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ABSTRACT

“In this paper, we study the random generation of a linear program of
the type

P : Max cx AL (S

<

subject to Ax é;b .

P is randomly generated through the Aij's , bi's and cj's . We

assume these random variables to be independent and symmetric around
Zero and to have continuous distribution functions, therefore, trans-

forming the random generation problem into a distribution free com=
binatorial problem.

Making use of the theory of d-Arrangements, we compute the probabili-
ties of P being feasible and bounded, and we also calculate the
expected number of faces, of all possible dimentions, of the polytope
that is the feasibility set of P , given that P 1s feasible.
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INTRODUCTION

! The riddle of the gap between the time-proven actual efficiency
) of the Simplex method for linear programs and its apparent theoretical i
inefficiency attracted a great deal of research in recent years. One
of the more popular approaches is to consider the "average" efficiency
L of the Simplex method. The idea is to show that even though in rare
problems (usually, specifically and cleverly designed to be a bad prob-
lem) the Simplex method can take an exponential number of iterations, as
a function of its size, it would usually take modest number of steps for
almost all randomly generated linear programs. |
In order to discuss and investigate intelligently the average /
efficiency of the Simplex method, one has, of course, first to develop
schemes for random generation of linear programs. Thus, several papers

were devoted to this subject.

Obviously, before studying the. difficult problem of explaining
' the actual behavior of the Simplex method, some studies were devoted to
the study of simple problems concerning randomly generated linear pro-
grams such as the expected number of extreme points, the probability of
having unfeasible or unbounded linear programs, etec.

As it turns out, there are several "reasonable’" methods of gener-

ating linear programs which unfortunately may give differemt results.

S
“ This disturbing fact was our main indication in initiating the curreant
i j research. We tried somehow to obtain the most natural and robust way
E'i of generating linear programs.

i

] Thus, in this paper, we present a method of randomly generating
} .
f { linear programs which is based on randomly generating coefficients of
i&;
"y
l.
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the problem (objective function, matrix of coefficients and right-~hand
side). We preferred that method over geometrically oriented methods,
because this is the way linear program are usually perceived by users.
Based on some mild assumptions (independence of all random variables,
symmetry around zero and continuity of the density function), we obtain
(in Section 2) several results concerning the expected number of vertices
and the probabilities of feasibility or unboundedness for any size of
linear program. We also extended some of the results to limiting cases
(e.g., where the number of constraints or variables approaches infinity).
The main feature (we believe) of our results is that under the general
assumptions mentioned above, the results are independent of the actual
distribution function of the randomly generated coefficients. This
feature is the outcome of vieuihg the problem through an application of
the theory of arrangements hyperplanes in a d-dimensional space. This
transformation (presented in Section 1) allows us to copsider the
several questions involving expected values and probabilities as simple
counting problems, which are independent of the actual distribution of
the coefficients. We should also note (as discussed in Sectiom 3) that

our results apply to any form of linear programs.
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NOTATION AND DEFINITIONS

Most of the notation and definitions in this paper are derived
from Grinbaum (5].

We denote the Euclidean space of dimension d by Ed .

We call a polyhedral set the intersection of a finite number of
half spaces. A nonempty polyhedral set is called a polyhedron and a
polytope is a bounded polyhedron. If a polyhedron (polytope) 1is of

dimension d , we call it a d~polyhedrom (d-polytope). Consider a

d-polyhedron P ; a k-dimensional face of P is referred to as a
k-face; rk(r) » 0 £k <d, denote the set of all k~faces of P ,
a member of Fk(l’) is called a vertex, an edge or a facet of P if
k=0, k=1 or k=d-~1.
‘ Given an n x d matrix A and sequences I C {1, ..., na} and
Jc{1, ..., d} , ve denote by A, the submatrix of A associated
b with the rows in I ; by A. 3 the submatrix of A associated with

the columms in J . We denote by Ai. the ith

A.j the jch colum of A .

row of A and by

Consider the linear program:

P : Max cx

subject to x € X

vhere X 1is the polyhedral set (x€ E¢ [Ax < b} . X 1s called
the feasibility set or constraint set of P . The hyperplanes

{x | a = b} , for all rows of A are called the supporting hyper-

planes of the half spaces of X .,
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Finally, the symbol [ will be placed at the end of a proof,
! and the symbol | will be placed at the end of a theorem or lemma,

i which will be presented without proof.
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1. THE RANDOM GENERATION OF LINEAR PROGRAMS ;

1.0 Introduction

In this section, we define a random linear program and introduce
the process of generating such a program.
K We define a random linear program as a linear program for which
we have a random objective function and a random constraint set. More

specifically: we consider random programs of the type:

P : Max cx

subject to Ax < b A

where A, ¢ , b are randomly generated so that P 1is generated
through the random variables Aij's , bi's and cj's .

We assume the A, 's , bi's and c¢,'s to be independent

13 b/

f random variables and symmetric around zero and to have continuous

§ distribution functions. These assumptions are crucial for obtaining

the main results of the paper.
e In the following, we shall present the process of randomly

generating linear programs and present some theorems which are applied'

in the development of our results.

1.1 Random Half Spaces

ey
F-‘ Consider the following linear program, to be randomly generated:
o

=

f 1 P : Max ex

!

p subject to Ax < b ,
-

where A is nxd,b 48 nx1 ,and ¢ is dx1 ,nxd.

a2 V.
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b o




——
» +
wdla e

M 12

Vet ). . e

At Ll oy

X
g
*

(For the application of our results to linear programs in other

forms, see the remarks in Section 3.)
The following assumptions are crucial for the results obtained
in the next chapters and will be often referred to as the assumptions

of Section 1. We will now formalize them.

Assumption 1:

All the Aij's , bi's and cj's of P are independent random

variables.

Assumption 2:
The random variables Aij's ’ bi's and cj's have continuous

distribution functions.

Asgumption 3:
The random variables Aij's R bi's and cj's are symmetric around

zZero.

We can now state the following theorem about the random half spaces
of P which is the basis for the results about the comstraint sets of
random linear programs in Section 2.

Let aeEd and aeml; denote

H(a) ~ {x | x = aa for any a # 0}
i*(a) « {x | x = aa for any a > 0}

fi(a) = {x| x=o0a for any a <0} .
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Theorem 1.1.1

Let ;\ , b, be realized values for the random variables

i. i

A 5 by (for some 1 < i <n).

Suppose assumptions 1-3 above are satisfied, then if A:I.- s b i are
randomly generated such that (Ai.’bi) € H(A:L. ,b 1) , then

-

Prob [(Ai. b,) € ﬁ+(;&i.,bi)] = Prob [(Ai.,bi) € ﬁ_’(Ai.,Sl)] «1/2. |

Note that since {x e ¢ | Ay x ibi} = {x e | -Ay x> -b:l} it

follows from Theorem 1.1.1 that if {x e e | Ay x = bi}

hyperplane of the ith randomly generated constraint, then it is equally
h

is a supporting
likely that the 1™ constraint is either {x € Ed | Ay x< b i} or
{xe E | Ai.xlbi} .

The proof of Theorems 1.1.1 and 1.2.1 follows directly from the
assumptions above, standard manipulations and the use of the theory of
transformation of random vectors, that can be found in Bickel and

Doksum [2]; the details of these proofs can be found in Berenguer [1].

1.2 The Objective Functiom

We generate the objective function cx by randomly generating the
vector ¢ = (cl, ceey cd) .

Obviously, for every objective function cx , there corresponds a
set {(kcl, cvey kcd) € Edl k > 0} which represent the same objective
function. Thus, we shall refer to a given objective function as a family

of hyperplanes in which any member of this family represents the same

objective function.

e e e —— e
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Theorem 1.2.1

Let ¢ be a realizable objective function vector for P , then 1if
¢ 1is a randomly generated objective function for P , such that

cE ﬁ-(E) , then

Prob [c € H (¢)] = Prob [c € H ()] = 1/2 .

Note that since max cx 1is equivalent to -min (-cx) , Theorem 1.1.2
implies that given c¢x as the objective hyperplane it is equally

likely that the objective is either maximizing or minimizing.




2. d-ARRANGEMENTS AND THE RANDOM GENERATION OF LINEAR PROGRAMS

2.0 Introduction

Using the assumptions of Section 1 and the theory of d-Arrangements,
we will transform our linear program random generation problem into a
combinatorial problem.

In this section we will compute the expected value for the number of
faces of every possible dimension of the random linear program. Prob-
abilities of being feasible and of being bounded for the random linear

program will also be calculated.

2.1 d-Arrangements

Definition:

A finite family A of n > d hyperplanes forms a d-Arrangement of
hyperplanes in EF s provided that no point in Eﬁ belongs to all
elements of A . The n hyperplanes partition EF into a finite
number of d-polyhedral sets: the facets of these d-polyhedral sets are
formed by those hyperplanes and no point in the interior of any of the
d-polyhedral sets belongs to any of the hyperplanes. These polyhedral
sets are also called the d-faces of the d-Arrangement. The k-faces of

the d-Arrangement, for 0 < k < d , are the k-faces of the d-faces of the

d-Arrangement.

Definition:

A set of n hyperplanes have the general intersection property
if the intersection of every set of K of those hyperplanes is
a (d -k)-dimensional linear affine space (if d-k 1is negative, then the

intersection is considered void).
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Let Fd(k,u) be the total number of k-faces of all d-polytopes
of the d-Arrangement formed by a family of n hyperplanes. Also,

define FO(O,n) =1 .

We can now state the following lemmas, due to Buck [3].

Lemma 2.1.1:

The number of k-faces of a d-Arrangement formed by a family A

of n hyperrlanes, having the gedéral intersection property in EF .

is given by ]
l.’
Fd(k,n) = [d k}F (k,n+k-d)
. [ a ] ‘z‘ [n+k-d] i
d-k 10 i
Corollary:

The number of d-polyhedral sets in A 1is given by

F (d n) = . |
120 1]

Lemma 2.1.2:
The number of bounded k-faces of A , given the general intersec-

tion property is:

F:(k,n) - i;ld[ ][d+1] !

Corollary:

The number of d-polytopes of A is given by

F,(d,n) = [“;1] . 1

s et ° o
lll = i o i Bt =X M . a: -
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2.2 d-Arrangements and the Constraint Set of a Randomly Generated

Linear Program

We will now relate the results of Section 2.1 about d-Arrangements
to the constraint sets of random linear programs by making use of the
results obtained in Section 1. Recall that we assume the random linear

program P to have the following representation:

P : Max cx

subject to x € X = {x | Ax < b} ,

where A is nxd ,b is nx1l,c¢c is dx 1, for 2 <d <n and

n<d.

Theorem 2.2.1:

Given the assumptions of Section 1, the supporting hyperplanes of
the half spaces of X , {x lAi' = bi} ,1i=1, ..., n, have the general

intersection property with probability one.

Proof:

Berenguer in [1] shows that the hyperplane Hi = {x| A x = bi}

i i
can be fully characterized by Xin (xln, ceey xdu) ,» the point where

the line perpendicular to Hi and passing through the origin meets the

hyperplane; so, Hi can be determined by x; and the density

eeey X,.) characterizes the random hyperplane. It is also shown §

£a (e dH

that, given the assumptions of Section 1, Xiu has a continuous dis-

tribution function.

We can show that the probability of any two hyperplanes, say Hl
and HZ , characterized by the points x; and xﬁ with densities
£ and f2 being parallel to each other is equal to zero. Let

1
P[H2 ﬂHll be this probability. Then:
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[ -] [ -]
1 1 1 1l
I’[H2 ﬂHl] = [ . ffl(xlﬂ’ ceey x‘m)P[H2 lHl [ Hlldxm, cees dde .
-l -0

But

2 2\. 2 2
Plu, 18, |5 ffz(xm, xdu)dxm, cees dx

L

where Ll is the line that passes through the origin and ’ﬁ]i and L1
characterizes all the -hyperplanes that are parallel to Hl .

Since Ll has d-dimensional Lebesgue measure (see Halmos [6],
Chapter VII) equal to zero (d > 2) , and by Assumption 2, ’%21 has
continuous distribution function, we have P[H2 i Hl l Hll = 0 . Hence
P[HzﬂH2|H1] =0.

Also, since no two hyperplanes are parallel, we have that k
hyperplanes, 2 < k < d , will necessarily meet in some (d - k)-dimensional
plane in Ed . Clearly, those (d - k)-dimensional planes have
d~dimensional Lebesgue measure zero in ]Ed and because of the con-
tinuity of the distribution functions of the x:'l's s, We can easily show,
in a similar way of the nonparallelism proof above, that no other hyper-

plane will meet those k hyperplanes in the same (d - k)-dimensional

plane. a

Corollary 1:

The supporting hyperplanes of the half spaces of X = {x | Ai-x = bi} .

i=1, ..., n form a d-Arrangement.
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Proof:
!
According to Theorem 2.2.1, those supporting hyperplanes have the
general intersection property, and therefore, no point belongs to all
n > d hyperplanes since that would contradict the fact that d + 1
: hyperplanes do not intersect at the same point. a
Corollary 2:
The supporting hyperplanes {x |Ai.x = bi} ,1=1, ..., n of the
d
half spaces of X partition ‘Ed into Fd(d,n) = 2 [3] different
i=0
d-polytopes.
Proof:
Directly follows from the corollary of Lemma 2.1.1, Theorem 2.2.1
{
and Corollary 1 above. a

Note that Theorem 2.2.1 allows us to apply combinatorial results of
d-Arrangements in calculating probabilities relating to randomly generated
linear programs. Note that a randomly generated polyhedron might be of
dimension less than d . However, the assumptions of Section 1 guarantees
: that the randomly generated polyhedron (if nonempty) will be of dimension d

~ with probability one.

oy
3
4 Theorem 2.2.2:
F 31
- Let the assumptions of Section 1 be satisfied for the random genera-
4 - -
: tion of P . Let A and b be possible values that can occur for the
A |
. random matrix A and the random vector b . So, given that {Ai.x - 51} ’
L]
E“ i=1, ..., n occur as supporting hyperplanes of the half spaces of X ,
3
" forming a d-Arrangement in Ed , then all the Fd(d,n) different
o
o
-y
.,

P
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d-polytopes that are the d-faces of that d-Arrangement have equal
probability of occurring as the constraint set of the random linear

program P , namely /2 .

Proof:

Given that the hyperplanes (xl Ai.x = Si} , 1=1, ..., n, occur,
it follows from Theorem 2.2.1 that, with probability one, they have the
general intersection property and form a d-Arrangement. Then, each of
the d-polytopes of this d-Arrangement corresponds to a unique combina-
tion of inequality signs, > or < , for the half spaces of the
constraint set of P . Since we have n hyperplanes, we have 2"
possible combinations for the inequality signs, > or < . We will now
show that each combination has probability 1/2n of occurring. By
Theorem 1.1.1 we have that, given the hyperplane ({x l&i_x = Si} s
1 <4 <n, each of the inequality signs > and < occur with prob-
ability 1/2 , i.e., the half spaces {x |A1.x 5-61} and (x| Ai_x > Si}
occur with probability 1/2 . So, given the hyperplanes, all the in-
equality signs occur with equal probability and each combination of them
has equal probability 1/2n of corresponding to the constraint set of

P L4

Corollary 1:

Given the assumptions of Section 1, the probability of the random

linear program P having a feasible constraint set is equal to




Proof: ‘

The n hyperplanes (xlAi_x- bi} of P will, with probability
one, form a d-Arrangement in lﬁ » with Fd(d,n) d-polytopes, that
will correspond to possible feasible constraint sets for P . It
easily follows from Theorem 2.2.2, that the probability of a feasible

constraint set is equal to

d

n
F,(d,n) z i
Pp(n,d) = d -10[]. o

A H |

Proposition 2.2.1:

lim Pp = 0 and lim PF(n,d) -], i
n-e n,gd+e
d constant n-d=m constant

Corollary 2:

Given the assumptions of Chapter 1, the probability of the random

linear program P having a feasible bounded constraint set is equal to

* n=-1
x Fd(d,n) _[ d ]_
Pr(n,d) = = e .

i 120 [1]

For the random linear program P , we had shown that, with probability 1

one, the supporting hyperplanes of the half spaces of X will form a

d-Arrangement, independent of the distributions of A , b and ¢ , as long i

as the assumptions of Section 1 are satisfied. We also calculated the

probabilities for feasible and bounded constraint sets. For this we used

the almost sure d-Arrangement structure of the hyperplanes that allowed

us to apply combinatorial type arguments to the problem.

R —cey e W e
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Now, we will continue our study to obtain the main result of this
section which is the computation of expected values for the number of
faces of the d-polyhedron that constitutes the constraint set of the
random linear program. The next lemmas are the first steps towards this

objective. Before that we need one more definition:

Definition:

d , 0 >d , are said to have the general position

n hyperplanes in E
property if the normal vectors of the elements of every d-subset of the
n hyperplanes are linearly independent. We also say that the n hyper-
planes are in general position or that the normal vectors are in general i

posttion.

Lemma 2.2.1:

Let n (n > d) hyperplanes in ZE# have the general intersection

property. Then they also have the general position property. 1

The proof of 2.2.1 is easily obtained from the definitions of H
these two properties.

The next lemma is due to Schifli in [8].

Lemma 2.2.2:

n hyperplanes in lﬁ » 0 >d, all passing through a given poiant

0 d

x~ and having the general position property partition E
d'z'l [n_
1mg L 1
interior of any of the cones belongs to any of the hyperplanes. |

into

2 ] cones with x° as an apex, such that no point in the

Corollary:

d hyperplanes having the general intersaction property partition
d

into 2d cones.




Proof:

From Lemma 2.2.1, we know that d hyperplanes in !F having
the general intersection property, also have the general position property.
Hence, they all meet in a given point and as a straightforward applica-

tion of Lemma 2.2.2, it follows that those d hyperplanes partition

lfl into

d-1
2 ) [dzl] = 29 cones. a
1i=0
Lewma 2.2.3: -

For a d-Arrangement formed by n hyperplanes, having the general

intetsection property in lp » 8 k-face is contained in exactly 2‘1-k

d-faces, for 0 <k <d .

¥ Proof:

We will consider 3 possible cases:

(1) k = 0 ; since the hyperplanes have the general intersection

property, we know that every d-set of them must intersect

in a O-face. By the corollary of Lemma 2.2.2, we know
< that these d hyperplanes form Zd cones with that
rf O-faces as apex. It easily follows that every O-face is
; ! contained in exactly ¢ d-faces.
:-; (11) O < k < d ; the proof is based on a proof of a similar
‘ theorem found in Cover and Efron [4]; consider a O-face
’ Q of the d-Arrangement and let Hl' ceny Bd be the d
} i different hyperplanes that intersect at Q and ‘1’ ceer By
: ‘ normal vectors of Hl’ ooy Hd . We will prove that every




MO

-

P

N P NG

Y,

A

18
k-face containing Q is itself contained in 297k ¢
the 2"l different cones with apex Q and formed by the
hyperplanes Hl, esey Hd .
Without loss of generality, choose any d -k hyperplanes of
d-k
Hl, veay Hd , 8ay Hl, ceey Hd-k and let H = igl Ei be the k-

dimensional linear subspace orthogonal to the vectors al, cees By oo

The remaining k hyperplanes Hd-k+1’ ceey Hd partition B into
k-1

) [k;l] = Zk-l convex cones Cl s, =1, ..., Zk-l (this can be
i=0

verified by noting that the projections of a into H

d-ktl® **°? %4
are in general position in that subspace and that the intersection of Hi
with H, for i »md-k+1, ..., d 1is the (k-1)-dimensional subspace

of H that is orthogonal to the projection of ai). The interior of each

of the comes Cz can be characterized as the set of solution vectors w

to the simultaneous relations

*
sgn(aiw)-si i=1, ..., d

where 61-0 for 1 =1, ..., d~-k

and 8§ =4l for 1=d-k+1l, ...,d.

Where sgn is the sign function defined on R :

sgn(y) = 1,y>0
sgn(y) = 0, y=0

sgn(y) = -1 , y<0.

*
Let § = (61, ceny Gd) be a vector of +1's such that Gi - 61 for

i >d-k+1 . It follows by continuity that every ¢ represents a

e .-.-.-“,_—-..1—-?'.‘-~- D
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nonempty solution cone having Cl as a k-boundary and that those Zd-k

solution cones are the only ones having this property. It follows that
every k-face is contained in one of those k-boundaries. Since each
d-face to which Q belongs can be associated to one of those Zd cones
and none of the k-faces that contains Q can be contained in any other
d-face than those Zd ones (this could imply that Q would belong to

more than Zd d-faces), then the proof is complete.
(1i1) k = d ; the result is obvious, for this case.

We can now state and prove the main theorem for this section:

Theorem 2.2.3:

Under the assumptions of Section 1, the expected number of k~faces,

0 <k <d , of the d-polytope that is the constraint set of the random

linear program, assuming feasibility, is given by:

zd-k[ 2 ] ]f [n-d+k]
1 F.(k,n) d-k] .t i
d~k d_° 1=0 , k=0, ..., d .

e,(kyn) = 2 -

d Fd(d,n) % [n]
geso L1

Proof:

From Theorem 2.2.1 we know that the n supporting hyperplanes of
the constraint set of P have the general 1ntersection property and,
with probability one, will form a d-Arrangement in IF « By Theorem
2.2.2, it follows that all the Fd(d,n) different d-polytopes of the
d-Arrangement have equal probability of occurring as the constraint set

of P . Therefore, the expected number of k-face is equal to the total

number of k-faces, for all the Fd(d,n) d-polytopes, divided by the number

- — e Indaadh, S SeCIR RN —— e e e
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of d-polytopes in the d-Arrangement. It is left to show that Zd-de(k,n)
is the total number of faces for all the d-polytope; this result easily
follows if we recall that we have Fd(k,n) k-faces in the d-Arrangement
and that, according to Lemma 2.2.3, each of those k-faces belongs to

d-k

* 2 of the d-polytopes. 0

It should be noted that the expected numbers of k-faces, for

0 <k <d, do not necessarily combine to form a d-polytope, since it is

easy to show that the ed(k,n)'s do not necessarily satisfy Euler's
relation for the number of faces of a d~polytope and clearly are not j
necessarily integers. f

We will now present some limiting properties of ed(k,n) .

Corollary 1:

For a given d , and given that P is feasible, we have

(1) um%mm)-f*ﬁ],oikid.rm:u,mm n

n-ows

goes to = and d remains constant the expected number
of all dimensional facez of constraint set of P is

the same as that of a d-hypercube.

(i) Zd-k[:] (the number of k faces of the d-hypercube) is

an upper bound for ed(k,n) , for 0 <k <d , for every u .

" It is also clear that lim e,(k,n) = 2d‘k[§] from below.
no>e
1
b
‘ Proof:
s
| K
R zd-k[ nk] ; [n-d+k]
3 d- - i -
1 (1) ln 30 - 247k :] :
n+e ) [f]
! 1a0 L%
v
IS T e e e

o L s "am % L I
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(ii) We have to show that, for every n , e;(k,n) :-Zd—k[i] ,
0 <k <d . This is obviously true for k =d .

We know that

: zd—k[d::k] i‘z‘o [n-cil+k]

ed(k,n) = d
Lo L] |

d=kt{ n
2 [d_k]L(k,n—d+k)

L(d,n) ’

o,

where L(d,n) = ] [:] . We can then write
i=

d-k n!

2 -a+
. (n) = @ 0 in-drior Lkn-d+l)
' at L(d,n)
i d-k __d!f k! n!
'. 2 W@ewrd Grasmr Hen-drl
L({d,n)
_ ,d-k[d]k! ___ o L(k,n-d +k)
kJdf (n-d+k)!  L(d,n)
However,
R ! H
h %;—i———-———(n_g'*_k)! L(k,n ~d +k)
N _ k! 12‘ [n—d+k]
1 dr G-d+i)t L i
"
‘ _k_ n K (-d+i)!
df (n-d+K)! ;&5 (n-d+k- 1)l
.: k! X n!
- = al 120 (n-d+k-1)14!
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' d
1 z n!
= — . , 0<k<d-1
47 jegn @-DIE-IF
2=k+1
d | d-k-1 \
. ) . 1 L Ta-Dr
. == . «\n - .
j"dk(n-j)!<(j—d+k)z e i=0
L=k+1
d Y
* 1=<21-k iTa-10)!
‘% o
= = L(d,n) .
Hence,

e (k,n) < 2“"‘[‘1]"—(%4& . 2d‘k[d] ,O0<k<d-1.

As n goes to « and d remains constant, the probability of

feasibility, PF(d,n) goes to zero, but it should be mentioned that,

given feasibility, Zd_k[i] is an upper bound for ed(k,n) , for

0 <k <d . However, this is not a sharp bound, for 0 < k < (d-1)

We will show it for k=0 and k = (d-1) (extreme points and

. facets).

.. ! Corollary 2:

< 1

"~ n-[((d+1)/2] n-[(d+2)/2] d
< (1) For k=0, e;(0,n) < + <2,
] n-d n~-d
for n < d+ [(d+1)/2]
i (11) For k=d-1, ed(d-l,n) < min(n,2d) .

L4 MR L

'
L
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Proof:

-
|

(1) For a given m , [2] , where d > m 1s an increasing function

of d . We can write

We know that

n- [((d+2)/2] <n - [(d+1)/2] <d .

Therefore, ,

n-d < [(d+1)/2] <d .

[ d ] [n-[(d+l)/2]]
> .
n-d n-d
[ d ].[ d ]-[ d ]>{n-»i(d+2)!:'}§‘ '
d-(a-4) 2d-n a-d] L n-2 _l

d d
Since [ ] and [ ] are terms of S , we have
n-d 2d-n

[n- [d+1)/2]] [n- [@+2)/2]
S > +

n-d -

-Hence,

Also,

] . But, since
n-d

[n- [(d+1)/2]] (o~ [(d+2)/2]]
+ is the maximal number of

n~d L n-d

ex:reme points for a d-polyhedron, with n facets !

LS P .__,-:L;‘.li‘ = T
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(McMullen [7]), we then have

n-[{(d+1)/2] n-{(d+2)/2] a
ed(o,n) < + < 2%,

n-d n-d
for n<d + [(d+1)/2] . |

(11) It suffices to show that for d > % s ed(d-l,n) <n. Let

d
ZE BN HERS RN
P I..(n,d) . [

Similarly,

Ld-1,0-1) = 2® Y _ Tta-1,d-1)

- n! n! n!
L) » i DTa-a-Dr T @ D Ta-a-rT *

n! + n!

*e-Dnrir Tar

n=-1)!

(a-1)! " (n=-1)! .+
(n-3)12!

L{d-1,n-1) "ql(n-d-D! d+1)!(n-d-2)!

+ .

+ (n-1)! +gn-1z! .
(n=-2)111 (n-1)1

. Since d > 2

22>

n
dand

——

- al n!
L@=-10-1 > T@N@-d-DT T d@+D1Ga-d-Dr* "

’
a . &

n!

n!
*d@-n1zl

nl -
d@-1l T d@-DT > L) .

+

.
e .

Therefore,

1
)

oy — ———— e Eatine o duhid, e Sead AR SR
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2L@d-1,n-1) > L(d,n) or 2L(d-1,n-1) - L(d,n) > 0
and

L(d,n) - 2L(d-1,n~1)

= 2% - Ld,n) - 2® + 2Ld-1,n-1) = 2L(d-1,n-1) - L(d,n) > 0 .

Hence,
Ld,n) > 2L(d-1,n-1)

and
5[

ed(d-l,n) = 2n 1-2 : - anI(.%d_,xlz)Ln-l) < %ﬁ- .
L]

Therefore, for d > a/2 , eyd-1,0) <. ]

In a similar way we can show

Corollary 3:

When n+® and n-d = m remains constant, ed(k,n) goes to

[ 500
1

Note that ch_e limit of ed(d,n) (i.e., the expected number of facets),

is equal to n . This should be expected since PF(n,d) =1, i.e.,

the probability of feasibility in this case is equal to one, and all the
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supporting hyperplanes of the half spaces of X should, with probability
one, form a facet of the d-polyhedron that is the constraint set of P .

2.3 d-Arrangements and the Objective Function of Randomly Generated
Linear Programs

Let the family of hyperplanes H characterize the objective function

cx of P.

Lemma 2.3.1: :

Given a nonempty cone C , with some point Q € ]Ed as an apex, -"’
and a hyperplane H passing through Q , exactly one of the following

two cases can happen (with probability 1):

(i) B 4is tangent to C

(11) H partitions C to two nonenpty cones, C1 and C, ,

each with an apex Q. i

Using Lemma 2.3.1, one can easily prove

Lemma 2.3.2:

Given 2d nonempty cones formed by d hyperplanes Hl, ey Hd
intersecting at a point Q in ‘Ed, having the general intersection
property and another hyperplane H , passing through Q , such that
H, Hl’ ooy Hd are in general position, then H partitions Zd-l

of the 2d nonempty cones to two cones each and H is tangent to

exactly two of the 24 nonempty cones. 1

Let the assumptions of Section 1 be satisfied. Then, given that

the random linear program P is feasible, we have
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(1) The probability of a given vertex of the d-Arrangement
formed by the supporting hyperplanes ({x [ Aix-bi} ’

i=1, ..., n of the half spaces of X , being the optimal

_ extreme point for P is equal to
.. 1.0[ ]

(i1) The probability of the random linear program P being

bounded is equal to

d f
120 ]

Proof:

(1) Due to the assumptions of Section 1, the supporting hyperplanes

*

of the half spaces of the constraint set of P , El, cees ﬂn
with probability one, form a d~-Arrangement in lﬁ ., as shown
in Theorem 2.2.1. Let, after the random generation A ’ b

and ¢ be the values generated for A , b and c .

B = {xlxix-l;i} 1=1, ..., n and let H represent the
family of hyperplanes that characterizes the objective function
ex . Then, let Q be a vertex of the d-Arrangement formed by
the hyperplanes Hi » such that, without loss of generality,

Q 1is the intersection of the hyperplanes Bl, caey ﬂd .

!

,.i Congider now a hyperplane R € i passing through Q . Due
4 to the assumptions of Chapter 1, we have that the hyperplanes
3

e e A e

", Rl, cees By are in general position with probability one.

From Lemma 2.3.2 we know that H 1is tangent to two of the

b ),

d-polyhedra to which Q belongs. So, there exists exactly

R 22N
Y.orca

DR S, S U
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2

two polyhedra say xl » X° 1in the d-Arrangement for

which H is tangent to them at Q . Moreover, it is obvious
that Q maximizes the objective function represented by H
over one polyhedron (say x°) and minimizing it over the other

(say xz). Since (by Theorem 1.2.1) there is equal probability

that the objective is maximize or minimize and since xl and

12 can be selected with a probability of lle(n.d) ve get

1 1
that Q has probability of 3 Fd(n,d) of being the optimal

extreme point of xl and similarly for Xz . Thus Q has a

1 1

1
probability of 2 ¢« 3 Fy(@,d)  F (n,d)

of being the optimal

extreme point of the randomly generated P .

(11) As it follows that for any HEH , B, H, ..., B are in
general position, then P 1is bounded if and only if an extreme
point is the unique optimal solution. Since we have

Fd(O,n) = [;] vertices in the d-Arrangement and each of them

has equal probability of being the optimal extreme

5 [

Corollary:

The probability of the random linear program P being bounded (and

feasible), not conditioning on feasibility, is equal to

——— ~’~7‘—.—'.——~ R T
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Proof:

Since PB(n,d) is the desired probability when we condition on

feasibility and the probability of feasibility is equal to PF(n,d) , then

| [ L
fB(n,d) = PB(n,d) 'PF(“'d) = q . 1:9__71

n
NN |
i=0 I3
h
i
Proposition 2.3.1: 1
(1) 1lim Py(n,d) = 1 and |
n-re
!
(11) lim Py(n,d) = 0 .
] nr
Proof:
HHE
(1) 1lim Py(n,d) = lim —-S— . But,
N ne 2 [n}
i
i=0

. n .

| 3]

.

Y
‘ HHE

; (11) lim Py(n,d) = lim — dl_.o. o
f ST

3 g=o L1

A
1

T --—-.1-.-.-7‘.—7-—- R T el U

-
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{ Proposition 2.3.2:

‘ lim f’B(n,d) =0 and 1lim ?B(n,d) =0 .

o+ ne

: R

. Proof:
&]
Since f’B(n,d) = dn , the result easily follows. O
2

! )
b

R
L)
1

4
. 4
A

A
2.1
"!:

.
-




3. FINAL REMARKS

Since our main objective in this paper was to present the distribution-
independence nature of our method of generating randomly linear programs

ve left some uncovered related topics.

(1) We assumed a standard form of linear program. Obviously,
it is desirable to have the results form free.

(2) Generating a linear program actually resulted in another
uniquely defined second linear program, namely the dual.
Is the (probabilistic) behavior of these dual programs
identical with the results obtained for the primals?

(3) What would happen if the continuity assumption of the
density function of the coefficients was dropped?
Specifically, what if (as it is believed to the "real"
case) there is a positive probability for a zero value?

(4) What can be said about the variance of the random
variables for which expected values were calculated in
Section 2?

(5) How the results could be extented to other characteristics
of linear programs, specifically, those which are related
to the efficiency of the Simplex method? (such as the
expected diameter of the feasibility set, expected number

of iterations of some variants of the Simplex method,

°. & etc.).
d
a3 In a subsequent paper, we shall provide the answer to the first three
; questions and will show that our results are valid to any form of linear
.

programs and for the dual as well.
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{ Calculating the variances of the number of different faces seems to
be a much more difficult task, though we believe they are finite and in
the same order of magnitude as the expected values. As for the last

(and most important) question, we started some preliminary research

and hope to report it in some future time.
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