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D The thrust of a rocket motor is generally calculated from the stagnation
pressure, the throat area, and a non-dimensional thrust coefficient dependent
upon the nozzle expansion arez ratio. A comparison is made between momentum
balance and pressure integral methods of calculating the ideal vacuum thrust
coefficient, and the results used to examine how corrections should be made for

nozzle divergence, skin friction and two-phase flow to obtain the real thrust
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1 INTRODUCTION

The thrust of a rocket motor is generally calculated in terms of the

stagnation pressure (po) and the throat area (A,) from the formula

F = Cf Po A,
where Cf is the thrust coefficient. The usual procedure is to calculate the
'ideal" thrust coefficient from one-dimensional isentropic flow theory, and then

to apply corrections for ambient pressure and the various nozzle '"losses''.

The "ideal' thrust coefficient is normally calculated by considering the
overall momentum balance of the motor. It may also be calculated by considering
the pressure distribution over the internal surfaces of the motor. In this
memorandum the two methods are first compared, and then the various corrections
are identified and their effect on the final value of the thrust coefficient is

considered.

2 | DEAL THRUST COEFFICIENT

2.1 One-dimensional isentropic flow

The fundamental equation for an ideal, one-dimensional, compressible flow

is Bernoulli's equation which describes the conservation of energy:

2
u2 az aO
T YT T YT (2.1)

where u is the local velocity, a 1Is the speed of sound, and a, is the

speed of sound at stagnation conditions. |f we remember that

2

a“ = yRT
then this can be transformed to
T
© - 1+-Y—2-1-M2 (2.2)

and with the gas law and isentropic flow relations

p = oRT and pp ' = const
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p 2
and
]
P ~ Y-
2 . 2|
5 L_l + =5 M :] . (2.4)
The mass-flow rate at any section is constant:
m = oAu = p, A, u, (2.5)

where a * subscript denotes the throat conditions

u, = a, M, = 1
The mass-flow rate can therefore be calculated by substituting (2.1) and (2.3)

in (2.5) to give

h = ° m (2-6)

%

+1
p_A, 2 2(y-1)
v ()
Finally, we can use (2.5) to give relationship between Mach number and area ratio;

y+1 +]
- Z(y-1) 2(y-1)
ﬂ_.l[u.v._',ﬁ] [_Z_] (2.7)
A M 2 Y+l ' .

2,2 Momentum balance equation

If we consider the overall momentum balance of the control volume shown
in Fig. 1:

F = Uy + Pq Ae
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where Ue is the gas velocity at exit, Pe the static gas pressure and Ae

the exit cross-sectional area. For the moment we shall assume that the ambient

pressure is zero.

From (2.1)

£ (2.8)

[.l + ) M 2:]
2 e

where M, denotes the Mach number at the exit plane.

Also, combining (2.4) and (2.7):

T

-3
e e . ‘_[_2 ] [14-1—""2:] (2.9)
p. A, Me Y+1

so that, using (2.6), (2.8) and (2.9)

+1
e {(# T DT [ g])

or

+1 2
2(y-1) (1 +v M)

T (2.10)
M [1 + ! M 2 ]
e 2 e

o = ()

2.3 Pressure integral method

While the method shown above provides a simple means of calculating the
ideal thrust coefficient, it leaves some ambiguities, particularly when we come
to consider how various ''losses' in the thrust coefficient arise. Most
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immediately we observe that the final term (pe Ae) in the momentum equation
does not represent a force acting on the physical structure of the nozzle at
all, but is really an ''adjustment’ made to the equation because the control
volume has been drawn across the exit plane of the nozzle. The influence of
the nozzle will actually extend downstream of this point within an envelope
bounded by the Mach lines extending from the lip of the nozzle to the centre
line. |In part this ambiguity arises because the ''one-dimensional flow'' assump-

tion cannot be true if the flow is to expand.

The alternative approach is to observe that the thrust is generated by the

integral of the internal pressure over the surface of the nozzle:
F = f pdA

where A is the axial cross-section of the flow. In fact the integration will
have to be made in two parts - one over the head-end of the motor, and the
second over the length of the nozzle. At this point we can also allow for the

finite contraction ratio of the nozzle

Ae
F = p, Ao + JA pdA . (2.11)
o

If we differentiate the mass-flow equation (2.9) we have

b, 2,2 (2.12)

P

and since the differential forms of the gas law and isentropic flow equations

are

and
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which, by differentiating (2.1) becomes

do _ _udu _ _ \2du
0 2 u

Equation (2.12) can therefore be written as

dA 2 du
el (M - l)u_ (2.13)

which also indicates how the nozzle must change from a contraction to an

expansion as the Mach number passes unity to maintain a positive acceleration.

In fact we can use equation (2.1) to convert (2.13) entirely to terms of
Mach number:

M _ du _ da
M u a
and
udu + —Z- sada = 0
y-1
dM _ du 1_-_1_2
o sl
and
dA W - 1 dM

(2.14)

'y
[r1 + 3%%l MZL]

which is the differential form of (2.7). We can now substitute this equation
together with (2.7) and (2.4) in (2.11):

+1
2 1201
F = pvo + pOA*[_Y+1

M
e
2_ . -3/2
LD Traxgt ] an
o
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or
Y+1 Me
A Ty-1) 2 ) -3/2
C., = 2+ 2 M=) 1+ 321 MZ dM .
R vl s 7 2

M
o

The ratio Ao/A* will be determined by the entry Mach number to the nozzle,
as in equation (2.7). When the entry Mach number is small, this term cancels
with the first term in the integral, as might be expected since Cf is not
very sensitive to entry Mach number. The integral then proves to be identical
with (2.10)

% +1 2
A_ e N U

C = [ 2 ]

f Y+1 ;!
. -1, 2
M, [1 +-‘Y—2- Me]

3 CORRECTION FOR AMBIENT PRESSURE

So far we have assumed that the ambient pressure is zero. In practice

with a finite ambient pressure (pa) we should continue the integral in

3’ section 2.3 over the outside of the motor. The integral is simplified by the

fact that Py may be assumed everywhere constant. The thrust is then given by
o]
T = Cf Po A, + I Pa dA

= Cf Po A, - P, A .

The integral here goes from the lip of the exit cone to the centre of the head
end of the motor. Thus

Pa Ae
fv Po A

g = C
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I f Pa is not constant over the outside of the motor, e.g. due to induced flow
past the motor, then it will be necessary to re-evaluate the integral to allow
for this effect.

4 THRUST COEFFICIENT LOSSES

4.1 General

There are a number of losses to the overall thrust which do not affect the
thrust coefficient, and we shall not consider those here. Under this category
we shall ignore effects which alter the flow area of the throat or the upstream

stagnation conditions. The major losses to thrust coefficient are then

- divergence losses
- skin friction losses

- two-phase flow losses

We must now consider how these losses are to be integrated into calculation of

the thrust coefficient.

4.2 Divergence losses

On exit from the nozzle the flow has a component of momentum in the radial
as well as the axial direction. Malina [ l] calculated the loss of thrust to
radial momentum by assuming that the exit flow formed a cone of streamlines
originated from a point source near the throat. He showed that the reduction

in axial momentum in this instance was by a factor

1 + cos8
4 —z

where © is the half angle of the cone. Nowadays more complete computer flow
predictions are available, but it appears that Malina's formula provides a high

degree of accuracy if the half-angle of the flow at exit is used.

Using Malina's formula one might assume that only the velocity terms in the
momentum balance equation would be affected. However, Landsbaum ['2:] pointed
out that the exit area involved in Malina's assumption is actually the cap of a

sphere and not the flat exit plane, and that the ''one dimensional' calculation

A et A e

of Cf is initially high, and using Malina's correction on all the terms in
Cfv provides a closer approximation to the actual correction, the errror then

being about 0.1% pessimistic for a 10:1 area ratio nozzle with 6 = 15°. {
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4.3 Skin friction loss

The drag force acting on a nozzle expansion cone can be calculated as:

C

Drag = [ fi p u2 2r rdx

where r is the local radius of the nozzle, and Ce is a skin friction
coefficient. The skin friction coefficient can be calculated by compressible
boundary layer methods which include the effects of the accelerating flow, but

as a first approximation

[
f o -.2
2— = 0.0256 Rex

where Rex is the Reynolds number based on distance down the flow. We can

observe that e decreases as we move further downstream.

| f we observe that

h = pu 7 r2

u Cf
IPOA*.-C—*.}—dx

Drag

Now u/c, is a component of the thrust coefficient momentum balance, and like
the thrust coefficient it increases only slowly as we go down the nozzle, with
a value of about 0.7 at the throat increasing to about 1.65 for a 12:1 area
ratio nozzle. The increase in u/c, is actually rather greater than the

decrease in skin friction coefficient, but it is probably close enough to write

u
brag _ _.sjidx
Po P fec, | r

where f is a non-dimensional factor accounting for the variation of c. u/c,

with x . We therefore see that if we define a skin friction loss efficiency

- dx
N¢ ! cfejf'r—
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it will apply only to the velocity term in the thrust coefficient. Typically
N¢ is about 0.99.

4.4 Two-phase flow losses

Most particularly in the case of aluminized composite propellants (where
up to 25% of the flow can be in the form of A1203 particles) the presence of
solid particles in the flow induce flow losses both by retaining energy which
should contribute to the thermodynamic expansion (‘'thermal lag') and by having
a lower acceleration than the gas ('velocity lag"). |f a fraction £ of the

exhaust is solid particles, the thrust is

Thrust = (1 - &) m ug + Py A, + £ up
where up is the velocity of particles at the exit plane. |[f the velocity
lag is ¢
T = (1-g+¢g0) hu + p, A

This simplified analysis suggests that the correction for two-phase flow
should only be applied to the velocity term. However, it is a simplified
analysis. |f we examine in more detail what is happening within the nozzle
we find that the drag of the solid particles will slow the velocity of the gas
phase and increase its temperature, thereby reducing the Mach number of the gas.
The thermal lag of the particles will also tend to add heat to the flow down-
stream. Since in the expansion cone at least thrust is generated only by the

pressure of the gas, a reduction by Mach number represents a reduction in the

whole of Cfv

Part of the problem in assigning a correction for two-phase flow arises
from the problems of calculating the effect accurately. A large part of the
loss will occur upstream of the nozzle throat, and so will affect the character-
istic velocity c* also. It is significant that where exact formulations of
two-phase flow problems have been carried out (e.g. Marble [ 3:]) these have
concentrated on calculating the reduction in specific impulse, combining Cf

and C,
5 CONCLUS I ONS

This memo has shown that the value for the ideal, '"one-dimensional'' vacuum

thrust ccefficient is the same when calculated by a momentum balance or by a

13
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"
pressure distribution method. Investigation of the various losses suggests
that the real thrust coefficient can be calculated from: 1
3 p_A p. A ‘ )
e e a e St
Ce = n,n [:n C,. + (1 -n.) .] - i
f d 't f “fv f Po A, Po A,
where ng is the divergence loss efficiency
n, is the two-phase flow loss efficiency, and
| ng s the skin-friction loss efficiency.
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Nomenclature
A conduit cross sectional area
Ao cross sectional area at stagnation
Ae nozzle exit area
A, throat area
a local speed of sound
a, speed of sound at stagnation
a, speed of sound at the throat
C, characteristic velocity
F thrust
)] total mass flow rate
P pressure
Po stagnation pressure
Pe exit plane pressure
P, ambient pressure
R gas constant per unit mass
r local nozzle radius
T absolute temperature
To stagnation temperature
u local gas velocity
ug exit plane gas velocity
u, throat gas velocity
Y ratio of specific heats °
3 dimensionless velocity lag parameter
Ny divergence loss efficiency
ng skin friction loss efficiency
L two-phase flow loss efficiency
£ dimensionless thermal lag parameter
o local gas density
Po stagnation gas density

gas density at throat
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Non-dimensional numbers

c
C

f
fv
Cf

cfe

thrust coefficienct

thrust coefficient in vacuo

skin friction coefficient

skin friction coefficient at exit plane
Mach number

nozzle entry Mach number

Mach number at exit plane

Reynolds number based on distance down the flow
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