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ABSTRACT

“An axiomatic model of production technology under uncertainty is
formulated from a purely technical point of view as a generaliza-
tion of Shephard [1970-a] and Shephard/Fdre [1980]'s framework for
a general theory of production. The uncertain technical feasibility
of production is characterized by inversely related stochastic input
and output correspondences. This model of technology is then syn-
thesized with a Radner [1968] type model of information for a
formulation of production policies. This synthesis is used to give
formulations of laws of returns under uncertainty. Finally, a
generalized notion of homothetic production correspondences is
developed to give special-structured stochastic production models
which allow explicit consideration of optimal production policies.-
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INTRODUCTION

In economic theory, a model of production is a mathematical system
which characterizes the technical relationship between the outputs of a
production system and the inputs of the factors of production. Tradi-

tionally, production is modelled by production functions, the chief 1

purpose of which is to display the possibility of substitution between
the factors of production to achieve a certain output. However, in

actual production, it is common to have multiple products with possibil-

ities of substitution between them. Furthermore, many production pro-

cesses are dynamic in nature, and greatly influenced by unforseen forces ii
of the environment of production. In such cases, the framework of pro- !
duction functions is woefully inadequate as a model of productiom.
Shephard [1970-a)] and Jacobsen [1970] developed a theory of production
correspondences to model steady state production systems with multiple
products. Recently, Krug [1976] gave a model of stochastic production {
correspondences; and Shephard/Fire [1980) extended the framework of 5
production correspondences to model dynamic production systems. Building
upon these development, it is the purpose of this paper to develop a
framework for the modelling of dynamic production under uncertainty as

s further step towards a general theory of production.

In economic literature, there had been much emphasis that a produc-

e e et AR R s o . -

tion model is relevant only to a particular production unit; that the
capital stock should be carefully distinguished from the flow commodities;
that the long-run production function is fundamentally different from the

short-run production function; that free goods should be excluded from

the model; and the information concerning the production environment




available to the producer plays a role in the structure of the production
model. But, ideally, a production model is a collection of statements
characterizing the purely technical alternatives under various environ-

ments of production without regard to their execution!

The viewpoint taken in this paper and described below was first
expounded definitively in Shephard [1967] : - Neither the exclusion of
free goods, nor the requirement that the production model expresses the
variable, substitutional, consummable character or the limitatiomal,
fixed stock character of the productive factors, nor the information
and organization structures, as qualifications peculiar to a particular
production unit, are logically necessary for the formulation of a

production model.

A production model is a mathematical construction describing some
well defined production technology. This production technology consists
of a family of conceivable engineering arrangements, possibly over time,
which are feasible under appropriate production environments. This
family is not restricted necessarily to particular arrangements realized
in practice. It possibly spans over historical changes and adaptations
to the changing environment. Once defined, the technology implies a
certain set of factors of production and outputs. No limitation will
be put upon the availability of the productive factors. Thus, the pro-
duction model will be taken to describe the unconstrained technical
possibilities of production without being limited to any existing or
planned production unit.

If a production model is to characterize purely technical possibil-

ities, the available or projected means of a production unit and its

i dianbiic it e i,




organization/information structure are not relevant. Such a particular
unit merely prescribes a particular realization of the technology which
may be considered by imposing constraints on the input and output flows
and the choice of production programs compatible with the information

available to the production unit.

In the following chapters, the forgoing conceptions of a model of

‘production in stochastic terms are developed in some detail as a

generalization of Shephard ([1970-a] and Shephard/Fire {1980]. Chapter 1
gives an axiomatic formulation of a stochastic production technology.

It also discusses, in a general setting, the information aspects of
production and the notion of production policies. The synthesis of the
notions of technology and information in Chapter 2 gives some formulations
of laws of returns under uncertainty. Chapter 3 uses a generalized notion
of homotheticity to give special-structured stochastic models of produc-
tion whose simplicity enables explicit formulations of production

policies.




CHAPTER 1

MODEL OF THE TECHNOLOGY

1.1 Framework of the Model

The model of production proposed in this paper characterizes a
well defined technology by stating all the technically feasible alterna-
tives of transforming factors of production (inputs) into net outputs
under the various envirounments of production whose exact realization is
possibly not forseen (i.e., there may be uncertainty about the environ-
ment).

The environment of production is described in terms of environmental
variables which are not controlled by any producer. Following the termi-~
nology of statistical decision theory, a complete specification of the
production environment is cglled a state of nature. A state of nature,
or simply a state, is a complete description of the production environ-
ment from the beginning to the end of the production processes being
studied. The collection of all the possible states of nature is called
a 8tate space, and is denoted by S . The state space is taken to be a
probability space (S,48,#) with c-algebra 4 and probability measure
®. An element of the g-algebra B describing some aspect of the
environment is called an event . It is tacitly assumed that ® is an
objective probability measure on the events of the environment as
prescribed by the statistical laws of nature.

4 will be assumed to be the finest o-algebra that is ever distin-
guishable by any producer. This means if (S,Z.&) represents the
subjective assessment of the likelihood of the events of nature by a

producer, the o-algebra 2 is a sub-algebra of § . Of course, a

i

SARITA, TP IR R

Ry




producer is entitled to have his own beliefs, hence ® need not be a
restriction of ( on the sub-algebra 2 .

In an abstract model of production, there is no need to impose
further conditions on the state space (S,8,f) . However, in applica-
tions, quantitative descriptions of the environment will usually require
S to be a metric space. TFor mathematical expediance, it will be
assumed that (S,d4,P) is a complete probability space.

The collection of inputs relevant to a technology being modelled
will be denoted gemerically by X , and called an input space. In order
for a space X to be meaningfully defined as an input space, every
element in it must be "non-negative" and has a measure of "size".
Furthermore, scalar multiplication and addition must be well defined on
X ; and X should be complete in some sense. So, an input space X
will be taken to be the non-negative orthant of a complete normed vector
space. Similar reasoning applies to the definition of an output space,
generically denoted by U . Once specified, the input and output spaces
dictate that a certain set of goods and services as input factors, and
another set of goods and serivces as net outputs. It is assumed that
both these sets are finite and their cardinality are denoted by n and
m respectively.

The following pairs of input and output spaces X and U are

frequently used:

(a) For single period or steady state production models: R: & m: .
(b) For finite (T) period production models: (13): & (13): .

] n m
(c) For infinite period production models: (lc)+ & (15)+ .

(d) For infinite horizon continuous time production models:

e —————g e e

e e A e
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where L“(R+’Zi’ui) and L,(R+,Fj,pj) are Lebesgue spaces with
(1&+,Zi,ui) and (]&+,Fj,pj) being positive o-finite measure spaces
(on the time axis 34). Denoting 'fil as the nomm of fi (3
L”(lib,ii,ui) » the norm for the product space (Lo)i may be taken as:

- n
If“ .= Mi-x ﬂflﬂ for £ = (fl’ ceey fn) € (Lw)-i' .

The above input and output spaces are the non-negative orthants of well-
known Banach spaces R® s (lu)n and (LQ)n etc. whose definitions and
properties may be found in Dunford/Schwartz [1957]. Note that in cases
(b), (c) and (d), the inputs and outputs are functions (in time).
Occasionally, they are referred to as ingut histories and output
histories in order to stress their dynamic nature. The spaces in (a)
are used in Shephard [1970-a]; those of (d) are used in Shephard/Fire
(1980]; and (b), (c) are discrete-time versions of (d).

Since X and U in general are the non-negative orthant of
product Banach spaces, the meaning of their null element O should be
unambiguous. Furthermore, with the standard representation of vectors
xz(ﬁ,.“,%),xex and us(%,”.,%),ueu;cm
meaning of the usual partial ordering om vector spaces, namely > , >

and > , should be clear. For a more detailed exposition of these

notations, see Shephard/Fire [1980].

With the above preliminaries, a stochastic production technology

may now be formally defined as:




(1.1.1) Definition: A stochastic production technology, or more
specifically a stochastic technical feasibility set, ¥ 1is a subset
of the product space X x § x U such that (x,s,u) € T if and only if

output u is attainable with the input x wunder state s .

1.2 The Output Correspondences

A stochastic technology T may be represented in various ways.

As a useful representation, output correspondences are defined herewith:

(1.2.1) Definition: A stochastic output correspondence P of a

stochastic technology 7T 1is a correspondence P:X x § -+ 2(U) defined

by:
(x,s) €EX x S+ P(x,s) := {u€U | (x,5,u) €T}
where 2(U) 1is the power set of the space U .

Clearly, the set P(x,s) 1is the collection of all the outputs attainable
with input x under state s . It is convenient to define two restricted

correspondences as follows:
(1.2.2) For each x€X , s € S — Px(s) : = P(x,s)

(1.2.3) Foreach s €S , x€ X+ Ps(x): = P(x,s8) .

1.3 Axioms on the Techmology

A stochastic model of a production technology is now completed by
specification of properties. This will be done by stating a set of
axioms which are imposed on its associated output correspondence P

(and Px ; Ps)' For this purpose, first define:

o




l
(1.3.1) Definition: A correspondence H from a measurable space
(S,8) to a topological space U 1is said to be measurable if the !

inverse image

El(F):= {s€S | H(s) NF # 9}
belongs to & for every closed set F in U .

The use of closed sets in the above definition is convenient since L
every singleton {u} in U is a closed set.
The following properties (some of which are stated with various

strength) are to be taken as axioms on the output correspondence of a

technology:

PO For each x € X , the correspondence Px (see (1.2.2)) 1s

measurable.

’
!
Measurability E
i
|

Nothing from Nothing

Pl For each state s €S , P(x =0, s) = {0} . The null output O ¢

belongs to P(x,s) for all x&€X and s €S .

Bounds on Outputs

P2 For each state s € S and input x € X , P(x,s) 1is bounded;
i.e., there exists B € (0,+») such that the norm Juj ¢ B for
all u € P(x,s) .

P2.1 For each x € X , the correspondence Px is integrably bounded;

i.e., there exists a non-negative integrable function g:S - l?.+

such that for each output u € U and state s € S , u € P(x,s)




P2.S

T

P3

P3.S

P4.1

P4.2

P4.2.1

P5

P5.C

implies lul 5 g(s) .
For each state s €S and input x € X , P(x,s) is totally

bounded.

Disposability of Inputs

For each s €S and x € X, P(x,s) CP(A*x,s) if A3 1.

For each s €S and x€X, y 2 x implies P(x,s) CP(y,s) .

Attainability of Outputs

For each 1 € {1, ..., m} there is an output u € U with
uiio , an input x € X and an event A € .4 with P(A) > 0
such that u &€ P(x,s) for each s €A .

Suppose an output u ¥ 0 and u € P(x,s). Then for each
positive scaling factor 6 , there is a positive scalar 1
(depending on x , u and ) such that 6-.u € P(A-'x,s) .

For every input x € X and positive scaling factor 8 , there
is a function Ag x:S = R, such that for every output

u € P(x,8) , 8°u € P(Aa (s)*x,s) ; and the function A is
X 8,x

integrable.

Closure and Continuity Property

For each state s € S , the graph of the correspondence Ps

(see (1.2.3)) is closed; i.e., xk -x°, uk + ° and

u® € P(x*,s) for all k implies u° € P(x°,s) .
For each state s € § , the correspondence Ps is upper-hemi~
continuous (u.h.c.); i.e., for each x € X and every open

neighborhood G of P(x,s) there is a neighborhood 2 of x

such that P(x,s) CG for every x € 2 .

e TP TSI WS . 7~ gt SV Y0 W e S ety vl
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Disposability of Outputs
Pé6 For each state s €S and x€ X, if u € P(x,s) and

8 € [0,1] , then 6-u € P(x,s)
P6.8 For each state s €S and x€ X , if u € P(x,s) and

u2veE€U, then v EP(x,s) .

The above set of axioms is a direct stochastic extension of those
given in Shephard [1970-a], Shephard [1974] and Shephard/Fiare [1980].
The readers are referred to them for a discussion of the ecomomic
meaning of Pl, P2, P2.S5, P3, P3.S, P4.1, P4.2, P6 and P6.S.

Particular to a stochastic model of production, Axiom PO guarantees
that for every closed set F in the output space, it is meaningful to
speak of the probability that outputs in F are attainable. Axiom
P2.1 gives a uniform (over the states of nature) boundedness condition
on the output sets, while Axiom P4.2.1I gives a uniform scaling condition
on the attainability of outputs.

Axiom P5 on the closure of the graph of Ps (s € 8) is essentially
a technical assumption. In particular, it guarantees that the output
set P(x,s) 1s closed for all x € X and s €S . Whatever impression
of continuity PS5 conveys is formalized by P5.C, the upper-hemi-continuity
of Ps . This notiom of continuity is quite useful in establishing some
interesting propositions in later sections, Otherwise, P5 is sufficient

for most models of technology.

(1.3.2) Remark: Notice that some of the axioms stated are concerned

with the vector properties of the output correspondence P while
others are topological in nature. Since both the input space X and

the output space U are taken to be subsets of Banach spaces, they have
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the natural norm topology. However, sometimes a weaker topology is

desirable. For example, when U = (L,): the weak* topology on U

may be more convenient for application (e.g., the boundedness (P2) of
an output set P(x,s) implies it is totally-bounded (P2.S) under the
weak* topology). See Shephard/Fire [1980] for a construction of the

*
weak topology on (L.): and the price interpretation of its dual space.

(1.3.3) Remark: If there is only one state of nature (i.e., there can

be no uncertainty concerning the realization of the production environ-
ment), then Axiom PO is superfluous. The axiom structure {Pl1, P2, P3,
P4.1, P4.2, PS & P6} reduces naturally to the production model formulated
in Shephard (1974) and Shephard/Fire [1980] with the appropriate choice

of the input and output spaces.

1.4 Freedom of Axioms from Contradiction and their Independence

An axiom system as a model for production technology is free from
contradiction if there is a technology which satisfies all the axioms
in the system. Examples of stochastic output correspondences
P:X x S+ 2(U) are given below. They are based on widely used
deterministic models of production. As a by-product, the axioms given

in the last section are shown to be free from contradiction.

(1.4.1) Example: Cobb-Douglas production structure with random

disturbances.

The following production model was used by Schmidt/Lovell {1979] in
their estimation of the technical and allocative inefficiency of U.S.
steam-electric generating plants:

A state $ €S = (-=,4») 13 given as the sum of two terms:

o —ry
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s:®= y+ 8 . The random variable y measures the random disturbances
due to nature and is normally distributed, N(O,as) . The random
variable ~3 measures technical inefficiency. It is nonnegative and

half-normal; i.e., it is the absolute value of a random variable normally

distributed, N(O,a:) . Clearly, the Borel field of the real line may

be taken as the c-algebra 4§ . l

The input space is X R: and the output space is U = R_ .

+
The output correspondence P :X x § + 2(U) 1is defined by

u=384q, 8¢€[0,l]]
(x,8) € R: X (=w,4®) = P(x,8) : @ (u € R

n a
qe= Ae’ hi xii
i=]

vhere A and ui's are positive constants, tai =1 ; and e 1is the
expoanential constanc.
It is straight forward to verify that P satisfies Axioms PO to P6,.

For decails, see Appendix item (1.9.1) O

(1.4.2) Example: Linear Activity Analysis Model

Let there be K (> 1) productive activities which employ in total
n types of exogenous inputs and yield m types of products. Let the
state space be (S,4,f) . For each states s € S , the non-negative
m x K mstrix B(s) and the non-negative n x K matrix A(s) denote
respectively the output and input coefficient satrix; Bjk(') and
A“(o) are the amount of the j-th output and the required i-th input
for activity k operating with uanit intensity under state s .

Clearly, X = l: and U 2 l: . The following assumptions are

imposed:
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The matrix~-valued functions s —+ B(s) and s — A(s) are

(1.4.2.1) measurable via the homeomorphism between their range spaces

and R:K , moK

S respectively.

Each unit activity employs some minimal inputs under all

possible states. Formally, for each k € {1, ..., K} there
(1.4.2.2) n
is a scalar € > 0 such that iEI Aik(s) 2 g for all
sES . :
The unit activities produce only finite outputs under all
possible states. Formally, for each j € {1, ..., m} there
(1.4.2.3) K
is a scalar Mj < +» such that kzl Bjk(s) s Mj for all
sES .
Each activity produces some output, and each output is
attainable. Formally, for each k€ {1, ..., K} ,
(1.4.2.4)

Plses| t {1 }
s € 5 Bjk(s) - 0} <1 ; and for each j§ € {1, ..., m},

0{3 €S | kgl Bjk(s) - 0} <1.

The output correspondence P: R: x § + Z(B:) is defined by:

P(x,8) := {(u€ R} |z €K, , Als)ez g x, B(s)+z 3 u} ,
where 2z denotes a vector of intensity of operation for the K
activities.
Again, to verify that this production structure satisfies the
axioms stated in the last section is straight forward; see Appendix

icem (1.9.2) O
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Examples (1.4.1) and (1.4.2) are not dynamic production models.
Example (1.4.2) may be easily generalized to a dynamic model. The
following exmaple is a natural stochastic extension of the dynamic¢ ship-

building production function formulated in Shephard et al. [1977]:

(1.4.3) Example: Dynamic Linear Activity Analysis Model

Suppose the K production activities in (1.4.2) may be operative
at all time periods, labelled t = 1,2, ... . Production in period t
is contingent upon the state of nature prevailing in that period. The
state space relevant for period t being a probability space
(St,ét,@t) . Let the state space for the infinite horizon production
technology be (S,8,P) where S = tzl St and B8 1is the corresponding
product o-algebra and @ the completion of the product measure.

The model here is different from (1.4.2) in that transfer of goods
and services from one period to the next is allowed as intermediate
products. Let a non-negative m x K matrix Ct(s) = Ct(st) be the
intermediate product requirement coefficient matrix for period t under
state s , t = 1,2, ... . A history of transferred product is denoted
12

by v = (V,,V5 ..., ve, .0 . VteRT_ (t = 1,2, ...) . An exogenous

input history is x = (w ; yl,yz. seey Yt’

) where w € R: is the
initial endowment of intermediate products available for the commence-
ment of production at period 1; yt € R: (t = 1,2, ...) denotes the
exogenous inputs in period t . Similarly, an output history is denoted
a8 u = (ul,uz, ey ut, ves) ut € R: (¢ =1,2, ...) . Thus, it is
convenient to let the input space X be R: x (1.): and the output
space be (1.): . The norm of x = (w;y) € R: x (1_): may be taken as

max (|w|,lyl) where |w| 1is the Euclidean norm of w and Iyl the
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(1.): norm of y .
The input and output coefficient matrices in period t are denoted

by At(s) H A:(st) and Bt(s) H Bt(st) respectively. It is assumed

for all t , the matrix-valued functioms ste St bt Bc(st) and

s, €S~ A (s,) satisfy assumptions (1.4.2.1) to (1.4.2.4) where the

scalars ¢.'s and Mj's are constant over t . The function s € S =

C:(’:) satisfies conditions analogous to (1.4.2.1) and (1.4.2,2).

The output correspondence P:X x S + 2(U) is defined by:

( for t = 1,2, ... ; ztell*_;\

A(s )zt <y°;
{x = (w;y) , 8) = P(x,8) :=(u € “-’: xt: ¢ t t

u +V ;Bt(st)'z H

1l o

Verification of the axioms is given in Appendix item (1.9.3) O
Examples (1.4.1), (1.4.2) and (1.4.3) establish the following:

(1.4.4) Proposition: Axioms {PO, P1l, P2, P2.I, P2.S, P3, P3.S, P4.1,
P4.2, P4.2.1, P5, P6, P6.S} as a system is free from contradiction; and

svery subsystem of it is, of course, also free from contradiction.

An axiom in an axiom system is said to be independent in the system
if there is a case vhere it is not fulfilled while all other axioms in

the system are satisfied.

(1.4.5) Proposition: The axiom system (PO, P2, P2.I, P3, P4.1, P4.2,

P5, P6} contains only independent axioms.

Proof: Note that Pl is not included in the system since P4.2 and P2

t t- -
Ct(st)z gV ,V-w.).
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implies Pl. Axiom P4.2.I is not included because it is not difficult
to show that P2.S, P5 and P4.2 together implies the first part of
P4.2.1; and P4.2.I by itself is stronger than P4.2.

In the following, stochastic production technologies are defined
such that exactly one axiom in the system fails., The comstruction
follows closely that given in Shephard/Fdre [1980]. Since only the
logical relationship between the axioms is of concern, it suffices
to let both the input and output spaces be Euclidean. As notationm,
let the line segment between two points y and 2z 1in an Euclidean

space be

(y,2):= {8y + (1 ~08)z | 8 € [0,1]1} .
The verification of the following is trivial and will be left out.
(1.4.5.1) PO fails: S = [0,1] with Borel measure. P :l&? x§ =+ Z(BQ:):

. (0,2x) , if s is irrational;
(x,s) = P(x,s) : =
(0,x) , if s is rational.

(1.4.5.2) P2 fails: S = [0,1] with Borel measure. P : m: x § + 2(R}) :

{0} , if x=0 ;

(x,8) = P(x,8) : = (R

O,x) , if x¥ 0 and s € [0,1) .

if s =1 and x ¥ 0 ;

(1.4.5.3) P2.I fails: S = (0,1] with Borel measure. P: n:‘_ x§ »
n,y o,
2(R}) :

(x,8) — P(x,8) : = (0,x/s) .
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(1.4.5.4) P3 fails: S = [0,1) with Borel measure. Suppose a function

£:8 x R+-> R_'_ is defined by:

20/(L+s) ,a€[0,s+1]; b
(s,a)i—rf(s,u):-13-u+s ,a€(s+1, s+ 2] ;

“l+a-5,a€E(s+2,4=) . 4

For a fixed s € § , the graph of the function £(s,*) looks

like:

£(s,*)

.;. s + 1 s + 2

P: n},‘_ x§ + 2(m:‘_) is defined by P(x,s) : = (0,f(s,ixl)-x) .

(1.4.5.5) P4.1 fails: For each 8 € [0,7/2]) , let v(8) be the vector
tn B2 with Iv(8)] = 1 which substains an angle 6 (in
radian) with the first axis. S = (0,7/2] with 8 its Borel
o-algebra. For each event A €4 , the probability measure
is (®P(A) : = 2u(A)/n where u 1is the Borel measure on S .

P: Ri x § = 2(133_) is defined by P(x,s) := (0,Ixl-v(s)) .




(1.4.5.6) P4.2 fails: S = [0,1] with Borel measure. P: R: xS -

2(RD):

(x,8) = P(x,8) : = <0,B(x,s) 'ﬁ ;

where 8(x,s) := Min {Ixl , s + 1} .

(1.4.5.7) PS5 fails: S = [0,1] with Borel measure. P: nj x§ - Z(IR:'_) :

{0} » 1f Ixd g1
(x,8) — P(x,8) : =
(0,s°%x) , if f#xl > 1 .

(1.4.5.8) P6 fails: S = [0,1] with Borel measure. P: n:‘_ x § - 2(m:‘_) :

X
<s-lxl,x>, if Ixl > s ;
{0} , if otherwise. O

(x,s) +— P(x,s) : =

Following Shephard [1974], define {

(1.4.6) Definition: The axiom system {PO, P1, P2, P3, P4.1, P4.2, PS5 &

P6} will be called the stochastic weak axioms for a stochastic produc-

tion technology.

The system of stochastic weak axioms serves as a minimal core of
the properties one would impose on a stochastic production technology.
Stronger versions of the axioms are to be invoked only when the need

arises.

1.5 Input Correspondence and its Measurability

As an alternative representation of a stochastic technology T ,

define:

PRASTIVGS | & Soy ghn T 7 LS
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(1.5.1) Definition: A stochastic input correspondence L of a

technology T 1is a correspondence L:U x § + 2(X) defined by:
(u,8) €U x § — L(u,s) : = {x €X | (x,s,u) €T} .

Note that (x,s,u) €ET e» u &€ P(x,5) = x € L(u,s) . Thus P and L
may be taken as inversely related representations of a stochastic

technology:
L(u,s) = {x€X | u€P(x,s)} ; P(x,5) = {u€U | x €L(u,s)} .

It is again convenient to define two restricted correspondences as

follows:
(1.5.2) For each u€U , sE€S +— Lu(s) := Lu,s)
(1.5.3) For each s €S, u&€lUr—~ Ls(u) : = L(u,s) .

The inverse relationship between P and L allows the properties
of L to be derived from the axioms on P stated in Section 1.3. They

are as follows:

Ll For each state s €S , L{u=0, 8) =X ; if u# 0, 0 ¢ L(u,s).

L2 For each state s € S and each infinite sequence of outputs

{uk} with Iukl +> 4o Q L(uk,s) is empty.

L2.1 For each event A€ 4 with ®(A) > 0, lukl + 4o implies

N N L(uk,s) is empty.
SEA k

L2.8 For each non-null subset of outputs V which is not totally

bounded, ugv L(u,s) 1is empty for all s €5 .
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L3 For each state s €S , every u €U, x € L(u,s) implies
A*x € L(u,s) for all X € [1,+=)
L3.§ For each state s €S , every u€U , x € L(u,s) and y 2 x

implies y € L(u,s) .

L4.1 For each i € {1, ..., m} there is an output u € U with
vy # 0 and an event A €4 with ®(A) > 0 such that

sgA L(u,s) # 0 .

L4.2 For each s €S and each u€U, if x€L(u,s) and x # 0

then L(8-u,s) N{A+x | A € R+} is not empty for all 6 € R .
L4.2.1 For each fixed 8 € R* » 1f (x,s,u) €X x S x U is such that
x €L(u,s) , let gy (s,u):=1Inf {a € R_| a'x € L(8°u,s)} .
For each x € X , define a function Aa %’ § >R, by
y
Ag,x(8) + = Sup, {ge,x(s,u) | x € L(u,s)} . The function

Ae x is integrable for each x € X .
1]

L5 For each state s € S , the graph of the correspondence Ls

(see (1.5.3)) is closed.

L6 For each s €S and each u€ U, x € L(u,s) implies
x € L(8+u,s) for all 8 € (0,1] .
L6.S For each s €S5S and each u€ U , x € L(u,s) and v gu

implies x € L(v,s) .

To deduce the properties of the input correspondence L listed
above from the axioms on P , the arguments needed parallel those given
in Shephard/Fire (1980), with the exception of L2.I and L4.2.I1; hence
they will not be given here. However, L2.I is merely a restatement of

P2.I, and L4.2.1 gives an explicit form for the scaling function A

8,x
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of Axiom P4.2.1I. Conversely, the axioms on P may be deduced from the
corresponding properties on L . Hence, the properties listed above
may be alternatively taken as axioms on a stochastic technology.

One certainly would like to have the following measurability

property on L to complement Axiom PO.

Lo For each u € U, the correspondence Lu (see (1.5.2)) is
measurable; i.e., for every closed subset F in X ,

i@ = (s€s L) NFsPrES.

If LO holds, then it is meaningful to speak of the event that a closed
subset of inputs is sufficient to yield an output u . Unfortunately,
LO cannot be deduced from the stochastic weak axioms (1.4.6) on P .

This is demonstrated by the following:

(1.5.4) Example: S = [0,m/2] with B8 being the Borel c-algebra. The

input space X 1is Ri. For each x € Ri , 8(x) 1is defined to be the

angle (in radian) substained by x with the xl-axis. An output

correspondence P: Ri x {0,n/2] » 2(3&) 13 define? Yy

(0,x) , if s 4is rational or O(x) # s
P(x,s) : = 2
{yer, |yl ¢Ixl, e(y) g 8(x)} , if otherwise.

Schematically, for imputs x , x € Rf_ ; states of nature s , s €

[0,7/2) with ©(X) #5 and s = 6(x) , and both s , s dirrational:




U1 X

That the output correspondence defined above satisfies Axioms Pl,
P2, P4.1, P4.2, PS5 and P6 may be easily verified. As for Axiom PO,
consider an arbitrary x € Rf_ and a closed subset F C Ri . If
(0,x) N F is not empty, then P;l(F) = § by definition. If (0,x) NF
is empty, there are two cases to consider : - (i) if 6(x) is ratiomal
or if F oy | Iyl s Ixl , 8(y) ¢ 8(x)} is empty, then P;l(F) is
empty; (ii) 1f 8(x) dis irrationmal and F N {y | Iyl < Ixl , 6(y) g 8(x)}
is not empty, then P;l(F) = {8(x)} , a singleton in S . In any case,
P;l(é) belongs to the Borel c-algebra & , verifying PO.

The input correspondence L : ]{i x [0,n/2] - 2(]§i) inversely related

to P 1is given by

({xew | A 21} , 1f (s is rational; or
6(u) = w/2 ; or l
L(u,s) = < s 1is irrational and s ¢ e(u)‘ ;
Aew [ A 21 ufgew | 821, Ivl =lul , 9(v) = s},

\ if otherwise .
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Axioms L1, L2, L3, L4.1, L4.2, L5 and L6 may be easily verified for the
correspondence L . As for LO, fix an arbitrary output u with u > 0
(i.e., 6(u) € (0,7/2)) . Consider the following closed set in the
input space X = Ri :

Frm{x€ R |zl = lul , 6(x) € [6(u) + ¢, 7/2]}

where € > 0 and 8(u) + ¢ < 71/2 . Observe that the set

L;l(F) {s€s | L(u,s) NF # 9}

{s € [0,n/2) | s€ [8(u) + €, /2] and s 1irrational}

which is clearly not an element of the Borel o-algebra of [0,n/2] .

Hence LO does not hold O

Since it is desirable to have the input correspondences satisfy LO,
from now on, LO will be taken as an axiom on production technologies,
even though LO is not implied by PO. As in Definition (1.4.6), the
system {LO, L1, L2, L3, L4.1, L4.2, L5 & L6} will be referred to as the
stochastic weak axioms on the stochastic input correspondences.,

In the remainder of this section, some sufficient conditions for

the validity of LO are given. First, a useful measurability property

on correspondences is stated (Notation: ®(M) denotes the Borel c-algebra

of a metric space M ; 8 denotes the operation of forming product

g-algebra):

(1.5.5) Proposition: (Hildenbrand [1972, D.I.3-4]): Let H be a

correspondence from a complete measure space (S,d4) to a complete

separable metric space M .
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(a) 1f the graph of H belongs to B8 ® B(M) , then for every ' \
BEBM) , {(s€S |H(8)NB¥PIE L.

(b) If for every open subset B of M , the set {s €S | H(s) N B # @} i
belongs to &4 , then the graph of the closed-valued correspondence 1
H defined by: s € § +— H(3) ; belongs to B3 & &(M) . :

(c) Statement (b) is valid if "open" is replaced by "closed". !

{1.5.6) Proposition: Suppose Axiom P3 is replaced by the stronger
axiom of free disposal of inputs P3.S in the system of stochastic weak
axioms (1.4.6). Then a technology with a complete separable metric

space X as its input space satisfies LO.

Proof: Consider an arbitrary open set G in the input space X and an

arbitrary output u € U . Let Z be a countable dense subset of G .

Such a set 2 exists since X 1is separable. It is obvious that

) L { .
zez(ses | 2 € 1(u,s)} C{s €5 | L(u,s) NG # 9}

To show the converse inclusion, consider an arbitrary state s € §
for which there exists an input y belonging to L(u,s) NG . Since
G 1is open, there is an open ball B centered at y with B CG . The
free disposal of inputs (P3.S) implies {w € X | w > y} C L(u,s) .
Clearly, the intersection set {w&€ X | w >y} NB has a non-empty
interior. Consequently, by the denseness of Z in G , there is a
z2€ZNB with z € L(u,s) ; establishing the converse inclusion.

Axiom PO ensures that for the arbitrarily chosen u , and every
z2€Z , theset {s€5S | z€L(u,s)}) ={s€S ]| {u} NP(z,s)} 1is an
element of &4 . Hence, the set {s €S | L(u,8) NG ¥ @} , being a

countable union of events, also belongs to & .
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Now Axiom P5 states that the correspondence Lu :S -+ 2(X) is
closed-valued. By applying Proposition (1.5.5.¢), then (1.5.5.a), it is
seen that Lu is measurable. The proof is complete since u was

arbitrarily chosen O

The simplest examples of complete separable metric spaces are R¥
and (ll)+ . Another example is (Ll(R+,G(lR+),u))+ , the non-negative
orthant of the space of Borel integrable functions. Other examples
include the (finite) product of the above spaces.

Since P3.S is not valid for many production systems, it is desirable

to have sufficient conditions for LO without assuming P3.S. For this

purpose, the following is useful:

(1.5.7) Proposition: Suppose X and U are both complete separable

metric spaces. If an output correspondence P:X x S + 2(U) not only
satisfies the weak axioms (1.4.6) but also has each correspondence Ps
(s € S) continuous (i.e., both upper and lower-hemi-continuous) and

compact-valued, then LO holds.

Proof: Let Z be a countable dense subset of X . For each 2z € Z ,

denote by Bk(z) the open ball {x € X | #z - xi < 1/k} centered at z
with radius 1/k , k = 1,2, .., . Let F be a non-empty closed subset
of U. For k=1,2, ..., let an open set Dk(F) be defined by
D(F) : = (W€ U | d(u,F) < 1/k} where d(u,F) 1is the distance of the
point u from the closed set F .

The continuity of the correspondences P (s €S) implies: for

s

the output correspondence P , the inverse of F 1is given as:
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PL(F) i ((x,8) €X xS | P(x,8) NF ¢ @) |

k k
= N U (B x € ,8) 0 F )
- [B"(z) x {s €S | P(z,s) N D*(F) # 9})

First, it will be shown that the first set above is contained in the

second. Let (x°,s°) € {(x,s) | P(x,8) NF # @} . Then by the defini-

tion of Dk(F) , P(x%,3%) n Dk(F) is not empty for each index k .

Since Dk(F) is open, and P o 1s l.h.c., there exists for each k H
s

a neighborhood N, of x° such that w € N, implies P(w,s%) N Dk(F) #

9 . Since the set Z 1is dense in X , there exists for each k an j

input zk with zk € F\Nk and x° € Bk(zk) . For this zk , Clearly

x°,s° € B*(:z*) x (s es | P(z%,s) N DX(F) # 8} . Hence (x°,s%)

belongs to the second set.

To show the converse inclusion, let (x°,s°) belongs to the
second set. Then there is an infinite sequence {zk} CZ with 1
x°,s%) € B*G%) x (ses | e Nk 0}, k=12, ...

Clearly, {zk} converges to x° . Let {vk} be an infinite sequence
with vk € P(zk,so N Dk(F) . Since the correspondence P o is compact-

s
valued and u.h.c., there is a subsequence W e v converging to

a limit v° € P(xo,so) ; (see Hildenbrand [1972, B.II, Theorem l]).
Recall that d(v3,F) < 1/ for each § ; and F is closed. Thus
v . v® implies v° ETF . Consequently, P(x°,s°) "NFy¥ g, establishing
the converse inclusion.

Using Axioms PO, P5 and Proposition (1.5.5.c), one obtains that for
each 2z € Z the graph of the correspondence P, Dbelongs to 4 8 B
Then it follows from Proposition (1.5.5.a) that {s € § | P(z,s) N Dk(F) ¥
P} € 8 for all z € Z . Hence the set [Bk(z) x {s €8S | P(z,8) N

D*(F) # 9}] belongs to B(X) 8 8 for all z€ 2 . Thus P L(F) belongs
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to ®(X) ® 4 since it may be obtained by countable union/intersection

of elements of ®(X) ® BA. This conclusion is trivially true if F = ¢ .
Since the correspondence P:X x S » 2(U) 1is closed-valued (Axiom

P5), and it was shown that P-l(l") EBX) & & for all closed subset F

of U , Proposition (1.5.5.c) applies to show that the graph of P

(wvhich is the technical feasibility set ¥') belongs to (B(X) € .48) © 8(U) .
Now let Y be an arbitrary closed subset of X , and u an

arbitrary output in U . It follows from above that (Y x § x {u}) N 7

belongs to B(X) 8 84 © &(U) . For the input correspondence L,:S~ 2(X) ,

the inverse image of Y 1is

Ll i (s €5 | L(u,s) NY 40}

= Projs {(Y x8 x {u}) NT} .

Since (S,8) 1is assumed to be a complete measure space, and X x U is
a complete separable metric space, then the projection theorem (see
Hildenbrand [1972, D.1.11]) applies to show that L;l(Y) € 4. Since Y

and u are arbitrary, LO is established O

Up until now, the only structure imposed on (S,sd) is that it is a
complete measure space. If the state space S is a metric space, then

the following assumption on a technology is meaningful:

P5.8 The graph of the output correspondence P:X x S » 2(U) is

closed; i.e., the technical feasibility set ¥ is closed.

(1.5.8) Proposition: Suppose § is a complete metric space. Further-

more, suppose P5.S above holds for a compact-valued output correspon-

dence P:X x § + 2(U) . If the Borel o-algebra ®&(S) 1is a sub-oc-algebra
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of B and both X and U are complete separable metric spaces, then

LO holds.

Proof: First it will be shown that P is measurable with respect
to the o-algebra ®(X) @ ®(S) . Suppose not so, then there exists a
closed subset F of U whose inverse under P , namely the set
P-l(F) := {(x,8) EX xS | P(x,s) NF ¢ @} , is not an element of
B(X) ® ®(S) . 1In particular, it is not a closed subset of X x S .

1

Hence, there is convergent sequence {(xk,sk)} CP (F) with a limit

(x°,s°) & P-l(F) . However, (xo,so) €X xS since both X and §

are complete. Since P(xo,so) NF=p ,F 1is closed and P(x°,s°) is
compact, there is an open set G with P(x°,s%) CG but GNF =p .
Now since P(xk,sk) NF¢@ for each k , P(xk,sk) € G . Hence P
cannot be u.h.c. at (x°,s°) ; contradicting the hypothesis of the
proposition.

Wich the measurability of P with respect to ®(X) & ®(S) , an

argument identical to the last part of the proof of Proposition (1.5.7)

may be used to complete the proof since ®(S) C40

1.6 Technical Efficiency

Given a stochastic technology % , an input-output pair (x,u) € X xU
is called a technical feasible production program under state s if
(x,s,u) € T. To evaluate the efficiency of the production programs,

the following notion 1is useful:

(1.6.1) Definition: The collection of technically efficient inputs

which may yield an output u under state s is called an inpu? efficient

subset and 1s defined by: for all u€U ,s €S,




E(u,s) :» {x € L(u,s) | y < x implies y & L(u,s)} .

To ensure that technical efficiency is not a vacuous concept, it

is important to ascertain whether the efficient subsets as defined are

not empty.

(1.6.2) Proposition (Shephard [1970]): If the input space of a technology

is finite dimensional, then E(u,s) 1is not empty whenever L(u,s) is

not empty.

However, if the input space is not finite dimensional, the input

efficient subset may very well be empty, as demonstrated by the following:
(1.6.3) Example: Let functions fk: B¥- B;. be defined by:

£7(t) : = (k = 1,2, ...)
1l+1/k, t € [k,+=)

Clearly, the functions fk's are elements in (I._)+ , and they are

k+l

decreasing; i.e., fk': £ for all k .

Suppose a state space S is given as S = [1,2]) with the Borel

measure on the interval. With the input and output spaces X = U = (I..)+ ,

define an input correspondence L:U x § +- 2(X) by

X = x-ck where ) > s-lul

{x € (L.)+

g } , 1f ud 0 ;
L(u,s) : =
e

and k € {1,2, ...}

0 if us=0.

That the correspondence L satisfies the stochastic weak axioms {LO, L1,

L2, L3, L4.1, L4.2, LS and L6} may be easily verified. Consider an
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arbitrary output u with f(ul > 0 . Clearly L(u,s) # § for all

s €S . For an arbitrary state s € S and an arbitrary input x € ;

L(s,3) , x = %+£? for some % > s-lul and some integer p . By the

4
definition of L , the inputs A-

the functions fk's are decreasing, X cannot be an efficient input.

£9 € L(u,8) for all q > p . Since '

Since x , 4 and s were arbitrarily chosen E(u,s) is empty for all

$E€S and uwu¥ 00O

If the input space X 1is infinite dimensional, a weaker topology
(than the norm topology) on X may ensure the non-emptiness of E(u,s)

For instance:

(1.6.4) Proposition: Suppose a stochastic technology satisfies LS

*
(equivalently P5) as stated with the weak topology on X = (L_): .

The efficient subset E(u,s) 1is not empty if L(u,s) 1is not empty.

Proof: Suppose x € L(u,s) . Define the set

D i=L(us) N{y€ @A) | vgxl. N

Note that since the {y € (L_): |y < x} s weak* closed, and L(u,s) &
is also woak* closed (by L.5), D, is veak' closed. |
For esch element w in D' , define analogously Dw: s L(u,s) N
{y € (L_): | ¥ < W} . Denote the collection of all such sets by .
Partially order the sets Dw's in H by set inclusion. By the

Hausdorff Maximality Theorem, there is a maximal linearlvy ordered sub-

collection ﬂ' of . Obviously, the sub-collection ﬂ' has the

*
finite intersection property. Note that each D, 1in B is weak

*
closed. Furthermore, by the theorem of Alaoglu, thev are actually weak
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compact. Consequently, the intersection set N {Dw ! D, € 1£} is not i
empty. Let w* be an element of this intersection set. Clearly

w* € L(u,s) . Suppose w* € E(u,s) . Then there exists an input

z € L(u,s) with z j_w* . Then the set D, := L(u,s) N {y |y <z}
is non-empty and is a proper subset of every element of 1f , contra=-

dicting the maximality of ﬂ' . Hence w € E(u,s) O

The general condition under which the technical efficient subset

being non-empty is not known. However, in almost all models of !
production, the non-emptiness of the efficient subset is assumed. This
practice will be followed in the subsequent exposition.

The following straight forward fact will be useful later:

(1.6.5) Fact: Suppose E(u,s) # 9 , then L(u,s) C E(u,s) + X . b

Intuitively speaking, technical efficiency cannot prevail when
inputs of infinitely large size are used to yield a finite output.
This notion is formalized by the following asymmetric zxiom on the

input correspondences.
E For each state s €S and ueU, E(u,s) 1is bounded.

For a detailed discussion of the significance of this axiom, see Shephard
(1970-a]. Here, it is remarked if X = (L_): and L5 is stated with

the welk* topology on (L.): » then Axiom E implies that the veak*
closure of E(u,s) is weak. compact. This fact will be useful in the

next Chapter.
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1.7 Confidence Indexed Production Correspondences

In applications, one may not be interested in the total structure
of the stochastic production correspondence P . Rather, one could be
primarily concerned with the issues:

(1.7.1) With what probability a certain subset of outputs may be
obtained from a specified subset of inputs?
(1.7.2) Given that a certain level of outputs is to be attained with

at least a probability § , what inputs are feasible?

To address these issues, it is convenient to define:

(1.7.3) Definition: For a stochastic technology 9 represented by

an output correspondence P :X x § + 2(U) , its associated confidence

indexzed output correspendence CP is given by:

(x,§) € X x [0,1] = CP(x,£) := {u€U | P{s€S | u€EP(x,s)} 2 £

»

The word "confidence" need not pertain to the subjective belief of any
producer; it is used simply to denote a probability measure of certain
events.

For each scalar £ € [0,1] , let 4() be the collection of events
{A€4| P(A) 3 §} . Then the confidence indexed output sets CP(x,£)

may be equivalently defined as:

# CP(x,§) = v N P(x,s) , all x€X , £ € [0,1] .
ACH(E) sEA

The following properties for the correspondence CP are suggested by

the axioms on P :




CPl

cr2

CP3

CP3.5

CP4.1

CP4.2

CP5

Cpé6

CP6.5

cr?

0 € CP{(x,5) for all x€X and £ € [0,1) ; CP(x =0, £)

if £ >0 ; and CP(x , £ = 0) U for all x€X .

For all x € X, CP(x,§) is bounded if § > 0 .

For all x€ X and £ € [0,1] , CP(x,£) C CP(A+x,5) if A

#v

For all ¢ € {0,1] , CP(x,§) CCP(y,§) if y 2 x .

For each 1 € {1, ..., m} , there exists an output u with
uy # 0, an input x and a confidence level ¢ > 0 such that
u € CP(x,£&)

If an output u # 0 and u € CP(x,%) , then for every scalar

89 > 0 there exists a positive scalar Ae z such that 8-.u €

b

CP(AG’E-x,E)
The graph of the correspondence CP is closed; i.e., xk -+ x°
uk > u® , gk - 50 and uk € CP(xk,sk) for each k implies

u® e P(xo,so) .

For every £ € (0,1] and x€ X, u € CP(x,§) and 8 € (0,1]
implies 6°u € P(x,£)
For every £ € [0,1] and x€ X, u € CP(x,§) and Vv g u

implies v € CP(x,&) .

For every x €X , £ > £ implies CP(x,§) C CP(x,§ )

Note that other than having the confidence index £ , properties CPl

to CP6 are almost identical to the axioms on a deterministic technology

formulated in Shephard [1974] and Shephard/Fire [1980].

the confidence index £ may be regarded as an "input'" to production,

In this sense,

33
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with the peculiar monotonicity property CP7.

(1.7.4) Proposition: The properties CPl, CP2, CP3 (CP3.S), CP4.1,

CP6 (CP6.S) and CP7 may be derived from the axioms PO, Pl, P2, P3 (P3.S),

P4.1, P4.2 and P6 (P6.S).

Proof: (CPl) Since 0 € P(x,s) for every xE€X and s €S,

0 € CP(x,5) for every x €X and ¢ € [0,1] . Moreover, since |

P(x =0, s) = {0} for each state s €S , CP(x =0 , £) = {0} for '

all £ >0 . By PO and the assumption that (S,#,P) is complete,

for each fixed input x € X and output u €U , the set {s €S | u €

P(x,s)} 1is an event and has at least zero probability. Hence [

CP(x , § =0) =U for each x € X , including the case of x = 0 . ‘
(CP2) Consider an arbitrary fixed input x € X . For each

positive scalar K define a set A(K):= {s €S | P(x,s) N{u €U |

ful 2 K} # 9} . Since the set {u €U | ful > K} 1is closed, by PO,

A(K) €48 for all K€ 34+ . It is to be shown that for each a € (0,1) ,

there exists a positive scalar Ka (depending also c¢n x) with O(A(Ka)) <

@ . Suppose otherwise, then there is an increasing sequence ) ¢ R,

diverging to += but P(A(Kj)) > a for each index j . Since {Kj} is

increasing, the sequence of events {A(Kj)} is non-increasing. By the

sequential continuity of probability measures, the set A: = ? A(KJ) is

an event and has probability @(A) > a . Clearly, P(x,s) is not

bounded for each s € A ; contradicting Axiom P2. Hence, for every

confidence level ¢ € (0,1) , CP(x,£) 1is bounded (in norm) by the

positive scalar K(1-€) . Finally, by property CP7 (to be shown later),

CP(x , £ =1) C CP(x,§') 1if £' <1 . Hence CP(x,1) is also bounded.

Since the input x was arbitrarily chosen, CP2 is established.
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(cp3, CP3.S, CP4.1, CP6, CP6.S) If u € CP(x,f) , then there

is an event A with ®(A) > £ such that u € P(x,s) for each s €A .

Axiom P3 states that for all A 21, u€P(r-x,s) for each s€4A.
Hence, u € CP(A+x,§) ; establishing CP3. Analogously, CP3.S follows
from P3.S. Similar arguments may be used to establish CP6 and CP6.S
from P6 and P6.S. Property CP4.1 is merely a restatement of P4.l.

(CP7) Recall the definition of the collection &(f) of events.

For ¢ > s' s 1t is clear that &%) C‘é(sl) . Thus, for every x €X ,

CP(x,5) = AE‘LGJ(E) 0, Ps) cﬁzg,) 0, Pxs) = CP(x,£') O ’
(
To ensure the property CP5 and CP4.2 to be valid, stronger condi- r
tions than those of the stochastic weak axioms on the technology seem ‘%
to be necessary. A derivation of CP5 is given in the next proposition. F
|
(1.7.5) Proposition: Suppose the output correspondence P :X x § -+ 2(U) ;:

is upper-hemi-continuous, and the input space X 1is a separable metric
space. Then the confidence indexed correspondence CP associated with

P has property CP5.

Proof: Suppose infinite sequences x*t cx, (1 cx and {£* c (0,1
have xk -+ x° ’ uk +° , Ek - 50 and uk € CP(xk,Ek) for all k ; it

is to be shown that u° € CP(xo,Eo) . Since CP(x , £ =0) = U (property
CP1l) for all x € X , one may assume without loss of generality that
£2>0.

Let d be the norm metric on X . Define a function f by:
SES + f(s):= Inf {d(u®,v) | veEPEs)] .

Note that for all a € R, , {s €5 | £(s) <a} = {s€s | BL®a) N
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P(x°,s) # 9} where B(u®,a) 1s the closed ball centered at u° with
radius o . By Axiom PO as applied on the correspondence Px° ,

{s€s | f(s) <a} €S for all o« € R, . This, together with the fact
that f 1is non-negative-valued, implies that f 1is a measurable func-
tion on S .

Next, define a sequence of events:

ak: . (ses | ut P(xk,s)} » k=0,1,2, ...,

Consider the restriction of f to the complement of Ao ; i.e.,

(a%)€: = s\a° , the following claim is made: For each ¢ € (0,1] there
exists a & € R, such that the event D(§):= {s € % | £(s) < 6}
has probability @(D(6)) 5 ¢ .

To show the claim, suppose it is false. Then there is a monotone
sequence of scalars (83} ¢ R, decreasing to 0 such that O(D(éj)) > ¢
for each index j . By definition, D(83'1) cD(s3) for all 4 . Then
by the sequential continuity of probability measures, the set D: = ? D(Gj)
is an event and ®(D) > ¢ > 0 . It follows from the definition of f
that for each s € D, there is no open ball B(uo) centered at u®
with B(°) C WP(x°,s) . This contradicts the fact that D C (A%
({.e., e P(xo,s) for all s €D) and P(xo,s) is closed for all
sES .

Now let an ¢ € (0,1] be arbitrarily fixed together with an
associated & and event D(8) . Let B(u°,6/4) be the open ball
centered at u° with radius 6/4 . By construction, B(u®,5/4) N
P(x°,s) = @ for each s € (A°)\D(6) . Let G be the open set defined
by G: = U\E(u°,5/2) where §(u°,6/2) is the closed ball at u° with

radius 6/2 . Since for all s € (AO)C\D(G) , every element of

ek
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B(uo,d/é) is at least of distance 36/4 from P(xo,s) , it follows
that P(x%,8) CG on (A%)S\D(s)

The following fact (to be proved as the next proposition) results
from the u.h.c. of the correspondences Ps at x° : there exists for
each B8 € (0,1] an event HB contained in (A9)C\D(S) with @(HB) < 8
such that for some neighborhood N of x° y» P(w,s) CG for each wé&N
and s € (AM)°\D(ONH, .

Without loss of generality, let 8 = g . Furthermore, let He and
N be an event and neighborhood for which the conclusion of the above

° and uk - u° , there is an integer K

fact holds. Since xk - x
such that for all k > K , u* € B(u®,6/4) and x“ €N . Then it follows
that for all k 2K and all s € (AD\D(NH, , P(x*,8) CG ; conse-
quently uk & P(xk,s) since B(u®,5/4) c G° by construction. Recalling
the definition of the events Ak , one then has: for all k > K,

(AO)C\D(G)\He c (Ak)c . In other words, Ak

ca’uDn() v H_ since
D(s) € (A)° and B_C (A)\D(S) . Hemce §° g B(A) g O + ¢+ ¢
for all k 3 K. Since £°~+¢°, at the limit, €° g P(A®) + 2¢ .

By letting € become arbitrarily small, it is seen that (P(A°) 2 A

ie., vV ecrx’,t% 0

The unproved fact invoked in the above proof is of independent

interest, and is stated here as:

(1.7.6) Proposition: Let (S5,d,f) be a probability space, X a

separable metric space and U a topological space. Suppose a correspon-
dence P:X x S + 2(U) satisfies: (a) for each s € S , the correspon-
dence x € X ~+ Ps(x) := P(x,8) 1is u.h.c¢.; (b) for each x € X, the

correspondence 8 € § + Px(s): = P(x,s) 1s measurable.




38

Consider arbitrarily an X €X, an open subset G of U and an
event A€ 8. If P(x,8) CG for all s € A, then for every
g € (0,1] there exists an event H C A with @(H) < 8 and a neighbor-

hood N of x such that for all wWE€N and s € A\H , P(w,s) CG .

Proof: Let X EX ,open GCU and A€ $8 satisfy P(x,s) CG for
all s €A . Define (while focusing attention to the restriction of &£

on A) a function g:A > R_
s €A g(s):=Sup {r € R, | P(y,s) €G for all y € B(x,r)}

where B(x,r) 1is the open ball centered at x with radius r . The
positive-valued function g 1is well-defined since the correspondences

Ps are u.h.c. on A . To show that g 1is measurable on A , first

note that

(1.7.6.1) {s €A | g(s) 2rt={s€a| P(y,s) CG for all y € B(x,r)}

for all r € R-H- . Fix an arbitrary T € ]R* and let Z be a countable

dense subset of B(;c,;) . Clearly,

{s€A| P(y,s) CG for all y € B(x,r)} czna {s €A | P(z,s) CG} .

To show the converse inclusion, let s belong to the intersection set
on the right. Since the correspondence 1’E is u.h.c., there exists
for each z € Z an neighborhood Nz of 2z such that P(w,s) CG for
all w € Nz . Since Z 1is demse in B(x,r) , it may be verified that
the collection {Nz ; 2 €2} is an open covering of B(x,r) . Hence

P(y,s) CG for all y € B(x,r) ; establishing the converse inclusion.

Now, for each z € Z , the set (s € | P(z,s) € G} belongs to &
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since it is equal to A\{s € A | P(z,s) NG # @} which is an element

. of # according to assumption (b) . Hence, the set {s €S | g(s) 2 r}
€ 4 since it is a countable intersection of elements in & . Since T
was arbitrarily chosen and g 1is positive-valued, g is measurable on
A .

A contra-positive argument is now used to complete the proof.

Suppose the conclusion of the proposition is not true for some 8 € (0,1]
Without loss of generality, assume f(A) > 8 > 0 . Then for every

positive integer k and its corresponding open ball B(x,l/k) ,
{s€a| P(y,s) CG for all y € B(x,1/k)} < ®(A) - B .

Define wk: = {s €A | g(s) 2 1/kl , k= 1,2, ... . Since g is
measurable, Wk € 8 ; and recalling identity (1.7.6.1), the above
inequality 1s equivalent to: O(Wk) <P(A) -8B, k=12, ... . Clearly

&S
Wk 1 D Wk for all k. Let W:s= g Wk . By the sequential continuity

of probability, ®(W) < ®(A) - 8 . In other words, P{s €A | g(s) > 0}

1]

P(W) < P(A) - 8 <®(A) since B > 0 . This contradicts the fact that g

is positive-valued on A O

As for the property CP4.2, the following shows that it is almost

always valid:

(1.7.7) Proposition: CP4.2 holds for the confidence index E =0 . For

the case § > 0 , suppose u$0 and u€ CP(E,E) . Then for every

o € l&+ and every £ € [0,f) , there exists a A € R, such that

8*u € CP(A*X,E) .

Proof: The first statement is trivially true since CP(x,0) = U . Let
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E >0 and u € CP(§,E) . Suppose 8 € lg+ and £ € [O,E) is such that
for all AE R , B-u & CP(A*X,E) . Let an infinite sequence {Ak} CR,
diverges +=» . Define for each index k , wE:={s€S I P(Ak-x,s) N
{oeu | o 2 8} # 9} . By Axiom PO, w € # for all k since the set

{o°u | 0 > 8} 1is closed in U . By the contra-positive hypothesis,

O(Wk) < £ for all k . Now clearly the sequence of events {wk} is
monotone non-decreasing. Llet W: = g wk . By the sequential continuity
of probability measures, P < E < E . Hence the complement of W ,
namely we , 1s not empty. Note that we has a non-empty intersection
with the event (s €5 | u € P(x,s)} . Comsider an arbitrary s € W°

with u € P(x,s) . The fact that s € we implies there does not exist

A€ R, with 8-u € P(A+x,s) ; contradicting Axiom P4.2 O

The following straightforward fact (proof omitted) shows that property
CP4.2 for CP is guaranteed if one is willing to impose a considerably

stronger attainability assumption on P than P4.2:

(1.7.8) Fact: Property CP4.2 holds if and only if for every x € X ,

ue€U and 6 € Ig+ , there exists an almost surely bounded function

A:S =+ R, such that 8:u € P(A(s)+x,s) on the event {s €S | u€P(x,s)}.

Although the properties CP4.2 and CP5 cannot be derived from the
set of stochastic weak axioms on P , in view of (1.7.5) and (1.7.8),
they nevertheless appear to be reasonable for the confidence indexed

output correspondence of many real-world stochastic production technologies.

With the constructicn of the correspondence CP from P , the
questions (1.7.1) and (1.7.2) posed at the beginning of this section may
be answered. For ease of exposition, let the graph of the correspondence

cp, it.e., {(x,8,u) €EX x [0,1]) x £ | u € CP(x,E)} , be denoted by 47T .
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The set &7 wmay be regarded as the confidence indexed technical
feasibility set.

Given a set of outputs V CU and a set of inputs YCX ,
consider the intersection set D: = (Y x [0,1]x V)N &7. Note that by
property CP7, the set Z2(Y,V):= {§ € [0,1] | for some y €Y and
vEV, (v,§,v) €D} is an interval containing 0. If both V and ¥
are closed sets, then D is closed; and thus so is =(Y,V) 1if CP5S
holds. Then the least upper bound of Z(Y,V) ; .., the maximal
probability with which some output in V may be obtained using inputs
from the set Y , is actually attained. Thus, question (1.7.1) is

resolved. Question (1.7.2) may be addressed in a similar manner.

It is interesting to relate the notion of a confidence indexed
output correspondence to that of a stochastic production function.

Suppose a technology has an input space X = lﬂ: and an output space

U= lh_, and its confidence indexed output correspondence satisfies
properties CPl to CP7. Consider an arbitrary input x € Rﬁ . Define

a function Fx by
u€ R, — F _(u):=Max {g € (0,1] | u € cP(x,8)}

The function Fx is well defined since according to CP5, the graph of
CP is closed. Furthermore, it has the following properties as may be,
eagily verified:

(1) Fx(O) -1

(11) Fx(u) 2 Fx(v) if vyu;

(141) Fx(u) +0 as u -~ 4= ;

(1v? Fx is upper-semi-continuous (u.s.c.).
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Note that the function F_ resembles the distribution of a non- |
negative random variable. In fact, for a given input x , let @x be !

a non-negative function on the state space S defined by: |

(1.7.9) ¢ (s) : = Max {u € R | u€P(x,8)},s€s. !

ox is well defined since P(x,s) is compact (Axioms P2 and P5) and 'ﬂ
it is a bona-fide random variable according to Axiom PO. Qx has the

survival distribution function i

tER+l—>G(t):-P{sGS | @x(s) >t} .

It is easy to see that:

G(t) 2 & if and only if Fx(t) 28,t€R,_, LE [0,1] .

Hence, for each x € B: , the function Fx gives the probability distri-
bution of Ox , the random maximal output attainable using input x .

In view of the above discussion, the practice of specifying a

family of random variables {Ox 1 xEX = R:} as a model of production b
under uncertainty may be considered as only giving the confidence
indexed correspondence CP associated with a technology; via the

specificacion of the distribution functions Fx for all x€ X . (Note

that for all x € X and all § € [0,1] , CP(x,§) = {u € R_|F (v) 3 E}.)
Since the correspondence CP 1s only a sketchy and aggregated represen-
tation of the underlying technology, the family {Ox ; x € X} may not

l be a descriptive enough model to serve as a basis for making production

decisions under uncertainty. :

For example, a Cobb-Douglas type stochastic production model may

be formulated as: -




43

where 8 and ai's are non-negative dependent random variables,

with Eui 2 1 . The use of only a finite number of random parameters

glves a compact representation of the family {Ox ; X € X} , and may
be convenient for econometric studies. However, it seems quite
difficult to relate such a model to an explicit description of the
stochastic production environment the characterization of which may

be fundamental for making production decisions.

For completeness sake, the confidence indexzed input correspondence

CL inversely related to CP is defined. Formally, CL: U x [0,1] -

2(X)
CL(u,8) :=» {x €EX | P{s €S | x €L(u,s)} > £} ‘
K |
1.7.10) = (x€X | P{s€sS | ueprx,s)} > £}

= {x€X | u€CP(x,5)} .

The properties of the correspondence CL induced by those of CP

(i.e., CP1l through CP7) are stated as follows:

cL1 CL(u=0,£E)=CL(u,E=0)=X; 0&CL(u,g) if u ¥ 0 and

£§>0.
k k
CcL2 If £>0 and ju'} =+ += , then Q CL(u ,£) 1is empty.

CL3 For all u€E€U and § € (0,1) , if x € CL(u,f) and X 31,

then Xi+x € CL(u,£)
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CL3.S For all u€U and ¢ € (0,1] , 1f x € CL(u,5) and v 2%, I

then y € CL(u,§)

CL4.1 For each i€ {1, ..., m} , there exists a scalar £ € (0,1]

and an output u with vy # 0 such that Cl(u,f{) is not

empty.
CL4.2 1If x € CL(u,§) and u # 0, then for every 3 € R,

{xex | A 30} NCL(8*u,E) 1is not empty. ;,
LS The graph of the correspondence CL 1s closed. 4

CLé For all wu €U and § € [0,1] , CL(u,§) DCL(8-y,§) if 8 > 1.

CL6.S For all u€U and ¢ € [0,1] , CL(u,§) DCL(v,g) 1if v 3 u. '

CL7 For all u €U, CL(u,g) D CL(u,E') if 5' 26 . ‘

1.8 Information and Production Policies

In section 1 througn 7, a model of stochastic production technology
and various representations of it were given. This model only character-
izes the purely technical aspects of production, and as such, is not a
model of production decision making under uncertainty. This section
introduces a notion of production policies which will be useful in '

later chapters.

In a deterministic model of production, e.g., the model of Shephard

(1970-a], a notion of production policies is implicitly introduced when

the so~called minimal-cost function is defined. For an output u € U = R:

and an input price vector p € R: , the minimal cost of production is

given as:




(u,p) = Qu,p) : = Inf ‘px x € L(uj:

1

wvhere L(u) 1is the deterministic analogue of L{u,s) . Presumap.-.,
when faced with the market input price p , a producer chooses an
input which vields the output u at a ainimai cost. Thus, 1ariiciz.v,
it 1s assumed that every selectionm of input x from the set of technica..v
feasible inputs L(u) 1is a feasible input policvyv.

The notion of selection may be generalized for :ine case of a

stochastic correspondence as follows:

(1.8.1) Definition: Let H be a correspondence from a measure space

(S,8,P) to a metric space M . A function f:S - M 1s a ge.ecrim
from H 1if f£(s) € H(s) for all s € S ;, an 2.mcs: aver.unere '*
gelection 1f f(s) € H(s) a.e., a measwurab.e se.ecticm 1f £ is

measurable.

For convenience of expositrion, in the remainder of this secticn,
the input space X and the output space U are taxen to de 1)

and (1.): respectively.

With the introduction of uncertaintv, it is intuitive.v ocovious
that any reasonably well defined production policy must be concernec
with any "information" on the unknown production environment. The
model of information introduced in the following is that of Radner
[1968):

¥ is a partition of (S,8) 1if ¥ = ‘.VJ} {s a collecticn
of pairwise disjoint elements of the a-algebra & with : vows

An injormation structure (of a producer) is an infinite-tuple

y = (31,32, cees 5t’ ...) where each Jt 1s a partition of the state

— . | | |
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space (S,3) . See Radner ([1968] for an interpretation of this abstract
formulation of information.

For two partitions ‘W and % of (S,8) , % is said to be a5 fine
28 (or as lnformative as) ¥ if for every W EMW and V € 4, either
wCV or W Vs39

The "fineness'*of the partition jt indicates how informed a
producer 1s at time ¢t concerning the true state. Furthermore, the

notion of "as fine as' provides a partial-ordering which will be used

in Chapter . o define a notion of boundedness of information.

In the following, it is argued that the information structure of
a producer, wnen imposed on the underlying stochastic technology
(which is independent of the producer), determines the production
policies (optious) open to him. Abstractly, at time ¢ , with the
informat:ion 5: avaiiable, a producer engages in production by taking
certaln 12tiong (procures inputs, allocates resources, commences
certain production operations, etc.). Referring to the collection of

possible aczions as 4 , the cnoice of action (production decision)

‘ over time (s a mapping

D:S - A
(1.8.2)
s €S - D(s) = (Dl(s),D,(s), ey Dt(S)' L..) €
Jnere D ‘s) denotes the action at time t . To be c.nsistent with

the (nformation avaiiable, the following condition on the decision

! U nc.ds:

fL.8.3 s .s' €1 €4 w D g, =, 5",
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i.e., with an equivalent information as represented by It , the

action taken at time t must be the same.

From a system theoretical point of view, the production decision
of a producer is manifested by the associated inputs and outputs, :
which of course depend oo the state of production environment.
Explicitly, associated with decision D are the input and output

mappings X and u :
(D(s),8) =+ (x(s),u(s)) € (105 * (1)}

In order that production is technically feasible, the following condition

on the mappings x and u must hold:
(1.8.4) u(s) € P(x(s),s) (s€s ,D(s) €d) . .

The information consistency and technical feasibilivy conditionms,

(1.8.3) and (1.8.4), limit the class of selections from the stochastic

production correspondences P which may be meaningfully called produc-

e e e Ao

tion policies.

It was emphasized in the introduction that a model of technology
should be free from any institutional constraints of the producer.
The forgoing discussion indicates that to model the actual operation
of a production unit under uncertainty, the institutional constraint
of its information structure appears to be necessary. Moreover, in
every existing production system, the means of production are always

constrained (at least in the short-run); for instance, by its plant

capacity, labor availability etc. Hence the above model of production i

policies 1is more appropriate as a planning model for as vet non-existing
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production systems since the production correspondence has not been
constrained. Suppose a production system is constrained by requiring
its use of input of goods and services to be in a set C C X , then
the technical feasibility constraint (1.8.4) is to be modified to

u(s) € P(x(s),s)
(1.8.4%) (s €S, D(s) €4)

x(s) €C
Note that this modification indirectly imposes a restriction on the
set of decisions open to a producer. Perhaps it should be remarked
here that the space of decisions s in general is difficult to formalize.
However, in some cases, they are quite explicit. For example, in
Example (1.4.3), the choice of the intensity levels 2t , outputs ut
and the intermediate product transfer vt at vime ¢ may naturally be
taken as decision variables.

In the approach to production modelling taken here, it is essential
to incorporate the relationship between the underlying technology and
the information structures and constraints on the production units
such that production policies may be formulated. The problem lies in
how to pose reasonable models of technology and information structures
such that their inter-relationship may be brought forth without too
much complication. (The Team Theory of Marschak/Radner [1972] provide
excellent examples of this type of endeavor.) Chapter 2 will consider,
in a general setting, the effect of constraints on resource availability
through formulations of laws of return under uncertainty. Chapter 3
proposes some special structured technologies so that production policies

may be explicitly formulated.
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1.9 Appendix

(1.9.1) Verifications of Axioms for Example (1.4.1):

Consider the function ¢: ]R_r:_ x S = lR+ defined by ¢(x,s) =
s 3 % p i
Ae inl xi ;3 S = (~w,4+») , For an arbitrary s € S , the function
@(-,5) is continuous, non-decreasing and homogenous on R: .  Hence

Axioms Pl, P2 = P2.S, P3, P3.S, P5, P6 and P6.S follows immediately.
Since A and cxi's are positive, ¢(',;) > 0 ; so for some ;cE r" ,
@(i,§)=: u>0. Clearly, for all s &€ [5,*«) s @(;c,s) ;ﬁ . Since
the probability of the event [s,+») is positive, Axiom P4.l1 holds.
Axiom P4.2 and P4.2.1 follow from the homogenity of ¢(-,s) for all

s € S . Finally, to show PO , consider an arbitrary x € R: and a
closed set F C R+ . Let b(F) be the greatest lower bound of F ,
then PIL(F) = (s €S | P(x,5) NF#0}=(s€S | a(x,s) 3 b(F)}
Since ¢(x,°*) is continuous and monotone on S , P;l(F) is a closed

interval, hence measurable O

(1.9.2) Verification of Axioms for Example (1.¢.2)

(P1) For each s €S, x=0 and A(s)-z S X implies z =0,
consequently B(s)*z =0 , Hence P(x =0 ,.s) = {0} , s&€S .

(P2) For each s €S and x € R: » (1.4,2.2) implies the set

{z € By | A(s)+z ¢ x} is bounded. Then (1.4.2.3) implies P(x,s) 1is

bounded. Axiom P2.S follows from P2 since the output space is finite

dimensional.

(P2.I) Consider an arbitrary fixed input x € ]Rz , (1.4.2.2) implies
* - *
z, := SupsES {A Min [xi/Aik('s)] < 4o k=12, .,., K. The zk's

1k (8)>0

act as bounds on the feasible intensity of the activiiies. Then by

e
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‘ - K * lé * *
(1.4.2.3), for all u € P(x,s) , uj < kzl Bjk(s)zk < Mj.k-l 2, = uj .
j=1, ..., m . Since the bounds u; on outputs are constant over S

P(x,+) is integrably bounded.

(P3, P3.5, P5, P6, P6.S) are trivially true since the technology is
of linear activity type.

(P4.1) is merely a restatement of (1.4.2.4). P4.2 and P4.2.I follows
from the constant return to scale of the technology.

(PO) Consider the following functions:

(s,z) € S x IR_K'_ ~f,(s,2): = (8(s),2z) ;
(B,z) € R:K x IRE - fz(B,z) := Bez
(s,z) € 8§ x RE - 31(5,2) := (A(s),2) ;

(A,z) € R:’_K x IRE - gz(A,z) 1= Aez

By assumption (1.4.2.1) and the continuity of linear transforms, the

functions f: = £, 0 f, and g:= g, 0 8 are 820 @(Rf_) measurable.

Thus, for am arbitrary closed set F in Rf ,and x € R: ,
Dl:- {(s,2) €8 x REI f(s,z) € F} and D2 := {(s,2) €5 x Rfl
g(s,z) € {y € R: |y S x}} are elements in & & G(RE) . Then
{ses | P(x,8) NF $ 0} = Projg (D; ND,] belongs to & by an

application of the classical projection theorem O

(1.9.3) Verification of Axioms for Example (1.4.3)

Axioms P1l, P2, P2.I, P3, P3.S, P5, P6 and P6.S may be established as
in (1.9.2). Since the output space is infinite dimensional, P2.S in

general 1is not true.

(P4.1) Consider the first period. Since (1.4.2.4) holds for the output

coefficient matrix Bl(sl) , there exists an initial endowment w € Rm+
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and an input x (with a first period input x1 € lﬁ: such that some
output u with a positive i-th component in the first period (i.e.,
(ul)i > 0) is attainable with a positive probability. This verifies
P4.1 since whatever happens after the first period does not affect
the positivity of (ul)i .

(P4.2 and P4.2.1) May be established as in (1.9.2). 1t is remarked
that P4.2 and P4.2.1 are valid only because the initial endowment w
is considered as exogenous input (in accordance with our viewpoint

of an unconstrained technology). In decision models, this may not

be reasonable anymore.

(PO) May be established by a straightforward modification of the
verification offered in (1.9.2). The classical projection theorem

applies since (1.)7 and (1.)® are separable 0

s % .
N S S VG S

e o i
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CHAPTER 2

DYNAMIC LAWS OF RETURNS UNDER UNCERTAINTY

2.1 Introduction

The study of the effect of resource constraints (limitations) on
production has always been an important topic in the theory of produc-
tion. Turgot [1767] introduced into economic thought a proposition
which has come to be known as the Law of Diminishing Returns at the
intensive margin. The original spirit of the law was concerned with
the restraint on agricultural production imposed by the scarcity of
land. From this viewpoint, the particular formulation of the law in
terms of diminishing product increments is non-essential to its sig-
aificance. In bare form, the issue is: whether a bound on the inputs
of a proper subset of factors leads to bounded cutputs, when the other
inputs may be applied in unlimited amounts. This more basic formula-
tion of the law is described by Menger {1936] as an intersecting

assertion.

Shephard [1970-b] gave a meta-economic proof of an intersecting
assertion of the law of returns for production with scalar outputs,
using the theoretical steady state framework of production introduced
in Shephard [1967, 1970-a)}. Subsequently, other formulations of the
law (both steady state and dynamic, single and multiple products) had
been offered along the same line. See Fire [1972, 1978, 1980],

Shephard/Fire [1974] and Shephard/Fire [1980, Chapter 3].

This chapter extends the formulation of the laws of returns to

allow for uncertainty in the production processes. This extension is
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meaningful since the limitation of resource may be relevant only
under certain production enviroment; depending, for instance, on

the weather conditions, machine failures etc. Furthermore, the
impact of resource limitation is contingent upon (a) the availa-
bility of substitutable resources; (b) the development of altermative
production techniques; typically neither contingency is forseen with

certainty.

The formulation of laws of return under uncertainty to be given
brings out to a certain extent the inter-relationship between the
underlying technology and the information structures of the producers.
It is found that for production under uncertainty, the information
structures play a role in limiting outputs, leading to a notion of

diminishing returns in information.

2.2 Background: Essentiality and Limitationality

This chapter uses the axioma?ic framework of stochastic produc-
tion correspondences developed in Chapter 1. For simplicity of
exposition, the output space is specialized to (LQ)+ or (l,)+ .
The special case of deterministic production correspondences (see
Remark (1.3.3)) 1s used freely when convenient. Axiom L6.S, <.e..
strong disposal of outputs, 18 asswmed throughout and Aztom LS
(closure of graph) is stated with the weak" topology on the imput

space.

The purpose of this section is to introduce the notions relevant
to the formulation of the laws of returns. These notions are stated

in a deterministic framework of production. The definitions used are

[ S
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basically refinements of those originally used by Shephard [1970-b]
and extended in the already cited references; so are the propositions

which give the deduction of the deterministic laws of returns.

As indicated in the introduction, one is interested in the
effect of the boundedness of input factors on the level of outputs
attainable. In a dynamic framework, it is convenient, for produc-
tion planning purposes, to specify the time periods over which the
bounds on inputs are relevant. Let ICC {1, ..., n} denote a
proper subset of the n input factors. The time period (support)
over which an input factor i € 1 1is limited is taken as an element
S1 € Zi (4"::L being the o-field on R, for the i-th input history,
see Shephard/Fire [1980] or Chapter 1l). Collectively for the factor
group I , the relevant time periods (supports) of the input-bound

is denoted by a family

(2.2.1) SI = (s, ; S:L €z 1 €1} .

i 1]
Focusing attention to the support SI , define for a vector input

history x € (L,):

Xgp ™ (;1,;2, cees ;n) € (L,):

(2.2.2) 0 if ¢t & Si or 1i&1;

where ii(t): - {
xi(:) if t € Si and 1 €1 .

The partial ordering of vector inequality on the inputs may be re-

stricted to apply only on the support SI :
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for x , y € (Lw): y X if and

sy
(2.2.3) - -~ St - - ~
. only 1f (xy, ..., xn) S (s ven ¥y

The "truncated" input history x defined in (2.2.2) may be inter-

SI
preted alternatively as a subvector, i.e., as a component of the
original vector x . With this notation, a bound on an input factor

group 1 over a support SI may be modelled by restricting inputs to b

the set i

2.2.8)  {xe @)} | xg g xq) . L ean], w20 |

where the reference subvector ng acts as a bound on the inputs. ?f

Similarly, let SO (which is an element of the o-field of the 'i
single output history) specify the time period (support) over which
limitations on outputs are relevant. The output restricted to SO , !i
denoted Ugy » 1s defined as in (2.2.2) with an analogous definition
of a partial ordering (2.2.4), and the interpretation as subvectors.

A remark is in order concerning the relationship between SI and

SO . Since future inputs cannot affect past outputs, it is necessary

to postulate that

Inf {t R | tE€E S, for some i €1}

A

Inf (t € R_| ¢t € 50} ;
(2.2.5)
Sup {t ER | t €5, for some 1 €I}

A

Sup {t € R, | t € s0}

For SI and SO satisfying (2.2.5), the following formulation of a law !

of returns is meaningful:

(2.2.6) Definition: An input factor group I CC {1, ..., n} over

support SI 1s wegk-limitational for outputs over support SO 1if for
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every output (reference) subvector ugo > 0 , there exists an input
b o n () } .
ound Xg1 2 0 such that L(u) N {x € (L¢)+ | X1 S Xg1 is empty for

o
all output u with Usy 3 Ygg -

(2.2.7) Definition: An input factor group I CC {1, ..., n} over

support SI 1is essenttal for outputs over support SO if for every
output u with Ugy > 0 and L(u) not empty, L(u) N {x € (Lc): l

X1 ® 0} is empty.

(2.2.8) Proposition: For an input factor group I CC (1, ..., n}

over support SI to be weak-limitatiomal over support SO , it is

necessary and sufficient that (I,SI) 1is essential for SO .

A proof of this proposition may be found in Shephard/Fire ({1980,
Chapter 3, Proposition (3.3-1)].

It is conceivable that although (I,SI) is essential for output
on SO and X1 is bounded by some ng » via appropriate factor and
time substitution, any bound ugo on the output may be exceeded. For
example, inputs (I,SI) may be needed only to initiate a new production
process which otherwise does not require input factors I in its sub=-
sequent operations. To formulate a stronger version of limitationality,

define

(2.2.9) Definicion: An input factor group I CC {1, ..., n} over

support SI 1s strong-limitational for outputs over support SO if

for every input bound xgl > 0 there exists a bound ugo > 0 on the

output such that L(u) N {x l Xg1 & xgl} is empty for all output u

o

with u > uSO .

SO =




[
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In the steady state framework of production, Fire {1972, 198C] and
Shephard/Fire [1974] gave a sufficient condition for strong limitation-
ality. 1In the following, a further sufficient condition for strong-
limjtationality is given via a regularity assumption on the scaling of
production. %
With a single output history, a dynamic productioa correspondence

P: (L,)i + 2((L,]),) may be represented by the following functionals:

For given w € (L), with wi =1, i~

(2.2.10) o K
¢(x | W) := Max {a € R*| a'w € P(x)} , x € L)y - ;

)'.1

Note that because of Axiom L5, &(- l w) 1is well defined for each w ; ’F

furthermore, by L4.2, either &(- | w) 20 or o( | w) has the range i!
{0,4+0) . In a sense, &(- l w) is a production functional which gives ;
|

the maximal scale of an output "time-pattern"” w attainable.
P p

(2.2.11) Definition: A dynamic production structure P :(LQ): - 2((L),)

satisfies regular scaling if

(a) there exists a B € R such that for all x € (Lu): and all

output pattern w € (L), , fwl = 1 , defining

*( ) {0 if ¢(a-x l w) = 0 for all a € lg+ ;
o (w) : =
x Inf {6 > 0 l ¢(o*x | w) > 0} if otherwise;

*
it is true that ¢(o (v)-x | w) < B ; and

(b) for every A € R, , there exists a 8, € R, such that for each

w € (L-)+ , lwl = 1 | the following functional inequality holds:

(2.2.12) #Ciex | W) g 8,°0(x | w) for all x € (L)} with &(x [ w) >0 .
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It is important to note that regular scaling allows the output sets
P(A+x) to span different output time patterns as A changes; as would
be the case where increased inputs allows for more production possibili-
ties.

Regular scaling appears to be a rather mild and reasonable regular-
ity condition on a production technology. The class of functionals }J
which sacisfy the functional inequality (2.2.12) appears to be rather
large. Clearly, homogenous and sub-homogenous functionals satisfy Q

(2.2.12). Furthermore, super-homogenous functionals like : = ¢(ix | w) = ' 3

kk-¢(x | w) with k > 1 ; also satisfy (2.2.12). Ia fact, the postulate

of regular scaling was inspried by Eichhorn [1968] which used the homo- *
geneity of production functioms to derive the law of diminishing incre- 1
!

mental return over the whole range of inputs. This class of functionals
1s characterized in Mak [1980-b]. Here, regular scaling is used to

establish:

(2.2.13) Proposition: Suppose a production structure satisfies regular

scaling, then an input factor group 1 CC {1, ..., n} over support SI :
is strong-limitational for outputs over support SO if (I,SI) is

essential for outputs over SO .

The reasoning underlying this proposition is actually very simple: -
if an input bound ng does not bound outputs on SO , factors I on
SI must be "infinitely substitutable” by the other factors on SI and
other input supports. Then because of the assumed boundedness of the
efficient subsets (see the asymmetric axiom E in Section 1.6), this is

possible only if (I,SI) 1is not essential for outputs on SO .

-~
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Proof of Proposition (2.2.13)

Suppose (I,SI) is not strong-limitational for SO . Then there

exists an input bound ng > 0 such that for all output bound ugo >0,

there is an input x with Xgp S ng and an output u € P(x) with

uSO 2 ugo . In particular, consider a sequence of output bounds

K,
4

{vk: = ak-lso} where uk 21 and {ak} -+ 4o ., Let {xk} and {

u
R k o) k k
be sequences of inputs and outputs such that Xg7 S %gp 5 U € P(x)

and Uso 2 vk . Considering the indicator function lso as an output

history, it follows from L3.S that x* € L(1 for all k . Define

50
an infinite sequence of scalars by

k . k
Y := min {a €R |ax"€ L(lso)} , k= 1,2, ...

The Yk's are well defined because of Axiom L5 and L4.2.

Claim: There exists a scalar K > 1 such that o(yk-xk | 1..) < K

SQ’ =
for all index k . To prove this claim, first note that by construction,

O(Yk-xk | lgg) 21 . 1If c»(yk-xk | lgp) = 1 for all k , then the

k

claim 1s trivially true by taking K to be 1. So, let 0(Yk-x | 1.4 >1

SO
for some indices. Consider arbitrarily such an index k . Clearly,

either there exists 0 € (0,1) with #(8y"-x* | 1) € (0,1) ; i.e.,

Yk-xk is a point of discontinuity of &(- | ISO) along the ray
{).-xk | A > 0} but not a first jump point to a positive scaling of
lso ; or Yk-xk is in fact a first jump point.

Now use contra-positive argument: Suppose there does not exist a
positive scalar K such that @(yk-xk | lgp) ¢ K for all k . Then

there is an infinite subsequence {Yj°xj} C (Yk-xk} , such that

{0(Yj-xj l lso)} diverges to += , If in the sequence (Yj-xj} , there




is an infinite subsequence of first jump points, then condition

(2.2.11la) is violated. On the other hand, ‘f such a subsequence does

4 4

not exist, one may as wel. assume none of “re points ~v”+x” is a firs:

n LI
jump point. Fix an arbitrary * € (0,1) . Since vy~ :x’ {s not a
: SEPSR S BN B
first jump point, there exists an input vector z° € [+ y*'x° , v

such that 1 > O(zj | l..) > 0 . Consider the sequence {zj} thus

S0

*
chosen. Because X € (0,1) , yj $1 for all j by definition, and

(- lgy) 1s momotone along rays (Axiom L.3),

e zIn” 1

1.3
so’  MoTx I 1g0)

3.3
>aled 1) de e
0z |1 ozd | 1 S0

s0’ s0)

*
Hence condition (2.2.11b) does not hold for the scaling factor 1/

This contradicts the hypothesis of regular scaling, thus establishing

the claim.

Next, it is shown that Inf {Yk} = 0 . Suppose ctherwise, then i
there exists a ¢ > 0 such that Yk > ¢ for all k . Then by the J
monotonicity of &(- | lso) along rays and the hypothesis of regular }
scaling

k 1 k _ k. 1 k k|
0 < &(x" | ) o(;; x| 150) S Ay x| 1)
k _k :
3 81/:-0(7 ‘X)) g el/t'K < += ;

where K 1is the bound on {O(yk-xk [ lso)} established in the earlier

claim. This contradicts the original assumption that {é(xk | lso)} - o

Since Inf (Yk} = 0, there is a subsequence {yP} C ‘vP} with

{Yp} + 0 . For each index p , yp-xp € L(lso) » hence an input
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2P < Yp-xp may be constructed such that f e E(lso) (see the proof

P e PP o (PP

of Proposition (1.6.4)). By construction, zg1 £ ST S ST

since {y’} + 0 , it is seen that

*
Inf {Ix -yl | x€ E(lso) » Vg1 * 0p =20

Then, using the same argument as for the proof of Proposition (2.2.8),
* -
one may show that E(lso) A {x | Xgp * 0} 1is not empty. Since according
*
to L3, E(lso) C L(lso) ; and because of Fact (1.6.5), (I,SI) cannot

be essential for SO , completing the contra-positive proof O

2.3 Laws of Returns Under Uncertainty

As in the deterministic case, the issue is whether a bound on some
input factors will limit outputs. In a deterministic model of produc-
tion, since every feasible input-output combination (x,u) with x € L(u)
can be regarded as a production policy, laws of returns may be deduced
strictly from the properties of the deterministic technology. With the
introduction of uncertainty, the actual process of production is no
longer completely characterized by the underlying stochastic technology.
The attainability of (or the limitations on) outputs is a consequence of
the production policies of the producers. Thus, there is the question
of the role played by information structures on the laws of returms.
Furthermore, since the inputs and outputs associated with the produc-
tion policies in general depend on the state of environment, the notions

of boundedness of inputs and outputs has to be clarified.

The consistency requirement (1.8.3) clearly indicates that breadly

o




speaking, an information structure acts as a constraint on the choice
of production policies. In this sense, it may be taken as a bound on
the information available for formulating production policies.

One may be interested only in the information available at certain
time periods; for instance, it is important to xnow the availabilityv of
new production techniques when investment decisions have to be made on
new plant capacities. Consider a subset T C {1,2, ...} of decision

time points; and let

5; : <5z}ﬂsr

. . . o
denote the "restriction” of a particular information structure 4 to
T . A bound on information may be formulated by using the partial

ordering:
(2.3.1) JT = 3; if jz is as fine as jt for all t €T .

When the information structure 4 of a producer satisfies AT = 5; ,
his information is said to be limited by 3; over the time period T

Later on, the special case of "perfect information" Jg defined by:

I, 1is a singleton for all I € _4‘: (t €T)

is useful. Note that every information structure 4 has jT 3 Sg

i.e., bounded by Sg over T .
For the input and output histories, it is clear that the input
support SI (for factors 1) and output support SO may be defined as

in the deterministic case; and the (functions of) subvectors u

Xs1

S0
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have the same meaning as in (2.2.2). However, since the bounds in

general will depend on the states, bounds ng and ugo

taken as functions (recalling the notation of (1.8.4)):

should be

sE€S~ 521(5) ;
(2.3.2)

s€Ss +u’

-so(s) ;

L]

where for each state s € S , the partial ordering (2.2.3) of subvectors

is valid. For simplicity, henceforth §§I(-) will be taken to be a

<°
SI

bound is to be specified for the formulation of the laws of returms.

constant function (denoted by its function value ) when an input

With the definition of the support T , SI and SO ; bounds 4

[o]
T ’
§§I(°) and ggo(') ; and the notion of production policies (s € § —
(x(s),u(s)) , the following notion of limitationality on outputs is

*
meaningful for a state s € S :

there exists an output bound ugo > 0 such that
limited by the information 5; , there does not
exists an information structure 4 with 5T‘i 5;
(2.3.3) and an associated production policy s +
_ o
(x(s),u(s)) with Xgq(s) = (i(s))sI < %ggp » all
s € S ; and the output at state s* is such that
* * o
Ugols ) = (uls ))gy 2 ugy -
Corresponding to the notion of strong and weak limitatiomality in

the deterministic case, laws of returns under uncertainty may be

formulated by either one of the following:

¥

il i _




64

o
F1 For each bound Xg1

information, (2.3.3) holds.

>0 on (I,SI) and each bound 3; on

F2 There exists a bound xgl >9 on (I,SI) such that for each
bound jg on information, (2.3.3) holds.

F3 For each bound 3; on information, there exists a bound
ng >0 on (I,SI) such that (2.3.3) holds.

F4 There exists a bound 5; on information such that for each bound
xgy 20 on (I,SI) , (2.3.3) holds.

F5 For each bound xgl >0 on (I,SI) , there exists a bound j;

on information such that (2.3.3) holds.

F6 There exists a bound x;I >0 on (I,SI) and a bound 3; on tf
information such that (2.3.3) holds. t'

For each of the above formulations, the consequence of the bound on i
output E(S*) due to the bounds xgl and 5; may be interpreted as
follows : - irrespective of possible increased applications of other

inputs, usage of better (finer) information at other times, and their
as:oclated policies, the output bound ugo cannot be exceeded if the

* |
true state of nature is s . Hence, the increased application of the "

other input factors and the solicitation of finer information jointly

have, i{n the sense of Menger's intersecting assertion, diminishing i
returns. ﬁ
Note that Fl to F6 are related by: i
F2 = F3 i
~ i
Fl F6
- rd

F4 =» F5
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The subtle interplay between the bounds on information and the bounds on
inputs will be made clear later by the characterization of Fl to F6.
Off-handedly, by observing that 3; may be taken as fine as the perfect
information Jg and ng may be arbitrarily large, one may see intu-
itively that in F2 and F3, it is the bounds on inputs; while in F4 and
F5 it is the bound on information; which plays the key role in limiting

outputs.

To give alternative characterization of Fl to F6, the following

will be assumed for convenience:
(A.1) output support SO is a finite subset of {1,2, ...} .

As a consequence of (A.l) and the reasoning of (2.2.5), supports T
and SI are also finite.
With respect to production policies, the following condition is

imposed:

(A.2) 1f there is perfect information at all times (i.e., T = {1,2,...}

and 4= Sg) , then for each state s € S and input-output pair
(xs,us) with ug € P(xs,s) , there exists a production policy

with x(s) = xg and u(s) = u,

The above condition merely asserts that with perfect information, a
producer may plan for production as in the deterministic case. The next
two definitions address the case where perfect information is not

available.

(2.3.4) Definition: Two states s' and s" are indistingutisnabie

under .9; if for each t € T there is an element I, in 3; which

PR N

i e e —— ? ——
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contains both s' and s"

(2.3.5) Definition: Information on s' , s" € § is non-discriminati
ng

for outputs over SO if for each 3; under which s' and s'" are
indistinguwishable there exists a bound B € I&+ such that for all

production policies comsistent with J; s lgso(s') - gso(s")ﬂ <B.

The above definition models the situation where the lack of information
so restricts the choice of production policies that the resulting outputs

may not be of arbitrarily large difference.

With all the preliminary notions defined, the following proposition

gives the characterization of F1l to F6:

(2.3.6) Proposition: Suppose a stochastic production technology

satisfies the stochastic weak axioms (1.4.6), E and L6.S, and

Assumptions (A.1) and (A.2) are enforced. Consider a state s* €S :

(1) If the correspondence Ps* (see 1.2.3) satisfies regular scaling
(2.2.11), then Fl is equivalent to: - (I,SI) is essential for
SO under s* ; 1.e., (2.2.7) holds for the correspondences Ps* .

(11) F2 is equivalent to: ~ (I,SI) 4is essential for SO under s* .

(iii) F3 is equivalent to : - for each bouand 5; on the informatiom,
there exists a state s' which is indistinguishable from s*
under 3; , information on s' and s* is non-discriminating
for SO, and (I,SI) 1is essential for SO under s' .

(iv) Suppose the correspondences Ps satisfy regular scaling for each
s € S, then F4 is equivalent to: there exists a bound 3% on

information under which there exists a state s' 1indistinguishable

* *
from s , information on s' and s is non-discriminating for

S e
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v)
(vi)

Proof:

(1)

(1L

(111)
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SO , and (I,SI) 1s essential for SO under s'
F5 (F6) is equivalent to: -~ for every bound ng >0 on (I,SI)
(there exists a bound ng

bound 5; on information under which exists a state s'

>0 on (I,SI)), there exists a

* *
indistinguishable from s , information on s' and s is

non-discriminating for SO and there exists an output bound

(¢}

u ST

go such that u € P(x,s') for all input x with Xgp $ %

and output u with uSO 2u

*
Suppose (I,SI) 1is essential for SO under s and P
s

satisfies regular scaling, then by Proposition (2.2.13) there

exists for each input bound ng an output bound ugo > 0 such
*
that xg; g xg; implies u € P(x,s ) 4if ugy 3 ugy - Then Fl

follows from the technical feasibility condition (1.8.4). To
show the converse, suppose (I,SI) 1is not essential for SO

* - -
under s . Then there is an input x with x_.. = 0 and output

SI
3 € P(R,s") with gy > 0 . Then by the scaling Axiom L4.2 and
(A.1), for every bound ugo > 0 there is a scalar 6 such that
(G'G)so 2 ugo and a scalar Ag such thac 8+u € P(ke°§,s*) .
Finally, with J; taken as the perfect information 4P , (A.2)
implies F1 does not hold.

May be established as (1) using Proposition (2.2.8).

Suppose (I,SI) 1is essential for SO under s' . Then by
(1.8.4) and Proposition (2.2.8), there exists a bound xgl >0

on (I,SI) and a bound ugo > 0 such that every production

*
policy has u(s') § ugo . If s8' 43 indistinguishable from s

!
)
|
;
|
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*
and information on s' and s is non-discriminating for

outputs on SO , then (F3) follows directly. Conversely, assume

contra-~positively that there is an information bound 5; under

which no state s'

which is indistinguishable from s' satis- N
fies either: (a) (I,SI) essential for SO under s' ; or *
(b) information on s' and s* is non-discriminating for SO . L
If such an Ag exists, clearly one may take J; ijg . Since i
s* is indistinguishable from itself and s* and itself is
non-discriminating for SO , (I,5I) 1is not essential for SO R

*
under s . Then as argued in the latter part of (1), (F3) does

not hold. (iv), (v) and (vi) may be established using similar

de.

arguments. In (iv), Proposition (2.2.13) is used to establish

the existence of an output bound. In (v), the existence of

e e
P v

output bound is assumed outright. (v) is a weaker assertion than
(iv) merely because if the input bound ng is relaxed (i.e.,
made larger), a less fine 3; bound on information may be needed

to locate a state s' under which output is limited O

Formulation F1 to F6, of course, are not the only possible formula-
tions of the laws of returns under uncertainty. In fact, they are the
simplest formulations possible. Formulations may be extended to the ‘
cases: (a) bounds are expressed in terms of norms; (b) output bounds ‘
ugo are taken as functions on S 1instead of focusing attention on a L
state s* ; (¢) input bounds xgl are taken as functions; etc. However,

it is hoped that the formulation in this section has succeeded in

indicating the complexity of dynamic production under uncertainty, in
particular the interplay between information, technology and pr-duction

decisions.
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CHAPTER 3

STOCHASTIC HOMOTHETIC PRODUCTION CORRESPONDEMNCES

3.1 Introduction

The modelling of an actual production technology involves consider-
able trade-off: on the one hand, the model must be sophisticated
enough to capture the relevant production phenomenon of interest; on
the other hand, the model must be of manageable complexity. When un-
certainty is involved, the task of modelling is more difficult since
one has to contend with the influences of the uncertain production

environment on the production processes.

This chapter uses two ideas that are quite often used in economic
literature as the key to the formulation of some simple but yet reason-
able stochastic models of technology. The first one is the notion of
scaling of production: that production of one level of outputs is
related to the production at another level. The second one is trans-
formation: the relevant production technology under some production
environment being in some sense a transformation of the technology under
another environment. These two ideas are integrated via a generalized
notion of scaling (or input and output factors) which is subsequently

used to yield stochastic homothetic production correspondences.

The form of a stochastic homothetic production correspondence leads
quite naturally to some further special structures which afford rather
simple representations. Through these representations, production plan-

ning under uncertainty is seen to be possible: firstly, in the case of

overall planning of production in conjunction with the notion of
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confidence indexed production correspondences; secondly, in conjunction
with a model of information, the optimal policy of a simple production
system is shown to exist, much similar to the models of multi-stage

stochastic programming in Operations .esearch.

3.2 Scaling and Transformation of Factors of Production

This section develops a generalized notion of scaling of inputs
and outputs as a background for subsequent exposition. To avoid diver-
sion from the main topic of stochastic production, the proofs for some
of the propositions will not be given here. They may be found in a

forthcoming paper (Mak [1981]).

The definition of scaling of factors of production will be given
in terms of an input space X . The corresponding definition for the

case of an output space U 1is identical to that for X .

(3.2.1) Definition: A mapping T : l{b x X + X 1is a scaling operation

on the space X 1f it satisfies:

1) For each p € R, , T(u,*) : X - X is a one-one and onto map;
for each x€X , x# 0, T(,x) : R#»‘ X 1is a one-one map.

(1) T(l,x) = x and T(0,x) = 0 = T(u,0) for all . €R+ , all
xeX.

(114) For all wu € R, , T(u,x) =y 4if and only if TQ/u,y) = x .

(1v)  For all (A,u) € R , TOw,x) = T(\,T(u,x)) -

It should be noted that the above set of properties are not independent;
expliciely, (3.2.1-1i) and (3.2.1-iv) implies (3.2.1-iii).

Given a scaling operation T on an input space X , an input

vector y 1is called a scaled version of an input x , denoted y@x,
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if there is a scalar u € Ih* with T(u,x) = y . The relationship &
. thus induced by T clearly satisfies: (a) xRx, by (3.2.1-ii);

(b) yRx 1iff xRy , by (3.2.1-iii); and (c¢) zRy and yRx dimplies

zRx , by (3.2.1-iv). Hence, R generates equivalence classes of

scaled versions of vectors. Denote the partition of the input space X

via such equivalence classes by &:= {DB}&EB . The index set B may ?‘

be taken as a collection of representative elements, one from each i‘

equivalence class. If XEB , then D§ is simply the set

{x € X | xRXx} . The singleton {0} belongs to ® . All these should

be clear from the usual (radial) scaling of input vectors:

—

(u,x) € 1R+ X X = T(u,x) := pex .

Here, B:= {x € X | Ixi = 1} U {0} ; and for :-cEB,Di is the ray

o g

N

{uex | ueR,}. |
For simplicity, scaling operations will henceforth be denoted by
symbols * or ® g0 as to be distinguished from the usual radial scal-

ing (denoted -+ ). For instance, for a scaling operation (T,*) on X,

u*x 2 T(u,x) for all (u,x) € ]R+ x X . !

An operator @ (Shur operator) may be defined on an input space
X = (L.): as follows: for all x , y € (LQ): » w= xoy 1if and only «
if w= (wl, cees wn) where wi(t) =- xi(t)yi(t) for every t € R, ,
1e{l, ..., n} . A similar definition applies to X = (1.): . With

this definition, a restricted class of scaling operations is introduced:

(3.2.2) Definition: A scaling operation (T,*) on an input space

X = (1’): is normal if {t 1s representable as:
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(3.2.2.1) u*x = T(u,x) := A(u,x)ox , (u,x) € IKF x X ;

where 4 : n&F x X+-X and @ is a Shur operator.

L)y

Note that if (T,*) 1is a normal scaling operation on x
then for each input x € (LQ): with xi(t) =0, té€ I{P, the i-th
component of every scaled version of x 1is also null at t ; i.e.,
(u*x)i(t) = Q0 for all u € EH+ . Clearly, the usual radial scaling
is normal. The adjective normal refers to the hypothesis that a null

component of an input cannot be rendered non-null by scaling.

Suppose (T,*) 1is a normal scaling operation on X . Then the
transitivity condition (3.2.1-iv) on T and (3.2.2.1) together require
the mapping to satisfy the following functional equation (compare with

Fdre (1973, equation T.4]):
(3.2.3) 80w,x) = A0\,A,X)0x)08(1,x) , (A,u,x) € RS x X .
To solve this functional equation, it is convenient to define:

(3.2.4) Definition: A mapping F : X - X on an input space X is

reversible 1f either (a) F 1is invertible; or (b) F 1is onto and
for all x , y€X , F(x) = F(y) implies F(u°x) = F(u-y) for all

HER, .

For a reversible mapping F on X , define a reverse F as follows:
for each x € X , let F(x) take an arbitrarily fixed value w with

F(w) = x . Clearly, if F 1is invertible, then T 1is the usual inverse

-

function. Otherwise, many F are possible.

.




(3.2.5) Proposition: Suppose a mapping F : X - X , F(x) =

(Fl(x), ey Fn(x)) , on an input space X satisfies: (i) F(3) = 0 ;
(i11) F 1is reversible; (1ii) for all x € X , (Fi(x))(t) = 0 implies
(Fi(u-x))(c) = 0 for all u € EQ_, i=1, ..., n and t € Kg_. Then

an operation * on X defined by:
(3.2.5.1) wex i = F(ueF(x)) , (u,x) € R x X

where F is an reverse of F , is a normal scaling operation on X .

Furthermore,

(3.2.5.2) 8(ux) s = FGueFx)ex ™™, (u,x) € R x X

is a solution of the functional equation (3.2.4); where x-l = (le,
xgl) is defined by le(t) 1 = l/xi(t) , i=1, ..., n; with the con-

vention that 1/0 = 1.
To establish the converse to Proposition (3.2.5), a further

regularity condition on the scaling operation is needed:

(3.2.6) Definition: A scaling operation T on an input space X is

said to satisfy the size condition if there is a scalar K > 0 such

that every equivalence class D3 (induced by T via the relation of

73

scale versions) not equal to {0} contains an input x with ixl = K .

(3.2.7) Proposition: Suppose a normal scaling operation (T,*) on

an input space X satisfies the size condition. Then there is a
mapping F : X - X satisfying the conditions (3.2.5-1), (3.2.5-1{1) and

(3.2.5-111) such that for all (A,x) € R, x X, M*x = F(a-F(x))

Propositions (3.2.5) and (3.2.7) together state that under

regularity conditions (3.2.5-i, 11, {1i) and (3.2.6), there i3 a

Dtinid anid et
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natural association between normal scaling operations and reversible
mappings (transformations), generalizing Fdre (1973, Theorem 1].

This fact will serve as a basis for constructing general homothetic
production structures in the subsequent sectioms. In particular, the

following simple fact will be useful:

(3.2.8) Proposition: Suppose a normal scaling operation * and a

reversible transformation F : X -+ X on an input space are related in
the sense that A*x = F(A-F(x)) for all (A,x) € R_ x X and some
-

reverse F of F . Then F(A+w) = A%y for all (\,w) € wa X

furthermore, the reverse F may be chosen such that f(k*x) = X-f(x)

3.2.9 Remark: By the above, if a transformation F on an input space

X satisfies conditions (3.2.5-i, ii, 1iii) and has the further property:
for all input x $# 0 , IF(A-x)] - 4@ as A - += ; then it is reasonable
to call a non-{0} equivalence class DB , induced by F wvia (3.2.5.1),
a genmeralized ray since it is the transformation image of a ray in the

input space.

3.3 Stochastic Homothetic Production Correspondences

The notion of a homothetic production function introduced by
Shephard [1953], and subsequently extended to production correspondences
(see Shephard [1970-a], Fidre/Shephard [1977]), has found wide applica-
tion in economic theories. In this section, stochastic homothetic
production correspondences are formulated in terms of scaling operations

on the factor spaces.

As motivation, consider a mapping F : X x S - X where S 1is

the state space and X the input space of a production technology.

PR
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Suppose for each state s € S , the mapping x € X Fs(x) : = F(x,s)
satisfies conditions (3.2.5-i, ii, iii). Then by Proposition (3.2.5),
each of the mappings FS induces a normal scaling operation, denoted
*s , on the input space. Given a deterministic input correspondence
L: U + 2(X) which is ray homothetic with a scaling law x; i.e.,
i(e-u) = x(e,u)°£(u) , 8 € Eg+ », WE U (see Fire/Shephard [1977] and
Eichhorn (1970] for a rigorous treatment of ray-homotheticity and

generalized homogeneity); the correspondence defined by
(3.3.1) (u,s) EUxS+>L(u,s):={x€X | x=7F(y,s) , vE€E i(u)}
may be easily shown (using Proposition (3.2.8)) to satisfy:

(3.3.2) L(8°u,s) = x(e,u)*SL(u,s) , (8,u) € E&+ x U .

Motivated by the functional form of (3.3.2), one makes:

(3.3.3) Definition: A stochastic input correspondence L : U x S + 2(X)

has a stochastic ray scale homothetic structure if it satisfies a

functional equation of the form
L(89+u,s) = x(e,u,s)*SL(u,s) , (8,u,s) € ng+ x U x 8§ ;

where x: Eh+ x U xS - Eg+ sy Xx(1,u,8) =1 = x(6,0,s) for all (8,u,s)
€ IH+ x U xS ; and *s is a scaling operation on the input space X

depending on the state s € S .

For simplicity, the scaling operation on the output space U is taken
to be radial in the above definition. It should be noted that un-
certainty enters into a homothetic structure in three ways: (a) the

scaling law x ; (b) the scaling operation *s ; and (¢) the input
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sets L(u,s) . Of course, when the state space S 1is a singleton,
Definition (3.3.3) reduces to a generalization of the deterministic
ray homothetic input correspondence (replacing the usual radial

scaling by a scaling operation, see Mak [1980-a]).

In order for the inpuf correspondence L defined above to be
a model of a stochastic technology, it is assumed to satisfy {LO, L1,
L2, 13, 14.1; L4.2, LS and L6} as stated with scaling operations *_
s € S. Henceforth, this asswmtion will be imposed in the exposition

of this chapter.

Clearly, (3.3.1) as generated by the transformation F : X x § - X
is a special case of Definition (3.3.3). In fact, (3.3.3) is quite a
general model of technology since the scaling operation *s and the
input sets L(u,s) may take on rather different forms. However, it
is exceedingly difficult to study concretely a technology if there are
no explicit relationships between the scaling operations *s , or the
input sets L(u,s) as the state s varies. Hence, it is useful to
postulate further special structures on the technology. The following

two structures are prototypes of the others to come.

(3.3.4) Definition: A stochastic input correspondence L : U x S = 2(X)

has an invartant scaling structure (IS for short) if it is stochastic

ray scale homothetic with both the scaling law x and the scaling
operation on inputs independent of the state of production environment;
explicitly, for some scaling operation * on X, L(8°:u,s) = x(9,u)*L(u,s)

for all (8,u,s) € ]Rﬁ_ x U x§ .,

iidtunimntionustriiitelditbiainitditi o cac . . . .. o cessssitifibesbbtatimetuc ittt . o e ... it
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With respect to a given scaling operation * on an input space
X, twosets Y , Z in X are said to be of the same share if there

exists a u € ng+ such that Y = y%Z |

(3.3.5) Definition: A stochastic input correspondence L : U x § + 2(X)

has an itnvariant shape structure (SS for short, signifying "same
shapedness") if it is ray scale homothetic with a scaling operation *
on X which is independent of the state; and for all (u,s,s) € Ux§x§ ,

L(u,5) and L(u,s) are of the same shape (with respect to *).

Given a deterministic ray homothetic input correspondence L:U~ 2(X)
and a scaling operation * on the input space X , an IS structured
stochastic input correspondence L may be generated by the following

procedure:

Mapping J : X x S - X ; for each s &S, J(-,s) is
(3.3.6.1) 1invertible and J(u<x,s) = u*J(x,s) for all

(u,x,8) € I{* x X x § .
(3.3.6.2) (u,8) EU xS ~L(u,s) := {xE€X | x =J(y,s) , vy € Lu)}

Similarly, an 8S structured stochastic input correspondence L may be

generated as follows:

Mapping M : X x U x S +» X 1is separable in the sense that

(3.3.6.3) for some W : U x S » Ig+ , M(y,u,s) = W(u,s)*F(y) for all

(y,u,8) € X x U x S where the mapping F induces * on X .
(3.3.6.4) (u,s) €U x S+ L(u,s) := {x €KX | x = M(v,u,s) , y € L(w)}

If the deterministic input correspondence L has a scaling law ¥ ,

it follows immediately from (3.3.6.3) and (3.3.6.4) that
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Leu,s) = [EES o w]oLiue) L Guue) €R < U xS

and

L(u,s) = Hig*él*l&u,g) , (u,s,8) €U xS x5,
W(u,s)

Both the IS and SS structure has an immediate implication on their

associated confidence index production correspondence (see (1.7.3) and

(1.7.10) for definition) which is stated after the following:

(3.3.7) Definition: A scaling operation * on an input space X is

continuous if for every sequence {xk} C X converging to x° , and
every sequence {uk} C EH+ converging to WwLer,, {uk*xk}

0, 0
to u *x .

(3.3.8) Proposition: Consider a stochastic input correspondence

L:UxS-+2(X) . If L has an IS structure, then its confidence
indexed input correspondence CL : U x [0,1] =+ 2(X) is ray scale
CL(8°u,&) =

homothetic: for every (u,£) €U x [0,1] and 8 € R, »

x(9,u)*CL(u,§) for some scaling law x : R

w 5 U - HH+ .

If L has a SS structure and (a) the scaling operation * 1is con-
tinuous; (b) the associated CL correspondence satisfies property CLS,
see Proposition (1.7.5); then for each u &€ U , the sets CL(8°u,§)
which are not empty have the same shape as (6,f) varies over

R, {0,1] ; implying that the correspondence CL is ray scale

homothetic.

Proof: Suppose L : U x S -+ 2(X) has an IS structure. Arbitrarily

fix an (u,£) € U x [0,1]); CL(u,?) may be represented as

converges
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CL(u,§) = {(x€X | {s€5S | x€L(us)} > &}
. = U_ N Lu,s)
ASK(8) s€A
where A4(5) 1s the collection of events {A € 4| ®(4) 2 Z} . Ssince
L has an IS structure with an invariant scaling law, say x , it
follows that for all 08 € lR_H_ ,
I
CL(8*u,E) = U_ N L(8u,s) = U_ N x(3,u)*L(u,s)
ASKE) sEA AC4(E) s€A
= x(8,u)*CL(u,E) ,
That is, CL is ray scale homothetic. 1
Suppose L : U x S -+ 2(X) has a SS structure. First note that '

CL(u,f = 0) =X for all u€U and CL(u = 0,8) =X for all ¢ € (0,1]; 1
hence, only the case of £ € (0,1] and u # 0 need to be considered.

Fix an arbitrary u €U , u#$0 . If L(u,s) =@ for all s €S , then

B S VO -V SR TN SO SO

clearly CL(u,§) = @ for all £ € (0,1] . Furthermore, by Axiom L4.2,

L(6+u,s8) is seen to be empty for all 8 € IR* . Hence the proposition
is trivially true. So, suppose for some s € S , L(u,s) # ® . Fix the
input set L(u,s) as a reference set and denote it simply as D .
Since L has an SS structure, for each s € S , there is an ’\s € ]R_H_
such that L(u,s) = XS*D .

Consider an arbitrary event AE 4 with N L(u,s) # # . Accord-

<A |
ing to the above consideration, N L(u,s) = N A_*D . By L3 as '
s€A sea ° 14

1
stated with the scaling operation * | it is clearly true that H
|

Sup A |*D C N i _*D . To show the converse inclusion, let XE N \_*D,
<A ] s s

Let o:= Min {} &€ R, | A*x € D} . The scalar o is well-defined since

SEA SEA
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D = L(u,s) is closed (by Axiom L.5) and * is a continuous scaling
operation. Furthermore, ¢ > 0 ; since if otherwise, g*x = 0 € L(G,g) ,
contradicting L1. By Axiom L3 and the definition of o , 1l/o > ‘AS for

all s €4 ; implying that 1/0 3 Sup A, . Since o*x ED , x € 1/0*D .
SEA

Then by L3 as applied on D = L(u,s) , X E (Sup A )*D .
sea °

Let £ be an arbitrary confidence index in (0,1] . Let 4 be
the family of events in 4 defined by:- A€ 4 1ff ®(A) > £ and

N ks*D # @ . Suppose CL(u,) 1is not empty. Then & is a non-null
sCA

family. For each event A €4 , let XA : = Sup Xs . Then CL(G,E) has

SEA
the representation of U [AA*D] . From this, it is seen that CL(G,E)
AES
and D are of the same shape if one can show that U [)\A*D] = (Inf AA)*D
Ach AC b

and (Inf AA)E R,, -
Al
Since u %0 and £ >0, O & CL(u,t) . Since CL(u,Z) 1is assumed
to be closed, there is a neighborhood N of 0 such that NN CL(u,Z) =9 .
Consider an arbitrary x' € D . By the continuity of the scaling opera-
tion * , there is a u' € R, ~so small that u'*x' € N . Denote
u'*x' by 2z . Clearly z & CL(u,u) ,» 2 ¥ 0 and the generalized ray
{(x*z | A € ]R*} has a nonempty intersection with D . Let
B:=Min (A € R | A*z € D} . As argued before, 3 is well-defined
and positive. Since z does not belong to the closed set CL(u,£) ,

Axiom L3 and the continuity of * implies the existence of a 6 & R,

m

u [P D] . Clearly
AZA
A

Y emRm, forall A€4. Since 8%z €D, (83%y%z € \24p  for all

such that for all u € [0,1+38) , u*z € CL(u,E)

A€ % . Consequently, BAA 2 1+48 for all A ; implying that

Inf x“):-l—;'—a>o.
AE 4

I V.

e

S~

R NN
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A A .
For ease of notation, denote Inf X simply by Inf X . Since
A b
Inf AA was shown to be posirive, it follows from L3 that U [AA*D]
AEL
is contained in (Inf AA)*D . To show the converse inclusion, let

z € (Inf AA)*D . Then the generalized ray (i*z | A € R } clearly
intersects D . To use contra-positive argument, suppose z ¢ CL(G,E)

Then by defining vy := Min {A € Eg+ I A*z € D} , it may be argued as in

A l+¢

the above paragraph that there exists € € IH+ such that Inf A" >

Now z € (Inf AA)*D implies (1/Inf XA)*E €D . Hence 1/Inf AA >y

Y

by the definition of y . But this contradicts the inequality

Inf AA > 1:e

since € > 0 .

By the above argument, it has been shown that for each £ € (0,1]
with CL(u,f) # # , CL(4,£) and D (= L(u,s)) are of the same shape.
Now by the ray scale homotheticity of L , for every 8 &€ IH+ , L(G-G,E)
is of the same shape as L(u,s) . Using L(8+u,s) as the reference
set and repeating the argument above, it is seen that for all 8 &€ ng+ ,
£ € (0,11 , CL(8*u,E) is of the same shape as L(6°u,s) , hence that

of DO

The next two representation propositions will further expose the
structure of IS and SS stochastic input correspondences. Before stating
them, 1t is recalled that a productionm function ¢ : m: - m+ is said

to be homothetic if it has the form (see Shephard [1970-a)):
d(x) = G(¢(x))

where ¢ : m: - m* is homogenous and G : m+ - ]R+ has the proper-~

ties

. - -‘v-.‘-«,. -
ettt st s e S5 Wz kit E
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(1) G(0) = 0 ; G 1is nondecreasing;

(i1) G(a) = += as o + = ;
(3.3.9)
(ii11) G 1is upper-semi-continuous; and

1

(lv) BER_ =G (B) :=Min {a € R_| G(a) 3 8} .

(3.3.10) Proposition: Suppose a stochastic input correspondence

L:UxS -+ 2(X) has a SS structure with a scaling operation * (on X)

which is continuous. Then for each output mix —— &€ U:= {w | lwi = 1},

fuf
. u . . . -
there is a family of functions Gs( , llull) : ]R+ - ]R+ ; s €S , satisfy

ing properties (3.3.9-i, ii, iii) and a scale homogenous function

¢(~, ﬁ—u) : X >R, (:L.e., ¢()\x, th:Tl) - x*¢(x, n::_u)) such that

L(e ﬁll_ ,s) - {x €X | GS(¢<x, H—E-i-), F‘:-u-) > e} for all (9,s) € R, xS.

Proof: Arbitrarily fix an output mix ﬁ- € TU . Suppose L(ﬁT ,s) =0
for all s €S . Define @(x, ﬁﬁ-) =0 forall x €X . Clearly,
¢('. T:':-i') thus defined is scale homogenous. For all s €5 , let
Gs(-, -iz—“) be an arbitrary function satisfying (3.3.9-1, 1i, 1ii). Then
it is seen that the representation of the input sets L(e'i%ﬂ— ,s) as
claimed by the proposition is valid fcr all 6 € ]R_H_ .

Suppose L(ITull- ,s) # P for some s €S . Then since L 1is SS
structured, L(T:—I ,s) $# 9 for all s €S . Then as argued in the
proof of Proposition (3.3.8), there is a closed subset D in X

(0O € D) such that L(e . I—ﬁl. .s) is of the same shape as D for all

(8,8) € ]R* x § . That is, for each (8,s) € IR* x § , there is a

u

q(8,s) € R-H- with L(9 . i—h ,s) = q(8,s8)*D . D of course depends on .

Tul
Now fix a state s € S . It will be first shown that the function

8 € ]R*'—-* q(e,S) is lower-semi-continuous. Consider an arbitrary
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sequence of scalars {Ok} C lR_H_ converging to 0° ]R#- . Let a
subsequence {89} ¢ {Gk} has the property that {q(eJ,g)} converges
to q:= lim inf {q(ek,E)} . Conmsider an arbitrary x € D . By the

definition of the function q(-,s) , q(ej,g)*;: € L(SJ . ﬁT ,§) for
each index j . Since {q(ej,E)} converges to q , and the scaling
operation * is continuous, {q(ej,E)*?:} converges to q*x . Then since

u o - o -
{ej ‘"——} converges to 8 - » by Axiom L5 q*x € L(e 'ﬂ%ﬂ' ,s) .

M
ul ful
Because x was arbitrarily chosen, q*D C L(eo . F:‘W ,E) . But because
L(Bo “Lu"- ,3) = q(9°,;)*D , it follows (by applying L3) that q(8°,§) <
q = lim inf {q(ek,E)} .
Moreover, it is not difficult to show (using L3 and L2 respectively)
that the function q(-,s) 1is nondecreasing and q(8,s) - +° as 8 - += .

Using these properties of q(-,s) , define a function G§ (-, ﬁ) :

]R+ -+ ]R+ by:

u

0, if {8 € R, | q(8,s) <a}l =@ ; 1
* =
aE€R -Gs(c, —ﬂul)’é

Max {8 € R | q(8,s) < a} 1if otherwise.

The function Gg (', —Il_:_ll-) is well defined; nounegative; G(0) = 0 ;
upper semi-continuous and Gg (a, -I—ET) + 4w as aq + 4= , (See |
Shephard [1970-a, Proposition 6] for details.) That is, G ( 'u:_u) ,

satisfies (3.3.9-{, 14, 1i4{). Furthermore,

(3.3.10.1) o3 a8, 1ff (o, o)z e, all G ER, xR, .

Repeating the above argument for each s € S , a family of functions

{cs(o, ﬁl’)’ s € s} satisfying (3.3.9-i, 1i, i11) {is defined.
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Next, define a function Q("iﬁf): X - R+ as follows:

0, if {A*x[XElR*}nD-O;

ofe 727) <

Min (A€ R, | *x € D™, if otherwise.

The function ¢(-, iﬁi) is well defined since D 1is closed, O & D
and * {is continuous; as argued once in the previous proposition.
In fact, it is scale~analogue of the distance function of the input set
D (see Shephard {1970-a] and Shephard/Fire {1980] for a definition of
distance function and its properties). Clearly, ¢(-, TET) is scale
homogenous. Moreover, D = {x €X | Q(x, T%T) > l} . For a proof of
this fact when * is the usual radial scaling, see Shephard [1970-a,
Proposition 16].

Finally, using (3.3.10.1) and the scale homogeneity of ¢(°, Wﬁ?) ,

one has: for all (9,s) € Eu+ x S

L(e--“-::—n ,s)s{xex | x = q(9,s)*y , y € D}
= {x €EX | x = q(8,s)*y , ¢(y, iﬁi) 2 l}
'{z €X | ¢(z, iﬁi) 2 q(e,s)}
eexable g e
u

Since the mix —:T was arbitrarily chosen, the proposition is es-

tablished O

(3.3.11) Proposition: Suppose a stochastic input correspondence

L:Ux$8 -+ 2(X) has an IS structure with a continuous scaling

operation * and a scaling law x : Eh+ x U » R++ . Then for each

output mix 737-6 TU , there exists a function G(-,-ﬁfi): R* A R+

[ N Sr U S
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satisfying (3.3.9-1, ii, iii) and a family of scale homogenous functions
u . . . _u_ - )
{¢s( s ﬂuﬂ) ¢ X *-Eh., s € S} such that L( Tl ,s) {x € X |

6(s(x. 1) ) 2 a} for all (8,s) ER, xS .

Proof: Similar to that of (3.3.10) and will be omitted.

Based on the representation propositions (3.3.10) and (3.3.11), one
may choose to interpret the SS and IS structures as constituted of
scalar-valued production functions (Gsc, TET) and G(-, TET)) and
input quantity indices (¢(~,-ﬁfr) and @sc,iﬁi)) . However, as the
proof of Propositiom (3.3.10) reflects, the representations are not unique
(since the refzrence set D was chosen arbitrarily). Hence, such an
interpretation may be somewhat strained. But these represencations

motivate the following consideratioms:

As in (1.7.9) and (2.2.10), define for each T%F € ’U the function

(3.3.12) (x,8) €EX x § = @(x,s | FET): = Max {c € R4 | o .WET € P(x.s)}.

As argued before, it follows from Axioms L5 and PO that ¢ is well
defined, and for every x € X , the function #(x,- | Tﬁf) is
measurable. Hence {¢(x,- | Tﬁr) ;) X € X} may be taken as the family
of random variables which models the production function for outputs of
Suppose the input correspondence L of a stochastic production
technology has a SS structure. Let the effective domain of output mix

cad Y e 8 ! ~
be DU: {“uﬂ € v | L(ﬂuﬂ ,s) $# 0 for some s € S . Suppose L is

represented by the families {Gs(-. Fﬁi) ;) 8 € S} and scale homogenous

functions @('. i&?) s Tﬁi € l'U . Then, as may be seen from the proof of
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(3.3.10), for each TET €y , ¢(x, iﬁi) takes on all possible values
of ng* as x varies over X . Counsider an arbitrary a e B{F , it
is easy to verify that for every x € X with ¢(x, iﬁi) = o and
u - u
nuueou.-{seslcs(a,uu) c} {seslo(x,sluuﬂ);c}eﬁ,
g € ]R+ .
Thus, for each ﬂ DU , the family of random variables
{ (x, ] T_T ; X € X} is representable by a single function ¢(-, iﬁi)
and the family {Gs(-, TET)’ s € S} . Moreover, for a fixed a € ]{+
and a LEDU , the function s €S+~ G (u, -—u—) is a random
ful s ful
variable with a distribution

(3.3.13) v(e | a, it—“):-o{s €s o (a, u::—u)< e} €ER,_ .

In general, for a fixed iﬁﬁ-e DU , the distribution function
V(- l a, T%T) are different for different «'s . However, if these
distributions are of manageable complexity, the discussion above is

potentially useful for application. For example:

(3.3.14) Definition: A SS structured stochastic input correspondence

L:UxS8S~+2(X) (with a continuous scaling operdti-~ *) is said to

have a SSG gtructwre if its representation (3.3.10) satisfies: given

TET € DU , for every s , SES , there exists a scalar 8(5,3, TET)

u - u u
such that Gs(a, Iul) B(s,s, Huﬁ) Gg(a, T:T) , @ € Ig_.

(3.3.15) Proposition: Suppose a stochastic input correspondence L

has a SSG structure. Then the distribution functions V (3.3.13)

associated with its representation satisfies: for every iﬁ? € DU and

every a' , a" € {a € n{+| G (a) > 0 for some s € S} , there exists




————
[T} u [ T R
a scalar g(a LA™ ) € R, such that V(t | o', "uﬂ)

V(g(a',a.", ll—:-ll-) t | a", ll—:ll-) for all t € ]R+ . In fact,

g(a',a", II_:T) z Gs(a', u—zu-)/Gs(a", -u—:—u)) for each s € S . From this,

it follows that if the distribution functions V are integrable,

denoting EXP [¢(x | II—:T):]:- f 4>(x,s [ -}T:—H)d@ , one has
s€S

e [ofx | 2p)] o (o(= £) 1)

e (o 1 157)] S (o0- 7o) 7o)

Proof: Straightforward and omitted.

,all x,ye€X and s &S .

Although the data requirement of working with a SSG structure is
minimal (a single scale homogenous function qb(-, ~uz—“-) ; a single
scalar-valued production Gs (-, ﬁu—) , 8§ being an arbitrary element of
S ; and a single distribution function V) ; SSG structures appear to
be too simplistic. But based on it, a rather useful extension is

given below:

(3.3.16) Definition: A stochastic input correspondence L :U xS =2(X)

has a partially-same-shape structure (PSS for short) if the state space
S 1is partitioned by {Sj » J €7} ; and for each member s3 of the
partition, the restricted input correspondence Lj : U xSj-*Z(X)
defined by Lj(u,s) t= L{u,8) (WUEUV, s €& Sj) has a SS structure.
Input correspondence L 1s of PSSG structure if each Lj is of SSG
structure.

It is assumed that LJ's satisfies the stochastic weak axioms
(1.4.6) as stated with apprcpriate scaling operations which could be

different for different indices. The relevant state space (Sj,éJ)

is the restriction of (S,4) on sd

87
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The rationale underlying the PSS structure is the observation that
in many production systems, the state of the production environment
affects production in distinctively and gqualitatively different manners.
For instance, whether it rains or not makes a tremendous difference to
many construction projects; but given that it rains, the amount of rain-
fall is irrelevant. Another example is technological breakthrough.

After a breakthrough which qualitatively changes the technique of produc-
tion, only minor variation 1s effected by the state of production. PSS
structures attempt to capture this categorization of qualitative differ-
ence of the technology. !

Recall the notion of an information structure as represented by a
sequence of partition on the state space S . Consider the information y
at time t as represented by the partition 3: . Suppose At is finer
than the partition (s , J €J} of a PSS technology. Then the infor-
mation at time ¢ enables a producer to tell precisely which qualita-
tively distinct igpuc correspondence 1s prevalent. This example indicates
that PSS structures may be particularly useful in formulating production

policies.

3.4 Homothetic Structures and Production Decisions

The last section introduces the notion of stochastic homothetic
production structures, although primarily through some rather special
forms. In this section, the special homothetic structures developed are
used to consider some production planning and policy problems. Since the
underlying technology is assumed to have rather special structures, the

material in this section should only be regard as an exploration pre-

liminary to the study of production planning under uncertainty.
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The remainder of this chapter is divided into two parts. First,
design of production systems is considered via the confidence
indexed correspondences. Using the first part as background, in the
next section, a simple stochastic dynamic production system is in-

vestigated with the constraint of information explicitly introduced.

By overall planning and design of a production system, it is

meant that certain decisions concerning the input to and output from

a production system are to be made at a particular time point without

explicit concern for their execution (the day-to-day system operation under

uncertainty). Examples are: planning for investment on plant capacity;

production target setting, etc. Under this framework of decision-making,

the information (or ignorance) of a producer is completely embodied in

the state space (S,®) and the (subjective) probability measure. Two

schemes are considered:

(3.4.0-1) Output .G €U 1is to be attained with at least a confidence
level £ ; choose an input x € X which may accomplish this.

(3.4.0-1ii) Input resources are constrained in some manner, choose a

feasible input such that the expected output is optimal.

*
(3.4.1) Definition: Let X , the "dual" to an input space X ,

represent the space of nonnegative input prices. (Strictly speaking,

*
this is an abuse of mathematical language. If X = R” , X is meant

+ !

* *

to be R: . Similarly, for X = (LQ): with the weak topology, X
n n * n

is meant to be (L1)+ ; for X (Ll)+ , X is meant to be (Lm)+ )

The (confidernce indexed) minimal 208t Function of a stochastic produc-

tion technology is
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Inf {{p,x) | x € CL(u,8)},
(3.6.1.1)  (u,p,E) EU<X x[0,1] +Q(u,p,E) : = if CL(u,5) # 8 ;

+o | {f otherwise.

It is well known that the minimal cost function of a deterministic
(ray) homothetic input correspondence is separable (see Shephard [1970-a]
and Fire/Shephard [1977]). As an extension, it is shown in the following
that certain classes of stochastic homothetic input correspondences also

have separable (confidence indexed) minimal cost functions.

Suppose an input correspondence L : U x § -+ 2(X) has an IS
structure with radial secaling on X , then by Proposition (3.3.8),
CL(B*u,&) = x(8,u)*CL(u,g) for all (8,u,§) € Ih+ x U x {0,1] where
X 1s the invariant scaling law. It then follows that for all

*
(2,u,p,6) € R, x U x X x [0,1]

Q(8+u,p,§) = Inf {(p,x) | x € x(8,u)*CL(u,§)}
(3.4.2.1)
= y(8,u)-Q(u,p,5)

In particular, for a fixed output mix —2—-6 o,

lul

(3.6.2.2) Q8- T 4ps8) = N | (9K _ (2,8) , (8,0, ER, XX x(0,1] ;

lul lul
c . L .= L
where K u (p,E) : = Q(ﬂuﬂ ,P,E) and N u (9) : X(B, Huﬂ) . That is,
ful ful
for each output mix iﬁT y» the minimal cost Q separates into two
terms, one involving the scaling of the output mix WEE , the other

involving prices and the confidence index as applies to a reference

output =—— .

lull
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Suppose L : U x S + 2(X) has a SS structure with the usual

radial scaling, then the minimal cost function Q 1s separable in

quite a different manner. For simplicity, assume Property CP4.2
(hence CL4.2) holds. Let =(u) := {£ € [0,1] | CL(u,E) # 8} ,u€EU.
Noting that the radial scaling operation is continuous, it follows i

from Proposition (3.3.8) that for all u €U and §, £' € Z(u) : ﬁ

for every 8 € Ih+ , there exists a scalar p(9,u,§) € 15+
(3.4.3.1)
such that CL(8°u,§) = p(8,u,&)*CL(u,8) ;

(3.4.3.2) for some v(u,£,8') € R, , CL(u,§) = vy(u,8,8")+CL(u,g") .

From (3.4.3.1), it directly follows that

(3"“4'1) Q(O-u,p,;) = D(%“.E)'Q(m?.i) ;s uel, E€Z(uw) ’ GEIR* ’ pGX* .

In particular, for a fixed output mix TET-E U , by letting K u (p,E) : =
Tl
Q(l:—l ,p,E) and M (8,8):= p(e, ﬁ ,s) , Equation (3.4.4.1) has the
Tl
separable form:
(3.4.4.2) oerin,p,E) = (0,8)K (.
4.4, Q( ful 'Pré u N u Py .
lul Tul

On the other hand, it follows from (3.4.3.2) that

(3-6°5-1) Q(UsP.E) bl Y(UsEaE')'Q(\hP,E') ; UEU , £ & e'es(“) ’ pGX* .

In particular, for a fixed TET € I'U and an arbitrarily fixed

*
E' e E(iﬁT) » Equation (3.4.5.1) gives rise to: - for all p€X ,

cesli):




Qe - 755 +2o8) = v(0 - 7 +6087) 20 - 17 o8

] ). "y, '
- Y(e'm )E'E) uu (8,8')K (Pn€ )

. . !
(3.4.5.2) ful ul i
=T . (O,E)°§_2_(9)'5_2_(P)
Tul lul lul f
with the obvious definitions for T a ? M u and K e Furthermore,
Tl Tl Tul

if L has an IS structure in addition to being SS structured, it is

easy to see that the factor T u (6,§) 1is really independent of & ,

Jul
resulting in the completely separable form:

u s = 5 * (2
(3.4.6) Q(e'm.P,E) =T, (5)'H_u_(9)'x u (P); PEX , 6ER,, Ee-'-(m)'
Tul Tul Tul

The relevance of the above separable functional forms in regard to
overall production planning (recall (3.5.0-1)) is as follows: - If the
input correspondence L of a stochastic technology has the IS (or SS)

structure with a radial scaling; and the value of K . (r,£) (or K " (p))
Tul Tol
in (3.4.2.2) ((3.4.5.2)) is readily computable, then the trade-off
between cost, level of output attainable and the confidence concerning
such attainsbility may be readily determined via Equations (3.4.2.2),
(3.4.5.2) or even (3.4.6). This certainty should facilitate the overall

planning of production under uncertsinty.

However, since the radial scaling need not be an appropriate scaling
operation on inputs (due to changes in effectiveness or learning effect

and the value of K u (p,£) need not be readily available (for an IS
Tul
structure the confidence index input sets CL(u,f) are of different
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shapes as £ varies), the above scheme of production planning may have
limited application. These two drawbacks are partially resolved in

the following:

(3.4.7) Definition: Given a scaling operation * on an input space
X, a function h : X + l{b which is scale homogenous (with *) is called

a price function o X , and h(x) 1is the cost of employing input x .

Let H be the collection of price functions on an input space X with
respect to the scaling operation * . Modify the definition (3.4.1) of

the minimal cost function to:

Inf (h(x) | x€CL(u,8)} ,
(3.4.8) (u,h,E) €U x H x [0,1] + Q(u,h,E) : = 1f CL(u,£) $ 9 ;

4o | if otherwise.

The following straightforward proposition, which also serves to summarize

the previous discussion, 1is valid:

(3.4.9) Proposition: If an input correspondence L : U x § + 2(X) has
an IS (SS) structure, then its minimal cost function 6 is separable
in the sense of (3.4.2.1) and (3.4.2.2); ((3.4.4.1), (3.4.5.1) and
(3.4.5.2)).
As for the computation of the factor K “ (p,&) 4in Equation
Tl

(3.4.2.2), the following structure is of interest:

(3.4.10) L : Ux S+ 2(X) Has Both a PSS and IS Structure: Recall the

definition of a PSS structure (3.3.16). Let {sJ 1 § €J) be the parti-
tion of S relevant to the PSS structured input corraspondence. Let

uj ;- O(sj) and 03(0) be the conditional probability measure given

e adanamah o ase




|
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s} , 3 €3 . For simplicity, assume ®(s)) >0 forall jeJ.
Then (- | Sj) is well defined.
Consider an arbitrary j € J . Define (as done once before)
the effective domain DUJ : = {l:—l €ru | LJ(-'%I- .l) # 9 for some
s € Sj} . Since the correspondence Lj is of both IS and SS structure
on S‘1 ,» 1t is easy to verify (using representacion propositions

(3.3.10) and (3.3.11)) that for all oy € pud , there is a nontrivial

homogenous function ¢j (~, ﬁ) : X » R+, a function G(-. I:—I) : R+ - R+

satisfying (3.3.9-i, ii, iii) and scalars Yj(s,i, T:—l) ER, (s,8 € Sj)

such that

(e 6) - {x €x | o(s)(x, o) ) 1} ; and

3(_“_ - 1( 3 L) i(L : 3
V(g 09) =Y (s5 op) V(e 8) s s €5
vhere the state s is taken to be fixed as a reference. By an argument
similar to the discussion leading to (3.3.14), yj (s,§, ]%I-) as a fune-

tion of 8 is seen to be measurable on Sj . Then by invoking the

homogeneity of ¢ (., T:—I) and letting 77 (3. EuT) .

, the input sets Lj(l::—l ,s) has the simple representation

(1. 1op)
I‘J(T:—l .s) - §J(s, |—:|-)-{xex l ¢3(x. I:_l) > 1} ,sesl, -.‘;—lexmJ .

For ﬁ- € DUj. let Hju be the conditional distribution function of
Tul
the random variable 3 (s. ]%f) , 1.0.,

W, ® :-@J{-esj | F(s 27) c 8} sem, .
lul

oy
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Repeat the above for each j &€J.

Now consider an arbitrary m I €l and & € (0,1] . Denote
8y, 8 3}
J(M). {3 €] renull . one has

I’E - xexlv{ses | xEL(l . ,s)};a}

=Jxex| | uj-ﬂ’j{ses-" | xELj(ﬁ- s)}

? z
| =l |
{x €x | uj-@j{s €sd | ¢j(x, _I:—l) > ?j(s, T::—.)};e
(
1

[ A%
oy

=lxex| pdod (¢j(x, T‘;-T))

Thus L(I i .E) takes on the form of a constraint set of a nonlinear
mathematical programming problem. Depending on the complexity of the

functions oj (-, 1:—0 and the distributions Wju , there is the
Tl
possibility that the cost factor K u (P>E) (see (3.4.4.2)) may be
Tol

computed as the solution of a mathematical program.

Finally, it is remarked that the slightly more general case of L

having only the PSS structure may be handled similarly O

Recall the function ¢ defined in (3.3.12). For each -I%l-e r'u

and x€X, 0(:.- | I:_l) S » R+ represents the maximal output of

mix I—:T using input x under the various states of production environ-

. ments; and the function O(x, . I _I:—I) was shown to be measurable.




Given a constraint set C on the input resources, decision scheme

(3.4.0-11) may be formalized as the following problem:

For fixed Sy €TV, Max_ f o(x,s | I:‘:—l)dd’

(3.4.11) o=

subject to x€CNX .

Problem (3.4.11) may be difficult to solve without assuming special
structures on the production technology since the objective function in-
volves an infinite number of random variables, one for each decision
variable x . In the following, (3.4.11) is increasingly specialized in
several steps with the end-result that it becomes a mathematical

programming problem.

Assumption 1: L : U x S + 2(X) has a SS structure with a continuous

scaling operation * ., Output mix I:_I € DU .

By the discussion after item (3.3.13), since -l-:-:T € DU , for each x € X ,
the random variable Q(x,- | I—:‘:l-) $: 8§ R+ is distributed according to
the distribution function V(~ | ¢(x, ﬁr),]ﬁ-r) (see (3.3.14)) where
0(', ﬁ-l-) together with the family {G. (~, ﬁr) ; s € S} is the repre-
sentation of L via Proposition (3.3.10). Then problem (3.4.11) may

be rewritten as

Por fixed [Sre€ DU, Max_ fe-v(de | a, 'l%i')
R,

(3.4.12) subject to xE€C NX

‘("'I—:i')'°'°'




97

Thore are two difficulties with the solving of problem (3.4.12):
(a) the form of the distribution V(- | a, I—:I—) in general depends
on a ; (b) the computation of o(x, I—:T) may be nontrivial since

0('. TET) in general is only scale homogenous. To resolve (a), make

Assumption 2: L is of SSG (3.3.14) structure.

Let y € X with the expected value 0 < EXP [o(y | —lﬁ—l-)] < 4w,
Tacitly, it is assumed that v(- | «, 1:1-) is integrable; for which
Axiom P2.I is sufficient. Then by Proposition (3.3.15), for all x € S

and an arbitrary s €S,

. [o(x I T:T)] __m [°Q| l%l')]).ci(o(x 4) i)

00 | 7o) o

Calling G; simply by G , and lecting B := EXP [‘P(Y ||—:|‘)]/

c(o(y, 1) Tr) » 3.6.12) stmplifies co

u
H-lxx G(a, ul) B
u u
(3.4.13) subject to Q(x. Iul) as=0 (mebu)
x&ECND.,
Noting that G(-, %'-) is nondecreasing (3.4.9-1i), solving (3.4.13)
amounts to solving:

(3.4.14) Max o(x, ﬁl') ; subject to x €C ND ; (ﬁe nu) .

Solving (3.4.14) requires the computatior of the scale-homogenous

function 0(-. T:T) . For this purpose, the property of homogeneity
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may be exploited:

(3.4.15) Proposition: Suppose a mapping F : X + X satisfying

(3.2.5-1, 1i, iii) and induces a scaling operation * on X via i

(3.2.5.1). Then if a function ¢ : X - R, 1is scale homogenous

(with *), the function w defined by y € X rr w(y) := ¢(F(y)) 1is

homogeneous. Furthermore, for every constraint set C CX , if y*
solves the problem: (Max w(y) ; s.t. y EX , P(y) CC) , then F(y )

solves the problem: (Max ¢(x) ; s.t. x€C NX).

Proof: Since F(0) =0, w(0) = ¢(0) =0 . For yEX , y¥$ 0 and

R MM < e S

A€ R* s by the reversibility of the mapping F and the scale

.

homogeneity of ¢ : w(i-y) = $(F(Aey)) = ¢(F(X'§(F(y)))) = ¢(A*F(y)) = A.
(F(y)) = A*w(y) . The proof of the second part of the proposition is

just as trivial O

Assumption 3: The scaling operation * relevant for the input corre-

spondence L is induced by a mapping F satisfying (3.2.5-1i, i1, iii).

e

By defining for each ﬁTE DU, yEX~+ w(y, ﬁ.—) i = ¢(F(y). IuTI) and
applying Proposition (3.4.15), instead of (3.4.14), one may instead

choose to solve:
u u
(3.4.16) max u(y, -ITIT) ; s.t. YyEX , F(y) €EC ; meuu .

From the point of view of function forms, problem (3.4.16) need not be
easier to solve than (3.4.14). However, recall (from the proof of the
representation proposition (3.3.10)) that the function o(-. T‘-":T) is .

used to represent the "shape" of the SS structured iaput correspondence L.




SN

The same reasoning may apply to the purpose of the function w(', TﬁT) .
This perspective is particularly convincing if L is originally
generated by transformation (e.g., see (3.3.7)). Thus, one is primarily
interested in the "shape" of the function w(-, TﬁT) which may be repre-
sented by the subset {y €Xx| w(&, T%T) > 1} . In many applicatioms,

the following assumption is reasonable:

Asgsumption 4: There exists a finite number of homogenous functions

. U
h, : X+~ l&+ (1 =1, ..., N) such that the set {y €X I w(y, lul) 2 1}

i
has the form (y€X | h(y) 34d,},4, >0 (1=1, ..., N .

Through Assumption 1 to Assumption &4, the original problem (3.4.11) is

seen to be reduced to a mathematical program:

Max 8
subject to hi(y) 2 B-di (i=1, ..., N)
(3.4.17)
F(y) eC

YEX,BER,

as may be easily verified from (3.4.16). Depending on the form of the
functions hi , mapping F and the characterization of the constraint
set C , there is the possibility that (3.4.17) may be solved by standard

optimization techniques.

The SS structured stochastic input correspondence is admittedly a
very special model of production. But its generalization to PSS
structures was argued to be a rather reasonable model of technology.
To solve (3.4.11) for the case of a PSS structured technology, the

sequence of simplification, i.e., Assumption 1 through 4, given above

o —— e A g S s b O e ———
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may be applied to the PSS structure, thus providing a method of
solution to an interesting class of technology. In the following,
after a short-handed presentation of notations and the underlying
reasoning, a mathematical program analogous to (3.4.17) is given for

the case of a PSS technology:

L:UxS—+2(X) 4is PSS O Partition (s , j€J} O wd:=0csd) ,
conditional probability measure d’j(-) with conditional expectation
mj () Q oy~ s+ 2(X) 1is SS structured with continuous scaling

operation *  induced by transformation M a Arbitrarily fixed

b
sl es! O assume ﬁ-‘-enuj ,1€1 O cj(-, ﬁl-)s st(" I—:T) |
Assume L3 1s ssG structured, 3 € J O Representation: Lj( -l—:—l' ,s) -
el el (e 2)iy) 2 o) O Ambterarily e1x Y ex,3e3 O
Define BJ : = mj[é(yj | -l-:—l)]/cj(yj, -I-ET) O Let {y l mj(y, -lﬁ-i-) > 1} -
RIS LIORE 1} - yex | By @) 24y 4 3=, o N

dji>°'

Then the original problem (3.4.11) is reduced to solving:
max § BlecIed)
h (]
3. - .
(3.4.18) subject to hji(Y) > 8 dji » jJ€J,1=1, ..., N, ;

Mo cec,3e7;
xex, s eR, .

The form of the problem (3.4.18) will be useful as illustration in the

next section, which considers the following:

J

-

S AT PR S S T N TP, 2
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3.5 A Scalar Output Model of Dynamic Production under Uncertainty

A production process is carried out in T periods (T > 1) .

There is only one product, the cumulative output of which over the T
periods of production is assumed to come out at the end of the T-th
period. There are n inputs, and an input history is represented by

a T-tuple (yl, ceny yT) wvhere Ve € ZR: is the input into the produc-
tion system at the beginning of the t-th period. Thus the output space
U 4is taken to be lg_ while the input space X = (13)2 .

The technology of the production process is modelled by an input
correspondence L : U x § + 2(X) which has a PSSG structure with the
usual radial scaling. The relevant PSS partition is {Sj s 3=1,...,J}
and J is assumed to be finite. The input correspondence satisfies P2.I
in additiom to the stochastic weak axioms (1.6.4).

The producer has a (subjective) probability assessment ® on the
state space (S,4) and an information structure J§ = (Jl, cees AT)

The partition Jt of S represents the information available at the
beginning of the t-th period. For each s €S , (Il(s),Iz(s), ey IT(S))
denotes the sequence of realized information. A production policy is
simply taken to be represented by an input mapping s € S +— x(s) =
(51(3), sees ET(s)) € (13): » representing the choice of input histories.
A policy x 1is consistent with the informationm structure if s ,

8 € I, € Jc implies x (s) = gt(E) . (Alternatively, it may be con-
venient to think of a consistent policy x as having zt(s) depending
only on Ic(s).) Denote the space of consistent (input) policy by X .
The following assumptions are imposed on the information structure:

(I.1) every x € X 1is measurable;

(1.2) every I € Jt is either a singleton or has O(Ic) >0,

TR e wmne Wen e waneans 4 . e e e e

SR dibas
B
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(t=1, ..., T) ;
(I.3) 4 is expanding; i.e., Il(s) o) Iz(s) Deee D It(s) (s€5S) .

Suppose the producer is faced with some resource constraint which
is modelled by a compact subset C of X . A comnsistent policy x
is admissible if for all s €5 , x(s) €C .

The consequence of an admissible input policy x 1is the maximal
cumulative output it yields at the end of period T : s € S — $(x(s),s)
where the function ¢ is that defined in (3.3.12) (with the superfluous
argument TET' dropped since U = ]&+).

The problem of the producer is to formulate the best admissible
input policy; formally, to solve:

Sup EXP [¢(x(s),s)]
®
subject to x being an admissible policy.

In the following, it is to be shown that (P) is well defined and
has an optimal solution. The exposition somewhat parallels the first
part of Rockerfeller/Wets' [1976] paper on multi-stage stochastic
convex programming. Some preliminary considerations are given first:

It had been shown that for all y € X , the function s € S -~ ¢(y,s)
is measurable. However, it is not clear whether for all consistent
policy X, s €S » 9(x(s),s) 1is measurable. The following simple fact

(proof omitted) is relevant:

(3.5.1) Fact: If Jt is a countable partition of S§ for all
t=1, ..., T ; then every consistent policy x € X has s&S+$(x(s),s)

measurable. Otherwise, recalling the representation of a $SS (hence a

PSS) structure, if either (i) ¢j : X~ xgb is continuous (§j=1, ...,J) ;




or (i1) y' > y" implies Qj(y') 2 ¢j(y") (3 =1, ..., J) ; then the

same conclusion holds.

In any case, in order for Problem (P) to be meaningful, it is

assumed that for all x€ X, s €S + ¢(x(s),s) is measurable.

The following notation will be used:
(a) 1f z &€ (lz)+ and o >t , a projection on the first t

components is defined by Vtz i = (zl,zz, ey zt) ; in particular,
yt:- (yl, ey yt) - Vty forall y€X (t=1, ..., T)
For the constraint set C , C': = v.C = {y € (1:): ! y=9.2, zEC} ,
t=1, ..., T.

) x°(s):i= (x,(8), ..., x,(s)) , s€ES ,x€EX (=1, ..., T

() x*ect iff x"(s)€ct forall s€s (t=1, ..., T)
@ x"€X 1f x°(3) =x%(s) forall s,s€1,€4, (c=~1,...,T).
(e} For ﬁt €% and L, ejo (6 2 t), _150(10) denotes the constant

value Ea takes on the set I

The following simple facts (proof omitted) and lemma are useful:

(3.5.2) Fact: Let C be a compact subset of (13): . For each

t=1, ..., T=1, the correspondence z € (1:): - Dt(z) HR ]

{y € (13): | yec, yt a 2} is compact-valued and upper-hemi-continuous.

AR gy ettt o

(3.5.3) Fact: Suppose f : (13) + R 1is upper-semi-continuous.

n
+

For the correspondences Dt (t=1, ..., T-1) defined above, let

F:e(ze (1:): | D%(z) # @} . Then the function

-

2 € " ~ Max (£(y) |yen® @}, e=1, ..., T;

is well defined and u.s.c, on its domain,
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. £3.5.4) Llemma: With the assumption of P2.I on the technology, there
is a function g : S ~» ll+ which is integrable such that for all

XE€EXNC, ¢(x(s),s) < g(s) for all s €S .

Proof: Since the technology has a PSS structure, it has the repre-
sentacion: L, = yex|clelon 1 ,sesd =1, ..., 0.
Since the functions ¢j are u.s.c. and C 1is compact, one may choose
an input yj for each j = 1, ..., J such that ¢j(yj) =

Max (¢J(y) | y€Cl . Then by the choice of yj , for every x€ ¥NC ,
®(x(s),s) ¢ G1(¢j (y:’)) if s esJ since Gg is nondecreasing. Then
it follows that for all x€ XNC and s €S , 9(x(9),s) ¢

Max {G'l (4"‘l (yj ))} . Because Property P2.I is assumed to hold,
i=1,...,J

for each of the yj chosen, there is an integrable function gj : S - ]R+
such that Gi(c)j (yj)) S gj (s) for all s €S . The proof is completed
by letting g(s) :»  Max {g'1 (s)r 0
j-lgaan’J
The solution of the problem (P) is related to a "backward"

dynamic programming problem developed below. Define for the T-th period:
T T,n T, T .
(vIp) € (1), x4, + Q' (y »1p) : = EXP [0(y,8) | I,] .

By Assumption (I.2) on the information structure, and P.2 (or P2.I1),

it is clear that Q'r is well defined and finite. Moreover, one has:

3.5.5) Lemma: For each 1, ej.r . QT(-,IT) is u.s.c.

Proof: Consider an arbitrary I, eJT with ®(I;) > 0 . Let I

be partitioned into {IT A sd 1 3=1, ..., J} where [S“l i i=1,...,J}

pi W b st

eyl eyt
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is the partition of the PSSG technology. Denote J (I.r) S

{3 P, N s | I,) > 0} . Then for every y € (12):

(3.5.5.1) Qy,Ip = [ EXP [e(y,®) | I nslea, ns? |1 .
€31y
= For each j €J (I'].') » by Proposition (3.3.15) as applied to the event

(I'l' N Sj) with the attendant conditional probability, there exists a

positive scalar Bj and a pseudo-production function Gj such that
(3.5.5.2) E [oy,®) | Iy nsd) = pdddedon L seuap .

Since ¢j is u.s.c. and Gj is nondecreasing, the function G‘1 (¢j(-))
is u.s.c. for all 3 € J(I.r) . Since there are only a finite number of
. indices in J(I'I) , for the fixed IT » the mapping QT(-,IT) is u.s.c.
on (1:): .
The simpler case of ]:.r being a singleton may be treated

analogously O

Now, define for ¢t =1, ..., T=-1

+1, t+
Max Qt l(yt 1

t+l
y

’It+l)
- yc /..
t+l e c:+1

t t t, t .
(y .It)EC *Jt-'Q (y ,It).-m s.t. v,

y

3.5.6) lemma: For each t =1, ..., T-1, Qt is well defined; and

F for every I, 6.4.1. . Qt(-.I:) 1s u.s.c. on CF .

. Proof: Consider t = T~1 . First note that if 3.+ € €T} , then

the constraint set {y-r [ yT € ct , ‘7.1.__13;r - §T°l} is not empty.
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Since for all I, € J.r , QT(-,I.I.) is u.s.c. on (lz): and Clzc

is compact, the optimal solution

£GT L1 ¢ = Max QT (v, 1) ;

T _-T-1

-T~1 T-1
subject to V’r-ly sy

vyvect GTlect, Lesn

is well defined. Furthermore, by Fact (3.5.3), f(°,I.r) is u.s.c.

T-1

on C for all I €4, . Now it is to be shown that QL1 )

*TT-1
T-1

is u.s.c. on C for all I, , €4, , . For the case that I

T-1

is a singleton, QT.]'(-.IT_I) is clearly u.s.c. since it is precisely

£ (°,I.r H I'l'-l) according to the assumption of expanding information.

So suppose I, , eJ.r_l is not a singleton. Since then (I, ;) >0,
the conditional probability and expectation given I is well defined.

T-1
I-1 1

Let (yk} cc converges to y° & cl-

Recall the lemma (3.5.4). Define for s & I EJT : -

h(s) : = EXP [g(s) | IT] + Clearly the function h thus defined is

T-1 T-1

integrable. Furthermore, for each y  ~€C » h(s) > f(yr-l.l.r)

for s € I (IT e.!.r) . Then

a sup, QT N5, 1)) = la sup, f (5,1 0y | 1)

b
k
< f lim sup, £f(y ,I.)*®(I. | L. .)
- k T T T=-1
S
: J f(yotlr)'ﬂlr l I'r_l)
Ifla

T-1, 0
Q (y !Icr_l) .

T-l(

T=1
This establishes the u.s.c. of Q "I'l'-l) on C° °; (I.r_le "T-l) .
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By repeating the above srgument for ¢t = T-2,T~1, ..., 2,1 ; 1

the lemma is established O

*
(3.5.7) Proposition: Suppose x € X solves the problem

(P) Max EXP [0(x(s),s)] subject to X € XNC, E

*c
then for all 1 €4, with #(I)>0,¢c=1, ..., T, x (1)

solves the probleam
(r‘.xt) Max Qt(yt,lc) subject to yt ect .

*t t t ol 4 t
Conversely, if x €X NC (c < T) has x (I.) solve (?°,I)

ol 4

for all I: € J: ; then x may be "extended" to a solution of (P).

Proof: The proof will be carried out for T = 2 . The reasoning used

applies to the general case.

1

Yor a fixed §' € ¢!, for each 1, €4,

W G = e Max ot s Tyl eF, ylectec 1))
(2) - B (Max EXP [0(y%,0) [ 1,05 se. 732 =5, y0 eci)
(3) = Max EXP [0(x(s).8) | I,]

s.t. V,x(s) = il and x(s) €C for s€1, ;

s, 8€1,CI iaplies x(s) = x(3) .

The above string of equalities is well defined according to Lemma (3.5.6)
and (3.5.5). Note that the optimal solutiorn x of (3) may differ from

that of (2) on I2 (4 Il) if 0(12) =0 and 0(11) >0 . It follows

from above that
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Max Ql(yl.Il) = Max EXP {0(x(s),s) | Ill
(4) s.t. yl ect s.t. x(s) €EC for s €1,

s, 8€I,CI izplies x(s) = x(3) .

2

Suppose 5. € EINC solves (P). Consider an Il € jl with
(Il) >0 . Let z be another admissible policy, i.e., z€ XN C,
th<n it must be true that EXP [0(5_.(-).3) | L] 2 EXP (¢(z(s),s) l Ll
since if otherwise, a simple modification of 5. will lead to a com-
tradiction with the optimality of 5. . Hence 5.1(11) solves
(Pl.Il) . The argument needed for the case of Il with d’(Il) =0 is
just as ctrivial.

[ ] *
Coanversely, suppose x 1 ell ncl has x l'(I ) solving (Pl.ll)

1
for all 1, € ‘41 . Then for every I, € "1 , there is a mapping
L -
3:1, - c? such chat 51(3) - x 1(11) for all s € I, .and s, s€1,

(1 €1,) implies z(s) = 2(3) ; and z is an optimal solution to ().
The extension of 5.1 € IL N Cl above clearly results in a policy
z2€XNC . Since z solves (4) on every I, 6.31 » 2 solves the

original problem (P) O

Since Qt('.It) 1s u.s.c. on C® (¢t =1, ..., T) , the problem
(Pt.It) is solvable for all I € -’t . Thus, by the second part of
the proposition, there exists an optimal solution to (P). Furthermore,
the above proposition formslizes the intuition that a production policy
x € XN C 1s optimsl if and only if the input decision at each time t ,
based on the information It and the earlier decisions, is optimal

almost surely.
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To find the optimal solution to Problem (P), the dynamic programs

(P:'It) in terms of the value functions Qt may not be helpful since
in general Qt is not known, and not easily computable. However,
with some further assumptions, the PSSG production structure does

allow for a computation of the optimal policy via the reduction process

given in (3.4.11) through (3.4.18). As an illustration, consider:

(3.5.8) Example: Assume the partition J.r is a finite partition.
Since the information structure is expanding, each state s €S5S is
associated with a unique information sequence (Il(s). cvey I.r(s)) .
Since "'1‘ is finite, there is at most a finite number of such infor-
mation sequences. Denote the collection of information sequances by IP
(paths of information). A consistent policy x € X may be thought of
as an input mapping x : IP - X such that 1 €1IP » 5(11, ceny I.r) -
(51(11), ey ;T(I.r)) where the iaput X, at time t depends only on
Ic ,t®l, ..., T.

Assume J.r t8 finer than {SJ s J=1, ..., J} . That is, at the
last period T , the qualitative classification of the prevailing input
correspondence is known. The remaining uncertainty only concerns the
scaling law of production. Given a realization I = (11, ey I.l.) .
the prevailing input correspondence will be indexed by j(I) . As in

Equacion (3.5.5.2), che conditional expectation of the output attainable

given I for a consistent policy x € X is:

ExXP (o(x(s),8) | 1} = BLad (D) (3 D (x1yy)

wvhere Gj'o are the appropriate scalar-valued production function, and

the factors B" depends on IT .
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Then the problem (P) may be written as

@) oax § BRI P (@3 Pamn. m ;se. x(mec, xex.

IE1P
Following the reduction exhibited by Assumption 4 and (3.4.18), an
interesting case arises when (i) the technology is of linear activity
analysis type; i.e., for some appropriate matrices Aj and vectors dj .
yex|dminzyex|adysad, 1.1, .o, 35 (D) the
constraint set C is given by C = {y €X | D-y < e} ; and (1i1) coamstant
return to scale prevails, i.e., (';;| (a) = kjm for some kj € ]R.“_ s
j=1, ..., J . Then (P) is reduced to a (possibly large scale) special
structured linear programming problem

nax ) ot.gt
I€IP

s.e. AP > aldd®

BV

D-x(I)

L I

sler ,1€1;2€x

I

where for 1 €IP, 0" » BI-G’(I) with BI an appropriately chosen

weighting factor (see (3.4.13)).
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