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I INTRODUCTION

Boundary value problems in field theory, including those of the

electromagnetic radiation from antennas, are conveniently expressible in

the form of linear integral equations. It has become customary to solve

these equations using the so-called "method of moments" (Ref 1). This

method consists of expanding the unknown field function as a linear

combination of suitably chosen functions and taking the integral average of

the resulting form of the integral equation with each member of the set of

functions (or sometimes with each member of another set of functions). The

integral equation then reduces to a fully-determined set of linear

simultaneous equations in as many unknown coefficients as there are functions

in the set (if 2 sets of functions are used there should be the same number

of functions in each set).

In principle, the solution of a fully-determined set of linear

simultaneous equations is an elementary problem. It is known, however, that

the number of arithmetic operations required to solve exactly N linear

simultaneous equations in N unknowns is proportional to N3 (for large N),

and if N is allowed to increase substantially beyond about 100 the solution

time rapidly becomes intolerably long except on very fast computers.

Moreover, the accuracy of such a calculation is limited only by the

precision with which the coefficients are represented, so that the solution
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may be given to 10 or 20 significant figures although all but the first 3

or 4 of these are invalidated by the inaccuracy of the physical model and

the mathematical approximations employed.

The use of an iterative method of solution addresses both these

objections. As will be shown later, the number of arithmetic operations

required to perform one iteration on an N x N matrix of coefficients is

approximately N 2 , and so the solution time can in principle be substantially

reduced if the number of iterations required is at least several times

smaller than the order N of the matrix. This is generally possible whenever

the solution is not required to attain great accuracy, which is precisely

the case here. This paper describes an iterative method using banded

matrices which, unlike the methods commonly used, does not rely on diagonal

dominance in the coefficient matrix, but only on dominance by an arbitrarily

wide band of diagonals centred on the principal diagonal.

2 THE ITERATIVE PRINCIPLE

The application of iteration to the problem of solving N linear

simultaneous equations in N unknowns is most conveniently described in the

notation of matrix algebra. Let the system be represented by the matrix r
equation

Ax = f (i)

where A is an N x N matrix of coefficients and x and f are N x 1 matrices

(N - dimensional column vectors) representing the unknowns and the right-

hand sides of the equations, respectively. The iterative principle is

applied to this system by separating the matrix A into 2 parts, one

containing most of the large elements of A so that it will dominate the other

part. If we refer to the parts as the large and the small part, denoted by

AI and A, we then have

A = AI + As or (A + As ) x = f from equation (1), so (2)

we may iterate using the equation

A1X(i) = f - A sx(i-1) (3)

Ci) .th

where x(i ) denotes the i approximation to the exact solution x of equation

(1).



We begin the mathematical analysis of this process by deriving the

condition for it to converge. Let the error of the ith iteration be denoted

by the vector e (i), thus

e (i )  x (i) -x (4)

Then we have

e ( i )  xMi )  x A 1-  (AIx(i) - Ax) - A1  (f - A x U -1)  Alx)

from equation (3)
-l(i-i) AX

A-((A + As)x - Asx -A 1 X)

from equation (2)

= Al-l (As(x - (i-l)

=- 
1 A se(i-l)

from equation (4), and so

e ( i )  A - AA ie(°) (5)

It then follows from standard results in matrix theory (eg Ref 2, pp 111-112)

that the necessary and sufficient condition for e(i) to tend to the null

vector as i tends to infinity is that the moduli of the latent roots of the

matrix (- A-1 A s) should all be less than unity, and that the convergence is
ultimately of the type normally called linear (the number of correct

significant figures in x(i) increases linearly with i) since e (i ) and

e (i-l) satisfy asymptotically the equation

e(i) e(i- 1 )(6
e M e (- (6)

where the scalar A is the latent root largest in modulus of the matrix

(- A I-IA s). This dependence on the latent roots of the matrix (- A-1 AS)
shows why the parts of A should be "large" and "small" to bring about

convergence. We can also see from equation (5) that the convergence or

otherwise of the sequence of vectors e(i) does not depend on e(o), so if an

iterative process of the kind represented by equation (2) converges at all

it will do so from any starting point.
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3 BANDED MATRICES

If the iterative method is to he practical, equation (3) must be

economically soluble at each iteration, so the implied operation of

inverting A1 must be arithmetically much quicker than the implied operation

of inverting A to solve equation (1) directly. This is commonly ensured

by making A triangular or diagonal, as in the Gauss-Seidel and Jacobi methods

(see Reference 2, p 179 et seq, for a description of these), and the

algorithm for solving equation (3) is then a very simple one. Unfortunately,

both these methods diverge in general unless the matrix A is diagonally

dominant, and, although matrices arising out of antenna modelling problems

usually have their largest elements on their principal diagonals, the other

elements are not usually sufficiently relatively small.

The technique described in this paper addresses this problem by making

the matrix A a banded matrix; that is, a matrix which has null elements

everywhere except on the principal diagonal and on a number of neighbouring

sub-diagonals and super-diagonals. (This idea is presented in the paper

cited as Ref 3, on which this work is based.) It is known (Ref 2, pp 17-18)

that any square matrix may be resolved into a product of a lower-triangular

matrix and an upper-triangular one, provided that the square matrix and all

its principal sub-matrices are non-singular. In antenna modelling it is

generally taken as an article of faith that the matrix of coefficients

corresponding to an antenna will be non-singular if the exciting frequency

does not correspond to any of the antenna's free resonances, and that at the

free resonances no unique solution is possible anyway (ignoring the

difference between the free resonances of the antenna and those of the model

of the antenna). It is then argued that, since all the principal sub-matrices

are the matrices associated with "sub-problems" (problems obtained by

omitting some of the parts of the model), they will also be non-singular; and

that the banded matrix A and its principal sub-matrices are non-singular,

since they are obtained from the full matrix A and its principal sub-matrices

by simply ignoring some of the smaller interactions between parts of the

model. This argument is patently unreliable, but it appears to be justified

in practice. Now, when the banded matrix A is so chosen that the number of

sub-diagonals is equal to the number of super-diagonals (the common value

being, M, say), it turrns out, as remarked in Ref 3, that the triangular

matrices into which A may he resolved are also handed and have the same

bandwidth; that is, the lower-triangular matrix has nuills everywhere but on
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the principal diagonal and on the M neighbouring sub-diagonals, and the

upper-triangular matrix has nulls everywhere but on the principal diagonal

and on the M neighbouring super-diagonals. As the matrix of coefficients A

is roughly symmetrical (in a Zo.od model, the action of part i on part j will

be approximately equal to ;hat of part j on part i, on account of reciprocity)

it is acceptable and, indeed, logical to choose A such that the numbers of

sub-diagonals and super-diagonals are equal. Consequently, resolving A1

into a product of banded triangular matrices enables equation (3) to be
solved quickly at each iteration; the resolution only needs to be done once

and is arithmetically much quicker than resolution of a full matrix of the

same order (as will be shown), and the solution of equation (3) becomes then

merely a matter of forward and backward substitution, made even quicker than

usual by the presence of extra nulls in the triangular matrices.

4 THE TRIANGULAR DECOMPOSITION

The discussion in reference 2 (pp 17-22) on triangular decomposition

shows that it has a certain arbitrariness; there is, essentially, one degree

of freedom in each row (or each column) of one of the triangular matrices,

or the degrees of freedom may be shared between them. This is a consequence

of the fact that the 2 triangular matrices between them contain (N2 + N)

non-null elements constrained only by the (N2) elements in the original N x N

matrix, so that, in principle, we may choose N elements of the triangular

matrices to have any values we please. In practice, it is found that the

algorithm for determining the elements of the triangular matrices "grows"

outwards from the principal diagonals of these matrices, and it is convenient

to assign values to all the elements on one of the principal diagonals;

usually they are all made unity. In the present application this is not very

satisfactory, because the near-symmetry of the matrices A and A1 means that

the triangular matrices into which A1 is resolved will have much the same

internal proportionalities (the discussion in Reference 2, pp 142-147, shows

that for any symmetric matrix there exists a decomposition into essentially

equal triangular matrices, transposes of each other) but will be markedly

different in their actual values, which may lead to rounding errors. This

difficulty has been removed by adopting a triple decomposition, setting every

element of the principal diagonals of the triangular matrices to unity and

inserting a diagonal matrix between the 2 triangular matrices; that is,

A lower triangular with da onal upper triangular with(

S\unit principal diagonal)diagonal (unit principal diagonal/)
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In this decomposition, the 2 triangular matrices are now comparable in size

whenever A is near-symmetric, they are still banded and of the same band-

width as A whenever that matrix is banded, and every element in the

decomposition that has not already been specified as unity or null is

uniquely determinable from the law of matrix multiplication. The uniqueness

of this triple decomposition is proved in Appendix A.

5 THE DETERMINATION OF THE ELEMENTS

We will write the decomposition we intend to make, following equation (7),

in the form

B = LDU (8)

and particular elements of these matrices will be denoted by the correspond-

ing small letter with suffixes indicating the row and column, eg b.. is the
.th th 1

element in the i row and j column of B. (A1 has been replaced by B

merely to make this convenient notation possible.) We now apply the law of

matrix multiplication to derive an expression for each element in the product

LDU, which equation (8) demands shall be equal to the corresponding element

in B. We have

(1d) ij I _ ik dkj = lijdjj

k=l

since the matrices are of order N x N and D is a diagonal matrix: similarly

N
(du E d ikUkj = i.ui(du)i j  d..u.. ~ i

k=1

Hence we may write

N N
(ldu) = Y' (id)r.Uis SE 1 .d. .u.

r1IS( ri is 1 ri ii is
i'=l i=l

N N

= i (du) - E 1 .d. .u.
i=1

verifying the associative law of matrix multiplication.
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Consequently we have

N
b l' I.d. .u.

rs ri ii is (9)

We now verify that banded L and U matrices give rise to a banded B matrix

of the same bandwidth. L is a lower triangular matrix with only M non-null

sub-diagonals, and U is an upper triangular matrix with only M non-null

3super-diagonals; so we have

1 = O for r < s, i = O for r > s + M
rs rs

u rs = 0 for r > s, ur = 0 for r < s - M. (10)

From conditions (10) we obtain 1 ri = 0 for i < r - M and u. = 0 for i > s;
rl is

N
consequently all terms in the sum E 1 .d. .u. will contain a null factor

i=l ri ii is

and vanish, making b vanish by equation (9), unless r - M = i • < i = srs man max

or r - s + M. Similarly we have I . = 0 for i > r and u. = 0 for i < s -M;i is

so all terms in the sum in equation (9) will contain a null factor and

vanish, making b vanish, unless s - M = i . < i = r or r > s - M.rs nan max
Hence B must have null elements everywhere except on its principal diagonal

and on the M sub-diagonals and M super-diagonals closest to its principal

diagonal; that is, it must be a banded matrix of bandwidth M (or less).

This does not, of course, prove that every such banded matrix possesses such

a banded decomposition; indeed, no such proof can exist, since it is perfectly

possible for a banded matrix to be singular or to have singular principal

sub-matrices. It can however be proved that, if the banded matrix and its

principal sub-matrices are all non-singular, a banded decomposition exists,

which must then be the unique decomposition; for the algorithm we are about

to derive will always produce a banded decomposition provided that note of

the diagonal elements of D vanishes, and it is shown in Appendix A (using a

proof based on that of the triangular decomposition theorem in ref 2,

pp 17-20) that this condition is satisfied whenever the banded matrix and

its principal sub-matrices are all non-singular.

It remains only to obtain the unspecified elements of L, D and U, which

is done by reversion of the set of equations represented by equation (9).
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6 THE REVERSION ALGORITHM

We begin the determination of an algorithm by expressing somewhat more

compactly the information contained in equations (9) and (10) together with

the conditions for the bandedness of B; thus:

Known Unknown

b (r -s > M) = 0 1 (M >ir - s>O)

rs 
rs

b (r -s <- M)=0O u (~ M r -s <O)

rs 
rs

1 (r -s>M)=0 d (r- s =O)
rs 0)

1 r-s <O) =0
rs

1 (r-s O) =
rs

Urs r-s M 0) = 0

ur (r - s a- M) = 0

ua (r - f w) = 1

d Cr - ' 0 ) = 0
rs

Determining, Equations

N

b (>r- s - =) = S 1.d..u.
brs01- r -s r (r Ms ii~is

(note that the number of determining

equations is the same as the number of

unknown elements)

We introduce the two dyadic arithmetic operators i and , which are defined

as follows :

x y = x if x 7"y or y if x < y, ie the greater of x and y

x 4- y = y if x "y or x if x y, ie the lesser of x and y.

The summary just given then becomes, on incorporating the known nulls into

the equations for the unknown elements,

r4s4N

br( CM r - s - H) -- (1ridii.U.s) (11)

i= 1 1 (r-M)+ (s-M)



(Note that the operators + and + are associative and commutative.) These

equations are most simply reversed by introducing the auxiliary quantities

f defined by
rs

f =1 d
rs rs ss

then we obtain, after some simple algebraic manipulations,

s-i (+I)

f rs b (friuis) (s i(r - M),...., r - 1)

i=l (r-M)

r-1

d =b - ' f.u)
rr rr (friUr)

i= I + (r-M)

r-l1](1

/ f d (s r + 1,. , N+(r + M))
rs =[rs (friUis rr

i=I +(s-M)

(+i)

Irs f rs/dss (s = lt(r - M),...., r - 1) (12)

b
where the value of E ( ) 0 whenever b < a. It will be seen that

i=a
this algorithm is complete (every one of equations (11) is used, and every

unknown element is calculated), consistent (no element or auxiliary quantity

is calculated more than once, or referred to before it has been calculated),

and will always succeed (the divisions in it are always permissible because

none of the diagonal elements of D can vanish under the usual conditions, and

all the other operations are unconditionally permissible). It can also be

seen that the number of arithmetic operations required to perform the

decomposition is approximately MN2 for M << N; this result, quoted in

Reference 3, was confirmed after the algorithm had been programmed, by

putting counting variables in the loops of the program.

7 THE IMPLEmENTATION

Equations (8), (7), (3) and (12) now enable us to write

L IDIx = -A s x(-) (13)

.. .... ... . ---. .. m., 1-- 1 5 n , m~m i m~N



where the elements of LI, D1, U1 and As are all known. If we now determine

by forward substitution the column vector z
(i ) such that

LIz W = f - Asx (i-) (14)

and then determine by division the column vector y(i) such that

ci) (i)
Dy = z (15)

we then obtain by taking equations (13), (14), and (15) together the result

(G) (i)
Ulix = y (16)

which may be solved for x (i ) by back-substitution. The existence and

uniqueness of solutions to equations (14), (15) and (16) is guaranteed by

the fact that the 3 coefficient matrices LI DI and U I are non-singular

whenever the sufficient conditions for the triple decomposition of A1 are

satisfied.

From the standpoint of pure mathematics, this completes the problem;

we have specified an algorithm and determined the conditions under which it

can be applied and will converge. To complete the practical solution,

however, it is necessary to provide a convergence criterion, which is

usually based on the value of the residuals in the equations as expressed

by the vector Ax i ) - f; from equations (1) and (4) this vector may be

written as Ae , and we can then use the ratio of the magnitudes of the

vectors Ae (i ) and Ax ( f) as an estimate of the ratio of the magnitudes

of the vectors ) W = x(i) - x) and x. Unfortunately this estimate is not

necessarily a good one if the matrix A is ill-conditioned (ref 2, pp 103

et seq). Accordingly, our implementation of the method works by iterating

until the error estimate is less than some chosen small number (eg 10- 2 or
-3

10 ) and then taking 2 more iterations and using the 3 sets of results so

obtained to obtain a final refined result, as follows. If the error in the

3 sets of results is determined solely by the latent root largest in modulus,

the differences between them can be manipulated to eliminate the error

altogether, since the errors will be decreasing geometrically. This

assumption is, of course, never rigorously true, and will fail completely

if there happen to exist several latent roots with the same largest modulus

but with diff-rent phases; hut in practice it is found to give a substantial 6

increase in accuracy, up to an order of magnitude in some cases. The

lo



calculation which obtains the final result by "eliminating" the error also

provides us with the value of the convergence rate, and this value will in

general be different for each component of the solution vector; hence the

consistency (or otherwise) of the complete set of convergence rates affords

a useful test of the assumption of geometric convergence, and if a

particular run fails to converge we have information from which to estimate

the increase in bandwidth required for convergence.

8 PROGRAMMING DETAILS

The algorithm has been implemented in Fortran IV, following preliminary

experiments ing Basic, and the Fortran program listing with explanation is

presented in Appendix B. It is assumed that the elements of A will be helds

in backing store, but the elements of A must be kept in main store because

the decomposition algorithm involves reading A1 both by rows and by columns.

This restriction has prevented full testing of the program to date, as

practical problems with vehicle antennas involve AI matrices which are too

large for 32000 words of main store (the maximum allocated to user programs

on many mainframe computers, eg the ICL 1900 series under George III);

however, tests with artificially constructed matrices, and with simple but

genuine problems, have shown that the method does work and has been implemented

correctly.
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APPENDIX A

PROOF OF THE TRIPLE DECOMPOSITION THEOREM

It is desired to prove that, if a square banded matrix and all its

principal sub-matrices are non-singular, that matrix may be written as the

product, in order, of a lower-triangular matrix of the same bandwidth and

with unit diagonal elements, a diagonal matrix with no null diagonal

elements, and an upper-triangular matrix of the same bandwidth and with unit

diagonal elements; and that this decomposition is unique.

From reference 2, pp 17-18, we can see that an arbitrary square matrix

which is non-singular and has all its principal sub-matrices non-singular

can be written as the product, in order, of a lower-triangular matrix with

unit diagonal elements, a diagonal matrix, and an upper-triangular matrix

with unit diagonal elements; that this representation is unique; and that

the diagonal elements of the diagonal matrix are given by the equations

I AiI JA I
dll IAll , dii (I < i < N) - , dNN =-

IAi-l I IAN-1 I

where A is the matrix being decomposed, N is its order (strictly N x N),
th . .. th

A. is its i principal sub-matrix and d.. is the element in the i rowi ii

and i th column of the diagonal matrix in the triple decomposition of A.

Since A and all the A. are non-singular, it follows from these equationsi

that all the d.. are non-zero. It therefore remains only to prove that the
Ii

unique decomposition of a banded matrix A involves triangular matrices of

the same bandwidth, and an implicit proof of this is furnished by the

algorithm in the main text. Since this provides a triangular decomposition

(subject to the condition that all the dii are non-zero, which we have just

verified), it provides the (unique) decomposition, and the decomposition

involves banded triangular matrices of the appropriate bandwidth, which

completes the proof.
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APPENDIX B

THE FORTRAN PROGRAM LISTING, AND ITS EXPLANATION

The program listing presented here divides into 4 sections: A is

concerned with declarations, initialisation and input of the coefficients

and righthand sides; B consists of the algorithm for decomposing the banded

matrix into its lower-triangular, diagonal and upper-triangular components;

C contains the start of the iteration, and its main loop; and D contains the

iteration control code, the final refinement of the results and their

output. These sections will now be explained in detail (we shall use the

convention that, eg line A-31 refers to the 31st line in section A).

In line A-l, the workspace arrays are declared. The sizes given allow

for a maximum matrix order of 69 and a maximum bandwidth of 20 (correspond-

ing to 41 non-null diagonals). A is a scratch array, which normally holds

the row of the main matrix currently being operated on; B is the array of

righthand sides; Q holds the non-null coefficients of the banded matrix,

suitably sheared in column index so as to convert a parallelogram into a

rectangle. The variablesQE, QEl and QE2 in line A-2 are scratch variables,

as are QR, QI and QQ in line A-3; QR and QI are generally used to hold the

real and imaginary parts of QE. The variable SU1BB in line A-3 is used to

hold the square of the magnitude of the vector of righthand sides B, which

is computed later. The arrays FMTIN and FMTOUT in line A-3 are used to hold

the object-time formats for input and output, respectively; the variable

ERROR in this line holds the small number against which the error estimate

is compared after each iteration. The variables N, MWIDTH, ITER and MAX

in line A-4 hold the order of the matrix (strictly this is N x N), the

bandwidth, the current iteration count and the maximum number of iterations

allo.ed. The variables 1, J, K and L in this line are used as indices for

loops, and the 14 variables declared in line A-5 are scratch variables (used

mostly for holding variable upper and lower limits for loops). The variable

DONE in line A-6 becomes true when the iteration is complete, and the

variable LARGER remains true as long as the current error estimate exceeds

the value held in ERROR (as will be explained in context, these 2 conditions

are not complementary).

In lines A-7 to A-12, the object-time formats, the matrix order, the

permitted error, the permitted number of iterations and the bandwidth are read

B.1
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in, and the tape or disc used for out-of-core storage is initialised. In

lines A-13 to A-26, the coefficients and the righthand sides are read in,

and the coefficients which comprise the non-null elements of the banded

matrix are written to the array Q (the indices are adjusted so that the

first non-null element in each row of the banded matrix is placed in the

first element of the corresponding row of Q); the coefficients are then

written out to a scratch storage device. In lines A-27 to A-37, the scratch

storage file is closed and reset (for the first iteration), the square of

the magnitude of the vector of righthand sides is computed and stored in

SUMBB, and the vector of righthand sides B is copied into the arrays X and

XB for later use.

Section B consists essentially of one set of nested loops, in which the

algorithm described in the section "The reversion algorithm" is executed.

The number of elements in the matrices of the triple decomposition is the

same as the number of elements in the original matrix, if predetermined unit

and null elements are left out of account, and the algorithm is so arranged

that each element generated in the decomposition can over-write an element

of the original band matrix stored in Q; in most cases this over-writing

is performed more than once, the intermediate values being used in inter-

mediate calculations. Each of the non-predetermined elements in the

triangular and diagonal matrices is sheared in column index so as to preserve

rectangular nature of the array Q; the result of this is that the diagonal

elements of the diagonal matrix lie in the (MWIDTH + I)th column of Q, and

the non-predetermined elements of the triangular matrices are positioned

touching on either side (lower-triangular on the left, upper-triangular

on the right). With these facts borne in mind, it can be seen that section B

is simply a translation of the reversion algorithm into Fortran.

Section C begins by initialising several variables (lines C-1 to C-5)

and then jumps from line C-6 to C-31, because the first part of the

iterative process is omitted on the first iteration (this is equivalent to
(o) x(-1)

taking x and x as null vectors). In lines C-7 to C-27 we compute the

elements of (f - A x (i-0) and store them in the array X (lines C-9 to C-21),

and using the array XB which contains (f - As x ) or (A x ) (see

equation (3)) we compute, in lines C-22 to C-26, the square of the magnitude

of (Ax ( i - l) - f) (using the consequence of equation (2) that (Ax(i-l) - f) a

(A1x (i-l)) - (f - AsX(i-1))) and copy array X into array XB, which is the

B.2



reason why XB contains (f - A x (i - 2) ) when it is used the next time round.

In lines C-28 to C-30 we compute the ratio of the magnitudes of the vectors

(Ax(i-l) - f) and f, compare the ratio with the permitted error held in

ERROR, set the logical variable LARGER according to the result of the

comparison, and reset the file of coefficients for the next iteration.

The first and subsequent iterations now join together, with array X

holding the vector (f - A x(i-l)); and the rest of section C is simply theS

solution of equation (13), using the derived equations (14), (15) and (16).

In lines C-31 to C-41 we solve equation (14) by forward substitution to find

the vector z(i); in lines C-42 to C-44 we solve equation (15) by division

to find the vector y(i) ; and in lines C-45 to C-56 we solve equation (16)

by back-substitution to find the result of the current iteration, the

vector x(i) We then update the iteration count and output its value and the

values of 2 elements of x(i), as a check on the progress of the iteration.

Lines D-1 and D-2 contain tests for the completion of the iteration.

Normally both these tests will fail, and control will pass to line D-3; in

lines D-3 to D-6, the solution just computed will be copied into the array

reserved for the previous solution and control will be returned to line C-7

where the next iteration begins. However, if on the previous iteration (not

the one just completed but the one before that) the error estimate has

achieved or improved on the permitted error, the test in line D-2 will

succeed and control will pass to line D-7; this will also happen if the

iteration just completed has brought the iteration count up to the maximum

allowed number. In lines D-7 to D-12, the previous solution and the new

solution are both moved one level to become the previous-but-one solution

and the previous solution (respectively), the logic variable DONE is set to

indicate that the coming iteration is to be the last one, and control is

returned to line C-7 for this last iteration. When it is complete, control

arrives at line D-I as usual, and this time the test in this line is

successful and control passes to line D-13. Assuming that by this stage the

error in each of the unknowns is determined wholly or mainly by the latent

root largest in modulus of the iteration matrix (- A-1 As), we may write

corresponding elements of the 3 solutions we now have as (a + 0) (previous-

but-one), (a + RX) previous) and (a + 812) (present), where a is the true

value and A is the latent root largest in modulus. In lines D-15 and D-16

the values of (UA2 - A) and (UA - ) are computed and assigned to the
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variables QEI and QE2 respectively. If ( - b) is found to be zero within

the resolution of the computer, indicating that a is essentially zero or X

is essentially unity, the appropriate element of array A is zeroed (as a

marker) and the present solution in array X is left unchanged (lines D-17 to

D-19); this is consistent with the fact that if H - 0 or A = 1 the sequence

of solutions (0 + I), (a + 1 C), (it + Iz 2 ) cannot be improved on. If

(i-A - B) is not essentially zero, control passes from line D-17 to D-20, and

in lines D-20 and D-21 we then compute A and a and assign them to the

appropriate elements of arrays A and X, using the identities X -
(6 2 _ )/( - ) and a - (a + BA2 ) - ((2 _ x))2 /WA2 _ BA) - (A - M).

Finally, in lines D-23 to D-26 we write out the results and terminate the

program run.
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SUPPLEMENT To APPENDIX It THE FORTRAN PROGRAM LISTING PART A

1 * COMPLEX A(69) ,D(69) ,X(69) ,XLAST(69) PXLAST2(69) .XE(69) ,Q(69t41)
2. COMPLEX GErQElvQE2
3. REAL FMTIN(8) VF MTOUT(8) ,ERRORvSUMIE4,ROIvQUO
4. INTEGER N,,mwirt'THITERvMAX, Iv,JrKvL
5. INTEGER I1,J1, J2,-'J3,K1,tS2,MlM2vM3lIM1,JMIKMPtKMlNM2
6. LOGICAL flNE.,LRGER
7. READ (500,1000) FMTIN

8. READ (500Y1000) FMTOUT
7. 1000 FORMAT ((6Xt8AB))

10. READ' (500P1010) NpERRORvMAXvMWIDiTH
11. 1010 F ORMAT (14tFI0.092I4)
12. REWIND 25
13. DO 20 I=19N
14. READ (550) (A(L.), L=IPN)
15. READ (500PFMTIN) (P(L.)s L=IPN)
16. J1=I-MWIE'TH
17. TM1=1 11
18. IF (Ji .LT. 1) J1::!l
19. J2=I+MWIDTH
210. IF J2 .GT. N) J-'=N

21. Do 10 J=JlJ2
22 *JMI.=IM1*J

2 4. to CON T INUE
*25 . WRITE (25) (AU..)t L=lvN)
26. 20 CONTINUE
27. ENDrILE 25
268. REWIND 25
219. SUMIBF=0.0
30. DIO 30 I=1.N

31. QE=B(I)
32. OR=REAL(UE)

33. QI=AIMAG(cQE)
34. sUMBBE=SUMBBE+pQRoR*I
35. (=E
36. XEI (I) -70E

37. 30 CONTINUE



SUPPLEMENT TO )pPENDIX B. THE FORTRAN PROGRAM LISTING PART B

1. M* =MWIDTH+1

2. DO 170 I=IN
3. JI-MWIBrTH
4. IF (JI .LT. 1) J1~1

5o IMI=MI-I
6. DO I0 J=JlI
7, N2=J.-1

so IF (Ji oGT. K2) GOTO 110

9. JMI=IMI+J
too KM=MI1+J
II CIE=G(IJMI >

12. [0 100 K=J1,NK"

13. KMI=IM14-K

14, KM'=KM"K
15. QE=0E-Q(IKM)*Q(Kt KM2)

16. 100 CONTINUE
17. Q( I ,)MI)=OE

18. 110 CONTINUE
19. J3=IfMWIE'TH
20. IF (J3 .['T# N) J3=N
21. J2= I+ 1

23. IF J2 .GT. J3) GOTO 150
24. iO 140 J=J2,J3
25. tK1J MWILITH
26. IF (l ,LT. 1) Kl-!
27. .JMI=IM1+J
28. N M=MI+J
29. L[.W (I, JM1)
30. IF (KI .GT. K2 COTO 130
31. DO 120 K=KI,1K2

32. IM =IMI K
33. NM2 = KM- K

34. OEE-( I, KM I ) * (K KM.)

35. 120 CONTINUE
36. 130 0(I,JMI) =0E/O(l . M I )
37. 140 CONTINUE
38. 150 IF -11 .,1. K2) GOTO 170
39. DO 1.60 J=J=- ,P2
40. .MI=IM1+J
41, 0( IJMI )--( I ,JM1 ) /Q(JMI
42. 160 CONTINUE
43. 170 CONI NUE



SUPRI.FMENT TO APPENDTX B -- THE FORTRAN PROGRAM LISTING; PART C

1. ITER=0
2. L.ARGER=.'TRUE.

3. DONE=. FAL3E
4. M2=Ml+l
J. M3111 +MWIrTH
6* GOTO 260

'1000=0.0
a. DO 250 1I P N
9. OE=14(I)
10, READ (25) (A(L)v L-1,PN)

12.IF (,Jl .T. 1) GOTD 220
13. rio 2110 J=1,J1
14. OE=QE.A(J)*XLAST(J))

1. 210 CONTINUE
16. 220 J2'=I+MI
17. IF (J2 .61. N) 5010 240
1.. rio[1 230 J=J7'rN
19. 0E=Q[ A(J) *XL.ASI (J)
20. 230 CONTINUE:
21. 240 X(I)=OE

22. fJE:=XE4(I) OF-
23. OR=REAL('ifl
24. 0I=AIMAGCQF)
'C. J* 0Q=00+OR*OR+OT*G;'
26. XEt(I)=X'.I)
27. 250 CONTINUE

28. QSQRT(00OISMhi'P)
29, LARGER = 0 .G1, F *Ofl'
-50. REWIND 2E5
31. 260 10 .280 I-2,rt

32.PE=X(I)
33. J1=M-I
.34. IF (JI .T. 1) J1=1
35.I1IM
.36. ['0 270,, i~j vMW mw i i
,37. Jm1=Im1lfJ
38. OE=OE( .)X(JM
.19. 270 CONTINUE.
40. Xl-O

41. S 0 C ONT IN U L
42. riO 290 UI1N
43. K ( I )::X ( I) J) ( I M I
44. 290O CON71NUC-
45. 110 310 1i-.'N
46. l1=Nfl f
47. QE X( I)
40. .J3=I+MWI'!Il
49. IF (J3 .61. M3) J3=M3

1:0 6 1m111--MI
51. 11O 300 J=M2v,)3

53. or,=oF ri11,J)*x(Jml)
54. 300 k.0NTINUL

i.. 10 CON TI NUt
5/. ITER:.ITUR41

Se8. WRIT[' (sc,FMT0Ul) 1LERX(1)pX(N)



SUPPLEMENT TO APPENDIX B - THE FORTRAN PROGRAM LISTING PART D

1. IF (DONE) GOTO 430
IF ((.NOT. LARGER) *OR. (ITER .EQ. MAX)) GOTO 410

3. DO 400 I=IN
4s XLAST ( I ) = X (I )

5. 400 CONTINUE
6. GOTO 200
7. 410 DO 420 I=I,N

8. XL..AST2 (I)=XLAST(T'l )
9. XLAST( I)=X(I )

10. 420 CONTINUE
11.D DON E-. TRUE.
12 .. GOTO 200
13. 430 DO 460 I=I,N
14. QEX(I)
15. .QEI=CIE.XLAST(I)
16. QE2=QE."QE 1 --XLAST (I)
17. IF (CABS(QE2)) 4509440,450
Ia. 440 A(I)=(O.OO.O)

19. GOTO 460
20. 450 A(.I ):=:QEI/0E2
21. X(1) = LE -- QEI*(* EI./(QEI-..E2))
2- 460 CONTINUE
23. WRITE (600,1020) MWIDTH,ITERMAXERRORPO
24, 1020 FORMAT (IFlI,31t5,.:X,2(2XE1.4.7))
25. WRITE (600,FMTOUT) ((LA(L.),X(l.)), L=IN)
26, STOP
27. END

i
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