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DYNAMIC PRODUCTION NETWORKS

by

Ronald W. Shephard

1. INTRODUCTION

Production systems are typically an interacting collection of production

activities the outputs of which may be intermediate products serving as

inputs for some activities of the system or final products, or both.

The flows of intermediate products may be represented as arcs of a linear

graph with activities represented by nodes. In such terms production may

be modeled by a directed network connecting activities along which system

exogenous inputs, intermediate and final products flow dynamically. The

developments to follow are addressed to this structure of a dynamic produc-

tion correspondence. See Shephard/Flre (1980] for the abstract model of a

dynamic production correspondence relating histories of exogenous inputs

to histories of net outputs without consideration of the network structure

and intermediate products.

In the development of the abstract structure of a production network

as a dynamic production correspondence, certain network axioms are needed

to characterize the role of intermediate products, and to verify that the

correspondence between dynamic flows of network system exogenous inputs

and final outputs obeys the axioms taken for such systems and used for the

network activities in treating intermediate products as activity exogenous

inputs.

With this theoretical foundation one may progressively develop

"ACTIVITY ANALYSIS" dynamic models from abstract to computational forms.

The computational dynamics for production networks is an interesting de-

parture from the superficial practice of indexing variables by time and

WE]
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writing down the Hamilton-Jacobi differential equations for minimizing

or maximizing some statement for an unstructured production model. It

would seem that representing production dynamics economically by mechanical

analogies is an idle practice, despite the mathematical artistry of the

coordinate and variable substitutions involved in so representing the

equations of motion of an arbitrary point mass system subject to forces,

inertia and equations of form restricting motion.

In the discussion of computational dynamics for production networks,

discrete time points will be used with step functions for histories.

This approach enables use of the techniques of mathematical programming

for practical purposes.

For acyclic production networks a dynamic computation of a feasible

output trajectory will be outlined to illustrate the evolutionary

character of "motion" for production networks, and to show possibilities

for Time as well as Factor Substitution in production, an added dimension

for dynamic economics.
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2. ABSTRACT STRUCTURE OF DYNAMIC PRODUCTION NETWORKS

Consider a production system with N elementary activities and a

final activity (N + 1) for recording final output rate histories. All

histories are taken as time rates. As notation, the source of exogenous

input rate histories is denoted by A0 . Thus the production system

consists of elementary activities A0 'A1 'A2 ' " '+1"

The primitive elements of the goods and services related to this

network of production activities are time rate histories of system exogenous

inputs, activity outputs, intermediate product transfers and final outputs,

each defined on the nonnegative real line R+ . Each history is an

element of (L.)+ , i.e., the nonnegative domain of equivalence classes

of bounded and measurable real functions defined on R+ . (Two functions

are equivalent if they differ only on a subset of measure zero.) The norm

Ijfli of a function f e (Lao)+ is taken as the essential supremum.

Addition, and multiplication of histories by a positive real number, are

taken pointwise in time.

As notation:

x - (x,12, .. xn) e (L ) is a vector of input rate histories

for n system exogenous inputs (factors).

- i ... , Vm) . (L )m , (i - 1,2, ..., N) are vectors of

net output rate histories for the N activities of the network.

- , ... , Jj ( %)m , i - 1,2, ..., N , are vectors

of transfer rate histories from Ai to A as intermediate and

final outputs for j - 1,2, ..., N , and j - N+1 respectively.

Lm
I(UlU 2  . um )+ is a vector of net output rate

histories for the production system.
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L m

A common space L(.)+ is taken for all activity output rate histories,

transfers of the same and network output rate histories. Not all component

histories of Vi , Vij , u need be positive on subsets of I of

positive measure.

IlxIl "Max IIx i , lvilI -Max IIV kll
i k

1li l 11 Max 11v jl , 1 Ilull _ Ma Iluill
I~j k i

By defining the distance p(f,g) between two histories to be the essential

supremum of If - gf , i.e., p(f,g) - II(If - gI)Ij , the model of produc-

tion is defined by primitive elements in metric spaces. Notions of closure,

convergence and limits for these elements follow naturally.

The activities of the production network each follow net output and

net input dynamic production correspondences defined respectively by:

(x N N Nm
oi ' Vii c (L )n x (L)m _]pi  oi )

Jil J+ Xo £2

N N n x(.)m
j- ''/ 2m V ) () +x(1 ?i,N+l' Vii £ (L.)+ - Ii i , N+l' vij 2

where xoi , i - 1,2, ..., N , is an allocation to Ai  from the vector

x , subject to

N
x 1oi 1 x

iwl

and ' denotes a sunation with th. term for J - i omitted.
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The axioms governing the activity dynamic correspondences may be

found in Shephard/Flre [1980] and will not be repeated here. Since

the activities of the production network are primitive production elements

for the system, they are taken to relate only exogenous input rate histories
(I )

to net output rate histories. They may range from elementary processes to

factories, depending upon the extent of aggregation for the production

system studied.

The production network dynamic output correspondence is expressed by:

m

x (L)+ P 3 (x) c 2

N N
(x) -ue (L)+ : u< V+ i-1 i 1 i  x

(V v Px oi) , P x 1,2, N
J.1 i-1

The production network dynamic input correspondence is expressed by:

L n

u e (L.)+- LIN(u)- x (L )n : u C ](x) 2 +

(N N
LIN(u) x C (,)+ : x > '  iN+ >

i i- o ii i,N+ l

X i L(V ~

In these expressions, the output vector of each activity is taken net

of the use by the activity of its own products. The allocation of the

(1)Here the input rate histories exogenous to an activity may span both
system exogenous inputs and intermediate product transfers.
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total vector x to activities is taken freely disposable, without loss

of generality. Free disposability of activity final products is not

likely to be generally applicable, but is taken so here for simplicity

of presentation. See Shephard [1981 forthcoming] for such complications.

However, input and output histories are not taken freely disposable for

the activity dynamic production correspondences. More on this in the next

section.
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3. NETWORK AXIOMS

It is important to investigate whether the production network corre-

spondences PI and LIN obey the properties (axioms) taken for the dynamic

production correspondences of the activities of the network. The

properties taken for Pi ' Li do not propagate for FIN and LIN without

some properties (axioms) postulated for production networks, since inter-

mediate products are involved. The network axioms are:

]PIA For each component history ui e (L)+ of u e (L.) m

which is not entirely intermediate product, there
n

exists a vector x e (L,,)+ such that u c P1(x) with

luill > 0

PI1.2 For each activity Ai there exists a subset (il, i2, ..., ik }

1 < k < n , of the n exogenous input histories xoi which

is globally essentiaZ and strong UimitationaZl for the output

vector Vi , i.e., x oi has to be essentially positive,

j = 1,2, ..., k , for llvill > 0 , and, if jlxoilX i2 9 ...,

xo 0, B c +R there exists for each Vi a positive scalar

0depending upon B and Vi sc ht~~e(~~,j 12 .,m o l
that (V1) j  0 1j(VO)i J - 1,2, .. ,m) for all

V i oi VX

]PII.2S For each activity Ai , {i 1i2, .. , ik } is taken globaZly

totaZlly eseential and strong norm limitational, i.e., xoij

has to be essentially positive, j - 1,2, ..., k , for any

subset of Vi  to be essentially positive, and there exists

a scalar A depending on B and Vi  such that lviii j A

when l1xoil, ..., Xo ll <B, for all Vi
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P1.3 If u e (L) is sunmable in each component on R+ there

exist xoi , V, 9 1 1,2,..., N , summable in each com-

ponent with oi'l Vji LikiN+l' )7 V i

i1i 1

(N+l) N
Vi- I' V and ' ,N+

J-i i and Vi >u

]PIN.4 If u - Max (Ess Sup {t E R+: ui(t) > 01) < - and

i

x , V1i (i - 1,2, ... , N , J - 1,2, ..., N,N+1) yield

u ,then

SYi (t)  x xi(t) , t C [0, U) ( , ,n
U (i =f 1,2, ... , n)

Yi(t) =0 , t C [u,+-)

w(ij) 0 , t j u-) = 1,2, , NN+

N
PIN.5 For each activity Ai , ViN+l and 'j V are

weakly disposable subvectors of Vi  i.e., if

N i~xi JN

i,N+l' =1 vij ) P4 oi' - Vj) then

N N

12. 1 vii Pi oil ' - i forI'IN+' Jul J-1i

6 C [0,1] , 6 C [0,1]
12 ( N /N

PIN.6 For each activity Ai 9 if oit I' V £ LiVIN+l' V i '

xo , N V ji E Li VN Vij A C l [ ,+-) , Ij C [i,+ )o I' I' I

N
i.e., xo and I' VJ are weakly disposable vectors of

inI

input rate histories.
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P1.7 For each activity Ai if (,N+l' VJ i) oi

N N
V' Vj and IIVi,,+l' 1 iji > 0, there exists for

J-1i

E) E R a positive scalar X, such that

it Vj )~ V. ".11
8 i,N+ ' £J 0 o x li)

1.1 For all vectors V - (V1,V2 , ..., VN) such that u is

obtainable from the related production network, the

efficient subsets

'iE(Vi =~ Ni Vi N Vj L i(V i

N

oi' j i) i (V i)

for o' wi- i

are uniformly bounded.

Concerning the first of these network axioms, since (L.) m is taken

to span all intermediate and final output histories, some component histories

of u may be essentially null. Hence the need for this network axiom.

Axiom P11.2 states that the activities of the network cannot produce net

output without some system exogenous inputs, and if the vector of essential

system exogenous input histories is bounded in the norm, the scaling of each

possible vector of output histories is bounded. The stronger version PII.2S

(2)The sign > means that at least one component is "greater than" on a

subset of i+ of positive measure.
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replaces global essential by global totally essential, and strong limita-

tional by strong norm limitational. See Shephard/Flre [1980] for definitions.

Axiom PIN.3 is a statement for the network correspondence similar to

IL.T.1 taken for the activity correspondences.

Axiom P1N.4 is a statement for the network correspondence like

axiom L.T.2 assumed for the activity correspondences.

Axiom P11.5 permits scaling of activity distributions to final output

independently of the scaling of vectors of intermediate product transfer

histories. A similar assumption is made in P14.6 for vectors of exogenous

input histories and vectors of intermediate product input histories to

an activity.

Axiom PIN.7 postulates that the scaling of a vector of output histories

for an activity may be obtained by the same scaling of intermediate product

input histories while the scaling of exogenous inputs may exhibit decreasing,

constant or increasing returns to scale.

The axioms for dynamic production correspondences require that the

subsets Ei(Vi) be bounded, and the network axiom E1.1 results in this

same property for the production network as a whole.
n Lm

Two topologies are considered for the metric spaces (L.)+ , (L )+

)fl 2m
(L, + , (L) . The norm topology under the essential supremum norm,

and a weak topology for those spaces by price histories taken in L1 .

With the foregoing network axioms, the axioms for the activity

dynamic production correspondences propagate for the network correspondences

IM and 13N. See Shephard (1981, forthcoming]. The closure property P.5

is the only property with complications for showing propagation. Two

alternatives arise:
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P.2S, P.5 (NORM TOPOLOGY) and P.5BlS for the activities, with

P14.2 and F1N.5,

F.2, F.5 (WEAK TOPOLOGY) and P.5BlS for the activities, with

F14.2 and PIN.5.

Regarding the production network efficient subset

E1 (u)Ix E (L)+ : x e ] L(u) ,y WLN(u) for y x

MIN.A implies EIE(u) is bounded. ]E1.1 is required because there are an

unbounded number of ways in which the outputs V i  (i 1,2, ... , N)

may be composed to yield u
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4. AN ABSTRACT ACTIVITY ANALYSIS MODEL FOR DYNAMIC PRODUCTION NETWORKS

In some physical units or dimensionless terms, let z - (z1,Z2, ... ,

zN) c (L.)N  denote a vector of intensity functions, stating for each

activity the intensity of operation. These intensity functions are

-Nbounded by a. vector z c (L.) of nonnegative intensity-bound-functions

expressing the inherent limitations arising from physical limitations

not otherwise reflected by the exogenous service inputs of facilities,

equipment, and also by product design.

Technical coefficients are:

A I, It1 AL2  ... tANJI zR '

1i 1Iailai 2  na I i - 1,2, ... , N a j c L

-I _'M aNIITR

11. a ailai12 a imI , i- 1,2, ..,m a aij E (I.)+

0- i Il 2 ... N11TR

€ i ilci 2 ... c imi , i - 1,2, ... , m , cij e (£) +

i -i iin some units such that zAL , zi F i and zi are time rate

histories of exogenous and intermediate product inputs, and time rate

histories of outputs respectively. Then the production network dynamic

output and input correspondences are:

P)m 0 < z < z , z ,,< x , z(C- > 0,P11(x) - u£(L+ - z z x z - ) 0

u < z¢- F

I '° 1
LI(u)- x (L.)+ 0 z < z ,z - _ u , x> z,+ l
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For these formulations certain assumptions are made concerning the

technical coefficients:

For each activity some exogenous input is required during [0,+-)

except on subsets of measure zero.

Each exogenous input is required by some activity during [0,+-)

on subsets of positive measure.

Each activity can produce some output on a subset of [0,+-) of

positive measure.

Each output is produced by some activity on a subset of [0,+-)

of positive measure.

The technical coefficients aij are merely taken as nonnegative

as stated.

The input and output histories have been taken freely disposable

for simplicity of expression. Extensions for limited disposability will

be given in Shephard [1981, forthcoming].

As abstract statements these two dynamic production correspondences

do not provide one with computational systems, but point the way toward

such dynamic structures for production theory, expressing the inherent

structure of production dynamics.
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5. A COMPUTATIONAL DYNAMICS FOR LEONTIEF-LIKE PRODUCTION NETWORKS

Partition the nonnegative real line into half open intervals

(t-l,t) , t - 1,2,3,....

Take the intensity functions z - (z1,z2, ..., zN) constant on each

interval. Thus among the functions (L)+ only step function intensity

histories are considered. This restriction is natural for a computational

system. The unit of time is arbitrary. In the same way, histories of

system exogenous inputs available will be taken as step functions.

At this juncture it is convenient to introduce more detail than

previously considered. Exogenous inputs may be storable as well as non-

storable, but not both. In order to accommodate this fact the notation

for exogenous input histories is expanded to

x c (L) STORAGE

y (L)n-s NONSTORAGE.

Initial inventories of storable exogenous inputs are included in the

system exogenous input histories

x 1(0) , i - 1,2, ..., s

Concerning intermediate products, initial inventories of the same

are denoted by

v0 , k - 1,2, ..., m

shared by all activities of the network, and capacities for storage of

intermediate products are denoted by
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Ok(t) k - 1,2, ... , m , t - 1,2,3,.

independent of activity producing. Intermediate and final outputs for

production during [t-1,t) are taken to be realized at t . The

intensity functions z i(t) and intermediate product inputs are applied

at (t - 1) for [(t - l),t)

Since some activities may yield outputs which are both intermediate

product and final product, the intensity functions z e (L.) N  are bi-

furcated as

Izi c (L.)+ intermediate product production

Fzi e (L)+ , final product production.

In these terms the computational dynamics of the production network

is subject to the following constraints: (See Shephard et al. [1977])

(1) zi~t M Izi W) + Fz i(t) ,zi(t) .< z i(t),

Iz i(t) >0 , Fz i(t) >0 ,(1 - 1,2, ..., N) ,(t -0,1,2, ..

t N t
(2) [ y aij(r)zi(,r)< x(r), (j - 1,2, ... , s) , (t- 0,1,2, ... )

T-0 i-i r-0

N
(3) aij(t)zi(t) <. y (t) , (- - s+l,s+2, ... , n) , (t - 0,1,2, ... )

N t N t-1
(4) 1 1 ;ik(T)zi(T) < v0 + tI ck

i-I T-0 i 
il-I T-0i

N i(0)zi(0) _Oz () < vo (k - 1,2, ..., m) , (t - 1,2,3, . .

N t-l N t
(5) vo T+1 T I ; (T)Z (T)<kci(r+l)Izi(r) - [ ik( i k(ti-I T-0 i- r-0k

N
0- ik(O)zi(0) a o(0) , (k- 1,2, ... , m) , (t - 1,2,3, ...)

.k i k '..
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The constraints (1) limit the intensities of operation of the

activities of the production network to be nonnegative and not to exceed

certain physical limitations not otherwise expressed by the service

components of the exogenous input histories.

The constraints (2) and (3) limit exogenous inputs to available

n-s
resources as given by the time histories x e (L,)5 and y e (L0 ) +

The constraints (4) require that inputs of intermediate products by the

network activities do not exceed the supply available from the outputs

of the activities and initial inventories. The last set of constraints

does not allow accumulation of inventories of intermediate products

beyond capacities for the same. All these constraints are limitations on

network activity intensities.

The foregoing constraint system does not in any way predetermine

the allocation of resources. However, it is a general basis for a com-

putational dynamics of Leontief-like production networks. But since nothing

has been specified concerning final outputs the dynamic evolution of the

production network is not directed. The intensity functions Fzi

(i - 1,2, ..., N) are so to speak free elements.

Since the output set PII(x,y) in general may be taken to exhibit
Lm

weak disposability for vectors u c (L.) of output histories, one may

generate for various feasible output mixes of output histories the maximal

scalar extension in IPF(x,y) , i.e., determine the dynamic evolution of

the system to find points on the frontier of PN(x,y) . Also for some

price histories of the various outputs and inputs, one may seek to control

the dynamics of the system to maximize (Revenue-Cost of Resources). In

either case it is convenient to make these generations of the dynamics

of the system with respect to a finite planning horizon T
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Now suppose there are 1 < P < m net products possible for the

system. Let

&N+1,p ' +

be coefficients related to an index

zN+1 CR+

such that

aN+l, , p - 1,2, P

defines the total amount ^f the pth final product accumulated over the

planning interval [0,T] . The coefficients a++l,p may be chosen to

determine a specified output mix. Then, in order to direct the system

this way one adds the constraint

N T(6 aN,,p.ZN+l < l tX cip~t>Fzi(t -1) , (p - 1,2, ... , P)

and determines the dynamic evolution of the system by the following

linear program:

max zN+1

Subject to zN 1 > 0 , (1),(2),(3), ... , (5),(6) on [0,T]

A calculation of this type has been outlined by Leachman [1980] for

the case of a network with each activity producing a single output, possibly

with cycles in the network, i.e., for a Leontief-like network. Also similar

calculations were outlined for this particular network to minimize the cost

of obtaining a given program of output histories.
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It is clear from the foregoing that productivity of a production system

is a complicated concept. For any given output mix one may determine the

maximal throughput for the mix, but this will vary with output mix. The

resource inputs likewise condition the throughput. How is one then to

determine properly the maximal productivity potential of a system unless

resources and output mix are balanced for this purpose? Obviously a good

deal of study is needed for such questions. With declining energy resources

it would be of interest to know how the maximal throughput of various output

mixes would retrogress.

In the general terms of the formulation of production networks used

here, real capital is expressed in terms of service input rates, and for

those components of (x,y) which are fully utilized in the dynamic solution

of the linear program and reflect real capital, one may make marginal analyzes

(linear programs) for incremental changes in such inputs. Indeed for energy

supply decreases one may seek to estimate the consequences for economic

sectors by the dynamic Leontief model detailed by Leachman, using "constant

dollar values" for measures of aggregate output.

In order to drive the dynamics of the system by maximizing total revenue

minus cost of resources (x,y) applied, one need merely define for given

price histories rp (t) , qj(t) the objective function

-l0 rp(t+ l)cip(t + l)Fz(t)

i-l t-O P

T (J!l qj(T)Xj(T) - qj()y.( r))

T= j -s+l

and determine the dynamic evolution of the system by the linear program:
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I Max n (T)

Subject to (1),(2),(3), .. , (5) on [0,T]

Here xj(T) , y (T) are also variables in the linear program. Obviously

refinements can be made in this kind of generation of the dynamics of the

production network by discounting and adding other costs to complicate

the definition of profit. For the purposes of this paper, interest is

mainly in structure, and not management practice.
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6. ACYCLIC PRODUCTION NETWORKS

In a production network without cycles the activities of the network

may be ordered so that the outputs of an activity Ai can serve as inter-

mediate product only for Ai+l,Ai+2 ' ..., A N , or what is the same,

intermediate product inputs to Ai can arise only from AA2, ...A Ai_•

Then, for preassignment of (1) resources, (2) preallocation of distributing

intermediate products and (3) preallocation of activity outputs to final

product, dynamic trajectories may be calculated (evolved) for the intensity

functions of the activities and thereby determine the time histories of

intermediate and final products. See Shephard/et al. [1977] for such cal-

culations for shipbuilding.

For the general model of computational dynamics for production networks,

let

x 0 (x oix °i. 1 xois) i - 1,2, ..., N

Yoi = (Yoil,Yoi2, ,yoi(ns) i - 1,2, ..., N

denote a preallocation of exogenous input histories to the activities, with

N Nx oi < x, I Yo, i y
i~li-l i

Further, the ordering taken for the network is such that Ai takes the

form

It;ila1 2 ... ; ,-l 0 .. oil i - 1,2, ..., N

Let

6j ,k(t) , (j 1,2, ...9 N) (k 1,2#3, m) (t 1,2,39 ...
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denote the fraction of the kth output rate history of A going to net

output at the time t These preassignments satisfy

0 < 6 (t) < 1 ,(t =1,2,3, ..),(k -1,2, ..,m) ,(j 1,2, ..,N)

N J 6 JN+lt) > 0 , for some k c {1,2, ..., m) , t c {1,2,3, .}

i-i

and the net output histories u e (L.) are given by

N
u t) I Nl(t)Z (t -1)c (t) , (t = 1,2,3, .. ),(k - 1,2, .. ,m).

Jli

Let

1 > Ai (t) > 0 , (k-,1,2, .,m) , (j -l,2, ... , N-1) , (i- (Q +1),(j +2), ... N)

denote a preallocation of the kth output rate history of A at time t to

the activities Ai , (i = (J +),(j +2), ..., N) as intermediate product.

These coefficients satisfy

NI Aijk(t) = 1 - 6 N~k(t) , (k 1,2, m) , (t " 1,2,3,

i-j+l
(j- 1,2, .. ,(N-1)).

Since intermediate product time histories are preallocated, initial

inventories and capacities for storing intermediate products are now dis-

tinguished by activity as:

0v A (i - 1,2, ..., N) , (k =1,2, ..., M)

C a i k ( t ) 
( 1 1 , 2 , ...

, N ) , (k 
- 1 , 2 , ...

, m ) , ( 
t - 0 , 1 , 2 , 3 , 

. .
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Note that

Vik (ik(0)

Certain simplifying assumptions may be taken for the coefficients

aiAk( T) , c jk (T):

either aik(T) > 0 for all T E [0,-) or a k(T) = 0 for

all T C [0,-) , (i = 1,2, ... ,)

either cjk(T) > 0 for all T C [0,+) or Cjk(T) = 0 for

all T C [0,+-) , (j= 1,2, ..., N) .

In other words, an activity is consistent in the use of intermediate

products and produLtion of outputs. This does not preclude alternative

activities with different intermediate product inputs and different output

commodities. If an activity cannot satisfy the two assumptions it may be

subdivided until it does.

Also, with little if any loss of generality one may assume

a ik(t) > aOik(t -1) , (t - 1,2, .. ),(1 - 1,2, .. ,N) , (k - 1,2, ..., M)

By definition

Aijk(T) - 0 if aik(T) - 0

One does not transfer intermediate product output to an activity not using

it.

Then the previous constraints for the dynamic system take the following

form:

'I
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(1) 0 < z (t) z (t) ,(t =0,1,2,3, ..),(1 1,2, ..,N)

t t
(2) L aik(T)zi(T) < I Xoik(T) , (k = 1,2, ... , s)

r-,O

(i - 1,2, ..., N) ,(t -0,1,2, ..

(3) a k(t)zi(t) < Yok (t) , (k = (s+ 1l),(s+2), ... , n)

(i - 1,2, ... , N) ,(t 0 ,1,2, ..

CO t < v 0 + t (i-i)
o af0 (ik z.(T) + j Aijk(T)c j , k(t)z (l)(4) T0Y ik(~zi~) - v i  r-1 j=l

aik(O)zi(0) <Vik , (t = 1,2,3, ... ) , (i - 2,3,4, ... , N)

(k = 1,2,3, ... , m)

t (i-1) t
(5) ijk(T)cjk(T)zj (T -) - a (T)Zi(T) G (T)

T=l i-10
(i - 1,2, ... , N) , (k - 1,2, ... , m) ,(t -1,2,3, ..

Notice now that the intensity functions need not be separated into

Iz Fz due to the coefficients 6N+1t) (t = 1,2,6j,kt),(=12,.)

It is of some interest to consider the dynamic development of the

trajectories for final outputs from given preallocations. The ivz.aility

system (1) ,(2) , ... , (5) may be used to develop trajectories for the

intensity functions zi(t) , t - 0,1,2, ... which generates the histories

of all outputs, both intermediate and final. A policy of applying feasible

intensities zi(t) is needed in order to get a specific trajectory. It

is convenient to seek to take this policy as: "utilize the maximal value

of zi(t) possible for each t - 0,1,2, ... ," i.e., a Greedy Policy.

This policy ignores the problem of "variable loading." However, it will

enable one to observe that dynamic systems of production involve Time

Substitution as an additional dimension beyond those for static or steady

state systems.
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The Greedy policy for this system is generated as follows.

Define:

S(i)(t) - {k e {1,2, ..., s} : aiA(t) > 01

s(i)(t) - [k e {s+1,s +2, ..., n) : aik(t) > 01

1(')(t) - {k e {1,2, ..., ml : a ik(t) > 01 .

Define:

R() (0) M in oik if s(i)(0) 0 0

(i)

if S (0)=0

St t-l
x Xoik (T) aik(-)zi(E)R(i) ()- in T-0 -WO

R*kS( W)(t aMi-(t) if si(t) 0 0

- (i) 
f ik

4- if S(1(t) 0

i(I)(t) - Mi Yoik(t) if i(i)(t) # 0

kke i(i) (t) aaik~t

+cc if S ) t(t) - 0

a t Ui-1) t-l
v ik+ I Aijk (T)C jk r(Tl) k()

W~ 1i) W Min ri.1 :-1 (~

4if I()(t) 0
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Define

Qi (t) Mi [u R( i ) (t) , (1,w ( i ) (t) ,i(t)}

Then the Greedy Policy is

Z i(t) - Qi(t) (1 1,2, .. ,N) ,(t =1,2,3, ..

if constraint (5) is satisfied. However, (5) may not be satisfied at

some time t > 0 for one or more commodities k and activity i . Let

k yield the maximal value
0

t t
0 o (i-l) oVko + =i Jl io(T)C k(T)Zj (T-i a =O io(T)zi(T) - 0 k ( t ) > 0.

v +ik0  ~ijk (cjk (Tz(l ik (zi~r -ik t)00 r=l J=l 0 0 T=O0 o0

Presumably (5) is satisfied at (to-i) for i and k , which implies
0 0

(i-1)
SAijk (to)cjk(t)zj(to - ) - ik (to)zi(t o) > 0

j-l o 0

Evidently, (5) may be satisfied at t if Z (T) - 0 for T (to  )

(j - 1,2, ..., (i-1)) . As an approximation to a Greedy Policy one may

take these values for z (t 1) for (j - 1,2, ..., (1 -1))

The solutions for zj(T) , (j - 1,2, ... , (i-l) , (T - t , (t +1),(t +2),
j0 0 0

...) need to be updated. Then one may proceed t with the calculation for

zi to) , zi(to +1) , etc.

The inventory capacity bounds aik(t) may require considerable re-

calculation. However, the routine suggested is a simple one and does

provide a ready policy.
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The evolutionary character of the trajectory for a greedy type

solution is evident. In the order (i - 1,2,3, ..., N) one calculates

zi(t) for (t - 0,1,2,3, ...) corresponding to the given preassignments

of activity outputs to other activities and final output. The net output

histories for the production network are given by

Uk(t) 6 (N) Wtc k(t)zj (t -1l)

jul j 1,2,3,

Now, insofar as the modified Greedy Policy implies for some activity

intensities that periods of zero intensity occur, one may seek to smooth

load such production intensities by operating them at less than maximal

intensity without altering the output histories obtained over some planning

period, i.e., there may be possibilities for Time Substitution.

Time substitution for the activity intensity trajectories, and through

them the application of exogenous input and intermediate product histories

is an added dimension for dynamic production networks over that of static

or steady state models of production. The related problems of smooth

loading are the gist of dynamic production planning. See Leachman [1980]

for some mathematical programming methods to smooth load for shipbuilding.

Maximizing throughput as discussed in the previous section and the

one to follow, and other optimizations, are not always meaningful, because

preassignments of exogenous inputs and intermediate and final outputs may

be required for the facilities (activities) of a large production network.

Also a compounding of the complexity of an optimization may be involved

to assure a reasonable smooth loading. There is some advantage to simulate

a dynamic trajectory, in the face of uncertainty of information, for policy

formation which can be updated from time to time.
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7. A COM4PUTATIONAL DYNAMICS FOR GENERALIZED PRODUCTION NETWORKS

In Sections 4, 5 and 6 above, the activities of the network were

driven by intensity functions z £ (Le.)+ operating on fixed technical

coefficients for system exogenous inputs, intermediate product inputs and

activity outputs, independently of the intended distribution of activity

outputs.

Now instead of a single intensity function z i e (L ) +for Ai
let-

le z -(z~ 1 z2  ZiiNl (0 )l
-

denote an intensity vector with zi e (L,4  denoting the intensity of

operating A i fo oupttogjo 1,2, ... , N,N +1) . The

system exogenous input histories implied by z i are z L PAi where

lk TRANSPOSE ILili ** iM Pi (j.I1)I (i1 1, 2, .,N)

Ak - I Iaa iJa 2 ** aijn 11 , (j - 1,2, ... , N,N +1)

Similarly, intermediate product inputs are given by z Ok where

1A TRANSPOSE TA lilMli 2 *** AAiNi(N+l)I (i 1,2, ... , N)

A Ij Ia jla iJ2 *-. a I ij (j -1,2, .. ,N,N +1)

in

an ctvTANOuS E gieby z (i - 1,2, ... , N)r

~ : TRNSOSE''il 12 CiNoi(N+l)' (i12,.,N

-i I1Cij 19C i 2 * C~I ij 1 (j -192, -.. 1 N,N +1)
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The constraints for the production network are:

(1t) 0 1 Zij(t) <i(t) F (L)+(

"J-1 0,1,2,..

** N N+1 t t (k -1,2,
(2) 1 1 1 aijk(T)z i()< Ixk(T) ,

i-i J- TWO TWO 0,1,2, ...

** N N+1 (k -(s +1), n).
I3 I aijk(t)zij(t) _Yk~t

i',l J,1 t 0,1,2,..

** N+1 t 0 N t
(4) J 0 aijk ( T ) Z i (

T) < Vk + I I Cjik(T)Zji(-l)
Jul TWO jkj)ijl T=~ +~r1

N+I
I )z (0) < Vk , (i 1,2,3, ... , N)

(k k1,2, ..., m) (t 1,2,3,

N t N+I t
(5) v° + I c (T)Z- T(- 1 ai k(T)ziJ(T) < (t)

(i - 1,2,3, ... , N) , (k - 1,2, ... , m) , (t - 1,2,3, ... ) .

The "motion" of this system for a production plan needs direction by

optimizing some objective. Maximum throughput of a given output mix over

a planning period T can be used to direct this production system by

the following linear program

Max ZN+l

Subject to: ZN+l : 0 , (1)**, (2)*, (3)*, (4) (5)**, (6)** on [T]

where

N T
(6)** 1,kN+1 _ c (T,-1), (k - 1,2, ... , P)

'1*1,'N~l i=1 tul ,lk iNl
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The conventions of Section 5 are used in this formulation.

The minimal time horizon for a production plan to yield given

accumulations

wk , (k - 1,2, ... , P)

of the final products can be found by replacing (6) by

N T
(7) wk c ,k (T)ziN+l(T-l) (k - 1,2, ... , P)

i-l T1i

and consecutively seeking a feasible solution to (1) , (2) , (3) , (4)

(5)**, (7) for increasing T - 1,2,3, ... until feasibility is first

attained. See Leachman [1980] for this computation for production networks

with activities each of which produce a single output.

Other optimizations are possible to drive the "motion" of the production

system; and additional constraints may be significant. For example, large

changes of service inputs may involve learning and shift the system retro-

gressively to higher amounts required per unit intensity.
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