a given input x , let 'x be

a non-negative function on the state space S defined by:

(1.7.9) 0x(s) Max {u e 3R+ I u e P(x,s)} , s 6 S

*x is well defined since P(x,s) is compact (Axioms P2 and P5) andII
it is a bona-fide random variable according to Axiom PO. *x has the

survival distribution function -

t 6 R -.G~t W P(s GS 0 *(s) t)

It is easy to see that:

G(t) > if and only if F x(t) _ ,t 6 R+ , r= [0,1]

Hence, for each x E R; , the function F gives the probability distri-

bution of 0 , the random maximal output attainable using input xx

In view of the above discussion, the practice of specifying a

family of random variables (0x ; x 6 X E ]n } as a model of production

under uncertainty may be considered as only giving the confidence

indexed correspondence CP associated with a technology; via the

specification of the distribution functions Fx  for all x E X . (Note

that for all x 6 X and all E 6 [0,1] , CP(x, ) - (u O R+ 1 Fx(u)

Since the correspondence CP is only a sketchy and aggregated represen-

tation of the underlying technology, the family (tx ; x E X} may not

be a descriptive enough model to serve as a basis for making production

decisions under uncertainty.

For example, a Cobb-Douglas type stochastic production model may

be formulated as:
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n ax C1:+-; Ox: n- x i ,oi i

where 5 and ai's are non-negative dependent random variables,

with Za = 1 . The use of only a finite number of random parameters

gives a compact representation of the family [ ; x E X) , and may

be convenient for econometric studies. However, it seems quite

difficult to relate such a model to an explicit description of the

stochastic production environment the characterization of which may

be fundamental for making production decisions.

For completeness sake, the confidence indexed input correspondence

CL inversely related to CP is defined. Formally, CL: U x [0,1]

2(X)

CL(u,&) (x 6 X I Cs G S I x E L(u,s)} >

(1.7.10) I (x 6 X e{sS s I u E P(x,s)}_

S xeX I ueCP(x,O)}

The properties of the correspondence CL induced by those of C?

(i.e., CPI through CP7) are stated as follows:

CLI CL(u 0 ) CL(u, & 0) - X ; 0 4 CL(u,&) if u 0 0 and

CL2 If & > 0 and lu 1 4- , then r CL(uk, ) is empty.
k

CL3 For all u r U and 6 (0,1] , if x E CL(u, ) and X > 1

then A-x E CL(u,4)
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CL3.S For all u E U and E (0,1] , if x E CL(u, ) and v > x

then y E CL(u,.)

CL4.1 For each i E {l ... , m) , there exists a scalar E (0,1]

and an output u with ui 0 0 such that CL(u,-) is not

empty.

CL4.2 If x E CL(u,g) and u 0 0 , then for every 6 E R .

(X-x I X > 0} 0 CL(O6u,&) is not empty.

CL5 The graph of the correspondence CL is closed.

CL6 For all u E U and E 10,1] , CL(u,&) D CL(O-u,) if 6 > 1

CL6.S For all u E U and 6 6 [0,1] , CL(u,&) CL(v,&) if v u .

CL7 For all u E U , CL(u,&) D CL(u,&') if

1.8 Information and Production Policies

In section 1 through 7, a model of stochastic production technology

and various representations of it were given. This model only character-

izes the purely technical aspects of production, and as such, is not a

model of production decision making under uncertainty. This section

introduces a notion of production policies which will be useful in

later chapters.

In a deterministic model of production, e.g., the model of Shephard

(1970-a], a notion of production policies is implicitly introduced when

the so-called minimal-cost function is defined. For an output u E U R m

n+

and an input price vector p S E% , the minimal cost of production is

given as:



(u,p) - Q(u,p): - Inf ;?-x x E L~u):

where L(u) is the deterministic analogue of L~u,s, PresuD.'..,

when faced with the market input price p , a producer cnooses an

input which yields the output u at a minimal cost. Thus, intK~c :2'.

it is assumed that every sel>ct.vo of input x from the set of technca..

feasible inputs L(u) is a feasible input policy.

The notion of selection may be generalized for :he case of a

stochastic correspondence as follows:

(1.8.1) Definition: Let H be a correspondence from a measure space

(S, A.) to a metric space M . A function f ; S - M is a n

from H if f(s) E H(s) for all s E S - an z mcs: aJe-.;.'heri

serec:..on if f (s) 6 H(s) a. e. , a meazaaK seacr'- if f .s

measurable.

For convenience of exposition, in the remainder of this section,

the input space X and the output space U are taken to te , -n

and (1,) respectively.

With the introduction of uncertainty, it is intuitivev covious

that any reasonably well defined production policy must be concernec

with any "information" on the unknown production environment. The

model of information introduced in the following is that of Radner

[1968]:

If is a partition of (S,A) if Y {V } is a collecticn

of pairwise disjoint elements of the a-algebra a with r. -

An inform#ation s c:-ure (of a producer) is an infinite-tuple

' ' *..) where each Jt is a partition of the state
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space (S,d) See Radner L19 66 ] for an interpretation of this abstract

formulation of information.

For two partitions W and It of (Sd) , V is said to be as :-ne

a ior as informative as) N' if for every W EV and V E N , either

W C V or W V - 0 .

The "finenss"*of the partition jt indicates how informed a

producer is at time t concerning the true state. Furthermore, the

notion of "as fine as" provides a partial-ordering which will be used

imn Chapter Z to define a notion of boundedness of information.

In the following, it is argued that the information structure of

a producer, when imposed on the underlying stochastic technology

kwhich is independent of the producer), determines the production

polizies .options) open to him. Abstractly, at time t , with the

information 3t available, a producer engages in production by taking

certain a!:-mns (procures inputs, allocates resources, commences

certain production operations, etc.). Referring to the collection of

possible actions as A , the cnoice of action (production decision)

over time i a mapping

D : S
18.2)

s E S - D(s) ( (s),DI(s), D...., (s), ... ) E 4

where D ,s) denotes the action at time t . To be c-nsistent with

the information available, the following condition on the decision

D ncds

t t t t
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i.e., with an equivalent information as represented by I , the

action taken at time t must be the same.

From a system theoretical point of view, the production decision

of a producer is manifested by the associated inputs and outputs,

which of course depend on the state of production environment.

Explicitly, associated with decision D are the input and output

mappings x and u

(D(s),s) - (x(s),u(s)) E (1)" x (1 )

In order that production is technically feasible, the following condition

on the mappings x and u must hold:

(1.8.4) u(S) ( P(A(s),s) (s E S , D(s) E

The information consistency and :echnicaZ feasibilirg conditions,

(1.8.3) and (1.8.4), limit the class of selections from the stochastic

production correspondences P which may be meaningfully called produc-

tion policies.

It was emphasized in the introduction that a model of technology

should be free from any institutional constraints of the producer.

The forgoing discussion indicates that to model the actual operation

of a production unit under uncertainty, the irstitutionaZ constraint

of its information structure appears to be necessary. Moreover, in

every existing production system, the means of production are always

constrained (at least in the short-run); for instance, by its plant

capacity, labor availability etc. Hence the above model of production

policies is more appropriate as a planning model for as yet non-existing
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production systems since the production correspondence has not been

constrained. Suppose a production system is constrained by requiring

its use of input of goods and services to be in a set C C X , then

the technical feasibility constraint (1.8.4) is to be modified to

H(s) E P(x(ss)
(1.8.4') (s E S , D(s) 64)

x(s) r C

Note that this modification indirectly imposes a restriction on the

set of decisions open to a producer. Perhaps it should be remarked

here that the space of decisions -4 in general is difficult to formalize.

However, in some cases, they are quite explicit. For example, in

t t
Example (1.4.3), the choice of the intensity levels z , outputs u

and the intermediate product transfer Vt at time t may naturally be

taken as decision variables.

In the approach to production modelling taken here, it is essential

to incorporate the relationship between the underlying technology and

the information structures and constraints on the production units

such that production policies may be formulated. The problem lies in

how to pose reasonable models of technology and information structures

such that their inter-relationship may be brought forth without too

much complication. (The Team Theory of Marschak/Radner (1972] provide

excellent examples of this type of endeavor.) Chapter 2 will consider,

in a general setting, the effect of constraints on resource availability

through formulations of laws of return under uncertainty. Chapter 3

proposes some special structured technologies so that production policies

may be explicitly formulated.

.. . . . . . . .. . . . . . . ..
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1.9 Appendix

(1.9.1) Verifications of Axioms for Example (1.4.1):

n
Consider the function 0 : 1%; x S - ]R+ defined by O(x,s)

Aes f x. ; S - (-w,+a) . For an arbitrary s E S , the function
i-i 1

n
€(,s) is continuous, non-decreasing and homogenous on R;. Hence

Axioms P1, P2 - P2.S, P3, P3.S, P5, P6 and P6.S follows immediately.

Since A and 's are positive, t(-,s) > 0 ; so for some x R+

O(x,s) = : u > 0 . Clearly, for all s E Is,+-) , D(x,s) > u . Since

the probability of the event [s,+-) is positive, Axiom P4.1 holds.

Axiom P4.2 and P4.2.1 follow from the homogenity of (.,s) for all
n

s E S . Finally, to show PO , consider an arbitrary x E + and a

closed set F C + . Let b(F) be the greatest lower bound of F ,

then P-I(F) - {s E S I P(x,s) .- F # 01 (s E S O(x,s) I D(F)}x 

-
Since O(x,.) is continuous and monotone on S , (F) is a closed

interval, hence measurable C

(1.9.2) Verification of Axioms for Example (1.1-.2)

(P1) For each s G S , x - 0 and A(s).z < x implies z - 0

consequently B(s).z 0 . Hence P(x - 0 , .s) - (0} , s G S

(P2) For each s G S and x E , (1.4.2.2) implies the set

{z 6 IRK I A(s)-z < x} is bounded. Then (1.4.2.3) implies P(x,s) is

bounded. Axiom P2.S follows from P2 since the output space is finite

dimensional.

(P2.I) Consider an arbitrary fixed input x E R+ , (1.4.2.2) implies

Zk:" Sup Min [xi/Aik(.s)) < +" , k - 1,2, ..., K . The zk'S
ac as tcA ik (S)>

act as bounds on the feasible intensity of the activities. Then by
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K , K , ,
(1.4.2.3), for all u e P(x,s) , uj < k Bsjk(s)Z C MJk~ E z - u,ik-i j k i-

J - 1, ..., m . Since the bounds uj on outputs are constant over S

P(x,-) is integrably bounded.

(P3, P3.S, P5, P6, P6.S) are trivially true since the technology is

of linear activity type.

(P4.1) is merely a restatement of (1.4.2.4). P4.2 and P4.2.I follows

from the constant return to scale of the technology.

(PO) Consider the following functions:

(s,z) e S x K * f (s,z): - (B(s),z)
+ 1

(B,z) X aK k -0 f 2(B,z) : - B-z

(s,z) E S x + gl(s,z) : (A(s),z) ;
(A,z) 6 1J

nK x K-* g2 (A,z) : - A'z

By assumption (1.4.2.1) and the continuity of linear transforms, the

Kfunctions f:- f2 o f1  and g:- g2 o g1  are A 0 S(R;) measurable.

Thus, for an arbitrary closed set F in + ,and x E Rn

RK 2K~DI:1 {(s,z) E S x 11K f(s,z) E F} and D2:- {(s,z) E S X R;
n Kg(s,z) E (y E R+ I Y < x are elements in j 0 (E+) . Then

{s e S I P(x,s) () F # 0} - ProJs (D1 r) D2] belongs to A by an

application of the classical projection theorem C

(1.9.3) Verification of Axioms for Example (1.4.3)

Axioms PI, P2, P2.1, P3, P3.S, PS, P6 and P6.S may be established as

in (1.9.2). Since the output space is infinite dimensional, P2.S in

general is not true.

(P4.1) Consider the first period. Since (1.4.2.4) holds for the output

coefficient matrix B(S) there 'exists an initial endowment w E R m
' +
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and an input x (with a first period input x I e E such that some

output u with a positive i-th component in the first period (i.e.,

(u > 0) is attainable with a positive probability. This verifies

P4.1 since whatever happens after the first period does not affect

the positivity of (u)i .

(P4.2 and P4.2.1) May be established as in (1.9.2). It is remarked

that P4.2 and P4.2.1 are valid only because the initial endowment w

is considered as exogenous input (in accordance with our viewpoint

of an unconstrained technology). In decision models, this may not

be reasonable anymore.

(PO) May be established by a straightforward modification of the

verification offered in (1.9.2). The classical projection theorem

applies since (1.)' and (1.)m are separableD
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CHAPTER 2

DYNAMIC LAWS OF RETURNS UNDER UNCERTAINTY

2.1 Introduction

The study of the effect of resource constraints (limitations) on

production has always been an important topic in the theory of produc-

tion. Turgot £1767] introduced into economic thought a proposition

which has come to be known as the Law of Diminishing Returns at the

intensive margin. The original spirit of the law was concerned with

the restraint on agricultural production imposed by the scarcity of

land. From this viewpoint, the particular formulation of the law in

terms of diminishing product increments is non-essential to its sig-

nificance. In bare form, the issue is: whether a bound on the inputs

of a proper subset of factors leads to bounded outputs, when the other

inputs may be applied in unlimited amounts. This more basic formula-

tion of the law is described by Menger (1936] as an intersecting

assertion.

Shephard (1970-b] gave a meta-economic proof of an intersecting

assertion of the law of returns for production with scalar outputs,

using the theoretical steady state framework of production introduced

in Shephard [1967, 1970-a]. Subsequently, other formulations of the

law (both steady state and dynamic, single and multiple products) had

been offered along the same line. See Fire [1972, 1978, 1980],

Shephard/Fire [1974] and Shephard/Fire [1980, Chapter 3].

This chapter extends the formulation of the laws of returns to

allow for uncertainty in the production processes. This extension is

[ i



53

meaningful since the limitation of resource may be relevant only

under certain production enviroment; depending, for instance, on

the weather conditions, machine failures etc. Furthermore, the

impact of resource limitation is contingent upon (a) the availa-

bility of substitutable resources; (b) the development of alternative

production techniques; typically neither contingency is forseen with

certainty.

The formulation of laws of return under uncertainty to be given

brings out to a certain extent the inter-relationship between the

underlying technology and the information structures of the producers.

It is found that for production under uncertainty, the information

structures play a role in limiting outputs, leading to a notion of

diminishing returns in information.

2.2 Background: Essentiality and Limitationality

This chapter uses the axiomatic framework of stochastic produc-

tion correspondences developed in Chapter 1. For simplicity of

exposition, the output space is specialized to (L.)+ or (1.)+

The special case of deterministic production correspondences (see

Remark (1.3.3)) is used freely when convenient. Axiom L6.S, i.e.,

atrong diaposal of outputs, is assumed throughout and Axiom L5

(oZosure of graph) ia stated with the weak* topoZogy on the input

space.

The purpose of this section is to introduce the notions relevant

to the formulation of the laws of returns. These notions are stated

in a deterministic framework of production. The definitions used are

• i_
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basically refinements of those originally used by Shephard [1970-b]

and extended in the already cited references; so are the propositions

which give the deduction of the deterministic laws of returns.

As indicated in the introduction, one is interested in the

effect of the boundedness of input factors on the level of outputs

attainable. In a dynamic framework, it is convenient, for produc-

tion planning purposes, to specify the time periods over which the

bounds on inputs are relevant. Let I CC {l, ... , n} denote a

proper subset of the n input factors. The time period (support)

over which an input factor i E I is limited is taken as an element

Si E Zi (Zi being the a-field on R+ for the i-th input history,

see Shephard/Fire [1980] or Chapter 1). Collectively for the factor

group I , the relevant time periods (supports) of the input-bound

in denoted by a family

(2.2.1) S1 (Si ; Si E ri , i E I}

Focusing attention to the support SI , define for a vector input

history x E (L=)n

xSI:" (XX 2 0 .. n) e +

(2.2.2) (0 if t O Si or i OE I
where x ixt): i(t) if t E Si and i 6 1

The partial ordering of vector inequality on the inputs may be re-

stricted to apply only on the support SI

MLI
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n4
for x y E (L.)+ , si YSI if and 1

(2.2.3) -

only if (lx, .... X) q x . .n

The "truncated" input history x S defined in (2.2.2) may be inter-

preted alternatively as a subvector, i.e., as a component of the

original vector x . With this notation, a bound on an input factor

group I over a support SI may be modelled by restricting inputs to

the set

(2.2.4) x (L.)+ I xs1 - x , 6 (L) , X s > 0

where the reference subvector x acts as a bound on the inputs.

Similarly, let SO (which is an element of the a-field of the

single output history) specify the time period (support) over which

limitations on outputs are relevant. The output restricted to SO

denoted uso , is defined as in (2.2.2) with an analogous definition

of a partial ordering (2.2.4), and the interpretation as subvectors.

A remark is in order concerning the relationship between SI and

SO . Since future inputs cannot affect past outputs, it is necessary

to postulate that

(2.2.5) I (t 6 + I t e Si for some i E I} < Inf (t E + i t -so} ;

Sup {t 6 K14  t Si for some i 6 I} _ Sup {t e +l t6 SO}

For SI and SO satisfying (2.2.5), the following formulation of a law

of returns is meaningful:

(2.2.6) Definition: An input factor group I CC {1, ..., n) over

support SI is weak-limitationaZ for outputs over support SO if for
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0

every output (reference) subvector USO > 0 , there exists an input

boud xI suh tatL(u) A xG E (L) [ s si is empty foros
bound X0>0 such that LM )xG=(,.) n x s mpyo

all output u with u 0
so 1SO

(2.2.7) Definition: An input factor group I CC (1, ... , ni over

support SI is esseintai for outputs over support SO if for every

output u with USO > 0 and L(u) not empty, L(u) r) x E (L.)'

xsI- 1O. is empty.

(2.2.8) Proposition: For an input factor group I CC fl, ..., n}

over support SI to be weak-limitational over support SO , it is

necessary and sufficient that (I,SI) is essential for SO

A proof of this proposition may be found in Shephard/Fare [1980,

Chapter 3, Proposition (3.3-1)].

It is conceivable that although (I,SI) is essential for output

on SO and xs. is bounded by some xSI , via appropriate factor and

time substitution, any bound uso on the output may be exceeded. For

example, inputs (I,SI) may be needed only to initiate a new production

process which otherwise does not require input factors I in its sub-

sequent operations. To formulate a stronger version of limitationality,

define

(2.2.9) Definition: An input factor group I CC (1, ..., n} over

support SI is st-'ong-ZimtctaionaZ for outputs over support SO if
o 0

for every input bound xsi > 0 there exists a bound u SO > 0 on the

output such that L(u) .1 x x51  0 ( is empty for all output u
0with u 0
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In the steady state framework of production, Fire (1972, 19801 and

Shephard/Fire [1974] gave a sufficient condition for strong limitation-

ality. In the following, a further sufficient condition for strong-

limitationality is given via a regularity assumption on the scaling of

production.

With a single output history, a dynamic production correspondence
Ln

P: (L.)+ _2((L.)+) may be represented by the following functionals:

For given w E (L.) with Owl - 1
(2.2.10)

0(x I w) a- x {a ER+I aw 6 P(x)} , xC.

Note that because of Axiom L5, 0(. 1 w) is well defined for each w ;

furthermore, by L4.2, either 0(. 1 w) S 0 or 0(" 1 w) has the range

[0,+ ) . In a sense, 0(. J w) is a production functional which gives

the maximal scale of an output "time-pattern" w attainable.
n

(2.2.11) Definition: A dynamic production structure P: (L.)+ -2((L)+)

satisfies reguZa scaZing if
Ln

(a) there exists a B E R_+ such that for all x E (L.)+ and all

output pattern w 6 (L.)+ , wl - 1 , defining

0 if 0(0.x I w) -0 for all CL E
o (w) : =

X lInf {a > 0 1 (a'x ) > 0} if otherwise;

*

it is true that 0(ox(w).x I w) B ; and

(b) for every A R4+ , there exists a 80 E R.+ such that for each

w CL) 4 , Owl - 1 , the following functional inequality holds:

(2.2.12) 0(%.x I w) e.(x I w) for all x E %) n with O(x w) > 0
+4
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It is important to note that regular scaling allows the output sets

P(X.x) to span different output time patterns as X changes; as would

be the case where increased inputs allows for more production possibili-

ties.

Regular scaling appears to be a rather mild and reasonable regular-

ity condition on a production technology. The class of functionals

which satisfy the functional inequality (2.2.12) appears to be rather

large. Clearly, homogenous and sub-homogenous functionals satisfy

(2.2.12). Furthermore, super-homogenous functionals like :- I(Ax I w) -

k
X .*(x I w) with k > 1 ; also satisfy (2.2.12). In fact, the postulate

of regular scaling was inspried by Eichhorn [1968] which used the homo-

geneity of production functions to derive the law of diminishing incre-

mental return over the whole range of inputs. This class of functionals

is characterized in Mak [1980-b]. Here, regular scaling is used to

establish:

(2.2.13) Proposition: Suppose a production structure satisfies regular

scaling, then an input factor group I CC fl, ..., n} over support SI

is strong-limitational for outputs over support SO if (1,SI) is

essential for outputs over SO .

The reasoning underlying this proposition is actually very simple : -

if an input bound Xs0 does not bound outputs on SO , factors I on

SI must be "infinitely substitutable" by the other factors on SI and

other input supports. Then because of the assumed boundedness of the

efficient subsets (see the asymmetric axiom E in Section 1.6), this is

possible only if (1,51) is not essential for outputs on SO
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Proof of Proposition (2.2.13)

Suppose (I,SI) is not strong-limitational for SO . Then there

exists an input bound x0  > 0 such that for all output bound u00 > 0S1 -

there is an input x with xSIo and an output u E P(x) with

u Uso . In particular, consider a sequence of output bounds

.iso} where >1 and ( Let {xk and

k o k kbe sequences of inputs and outputs such that x S1 , u E P(x
k k

and uSO> v . Considering the indicator function 1so as an output

history, it follows from L3.S that xk G L(lso) for all k . Define

an infinite sequence of scalars by

y - min {a E R+ I x kE L(I1) , k - 1,2,

The y ks are well defined because of Axiom L5 and L4.2.

Claim: There exists a scalar K > 1 such that (y *k x I 1 0) s K

for all index k . To prove this claim, first note that by construction,

(Y k xk I lS0) > 1 If (Yk xk 1 I so) - 1 for all k , then the

claim is trivially true by taking K to be 1. So, let 1(yk.xk i ) 1

for some indices. Consider arbitrarily such an index k . Clearly,

k keither there exists 8 E (0,1) with (Cy *x 1 l so) E (0,l) ; i.e.,

yk.xk is a point of discontinuity of 0-( l so) along the ray

{X- xk I X > 0} but not a first jump point to a positive scaling of-k k

1SO ; or y .x is in fact a first jump point.

Now use contra-positive argument: Suppose there does not exist a

positive scalar K such that (yk.x k 1 1so0) I K for all k . Then

there is an infinite subsequence {(yJ.x j C j , such that

i 1iu i

diveges o + .I inthe equnce y * I ,her

L I I -- , _ .



is an infinite subsequence of first jump points, then condition

(2.2.Ia) is violated. On the other hand, f such a subsequence does

4 4
not exist, one may as well assume none of . points -,_.x _is a first

* 4
jump point. Fix an arbitrary E (0,1) Since *. Ix j  is not a

fi.rst jump point, there exists an input vector zi E (A*:.x j 
, Yj.x )

such that I > O(z i Iso) > 0 . Consider the sequence :zJ'. thus

chosen. Because X E (0,I) , < 1 for all J by definition, and

0(. : 1so) is monotone along rays (Axiom L.3),

(zJX* IS) D(Y ' x  I IOso)> ( lso) > (y -. x j  1 )

l(,j 1 so) O(zj 1 1so) so

Hence condition (2.2.11b) does not hold for the scaling factor 1/5

This contradicts the hypothesis of regular scaling, thus establishing

the claim.

Next, it is shown that Inf {y k 0 . Suppose otherwise, then
k

there exists a c > 0 such that y > C for all k . Then by the

monotonicity of 0(. 1 so) along rays and the hypothesis of regular

scaling

0 < I)(xk io ) -1 < kkkkx1k k so)

8 0.(yk*x ) k - 1/' K <
1/c

where K is the bound onl 4 (Y . iso )4 established in the earlier

claim. This contradicts the original assumption that .O

Since Inf {yk} k 0 , there is a subsequence tyP} C :y(- with

{yP} 0 . For each index p , yP*x p E L(1so) , hence an input
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zp < yP.x p may be constructed such that zp E E(lso) (see the proof

of Proposition (1.6.4)). By construction, zpl < y Px " < YPx p

Since {yP} + 0 , it is seen that

Inf ox -Y I x E E(lSO)* = 0 0

Then, using the same argument as for the proof of Proposition (2.2.8),

one may show that E(Io) {x I -S , 0} is not empty. Since according

to L5, E(1 s) C L(so) ; and because of Fact (1.6.5), (I,SI) cannot

be essential for SO , completing the contra-positive proof C3

2.3 Laws of Returns Under Uncertainty

As in the deterministic case, the issue is whether a bound on some

input factors will limit outputs. In a deterministic model of produc-

tion, since every feasible input-output combination (x,u) with x E L(u)

can be regarded as a production policy, laws of returns may be deduced

strictly from the properties of the deterministic technology. With the

introduction of uncertainty, the actual process of production is no

longer completely characterized by the underlying stochastic technology.

The attainability of (or the limitations on) outputs is a consequence of

the production policies of the producers. Thus, there is the question

of the role played by information structures on the laws of returns.

Furthermore, since the inputs and outputs associated with the produc-

tion policies in general depend on the state of environment, the notions

of boundedness of inputs and outputs has to be clarified.

The consistency requirement (1.8.3) clearly indicates that broadly
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speaking, an information structure acts as a constraint on the choice

of production policies. In this sense, it may be taken as a bound on

the information available for formulating production policies.

One may be interested only in the information available at certain

time periods; for instance, it is important to Know the availability of

new production techniques when investment decisions have to be made on

new plant capacities. Consider a subset T C {1,2, ... } of decision

time points; and let

denote the "restriction" of a particular information structure 10  to

T . A bound on information may be formulated by using the partial

ordering:

(2.3.1) 3T if -4 is as fine as for all t E T

When the information structure -4 of a producer satisfies T j 0
T T

his information is said to be limited by .T over the time period T

Later on, the special case of "perfect information" .P defined by:

T
I is a singleton for all I t E jp (t E T)It

is useful. Note that every information structure J has J T t j P

i.e., bounded by Tp over T
T

For the input and output histories, it is clear that the input

support SI (for factors I) and output support SO may be defined as

in the deterministic case; and the (functions of) subvectors x SI so
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have the same meaning as in (2.2.2). However, since the bounds in
0 0

general will depend on the states, bounds XSI and u0  should be

taken as functions (recalling the notation of (1.8.4)):

s E S - o (s)

(2.3.2)
!!o

where for each state s E S , the partial ordering (2.2.3) of subvectors

is valid. For simplicity, henceforth 0S(-) will be taken to be a

constant function (denoted by its function value x0 ) when an inputSI

bound is to be specified for the formulation of the laws of returns.

With the definition of the support T , SI and SO ; bounds -40
0T0 (-) and u 0 () ; and the notion of production policies (s E S

(x(s),u(s)) , the following notion of limirarionality on outputs is
*

meaningful for a state s E S

0there exists an output bound uso > 0 such that

limited by the information JT , there does not

exists an information structure _4 with .T - 10

T T

(2.3.3) and an associated production policy s '-p
0

(x(s),u(s)) with 0((S))s <xS1 ,all

S 6 S ; and. the output at state s is such that

2so( so Uso•

Corresponding to the notion of strong and weak limitationality in

the deterministic case, laws of returns under uncertainty may be

formulated by either one of the following:
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0 0

Fl For each bound xSI 0 on (1,SI) and each bound JT on
SI - T

information, (2.3.3) holds.

F2 There exists a bound xsI > 0 on (1,SI) such that for each

bound jT on information, (2.3.3) holds.

F3 For each bound AT on information, there exists a bound
T

X 0 > 0 on (I,SI) such that (2.3.3) holds.

F4 There exists a bound J on information such that for each bound

XSI > 0 on (I,SI) , (2.3.3) holds.

F5~~~ ~ Foahbon 0 on (I,SI) , there exists a bound jToSI-F5 For each bound XSIl n (,1 heeeit on

on information such that (2.3.3) holds.
oo

F6 There exists a bound xSI 0 on (1,SI) and a bound JT on

information such that (2.3.3) holds.

For each of the above formulations, the consequence of the bound on
* o 0

output u(s ) due to the bounds xSI and JT may be interpreted as

follows :- irrespective of possible increased applications of other

inputs, usage of better (finer) information at other times, and their

soa-':ociaced policies, the output bound Uso, cannot be exceeded if the

true state of nature is s Hence, the increased application of the

other input factors and the solicitation of finer information jointly

have, in the sense of Menger's intersecting assertion, diminishing

returns.

Note that Fl to F6 are related by:

F2 F3

Fl F6

F4 - F5
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The subtle interplay between the bounds on information and the bounds on

inputs will be made clear later by the characterization of Fl to F6.

Off-handedly, by observing that jT may be taken as fine as the perfect

information and x$ may be arbitrarily large, one may see intu-

itively that in F2 and F3, it is the bounds on inputs; while in F4 and

F5 it is the bound on information; which plays the key role in limiting

outputs.

To give alternative characterization of Fl to F6, the following

will be assumed for convenience:

(A.1) output support SO is a finite subset of [1,2, .. .

As a consequence of (A.1) and the reasoning of (2.2.5), supports T

and SI are also finite.

With respect to production policies, the following condition is

imposed:

(A.2) If there is perfect information at all times (i.e., T E{1,2, ... }

and J E J) , then for each state s E S and input-output pair

(Xsus) with us E P(xs,s) , there exists a production policy

with x(s) - x and u(s) -us

The above condition merely asserts that with perfect information, a

producer may plan for production as in the deterministic case. The next

two definitions address the case where perfect information is not

available.

(2.3.4) Definition: Two states s' and s" are irdistnruisa'ab:e

under 0T if for each t C T there is an element I in 0 which
T t T
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contains both s' and s"

(2.3.5) Definition: Information on s' , s" E S is non-discriminating

for outputs over SO if for each J0  under which s' and s" are
T

indistinguishable there exists a bound B E R such that for all

production policies consistent with A0 , Ou (s') - u (s")! < B
T -so-s

The above definition models the situation where the lack of information

so restricts the choice of production policies that the resulting outputs

may not be of arbitrarily large difference.

With all the preliminary notions defined, the following proposition

gives the characterization of Fl to 6:

(2.3.6) Proposition: Suppose a stochastic production technology

satisfies the stochastic weak axioms (1.4.6), E and L6.S, and

Assumptions (A.1) and (A.2) are enforced. Consider a state s E S

i) If the correspondence P , (see 1.2.3) satisfies regular scaling
s

(2.2.11), then F1 is equivalent to : - (I,SI) is essential for

SO under s ; i.e., (2.2.7) holds for the correspondences P *
s

(ii) F2 is equivalent to : - (I,SI) is essential for SO under s

(iii) F3 is equivalent to :- for each bound 10 on the information,

there exists a state s' which is indistinguishable from s
0 *

under T information on s' and s is non-discriminating

for SO , and (I,SI) is essential for SO under s'

(iv) Suppose the correspondences Ps satisfy regular scaling for each

s E S , then F4 is equivalent to: there exists a bound jT on
T

information under which there exists a state s' indistinguishable

from s , information on s' and s is non-discriminating for
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SO , and (I,SI) is essential for SO under s'

0(v) F5 (F6) is equivalent to: - for every bound XsI 0 on (1,SI)

(vi) (there exists a bound XSi >0 on (ISI)), there exists a

bound 1T on information under which exists a state s'
* *

indistinguishable from s , information on s' and s is

non-discriminating for SO and there exists an output bound

00
such that u J P(x,s') for all input x with sUso S S

and output u with u 0so- 1SO

Proof:

*
(i) Suppose (I,SI) is essential for SO under s and P ,

s

satisfies regular scaling, then by Proposition (2.2.13) there

exists for each input bound xs0 an output bound uso> sc

that XsI xst implies u T P(x,s) if uso >uo. Then Fl

follows from the technical feasibility condition (1.8.4). To

show the converse, suppose (I,SI) is not essential for SO

under s Then there is an input x with xsI M 0 and output

E P(x,s*) with -U > 0 . Then by the scaling Axiom L4.2 andso

(A.1), for every bound u 0 > 0 there is a scalar 6 such thato so
(e.;)SO ! uo and a scalar X, such that 8-u E P( x's*

Finally, with 1T taken as the perfect information P , (A.2)
T T" (A2

implies F1 does not hold.

(ii) May be established as (i) using Proposition (2.2.8).

(iii) Suppose (I,SI) is essential for SO under s' . Then by
o 0

(1.8.4) and Proposition (2.2.8), there exists a bound x0> 0

on (I,SI) and a bound u 0  0 such that every production

policy has u(s') u 0  If s' is indistinguishable from s*poliy ha (S) so.
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and information on s' and s is non-discriminating for

outputs on SO , then (F3) follows directly. Conversely, assume
0

contra-positively that there is an information bound jT under
*

which no state s' which is indistinguishable from s satis-

fies either: (a) (I,SI) essential for SO under s' ; or

(b) information on s' and s* is non-discriminating for SO

If such an jT exists, clearly one may take -T Ej  . Since

s is indistinguishable from itself and s and itself is

non-discriminating for SO , (I,SI) is not essential for SO

under s . Then as argued in the latter part of (i), (F3) does

not hold. (iv), (v) and (vi) may be established using similar

arguments. In (iv), Proposition (2.2.13) is used to establish

the existence of an output bound. In (v), the existence of

output bound is assumed outright. (v) is a weaker assertion than

(iv) merely because if the input bound xs0 is relaxed (i.e.,

made larger), a less fine jT bound on information may be needed

to locate a state s' under which output is limited C

Formulation Fl to F6, of course, are not the only possible formula-

tions of the laws of returns under uncertainty. In fact, they are the

simplest formulations possible. Formulations may be extended to the

cases: (a) bounds are expressed in terms of norms; (b) output bounds
o

U 0 are taken as functions on S instead of focusing attention on a
* 0

state s ; (c) input bounds x5 i are taken as functions; etc. However,

it is hoped that the formulation in this section has succeeded in

indicating the complexity of dynamic production under uncertainty, in

particular the interplay between information, technology and proiuction

decisions.
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CHAPTER 3

STOCHASTIC HOMOTHETIC PRODUCTION CORRESPONDENCES

3.1 Introduction

The modelling of an actual production technology involves consider-

able trade-off: on the one hand, the model must be sophisticated

enough to capture the relevant production phenomenon of interest; on

the other hand, the model must be of manageable complexity. When un-

certainty is involved, the task of modelling is more difficult since

one has to contend with the influences of the uncertain production

environment on the production processes.

This chapter uses two ideas that are quite often used in economic

literature as the key to the formulation of some simple but yet reason-

able stochastic models of technology. The first one is the notion of

scaling of production: that production of one level of outputs is

related to the production at another level. The second one is trans-

formation: the relevant production technology under some production

environment being in some sense a transformation of the technology under

another environment. These two ideas are integrated via a generalized

notion of scaling (or input and output factors) which is subsequently

used to yield stochastic homothetic production correspondences.

The form of a stochastic homothetic production correspondence leads

quite naturally to some further special structures which afford rather

simple representations. Through these representations, production plan-

ning under uncertainty is seen to be possible: firstly, in the case of

overall planning of production in conjunction with the notion of
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confidence indexed production correspondences; secondly, in conjunction

with a model of information, the optimal policy of a simple production

system is shown to exist, much similar to the models of multi-stage

stochastic programming in Operations .'esearch.

3.2 Scaling and Transformation of Factors of Production

This section develops a generalized notion of scaling of inputs

and outputs as a background for subsequent exposition. To avoid diver-

sion from the main topic of stochastic production, the proofs for some

of the propositions will not be given here. They may be found in a

forthcoming paper (Mak [1981]).

The definition of scaling of factors of production will be given

in terms of an input space X . The corresponding definition for the

case of an output space U is identical to that for X

(3.2.1) Definition: A mapping T : + x X - X is a sca1ing operaion

on the space X if it satisfies:

i) For each u E R , T(G,.) : - X is a one-one and onto map;

for each x 6 K , x # 0 , T(,x) : + - X is a one-one map.

(ii) T(lx) - x and T(O,x) - 0 - T(.00) for all i E R+ , all

r= X

(iii) For all w 6 R,+ , T(w,x) - y if and only if T(I/w , y) - x

2iv) For all (X, P) 6 JR+ , T(Xu,x) - T(X,T(u,x))

It should be noted that the above set of properties are not independent;

explicitly, (3.2.1-11) and (3.2.1-iv) implies (3.2.l-i1i).

Given a scaling operation T on an input space X , an input

vector y is called a scaZed version of an input x , denoted yfx,
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if there is a scalar v 6 R,+ with T(i,x) - y . The relationship

thus induced by T clearly satisfies: (a) xZx , by (3.2.1-11);

(b) yax iff xty , by (3.2.1-ii); and (c) zdy and yRx implies

zAx. by (3.2.1-iv). Hence, R generates equivalence classes of

scaled versions of vectors. Denote the partition of the input space X

via such equivalence classes by J: C D a } The index set B may

be taken as a collection of representative elements, one from each

equivalence class. If x E B , then D_ is simply the setx

{x e X IxRx} . The singleton [0} belongs to . All these should

be clear from the usual (radial) scaling of input vectors:

(Ux) E 1+: x X T(P,x) : - ±.x .

Here, B:- Cx E K I lxi - 1} U (0} ; and for x 6 B , D_ is the ray
x

Cu i6 )R*#}

For simplicity, scaling operations will henceforth be denoted by

symbols * or S so as to be distinguished from the usual radial scal-

ing (denoted •). For instance, for a scaling operation (T,*) on X

u*x B T(P,x) for all (P,x) E R+ x X

An operator 0 (Shur operator) may be defined on an input space
X (L)n as follows: for all x y E (L )+ , w - xOy if and only

if w - (wi, ..., w) where wi(t) - xi(t)yi(t) for every t E R+,

i 6 U, ..., n} . A similar definition applies to X = (1 .) . With

this definition, a restricted class of scaling operations is introduced:

(3.2.2) Definition: A scaling operation (T,*) on an input space

X (1 .) is norma: if it is representable as:
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(3.2.2.1) ij*x - T(u,x) : - A(,x)ex , (w,x) E R+ x X

where A IR+ x X - X and G is a Shur operator.

Note that if (T,*) is a normal scaling operation on x (L,)h

then for each input x 6 (L)n with x (t) - 0 , t E R+, the i-th
-+ i

component of every scaled version of x is also null at t ; i.e.,

(C*x)i(t) - 0 for all u 6 R+ . Clearly, the usual radial scaling

is normal. The adjective normal refers to the hypothesis that a null

component of an input cannot be rendered non-null by scaling.

Suppose (T,*) is a normal scaling operation on X . Then the

transitivity condition (3.2.1-iv) on T and (3.2.2.1) together require

the mapping to satisfy the following functional equation (compare with

FIre [1973, equation r.4]):

(3.2.3) X4x R+,X

To solve this functional equation, it is convenient to define:

(3.2.4) Definition: A mapping F : X * X on an input space X is

reversibZe if either (a) F is invertible; or (b) F is onto and

for all x , y E X , F(x) - F(y) implies F(p.x) - F(u.y) for all

U 6R+.

For a reversible mapping F on X , define a reverse F as follows:

for each x E X , let +(x) take an arbitrarily fixed value w with

F(w) - x . Clearly, if F is invertib.e, then F is the usual inverse

function. Otherwise, many F are possible.
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(3.2.5) Proposition: Suppose a mapping F : X - X , F(x)

(F1 (x), ..., Fn (x)) , on an input space X satisfies: (i) F(O) - 0

(ii) F is reversible; (iii) for all x E X , (Fi(x))(t) - 0 implies

(Fi (w-x))(t) -0 for all E )R+, i- 1, ... , n and t E +. Then

an operation * on X defined by:

(3.2.5.1) V F( F (x)) , (;,x) E + x X

where F is an reverse of F , is a normal scaling operation on X

Furthermore,

(3.2.5.2) A(u,x) :- F(p-F(x))fx- I
, (,x) E + x X

is a solution of the functional equation (3.2.4); where x - (x, ... ,

X - 1 ) is defined by x 1(t) :-- 1/x(t) i - 1, ... , n ; with the con-n

vention that 1/0 = 1 .

To establish the converse to Proposition (3.2.5), a "urther

regularity condition on the scaling operation is needed:

(3.2.6) Definition: A scaling operation T on an input space X is

said to satisfy the size condi-ion if there is a scalar K > 0 such

that every equivalence class D8  (induced by T via the relation of

scale versions) not equal to {0} contains an input x with lxi - K

(3.2.7) Proposition: Suppose a normal scaling operation (T,*) on

an input space X satisfies the size condition. Then there is a

mapping F : X - X satisfying the conditions (3.2.5-i), (3.2.5-11) and

(3.2.5-iii) such that for all (X,x) E M+ x X, X*x - F(I. (x))

Propositions (3.2.5) and (3.2.7) together state that under

regularity conditions (3.2.5-i, ii, iii) and (3.2.6), there is a
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natural association between normal scaling operations and reversible

mappings (transformations), generalizing Fire [1973, Theorem 1].

This fact will serve as a basis for constructing general homothetic

production structures in the subsequent sections. In particular, the

following simple fact will be useful:

(3.2.8) Proposition: Suppose a normal scaling operation * and a

reversible transformation F : X - X on an input space are related in

the sense that A*x - F(F(x)) for all (,x) G R+ x X and some

reverse F of F . Then F(X.w) - X*w for all (X,w) E R+x X

furthermore, the reverse f may be chosen such that F(X*x) - X-f(x)

3.2.9 Remark: By the above, if a transformation F on an input space

X satisfies conditions (3.2.5-i, ii, iii) and has the further property:

for all input x 0 0 , OF(X-x)l - 4- as X - +- ; then it is reasonable

to call a non-{O} equivalence class D, , induced by F via (3.2.5.1),

a generatized rtry since it is the transformation image of a ray in the

input space.

3.3 Stochastic Homothetic Production Correspondences

The notion of a homothetic production function introduced by

Shephard (1953], and subsequently extended to production correspondences

(see Shephard (1970-a], Fdre/Shephard [1977]), has found wide applica-

tion in economic theories. In this section, stochastic homothetic

production correspondences are formulated in terms of scaling operations

on the factor spaces.

As motivation, consider a mapping F : X x S - X where S is

the state space and X the input space of a production technology.
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Suppose for each state s E S , the mapping x E X -- Fs (x) F(x,s)

satisfies conditions (3.2.5-i, ii, iii). Then by Proposition (3.2.5),

each of the mappings F induces a normal scaling operation, denoteds

* on the input space. Given a deterministic input correspondence

L U - 2(X) which is ray homothetic with a scaling law X ; i.e.,

L(O'u) x(e,u)'L(u) , e E IR- , u E U (see F~re/Shephard [1977] and

Eichhorn [1970] for a rigorous treatment of ray-homotheticity and

generalized homogeneity); the correspondence defined by

(3.3.1) (u,s) E U x S '-- L(u,s) : - (x E X I x - F(y,s) , y E i(u)I

may be easily shown (using Proposition (3.2.8)) to satisfy:

(3.3.2) L(e.u,s) - x(e,u)* L(u,s) , (9,u) E R+x x U

Motivated by the functional form of (3.3.2), one makes:

(3.3.3) Definition: A stochastic input correspondence L : U x S - 2(X)

has a stochastic ray scaZe homothetic strucure if it satisfies a

functional equation of the form

L(e-u,s) - X(B,u,s)* sL(u,s) , (,u,s) E ]+ x U x S

where X : R+. x U x S - + , x(l,u,s) - 1 - X(e,0,s) for all (9,u,s)

E 3. U x S ; and * is a scaling operation on the input space Xs

depending on the state s E S .

For simplicity, the scaling operation on the output space U is taken

to be radial in the above definition. It should be noted that un-

certainty enters into a homothetic structure in three ways: (a) the

scaling law X ; (b) the scaling operation * ; and (c) the input5
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sets L(u,s) . Of course, when the state space S is a singleton,

Definition (3.3.3) reduces to a generalization of the deterministic

ray homothetic input correspondence (replacing the usual radial

scaling by a scaling operation, see Mak [1980-a]).

In order for the input correspondence L defined above to be

a model of a stochastic technology, it is assumed to satisfy (LO, Ll,

L2, U, L4.1; L4.2, L5 and L6} as stated with scaling operations *

s E S . Henceforth, this a3swt--.ton ,iZ be imosed in the exposition

of this chapter.

Clearly, (3.3.1) as generated by the transformation F : X x S - X

is a special case of Definition (3.3.3). In fact, (3.3.3) is quite a

general model of technology since the scaling operation * and thes

input sets L(u,s) may take on rather different forms. However, it

is exceedingly difficult to study concretely a technology if there are

no explicit relationships between the scaling operations * , or thes

input sets L(u,s) as the state s varies. Hence, it is useful to

postulate further special structures on the technology. The following

two structures are prototypes of the others to come.

(3.3.4) Definition: A stochastic input correspondence L : U x S - 2(X)

has an invar'iant scaling structure (IS for short) if it is stochastic

ray scale homothetic with both the scaling law X and the scaling

operation on inputs independent of the state of production environment;

explicitly, for some scaling operation * on X , L(6'u,s) = x(9,u)*L(u,s)

for all (e,u,s) E IR x U X S
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With respect to a given scaling operation * on an input space

X , two sets Y , Z in X are said to be of the same share if there

exists a u E I+ such that Y - w*Z

(3.3.5) Definition: A stochastic input correspondence L : U x S- 2(X)

has an invari nt shape s ructure (SS for short, signifying "same

shapedness") if it is ray scale homothetic with a scaling operation *

on X which is independent of the state; and for all (u,s,s) E U x S S

L(u,s) and L(u,s) are of the same shape (with respect to *).

Given a deterministic ray homothetic input correspondence L : U - 2(X)

and a scaling operation * on the input space X , an IS structured

stochastic input correspondence L may be generated by the following

procedure:

Mapping J : X x S - X ; for each s E S , J(-,s) is

(3.3.6.1) invertible and J(P-x,s) - u*J(x,s) for all

(uxs) E s X

(3.3.6.2) (u,s) E U x S - L(u,s) :- (x C X i x - J(y,s) , y C L(u)}

Similarly, an SS structured stochastic input correspondence L may be

generated as follows:

Mapping M : X x U x S - X is separable in the sense that

(3.3.6.3) for some W U x S - R+ , M(y,u,s) - W(u,s)*F(y) for all

(y,u,s) E X x U x S where the mapping F induces * on X

(3.3.6.4) (u,s) e U x S I-- L(u,s) :- (x E X i x - M(y,u,s) , y u

If the deterministic input correspondence i has a scaling law X

it follows immediately from (3.3.6.3) and (3.3.6.4) that
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L(O-u,s) L W(us) X(u) *L(u,s) , (e,u,s) E 1+. x U x S

and

L(u,s) - W(u's) *L(u,s) , (u,s,s) E U x S x S
W(u,s)

Both the IS and SS structure has an immediate implication on their

associated confidence index production correspondence (see (1.7.3) and

(1.7.10) for definition) which is stated after the following:

(3.3.7) Definition: A scaling operation * on an input space X is

k ocontinuous if for every sequence {x } C X converging to x , and

k o k k
every sequence (uI} C R_+ converging to u G ]+ , ti *x } converges

0 0
to iO*xO

(3.3.8) Proposition: Consider a stochastic input correspondence

L : U x S - 2(X) . If L has an IS structure, then its confidence

indexed input correspondence CL U x [0,1] - 2(X) is ray scale

homothetic: for every (u,&) E U x [0,1] and e E ]R+ , CL(8-u, )

X(e,u)*CL(u, ) for some scaling law X : R+ x U - R,+

If L has a SS structure and (a) the scaling operation * is con-

tinuous; (b) the associated CL correspondence satisfies property CL5,

see Proposition (1.7.5); then for each u 6 U , the sets CL(eu,&)

which are not empty have the same shape as (e,&) varies over

R+ x (0,11 ; implying that the correspondence CL is ray scale

homothetic.

Proof: Suppose L : U x S - 2(X) has an IS structure. Arbitrarily

fix an (u, ) 6 U x [0,1]; CL(u,&) may be represented as
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CL(u,Z) (x E X (s GE S Ix (E L6u,s)l ZI

- u tn L(u,s)
A"_Z) SEA

where A(Z) is the collection of events (A E A I T(A) > Since

L has an IS structure with an invariant scaling law, say x , it

follows that for all 6 E . ,

CL(e-u,Z) u r) L(S,s)= U r X(8,U)*L(us)
AEA(&) sEA AEA(Z) sEA

That is, CL is ray scale homothetic.

Suppose L : U x S - 2(X) has a SS structure. First note that

CL(u,& - 0) = X for all u E U and CL(u - 0,&) X for all E [0,1]

hence, only the case of E q (0,1] and u # 0 need to be considered.

Fix an arbitrary uE U , u# 0 . If L(u,s) 0 for all s E S , then

clearly CL(u,&) - 0 for all E (0,1] . Furthermore, by Axiom L4.2,

L(e-;,s) is seen to be empty for all 6 E IR Hence the proposition

is trivially true. So, suppose for some s E S , L(u,s) # 0 . Fix the

input set L(u,s) as a reference set and denote it simply as D .

Since L has an SS structure, for each s E S , there is an As 'E R

such that L(u,s) - X *D

Consider an arbitrary event A E A with r) L(u,s) # 0 . Accord-
sEA

ing to the above consideration, ( L(u,s) - A A *D . By L3 as
sEA sEA

stated with the scaling operation * , it is clearly true that

Sup C n X *D . To show the converse inclusion, let x r s \ *D
eA ) - (A s ss si

Let a Min {A E IR.++ A *; E D} .The scalar a is well-defined since
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D E L(u,s) is closed (by Axiom L.5) and * is a continuous scaling

operation. Furthermore, a > 0 ; since if otherwise, o*x - 0 E L(u,s)

contradicting LI. By Axiom L3 and the definition of a , / > fora S

all s E A ; implying that 1/a > Sup A Since a*X E D G l/a*D
SEA

Then by L3 as applied on D B L(u,s) , Sx (SPX s)*D

Let Z be an arbitrary confidence index in (0,1] Let A be

the family of events in A defined by :- A E A iff I(A) > and

SX *D . Suppose CL(u,Z) is not empty. Then A is a non-null
SCAL

Afamily. For each event A EA , let A :- Sup X . Then CL(u,Z) has
sEA

the representation of U [AA*D] . From this, it is seen that CL(u,Z)
AEA

and D are of the same shape if one can show that U [ - Inf A *D
U [ X 

A

AGEA A*D]

and IfAAe IE*

Since u # 0 and Z > 0 , 0 1 CL(u,Z) . Since CL(u,Z) is assumed

to be closed, there is a neighborhood N of 0 such that Nf( CL(u, )'0.

Consider an arbitrary x' 6 D . By the continuity of the scaling opera-

tion * , there is a v' E R,, so small that u'*x' E N . Denote

U'*x' by z . Clearly z e CL(u,:) , z 0 0 and the generalized ray

(X*z A IR.,.} has a nonempty intersection with D . Let

B :- Min {X G R.. I X*z E D} . As argued before, B is well-defined

and positive. Since z does not belong to the closed set CL(u,Z)

Axiom L3 and the continuity of * implies the existence of a 6 G R+

such that for all P 6 [0,1 +) , *z CL(u,Z) - U [XA *D] . Clearly
AZA

AA E I+ for all A E . Since 8*z E D ,(BAA)*z G A*D for all

A 6 4 . Consequently, BXA > 1+5 for all A ; implying that

IInf AA) >l->\AG - --B .
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For ease of notation, denote Inf A simply by Inf A Since

Inf A was shown to be positive, it follows from L3 that U [A*D]

AA

is contained in (Inf XA)*D . To show the converse inclusion, let

(Inf A)*D .Then the generalized ray (A*z I A E IR} clearly

intersects D . To use contra-positive argument, suppose z Q CL(u,&)

Then by defining y - Min {A E IR I A*z E DI , it may be argued as in

the above paragraph that there exists e G R such that Inf A A> 1 + .
- Y

AA- A
Now z E (Inf AA)*D implies (i/Inf A )*z E D . Hence 1/Inf A > Y

by the definition of y . But this contradicts the inequality

Inf AA > + since e > 0.
- Y

By the above argument, it has been shown that for each Z E (0,1]

with CL(u,&) # 0 , CL(u,&) and D (M L(u,s)) are of the same shape.

Now by the ray scale homotheticity of L , for every 8 E , L(6-u,s)

is of the same shape as L(u,s) . Using L(8u,s) as the reference

set and repeating the argument above, it is seen that for all 8 e GR ,

& (0,1] , CL(8.u,&) is of the same shape as L(8-,s) , hence that

of D C

The next two representation propositions will further expose the

structure of IS and SS stochastic input correspondences. Before stating

them, it is recalled that a production function 0 : R+ n R+ is said
+ +

to be homothetic if it has the form (see Shephard [1970-a]):

O(x) - G(O(x))

n

where :]R+ 1.R+ is homogenous and G R+- 1R+ has the proper-

ties
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(i) G(0) - 0 ; G is noudecreasing;

(ii) G(a) ~+ as a
(3.3.9)

(iii) G is upper-semi-continuous; and

(iv) 8 (ER - G (a):= Min (a r I G() > B)

(3.3.10) Proposition: Suppose a stochastic input correspondence

L : U x S - 2(X) has a SS structure with a scaling operation * (on X)

which is continuous. Then for each output mix E ru : - {w lwi - 1)
lug

there is a family of functions Gs(., u 1R+ - RI+ ; s E S ,satisfy-

ing properties (3.3.9-i, ii, iii) and a scae homogenous function

0(., U X 3L+~ (i.e., * (Xx. -- - X*.(x Xlg such that

L(8- . .. i 1  s) {x 6 x I Gs(o(x, U. j), Ui~j- a e for all (6,s) E xR,+ X

Proof: Arbitrarily fix an output mix - U . Suppose L(- ,s) - 0

for all s E S . Define .(x, u 0 for all x G X . Clearly,

.(, -- ) thus defined is scale homogenous. For all s e S , let
NU

" 7iU ) be an arbitrary function satisfying (3.3.9-i, ii, iii). Then

it is seen that the representation of the input sets Li jju ,s as

claimed by the proposition is valid fcr all 8 E IR4+
Suppose s) # for some s E S . Then since L is SS

structured, L ( s) # 0 for all s e S . Then as argued in the

proof of Proposition (3.3.8), there is a closed subset D in X

(0 e D) such that L(8 • j ,s is of the same shape as D for all

(8,s) E I., x S . That is, for each (e,s) 6 ]R+ x S , there is a
I u )i u

q(e,s) 6 R. with L 9. • s - q(8,s)*D . D of course depends on -

Now fix a state s 6 S . It will be first shown that the function

e E IR-, q(8,s) is lower-semi-continuous. Consider an arbitrary
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sequence of scalars {ek } C , converging to 0 E R • Let a

subsequence {8j } C {8k} has the property that {q(9J,s)} converges

to q : - lim inf {q(6 ,s)} Consider an arbitrary x E D . By the

definition of the function q(.,s) , q(6j,s)*x E L(Oj .-- - ,u ) for

each index j . Since {q(J,s)} converges to q , and the scaling

operation * is continuous, {q(8J,s)*;} converges to q*x. Then since

ej u converges to "o -u , by Axiom L5 q*x E L(6 0 ' -  ,) u

Because x was arbitrarily chosen, q*D C L( 0 - But because

L(eo ~ ,s ) q(60 ,s)*D , it follows (by applying L3) that q( 0 ,s) <

q r lim inf {q(eks)}

Moreover, it is not difficult to show (using L3 and L2 respectively)

that the function q(o,s) is nondecreasing and q(8,s) - + as 8 +

Using these properties of q(.,s) , define a function G II-I)
I+ + by:

a ~ ~ 4E 'R o s OU , if {6e IR4. I q~e,s) .u E +* , -M1ax (6 E RIR4. I q(9,S) 1 a} if otherwise.

The function G,(-, u) is well defined; nonnegative; G(0) -0

upper semi-continuous and G(. 1(0" ) -I 4" as a- +- . (See

Shephard [1970-a, Proposition 6] for details.) That is, G( )

satisfies (3.3.9-i, ii, iii). Furthermore,

(3.3.10.1) a > q(8,s) iff Gi ,( i--) u 8 , all (8,a)E R - I+.

Repeating the above argument for each s G S , a family of functions

G,(", ; s G $ satisfying (3.3.9-i, ii, iii) is defined.

k a--U
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Next, define a function 4{. OU-l): X R+ as follows:

0 if (X*x I E i 4 D = D

G , U (Min (X E ]R+I X*x G D}] -  if otherwise.

The function 0(-, u ) is well defined since D is closed, 0 D

and * is continuous; as argued once in the previous proposition.

In fact, it is scale-analogue of the distance function of the input set

D (see Shephard (1970-a] and Shephard/Fire [1980] for a definition of

distance function and its properties). Clearly, 0(, l-- ) is scaleI ug
homogenous. Moreover, D {x G X I ( x, > 1 • For a proof of

this fact when * is the usual radial scaling, see Shephard (1970-a,

Proposition 16].

Finally, using (3.3.10.1) and the scale homogeneity of U(", * ,

one has: for all (6,s) E ]R, x S

L (8 u ,s) a (x E X x - q(9,s)*y , y E D)

- E Y x q (6, s) , 0 1(y,

Sz 6x O (z, q(e,s)

E X G, (0(z, u u

Since the mix -uj was arbitrarily chosen, the proposition is es-

tablished 0

(3.3.11) Proposition: Suppose a stochastic input correspondence

L : U x S 2(X) has an IS structure with a continuous scaling

operation * and a scaling law X :R, x U -.R . Then for eachoupu mix
output mix - rU , there exists a function G(., U : R+ +

" tul
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satisfying (3.3.9-i, ii, iii) and a family of scale homogenous functions

s . : X-l+ ; s E S such that L (. ,s - x E Xi

G(os(x, jufL , > for all (e,s) E x S

Proof: Similar to that of (3.3.10) and will be omitted.

Based on the representation propositions (3.3.10) and (3.3.11), one

may choose to interpret the SS and IS structures as constituted of V
scalar-valued production functions (Gs(-, T1-T) and G(., U-)) and

input quantity indices ( u(.' ) and os(- . However, as the

proof of Proposition (3.3.10) reflects, the representations are not unique

(since the reference set D was chosen arbitrarily). Hence, such an

interpretation may be somewhat strained. But these representations

motivate the following considerations:

UT

As in (1.7.9) and (2.2.10), define for each -11E 7U the function

(3.3.12) (x,s) E X x S I-* €(x,s j u : Max a E 3R+ I "-j e P(x,s)

As argued before, it follows from Axioms L5 and P0 that € is well

defined, and for every x CE X , the function t (x,. iis

measurable. Hence 1 1 ; x E X} may be taken as the familymeaurale ;en!

of random variables which models the production function for outputs of

mix --

Suppose the input correspondence L of a stochastic production

technology has a SS structure. Let the effective domtn of output mix

be DU:- E 'U (- ,s) # 0 for some s E S. Suppose L is

represented by the families Gs(., lu ; s E S and scale homogenous

functions 0 ",u) u eU . Then, as may be seen from the proof of

o lug
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(3.3.10), for each u E DU , ( x ) takes on all possible values

of R+ as x varies over X . Consider an arbitrary a E R ,it

is easy to verify that for every x E X with .(x, lull) - - and

u- E DU:- s r S I  , s E S 0 xs I  > a

Thus, for each u E DU , the family of random variables
lul

{O x," I ET); x E X is representable by a single function g, )

and the family {G( ), s r S • Moreover, for a fixed a e K+

and a u 6 DU ,the function s E S - Gs a, ) is a random

variable with a distribution

(3.3.13) V( O , a, u s E S I Gs (a, u < 8 , e 3R+

In general, for a fixed u IE DU , the distribution function
gull

V(• I a, u are different for different a's . However, if these

distributions are of manageable complexity, the discussion above is

potentially useful for application. For example:

(3.3.14) Definition: A SS structured stochastic input correspondence

L : U x S * 2(X) (with a continuous scaling operdti-- *) is said to

have a SSG atrttux-e if its representation (3.3.10) satisfies: given

u| E DU , for every s , E S , there exists a scalar B(s~s, I -- )
such that G a,, I (s, - , u G,(,, u , a E .

(3.3.15) Proposition: Suppose a stochastic input correspondence L

has a SSG structure. Then the distribution functions V (3.3.13)

associated with its representation satisfies: for every E DU and

every a' , a" 4 (a E R I Gs(a) > 0 for some s E 5) , there exists



87

a scalar g u,)", E ]R+ such that V (t I a', -

v (g(o,',a", u t I ", u for all t E J. In fact,
g ',a" ug -ls ugs

g ,ci'c" u), , )) for each s E S . From this,

it follows that if the distribution functions V are integrable,

denoting EXP [ (x I )]:' f s I dl , one has
ses

W- [(x U ~ G(~x ri) fi
EXP [ x I O U , U all x ,y E X and s E S[( ( BUN) 3u),

Proof: Straightforward and omitted.

Although the data requirement of working with a SSG structure is

( u) ;, inl
minimal a single scale homogenous function 0 "., ) ;4 a single

scalar-valued production Gs (, lg, s being an arbitrary element of

S ; and a single distribution function V) ; SSG structures appear to

be too simplistic. But based on it, a rather useful extension is

given below:

(3.3.16) Definition: A stochastic input correspondence L : U xS -2(X)

has a partia Zy-scne-8hape structure (PSS for short) if the state space

S is partitioned by {Si , j E J} ; and for each member Si of the

partition, the restricted input correspondence Li :U xS j -2(X)

defined by L (u,s) - L(u,s) (u E U , s E S ) has a SS structure.

Input correspondence L is of PSSG structure if each Li is of SSG

structure.

It is assumed that Li's satisfies the stochastic weak axioms

(1.4.6) as stated with apprcdriate scaling operations which could be

different for different indices. The relevant state space (Si, J)

is the restriction of (S,A) on SJ
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The rationale underlying the PSS structure is the observation that

in many production systems, the state of the production environment

affects production in distinctiveZy and quaZitativeZy different manners.

For instance, whether it rains or not makes a tremendous difference to

many construction projects; but given that it rains, the amount of rain-

fall is irrelevant. Another example is technological breakthrough.

After a breakthrough which qualitatively changes the technique of produc-

tion, only minor variation is effected by the state of production. PSS

structures attempt to capture this categorization of qualitative differ-

ence of the technology.

Recall the notion of an information structure as represented by a

sequence of partition on the state space S . Consider the information

at time t as represented by the partition t * Suppose A t is finer

than the partition {Sj , j E J1 of a PSS technology. Then the infor-

mation at time t enables a producer to tell precisely which qualita-

tively distinct input correspondence is prevalent. This example indicates

that PSS structures may be particularly useful in formulating production

policies.

3.4 Homothetic Structures and Production Decisions

The last section introduces the notion of stochastic homothetic

production structures, although primarily through some rather special

fo--ms. In this section, the special homothetic structures developed are

used to consider some production planning and policy problems. Since the

underlying technology is assttmed to have rather special structures, the

material in this section should only be regard as an exploration pre-

liminary to the study of production planning under uncertainty.
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The remainder of this chapter is divided into two parts. First,

design of production systems is considered via the confidence

indexed correspondences. Using the first part as background, in the

next section, a simple stochastic dynamic production system is in-

vestigated with the constraint of information explicitly introduced.

By overall planning and design of a production system, it is

meant that certain decisions concerning the input to and output from

a production system are to be made at a particular time point without

explicit concern for their execution (the day-to-day system operation under

uncertainty). Examples are: planning for investment on plant capacity;

production target setting, etc. Under this framework of decision-making,

the information (or ignorance) of a producer is completely embodied in

the state space (S,.a) and the (subjective) probability measure. Two

schemes are considered:

(3.4.0-i) Output u E U is to be attained with at least a confidence

level ; choose an input x E X which may accomplish this.

(3.4.0-ii) Input resources are constrained in some manner, choose a

feasible input such that the expected output is optimal.

(3.4.1) Definition: Let X , the "dual" to an input space X

represent the space of nonnegative input prices. (Strictly speaking,

n *this is an abuse of mathematical language. If X - R+ , X is meant
n Ln wih* *

to be R . Similarly, for X - (L )n with the weak topology, X

n fo Ln Xn
is meant to be (L1) ; for X - , X is meant to be (L) .)

The (confidence indexed) inini,,aZ -s: functin of a stochastic produc-

tion technology is
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Inf <p,x) x E CL(u,

(3.4.1.1) (u,p,&) EU X x [0,1] -- Q(u,p, ) if CL(u,,) # 0

+- , if otherwise.

It is well known that the minimal cost function of a deterministic

(ray) homothetic input correspondence is separable (see Shephard [1970-al

and Fdre/Shephard [1977]). As an extension, it is shown in the following

that certain classes of stochastic homothetic input correspondences also

have separable (confidence indexed) minimal cost functions.

Suppose an input correspondence L : U x S -* 2(X) has an IS

structure with radial scalinq on X , then by Proposition (3.3.8),

CL(68u, ) - X(B,u)-CL(u,') for all (e,u, ) E R4+ x U x [0,1] where

X is the invariant scaling law. It then follows that for all

(e,u,p,&) E + x U x X x [0,1]

Q(6'u,p, ) - Inf ((p,x) x E X(e,u)-CL(u, )}
(3.4.2.1)

- x(e,u).Q(u,p,Z)

In particular, for a fixed output mix u -E U
gull

(3.4.2.2) Q . r ,& = N u  (9)K u  (p, ) , (6,p, 0E 4-xX x [0,1]
luu Uu

w ,p,) and N (e) : = X( , . That is,

lug gullUU

for each output mix -uj , the minimal cost Q separates into twolug
terms, one involving the scaling of the output mix -u , the other

ilug

involving prices and the confidence index as applies to a reference

Uoutput Il-

lul
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Suppose L : U x S - 2(X) has a SS structure with the usual

radial scaling, then the minimal cost function Q is separable in

quite a different manner. For simplicity, assume Property CP4.2

(hence CL4.2) holds. Let =(u) C { E (0,1] 1 CL(u,&) 0 01 , u 6 U

Noting that the radial scaling operation is continuous, it follows

from Proposition (3.3.8) that for all u G U and C B ' 6 E(u)

for every e C R , there exists a scalar p(e,u,g) G 6R
(3.4.3.1)

such that CL(eOu, ) a 0(e,u,&).CL(u,&) ;

(3.4.3.2) for some y(u,g,&') 6 1-* , CL(u,&) - y(u,&,4').CL(u,&')

From (3.4.3.1), it directly follows that

(3.4.4.1) Q(e-u,pg) - p(e,u, )-Q(up,&) ; uGU , 62(u) , 86ER*, pex

In particular, for a fixed output mix -u 6 M , by letting K (P' :

1U-T
Q(-juP- ) and M(8, ):= p(e, juj , ), Equation (3.4.4.1) has the

separable form:

(3.4.4.2) Q(8 . ,p, = M (8,&).K (p,)
lul ulTU

On the other hand, it follows from (3.4.3.2) that

(3.4.5.1) Q(up,C) - y(u,g')'Q(u,p,C') ; uEU , & 6'E3(u) , peX

In particular, for a fixed u- CE M and an arbitrarily fixed
lul

6' ( : ) Equation (3.4.5.1) gives rise to: - for all p r X

( :IU
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. U %pC) =Y I( , . . ,p,
lul u u

- (8 . U- . ' . (O.C')K (p.C')

(3.4.5.2) lul lul

n r (eU .u (e).i (p)

with the obvious definitions for r , and K . Furthermore,
lul lul Iul

if L has an IS structure in addition to being SS structured, it is

easy to see that the factor r (8,) is really independent of e

lul

resulting in the completely separable form:

(3.4.6) Q e. U j.POO) f u c)ku e)iu (P;PeX*, OGER, I r
iT 1ET

The relevance of the above separable functional forms in regard to

overall production planning (recall (3.5.0-i)) is as follows: - If the

input correspondence L of a stochastic technology has the IS (or SS)

structure with a radial scaling; and the value of K___ (or K u -(P

lul lul

in (3.4.2.2) ((3.4.5.2)) is readily computable, then the trade-off

between cost, level of output attainable and the confidence concerning

such attainability may be readily determined via Equations (3.4.2.2),

(3.4.5.2) or even (3.4.6). This certainty should facilitate the overall

planning of production under uncertainty.

However, since the radial scaling need not be an appropriate scaling

operation on inputs (due to changes in effectiveness or learning effect

and the value of K u(p,&) need not be readily available (for an IS

lul

structure the confidence index input sets CL(u,&) are of different
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shapes as C varies), the above scheme of production planning may have

limited application. These two drawbacks are partially resolved in

the following:

(3.4.7) Definition: Given a scaling operation * on an input space

X , a function h : X - X+ which is scale homogenous (with *) is called

a prioe d fftiof on X , and h(x) is the cost of employing input x

Let H be the collection of price functions on an input space X with

respect to the scaling operation * . Modify the definition (3.4.1) of

the minimal cost function to:

Inf {h(x) I x 6CL(u,)}

(3.4.8) (u,h,4) 6 U x H x [0,11 &(uh,&) :- if CL(u,&) 0 0

I+- , if otherwise.

The following straightforward proposition, which also serves to summarize

the previous discussion, is valid:

(3.4.9) Proposition: If an input correspondence L : U x 5 - 2(X) has

an IS (SS) structure, then its minimal cost function Q is separable

in the sense of (3.4.2.1) and (3.4.2.2); ((3.4.4.1), (3.4.5.1) and

(3.4.5.2)).

As for the computation of the factor K t (p,&) in Equation

UT

(3.4.2.2), the following structure is of interest:

(3.4.10) L : U x S - 2(X) Ras Both a PSS and IS Structure: Recall the

definition of a PSS structure (3.3.16). Let (SJ ; j e J} be the parti-

tion of S relevant to the PSS structured input correspondence. Let

1: C(Sj ) and * (.) be the conditional probability measure given
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Si , J E J . For simplicity, assume V(SJ) > 0 for all j E J.

Then T(. 5J1) is well defined.

Consider an arbitrary j e J . Define (as done once before)

the effective domain flU1:. I u r ru ILJ(T!u ~)# orsm

a 6 Si . Since the correspondence Lj  is of both IS and SS structure

on Si , it is easy to verify (using representation propositions

(3.3.10) and (3.3.11)) that for all u 6 DUJ , there is a nontrivial

homnogenous function *J u* X~ - M., a function G(. u IRj.) -R

satisfying (33.9-1 11, 111) and sclars yjsi 61. (' 6~'J 51)
sca "~~"' lul/ * (si

such that

L(Jj U~ i {x1E X I G (X Uj)yL) 1U and

Ll ~~ s)iYJ (sts, u.. LJ(.. u i) , s651J

where the state i is taken to be fixed as a reference. By an argument

similar to the discussion leading to (3.3.14), y (s.;, i-) as a func-

tion of a is seen to be measurable on SJ . Then by invoking the

homogeneity of ,i(. U-) and letting J (s, ) ,U

Y J( ) the input sets L i(jUj. 's) has the simple representation

all 6 jU6D

Lj1jUj a) i- (S iru) 1"i C= X I'~~ O j (x IU 'Ij flu 1

For -u 6 DUJ ' let Wu be the conditional distribution function of
lul

TU-T
the random variable iiJs a,~. u i.e.,

-j (0) {js e S1  I i(5 u~r 4,B
lul

i
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Repeat the above for each j e J

Now consider an arbitrary e,- 6 ru and e 6 (O,l] Denote
lul

(T -. 6 J 1 DU • One has

CL(f "-l C) -{x E (X 6 S x r= L(j-u s)l ,

- = ~X 11K 1P u { 6 Si Ix 6E LI(u )

4 -U--

- ~~Z6K I u ,(,ir)

Thus L(,-j C takes on the form of a constraint set of a nonlinear

mathematical program ng problem. Depending on the complexity of the

functions ,j(., u and the distributions , there is the

I UT
possibility that the cost factor K (p,C) (see (3.4.4.2)) may be

lul

computed as the solution of a mathematical program.

Finally, it is remarked that the slightly more general case of L

having only the PSS structure may be handled similarly 0

Recall the function 0 defined in (3.3.12). For each u e ru

and 6 X, O~,- I-,-ulul
and E K, *(x," I j)u : S - R. represents the maximal output of
mix - using input x under the various states of production environ-

uoe

* ments; and the function 4 x ,. j- ) was shown to be measurable.
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Given a constraint set C on the input resources, decision scheme

(3.4.0-11) may be formalized as the following problem:

For fixed ueru , Mlax~ f (x,s Iu)d

(3.4.11) see

subject to xE C n X

Problem (3.4.11) may be difficult to solve without assuming special

structures on the production technology since the objective function in-

volves an infinite number of random variables, one for each decision

variable x . In the following, (3.4.11) is increasingly specialized in

several steps with the end-result that it becomes a mathematical

programming problem.

Assumption 1: L : U x S - 2(X) has a SS structure with a continuous

scaling operation * . Output mix r DU.lul

By the discussion after item (3.3.13), since u E DU , for each x F X

lul

the random variable *(x.- I u . is distributed according to

the distribution function V( u(xu ) (see (3.3.14)) where

,(.. r) together with the family IGs(-, *u) ; s e is the repre-

sentation of L via Proposition (3.3.10). Then problem (3.4.11) may

be rewritten as

For fixed u -M , Max. f ,.v(d, , u

R+

(3.4.12) subject to x e C tl X

,(,. j ) - o-..u 0
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There are two difficulties with the solving of problem (3.4.12):

(a) the form of the distribution V( I CL, _u in general depends

on a ; (b) the computation of ( x, may be nontrivial since

.(., U-) in general is only scale homogenous. To resolve (a), make

Assumption 2: L is of SSG (3.3.14) structure.

Let y CXwiththeexpectedvalue

Tacitly, it is assumed that V(. I m, * is integrable; for which

Axiom P2.I is sufficient. Then by Proposition (3.3.15), for all x E S

and an arbitrary i e S ,

I U) - G;((y I T)I .o,() I lulluO

Calling Gi simply by G *and letting B :- EV(0( II UV

G(<(y, L u (3.4.12) simplifies too(,(,,ma G( .<. >. ,,, .u B

(3.4.13) subject to .( X, L~ - CL 0 U )

z C: C n lD.

Noting that G., is nondecreasing (3.4.9-1), solving (3.4.13)

amounts to solving:

(3.4.14) Max +x' jr.) ; subject to xEC D ; (r) D u DU)

Solving (3.4.14) requires the computatioc of the scale-homogenous

function T . . For this purpose, the property of homogeneity
• . -J
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may be exploited:

(3.4.15) Proposition: Suppose a mapping F X -X X satisfying

(3.2.5-i, i, 11) and induces a scaling operation * on X via

(3.2.5.1). Then if a function 0 : X - 1%+ is scale homogenous

(with t), the function w defined by y E X t- w (y) : (F(y)) is

homogeneous. Furthermore, for every constraint set C C X , if y

solves the problem: (Max w(y) ; s.t. y E X , F(y) C C) , then F(y )

solves the problem: (Max #(x) ; s.t. x E C ( X)

Proof: Since F(O) - 0 , w(0) - 0(0) - 0 . For yE X , y 0 0 and

X 6 ]* , by the reversibility of the mapping F and the scale

homogeneity of * : W(X.y) - *(F(X.y)) - *(F(X.O(7(y)))) - *(*F(y)) x .

(F(y)) - A-w(y) . The proof of the second part of the proposition is

Just as trivial 0

Assumption 3: The scaling operation * relevant for the input corre-

spondence L is induced by a mapping F satisfying (3.2.5-i, ii, iii).

By defining for each u-6 DU, y E X - (y, u-) :- *(F(y), -- ) and

applying Proposition (3.4.15), instead of (3.4.14), one may instead

choose to solve:

(3.4.16) max wa(y, jU--j) ; s.t. y C X , F(y) F C ; T DU

From the point of view of function forms, problem (3.4.16) need not be

easier to solve than (3.4.14). However, recall (from the proof of the

representation proposition (3.3.10)) that the function ors one) is

used to represent the "shape" of the SS structured input correspondence L
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The same reasoning may apply to the purpose of the function w.,

This perspective is particularly convincing if L is originally

generated by transformation (e.g., see (3.3.7)). Thus, one is primarily

interested in the "shape" of the function w(., u3 -- ) which may be repre-

sented by the subset {y e XI W (y, .1lu) 4} . In many applications,

the following assumption is reasonable:

Assumption 4: There exists a finite number of homogenous functions

i: 1 R+ (i ai, ..., N) such that the set {YE uI

has the form (y EX I h (y) : d d > 0 (i1 1, ..., N).

i i di>

Through Assumption 1 to Assumption 4, the original problem (3.4.11) is

seen to be reduced to a mathematical program:

Max 8

(3.4.17) subject to h i(y) > Bdi (i 1 1, ..., N)

F(y) C C

y X , BI6R+

as may be easily verified from (3.4.16). Depending on the form of the

functions hi , mapping F and the characterization of the constraint

set C , there is the possibility that (3.4.17) may be solved by standard

optimization techniques.

The SS structured stochastic input correspondence is admittedly a

very special model of production. But its generalization to PSS

structures was argued to be a rather reasonable model of technology.

To solve (3.4.11) for the case of a PSS structured technology, the

sequence of simplification, i.e., Assumption 1 through 4, given above

- . LIAM
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may be applied to the PSS structure, thus providing a method of

solution to an interesting class of technology. In the following,

after a short-handed presentation of notations and the underlying

reasoning, a mathematical program analogous to (3.4.17) is given for

the case of a PSS technology:

L : U x S - 2(X) is PSS C Partition {S J , jEJ} 0 J:1 1(S3) ,

conditional probability measure a (-) with conditional expectation

EXPj () L: U x SJ - 2(X) is SS structured with continuous scaling

operation * induced by transformation Fj 0 Arbitrarily fixed

s5 e SJ 0 Assume EDUJ JeJ C GJ (. ,  4) 3 Gj(., - "

Assume LJ is SSG structured, j 6 J 0 Representation: LJ(e s-

Jx I 0 •
lu 'uli9 rirriyfxy XjeJC

Define BJ EXP [4 (y Tu j J G Y j~ , 0 Le Y w Y j / ~ l

Iy I j *i(Y) , T.T : l} - (Y c I hJ ,(y) dJ i1  , ii 1 1, .. NJ

d 'i>0.

Then the original problem (3.4.11) is reduced to solving:

Max I BJ'GJ(Bj)
JEJ

(3.4.18) subject to h (y) > BJdji , j e J , 1 - 1, ... , N1

Fj(y) Cc , eJ ;

x E X , si 6 X+.

The form of the problem (3.4.18) will be useful as illustration in the

next section, which considers the following:

ILm
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3.5 A Scalar Output Model of Dynamic Production under Uncertainty

A production process is carried out in T periods (T > 1)

There is only one product, the cumulative output of which over the T

periods of production is assumed to come out at the end of the T-th

period. There are n inputs, and an input history is represented by

a T-tuple (yl, ' YT ) where y t 6 R; is the input into the produc-

tion system at the beginning of the t-th period. Thus the output space

TnU is taken to be It while the input space X - (1) .I

The technology of the production process is modelled by an input

correspondence L : U x S - 2(X) which has a PSSG structure with the

usual radial scaling. The relevant PSS partition is Sj ; j- 1, ... , J}

and J is assumed to be finite. The input correspondence satisfies P2.1

in addition to the stochastic weak axioms (1.6.4).

The producer has a (subjective) probability assessment P on the

state space (Sl) and an information structure A = (A,' ' T)

The partition A of S represents the information available at the
t

beginning of the t-th period. For each s E S , (1(S)', 2(s) ... , IT(s))

denotes the sequence of realized information. A production policy is

simply taken to be represented by an input mapping s C S 8-. x(s)

T n
(x1 (s), ..., -X(s)) 6 ( .)+ , representing the choice of input histories.

A policy x is consistent with the information structure if s

i6 It 6 Jt implies Et(s) - 2 (i) . (Alternatively, it may be con-

venient to think of a consistent policy x as having h(s) depending

only on It(s).) Denote the space of consistent (input) policy by .

The following assumptions are imposed on the information structure:

(1.1) every x r= I is measurable;

(1.2) every It e .t is either a singleton or has (I ) > 0,

t i-
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(t =1 .. ,T) ;

(1.3) J is expanding; i.e., 11 (s) D 12 (s) D . It C (s G S)

Suppose the producer is faced with some resource constraint which

is modelled by a compact subset C of X . A consistent policy I

is admissible if for all s e S , x(s) E C

The consequence of an admissible input policy 2 is the ma-ima

cumuZative output it yields at the end of period T : s E S -- D(x(s),s)

where the function 0 is that defined in (3.3.12) (with the superfluous

argument -u dropped since U = 3Q.
lul

The problem of the producer is to formulate the best admissible

input policy; formally, to solve:

Sup EXP (0(xEs),s)]
(P)

subject to x being an admissible policy.

In the following, it is to be shown that (P) is well defined and

has an optimal solution. The exposition somewhat parallels the first

part of Rockerfeller/Wets' (1976] paper on multi-stage stochastic

convex programming. Some preliminary considerations are given first:

It had been shown that for all y E X , the function s E S - 1(y,s)

is measurable. However, it is not clear whether for all consistent

policy X , s E S - 0(&(s),s) is measurable. The following simple fact

(proof omitted) is relevant:

(3.5.1) Fact: If J is a countable partition of S for all

t - 1, ..., T ; then every consistent policy xGCI has s6S 'O(x(s),s)

measurable. Otherwise, recalling the representation of a SS (hence a

PSS) structure, if either i) * : X + is continuous (j -1, ..., J)
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or (ii) y' > y" implies *J(y) > *J(y") (j 1 ... J 3) ; then the

same conclusion holds.

In any case, in order for Problem (P) to be meaningful, it is

assumed that for al x -3 , s E S - O(x(s),s) is measurable.

The following notation will be used:

(a) If z E (1)+ and a > t , a projection on the first t

components is defined by tz := (zpZ , ... , z ; in particular,

-t := (Y1 .., yd = -tY for all y 6 X (t - 1, ... , T)

For the constraint set C , Ct : - V tC - {y 6 (i t ) zEC
t T+Iyutz

t-"l, ... ,T .

(b) xt(s) := (x 1(s), ... , a(s)) , s e S , x 63 (t - 1, .... T)

(c) xt E Ct  iff xt(s) 6 Ct for all s E S (t =1, ..., T)

(d) a Jt e*2 if xt(s) - xt(s) for all s , s 6 It EJ t (t- 1 ... T).

(e) For x t 6 X t and I 6 Ja (a < t) , xa(I.) denotes the constant

value x0  takes on the set I

The following simple facts (proof omitted) and le-a are useful:

T n
(3.5.2) Fact: Let C be a compact subset of (1 )+ . For each

t n tt T , ... T1- , the correspondence z ( (1)+ 0 DrCz) : W

(y e ( n  I Y 6 C , yt - z1 is compact-valued and upper-hemi-continuous.

(3.5.3) Fact: Suppose f : (1:)+ I is upper-semi-continuous.

For the correspondences Dt (t - 1, ..., T-1) defined above, let

t {z e .t=. I Dt(z) 0 } . Then the function

z E t - Max (f(y) I y E Dt(z)} , t 1 l, ... , T ;

is well defined and u.s.c. on its domain.
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(3,5.4) Leuma: With the assumption of P2.1 on the technology, there

is a function g : S * + which is integrable such that for all

x e I r) C , *(x(a),s) I g(s) for all s C S

roof: Since the technology has a PSS structure, it has the repre-

setation: LJ(u,s) - fy C X I GJ(oj(y)) > 11 e Sj  (j - 1, ... , J)

Since the functions j are u.s.c. and C is compact, one may choose

an input yj for each J - 1, ... , J such that J(j) -

Max {*J(y) I y GC} . Then by the choice of y , for every x6 E C

*(X(s),s) < G1;((yJ)) if s e Sj  since GJ  is nondecreasing. Then
SS

it follows that for all xE O C and s 6 S , *(x(s),s) =

Max (GJ(y))} . Because Property P2.1 is assumed to hold,

for each of the yJ chosen, there is an integrable function gj : S - 1+

such that G4 1(yj)) _< gi(s) for all s E S . The proof is completed

by letting g(s) :a Max (g1 (s)1 0
J-1, . .. ,

The solution of the problem (P) is related to a "backward"

dynamic programing problem developed below. Define for the T-th period:

yTI)6( T )n x j-.QT I : - E1P[O(y,s)I I

By Assumption (1.2) on the information structure, and P.2 (or P2.1),

it I5 clear that QT is well defined and finite. Moreover, one has:

(3.5.5) Lema: For each I T I QT(.IT) is u.s.c.

Proof: Consider an arbitrary IT e AT with i( T) > 0 . Let IT

be partitioned into (IT t, ; J -1, ... , J} where [Si ; J - 1, ...,J)

- . ..*--~~s*~*1
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is the partition of the PSSG technology. Denote J(IT)

Q I (I n Sj  I I) > 0} Then for every y 6 (1: n

(3.5.5.1) QT(yIT) c [ EP [$(y,s) I IT ('i s]'?(IT n Sj  I T )Jeja T)

For each j 6( , by Proposition (3.3.15) as applied to the event

(IT ) Sj) with the attendant conditional probability, there exists a

positive scalar Bj  and a pseudo-production function GJ  such that

(3.5.5.2) EXP [O(y,s) I IT r SJ] - BJ'GJ(J(y)) , J e J(IT)

Since 01 is u.s.c. and GJ  is nondecreasing, the function GJ(OJ('))

is u.s.c. for all J 6 J(IT) . Since there are only a finite number of

indices in J(IT) , for the fixed T , the mappina QT(.,iT) is u.s.c.
Tn

on (1) .

The simpler case of IT being a singleton may be treated

analogously 0

Now, define for t - 1, ..., T-1

1.a t+l yt+llt)

(y t ,I t) 6 C 
t  it  0 Q t (y t ,I t) : - EX P .t . 7ty t+ l = t I i .

y+l E c

(3.5.6) Lema: For each t - 1, ..., T-1 , Qt is well defined; and

for every I t CT Qt(", 1 ) is u.s.€c on Ct

Proof: Consider t * T-1 • First note that if T-l e CT-1 , then

the constraint set {yT YT cT , T L T = -T-1} is not empty.
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TT n CT

Since for all QTE T ( ,IT( is u.s.c. on (1)+ and C C

is compact, the optimal solution

T-1 T Tf T-, I T) : Max QT(yT, IT)

subject to VTyT T-y ,y eC (- CC , IT 6JT)

is well defined. Furthermore, by Fact (3.5.3), f(',l T )  is U.S.C.

on CT-1  for all IT CiT . Now it is to be shown that Q T-1(.,IT_)

is u.s.c. on CT-1 for all T- C- JT-1 * For the case that IT-1

is a singleton, Q T-1(.,IT_) is clearly u.s.c. since it is precisely

f(.IT- I according to the assumption of expanding information.

So suppose IT-1 G jT-1 is not a singleton. Since then 4(T-1) > 0

the conditional probability and expectation given IT-1  is well defined.

k T-1 o T-1.Let {y I C C converges to y C-

Recall the leaa (3.5.4). Define for s C 1T eT -

h(s) : CP [g(s) I IT Clearly the function h thus defined is

integrable. Furthermore, for each yT-i E CT 1 , h(s) > f(yT-l I)

for s C IT (IT EJT) . Then

im suPk Q T-1 (y k, IT-1) - m suPk f f(y kTIT)' (IT  ' T-1)T-l-k
lim ~pk~ ( *T1 C li m f (ykT).(1 T

ITaIT-l

I supk f(y TI(I)

T-l o
Q T-1 "-l

This establishes the u.s.c. of QT'l(. , T.) on CT-1; (T-1 C JT.1)
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By repeating the above argument for t - T-2,T-l, ... , 2,1

the lema is established 0

(3.5.7) Proposition: Suppose 1* E I solves the problem

(P) Max IUP [*(z(s),s)] subject to I E O C

then for all I E J with (I) > 0 , t - 1, .. ", T ,x*C(I )

solves the problem

(Pt)I Max Qt(yt,It) subject to y E C

*t t t*t t
Conversely, if EIt ( C (t _ T) has x (I solve (P 'I

for all It 6 Jt ; then Xzt may be "extended" to a solution of (P).

Proof: The proof will be carried out for T a 2 . The reasoning used

applies to the general case.

For a fixed G C1 ,for each I IE CI

112 2 2 1 2 2
(1) Q (Y, 1 ) E EXP (Max Q (y ,2) s.c. Vy y , y E C C I 1]

___2 2 -1 2
(2) - (Max U P [ 0(y ,s) i 12] ; S.c. 7y - y , y E C 1]

(3) - Max ED? (0((s).s) I 1 1

s.t. Vii(s) a 51 and x(s) C C for a 6 1 1

s , i e 12 C 1 implies z(S) - (6)

The above stringof equalities is vel defined according to Lema (3.5.6)

and (3.5.5). Note that the optimal solution x of (3) may differ from

that of (2) on 12 (C 
1

) if (I 2 ) 0 and V(11) > 0 . It follows

from above that
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Max Q(y, - Max MEP [4(x(s),s) I il]

(4) s.t. yl e C1  s.t. x(s) E C for s E I1

8 , iE 12 C I 1  implies x(s) -x( )

Suppose x F .E(r C solves (P). Consider an 11 .11 with

(1 > 0 . Let z be another admissible policy, i.e., z G J C

ttf'n it mast be true that E [$(x *(s),s) I 1 X 1- : P [(.(s),s) I Il
*

since if otherwise, a simple modification of x will lead to a con-
* *1

tradiction with the optimality of x . Hence x (I 1 ) solves

(P ,) . The argument needed for the case of I1  with 6(Il) 0 is

just as trivial.
ha *l slvg

Conversely, suppose x e jC C1  has x_(I 1 ) solving (P,I

for all 11 E A1 * Then for every 1 1 E 1 , there is a mapping

1 : I1  C2  such that :L() - x (l1) for all s e 1 , and s , i 1 2

(12 C Il) implies :(s) - z(i) ; and z is an optimal solution to (3).

The extension of xe 1  e e C6 above clearly results in a policy

! G In C . Since z solves (4) on every I1  6 z solves the

original problem (P) 0

Since Q t(.,I t) is u.s.c. on Ct  (t - 1, .... T) , the problem
tt

(Pt,It) is solvable for all It Cc jt . Thus, by the second part of

the proposition, there exists an optimal solution to (P). Furthermore,

the above proposition formalizes the intuition that a production policy

, G 1-P C is optimal if and only if the input decision at each time t

based on the information I t and the earlier decisions, is optimal

almost surely.
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To find the optimal solution to Problem (P), the dynamic programs

(PtI ) in terms of the value functions Qt may not be helpful since

in general Qt is not known, and not easily computable. However,

with some further assumptions, the PSSG production structure does

allow for a computation of the optimal policy via the reduction process

given in (3.4.11) through (3.4.18). As an illustration, consider:

(3.5.8) Example: Assume the partition jT ia a finite partition.

Since the information structure is expanding, each state a E S is

associated with a unique information sequence (11(s), ... , IT(s))

Since jT is finite, there is at most a finite number of such infor-

mation sequences. Denote the collection of information sequences by IP

(paths of information). A consistent policy x GX may be thought of

as an input mapping x: IP - X such that 1 6 IP - x( 1 , ...' IT) -

(xl(I), T(T) where the input M at time t depends only on

it , t - It .... T .

Ase m T is finer than (S ,J - 1, ... , J} • That is, at the

last period T , the qualitative classification of the prevailing input

correspondence is known. The remaining uncertainty only concerns the

scaling law of production. Given a realization I - (Ill .'I IT) I

the prevailing input correspondence will be indexed by J (I) . As in

Equation (3.5.5.2), the conditional expectation of the output attainable

given I for a consistent policy x e A is:

SU[P [ (s( s) , ) I J (I

where GJ's are the appropriate scalar-valued production function, and

the factors B depends on IT
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Then the problem (P) may be written as

(P') max I B . i)(¢) ( t)WW ))). (I) ; s.t. x(I) 6 C , xeI
IMP

Following the reduction exhibited by Assumption 4 and (3.4.18), an

interesting case arises when i) the technology is of linear activity

analysis type; i.e., for some appropriate matrices Aj  and vectors d ,

{y E X I *i(y) : 1) {y EX I AJy - dj} , j - 1, ... , J ; (ii) the

constraint set C is given by C 2 (y G X I D-y I e} ; and (iii) constant

return to scale prevails, i.e., GJ(a) - kJ a for some kj 9 3# ,

J - 1, ..., J . Then (P) is reduced to a (possibly large scale) special

structured linear programing problem

am- I' a , 1.

A.t. *j(,).x(l) 8 1 -dJ(I)

D*1_(l) < •

I +, I EP ;x E

where for 1 6 IF , a B.(I) M with B an appropriately chosen

weighting factor (see (3.4.13)).
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