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SUMMARY

: AThe thrust of a rocket motor is generally calculated from the stagnation

pressure, the throat area, and a non-dimensional thrust coefficient dependent

upon the nozzle expansion aree ratio. A comparison is made between momentum

balance and pressure integral methods of calculating the ideal vacuum thrust

coefficient, and the results used to examine how corrections should be made for

nozzle divergence, skin friction and two-phase flow to obtain the real thrust

coefficient of the motor

U~Y~j-4



UNLIMITED

Copyright

@0
Controller HMSO London

1981

Further copies of this report can be obtained from the Defence Research
information Centre, Station Square House, St. Mary Cray. Orpington, Kent SR5 3RE.



UNLIMITED

CONTENTS

Page

1 INTRODUCTION 5

2 IDEAL THRUST COEFFICIENT 5

2.1 One-dimensional isentropic flow 5

2.2 Momentum balance equation 6

2.3 Pressure integral method 7

3 CORRECTION FOR AMBIENT PRESSURE 10

4 THRUST COEFFICIENT LOSSES 11

4.1 General 11

4.2 Divergence losses 11

4.3 Skin friction loss 12

4.4 Two-phase flow losses 13

5 CONCLUSIONS 13

6 REFERENCES N-TIS GF"P.&I 14
DTIC TA'

Nomenclature UnaflflU n -  15-16

Illustration- Fig. 1

D ist ri t i on . .

Codes

,Avil and/or

Dist Special

3



UNLIMITED lMOIM PAW SADK-OT AIM

I INTRODUCTION

The thrust of a rocket motor is generally calculated in terms of the

stagnation pressure (po) and the throat area (A) from the formula

F = Cf Po A,

where Cf is the thrust coefficient. The usual procedure is to calculate the

"ideal" thrust coefficient from one-dimensional isentropic flow theory, and then

to apply corrections for ambient pressure and the various nozzle "losses".

The "ideal" thrust coefficient is normally calculated by considering the

overall momentum balance of the motor. It may also be calculated by considering

the pressure distribution over the internal surfaces of the motor. In this

memorandum the two methods are first compared, and then the various corrections

are identified and their effect on the final value of the thrust coefficient is

cons ide red.

2 IDEAL THRUST COEFFICIENT

2.1 One-dimensional isentropic flow

The fundamental equation for an ideal, one-dimensional, compressible flow

is Bernoulli's equation which describes the conservation of energy:

u2 +a2 a02
- a 2  (2.1)

where u is the local velocity, a is the speed of sound, and a is the0

speed of sound at stagnation conditions. If we remember that

2
a - yRT

then this can be transformed to

T o 0 1 2r- " 1 + y2(2.2)

and with the gas law and Isentropic flow relations

p -pRT and pp'Y - const

I
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= I + 2 M (2.3)

and L
P • 24

The mass-flow rate at any section Is constant:

th = pAu , p* A., u* (2.5)

where a * subscript denotes the throat conditions

The mass-flow rate can therefore be calculated by substituting (2.1) and (2.3)

in (2.5) to give

= 2- . (2.6)

Finally, we can use (2.5) to give relationship between Mach number and area ratio;

A1 + M (2.7)

2.2 Momentum balance equation

If we consider the overall momentum balance of the control volume shown

in Fig. i:

F - Ue+ pe A

L,
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where u is the gas velocity at exit, p the static gas pressure and A
ee e

the exit cross-sectional area. For the moment we shall assume that the ambient

pressure is zero.

From (2.1)

2
2 2

0

2
Me (2.8)

[ 1 + .M2]

where Me denotes the Mach number at the exit plane.

Also, combining (2.4) and (2.7):

Pe Ae __ 2 (y -1"1M 29
PoA e +T1 + (2.9)

so that, using (2.6), (2.8) and (2.9)

+1

0 2 { M e] + ]

or

M2 (1 + Y M 2 3Cfv " T y- 2 2. 0

2.3 Pressure integral method

While the method shown above provides a simple means of calculating the

ideal thrust coefficient, it leaves some ambiguities, particularly when we come

to consider how various "losses' In the thrust coefficient arise. Most

-7
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immediately we observe that the final term (pe Ae) in the momentum equation

does not represent a force acting on the physical structure of the nozzle at

all, but is really an "adjustment" made to the equation because the control

volume has been drawn across the exit plane of the nozzle. The influence of

the nozzle will actually extend downstream of this point within an envelope

bounded by the Mach lines extending from the lip of the nozzle to the centre

line. In part this ambiguity arises because the "one-dimensional flow" assump-

tion cannot be true if the flow is to expand.

The alternative approach is to observe that the thrust is generated by the

integral of the internal pressure over the surface of the nozzle:

F 1pdA

where A is the axial cross-section of the flow. In fact the integration will

have to be made in two parts - one over the head-end of the motor, and the

second over the length of the nozzle. At this point we can also allow for the

finite contraction ratio of the nozzle

Afe
F = P 0 Ao 

+  pdA . (2.11)

0

If we differentiate the mass-flow equation (2.9) we have

dp + dA du . 0 (2.12)
p A +

and since the differential forms of the gas law and isentropic flow equations

are

p P T

and

p p

-p 1 dT
I T

B) " '
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which, by differentiating (2.1) becomes

p u du . 2 du
P a

Equation (2.12) can therefore be written as

dA (M 2 - 1) du (2.13)

which also indicates how the nozzle must change from a contraction to an

expansion as the Mach number passes unity to maintain a positive acceleration.

In fact we can use equation (2.1) to convert (2.13) entirely to terms of

Mach number:

dM _ du da
M u a

and

2
u du + 2 * a da 0

Y-1

dM"- du I + M 2 ]

and

dA 2 - 1 dM (2.14)A I~ + -1 M 21

which is the differential form of (2.7). We can now substitute this equation

together with (2.7) and (2.4) In (2.11):

~~~~~~+ PoM~) 7 v i+.2

F - po A 0- + dM

0
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or

A " "Y+l 'Me

Cf A 0 + 2 2 = + Y M 3/2 dMf+ -A ,, 2.

The ratio A o/A, will be determined by the entry Mach number to the nozzle,

as in equation (2.7). When the entry Mach number is small, this term cancels

with the first term in the integral, as might be expected since Cf is not

very sensitive to entry Mach number. The integral then proves to be identical

with (2.10)

+12 1 ('+YMe)Me [1 + M2]

3 CORRECTION FOR AMBIENT PRESSURE

So far we have assumed that the ambient pressure is zero. In practice

with a finite ambient pressure (pa) we should continue the integral in

section 2.3 over the outside of the motor. The integral is simplified by the

fact that pa may be assumed everywhere constant. The thrust is then given by

T = Cf po A* + A pa dA

e

= Cf Po AA - Pa %

The integral here goes from the lip of the exit cone to the centre of the head

end of the motor. Thus

P - pa Aef f

10
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If Pa is not constant over the outside of the motor, e.g. due to induced flow

past the motor, then it will be necessary to re-evaluate the integral to allow

for this effect.

4 THRUST COEFFICIENT LOSSES

4.1 General

There are a number of losses to the overall thrust which do not affect the

thrust coefficient, and we shall not consider those here. Under this category

we shall ignore effects which alter the flow area of the throat or the upstream

stagnation conditions. The major losses to thrust coefficient are then

- divergence losses

- skin friction losses

- two-phase flow losses

We must now consider how these losses are to be integrated into calculation of

the thrust coefficient.

4.2 Divergence losses

On exit from the nozzle the flow has a component of momentum in the radial

as well as the axial direction. Malina [ I] calculated the loss of thrust to

radial momentum by assuming that the exit flow formed a cone of streamlines

originated from a point source near the throat. He showed that the reduction

in axial momentum in this instance was by a factor

1 + cosa
nd = 2

where e is the half angle of the cone. Nowadays more complete computer flow

predictions are available, but it appears that Malina's formula provides a high

degree of accuracy if the half-angle of the flow at exit is used.

Using Malina's formula one might assume that only the velocity terms in the

momentum balance equation would be affected. However, Landsbaum [ 2] pointed

out that the exit area involved in Malina's assumption is actually the cap of a

sphere and not the flat exit plane, and that the "one dimensional" calculation

of Cf is initially high, and using Malina's correction on all the terms in

Cfv provides a closer approximation to the actual correction, the errror then

being about 0.1% pessimistic for a 10:1 area ratio nozzle with 0 - 15°.

11 _
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4.3 Skin friction loss

The drag force acting on a nozzle expansion cone can be calculated as:

Drag = f p u2 21 rdx

where r is the local radius of the nozzle, and cf is a skin friction

coefficient. The skin friction coefficient can be calculated by compressible

boundary layer methods which include the effects of the accelerating flow, but

as a first approximation

cf Re -2
f = 0.0256 Rex

where Re is the Reynolds number based on distance down the flow. We can
x

observe that cf decreases as we move further downstream.

If we observe that

2 P A,
= pu • 7rr = -

C_,

c
u f

Drag = A. _

Now u/c. is a component of the thrust coefficient momentum balance, and like

the thrust coefficient it increases only slowly as we go down the nozzle, with

a value of about 0.7 at the throat increasing to about 1.65 for a 12:1 area

ratio nozzle. The increase in u/c* is actually rather greater than the

decrease in skin friction coefficient, but it is probably close enough to write

Drag = f f dxPo A* C fe c, rd

where f is a non-dimensional factor accounting -for the variation of cf u/c.,

with x . We therefore see that if we define a skin friction loss efficiency

I f d~x
rif Cfe r

12
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it will apply only to the velocity term in the thrust coefficient. Typically

rIf is about 0.99.I 4.4 Two-phase flow losses

Most particularly in the case of aluminized composite propellants (where

up to 25% of the flow can be in the form of A]203 particles) the presence of

solid particles in the flow induce flow losses both by retaining energy which

should contribute to the thermodynamic expansion ("thermal lag") and by having

a lower acceleration than the gas ("velocity lag"). If a fraction C of the

exhaust is solid particles, the thrust is

Thrust = (1 - ) i ue + pe Ae + ni u

where up is the velocity of particles at the exit plane. If the velocity

lag is

T = (I- + ) ri u + p Ae e e

This simplified analysis suggests that the correction for two-phase flow

should only be applied to the velocity term. However, it is a simplified

analysis. If we examine in more detail what is happening within the nozzle

we find that the drag of the solid particles will slow the velocity of the gas

phase and increase its temperature, thereby reducing the Mach number of the gas.

The thermal lag of the particles will also tend to add heat to the flow down-

stream. Since in the expansion cone at least thrust is generated only by the

pressure of the gas, a reduction by Mach number represents a reduction in the

whole of Cfv

Part of the problem in assigning a correction for two-phase flow arises

from the problems of calculating the effect accurately. A large part of the

loss will occur upstream of the nozzle throat, and so will affect the character-

istic velocity c also. It is significant that where exact formulations of

two-phase flow problems have been carried out (e.g. Marble E 3] ) these have

concentrated on calculating the reduction in specific impulse, combining Cf

and c,.

5 CONCLUSIONS

This memo has shown that the value for the ideal, "one-dimensional" vacuum

thrust coefficient is the same when calculated by a momentum balance or by a



UNLIMITED

Spressure distribution method. Investigation of the various losses suggests

that the real thrust coefficient can be calculated from:

c it[,Cv+( Pe Ae-] Pa A e
Cf nd  C + A, - Po A

where nd is the divergence loss efficiency

nt is the two-phase flow loss efficiency, and

nf is the skin-friction loss efficiency.
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Nomenclature

A conduit cross sectional area

A A cross sectional area at stagnation

A nozzle exit area
e
A, throat area

a local speed of sound

a speed of sound at stagnation
0

a* speed of sound at the throat

c, characteristic velocity

F thrust

ltotal mass flow rate

p pressure

PO stagnation pressure

exit plane pressure

Pa ambient pressure

R gas constant per unit mass

r local nozzle radius

T absolute temperature

T stagnation temperature

u local gas velocity

ue exit plane gas velocity

u4. throat gas velocity

Y ratio of specific heats

dimensionless velocity lag parameter

nd  divergence loss efficiency
Tnf skin friction loss efficiency

nt two-phase flow loss efficiency

Cdimensionless thermal lag parameter

p local gas density

PO stagnation gas density

p* gas density at throat
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Non-dimensional numbers

Cf thrust coefficienct

Cfv thrust coefficient in vacuo
Cf skin friction coefficient

Cfe skin friction coefficient at exit plane

M Mach number

nozzle entry Mach number

Me Mach number at exit plane

R ex Reynolds number based on distance down the flow
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