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ABSTRACT

This report discusses the role of coherence considerations
in the definition and measurement of subjective probability.
A general version of De Finetti's coherence theorem--that
either a set of betting probabilities obeys the laws of
probability or else a sure win is possible for the bettor-
is proved, using a variant of Farka's Lemma. This theorem
provides the basis for several admissibility theorems for
scoring-rule probabilities, under a generalization of
scoring rules suggested by Lindley. Linear programming
methods for identifying and reconciling incoherence are
discussed, and a comparison is made with Bayesian reconcil-
iation methods.
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Coherent Assessment of Subjective. Probability

by Robert F. Nau

1. Intfoduction

The purpose of this report is to aggregate and generalize some well-known results of de

Finetti (1937, 1972, 1974), Smith (1961), and Savage (1971) and some recent results of Lind-

ley (1980) concerning the use of betting systems and scoring rules for eliciting subjective pro-

babilities, and to discuss methods for identifying and reconciling incoherence. The principal

analytic tool will be a separating-hyperplane theorem of linear algebra, which, together with its

variants and extensions, has previously been applied by numerous authors to discussions of

coherence and admissibility in statistical inference and decision. (E.g.. Blackwell and Girshick

(1954). Smith (1961), Cornfield (1969), Freedman and Purves (1969), Dawid and Stone

(1972, 1973), Heath and Sudderth (1972, 1978). Pierce (1973), and Buehler (1976)). The

central problem discussed here is the elicitation of subjective conditional probabilities for a set

of events which are subsets of a finite sample space, with conditional probabilities directly

defined in terms of "called-off bets," rather than as ratios of unconditional probabilities. Coher-

ence (of betting probabilities) and admissibility (of scoring-rule probabilities) are defined in

terms of avoiding unnecessary certain loss under all outcomes in the sample space, and are

shown to be equivalent criteria for defining and measuring subjective probability. A general

version of do Finetti's coherence theorem, stated in terms of lower and upper conditional bet-

ting probabilities, is proved using the separating-hyperplane theorem below. The coherence

theorem provides a basis for several admissibility theorems for scoring-rule probabilities, under

a generalization of scoring rules suggested by Lindley (1980). Throughout, emphasis is placed

on the distinction between strict and non-strict forms of coherence and admissibility.

I I I . . . ., , , . f , .. . .. . . .. .... . " • . ~h , 1 11S OI. .. ... I i
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illuminating the role of zero probabilities in subjectivistic theory. The construction of a proba-

bility measure consistent with a ,,iven set of betting probebilities, whose existence is required

for. coherence, is shown to be a simple linear programming problem, whose dual is the search

for a combination of bets providing a 'sure win." The geometric interpretation of coherence

suggests linear programming methods for improving the precision of probability assessments

and reconciling incoherence, using lower and upper probabilities to characterize imprecise initial

assessments. These methods are shown to provide a computationally simpler alternative to the

Bayesian reconciliation methods of Lindley, Tversky, and Brown (1979).

The various so-called separating-hyperpiane theorems can all be derived from a "basic

separation theorem" for linear spaces (Dunford and Schwarz (1958). p. 412). which states that

any two disjoint convex sets (say, X and Y), one of which has an interior point, can be

separated by a non-trivial linear functional--i.e. there exists a linear functional f, not identically

zero, and a real number d such that Re'(x)] 4 d for all x in X and ReVf(y)] ;) d for all y

in Y. If the two sets are also closed, then the separation can be made strict (i.e.. strict inequal-

ity can be obtained in at least one of the above relations). In finite-dimensional Euclidean

space the linear functional takes the form f(x)-z'x where z is a fixed vector, with the

geometric interpretation that X and Y are separated by a hyperplane whose normal direction is

z and whose distance from the origin is d. The following conventions and notation for vector

inequalities will be useful: a vector x is nonnegative (x Z 0") if all of its components are non-

negative. x is semi-positive (x ) 0") if it is nonnegative and not the zero vector; and x is posi-

tive (x > 0") if all of its components are positive, where 0 denotes the zero vector of appropri-

ate length. Corresponding definitions and notation apply to non-positive, semi-negative, and

negtive vectors. In these terms, the theorem for later use is:

THEOREM 1. Exactly one of the following two systems has a solution:

0i) Axs< 0 1Ax 4O0, z ;0
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() w'A 0, w ; 0 [w > 01, w - I

where A is a matrix and z and w are vectors of appropriate length.

Proof: For the unbracketed case, obviously both systems cannot simultaneously have

solutions. Then either the non-negative onhant contains a point of the closed convex

hill of the row vectors of A, in which case (ii) has a solution, or else there exists a

hyperplane which strictly separates these two closed convex sets. The normal direction of

this hyperplane constitutes a solution to (i). For the bracketed case, again both systems

cannot simultaneously have solutions. Then either the non-negative orthant contains a

point of the open convex cone of the row vectors of A, in which case a solution to (ii) is

obtained by normalization, or else for some j the following system must have no solution:

w'A + a' 2 0, w )s 0, where aJ denotes the jph row vector of A. (If this system had a

solution for every j, then their sum plus the vector whose components are all l's would

constitute a solution to (ii) following normalization.) For some j, then, the non-negative

orthant has no point in common with the closed convex set formed by the direct sum of

V' and the closed convex cone of all the row vectors of A, so that these two sets are

strictly separated by some hyperplane. The normal direction of this hyperplane then con-

stitutes a solution to (i), in which the jIh element of Az is negative.

In applications, a vector w satisfying (ii) will be considered to represent a probability distribu-

tion. The following corollary is closely related to Farka's Lemma ("either Az S 0, c'z >0 has a

solution, or else w'A-c, w > 0 has a solution'), which is the basis of the duality theorem of

linear programming.

COROLLARY: Exactly one of the following two systems has a solution:

Wi A& <0 [Az 401

() w'A-0, w ;o 0 (w > 01, w,- I

This follows by applying Theorem I to the matrix [Al-Al.
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2. Coherence for the fair bookie

This section deals with the elicitation of subjective probabilities under a betting system--

that is, a framework in which a transaction takes place between a bookie and a bettor. De

Finetti's (1937) well-known theorem on coherence--that either a bookie's betting probabilities

("bet prices") obey the laws of probability or else a sure win is possible for the bettor--is proved

for the general case of conditional bets on a finite number of events, and the geometrical

interpretation of coherence is discussed. A further generalization of the coherence theorem to

incorporate lower and upper probabilities is given in a later section.

Consider a bookie, a bettor, and n pairs of events: (E,,F,), i-1.. The bookie must

establish prices (Nset the odds") for bets on E, conditional on F, ("E, given F,*) for all i, and

the bettor may then place any combination of bets. Following de Finetti's convention, capital

letters such as E and F will be used interchangeably as names for events and also as the indica-

tor variables for the same events-- e.g., "f-I" is interchangeable with "E is true", and "I-E" is

interchangeable with 9 (*not-E*). Let the transaction be described as follows: first the bookie

chooses a vector p-(p, .... p,), where p, is his price for buying or selling a "unit bet" on &,

given F,-- i.e., a lottery which pays I unit if EF,-I, pays zero if (l-E,)F,-I, and pays back

the purchase price (in which case the bet is considered "called off") if F,-0. (The bookie is

"fair" in the sense that he buys and sells at the same price. The more general case of unequal

buying and selling prices is discussed in a later section.) The bettor then chooses a vector

.:--l, .... ,) where Iz, I is the number of unit bets on E, given F, that he wishes to buy (if

:, >0) or sell (if :, <0). The net gain to the bookie for the bet on the 0" event pair in all cases

is given by the expression (p,-E,)Fz,, which may be positive, negative, or zero. In conven-

tional betting parlance, the bookie is said to have offered *odds of (i-p) to p, against E," and

reciprocal odds "on" E,; the bettor has placed a stake of Ip, z, I "on" E, if :, >0 or "against" E, if

:, <0--all conditional on F,.
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It is assumed that the E's and F's are subsets of a sample space. 0, consisting of m

mutually exclusive and collectively exhaustive outcomes which are known to both the bookie

and the bettor. That is, both participants are aware of all logical dependencies among the 2n

events of interest, which place restrictions on their possible joint realizations, since every possi-

ble joint realization must correspond to at least one outcome in the sample space. Let 9,

denote the jph element of 0, and also the event consisting of only that outcome. Let E and

F, denote the values of E, and F, under outcome j-- i.e., E,-l if E, contains 9, and E,,-O

otherwise. Then the total net gain to the bookie for all n bets when 9, obtains is

) ,(2.1)

The "payoff vector" for the bookie, t(z;p), is now defined as the m-vector whose jh element is

tj (z,p).

DEFINITION: The vector of prices p is [strictly] coherent for the bookie if-and-only-if

there does not exist any vector of bets z for which the resulting payoff vector is [semi-]

negative.

In other words, the bookie's prices are coherent if there is no "sure-win" bet for the bettor (one

for which the bookie loses money under every outcome), and strictly coherent if there is no

"can't-lose" bet (one for which the bookie loses under at least one outcome, and wins under

none). Necessary conditions for coherence or strict coherence in certain cases can be immedi-

ately identified. For example, if F,-O is impossible, then coherence requires 0 4 p, 4 1. since

choosing , >0 if p, <0, or :, <0 if p, > 1, would produce a sure win for the bettor. Similarly, if

both ,F,- and (1-E,)F,- are possible then strict coherence requires O<pi<l. On the

other hand, if EF,-l is possible but (!-E)F,-1 is not (or vice versa), then strict coherence

requires p,-i (or p-O). In general, the necessary and sufficient conditions for coherence or

strict coherence are given by:

THEOREM 2. p is [strictly] coherent if-and-only-if there exists a [positive] probability

distribution w on 0, and a corresponding probability measure P, on all subsets of 0, such

that for every i either A-P.(E,IF,) or else P,(F,)-O.
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Proof: Let A be the mxn matrix whose (j,)th element is (p,-E,,)F,. Then t(r.p)-Az.

By the Corollary to Theorem 1, Az<0 [Az 4 01 has no solution if-and-only-if there

exists w ;) 0 [w > 01 such that w'A,0. This vector equality is equivalent to:

,(p,-ii)F,w, - 0, (2.2)
Ji

whence either

F'J W,,, - 0, (2.3)
i-I

or else

LE, F,, w,
Pi " .=(2.4)

j-1

Let P. be the unique, finitely additive probability measure on all subsets of 0 which

satisfies P,(0j) - wi for all j. That is,

on

P (F, . F, w, (2.5)
j-I

and similarly for all other subsets of the sample space. Define the conditional probability

of E, liven F, in the usual way as

P.(E,IF,) -P.(EF,) (2.6)P,(F,)"

Substitution of (2.5) and (2.6) into (2.3) and (2.4) completes the proof.

This theorem provides the motivation for de Finettis definition of subjective probabilities as

coherent bet prices. From the definition of the probability measure P, in (2.5) and (2.6), it

follows that the quantities P,(EIF,),i- .... n, obey the usual "laws" of probability. includ-

ins the additive and multiplicative laws. (This will be illustrated in the geometrical examples

below.) Theorem 2 implies that, by conformity with some such measure, coherent bet prices

obey the same laws merely through the fact of being coherent, rather than by prior assumption.

Thus, if coherence is taken as an axiom of subjective probability, the probability laws which are

traditionally stated as axioms or definitions are obtained instead as theorems. (De Finetti
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(1937) gives separate proofs of the "total probability theorem," or additive law, and the "com-

pound probability theorem," or multiplicative law, based on evalution of the determinant of A

in particular cases.) It is important to note that, in this approach, conditional probability, directly

defined through the device of called-off bets, is the fundamental notion. Unconditional proba-

bility is obtained as a special case when the conditioning event happens to be the certain event-

-i.e., the whole sample space. This is in contrast to :he conventional approach to probability

theory, which begins with a definition of unconditional probabilities, and then derives condi-

tional probabilities according to (2.6).

The distribution w satisfying w'A-0, whose existence is required for p to be coherent,

need not be unique. Let W(p) denote the closed, convex set consisting of all such w. Given

any w in W(p), the probability measure P. is defined for all subsets of the sample space, not

merely the 2n events initially considered. This provides a basis for inferpnces about the possi-

ble coherent values for bet prices on further pairs of events which are subsets of the same sam-

pie space. Let E. . and F, t denote such a further pair of events, and let P,+I denote the bet

price for E, n given F, n. Then, given that p is coherent, a necessary and sufficient condition

for (p.p. n) to also be coherent is that either p,,,-P,(. 1 IF,,.,) or else P.(F.,)-O for some

w in W(p). In the latter case, P.,i may coherently assume any value whatever. In the former

case. P.(E,, IF., 1) is a continuous, bounded function defined everywhere in W(p), and hence

achieves a minimum and maximum (denoted ,-, and ,+,, respectively) on this set, as well

as all values in between. Thus. if P, (F+. 1) >0 for all w in W(p), then (pp. +1) is coherent if-

and-only-if P"-+ 4 p.,, 4 A..,. This is de Finetti's "fundamental theorem of probability"

(1974, p. 112). In fact, &, and 0, , are lower and upper conditional probabilities for E, t

given F.,., indirectly determined by p, in the sense that they represent the lowest selling price

and the highest buying price for a unit bet on E. n given F,, , which would be consistent with

p. This notion will be developed further in Section 4.

In order to be strictly coherent, a set of bet prices must not only obey the probability laws,

but also be consistent with some assignment of positive probability to every outcome in the



sample space. In the sense of the preceding discussion, the bookie has implicitly assigned zero

probability to outcome j (unconditionally) if that outcome has zero probability under every

probability measure which yields the bet prices as conditional probabilities-- i.e., if wJO in

every non-negative solution to w'A-0, where A is the matrix defined above. The implication

of Theorem 2 is that there exists a combination of bets for which the bookie will lose positive

amounts of money under all those outcomes (and only those outcomes) which he has implicitly

assigned zero probability, while winning nothing under the remaining outcomes. Either coher-

ence or strict coherence can be used as the criterion for defining and measuring subjective pro-

bability. As Buehler (1976, p. 1057) points out, "the philosophical choice between the two cri-

teria is clearly linked to one's attitude toward the acceptability of subjective probabilities which

equal zero." De F ,dtti (1974) argues that zero probabilities are necessary in order to deal with

infinite partitions, and hence favors the weaker criterion, coherence. However, in any physi-

cally realizable, which is to say finite, experiment, it appears that strict coherence would be

more in accord with ordinary standards of behavior. This issue will be illuminated further by

the corresponding distinction between admissible and strictly admissible choices under scoring

rules in a later section. Throughout the remainder of this paper, the term "bet prices" will be

used to denote conditional or unconditional subjective probabilities elicited under the betting

system described above, in order to avoid confusion with probabilities defined, elicited, or

derived in other ways.

The cond&ons under which a set of bet prices is coherent, as given in Theorem 2. have a

simple geometric interpretation. A probability distribution w can be represented as a vector in

m-space lying in the standard simplex defined by w wj-l, w;0. The bet prices p are coherent

if-and-only-if there exists a distribution w satisfying the system of equations w'A-0, which will

be referred to as the "bet price constraints." Let a, denote the ijh column vector of A--i.e.. the

vector whose J'h element is (p,-Ej)F,. Then the bet price constraints can be written as

w'a,-O, i-I ..... n. Geometrically, a, is the normal vector of a hyperplane passing through

the origin whose intersection with the simplex is the set of all w which are consistent with the
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bet price p,. This is illustrated in Figure 2.1 for the case of a sample space consisting of only

three elements, ()-(0,02,0). Here the simplex of probability distributions is the triangle

whose vertices are the unit vectors, each vertex being identified with one element of 0. The

hyperplane normal to the vector a, pictured is defined by the origin and the two points on the

boundary of the simplex labelled A and B. The line segment AD represents the set of probabil-

ity distributions consistent with pi, i.e., those w for which P,(E, IF,)-pj. Incoherence arises

when there is no point in the simplex at which all n bet price hyperplanes intersect.

Some examples of coherence and incoherence for three-element sample spaces are illus-

trated in Figures 2.2, 2.3, and 2.4. These figures are drawn in the plane defined by Lw j -1, in
i-I 1

which the simplex appears as an equilateral triangle. If this triangle is scaled so that its height is

unity, then the probability distribution (w 1,w 2,w 3) corresponding to any point is determined by

letting wj equal the perpendicular distance from that point to the side opposite the vertex

corresponding to Oj. Where convenient, the notation p(EIF) and p(E) will also be used to

denote conditional and unconditional bet prices for the events parenthesized. Figures 2.2a and

2.2b represent the simple case of a complete partition of the sample space, in which m-n-3,

and p-p(,) for all i. In this case the bet price constraints reduce to w-p, which, together

with the coherence requirement that this must be satisfied for some w in the simplex, implies

P1+P2+P3-l. (This is the "total probability theorem.") This condition is satisfied in 2.2a by

p-(. 4,. 3 . 3 ), and violated in 2.2b by p-(.6,.3,..). For each i, the set of w for which w,-p, is a

line parallel to the face opposite the vertex corresponding to 9i. The three lines so determined

by p have a point of mutual intersection (inside the simplex) in 2.2a, whereas in 2.2b they do

not. The case of an incomplete partition is illustrated in Figures 2.3a, 2.3b, and 2.3c, where

m-3. n-2. and p,-p(,) for i-1,2. Here the bet price constraints on w are w1-p and w2-p 2.

which is satisfied by some w in [the interior of the simplex only if Pt+p2 1 (<1]. This rela.

tion is satisfied in Figures 2.3a and 2.3b by p-(.3.6) and p-(.4 ,. 6 ), respectively. (Note that

the latter choice is not strictly coherent, since it implies p(G3)-O, and the corresponding probe-

bility distribution is therefore represented by a point on the boundary of the simplex, rather



than in the interior.) Figure 2.3c illustrates the choice p-(6,.6), which is incoherent. In this

case the lines representing the bet price constraints have a point of intersection in the plane,

but it is outside the simplex.

Whereas the previous examples illustrate the additive law of probability, the next exam-

pies, in Figures 2.4A and 2.4b, illustrate the multiplicative law. For some events E and F. let

pl-p(EF), p2 -p(F), and p3-P(EIF). The (minimal) relevant sample space is then

01-EF, 02-(-F), 03-(0-E)F. Here the bet price constraints are wl-pi, w,,l-p 2, and
W1wi(p3-1)+w3pi-0, which implies r-P3 unless wl+w3-0. Now, coherence requires

wj+w 2+w3-1, whence p2 -1-w-wj+w3, and also w > 0, so that p2 p, ) 0-i.e.,

p(F) ) p(EF) 0 0. In particular, p(F)-0 implies p(EF)-O. Otherwise, if p2-p(F)0, then

the identity w-(w 1 +w3)(- ) implies pt-p 2P 3-i.e., p(E.F)-p(F)p(EIF). (This is the

"compound probability theorem.*) The first two bet price constraints correspond to lines parallel

to the sides opposite the vertices for 01 and 02, respectively, and the third constraint

corresponds to a line passing through the vertex for 02 and through a point on its opposite side.

In Figure 2.4a. where p-(.2,.5,.4) satisfies the multiplicative probability law, these three lines

intersect at a point in the simplex, whereas in Figure 2.4b, where p-(.4 ,.S,. 4 ) violates the mul-

tiplicative law, these lines have no point of common intersection.
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3. Identifying and reconciling Incoherence via linear propamming

It has been seen that, given a vector p of bet prices, the problem of finding a "sure-win"

bet (the "bettor's problem') and the alternative problem of finding a corresponding distribution

on the sample space (the "bookie's problem") involve finding solutions to systems of linear ine-

qualities. These are textbook linear programming problems, and, moreover, the role of the

corollary to Theorem I (which is a variant of Farka's Lemma) in the proof of Theorem 2 sug-

gests that the bookie's and bettor's problems are in fact dual to each other. This linear pro-

gramming application does not appear, however, to have received explicit treatment in the

literature, perhaps because the subject of coherence has generally been considered to be of

more theoretical than practical interest. The conventional emphasis has instead been on

calibration--i.e., obtaining subjective probability assessments which agree with observed fre.

quencies. The seminal paper of Lindley, Tversky, and Brown (1979) has pointed out the

relevance of coherence considerations in improving the precision of probability assessments and

in combining assessments by different experts, as well as in avoiding mere inconsistency. Their

approach to the identification and reconciliation of incoherence is thoroughly Bayesian, and uses

a "coherent observer," equipped with a prior distribution and likelihood function, to perform

the reconciliation. In this section several geometrically-motivated linear programs for the

identification and reconciliation of incoherence will be discussed. It will be seen that, under

certain assumptions and conditions, the Bayesian and linear programming approaches closely

resemble each other.

As a starting point, consider the following linear program (which will be called LPI).

which can be used to distinguish between coherence, strict coherence, and incoherence:

Primal: maximize Yo (3. la)
ft

subjecttoyo+yj+ ajz- -I. m (3.1b)

S1 (3. 1c)
iM

yj OJ-! .. m. (3.1d)
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Dual: minimize wo (3.2a)

subject to Fajwj- 0 i-I. x (3.2b)

WJ -i (3.2c)
i-i

wj +PJWo ;0 0 j-m ..... m. (3.2d)

The parameters of this linear program are the matrix A, whose (j,i)h element is

a,j-(p,-E,j)F,, and a vector P-(. . ... ,) of positive weights. It will be convenient, with

no loss of generality, to assum. that tPj-1 and to consider p to represent the bettor's proba-
./-I

bility distribution on the sample space. In the primal program the natural variables are

z1.... z, where :, represents the number of unit bets on the i1d event pair purchased by the

bettor. Yl ... y, are non-negative slack variables, and Yo is essentially an artificial variable

guaranteeing the existence of a feasible solution. (A starting feasible solution is yo--l, yj-1

for j-1 .. m, and z,-O for i-I. n.) The primal program can be interpreted as search-

ing for a combination of bets which maximizes the ratio of the bettor's minimum payoff to his

expected payoff, provided the latter quantity can be made positive. Since the quantity a,z,

represents the payoff to the bookie under the jPh outcome, constraint (3.1b) implies that in

every feasible solution yo4 yj represents the payoff to the bettor under the same outcome.

Since yj is constrained to be non-negative, Yo is evidently greater than or equal to the bettor's

minimum payoff. The bettor's expected payoff is then given by y0 +T_,jy,. Star notation
j-i

(2, y;, w;, etc.) will be used to denote the values of the primal and dual variables in an optimal

solution. If all bets have zero expectation for the bettor (a special case of strict coherence)

then y; will be -1 in view of constraint (3.1c). In all other cases, when bets with non-zero

expectation are possible, y; will be greater than -1, and will represent the minimum payoff

(implying y;,-O for at least one J 1) for some bet with positive expectation. in fact, y; will be

the maximum possible minimum payoff among all bets whose expected payoff exceeds the

minimum payoff by exactly unity. Moreover, no bet with the same expectation as that of the
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optimal primal solution can have a larger minimum payoff, since otherwise constraint (3.1c)

would not be tight, and such a bet could therefore be scaled up to obtain a feasible solution

with a higher objective value, contradicting optimality. Hence, y, must be negative, zero, or

positive according to whether the bet prices are strictly coherent, coherent, or incoherent, by

the very definitions of these terms. If y -0, then z*-(z ..... z) is a 'can't-lose" bet; and if

y >0, then z" is a "sure-win" bet. A special case arises when there is a bet for which the

payoffs are identical and positive-i.e., the minimum payoff equals the expected payoff--in

which case y; is not only positive, but infinite. In this case, the components of the "sure-win"

bet can be found in the column of the simplex tableau corresponding to the entering variable

which produces an unbounded increase in the objective function. If y; is negative, then the

bet z, defined by z,- .,'. for all i, achieves the largest possible expected payoff among all
-Yo

bets whose minimum payoff is greater than or equal to -1.

The dual program can be interpreted as searching for a probability distribution on the

sample space which is consistent with the bet prices and which is also as close as possible, in a

certain sense, to the bettor's distribution. The dual natural variables consist of w0 together with

the elements of the vector w-(wt ..... w.,). The solution of the dual program by the sim-

plex algorithm can be visualized in the m-dimensional space in which w is represented, along

the lines of the geometric interpretation of coherence presented in the last section. The feasi-

ble region for w is the set of points in the hyperplane defined by wj-I which satisfy the bet-
,i-I

price constraints w'A-0. (Note that the feasible region may contain points outside the simplex,

i.e., which do not also satisfy w ), 0.) If this set is non-empty (which is the case if-and-only-if

the objective function is bounded in the optimal primal solution) then the solution of the dual

program by the primal simplex algorithm involves starting at some feasible point and then mov-

ing within the feasible region toward (the interior of) the simplex by maximizing the weighted

minimum of the coordinates, with the weights being the reciprocals of the bettor's probabilities.

This is seen by rewriting the dual objective (3.2a) as maximize -wa" and rewriting the con-



straint (3.2d) as "-wo 4 .-. If the dual program terminates at a point in the interior of the

simplex (i.e. the weighted minimum coordinate is positive, and hence w; is negative), then a

positive probability distribution (namely w') has been found which agrees with the bet prices,

and strict coherence has been established, according to Theorem 2. If termination occurs at a

point on the surface of the simplex (i.e., the minimum coordinate is zero, and so is w;), then a

semi-positive distribution has been found, establishing coherence but not strict coherence.

Finally, if termination occurs outside the simplex (i.e., one of the final coordinates is negative,

hence w; is positive), then no appropriate semi-positive distribution exists, and incoherence is

established. Of course, by the duality theorem of linear programming, w;-y;, so that LP1

may be taken as a constructive proof of Theorem 2. The special case in which w;-y;--I,

which arose in the primal program when every bet had zero expectation for the bettor, is seen

in the dual program to represent the case in which the bettor's probability distribution is con-

sistent with the bet prices.- i.e., the optimal dual solution is wi'-l3j, j-I .... m.

If a set of bet prices is found to be incoherent (e.g., by solving LPI), then presumably it

will be desired to revise them so as to reconcile the incoherence. Properly considered, this

ought to involve introspection and careful reassessment on the part of the bookie. However,

insofar as the constraints imposed by coherence may be too numerous or subtle to keep in

mind during this process, it might be useful or even necessary to have an external procedure

for identifying coherent sets of bet prices which are in some sense "close" to the original

incoherent set, in order to help the bookie explore his alternatives. A Bayesian reconciliation

scheme has been presented by Lindley, Tversky, and Brown (1979). In their "internal

approach," a coherent observer is introduced who considers the bookie's true, coherent bet

prices as uncertain parameters to be estimated. The observer has a (continuous) prior distribu.

tion for these parameters and a likelihood function specifying the distribution of the errors in

the bookie's stated bet prices given his true bet prices. The posterior distribution is then com-

puted using Bayes' Theorem, and a vector of revised, coherent prices can be obtained as the

posterior expected value of the true bet poce vector, subject to the constraints imposed by
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coherence. If the coherence constraints are non-linear, then the set of possible coherent vec-

tors may be non-convex, in which case the posterior mode, rather than the posterior expected

value, must be used, since the barycenter of a distribution of mass on a non-convex set may be

a point outside the set. Unfortunately, there are several practical dificulties associated with the

strict Bayesian approach, namely the assessment of the "core" distributions required in the con-

ditioning process, and the complexity of the calculations.

To simplify matters, Lindley et a! suggest a least-squares approach to finding a reconciled

bet price vector, which is consistent with the assumption of a flat prior distribution and nor-

mally distributed errors. If the errors are also assumed independent, the reconciliation is

obtained by minimizing the weighted sum of sqAres:

Z3,(p-w',)2 (3.3)

over the set of all coherent r, where 7 ..r,) is a vector of positive weights equal to

the reciprocals of the error stwAkr4 deViations. Since the elements of p are restricted to the

unit interval, they can at best only 4e approximately normally distributed with respect to the

"true" bet prices. Therefore, it may be appropriate to assume that some transform of each bet

price, say F(p,), is normally distributed, and then minimize the sum of the squared differences

of the transforms:

r",2(F(p)-F(r,))2 .(3.4)

In particular, the log odds transform is recommended: F(p)-og(l-=). Lindley et a! refer top

this transformation as the "choice of metric"-- probability metric, log-odds metric, etc.--and sug-

gest that the choice of metric should reflect the transformation under which the error variance

is most nearly constant. For purposes of later comparison, note that the sum of squares (3.3)

is the squared distance between p and v, following a linear transformation by the matrix

diag(,r ...... N), using the 12 norm. An alternative choice of metric would be to minimize

the distance between these vectors using a different norm. For example, in the 1, norm the

corresponding distance is
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Zr Ip,-iro I (3.5)

and in the I. norm the distance is

max r, (p,-W, . (3.6)

Of course, a vector minimizing one of these distances would not exactly correspond to the

mode of a normal posterior distribution, and the weights r would not be interpretable as

reciprocal variances, but simply as a set of (subjectively chosen) confidence or precision factors.

The various minimizations suggested above must all be performed subject to the coher-

ence constraints on w, which consist of a set of equalities and inequalities of the form

hk() - 0 1 0 0 1, k-1 . ... K (3.7)

where the functions (h, .... hK I consist of sums and products of the elements of r and con-

stants, representing the requirements of the additive, multiplicative, and convexity laws of pro-

bability. They are essentially implicit functions determined by the equations

(6r,-E,)Fwj-O. i-1 ..... n, and Zwj-l, together with the inequalities
j J

wj,0, i-i. m. A practical problem may arise if the multiplicative probability law is

involved, in which case some of the constraint functions will be nonlinear. The resulting con-

straint set may be non-convex, and exact global minimization by systematic nonlinear program-

ming methods may therefore be difficult. Moreover, if the constraint set is pathologically

shaped, the implicit assumption of a flat distribution on it may be questionable.

An alternative approach, suggested by the geometric representation of incoherence

emphasized in this paper, would be to represent the reconciled assessment in terms of a

corresponding distribution on the sample space--i.e., ir,- P(EIF,), i-I . n.. n-- and then

perform the minimization over w. The constraint set for w is in all cases a convex set, namely

the standard simplex in m-space. The practical difficulties with this approach are associated

with the nature of the resulting objective function, since

p, - P.(E, IF) .- - = (3.8)
SP(F)
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Note the presence in the denominator of the term P.(F). Unless the probabilities being

assessed are all unconditional (in which case F,-O and P.(F)-l for all i), the quantity (3.8) is

a nonlinear and not necessarily convex function of w. Thus, unfortunately, in changing var-

ables from v to w in order to obtain a convex constraint set for performing the minimizations

(3.3). (3.5), or (3.6), a non-convex objective function may be obtained, which again may be

difficult to minimize globally. One way around this difficulty is to simply ignore the term in the

denominator of (3.8). and concentrate on minimizing an appropriate function of the quantities

w'a, - ,(p,-,)F,,,, i- .... n, (3.9)
J

where a, again denotes the i"h column vector of the matrix A. This seemingly ad hoc lineari-

zation of the objective function has a significant and interesting geometric interpretation in the

space of probability distributions on the sample space, for the quantity w'a, is proportional to

the Euclidean distance from w to the nearest point in the hyperplane of the simplex which

satisfies the ith bet price constraint. To show this, let a, (w) denote the vector which minimizes

iw-ull subject to u'a,-O and I"u,-l, and let d,(w)-Iw-,(w)ll. Note that if u,(w) ; 0,

then % (w) is the closest distribution to w (in the Euclidean sense) which yields Pi as the condi-

tional probability for E, given F,. Necessarily, lw-u, (w) is proportional to the the vector a,

whose j" component is a' - a, - a which is obtained by projecting a, on the hyper-

d, (w)•
plane Twj-0. From the definition of d,(w), it follows that u,(w)-w:t--a,. Enforcing

u, (w)'a, -0, and noting that a ,,, a,e', yields:

I w',,, I 'e,1
di W W'a'(3.10)

J J

Note that w'a, is the expected payoff to the bookie for a unit bet placed on E, given Fr, under

the distribution w. On the other hand, it is evident from the expansion on the RHS of (3.10)

that the quantity lf,°l. which is a son of normalizing factor, is vr times the standard devia-

tion of the payoff for a unit bet on E, given F, under the uniform distribution. It is readily

shown that, if F,,-1 for all J (i.e., if p, is an unconditional bet price foi &), then I1,I11
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is independent of pi. If, however, Fq-0 for at least one i, then 11a9112 is a convex quadratic

function of pi which is minimized when pi equals the ratio of the number of outcomes in 9 for

which EF,-I to the number of outcomes for which F,-i--i.e., the value for the conditional

probability of E, given F, which is obtained under the uniform distribution.

In the space in which distributions on 0 are represented, the distance d, (w) appears to be

reasonable measure of the "error" in the bet price p, when the "true" distribution is w. Minimi-

zation on the simplex of an appropriate convex function of these distances will yield a distribu-

tion which satisfies an heuristic admissibility criterion, namely that no other distribution exists

which is uniformly closer to all the hyperplanes determined by the bet price constraints. In the

examples of incoherence illustrated in the previous section, the sets of distributions which are

admissible in this sense are represented by the shaded areas in Figures 2.2b and 2.4b, and the

line segment AB in Figure 2.3c. Let -(..... y,) be vector of positive weights represent-

ing relative confidence or precision under this measure of "bet price error," incorporating the

normalizing factors lla , .... ,n, suggested by (3.10). Then, by analogy with (3.5).

(3.6), and (3.3), some possible objective functions for minimization are:

lw', (3.11)

or

max ,w'a,I (3.12)

or else the quadratic form

i2(w'a,)
2 - w'(AMA,')w (3.13)

where M-diag(y?,. ... y2). (More generally, M could be any positive definite matrix.) The

minimization on the simplex of either (3.11) or (3.12) is a straightforward linear program, and

(3.13) is a quadratic program with linear constraints. However, (3.12) appears to be a much

more suitable objective function for practical application than (3.11). The close relation

between (3.11) and the constraint Zwj-1 suggests that the solution may be highly sensitive to

relatively small changes in the weights, and will tend to be an extreme point of the admissible
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region. (In particular, for the case of an incoherent partition, only the bet price with the largest

weight is likely to be revised.) By comparison, it appears that minimization of (3.12) will gen-

erally yield an interior point of the admissible set--in fact, with an appropriate choice of

weights, any admissible point can be reached--and it will be seen to yield essentially the same

solution as the quadratic minimization (3.13) in the case of a partition.

The linear program representing the minimization of (3.12) will now be discussed in some

detail. First, note that minimizing (max -y, I wa, I) is equivalent to finding the smallest number

v such that

- w, ., i-1. . n (3.14)

for some w in the simplex. For added flexibility, let each weight Y, be replaced by a pair of

possibly-unequal positive weights yv and y,-, with .y,,* substituted for -/, on the left and Y7

substituted for y, on the right in (3.14). This allows for the possibility that, in seeking an

optimal reconciled bet price vector, positive and negative deviations from each of the initial bet

prices will be weighted differently, which might be especially desirable for bet prices very near

to 0 or 1. The corresponding primal/dual pair of linear programs is then:

Primal: maximize Yo (3.15a)

subject to Yo + ia,, (z,+-z -) ' 0 (3.15b)
'-|

+ ~L)-1(3.15c)

Z,+ 0, Z, 0, i-I. n. (3.15d)

Dual: minimize Y (3.16a)

subject to a,w , (3.16b)

w, - 1 (3.16c)
i-|

w 0j-. m. (3.16d)

Note that in the corresponding primal program the unrestricted-sign variable z, of LPI (the

number of unit bets on E, given F,) has been replaced by a pair of non-negative variables. :,*
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and z,-, representing its positive and negative parts. The primal objective is still the maximiza-

tion of the bettor's minimum payoff, but the external constraint is now a prescribed value for

the weighted sum of the numbers of unit bets bought and sold, rather than a prescribed value

for the difference between the minimum payoff and the expected payoff. In view of the dual

constraints (3.16b), the optimal objective value can never be negative. In the primal program

this is reflected in the fact that the bettor can always satisfy constraint (3.1Sc) by buying and

selling equal numbers of bets on any event, which is equivalent to not betting, since the buying

and selling prices are equal.

An interesting special case is obtained by letting yl' - (T- and p, - for every i,

whence (3. lSc) becomes

M.-P) ,* + p,z,-) - 1. (3.17)

Note that the quantity on the left is the bettor's a priori maximum payoff--that is, the amount

he would receive from the bookie if he won every bet. This is *prior" to an analysis of the logi-

cal dependencies among the events, which might show certain joint outcomes of the events to

be impossible, in which case certain combinations of bets could not be won. This constraint

may be considered to describe the situation in which the bookie has finite resources, and will

only accept bets up to the amount he can "cover" by separately matching each bet with the

amount the bettor might win. This weighting also has an interesting interpretation in the dual

program. Recall that

P.- (E, IF,) ) W ,w (3.18)

whence the differences between the initial bet prices and the conditional probabilities based on

the distribution w have the same signs as, and are approximately proportional to, the quantities

w'a,, whose weighted deviations from zero are minimized in the dual program. Under this

weighting, a positive deviation from zero of w'e,, corresponding to a positive difference

between p, and P.(E,IF,). is weighted in proportion to I --i.e., in inverse proportion to the

P,1

.. .. IIll" , ... ..... i... ..... i .. ... ..... il ... .....
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maximum positive difference possible (which is obtained when P.(E',I F)-O). A corresponding

effect is obtained with respect to negative deviations. Roughly speaking, initial bet prices near

zero tend to be revised upward rather than downward in the reconciliation process using these

weights, and vice versa for initial bet prices near unity. The reconciliation process, in this case,

1
tends to pull all the elements of p toward the value -, insofar as this can be done coherently.

2'

The reconciliation scheme of LP2 resembles a Bayesian approach formulated in the m-

space of probability distributions on the sample space rather than the n-space of bet price vec-

tors. In fact, for the simple case in which the events constitute a partition, where every

coherent bet price vector is also a distribution on the sample space. LP2 (with appropriate

weights) yields the same reconciled values as the "internal approach" of Lindley et al

under the "probability metric"--i.e., using the quadratic minimization (3.3), which is also the

same as (3.13) in this case. Here the dual objective (maximum weighted deviation) in LP2 and

the weighted sum of squared deviations in (3.3) are both minimized when their respective

weighted deviations are all equal-i.e., when the deviations are proportional to the inverses of

the corresponding weights. Let y1' - y,- - i for all i. Then, letting w* denote the coherent

bet price vector which minimizes (3.3) and letting P, denote the probability measure

corresponding to the optimal solution to LP2. we have:

P.*" -,(E, I F,) ,+ ji, [...n (3.20)
n

J.1

To illustrate the application of LP2 to an actual problem, more difficult than a simple partition,

consider the following example of an incoherent assessment which was given in Lindley et al:

p(H)-.33, p(C)-.27, p(D)-.23, p(N)-.12. p(HIN)-.4l, p(CIN)-.31, and p(DIN)-.28.

Here m-4, n-7, and H, C, D, and N form a partition of the sample space, so that H, C, and

D also form a partition of N. Both the additive law and the multiplicative law are violated--

e.g.. p(H)+p(C)+p(D)+p(N)h, p(H) p(HIN)(-p(N)), etc.. Four iterations of the

simplex algorithm on LP2, with all weights equal (for lack of further information) yields the
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following reconciled values: P,(H)-.3428, P.(C)-.2816, P,(D)-.2428, P,*(N)-.1328,

P,(HIN)-.3953, P.*(CJIN)-.3247, and P.*(D IN)-.28.

The features of LPI and LP2 can be combined in a single program by incorporating into

LP1 the primal constraint (3.15c) from LP2 in Lagrange form, using a multiplier X. The primal

objective then becomes:

maximize Yo - ( X + (3.21)
,-i Vi 7,

and the bet price constraints in the dual program become:

-,y, agwj A,," i- n. (3.22)

Here the primal program describes the situation in which, from every bet, the bookie is taking a

cut" which is proportional to X, and also inversely proportional to the corresponding weight

(y, or 17). That is, the bookie takes relatively larger cuts from those bets for which his bet

prices have low confidence factors. In the dual program A represents an overall factor by which

all of the bet price constraints have been relaxed. The behavior of the optimal solution can be

investigated as a function of X by parametric programming. For any given value of X, the sign

of the optimal objective value plays the same role as in LPI in determining whether a probabil-

ity distribution consistent with the (relaxed) constra'i-s has been found, or whether a "sure-

win" bet (taking into account the bookie's cut) has been found. The minimum value of X for

which a probability distribution exists (i.e., the smallest overall cut for which no "sure-win" bet

exists), is ,-v*, the optimal objective value that would be obtained in LP2 using the same

weights and bet prices. For any AL>v*, the optimal solution will be affected by both P and -/,

and the reconciled bet prices thus determined will generally differ at least slightly from the ori-

ginal bet prices, even if the original assessment was coherent. In this case the elements of P

are analogous to the parameters of a prior distribution on the simplex in a Bayesian model, and

the elements of y are analogous to parameters of a likelihood function. Of course, the linear

program should not be applied as if it arose from a true Bayesian model--that is, subjectively

assessing , and y once-and-for-all, and accepting the resulting solution. Instead, it appears
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suitable for use in an interactive process in which the bookie could explore his 'admissible fron-

tier" of coherent alternatives, adjusting the parameters until satisfied with the solution. The

parameterization of the linear programs described here is simple enough for illustrative pur-

poses but also appears flexible enough for practical application. (Many other parameterizations

are possible, of course.) Although 0 and y do not correspond exactly to parameters of prior dis-

tributions or likelihood functions, they are nonetheless readily interpretable in terms of their

effects in steering the optimal solution toward a specified *prior" distribution and/or yielding a

reconciliation in which the original bet prices with the highest confidence" or precision are

revised the least.

I
.... .. J._ ......... ..
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4. Lower and upper prebabililtes for the unfair bookie

As noted earlier, in situations involving many events and subtle interdependencies, it may

be difficult if not impossible for the bookie to keep in mind all the constraints of coherence

while attempting to articulate a set of bet prices which he judges "fair." In such cases he must

either derive his bet prices from a previously assessed probability distribution on the sample

space, or else obtain the help of an external agent to determine whether his initial subjective

bet prices are coherent and to explore nearby coherent alternatives. Therefore, it may be ambi-

guous to define a person's subjective probabilities for a set of events as his introspectively-

obtained coherent bet prices without also specifying by what means coherence is to be verified

and incoherence reconciled, if necessary. The acknowledgement that an incoherent initial

assessment is possible not only implies the need for procedures for identifying and reconciling

incoherence, but also casts some doubt on the validity of initial assessments which are

coherent, since they may be coherent only fortuitously. This suggests that the elicitation pro-

cedure should be extended in order to obtain additional information which could be used to

revise or adjust the initial assessment regardless of whether it is incoherent--in particular, infor-

mation concerning the relative precision or confidence attached to each of the original bet

prices. Enforcement of the coherence constraints would then provide a basis for jointly

improving the precision of the separate bet prices. This could provide an important practical

tool for improving probability assessments for certain "target" events, by enabling avai lable

subjective information concerning other, related events to be brought to bear in a systematic

way. The Bayesian approach to this problem is to introduce a hierarchy of probabilities--i.e.,

probability distributions on probabilities. By restricting the posterior joint distribution of the

true values to the set of coherent possibilities, an improvement in precision is manifested in the

fact that the variances of the posterior marginal distributions of the separate probabilities will

generally be less than the error variances of the initial assessment, even if a fOat prior is

assumed. However, the parameters or hyperparameters whose values must be elicited to

describe these distributions may be difficult to interpret subjectively. In the simplified least-
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squares -econciliation method of Lindley, Tversky, and Brown (1979). only two numbers need

to be elicited for each event, namely the initial assessment of the probability and the variance

of its error with respect to the true value. An example is presented in which the variances were

elicited by asking the subject to state a range of plausible values for each probability, after

which "the quoted ranges were interpreted as multiples of standard deviations..." This section

will discuss a conceptually and operationally simpler method for eliciting and utilizing informa-

tion concerning the precision of subjective probabilities, in which the bookie is asked to specify

his uncertainty about one event conditional on another in terms of two numbers which are

interpreted as his buying and selling prices for unit bets, when the two prices are not required

to be equal. This is the notion of "lower and upper probabilities," which was axiomatized by

Koopman (1940) and given a betting interpretation by Smith (1961). (A controversial statisti-

cal model was also presented by Dempster (1968).) Lower and upper probabilities have not

been highly popular in practice, even among Bayesians (see, e.g., the discussions to Smith

(1961) and Dempster (196)), partly because they are not as easily manipulated as the param-

eters of hierarchical models by conventional analytical techniques. It will be seen, however,

that they provide a basis for a natural generalization of the coherence theorem of Section 2, and

are readily incorporated into linear programming models for improving precision and reconcil-

ing incoherence.

For the same n pairs of events and same sample space considered throughout this paper,

let the bookie announce his buying price, pl', and his selling price, p, , for a unit bet on E, con-

ditional on F,, for every i. The bettor then places his bets by choosing a non-negative 2n-

vector (z,z-), where z, is the number of unit bets on E, given F, which he wishes to buy (at

price p , and z,- is the number he wishes to sell (at price pi. That is. the bettor must buy at

the bookie's selling price, and vice versa. The net gain to the bookie for the ith event pair will

then be equal to ((p,-E,)r, 4-(p--E,)z,-F,, and his total net gain under the th outcome in

the sample space will be

j(z-p ,-) - ±((p,-E,,),-(P,--E, ),-f,. (4.1)
IIi

il Illl



-27 -

The bettor is free to both buy and sell bets on the same event, although it will not be profitable

for him to do so if p, >p-. Let the payoff vector, t(z ,z-p*,p-, be defined as the rn-vector

whose j'b element is :t (z,z-p,p-. Let the bet prices be defined, as before, to be Istrictly)

coherent it-and-only-if there does not exist a combination of bets for which the payoff vector is

(semi-] negative. Then the following generalized version of Theorem 2 is obtained:

THEOREM 2': The buying/selling bet prices (p-,p ) are (strictly] coherent if-and-only-if

there exists a [positive] probability distribution w on 0, and a corresponding probability

measure P, on all subsets of 9, such that for every i. either p,- 4 P.(E, IF,) 4 p,+, or

else P.(F,)-0.

Proof: Note that the payoff vector is given by

t(z ,z-;p ,p") - [A+i-A'i(z+,z-) - Az - A-z- (4.2)

where A+ and A- are the mxn matrices whose 1,1)"I elements are at-(p,-E,)F,., and

a,j-(p1--E)F,, respctively. By applying Theorem I to the matrix [A IAI it follows

that either there exists a bet vector for which the corresponding payoff vector is Isemi-I

negative, or else there exists a semi-positive [positivel vector w satisfying w'(A+IA-1 10.

Expanding this vector inequality into n pairs of scalar inequalities, and defining the proba-

bility measure as in the proof of Theorem 2. completes the proof.

A similar result is proved, somewhat less transparently, by Smith (1961), in terms of odds for

bets on one event "against" another. Based on this theorem, it can be shown that coherent buy-

ing and selling bet prices obey the laws of lower and upper probabilities given as axioms by

Koopman (1940), in essentially the same way that coherent fair bet prices were shown to obey

the additive and multiplicative laws in Section 2. The bookie's buying and selling prices may be

considered to provide partial information, in the form of lower and upper bounds, on his fair

bet prices. Having stated a willingness to buy at the price p,-, he would presumably also buy at

a lower price (if possible), and he might even buy at a higher price (if necessary), but he could

not simultaneously sell at any lower price than p- without inviting certain loss. Similarly. his

initially stated selling price, p,. represents an upper bound on his maximum buying price.
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Thus, his fair bet prices presumably satisfy P 4 A 4 p,+ for all i. Theorem 2' states that his

buying and selling prices are coherent if-and-only-if there exists such a set of coherent fair bet

prices. The latter quantities are called "medial odds" by Smith (1961).

The generality of different buying and selling prices can be incorporated into the linear

programming models of the last section by a trivial modification in which each parameter aq, in

the constraints of the original primal problem is replaced by the pair of parameters a,* and a,-

defined in the proof above, which are associated with the positive and negative parts of z,,

respectively. For example, in LPI, the primal constraint (3.1b) would be replaced by:

Y+ Y + (a7z 1+-* z,) - o, j- ... m. (4.3a)

z, AN 0, Z, ;) 0, i-I. . (4.3b)

The dual constraint (3.2b) would correspondingly be replaced by:

iaq wj 0, i-I. ... ,, (4.4a)
ji-

Zac j W 0, i-I ... n. (4.4b)
j-1

In the geometric interpretation of the dual program, for each i, p- and p+ determine the orien-

tations of a pair of hyperplanes in m-space which pass through the origin and are normal to the

vectors ,- and a, which are the ih column vectors of the matrices A- and A+, respectively.

The set of points in the simplex lying on or "below" the first hyperplane (i.e., satisfying

wa," Q 0) and on or "above" the second (i.e., satisfying w'a ;0 0) is the set of distributions

w for which pl- 4 P.(E,IF,) 4 p+, or else P,(F,)-O. The set of buying and selling prices is

[strictly] coherent if-and-only-if the intersection of all n such sets, denoted W(p-,p), is non-

empty (contains an interior point of the simplex]. If, for some i, F, is not the certain event,

then the intersection of the two hyperplanes determined by pj- and p,* contains all those points

on the boundary of the simplex for which P,(F,)-0. If coherence or strict coherence is esta-

blished by solving this linear program, then the optimal dual solution yields a distribution w,

which determines a set of coherent fair bet prices, namely iw.-P,(EIF,), i-I .... n, lying

between (or equalling one of) the respective buying and selling prices. In particular, w* has the
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property that it is the closest such distribution to the "bettor's distribution,"D, in the sense dis-

cussed earlier.

A similar modification of LP2 can be used to reconcile as well as identify incoherence.

The primal constraint (3.15b) is modified as in (4.3a), and the dual constraint (3.16b) is

replaced by:

i-I V

Zawj - (4.5b)

where 7, is now interpreted as a precision factor for P- and -y+ is the corresponding precision

factor for p+. Note that if (p-,p+) is coherent and if p-<p+ for all i, the optimal objective

value may be negative. In the primal problem the interpretation is that the constraint (3.15c)

may force the bettor to make a combination of bets which will lose money for him under some

outcomes, since he no longer has the option of not betting (i.e., he can no longer buy and sell

at the same price). In the dual problem, the interpretation is that a distribution may exist

which satisfies all the original bet price constraints (4.4a,b) with strict inequality--i.e., the

set W(p-,p ) has an interior point.

If (p-,p+) is coherent, then a joint improvement in the precision (in the sense of a nar-

rowing of the intervals (pA-p+] i-I .... n) may be obtained for the same reason that a

coherent assignment of fair bet prices may place non-trivial upper and lower bounds on the pos-

sible coherent values for a fair bet price on some further, related event. That is, the set

W(p-,p+) determines upper and lower bounds on fair bet prices for all event pairs which are

subsets of the same sample space, which, in the case of the event pairs originally considered,

may be tighter bounds than the stated buying and selling prices. (Recall that the stated buying

price is interpretable as a lower bound on the bookie's minimum selling price; it may not be the

greatest lower bound implied by his overall assessment.) The improved lower and upper

bounds, denoted ,, , i -. -.... , n, can accordingly be defined as:

-rin P.(E,IF,) (4.6a)
U
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Umax P.(E, IF,) (4.6b)

where the minimization and maximization are with respect to all w in W(p1 .pi). Necessarily,

K~~~ A* A p for all i. The simplest example of this is the two-fold partition. for

which Aj(E) - min lp(E), I-p-(E)I P-(E) - max (p-(E). I-p*(E)1 etc.. In general,

finding the improved assessment can be approached as a problem in parametric programming

on the columns of the constraint matrix o( the modified forms of LPI or LP2 described above.

For example, to determine ft4*. let the term ai+-(p 1'-Ej)F,, be replaced by (A"-X-E,)F for

jI m, in the column of the constraint matrix corresponding to the variable z,+. The

resulting linear program can be studied parametrically as a function of X~, and the improved

value for A+ is obtained as A*-p - X, where X is the largest value of X for which the

optimal objective value is not greater than zero.
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S. General scering rules and their preballity transfervs

As an alternative to betting systems, subective probability can be defined and measured

in terms of marginal rates of substitution, through the use of scoring rules. A scoring rule can

be represented as a loss function of two arguments, f(x,E), where E may be either 0 or 1, and

x is a real number whose domain is usually taken to be the unit interval, with f(x,O) being

strictly increasing and f(x,1) strictly decreasing in x. (That is, xt<x 2 implies

f(x,O)<f(x2,0) and f(x,l)>f(x2 ,).) A person's subjective probability for £ can be

defined in terms of the value for x which he would choose under the condition of receiving a

loss of f(x,). He will presumably adjust his choice for x until he finds a point at which the

value for him of the marginal decrease in his loss (score) under one outcome due to further

changes in x is exactly balanced by the value of the marginal increase under the other outcome.

This approach can be generalized for eliciting conditional probabilities in a manner analogous to

*called off bets," by letting the loss for £ conditional on F be given by f (x,E)F, so that the

loss is zero if F-0 obtains, regardless of the value of £.

A scoring rule is called prper if its x-domain is the unit interval and it has the property

that a person minimizes his expected loss by choosing x-p when his *true" subjective probabil-

ity for E is p. The prototype proper scoring rule is the quadratic rule, f(x,E)-k(E-x)2 , for

some constant k. This scoring rule may be considered simply as squared-error loss for choos-

ing x to *predict* the value of E. The quadratic rule has been used by de Finetti as the basis

for much of his theory of subjective probability, and also (in more general forms) has a long

history of practical application in meteorology as a method of evaluazing forecasts (e.g.. Brier

(1950), Stael von Holstein and Murphy (1978)). Another well-known proper scoring rule is

the symmetric logarithmic rule, f(x ) - f(l-x,0) - -k(log(x)), whose use was recom-

mended by Good (1952) for the reason that, with the inclusion of an appropriate additive con-

stant, the expected reward (negative loss) to the probability assessor is proportional to the

amount of information (according to Shannon's neptive-entropy definition) contained in his

assessment. The same effect can be obtained with respect to an assignment of probabilities to a
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general partition by using the asymmetric logarithmic rule: f (x,O)-kv, f U, )-k log(x)).

which is also a proper scoring rule. A detailed discussion of the properties and uses of proper

scoring rules has been given by Savage (1971).

As a basis for defining and measuring subjective probability, scoring rules have an advan-

tage over betting systems in that no intelligent antagonist is involved- a person's net loss is

determined only by the value he chooses for his probability and by the state of nature which

obtains. When probabilities are elicited simultaneously for a finite number of different events

on the condition that the total score will be the sum of the separate scores, the requirement of

admibifiiy -that unnecessary certain loss must be avoided- can be used to establish the same

probability laws (derived from the existence of an underlying probability measure) that were

established for bet prices based on the coherence requirement. De Finetti (1972. 1974) proves

this result for the quadratic scoring rule by a series of geometric arguments in which the score

plays the role of squared Euclidean distance. Recently Lindley (1980) has explored the proper-

ties of scales of 'subjective conditional uncertainty." operationally defined in terms of general-

ized scoring rules satisfying only certain modest regularity requirements and whose x-domains

are allowed to be arbitrary intervals of the real line. In a series of arguments based on deter-

minants of the matrix of scoring function derivatives, somewhat parallel to de Finetti's proof of

the coherence theorem, Lindley shows that admissible sets of uncertainty values elicited under

a generalized scoring rule can be transformed into numbers in the unit interval which must

obey the laws of probability for their respective events. In this section and the next, using

appropriate definitions of admissibility and strict admissibility, a stronger version of Lindley's

results will be proved by exploiting the equivalence of bet prices and choices under scoring

rules, then invoking the results of the previous sections.

Let a scale of subjective conditional uncertainty be operationally defined on an interval

Ix',xr], which might be finite, semi-infinite, or infinite in extent, using a generalized scoring

rule f(x.E) satisfying the following regularity assumptions:
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(Al) f(-,0) and f(-,) are continuous and bounded below, and are strictly increasing and

decreasing, respectively, on the interval [x',xT];

(A2) f(,0) and f(,l) have continuous first derivatives on (xF,xr], denoted f'(,O) and

f', ), respectively;

(A3) f'(,0) and f'(-,l) are not both zero or both infinite in magnitude at any point in

the open interval (xFxT);

(A4) Hi. f(x,0)- 0, andX_XF f,(X,l)

lim f'(x,l). 0.

X-xr f(x,O) ".

These assumptions are similar, but not quite identical, to those given by Lindley (1980).

Lindley's motivation for considering this generalization of the scoring-rule concept was to

determine whether any method for describing uncertainty about an event or hypothesis which

did not implicitly obey the laws of probability (e.g., confidence levels, fuzzy logic) could be

given a subjectivistic basis in terms of a pair of loss functions. (The subsequent admissibility

analysis shows this to be impossible--i.e., probability is the only sensible description of subjec-

tive uncertainty. In retrospect, this is not surprising, since choosing uncertainty values under a

scoring rule is a special kind of "S-pme against nature," for which there is a well-known rela-

tion between admissible strategies and Bayes strategies (Blackwell and Girshick (1954)).) One

desirable property for a general uncertainty scale is monotonicity--that is, the right and left end-

points of the scale should correspond to logical (i.e, certain) truth and falsehood, respectively

(hence the superscripts "r and "F'), and for intermediate values the indicated degree of cer-

tainty (as to the event being true) should increase monotonically from left to right. To imple-

ment this notion, it appears reasonable to assume that the assigned loss should be an increasing

function of x if the event turns out to be false, and a decreasing function of x if it turns out to

be true. Al is a formalization of this assumption. Another desirable property is smoothness.

which is provided by the differentiability assumption, A2. A3 guarantees regularity in the sense

that the losses associated with neighboring points must be distinct by a first-order amount under
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at least one outcome, ruling out certain kinds of degeneracy. A4 ensures that the scoring rule

is well-behaved, in a sense which will be made clear below, at the endpoints of (xr]. (A

relaxation of A2 and A4 will be mentioned at the end of the next section.)

After a person reveals his subjecive conditional uncertainty about E given F by the

number x he chooses subject to a loss of f(x.E)F, a unique number in the unit interval, sug-

gestive of a conditional probability, can immediately be associated with x by the marginal-rate-

of-substitution argument sketched above. (It will be shown later that the numbers so deter-

mined must indeed obey the laws of probability if unnecessary certain loss is to be avoided.) In

the vicinity of x, a change of Ax leads to a gain of approximately -f'(x,D)Ax if EF-I and a

loss of approximately f°(x,O)Ax if (I-E)F-l. (Note that, by Al, f'(x,l) 4 0 and

f'(x,0) ;0 0 for all x in [xF,xr].) If it is assumed that the person is indifferent between x and

x+Ax, regardless of whether Ax is positive or negative (provided it is sufficiently small), then

his conditional subjective probability for E given F, denoted p. evidently satisfies

p(-f'(x,1))-(1-p)f'(x,O), leading to the equation p-P(x), where P(x) is the "probability

transform of x" as defined by Lindley (1980):

P ) W - P "(x,O) (5.1)P~) f'(x,O)-f'(x,1) (51

The person who chooses x to denote his uncertainty about E given F, under the scoring rule

f, is therefore considered to be like the bookie who will accept an arbitrary small bet, z (either

positive or negative--i.e., buying or selling), at price p, where p-P(x) and

z-(f'(x,O)-f'(x,))&x.

Another way to interpret the probability transform is to note that if the person's "true"

subjective probability for E given F is p, then his conditional expected score due to the choice

x is given by

r(x,p) - pf(x,l) + (1-p)f(x,0). (5.2)

A Bayesian would wish this quantity to be minimal, and a necessary condition for x to minim-

ize r(.,p) is that r'(x,p)-O, which leads to p-P(x) as defined above. (Note: "prime* will con-

sistently denote differentiation with respect to the first argument.) Thus, x is a stationary
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point-either a local minimum, local maximum, or inflection point-of r(.,p), when p-P(x),

by the definition (5.1). The regularity conditions for f can be interpreted as ensuring that P is

a continuous function which satisfies 0 4 P(x) 4 1 on [xF,xr], and furthermore, in view of

(A4), P(xF)-O and P(xr)-l. In fact, (A4) guarantees that r(.,p) is minimized at x" only for

p-0, and similarly at xT for p-1. For any p>0, r(.,p) is minimized at some x>xF. although

for p sufficiently small this point can be made arbitrarily close to xF, and similarly for p <1 in

the vicinity of xr .

If the probability transform is a strictly increasing function of x, then every x in (xF,x r ]

is the unique point which minimizes r(.,p), where p-P(x). A sufficient but not necessary

condition for P(x) to be strictly increasing is for f(.,E) to be strictly convex for both values of

E. If f(,O) and f(.,1) have continuous second derivatives on [xF,xT, then P has a continu-

ous first derivative, given by

P'(x) - f'(xO)f(x, 1)-f'(x,)f"(x0)(f'(x,O)-f'(x,1)) 2

In this case a necessary and sufficient condition for P to be strictly increasing is P'(x) > 0

almost everywhere on [xF,xr]. From the above expression this condition is seen to be

equivalent to f'(x,O)f"(x,l)-f'(x,1)f"(x,O)>O a.e. on CXF.xT]. (Note that this condition is

weaker than strict convexity-i.e., weaker than requiring f"(x,0)>0 and f"(x,l)>0 a.e. on

[xFTxT].) Moreover, the conditional expected score function, r(x,p), has a second derivative

with respect to x in this case, and it is easily shown that r"(x,p)-P'(x)(f'(x,O)-f'(x.1)),

where p-P(x). By assumption A3, f'(x.O)-f'(x,l)>O on (xF,xr), so that r"(xp) has the

same sign as P'(x). Hence, r(.,p) is locally convex at x if P is increasing at x, which implies

that x is at least a local (if not global) minimum of r(.,p) for p-P(x)W; and conversely, if P is

decreasing at x, then x is a local maximum of r(.,p). This suggests that, if P is not strictly

increasing on xxr], it would be sensible, in choosing x, to restrict attention to those values

in whose vicinity P is increasing, insofar as a person who wished to minimize his expected

score for any given probability would not do otherwise.
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A proper scoring rule is a special case of a of scoring rule with a strictly increasing proba-

bility transform, for which xP-O, xr-l, and P(x)-x on (0,11. Conversely, every scoring rule

with a strictly increasing probability transform can be converted into a proper scoring rule by an

appropriate transformation of the x-axis-in particular, by the one-to-one transformation of

(xF,x r ] onto [0,11 defined by P. That is, if/ is a scoring rule whose probability transform, P.

is strictly increasing (and hence invertible) on (,W,xr], then an associated proper scoring rule,

denoted f', can be defined according to f'(x,E) - f(P-(x),E). Thus scoring rules with

strictly increasing probability transforms appear to be a natural generalization of proper scoring

rules, a notion which will be made more concrete in the next section.

An interesting, if somewhat pathological, example of a scoring rule whose probability

transform need not be strictly increasing is the trigonometric scoring rule with frequency

parameter k (a non-negative integer), given by:

f(x,O;k) - f(l-x,;k) - x - sin(2k+l)rx (5.4)
(2k-i-1)

with x',0 and xr-l. Note that f(x,0;k) and f(x,l;k) are reflections of each other in the

line x- 1 , and also f(x,Ok)-f(x,1;k)+2x-1, whence f'(x,O;k) - f'(x,;k) - 2, for all x.

The corresponding probability transform is thus given by

P(x;k) - -f'(x,O;k) - -L(l-cos(2k+l)vx) "  (5.5)
2 2

The trigonometric scoring functions, f(xO;k) and f(x,l:k), and their probability transform,

P(x:k), are plotted in Figures (5.1a) and (5.1b) for k-0, and in Figures (5.2a) and (5.2b) for

k-I. Note that the graph of the probability transform has the shape of a raised, inverted

cosine wave which executes k+- cycles in the unit interval. For k- tcosie wve hichexeute k+- cylesin te uit nteral.Fork-0the probability

transform is strictly increasing and *nearly proper," i.e., its graph is close to the line y-x. In

fact, the scoring functions closely resemble those of the quadratic rule in this case. For k-1,

however, the probability transform increases monotonically from 0 to I on the interval [0.11,
13

then decreases monotonically from I back to 0 on [1.1], and finally increases monotonically
3 3
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from 0 to I aain on [1]. Thus, the equation P(x;l)-p has two distinct solutions in x for
3.

p-0 or p-1, and three distinct solutions in x for all intermediate values of p. In particular, if

x lies in the interval [0, - and is a solution to P(x;l)-p for some p, then - x and I + x
3 3 3

are also solutions. Moreover, if 0<p<l and p~l then the solution to P(x;I)-p which lies

either in (0.1) or in (-,1) is the unique global minimum of the conditional expected score
'6 6'

function; the solution which lies either in (1) or in (.1-) is a local but not global
61 3 36

minimum; and the solution which lies in (4-) is a local maximum. (Note that this is con-

3,3

sistent with the earlier observation that if P(x)-p, then x is a local minimum Imaximumi of

r(-.p) if P is increasing [decreasing] at x.) The equation P(x;l)-- has the solutions x--,
26

x-.!, and x- 1 , the first two of which are both global minima of r(.,.;l) and the last of

which is the global maximum. r(.,p;l) is plotted in Figures (5.3a) and (5.3b) for p- and

1
pM-L, respectively.

|2
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6. Admissibility under generalized scoring rules

For the same n event pairs and same sample space considered earlier, let a person reveal

his subjective conditional uncertainty about E, given F, by choosing a number x, in an interval

xA rl under a generalized scoring rule f, satisfying the regularity assumptions given in the

last section, for i-I. o. (A different scoring rule may be used for each event pair. The

corresponding probability transforms and conditional expected score functions will be denoted

P,, r,, etc..) It is assumed that the person's total score (loss) under the j1 outcome in the sam-

ple space, denoted sj (x), is given by the sum of the scores for the separate event pairs, i.e.,

sj(z) a Zf,(x,,E,)F,, (6.1)

where the vector x is used to represent the set of choices (x1 .... x,). The score wctor can

now be defined as the m-vector s(z) whose J* element is s ().

DEFINITION: The vector of choices x is admissibe if there does not exist any other vec-

tor y for which s(y)-s(x) <0.

This definition follows de Finetti (1972). Admissible choices under scoring rules are analogous

to coherent bet prices in avoiding unnecessary uniform loss under all outcomes in the sample

space, however, the corresponding notion of strict admissibility is not obtained merely by sub-

stituting " for "<" in the above definition, for reasons which will become apparent. Instead,

the following is required:

DEFINITION: The vector of choices z is strictly admissible if there exists some 4 >0 for

which

max (s,(y)-ss(x) 0 4 max (s,(x)-s,(y)
J J

for all other vectors y.

In other words, a choice vector is admissible if there is no alternative choice yielding a lower

score under every outcome, and strictly admissible if, for some e, every alternative choice

which lowers the score by, say. As under one outcome, raises the score by at least ,: under
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some other outcome. Strictly admissible choices are analogous to strictly coherent bet prices in

that, relative to alternative choices, they do not admit a loss under one outcome without a pro-

portional gain under some other outcome. That is, a person who adheres to strict admissibility

will not accept the chance of a finite [infinite] loss in return for the chance of an infinitesimal

[finite] gain.

THEOREM 3: A vector of choices x-(x ..... x,) is (strictly] admissible only if

i-(pt ... .p.) is a (strictly] coherent vector of bet prices for the same events, where

pi-P, Ux), i-!. .. ... ff.

Proof: Suppose p is not [strictly] coherent. Then there exists a "sure-win" (can't-lose]

bet x- i.e., for which t(z;p)<0 1[401, where t(zp) is the payoff vector defined in Section

2. This bet vector, together with a small positive constant 8, will be used to define a vec-

tor of small changes, Ax(8), such that for small enough 8 the existence of the alternative

choice y-x+Ax(8) will contradict the assumption of [strict] admissibility. Let Ax(&) be

defined in the following way: if f(x,,0) and f;(x,l) are both non-zero and finite in mag-

nitude, let

AX (8) - , , . (6.2)f1 (x,,0)-f,(x,, l)

Then,

f,(x,+Axi€(8),E) - f,(x ,E) - S(pi-E4), + o(8), (6.3)

for both values of E. where *little-o* notation is used to denote an arbitrary function

satisfying

lrn a(&) -0.

If at least one of the derivatives is zero or infinite, then either P,(x,)-0 or P0(x,)-i.

Suppose that P,(x,)-0. Then, if f,(x,,1)-m (which is only possible if x-x), let Ax,(8)

be chosen so that f,(x,+Ax,(8),0)-f,(x,,0)-8 2 . (This is possible, for small enough 8,

since f,(x,0) is continuous and strictly increasing.) Note that, in this case, for any

Ax,(8)>0, ,(x,+Ax,(8),)-f,(x,,l) -- m, so that an infinite decrease in the score is
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obtained when E,I-I. If, however, f,(x,l)<a*. then let Ax,(8) be chosen so that

f,(+Axj(),-)-f,(x,l)--4z,. (Here it may be assumed, w.l.o.g., that z,>O, since the

bettor thereby obtains at least a 'can't-lose' situation for the ill event pair when p,- 0 .)

Note that when E, F,-1, the decrease in score due to Ax,(8) is

f,(A,1) -f,(x,+Ax, (8),1) f (-f,(x.1))dv -Uz,. (6.4)
x,

whereas the increase in score when (-E,) F-I is

Af,+&x,).-Af(x,.o)- f., c~x (6.5)

Now, P, (x)-O implies that

fA(x,+Ax, (8),o)
.m (6.6)A,(a-. f (x,+Ax,(8),l)

It follows that the first integrand above can be made uniformly larger than the second by

an arbitrarily large multiplicative factor by taking Ax (8) small enough, which in turn can

be accomplished by taking 8 small enough, since Ax, (8)-. as 8-0 by the assumed con-

tinuity and finiteness of f,(x,) near x-x, in this case. Since the first integral is by

definition proportional to 8, the second integral must therefore be proportional to o(8).

Let corresponding definitions be made for A, (8) if P, (x,)-l. In this manner, a vector of

changes is obtained for which iL,(8)>0 [<01 if-and-only-if z,>0 (<01. Furthermore,

for both values of E, either

f, (x,+Ax, (8),E) - f, (x,,E) - -(, (6.7)

Or,

f, (x,+AxU(8),E) - f, (x,,E) - 8(p,-E)z, + 0 (a). (6.8)

Therefore, for every j, either

ss (x+Ax(&)) - s,(z) - --- , (6.9)

or,

Sj (x+AX(&)) - sj (1) - all (Z-p) - O (a). (6.10)

Now, by the assumption that a is a 'sure-win' r'can't-lose'] bet, t(x;p) <0 [401; so that



-* - 4,2 -

.42-

by taking 8 small enough the score change can be made negative under every outcome

[negative and proportional to 8 under at least one outcome, and proportional to o(8)

under the remaining outcomes] which proves that x is not [strictly] admissible.

Thus it is seen that a necessary condition for a set of choices to be [strictly) admissible (in fact,

locally so) is for the probability transforms to be [strictly] coherent bet prices, which in turn

implies the existence of a probability distribution, w, and a measure based on it, P., for which

these are conditional probabilities. Considering the score due to the choice x as a random vari-

able, denoted S(x), the expected value of S(x) under the probability measure P, is given by

F,(S(x)) - w's(x) - PP.(F,)r,(xP.(E,IF)) (6.11)

for all x. where ri (xp) is the expected partial score function defined in the last section. If x is

a vector whose probability transform is consistent with the distribution w-i.e., for which

P,(x,)-P,.(E IF,) for every i--then i(x,,P,(EjF,))-0, so that all the derivatives of the

expected score function, evaluated at x. are zero. Theorem 3 can therefore be paraphrased as

follows: x is [strictly) admissible only if there exists a [positive] probability distribution on the

sample space for which the gradient of the expected score, evaluated at x. is the zero vector.

The gradient being the zero vector is, of course, a first-order necessary condition for an uncon-

strained minimum of a smooth function. Thus, a necessary condition for (strict) admissibility

is that x must satisfy a first-order condition for a minimum of the expected score, under a

[positive] probability distribution on the sample space. On the other hand, consideration of the

properties of a minimum of the expected score leads to sufficient conditions for admissibility

or strict admissibility. A choice x which minimizes the expected score under the distribution w

is said to be "Bayes against w." x will simply be described as Bayes if it is Bayes against some w,

and strk,, Vaws if it is Bayes against some w > 0. In these terms, we have:

THEOREM 4: x is (strictly) admissible if it is (strictlyl Bayes.

Proof: For the non-strict case this result is obvious-- an alternative choice yielding a

lower score under every outcome would also yield a lower expected score under every

probability distribution on the sample space. For the strict case, assume x is Bayes against
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some positive probability distribution, and let w,, denote the least element of this distri-

bution. Then suppose that x is not strictly admissible, i.e., that for every positive ., no

matter how small, there exists an alternative choice which lowers the score by, say. As

under one outcome without raising the score by more than eAs under any other outcome.

Thus the score can be lowered by As under some outcome with probability greater than

or equal to w. Under all other outcomes, the score is raised (if at all) by not more than

eAs, and the total probability of these other outcomes cannot be more than l-w,.. By

choosing a < (l-wM,, this alternative choice can therefore be made to have a lower

expected score than x.

THEOREM 5: If, for every i, the probability transform P, is strictly increasing on

9,x, and p-P, (x,), then the following are equivalent:

(i) p is (strictly] coherent;

(ii) I is [strictly) Bayes;

(iii) x is (strictly] admissible.

Proof: Suppose p is (strictly) coherent. Then, by Theorem 2, there exists a [positive]

probability distribution, w, for which pj-P,(E,IF,), or else P,(F,)-O, for every . Since

pi-P,(x,) and P, is strictly increasing on (xf, x,', x, uniquely minimizes ,(,p,). From

the representation of the expected total score given in Equation (6.11), it follows that x is

Bayes against w. Thus, x is [strictly] Bayes if p is (strictly coherent. By Theorem 4, X is

(strictly! admissible if it is [strictly] Bayes. Finally, by Theorem 3, p is [strictly) coherent

if x is [strictly] admissible.

This theorem completes the generalization of de Finetti's notion of the equivalence of betting

systems and scoring rules as methods for defining and measuring subjective probability, which

was recently proved by Lindley (1980) in a weaker form. It has been shown that the require-

ments of [strict! admissibility for conditional uncertainty assessments under generalized scoring

rules with strictly increasing probability transforms give rise to the probability laws in the same
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way as the requirements of [strict] coherence for conditional bet prices. If, however, the probe-

bility transforms are not all strictly increasing, then the existence of a probability measure con-

sistent with the probability transforms of the choices, which is a necessary condition for admis-

sibility according to Theorem 3, is not also a sufficient condition. An example of the latter

situation is provided by the trigonometric scoring rule introduced previously, for the case in

which k-I. For some event E, let x, and x2 be chosen to describe the unconditional uncer-

tainty of E and 1-£, respectively, both under this scoring rule. For either value of E, the total

score is then given by f(x,,E;l)+f(x2,1-E;l), where f(x,E;k) is defined by Equation (5.4).

From Theorem 3, a necessary condition for (xlx 2) to be admissible is P(xt;l)+P(x2 1)-l,

where P(x;k) is given by Equation (5.5). For some p in (0,1), consider all pairs (xt,x 2) which

meet the above condition by satisfying P(x 1;l)-p and P(x 2;l)-l-p. There are nine such dis-

tinct pairs, corresponding to the combinations of the three solutions for x, and the three solu-

tions for x2, as noted at the end of Section S. If p;l, exactly one of these nine pairs is Bayes

against w-(pI-p). namely the unique pair of which one element lies in (0,-) and the other'6

element lies in (-,1). (This pair is admissible, by Theorem 4.) Also, exactly one pair is inad-
1 2

missible, namely the unique pair of which both elements lie in (-,-). (This can be demon-
3,3

strated by a simple geometrical argument, based on the fact that both f(x,O,1) and f(x, 1 1)

1 2
are concave on (-,-).) The remaining seven pairs are also, in fact, admissible, even though

3,3

none of them is Bayes against any w. If P--L there are four admissible pairs which are Bayes

(xtx 2 . [1, -)), one inadmissible pair (xt-xz-L), and four admissible pairs which ar not
6 6 2'

Bayes.

The above results can be extended to the case in which assumptions A2 and A4 are

relaxed to allow scoring functions whose derivatives are only piecewise continuous. In particu-

lar, assume that f,(.,O) and f,(.,I) have piecewise continuous derivatives such that the

corresponding probability transform is piecewise continuous, and satisfies P,-(x) 4 P,+(x) for
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all x in (xf,x, and also P, (x,) <I and P,-(xl)>0, where P,-(x) and P, (x) denote the limits

from the left and right, respectively, of P, at x. Then, by the same same procedure as in the

proof of Theorem 3, invoking the results of Theorem 2' rather than Theorem 2, it can be

shown that a choice x is [strictly] admissible only if (p-.p+) is a set of [strictly) coherent

buying/selling bet prices, where pj-- P,-(x,) and p, -P, (,) for all i, with P,-(x'6i0 and

P,+(x7)El. If P, is also strictly increasing for every i, then a corresponding generalization of

Theorem 5 is obtained. Thus, upper and lower probabilities can also arise in the context of

scoring rules.

Blackwell and Girshick (1954) give numerous admissibility results for statistical games,

using a definition of admissibility which is intermediate in strength between admissibility and

strict admissibility as defined in this paper. (In particular, their definition of admissibility,

which follows Wald (1950), is obtained by substituting ";0 for ">" in the definition of admissi-

bility at the beginning of this section.) An "S-game against nature is a statistical game defined

by a set S in m-space, in which the player chooses a strategy consisting of a vector

s-.s,,) in S, and *nature" then randomly chooses a coordinate, J. whereupon the

player receives a loss of sj. The process of eliciting conditional uncertainty asssments for a

set of event pairs under generalized scoring rules, as described in this section, is dearly a spe-

cial kind of S-game against nature, in which the set S consists of all s(x) generated by (6.1) for

values of x satisfying xf A r. i-1 .... , n. This set is closed, but not generally convex;

although if the probability transforms of the scoring rules are all strictly increasing, then the

admissible points lie on a convex boundary. Blackwell and Girshick show that for S-Sames in

which S is closed and convex, with the W' definition of admissibility. every strictly Bsyes stra-

tegy is admissible, and every admissible strategy is Bayes. This result is applicable to the case

of scoring rules with strictly increasing probability transforms, but it is less specific than

Theorem S. However, by a direct application of the basic separation theorem, it can be shown

that in every S-game which is closed, convex, and bounded below, a strategy is [strictly| admis-

sible if-and-only-if it is [strictly] Bayes, under the definitions used here.
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