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ABSTRACT

In this paper, we study the random generation of a linear program of
the type

P : Max cx

subject to Ax < b

P is randomly generated through the Ais , bi's and cj's . We

assume these random variables to be independent and symmetric around
zero and to have continuous distribution fumctions, therefore, trans-
forming the random generation problem nto a distribution free com-
binatorial problem.

Making use of the theory of d-Arrangements, we compute the probabili-
ties of P being feasible and bounded, and we also calculate the
expected number of faces, of all possible dimentions, of the polytope
that is the feasibility set of P , given that P is feasible.

*- 1
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i INTRODUCTION

The riddle of the gap between the time-proven actual efficiency

of the Simplex method for linear programs and its apparent theoretical

inefficiency attracted a great deal of research in recent years. One

of the more popular approaches is to consider the "average" efficiency

of the Simplex method. The idea is to show that even though in rare

problems (usually, specifically and cleverly designed to be a bad prob-

leam) the Simplex method can take an exponential number of iterations, as

a function of its size, it would usually take modest number of steps for

almost all randomly generated linear programs.

In order to discuss and investigate intelligently the average

efficiency of the Simplex method, one has, of course, first to develop

schemes for random generation of linear programs. Thus, several papers

were devoted to this subject.

Obviously, before studying the difficult problem of explaining

the actual behavior of the Simplex method, some studies were devoted to

the study of simple problems concerning randomly generated linear pro-

grams such as the expected number of extreme points, the probability of

having unfeasible or unbounded linear programs, etc.

As it turns out, there are several "reasonable" methods of genar-

ating linear programs which unfortunately may give different results.

This disturbing fact was our main indication in initiating the current

research. We tried somehow to obtain the most natural and robust way

of generating linear programs.

4 Thus, in this paper, we present a method of randomly generating

linear programs which is based on randomly generating coefficients of

hillL i-41 KM M& , 'mo
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the problem (objective function, matrix of coefficients and right-hand

side). We preferred that method over geometrically oriented methods,

because this is the way linear program are usually perceived by users.

Based on scme mild assumptions (independence of all random variables,

symetry around zero and continuity of the density function), we obtain

(in Section 2) several results concerning the expected number of vertices

and the probabilities of feasibility or unboundedness for any size of

linear program. We also extended some of the results to limiting cases

(e.g., where the number of constraints or variables approaches infinity).

The main feature (we believe) of our results is that under the general

assumptions mentioned above, the results are independent of the actual

distribution function of the randomly generated coefficients. This

feature is the outcome of viewing the problem through an application of

the theory of arrangements hyperplanes in a d-dimensional space. This

transformation (presented in Section 1) allows us to consider the

several questions involving expected values and probabilities as simple

counting problems, which are independent of the actual distribution of

the coefficients. We should also note (as discussed in Section 3) that

our results apply to any form of linear programs.

4%
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NOTATION AND DEFINITIONS

Most of the notation and definitions in this paper are derived

from GrUnbaum (51.

We denote the Euclidean space of dimension d by Ed

We call a polyhedral set the Intersection of a finite number of

half spaces. A nonempty polyhedral set is called a polyhedron and a

polytope is a bounded polyhedron. If a polyhedron (polytope) is of

dimension d , we call it a d-polyhedron (d-polytope). Consider a

d-polyhedron P ; a k-dimensional face of P is referred to as a

k-face; Fk(T ) , 0 < k < d , denote the set of all k-faces of P

a member of Fk(P) is called a vertex, an edge or a facet of P if

k- 0 , k- I or k- d- 1 .

Given an n x d matrix A and sequences . C (1, ... , n} and

J C U, ... , d) , we denote by A,. the submatrix of A associated

with the rows in I ; by A 3  the submatrix of A associated with

tththe columns in J3. We denote by A I the It rawvof A and by

A the j colum of A.

Consider the linear program:

P : Max cx

subject to x F X

where X is the polyhedral set {z 4ed I Ax <b} . i s called

the feasibility set or constraint set of P . The hyperplanes

(x I &k = bi} ' for all rows of A are called the supporting hyper-

planes of the half spaces of X

Mo
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Finally, the symbol will be placed at the end of a proof,

and the symbol I will be placed at the end of a thorem or lemma,

which will be presented without proof.
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1. THE RANDOM GENERATION OF LINEAR PROGRAMS

1.0 Introduction

In this section, we define a random linear program and introduce

the process of generating such a program.

We define a random linear program as a linear program for which

we have a random objective function and a random constraint set. More

specifically: we consider random programs of the type:

P : Max cx

subject to Ax < b

where A , c , b are randomly generated so that P is generated

through the random variables A ij b Is and c'5

We assume the A ij's , bi's and c1 's to be independent

random variables and symetric around zero and to have continuous

distribution functions. These assumptions are crucial for obtaining

the main results of the paper.

In the following, we shall present the process of randomly

generating linear programs and present some theorems which are applied

in the development of our results.

1.1 Random Half Spaces

Consider the following linear program, to be randomly generated:

P : Max cx

subject to Ax < b

where A is n x d , b is n x 1 ,and c is dx 1, n x d . LI
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(For the application of our results to linear programs in other

forms, see the remarks in Section 3.)

The following assumptions are crucial for the results obtained

in the next chapters and will be often referred to as the assumptions

of Section 1. We will now formalize them.

Assumption 1:

All the Ai's, b,'a and cs of P are independent random

variables.

Assumption 2:

The random variables A a's, bi's and c 's have continuous

distribution functions.

Assumption 3:

The random variables Au'S , b 's and cj's are syiectric around

zero.

We can now state the following theorem about the random half spaces

of P which is the basis for the results about the constraint sets of

random linear programs in Section 2.

Let a E d and a E X denote

i(a) m { x ma for any a 0}

i+() f {xI x ma for any m > O}

4l(a) - {xL x a for any a < O}

hmo[4iI
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Theorem 1.1.1

Let Ai. , bi be realized values for the random variables

A i. I b i(for some 1 <i < n).

Suppose assumptions 1-3 above are satisfied, then if Ai. , i are

randomly generated such that (Ai.,b i) Cc H(Ai,b ) , then

Prob (Ab) (Ab)]-Prob W(~~1  6 *(A.b)J /

Note that since {x I Ed I Aiox < b} - x Ed I -A1*x > -b4 it

follows from Theorem 1.1.1 that if {x E Ed i A i.x - is a supporting

hyperplane of the ith randomly generated constraint, then it is equally

likely that the i t h constraint is either (x C Ed I Ai.x < biJ or

x 6 dI E ,d b,.

The proof of Theorems 1.1.1 and 1.2.1 follows directly from the

assumptions above, standard manipulations and the use of the theory of

transformation of random vectors, that can be found in Bickel and

Doksum [2]; the details of these proofs can be found in Berenguer [1].

1.2 The ObJective Function

We generate the objective function cx by randomly generating the

vector c - (c1, ..., cd )

Obviously, for every objective function cx , there corresponds a

Aset {(kcl, ... , kc E Ed I k> 0~ which represent the same objective

function. Thus, we shall refer to a given objective function as a family
4

of hyperplanes in which any member of this family represents the same

objective function.

A

-1I
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Theorem 1.2.1

Let c be a realizable objective function vector for P , then if

c is a randomly generated objective function for P , such that

C E i-(c) , then

Prob [c F H (c)] - Prob [c ( H (c)] - 1/2

Note that since max cx is equivalent to -min (-cx) , Theorem 1.1.2

implies that given cx as the objective hyperplane it is equally

likely that the objective is either maximizing or minimizing.

4 1

I,

'4
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2. d-ARRANGEMENTS AND THE RANDOM GENERATION OF LINEAR PROGRAMS

2.0 Introduction

Using the assumptions of Section 1 and the theory of d-Arrangements,

we will transform our linear program random generation problem into a

combinatorial problem.

In this section we will compute the expected value for the number of

faces of every possible dimension of the random linear program. Prob-

abilities of being feasible and of being bounded for the random linear

program will also be calculated.

2.1 d-Arranpements

Definition:

A finite family A of n > d hyperplanes forms a d-Arrangement of

hyperplanes in Ed , provided that no point in E d belongs to all

elements of A . The n hyperplanes partition E d into a finite

number of d-polyhedral sets: the facets of these d-polyhedral sets are

formed by those hyperplanes and no point in the interior of any of the

d-polyhedral sets belongs to any of the hyperplanes. These polyhedral

sets are also called the d-faces of the d-Arrangement. The k-faces of

the d-Arrangement, for 0 < k < d , are the k-faces of the d-faces of the

d-Arrangement.

Definition:

A set of n hyperplanes have the generaZ intersection propert,

if the intersection of every set of K of those hyperplanes is

a (d -k)-dimensional linear affine space (if d -k is negative, then the

intersection is considered void).

4



Let Fd(k,n) be the total number of k-faces of all d-polytopes

of the d-Arrangement formed by a family of a hyperplanes. Also,

define F 0 (on) - 1 .

We can now state the following lenas, due to Buck [3].

Lemma 2.1.1:

The number of k-faces of a d-Arrangement formed by a family A

dof n hyperplanes, having the general intersection property in d

is given by

Fd(k,n)" [d"k]Fk(k,n+k-d )

-[dnk]i"O [n + kd

Corollary:

The number of d-polyhedral sets in A is given by

d
P d(d,n) - I~o~

Lemma 2.1.2:

The number of bounded k-faces of A , given the general intersec-

tion property is:
• 1

F' *kn d+l d(n
d n+k-d rk] +Fd(k'n) - d+ k -d +

Corollary:

The number of d-polytopes of A is given by

Fd(dn) N il
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2.2 d-Arrangements and the Constraint Set of a Randomly Generated
Linear Program

We will now relate the results of Section 2.1 about d-Arrangements

to the constraint sets of random linear programs by making use of the

results obtained in Section 1. Recall that we assume the random linear

program P to have the following representation:

P Max cx

subject to xeX( = {x I Ax <b}

where A is n x d , b is n x 1 , c is d x 1 , for 2 < d < n and

n<d.

Theorem 2.2.1:

Given the assumptions of Section 1, the supporting hyperplanes of

the half spaces of X , {x JAi. = bi} , i -1,..., n , have the general

intersection property with probability one.

Proof:

Berenguer in [1] shows that the hyperplane Hi  {x A i.x -bii i l hepint wher

can be fully characterized by XiH = X H ... , X) the point where

the line perpendicular to Hi and passing through the origin meets the

i
hyperplane; so, Hi can be determined by xH  and the density

fH(XlH, ... X dH) characterizes the random hyperplane. It is also shown

that, given the assumptions of Section 1, XiH has a continuous dis-
40

tribution function.

We can show that the probability of any two hyperplanes, say H1
1 2

and H2 , characterized by the points xH  and xH  with densities

f and f being parallel to each other is equal to zero. Let
1 2

P[H 2 PH H1] be this probability. Then:

V .-

---0 - -- -
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1 1 1

PH H x 1 P[H IH H]dx , dX1
[2 1 fl(] j 11 " fllH 2 dHH H ... dH

But

PH H H( 2 .. Ix2 x2 dx2
2 H1  11 H1  Jf2lHt .... X{)flH .. d

L 
1

where L is the line that passes through the origin and xH  and L1

characterizes all the hyperplanes that are parallel to H1 .

Since L1  has d-dimensional Lebesgue measure (see Halmos [6],

2
Chapter VII) equal to zero (d > 2) , and by Assumption 2, xH  has

continuous distribution function, we have P[H 2 1 H1 1 H1] 
f 0 . Hence

P[H2 I H2 I H1] = 0

Also, since no two hyperplanes are parallel, we have that k

hyperplanes, 2 < k < d , will necessarily meet in some (d -k)-dimensional

plane in E d . Clearly, those (d -k)-dimensional planes have

d-dimensional Lebesgue measure zero in Ed and because of the con-
i,

tinuity of the distribution functions of the xH s , we can easily show,

in a similar way of the nonparallelism proof above, that no other hyper-

plane will meet those k hyperplanes in the same (d -k)-dimensional

plane. 0

Corollary 1:

The supporting hyperplanes of the half spaces of X [ fx I Ai~x bi

i 1 1, ... , n form a d-Arrangement.

.l 
I 

--.
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Proof:

According to Theorem 2.2.1, those supporting hyperplanes have the

general intersection property, and therefore, no point belongs to all

n > d hyperplanes since that would contradict the fact that d + 1

hyperplanes do not intersect at the same point. 0

Corollary 2:

The supporting hyperplanes (x Ai.x a bi , i - 1, ..., n of the
d

half spaces of X partition lEd into Fd(d,n) - [I differentdi=O10 d]

d-polytopes.

Proof:

Directly follows from the corollary of Lemma 2.1.1, Theorem 2.2.1

and Corollary 1 above. 0

Note that Theorem 2.2.1 allows us to apply combinatorial results of

d-Arrangements in calculating probabilities relating to randomly generated

linear programs. Note that a randomly generated polyhedron might be of

dimension less than d . However, the assumptions of Section 1 guarantees

that the randomly generated polyhedron (if nonempty) will be of dimension d

with probability one.

Theorem 2.2.2:

Let the assumptions of Section 1 be satisfied for the random genera-

tion of P . Let A and b be possible values that can occur for the
J

random matrix A and the random vector b . So, given that {Ax = b ii. i

i = 1, ... , n occur as supporting hyperplanes of the half spaces of X

forming a d-Arrangement in Ed, then all the Fd(d,n) different

'I.d
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d-polytopes that are the d-faces of that d-Arrangement have equal

probability of occurring as the constraint set of the random linear

program P , namely 1/2.

Proof:

Given that the hyperplanes (xI i i.x b} , i , occur,

it follows from Theorem 2.2.1 that, with probability one, they have the

general intersection property and form a d-Arrangement. Then, each of

the d-polytopes of this d-Arrangement corresponds to a unique combina-

tion of inequality signs, > or < , for the half spaces of the

constraint set of P . Since we have n hyperplanes, we have 2n

possible combinations for the inequality signs, > or < . We will now

show that each combination has probability 1/2n of occurring. By

Theorem 1.1.1 we have that, given the hyperplane (xI - b1 }

< i < n , each of the inequality signs > and < occur with prob-

ability 1/2 , i.e., the half spaces {x I Ai.x < b and {x Ai.x > b 1

occur with probability 1/2 . So, given the hyperplanes, all the in-

equality signs occur with equal probability and each combination of them

has equal probability 1/2n of corresponding to the constraint set of

P. 0

Corollary 1:

Given the assumptions of Section 1, the probability of the random

linear program P having a feasible constraint set is equal to

d

F d(d,n) 10 [n]i
PF(nd) -n n

I=0

,2 n'

-:0[n
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Proof:

The n hyperplanes ( j Ai.x a b i of P will, with probability

one, form a d-Arrangement in Ed , with Fd(dn) d-polytopes, that

will correspond to possible feasible constraint sets for P . It

easily follows from Theorem 2.2.2, that the probability of a feasible

constraint set is equal to

d [

PFnd d(d,n) i 1o [1]P F(n'd)  n2n

2 
1 [n

io {°

Proposition 2.2.1:

lim PF - 0 and 1lm PF(n,d) - 1.n-OW n,d-N

d constant n-d-m constant

Corollary 2:

Given the assumptions of Chapter 1, the probability of the random

linear program P having a feasible bounded constraint set is equal to

P (n,d) - ~d n) n

2 1! [ni

For the random linear program P , we had shown that, with probability

one, the supporting hyperplanes of the half spaces of X will form a

d-Arrangement, independent of the distributions of A , b and c , as long

as the assumptions of Section 1 are satisfied. We also calculated the

probabilities for feasible and bounded constraint sets. For this we used

the almost sure d-Arrangement structure of the hyperplanes that allowed

us to apply combinatorial type arguments to the problem.

- - - -.. . . . .. . • . . .-- -- ~ q - . ... . . .
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Now, we will continue our study to obtain the min result of this

section which is the computation of expected values for the number of

faces of the d-polyhedron that constitutes the constraint set of the

random linear program. The next lemas are the first steps towards this

objective. Before that we need one more definition:

Definition:

n hyperplanes in Ed , n > d , are said to have the general position

property if the normal vectors of the elements of every d-subset of the

n hyperplanes are linearly independent. We also say that the n hyper-

planea are in generaZ position or that the normaZ vectors are in general

position.

Lemma 2.2.1:

Let n (n > d) hyperplanes in Zd  have the general intersection

property. Then they also have the general position property.

The proof of 2.2.1 is easily obtained from the definitions of

these two properties.

The next lemma is due to Schnfli in [8].

Lemma 2.2.2:

n hyperplanes in E , n > d , all passing through a given point

x0 and having the general position property partition Ed into

-2 l i] cones with x°  as an apex, such that no point in the

4 interior of any of the cones belongs to any of the hyperplanes.

Corollary:

d hyperplanes having the general intersection property partition

d2 di Ew into 2dcones.
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Proof:

Frou Lema 2.2.1, we know that d hyperpLanes in E d  having

the general intersection property, also have the general position property.

Hence, they all met in a given point and as a straightforward appliea-

tion of Lama 2.2.2, it follows that those d hyperplanes partition

:into

2 d1 d 11 2d cones. 3
1-O

Lea 2.2.3:

For a d-Arrangement formed by n hyperplanes, having the general

iuteuiection property in Xd , a k-face is contained in exactly 2dk

A-Zaces, for 0 -c k < d

Proof:

We will consider 3 possible cases:

(i) k - 0 ; since the hyperplanes have the general, intersection

property, we know that every d-set of them must intersect

in a O-face. By the corollary of Lema 2.2.2, we know

N that these d hyperplanes form 2d  cones with that

0-faces as apex. It easily follows that every 0-face is

d
contained in exactly 2 d-faces.

(11) 0 < k < d ; the proof is based on a proof of a similar

theorem found in Cover and Efron [41; consider a 0-face

Q of the d-Arrangement and let Hi , ..., Rd  be the d

Sq different hyperplanes that intersect at Q and al, ..., ad

normal vectors of Hi, *. . We will prove that every

- - -- Im i . ' At -
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k-face containing Q is itself contained in 2
d -k of

the 2d  different cones with apex Q and formed by the

hyperplanes H1 , ... , d .

Without loss of generality, choose any d- k hyperplanes of

d-k
HI, ..., H ,say HI, ..., Hd-k and let H- 0 H be the k-

i-l ±

dimensional linear subspace orthogonal to the vectors a1 , ..., ad-k

The remaining k hyperplanes Hd~k+, ... , Hd partition H into

I 1 2k- convex cones C, I L-M1, ..., 2 (this can be
i-0N

verified by noting that the projections of adk+l, ... , ad into R

are in general position in that subspace and that the intersection of Hi

with H , for i - d-k+l, ..., d is the (k-l)-dmensional subspace

of H that is orthogonal to the projection of ai). The interior of each

of the cones C can be characterized as the set of solution vectors w

to the simultaneous relations

sgn(a) i -i , d

where 6" 0 for i - 1, ... , d-k

and 6i ±1 for i - d-k+1, ... , d

Where sgn is the sign function defined on JR

*sgn(y) - 1 , y > 0

sgn(y) - 0 , y - 0

sgn(y) - -1 , y < 0.

aLet 6 (61, ... I a d be a vector of +1's such that 6, a 6 for

i > d-k~l . It follows by continuity that every 6 represents a

.1,
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nonempty solution cone having C as a k-boundary and that those 2
d-k

solution cones are the only ones having this property. It follows that

every k-face is contained in one of those k-boundaries. Since each

d-face to which Q belongs can be associated to one of those 2d cones

and none of the k-faces that contains Q can be contained in any other

d-face than those 2 d ones (this could imply that Q would belong to

more than 2d d-faces), then the proof is complete.

(iii) k - d ; the result is obvious, for this case. 3

We can now state and prove the main theorem for this section:

Theorem 2.2.3:

Under the assumptions of Section 1, the expected number of k-faces,

0 < k < d , of the d-polytope that is the constraint set of the random

linear program, assuming feasibility, is given by:

d-k dd(kn) k[d-] 1 +
ed(kn) - 2 Fd(dn) d k

Proof:

From Theorem 2.2.1 we know that the n supporting hyperplanes of

the constraint set of P have the general intersection property and,

with probability one, will form a d-Arrangement in Ed . By Theorem

2.2.2, it follows that all the Fd(d,n) different d-polytopes of the

d-Arrangement have equal probability of occurring as the constraint set

of P . Therefore, the expected number of k-face is equal to the total

A number of k-faces, for all the Fd(d,n) d-polytopes, divided by the number

7 -W-
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of d-polytopes in the d-Arrangement. it is left to show that 2dE d(k,n)

is the total number of faces for all the d-polytope; this result easily

follows if we recall that we have Fd(k,n) k-faces in the d-Arrangement

and that, according to Lema 2.2.3, each of those k-faces belongs to

2 d-k of the d-polytopes. 0

It should be noted that the expected numbers of k-faces, for

0 < k < d , do not necessarily combine to form a d-polytope, since it is

easy to show that the ed(k,n)'s do not necessarily satisfy Euler's

relation for the number of faces of a d-polytope and clearly are not

necessarily integers.

We will now present some limiting properties of ed(kn)

Corollary 1:

For a given d , and given that P is feasible, we have

li a ed(kn) = 2dk[d] , 0 < k < d . That is, when n

goes to - and d remains constant the expected number

of all dimensional faces of constraint set of P is

the same as that of a d-hypercube.

() 2 dk[d] (the number of k faces of the d-hypercube) is

an upper bound for ed(k,n) , for 0 < k < d , for every n

It is also clear that lirm ed(k,n) - 2dk] from below.

Proof:

2dk[dlk] k

2 dI I [- d+k] 2 d-k[ d-k r1d+k]
E d

i-O--vpw-=0 2 d k .-
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(ii) We have to show that, for every n , e d(k,n) < 2 dk[d]

0< k <d .This is obviously true for k d

We know that

2dk[dnk ~ n-d+k]

e d (k,n) - d =

Ii
2d-kL n kL(k,n - d + k)

L(d,n)

d
where L(d,n) I ['?] We can then write

2dk d! __ _____
2 (d Q! ( d+! - (n d +k)Lktd )

e d (~n)L(d,n)

2 T (-d k d! (ndn k L(k,n--d +k)

d(n-d+k)! L(d,n)

However,

k! n! _____-d_+_k

d! (n-d+k)! Lkndk

k! n ! k d kAd! (n-d+k)! 1[n-[n ]

d! _________ (n-d+k)!i

d! (n-d+k-i)!i!
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d

d (n-j)!(j -d+k)! 0 k d-llit j=d-k

Z=k+l

d n! d-k-i
I - d ) [ I  ' ( -  )

j=d-k (n-j)! j -d+k)! II i=

Z=k+l

d
+ nI i! (n - i)'

i-d-k

d
d 0 [n] = L(d,n)

Hence,

ed(k,n) < 2 d-k]L(dn) 2d-k[d]

As n goes to o and d remains constant, the probability of

feasibility, PF(d,n) goes to zero, but it should be mentioned that,

given feasibility, 2d-k[d] is an upper bound for ed(k,n) , for

0 < k < d . However, this is not a sharp bound, for 0 < k < (d-l)

We will show it for k = 0 and k = (d- 1) (extreme points and

facets).

Corollary 2:

i) For k = 0 , ed(O,n) < [_ + [ [,

for n < d + [(d+l)/21

(ii) For k = d-i , ed(d-l,n) < min(n,2d)

-*d

19 7
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Proof:

(i) For a given m , [d] , where d > m is an increasing function

of d . We can write

2 ~ 1[d] - S
i-O

We know that

n - [(d+2)/21 < n - [(d+l)/2] < d

Therefore,

n-d < [(d+l)/2] < d

-Hence,

Also,

Id- (n-d)] -2d -n] In-d] L n -2

Since and are terms of S , we have
n d 12d - n]

rn-[(d+1)/2]1 +n - [ (d + 2) /2]1

s L i + But, since
n-d n- d

Fn ((d+l)/2] + [r-[(d+2)/2]1
n-d d is the maximal number of

ex:reme points for a d-polyhedron, with n facets

AI

S.7- .. : ,. -. .- . -
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(McMullen [7]), we then have

d(0.n) _ -[(d+: )/2]] + n- (d+2)/2]] 
2d

for n<d + [(d+1)/2] .3

(ii) It suffices to show that for d > e (d-1,n) < n Let
2 * d~dln e

-.2n -Lf(n,d).

Similarly,

L(d-l,n-i) - 21-1 - -(n- ,d- )

-n1! n ! _ _ ! _
L(d~n) - (d)!(n-d-)! (d+2).(n-d-2). (n-2)!2!

nI n!

2(n) n

(-) + (n-i! +... + (-),

((d-l,n- ) - d!(n-d-)! (d+2)!(n-d-2)! (n-2)!2!

+ (n-i)! + (n-l)!
(n-2)!1! (n-l)l

n n

Since d > - 2 > and

2Ld"in 1 >, a + a,

2L-(d-,n-i) > d(dI)(n-d-1)1 d(d+1)!(n-d-2)! +

+ ! a! atn_+___ (dat

!d(n-3).21 + d(n-2)1 n >L(dn)

Therefore,
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2L(d-ln-1) > L(d,n) or 2L(d-l,n-1) - L(d,n) > 0

and

L(dn) - 2L(d - l,n- 1)

- n - L(d,n) -
n + 2L(d-ln-1) - 2L(d-l,n-1) - (dn) > 0

Hence,

L(d,n) > 2L(d-l,n-1)

and

d-1

1-O 2riLed - 1,n - 1) 2ried - 1.n - 1)
ad (d - 1, n) -2n 3,-

d2 L(d,n) 2L(d-l,n-1)

Therefore, for d > n/2 , ed(d l,n) < n .

In a similar way we can show

Corollary 3:

When n - m and n-d - m remains constant, ed(kn) goes to

k +k
[dnk] i!O [m 1

3i-a

i 1 1

Note that the limit of ed(d,n) (i.e., the expected number of facets),

is equal to n . This should be expected since PF(n,d) - 1 , i.e.,

the probability of feasibility in this case is equal to one, and all the

i
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supporting hyperplanes of the half spaces of X should, with probability

one, form a facet of the d-polyhedron that is the constraint set of P

2.3 d-Arrangements and the Objective Function of Randomly Generated
Linear Proarams

Let the family of hyperplanes H characterize the objective function

cx of P .

Lema 2.3.1:

Given a nonempty cone C , with some point Q e Ed as an apex,

and a hyperplane H passing through Q , exactly one of the following

two cases can happen (with probability 1):

(1) H is tangent to C

(ii) H partitions C to two nonempty cones, C1  and C2

each with an apex Q .

Using Leama 2.3.1, one can easily prove

Lem& 2.3.2:

Given 2 d nonempty cones formed by d hyperplanes H1 , ... , Rd

intersecting at a point Q in Ed, having the general intersection

property and another hyperplane R , passing through Q , such that

H , H1, ..., Hd are in general position, then H partitions 2
d-1

of the 2d nonempty cones to two cones each and H is tangent to
exactly two of the 2d nonempty cones.

Theorem 2.3.1:

Let the assumptions of Section 1 be satisfied. Then, given that

the random linear program P is feasible, we have

-- A
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(i) The probability of a given vertex of the d-Arransement

formed by the supporting hyperplanes { I Aix -b i }

i - 1, ..., n of the half spaces of X , being the optimal

extrme point for P is equal to d1

(ii) The probability of the random linear program P being

bounded is equal to

"0 []"
Proof:

(i) Due to the assumptions of Section 1, the supporting hyperplanes

of the half spaces of the constraint set of P , HI, ..., n ,

with probability one, form a d-Arrangement in Ed , as shown

in Theorem 2.2.1. Let, after the random generation A ,

and c be the values generated for A , b and c

Hi M (X IiixM; i Ii- 1,. .., n and let i represent the

family of hyperplanes that characterizes the objective function

cx . Then, let Q be a vertex of the d-Arrangement formed by

the hyperplanes Hi , such that, ithout loss of generality,

Q is the intersection of the hyperplanes H, l Rd.

Consider nov a hyperplane H = S passing through Q . Due

to the assumptions of Chapter 1, we have that the hyperplanes

H , H1, ..., Il d  are in general position vith probability one.

From Lamma 2.3.2 we mow that K is tangent to two of the

d-polyhedra to which Q belongs. So, there exists exactly

' ' . - ' " --- - - . - -"-" .-.- n " n '
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tvo polyhedra say X , X in the d-Arrangement for

which R is tangent to then at Q . Moreover, it is obvious

that Q maximizes the objective function represented by R

over one polyhedron (say X 0 ) and minimizing it over the other

(say X2). Since (by Theorem 1.2.1) there is equal probability

that the objective is max-iize or minimize and since X1 and

x2 can be selected with a probability of 1/Fd (n,d) we get
1 1

that Q has probability of - * 1 of being the optimal2 Fd(n,d)

extreme point of X1  and similarly for X2 . Thus Q has a
1 1 a

probability of 2 2 i - 1 of being the optimal
2 d(n,d) F d(n~d)

extreme point of the randomly generated P

(ii) As it follovs that for any H ,H , Hip, ... , In are in

general position, then P is bounded if and only if an extreme

point is the unique optimal solution. Since ye have

Fd(O'n) - [n] vertices in the d-Arrangement and each of them

has equal probability - d of being the optimal extreme

point, it follows that the desired probability is

P B(n 'd ) - d

Corollary:

4The probability of the random linear program P being bounded (and

J feasible), not conditioning on feasibility, is equal to

B (n,d) -

Siro Lii

7O.
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Proof:

Since P B(nd) is the desired probability when we condition on

feasibility and the probability of feasibility is equal to PF(n,d) , then

d i=O
P B (n 'd )  - P B (n 'd )  P PF (n 'd )  d n

i ] i=O

i=o [n

Proposition 2.3.1:

(i) lim PB(n,d) = 1 and
tB

(ii) lim PB(n,d) = 0

Proof:

(i) lim PB(n,d) = lim d But,

i-

d

i~0B] nl n' '
lim " = lim0 + + " + 1d:] Ld [ j

. i(ii) lim PB(nd) u d 0

4 1

- -..-- 1
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Proposition 2.3.2:

urn PB(n,d) -0 and urn P B(nd) 0
B-

Proof:

Since P (n,d) n ,the result easily follows.0
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3. FINAL REMA.RKS

Since our main objective in this paper was to present the distribution-

independence nature of our method of generating randomly linear programs

we left some uncovered related topics.

(1) We assumed a standard form of linear program. Obviously,

it is desirable to have the results form free.

(2) Generating a linear program actually resulted in another

uniquely defined second linear program, namely the dual.

Is the (probabilistic) behavior of these dual programs

identical with the results obtained for the primals?

(3) What would happen if the continuity assumption of the

density function of the coefficients vas dropped?

Specifically, what if (as it is believed to the "real"

case) there is a positive probability for a zero value?

(4) What can be said about the variance of the random

variables for which expected values were calculated in

Section 2?

(5) How the results could be extented to other characteristics

of linear programs, specifically, those which are related

to the efficiency of the Simplex method? (such as the

expected diameter of the feasibility set, expected number

of iterations of some variants of the Simplex method,

etc.).

In a subsequent paper, we shall provide the answer to the first three

questions and will show that our results are valid to any form of linear

programs and for the dual as well.
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Calculating the variances of the number of different faces seems to

be a much more difficult task, though we believe they are finite and in

the same order of magpitude as the expected values. As for the last

(and most important) question, we started some preliminary research

and hope to report it in some future time.

I;

*, A
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