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Page 2.

Is examined the wide circle cf the tasks, connected with the

cptimization of ths signals, used in th; radar. All tasks are treat-d

from the positions of the critericn cf proximity - new universal

approach to the synthesis, applied not only in th3 thecry of signals,

but also in other regions. It is stcwn that the synthesis of signals

according to the functions the ancertainties/inieterminancies and

according to ths autoccrrelaticr functions, and also the cpticizaticn

of most ccmmonly used signals witt the frequency modulaticn and wi-:h

the phase manipulation can successfully be carr-d out on thq basis

of the general/common/tctal aFprcach indicated. Are

developed/processed also the iterative methods of synthesis with the

us-/application cf the ncrclassical calcullis cf variations. A:r givF-n

the new results, obtained by the authors.

* The book Is intended for scientific work.rs, graduats stulints

and engineers, who are interested ge.neral by questions of radar and

theory cf signals, and also in Frcblems of synth.easis in other

regions.

Im

T . m
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Page 3.

PREFACE.

Ths characteristic feature cf cont;mporary radio electrcnics "s

the wida use of serrated signals, i.e., signals whose product of

duration to the width of the spectrum considerably exceeds unity. As

th: confirmation of tha afcresaid can sarve the fcllowing data about

a quantity of patents, given cut In the series/row of the for.ign

countries (USA, Great Britain, FRG, France) according to the methc~s

of formation, processing and on tbi uses/applications of the

complicated sounding signals in radar (41]:

&)r.Ab1- (-M BMiaHo naTeHTOB
1961 4
1962 18
1963 36
1964 55
1965 78
1966 88
1967 34

Key: (1). Years. (2) . Patents issued.

For the years 1961-1967 313 at-nts were issued.

4
The use of serrated signals is connected not only with ths

solution cf serious techrical p:ctlsms (about which testi-i-s :h:.

-I

II
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mentioned flow of inventions), but it rsquires alsc in-depth

theoretical studies, especially or the synthesis, the optimization of

the structure of signals themse]ves. This question already has vas:-

literature. Of the bocks, Fublished in the Russian language, it is

possible to mntion the mcnograph cf Varakin (13], Slcka [62],

Pstrovich and aazmakhnin [48], Ccck and Bernfeld [35], and also wcrk

of one of the authors of this beck [7, 8].

Page 4.

Should b4 noted also the excellont book of Franks on th - principl~s

of the theory of signals [30]. All these books touch on one way or

another questions of synthesis.

But the known mpthcds cf synthesis ar - very h.tercgencus.

Depending on ths structure cf sigral and concra-:e/specific/actual

, requirements are applied the differcnt methods of the solution,

diff:r3nt criteria of apFroxmaticn/approach and so forth, etc. Thus,

the methods of the synthesis cf the signals with the frequsncy

*1 modulation in practice dc not have general/coimon/total with those

which usually are us-d for the discreti/digital signals with th-)

phas7 manipulation.

apanwhil-. tc th'. div?:sa -asks of th: synth's;.s of signals, and
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also synthesis of antennas, filters and other units, is

characteristic certain generality, which makes it possibl, tc

formulate these tasks frcm unity cf cpinion. This universal approach

simplifies the understanding cf different problems of synthesis and,

as frequently It is during siwilar 9snir alizations, cff-rs furthpr

possibilities in the soluticn of the tasks, almost inaccessible for

the methods, which were being alpli.d Earlier. The

dsveilopment/detctin, of such general/common/total approach is th

fundamental purpose of this wcrk.

For this is used the representation of signals (or ether objects

of synthesis) in the form of rultidimensional vactors in certain

abstract space. This rzpresenzaticn is widely known from the theory

of freedom from interfere.cg and adjacant regions, it is based on th-

simplest positions of functicnal analysis. In application to the

problem cf synthesis this rsprosentation makes it possible tc obtain

the demonstrative geometric descriFtion of the corresponding tasks.

It is clarified, that independert cf the nature of the objects of

synth.sis and concrete/specific/actual requiremjnts the problm -S

reduced to the minimizaticn of tle distance between some s;ts in th:

appropriate space. This pcsiticr, named the hypothesis (or criterion)

of proximity, is the basis cf this work.

This hypothesis was formulated by re of th . authors in 1967

I
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[8). This book is, thus, ky the development of the work indicated,

morsovsjr substantially are used and arfi geneiralized authors, privious

publications (7-12, 53, 60, 63].

one shculd emphasize that the approach ir question tc the

synthesis contains only the deteruiristic tasks when the desired

prcperty of synthpsized cbjects is formulalted witlicut the

use3/application of statistical criteria of optimum character. Such

tasks meet very frequently.

Pago 5.

They include the synthesis of antennas according to the radiation

patttrns, thA synthesis cf, filters acccrding to the frequsency

*char actPr ist ics, the synth~esis cf signals acccrding to ths functiocn s

of uncertainty/indeterminancy, etc. But besides the mentioned

det,2rministic trcatm!-nt fcr the synthesis of signals are frequently
used teprobabilistic criteria, siuilar b htue ntet~r

of detection and evaluaticn/estinate of the parameters. In this

conn~ction tc matsria. of the bcck Is presuppcsid thaP input chaptr-r,

whi-ch elucidates role ard place cf the daetarministic methods of ths

4 syrthesis of signals in ths ser~eE/rcw of others.

1 In chapt~r 1 !.s it. detail pres~rted the proposed aniversal

In
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approach to the synthesis, whi.le in the subsequant chapters it is

applied to soma tasks in the cptivization of signials. In this casc:

into some cases w-3 come crly to the new treatirent of known results,

in others - are achieved the generalizations, which have independent

valu2; finelly th~re is a sc-ric-s cf problems whsre this apprcach

leads tc the new results.

some of ths examined in the took tasks havS -th

general/common/total vaulue in the given region, others are of

interest bqcausA arp dr-terminced t1he signals wit.,, gocd in. this or

another sense properties. But it goes without saying tha book .1Ao s

not claim to the complete sccpe/ccverage cf the problem of the

* synthesis of signals. The authors attempted, rainly, to consid-er

different tasks, using single methcd, off confirming ths univirsal,.y

of the latter.

Mtod is adapted fc: the synthesis of single (in particular,

that sound) signals, the Froblems cf thr- synthes--s of tha groups of

signals according to the mutual-ccrrelaticn properties in the book --s

not examined. In the equal measure are not examined any questions,

ccnn-ictzd with th- construc~icn of systlems as a whcl-n.

Th-: syntha-sis cf signals as cth-r .asks of ap-.imizat~cn, t

raducsd to the variatior Froblers. The known we-:hod~S of sclving t

-41



DOC = 80206701 PAGI e

variational problems can be divided in~to two large grcups. Classical

calculus of variations givis the aralytical resolutions of sferi--s of

problems or, at least, reduces them to othar problams of analysis, tc

thf: diff-ar -ntia2. crT irnt-gral _-quaticns. But tcday intensely th.;y arn

appled and arze just as irtersely developed also nonclassical

variational methods, based cn the iterations, the successive

approximatiLors to th- unkirown sciutiJon.

Page 6.

Contzmporary computer ebocyuksi possible to apply it, atiI

numerical methods with tire great success, and It is possible to hrAar

propositions about the fact that the: analytical methods becami

obscl1?t-7, they ar-- 1Thss efficiert i.- th3 practical tasKS than

numrical, itsrativ-.

Hardly it is possible with this to agrela. Class~cal and

nonclassical variational metbcds uutually suppl:ement each othar; in

th- complex problems of the synthesis of signals it is rexpcd-4.;nt tc

join those, etc. The authcrs cf' this book hope --hat thsir

collaboration contributed to this interpenetration cf methods.

-* ntroducti~n, chapter 1-3, 6-9 (bssid-as F,9.11) ars writt-in bCy D.

- .1* Vakman, r:-icnar-ing secti.cns cf bcck -tcg-h-7.: by both authozs. 5,;
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R. M. Sedletskiy are performed alec calculaticns on TsVM [digital

computer] for obtaining tbs ccncrete/specific/actual results.

Ths authors arp. grateful tc tha doctor of technical sciences L.

Ylz. Varakin and to the dcctcr cf technical sciences A. M. Trakhtma

for the critical observations ard the council, which contributed -o

an improvement in the bcck.

.. . .- - --
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Pag. 7.

INTRODUCTION.

PROBLEM OF THE SYNTHESIS CF SIGVAIS IN A RADAF.

Short historical survey/coverage.

Examining questicns of use/aplicatior in the radar cf thq

sounding signals of different structures, it is possibls 'o isolatt

several historical stages. In the first develcpment period a question

about the selction cf wav-form, ir fact, was not placed. Th.

practical possibilities cf gertraticn and prcc-assizg of signals w=--

so limited that were apFlied cr t e single-frequency

impulses/mcms-n-a/pulses of the. shcrt duration, clcsa to the

continuous cnis, obtained from usual type vacuua-tubc cscillators.

Respactiva-ly ;van during thp first stage were da-ma-cated twc

directions - pulse and ccntinucus. Tc sach of th~m were

characteristic their limitaticns, each solved its problems. Pulse

method was appiid in the dr-v-ces/.qu.pmrent with a ccmpar~tively lcr.g

range of action, ccntinucus - with thp low, but in this case was

reached higher accuracy.

-i| . . -, - -, . . .,. . . .
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Thr following, second stage, is conn.ctad with ths advent of a

pulse-coherent technology for the selection of moving objects.

Selacticn is rachcd duo to the igproved methcds of processing the

echo signals on th. condition that an indispensable sequence cf

sounding pulses possesses sufficiently high stability. They are

required, in particular, the low frequency drifts of filling for

several periods. In a certain sens such a requiremsnt draws togepther

pulse radar with the continucus.

Page 8.

At least characteristic time scale increases several the orders: it

is not thA duration of single pulse, but repetition period. Ccher?nt

pulse sequence is already the serrated signal, whcse product cf

duration to the width of th spectrum is suffician-ly great.

But this undrstanding arrived scmcwhat lazer, in third,

contemporary development stage cf radar technclogy. Certain threshcl-

of this stage it is pcssitle to ccnsider the first successes of thn

statistical thaory of radar, which r- latf- to th-t middL7 Fifties whtn

it was established/installed, ir particulaz, that -he most important

characteristic of RLS (Ercbability cf datecticn) is determined with
tha optimum rec~pticn/p:ocedurc by :nrgy of tn! scunding signal, bu:

do not deprnd on th4 special features/p-culiaritie-s cf its fcrm,

.4
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including from :hs pulso power, durations, widths cf ths spectrum and

so forth, etc. This it irdicated the possibility to vary waveform,

satisfying other requirements with the maximum detectable range.

The straight/direct continuation of this idaa is the widely

utilized today techniquf cf the ccmpressicn cf

impulses/momenta/pulses, which makes it possible to raise accuracy

and range resolution at the limited peak power and long range of

detection. It is possible to say that compression te.chniquc jcins

somehow the advantages cf pulse ard continucus methods in the radar.

Used for this sounding signals possess the wide spectrum for the

largs duration, thasg are serrated signals with th6 frequency

modulation, the phase maripulaticv and the likeL.

FOOTNOTE 1. The first puklicaticn on the use/application of thr

complicated sounding signals in th= radar pertains :o the year 1960

(39]. From tho Soviet sources should be mpnticned Ya. D. Shirman's

invention (86, 87], who in 1956 proposed analogous method. In 10-15

years of development the compressicn technique of serrated signals

achieved surprising successes. Is tcday realized compression of Ch,

signal 106 times (!), the duration of the sourding signal being 1 ms,

and tha duraticn of comprissed - cnly of 1 ns. By this is provided

rzsclution on tas crier cf 15 co (37]. ENDFOOIOTE.

.IL
,A

a ~-
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The middli Fifties includes graint-ral/common/total posing of h

question about the simultaneous measurements cf all parameters of the

motion of obj~ct - its cocrdinateS, rate and accsle ratior. This also

was done in th plan/laycut of the statistical trsatment of problem,

but made it possible to detervire the effect cf waveform on tbhn

quality of the measurements indicated.

Page 9.

Here should be noted Wocdward's basic work (16], who for th's first

time introduced the generalized cl'aracteristic of the sounding signal

-function of uncsrtainty/Indetgrainarncy, which ccmparativ'Uy fully

de;scribss thc aff'-ct of tba latter cn the measuramr-nts of the delay

* time and frequency. The functior cf uncertainty/ind-4termirancy is

similar to the antenna rediaticr Fattern: in thsc same measurs i.n

which the rad-iation pattern charactariz:s accuracy and resciutior ef

angular measureaments, the functicr cef uncertainty/4ndetsrminancy

* characterizes accuracy and resciutici of rangings and rat--.

* Logically, as soon as was understood this valus of the furcticn

of unciztainty/ind,!t2rminancy, was titgur th,:- dstail~d study cf its

properties and were dcne the firxst attempts at the synthesis of th't

i signals, which possess the desired functions c-.4

~1 uncertainty/-ndq-trm!nancy.

AL1
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Beginning from the end/lead Fifties, this complicated in

mathematical sense problei of synthesis intens.ly is

devslopid/procassed and abroad. Tc some methods of its solution, ir

th-3 opinion of ths authors sufficient to efficient ones, and is

dedicated this book.

in parallel with the develcrent cf the theory of serrated

signals occurred the development cf technology of their gensration.

Technical capabilities ccnsiderably were widened in the latter/last

decade, and although from the pcint of thoorist's view these

possibilities still leave to desire the best, the contemporary stage

cf radar it is unconditIcnally cberacterizad ty the wida applicat4ir.

of diverse sarrated signals. Therefcrs the methods of synthesis,

optimization of these signals, especially those of them, which to t1- _

maximum degrfa consider th"-4 pcss-kiliti:s of gznerazicn, dc rct ls--

and cannct lcsa urgency.

most recently was planned, apparently, new, fourth stagp in lhi

process of the improvement of the structure of signals. This stage is

ccnnect-d with the general/commcn/tctal tendency of the

us-/ipplicaticn of the self-*uning, adaptive dqvices/equipm;nt In 4hi

radar. In thc initial s-tting this ouzsticn raisis .var tc tha

-, "T: ,.- :: --/ " .. .". . ".. ....- .'- :*-- - -. - , . - -
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sequential analysis of Wald. But if at the early stages th . technical

capabiliti-s of self-adjusting werR limited in 3ssance tc variable

spred of scanning on the angle, then today there is a possibility ir

principle to change alsc the structure of sigral and the method of

reception/procedure in the deperdence on the cbserved situation,

acccrding to %ha previous observaticns.

Page 10.

As a characteristic zxample of this typs car serve the radar system,

which, after determining roughly iccation and target speed, and

having also considered interference situation, automatically changes

th . form of the sounding signal and (or) the method of

recepticn/procedure in crder to ir the best way isolate signal from

the predicted target frcz the available interf.rences, and to also

maka mozq precise its coordinates. In proportion tc th. rsfirem-nt cf

real situation this process cf adaptation of RLS continuously is

continued'.

FOOTHOTE 1. In the literature already there. are indications about -he

dqvslcpment cf similar adaptivs RIS, which automatically change the

opprating mode in the. dip.ndence cn the results of previous

observations (514]. ENDFCCINOTE.



DOC = 80206701 PAGE 16

The synthesis of signals fcr the adaptive systqms is

characterized by the series/row of special features/peculiaritis.

The selection of signal, its cptiuization, must be produced not at

the writing desk and not after the pancl of TsV3, when for cttaining

the results and for their analysis can be expended/consumed hours or

w-ak, but it is direct in the ecuiJwent, during several seccnds or

milliseconds. Of course so rigid a r-gulation of time sets

substantial limitations cn the uethcds of synthesis. But nvertheless

more fundamental is another special featur3/pacullarity, ccnn.td

with the fact that cnly the adaptivq systems make it possibl - to

virtually obtain necessary, a pricri for the task of synthesis,

information about the ccncrete/specific/actual situation. This

special featur?/psculiarity in detail is consid~rad below.

Operaticnal d-scripticn cf locatirg system.

Lt at thn point cf space, characterized by radius-victcr r

(origin of ccordinat.s is combined with RLS), ther: is a pinpcint

target, which moves at a rate of v. If the sounding signal is s(t),

S then with the usual assumptions atcut not too high a targ-t sr-pd ani

4 abcut the narrow-band characteristic of signal (w-th resp.ct to ths

carrier frtquency) the echo sigral can be pres-Ated in *h* form

M r _,kr) s - eJ

Hfr- r=Wrj- th4 raagq cf target, 9(r) - th3 antanna radiaticn pet'--r

?V7
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(on the field), r=2r/c - delay cf the echo signal, Q=2wovdc - thr

Doppler shift of thp carriar frequency wo, 0, - tha radial veioc. ty

of target.

Page 11.

The composite coefficient of reflection a(r) charactezizes the !iv-.l

of the echo signal (reflecting surface) and the phase of reflection.

In general target is nct pcirt, it occupi E! c!Z:din space V. in

the space, and then

. (1=a .(r, t0

,M g2 (r) s (t - elC. (1)

Ioracvgr here a(r, t) is density cf reflection coefficients, so that

a(r, t)dV is the coefficient cf reflection of volume elemant.

Dependence on t characterizes charges (usually slow) in coefficient

of rflection, for rxamplq, due tc the motion of target.

Besides usnful signal X(t cD ELS comq mixing reflccticns xb(t)

from other reflecting otjects. These objects ara characterized by

density b(r, t) , by analcgous a (r, t) , and they occupy certain region

4 1 b in the space. It is aralogous with previous

CbV , gIr s( li16
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Finally, the input cf receiver enter noises and other additivt

interferences. The sources of sucb interferences also are scmehow

distributed in the space, but it gcqs without saying interference

level dces not dapend on the form of the sounding signal, but

radiation pattern here FarticiFates only in the process of

recepticn/prccsdura. Therefore, designating ncist component of the

signal through x,(U), it is possible to register

,LI g(r. d,(NX. Yt)--= S -- r )r,
V

where n(r, t) - the density of the sources of additive interferenc~s,

and V, - counterpart of thq space.

The resulting input signal is Fut together of three that

indicated the compon-'nt

x(t) = X' )+x -. -x, I*I.

Thes ccmpor.ents a:c randcm functicns, since thiy dspe.nd, fcr

example, on the random location of the _eflect4ing objects.

Page 12.

we will thus far assume tho statist.4ca. dascrip-icn of the ots-:rv.

situation krcvn, i.e., ccrsider kvcvn probabilistic distributins fcr

valu-s a(r, t), b(r, t) ar3 n (r, t). input signal d-pa.nds also en

characteristics cf RLS - form cf tha- scunding signal s(t) ar.

:1 - : ' , : ... . . . .-. . .
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radiation pattern g(r). Tie proklew of synthesis (d-sign) livs ;.n th

fact that to select these characteristics by certain in better shape.

Receiver of RLS always contains linear or quasi-linear input

part - the circuit of auplificaticn on th high and in thq

intermudiat. frequency. Fer thQ brevity we will call this part simply

receiver. This receiver can be described by its pulse reaction h(t),

the output signal of receiver exists a roll of input and h(t):

4 CCy~t- M (t) h (t -t') dt. 4

Together with s(t) and g(t) receiver response h(t) also must ba

synthesized on without scma ccnditicns of optimum character.

From previous it is not difficult tc comprehend that RLS can b-

treated as certain operator, which convsrts th9 characteristics of

the cbsrrved situation into the cutput signal of riceiver y(t).

. Grouping the functional arguments ef this operator which depend or.

structure of RLS and are subject to optimization, and the arguments,

which dapend only on the cbjects cf observaticn, can be registerpd

y= Y(s.g,h; a,b,n). (III a)

Opprator Y has ccmparativc.ly simple structure, he is linar

relative to all his arguments, except radiation pattern (where the

dependence is quadratic). In particular, the cutput signal y(t) is

put tcgether cf thre-z ccmponrnts, ccnr.cted wi-h a(r, t), b(r, t) Rr,!

hJ

- o, - -" -, - . -'-. . . ---------- ---. -~---~ -- * -.--- . . . ... ... .
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n(r, t) respectively, so that occurs the suparpositicn

!;(t ==y, (fl +.;;,(t) Yn(t).

In the operational designations

S'= Y .s, z + h i s. g. hh) Y s (. h). (II1I6)

Page 13.

Further, bo.causa of th, linearity of the conversion, roalizod by a

receiver,

Y= HX(s.g) + HXb (s,g) + HX.(s,g). (III

where operators H and X are deteruiired

concretely/specifically/actua2ly ky relationskips/ratics (II) and

(I).

Th - output signal y(t) is used for dstarmiaing the param .t .r' e

motion or other characteristics cf targets. Fcr example, can be

mcnitcred the range of target, its angular position, rate, anI also

number of targets, their re.flecting surfaces, e-c. Let us dsignatz

the controllable/controlled/inspected parameters through z, ,z 2,

and their set - by multidimensicnal vector z.

According to locating observations is determined the in gsneral

not true bam v3cctor of param.ters z, but its c.ly certair.

apor.ximats estimate /z. Eva luatcn/estimate is formed as a rasult
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of soma actions, produced above tbh' output signal cf rsce.iver y (t) -

by ths only source cf infcrmaticn about the obs-rvpd cbjects. Thasi

actions are implemented automatically or with the participation of

man, bul it is possible tc assume that for each system is certain

rsgular algorithm (instruction fcr the operatcr) , p-armitting to

obtain the vector of evaluaticns/estimates z according to th-

realizaticn of the cutput signal accppt.d:

=Z (tl. (IV)

Operators Y and Z give from a fundamental point of view ths

complete description of locating system. Operator Y characterizes the

formation of the echo signals ir "ether/ester" and their conversion

in the receiver, ha considers alsc the form of the scunding signal

and the antenna radiaticn pattern. This operator, identical fcr all

radar systems, is defined ccncretely/specifically/actually with th7

help of the prnvious relationshlps/ratios and, as it sesm.d, it was

linear relative to almost all its arguments.

The second operator 2 characterizes further procassing of thz

echo signals, beginning from the detection. The

concretc/specific/actual structure cf this operator is more

complicated, it depends cr many factors and, in the first place, f:cm

-quipm?nt usage.

Paga 14.

Il
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Depending on type of RLS are mcnitcr~.d onc or tho other param.tars cf

targets - components cf vector z. Intc a number of tasks of treatment

can enter in general such "glcbal" operations, as the

=evaluat-ion/estimate of situaticn as a whola or determination of th =

type of the targets, which relate to pattern recognition. Even such

cases can be included/ccnnected in cur description, after assuming

that operator Z maps many signals y(t) to the discr-ate set of thi

possible solutions about the situation. The simplest version of this

type is a dcts:tion problem when vector z allcws/assumes cnly the two

values: 1 (target of eatirg) cr 0 (there is nc target).

Straight/direct and indirect apprcaches to the synthesis.

L:.t us attempt to fcrmulatc th, task of th; synthesis cf sign.Ils

and other characteristics of locatirg system in a strict form.

The victcr of paraueters z, understood in the gensralizel,

indicated above sense, completely characterizes the

designation/purpose of tb- prcjectqd/dssignzd system. Tha ccmpcr.nts

of this vector are the cortinucus parameters cf targets, which ars

subject tc maasiremnt, such as rangs or rate, and also the

disc.et-/digital solukics abcut thEr situatior as a whcl.; - r: -

'a!
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of targets, their number, type, etc. Evaluaticn/-stimate 'T, obtainrd

as a result of processing the echc signals, differs from true beam

vector z and is random variable, which depends on the

concrete/specific/actual realizaticn of signals and interferences.

RLS implements its designation/purpcse tha bettar, the nearer the

evaluation/estimate I tc the true value of z, moreover hers it goes

without saying it is necessary to havs in mind averaging cn many

realizations, and also, pcssibly, tc give varying "weight" to thp

different components of vectcr z. ThereforS as the criterion of tha

quality of system it is pcssitle tc seltct certain

adequate/approaching furcticnal, Zepending on difference z-z. Iqct

stopping in mor. d.tail on a questicn (generally speaking, important)

about the appropriate stzucture cf this functional, let us note that

as the measure of quality it car serve, for example, the mean squae-

cf the differenc.

-2II. (V)

wher the fature d-signatis avgraging cn many r.aaliza-ions cf

signals and interferences for the ccncret-te/specific/actual situat'r.,

or, possibly, on many situations.

Paqe 15.

The problem of synthesis consists in this selection of

characteristics of PLS sc that the valuz E would be minimum.
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This approach to the synthesis is straight line in the sense

that the criterion of quality (V) ccnsiders final effect and it is

directly connected with equipment usage. However, therc is a

series/row of the reasons, due to which this approach in practict is

not used.

In fact, wa only fcrmalized tc some degree the problem cf design

of FLS as a whole. Minimized value a depends on all important

characteristics of system - the fcrm of the sounding signal, puls.

reaction cf receiver, antenna radiation pattern and algorithm of

further processing. All these ctaracteristics substantially affect

the quality of the execution cf tasks and they all, according tc the

pravicus satting, they must be cptimized togeth-ir, taking inc

account mutual effects. Of ccurse cf this consists strictly optimum

design. But the problems of a siuilar scale nct randcmly are solved

usually on the bas3 of angineering intuition, and not analytical

methods. To regularize the soluticr cf this proolem is completily

impossible and even, in cur opiricn, it is not always sxpedient.

After stepping back from the strict approach indicated, they

dismrrmbar task on thr part, as far es possible sal-cting th. locke.

groups of juestions. Thus, :bE Frcblem of angular measurements,
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connsectcd with the design of antenna, is ixami.t 4deprndTnt of

rangings and rate where the mair rcle play waveform and method of

recepticn/proced ura *.

FOOTNOTE 1. With the super wide-band signals angular measurements ard

measurements of a range-s.ead are nct independent variables and must

be examined tcgathpr [79]. ENFCCINOTE.

In the sreparati group are usually selacted also :ha raquir;4ments,

connected with the concrete/specific/actual designation/purpos . of

system and which affect in essence the algorithm of treatment, in our

tm.rms - tc the structure cf opcratcr Z. Other at tha same tiu

requirements, which affect, mainly, to operatcr Y, to a considsrable

degree are geneal/commcr/total fcr all Iccating systems. The same3,

for example, is the requirement of the maximum probability cf -hs

target det=cticn or corresponding rosclution from tn masurcd

parameter.

Page 16.

similar "particular's rfquiremsnts :'2late to thz s-paratv aodes,
4i

but not to the system as a whcle, ard on their basis ars a-

rsv.aled/ditctod thc "working" crit.ria Cf opt-mum cnaacter,

utiliz-d during ths design cf the ccunterparts c-f ;he lqu.pMlrt. L-,:

.47
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us note that the "particular" criteria indicated in any way always

cannot b4 conn.cted quantitatively with the genz-ral/ccmmon/tctal

criterion of a quality cf thr type IV). Applying such criteria, wr

are based only on the approximate estimate of that how it aff-?cts,

lat us say resclution tc tha accorplishm.nt of -he final cbjcctivc of

system. Furthermore, very concept cf resolution and analogous

characteristics allows/assumes different interpretations, which

affect, gsne.rally spsaking, the results of synthisist.

FOOTNOTE 1. Let us mention the "classical" concept of resolution,

known already tc Rayleigh, but just as valuable tcday [83], c its

contemporary definitions, which are based on the statistical

treatment of the tasks of detecticn and measuring parameters £19).

ENDFOOTNOTE.

All this shows that unavoidable virtually r-jection from a strict,

genczral/commcn/total critericn (V) and th.= transition to ths

particular criteria, which characterize tha quality of separat-a

davices/equipment, is always ccrnEcted with certain risk.

But we will also use thp particular criteria of quality, which

consider only the properties cf sJgrals y(t) at th . output of

rccc-ver and disregarding the subsicuinr': processing. Ir. o'hr wcrds,

we limit our analysis by cperatcr Y and wish to indicate sufficien:ly

:..
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gqne:ral/common/total requirements or it without taking into accou.t

the subsequent operator Z. Here alsc there are several approaches,

most substantiated from which, apparently, is the following.

Being returned at the beginning of the previous section, wa will

consider that for certain situaticn th3 th-ee-dim-nsional/spac-

density of "usqful" cbjects tc eat a(r), and th- density cf the

mixing reflectors and sources of additive interfersnces - b(r) and

n(r) respectively. As it was noted, these values were by chance, but

it is assumed that their Frobabilistic distritutions are known. Th-

afcr:said indicates, for example, t1at in certain region of sFace

supposedly are "useful" targets with the knowr middlo reflicting

surface.

Due to the different kind cf fluctuations and in-arfersncps

ths'= targats 3ithsr will bc disccv rsd by RLS or no. The prcbability

of dAtection affect also characteristic RLS - wavfcrm, thr d"agram

of antenna and thi pulse riacticn of r;caivsr, and is placad the task

of this selection of these charactsristics, sc that the probability

of detection would be maximum let us assume wita thz assign-z

probability of false alarms.

Page 17.
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Somewhat less strict, but close ore is the requirement of the

greatest excess (on the average) cf useful signal at the output of

ths receiver above the levol cf tle mixing reflections and cther

interferences. In the designaticrE cf the previous section (sqe

(ITIb)) for the critericn of quality of RLS in this case is acczp*-9'

valu-

P = Ye /(Yb + Y.).',

which it is neczssary tc raximize on argum.nts s(t), g(r) and h(t).

This approach to the synthesis is sufficiently productive. It is

used, for .xample, in the works cf Spafford and Stutt [69, 71], and

also Yakovlev [89]. Upon this fcrwulation of th.F problem

"automatically" ar- considered and are optimized the r-solving

prop:rties cf signals, they in the best way are coordinat--d with thn

6ask cf th- isolaticn cf usz.ful reflections cf all others for thp

selected situation, moreover even dces not appiar the needs for

intrcducing and d~fining the ccnoet of resolution (as it was nctd,

this can be done differ.ntly). We will use this approach for solving

one of the tasks of the synthesis cf signals in chapter 6.

Th- important result, obtained on the bass of :his approach,

consists, in particular, cf the fact that the matched filte.r is

cp-imum r-c..ivrr cnly in cas-:E bher ad4Itivs izt3rfarer.ces of th%

ty.s of whit-e noise prevail atcve tle mixing r3fl.ctions. But if tnz
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1*vs)l of the lattar is relatively great, thr structure of optimum

signal and optimum receiver is ucre complicated and it depends

substantially on the concrete/sfecific/actual situation.

Specifically, this special feature/peculiarity blocks th.

widespread introduction of this approach to the synthesis. Ths

necessary a priori inforwaticn abcut the concrete/specific/actual

situation - predicted mutual locaticn of the useful and mixing

objects, a level and the character of interferences and sc fcrth it

is possible, apparently tc obtain ard to in proper time use only in

adaptivp RLS cr analogous devices/equipment, which maks it pcssible

to operationally change fundamental characteriszics with changes in

the situation. In connection with such devices/equipment the mithod

in question will be, it is necessary to assume/set, that prevail.

Page 18.

But in the application/appendix tc the usual, not adaptive systems of

ths advantage of this approach they can become its

deficiencies/lacks, since for tle situation, which was not being

assumed with the synthesis, the obtained solutions can prova to bE-

vpry distant from ths optimum.

Thf aforesaid r-lates also c thz straight/dirrct critari!:n c1

I
I_

• , €: " ":' ,.. - - .. : -. .. . .7- '7 •.. - .- '-- -; 7 ' -" ... - --
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synthesis (V), since here is required the knowledge. (in the

statistical sense) the cts-arved situation. Therefore not only thr

practical need for disengaging the task of the design of system as a

whole to the individual parts, hut also th. absence of reliable

informaticn about th, situation blccks thr use/application cf this

direct methods.

FOOTNOTE t. Let us notq cne additicnal approach to the synthesis of

signals, which also uses further a Fricri infcrmaticn but this tim.

about the special featu:es/peculiaritizs of th, motion of target

(64). ENDFOOTNOTE.

It is possibla to note two bypass routes of this difficulty.

First, relying on the play treatment of problem, it is possitli to

attempt to determine the uorst situation durirg which the probability

of targqt dctection is minimum, and to optimiz" th'e sys-em

characteristics for this situaticr. Besides th= obvious complexity of

this task let us note certain of its artificiality: in any way in all

uses/applications of FLS is justificd the assumption about tt,

sufficiently great possitilIties cf each "player". Furthermorg, if w:

allow such possibilities, task, aparently, will be reduced to a

crt ain trivial situation of the type of dstect-,on aga-_nst th

background of whit nolse.

.I

N . - . - A - .. - ,-.. .- . q C -:i -T.
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The alternate path is based cn the assumption that thers are

characteristic, typical, the situations which ara ancountered

comparatively frequently, and t1ey by hypothesis they are sufficient

for the development/detection cf th- optimum characteristics cf

equipment. In fact, prs.cisely, this assumption is the basis of thes-

placed classical of the tasks atcut the detection of the signal of

known form or about permission/resolution of two or more similar

signals against thT background cf itterfrernces.

These rosearch has as a goal tc optimize c~rtain part cf the

equipment (usually receiver resrcnse) tor the typical situation. In

the case of detection this situaticn assumes the prasence of one

pinpoint target against the backgrcund, for qxample, cf whit4 noisz,

in the case of permissicr/rescluticr - several clcs--togethsr

:arglets. In this case is used a strict statistical critirion of th-

optimum character, when tl'. measure of quality is ths probability of

the correct solutions atcut the situation - about the presence -f

targets (d.t.ction) or abcut their rumber (permission/rcsclution).

Page 19.

But for th5 typical situations indicated this approach naturally is

closed with other, indirect and krcur long before the developmnt .f

the statistical methods cf synthesis.

, , : , U -: . * - .. -. - ..•-.... -.9- '- - -- -. ' - .. ... . .. .
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Actually/really, from the solution of the mqntioned statistical

problems it follows that thars are two groups of values, which affict

the probability of the ccrect soautions. The first group includes,

for exarple, relation the signal/noise. These values are directly

conn3ct-d wth the prcbabilistic raturn of radar surveillanc, and

their rcle is correctly reveale4/detected only during the statistical

analysis. The characteristic refresentativa of the second group is

apparatus functicn of RIS, i.e., its response to the single Finpoint

I target in the absence of interfererces. Apparatus function this is

deterministic of its nature characteristic whcse

concrete/specific/actual structure depends only on the type and th-

parameters of RLS. Morscver fcr tle typical situations indicated th3

cptimizable characteristics of aquipment - waveform, the antenna

radition pattnrn ard the pulse reaction of rec-.ivir - affect the

probability of the correct scluticps not directly, but through

changes in the apparatus functicr. Fcr this very reason apparatus

function can with a sutficient fcurdation serve as the object !f

7 synthesisl.

4 FOOTIOTE 1*. The aforesaid is correct in the mcre general cas.. As

showrd Spaffcrd [69), the excess cf the signal above the interference

. for th,2 arbitrary situaticn depends only on th. functicn of th?

i
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uncertainty/indeterminancy (apparatus function- sse below) , but not

from the waveform or frequency receiver r.spons, individually.

ENDFOOTNOTE.

The corresponding detorministic approach to ths synthesis, which

usas a concept of equipsert functicr, in greate- detail is ccnsidered

below. Now, summarizing th. aforesaid, it Is FcssiLblg to note that in

proportion to unavoidable simplifications in the straight 1in = and

the general/common/total apprcach to the optimization of equipment is

substituted by less genrral/ccmacr/tctal, based on the analysis of

characteristic, typical situaticns. But this, in turn, frequently it

leads to the fact that straight/direct probabilistic evaluation

criteria cf quality proves to be icrq or lass equivalent to Indi.r-ct

det-.rministic critericn, kncwr it is considerably ea:lier. Th- .

latter, although has lax, in a sense heuristic, character leads in

many instances to the results which obtain only further ccnf-.rmatio:

with the help of the prckatilistic rethods.

Page 20.

Synthesis according to the apparatus function.

The apparatus functicn cf reasuring meter :his is its -aDsons:

to pulsrd input effect, which has -h- character of delta-fuinction.

......- ,.. . . .- , --. - . " , : 'a " i ' '
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Initially the concept of apparatus function related only to th-

optical instruments - telescope, th microscope and by other, and in

th: application/appendix to thc-m she was used alre.ady by Raylqigh,
but with the same foundation this concept is applicable to the linear

instruments, which measure any Fhysical quant.teiss.

By linear is understood the measuring meter whose output

risponso n is conn:.cted with the input effect E by linear integral

transfcrm. In onE measured parameter t this ccnversion takes the form

Kernel 711) is an apparatus functicr, since, as can easily b- seer,

q (t)=(_ for the case cf impulsive eff-ct e(t)=6(t). Lat us

dismantle/splrct some elucidat-.ng examples.

Of course conversicr (VI) is iiplemented by linear electrical

circuit, in particular by r:ce.ivr.r of RLS. In tn-s case is meiasurv!

time t of the entrance cf input sigral e (t), and n(t) is an input

signal of receiver. Apparatus function .X) is its pulse reaction.

* Th- wi.dr, is mor! prolcnged, pulse reaction, th- mora strongly IS

4 distort-.d the input signal and the rougher other ccnditions haing

equal occur the measurements cf tbp time cf arrival.

In the case of the optical instrument t is a

$1

I-
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three-dimensional/space (angular) ccordinat;, and t (t) and 71(i)

brightness distribution in the plane of object and in image plane.

Apparatus function X(t) is the rcirt-source image, obtained taking

into account to the diffraction alsc of other distortions, i.a.,

again the response of instrument to the input aff~cz of th, :yp- c:-

the delta-function (now delta-furction corresponds to signal at th-

fixed point of space, but not at the sp-cific moment of time).

Page 21.

The extent of apparatus functior characterizes the width of

elam-.ntary spot on the shiald of instrument; the larger/ccarsq= th4

spct, tho greater th, introduced by instrumont distortions and th=

more roughly is measured the positicn of the light source.

Lat us consider even frequency measursmert-3, for exampl?, it-

the help of the usual wavemeter. Let to the input of wavemeter be

supplied tha monochromatic signal, - input -ffcct has a charactc-:

of delta-function on the axis cf friquencis. R-constructing

wavemeter, is fixed/recorded the response of instrument to this

effect which will be, obviously, the r-sonance charact.ristic of

wavemeter. If we study the serrated signal, which contains many

harmonic components, with the retuning of wavemeter is obtaina .a, thm

compound curve, which is by the Jzpcsit4.cn cf ;l-.m!-ntary Z-spc.s-s.

I.
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This curve is the spectrum of signal, measured with some distcrtions,

the larger, ths wider the rescnance characteristic. It is not

difficult to see that this curve also corrgspcnds to integral (VI) if

we ty t understand frequency, by 7.(t) - the resonance charactzristic

of wave mst:r (s-. ictly s~aakirg, dyramiic) , and by E(t) and r1(t) - -h--

tru- and measured spi.ctra respectiv*ly.

in all zxampl.?s examined the resolution cf instrumz.nt thi

highir, the less the extent of apraratus function. The corresponding

det,3rmination of resoluticn as the extents of apparatus function, was

introduc.d by Rayleigh [ 3]. Althcugh it has deterministic charac+er

and is not considered tte statistlcal nature cf measuring -rrcrs,

this determination frequently is used, since the "fine structure" of

input effct is distinguished thf better, th- less the sxtent of

apparatus function.

But not always thc task cf measurement requires the undistort:d

transf-ir of input effect. For exaiple, it is ;ussiDle to be

interested only in the fact such as rnl:rgy of signal is includsd in

ths assigne.d frequency tard. Then arises a question about the

synthesis, the constructicn cf the instrument whose frequency

apparatus function (resonance caracteris-tic) has rectangular form

wi-h :hs assigned exter.t. Cf ccurse using usual -erninology, here on

should speak about the synthesis c- banl-pass filt:r. Ccnss-]uently,

- --- ~ *-,....... ...-
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the synthesis of filters acccidirgq to 4-4- frequincy cha~ac-:rist&ic

can be tre3ated as synthesis acccrding to tha apparatus function.

From somewhat smaller foundation, but s4irilarly it is possibl-

to treat the synthesis cf the circuits, which form the signals of

sp.-cial fcrm.

Page 22.

In thi-s case is usad th? p-ulse reacticr. cf circuit, apparatus

function in the temporary,'tiwe, tut not in the :requency

representation.

Passing to th= radar, we will ccnsid-r RLS as the linear

4.nst~uml~nt, whizh mv-asurps the angular c;oorlina-:-s, :arqe, (lelay

t'm.?) ani1 the radial veiccity (E~ler fr-3quercy) of th-? r fllctinz

objects. During this treatment aFparatus function of RLS is Its

rcsponse-, ro actic. to the sirgle Finpcint tarco- which corras~crds,

obviously, to iipuls.44ve irrut effect. Frocm relaticrsnips/ratios (1i)

anld (11) , the dtscribing conversicns signals in th-a lin-%ar

devic-3s/qqu:pmrcat of RLS, fo'llows thQ. concrctie/.pacitic/actual

structure of apparAtus funoticn, %hich 19t us writ- out hqza: wi,'hout

t-aki-nq inoc accoiin- scme; un- -ssprtial factors:
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It is clear that if we are interested only in angular

measurements, apparatus function cf RLS thare will be the antenna

radiaticn pattern (according to the powsr)

X(r) =g(r). (VII 6)

But if ws concantrat, attention in rangings and rata, the significannt

rol. plays joint apparatus functicn of cocrdiratzs t and 9:

z(t. Q)1= h s(r)h t - t'V i t'dl'. (V1HB)

It dzpands or tha form of thi scunding signal s(t) and the pulsz

reaction of ric-iver h(t) and is called in the theory of radar tha

cross function of uncertainty/irdt-rminancy (cross-ambiguity

function).

Principal value takes the particular form of this function, w-n

.=caiver of RLS is matched filter.

Page 23.

In th-s; casas pulsr riaction is cc-rected with th:2) sounding signal

with ralationship/ratic1

14

* J
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callad also the eigenfunction of uncertainty/indeterminancy

(auto-ambiguity function) and which depends only on the wavqfcrm:

z,(t )-- s(t'Ds*(t'-Oe "dr'.  (Vllr)

FOOTNOTE 1. By asterisk are here and throughout designated

compositely conjugate values. E1rFCCTNOTE.

Finally, for the limited applications of radar Doppler target

speeds can be considered regligibl.. Thsn RLS is usZd only as rang?

finder, and the function cf unccrtainty/indeterminancy is convertod

into the autocorrelation function cf the form

R(t)= (t. 0) = Ps(t')s(t' - t)dt'. tVlial

The matchad filtraticn is the optimum mathc"' of th- re.t'o. cf

the schc signals in the se:nse that in this case is reached the

gr=-atsst probability cf dat-cticn against th3 background of whits

noise. For this very reason the function of th3

uncertainty/ind-t:.rminancy of Wccdwerd and autocorralation function,

that assume, this typs of rsceiver, have so high a value in 'he thc.ry

of radar (in particular as the criteria of the quality of signals).

But in light of the aforesaid earlier it is pcssibl4 to emphasize

that thc us./applicat!cn cf apparatus functiors in -.hc tasks cf

synthesis always assumes Farticular si:ua:3cn - impulsive ircu-

.- 7
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effect on the measuring meter. The use of function of Woodward'As

uncertainty/indeterininancy is assumed also that the obsarvation

occurs against zhe backcrcund cf th2 additivet. white ncise, whi4ch

prsvails abcvs all other Interfererces £ otheruiss matched filter i-s

n-ot optimum reczei-vs:, and shoull te usr-d the cross furcticn cf

uncertainty/indeterminarcy (VII c)]J.

Howev r, wze s.:,- that the synthe sis o." signals accc~ding to thz-

functions of uncertainty/indetervinancy or according to the

aut16ocorrelation functions is justified completsly in the-- same

measurg, in which is jUStified the synthesis of antennas acccrding t

the radiation patterns cr the syrthresis of filters according to th:-

frequency characteristics. in all these cases are used ths

detsrministic critm-ria of quality - apparatus func-tions - instaad ~

striz:tqr statistical criteria.

* 2ag'-: 2L4.

*In a strict s-itting as Ih critaricn of syathesis must sarvv th:-

pro3bability cf isolation cr evaluation of the parameters cf useful

sigrals agir.st thQ backarcund of thcs- miig oih-n th.; signals

* indicV-sd were- distributed scrphcw -n the appropriaze Jintprval cf

angle s (synthesis of antennas), ir th-3 fre quercy iciiair (syrth --ss zf

-f-ltcrs) c r. thm planc- tim: -f:v.qurn cv (syn'-.;-s.s cf s ignals fr:
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RLS, which measure the range an t1he rate) or, finally, only in th-

time (synthesis of signals for the range finder).

In the principle statistical arprcach always offers furth.r

possibilities 4n comparison wit. the synthesis acccding " c th.

apparatus functions. Thus, with tle synthesis of arzenna it is

possible, for example, to attemFt tc fulfill ths mutual compensaticn.

for interf: encs from different scurces, which arrive on the

different minor lobes of diagran. In some cases this is possibla,

although is required, otviously, the very comFl_ te knowledge of

concrete/specific/actual situation. But usually wa use the simplr

and more universal methcd cf syrtlesis, being givan in a certain

adequate/approaching manner very radiation patt.rn - apparatus

function for thz angular measurements. In this case arc ccnsid.rr.d

tha actual conditions fcr the work cf system in that measure, in

which they are frequently known with a sufficient reliability. In

viaw of such conditicns we are given for some. systms the highly

directional, "pancil"f diagram, fcr cthers - the diagram of spEcial

form, for sxamplq, cosecant. The sait_ approach is used for the

synthesis of th_ filters when we chcose the "adz.4uate/approaching '"

frequency characteristic - apparatus function for the frequency

msasuramqnts, although, strictly sp.aking, scaboard would be sOlvz

the statistical problems aout the isolation cf the signals of

I diff-r.:t frr-qu-nci-,s fcr the Jnterfr.nces.

A

* W77
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Th@ aforesaid Antirely relates to the synthesis of signals.

Being given the desired structure of the corresponding apparatus

functions - function cf uncertainty/4ndeterminancy or autcccrrPlat5.on

- wS we ccnsid.r thi actual conditions for work of RLS, withcut

overloading at ths same time the prcblem of synthesis. The rclb cf

stricter, statistical mqthods is reduced in this cas* to the prcof,

the -valuation/.stimate cf the adiissibility cf this deterministic

approach, moreover in cur view, statistic s-cudies sufficiently

convincingly confirm its legitimacy.

Pags 25.

From th;. afor3said cliar alsc that tha det r minis-ic treatmr-6

of synthesis, which assumes the pFr-limanary sel-ction of the isir_-d

apparatus function, always laavc.s cartain scope for the engir-..r.g

irtuition. Choosing one cr the cther desir:d function, design.r uses

his experiment of the solution cf analogous problems. The richer this

expa-rimfnt, the more complete the understanding of possibilities and

limitations, inharant in the Erclected/designed equipment, thq bp:t-:-

to it to match different, usually ccntradictory re uirements and It

is possibls to .ak: into account the sp.cial featur.s/peculiaritics

of the equipmvnt r-alizaticn cf its projpct.

.I
I
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Apparently, by the expensive cf tests/sarplas and errors,

successes and disappointments it sust pass anyone who stieks tb32

solutions of similar protlems. Pre tco complicatsd thesi tasks, so

that always it would te pcssitle tc arrive at the forsesable

solution, using only straight/direct, completely s':-rial modss ard

without rasorting to h-uristic cres. Synthesis according to th--

apparatus functions exists, in a sense, this heuristic method.

Basic concepts of the tbecry cf signals.

Signal.

By th-i sounding signal it follows, strictly sp,:aki!ng, to, call

the real functicon of time u(t) =A(t) cos(w0 +qiij, -:hs datermi-ing

form cf the emitted oscillation/vibra-tion. Here A(t) ani (~ laws

of amplitude and phase mcdulaticn rssppctivcly. It. is pcssibls to0

considcer that the signal has the final duraticn T, but this value

rsquires certain refinement.

Ev-nn whor. th? ;milted signal is convariantly dipictod !r thz

4form of infini-te sequence, th~e scluticr about tae prasencs end th:-

4 parameters of target -range, of rate, the angular coorlirates -is
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always accepted on certain final Facket of the =cho pulses cr or on=

impulse/momentum/pulse. Tl.erefore, without decreasing generality, it

is possible to bcund the signal ir question by the final duration T,

but this value depends cn equivwert usage and method of informaticn

procassing. Us further irterest crly rangings and targat speed.

Signal u(t) it is possible in this case to examine during one or the

maximum of seviral repetition periods. At least, duration T does n-•

exceed the time of the coherence cf signal.

'V~a
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Page 26.

Analytical signal.

The separation of the single real signal u(t) to the envelope

A (t) and the fluctuating factcr ccs [waot*D(t)] alsc requires

refinement. Thase factors it is pcssible to select more or less

arbitrarily, retaining their prcduct, in connection with which

appears the difficulty with a strict formulation of concepts of'

amplitude and phase modulation. These ccncepts prove to be ambiguous.

The most substantiated way of eliminating this ambiguity leads

to the introduction of analytical signal. In this case real function

u(t) is supplemented by the iiaginary component v(t) , so that is

formed the complex signal s(t)=u(t)+jv(t). Component v(t) it depends

on u(t) and it is connected wit. It with the conversion of Gilbert:

S(t) f) dr.-, t - r'

This selection of functicn v (t) has the weighty physical

foundations (appendix 2). Furtherrcrf, for each ccsinuscidal1

~(1
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component in spectrum 1(w) functicn u(t) is the same in the amplitide

harmonic component in spectrum v(u) of functicn v(t). Therefore

spectrum 9(w) of thp composite signal s(4) is different from zero

cnly with the positive ones w, and in this region of the spectrum

(4 ) and ;(w) coincide in fcrm and are characterized by only the

scale factor:

- 0 GnpH < 0.

Key: (1). with.

Thus, the conversion of Gilbert leads to the composite signal whose

spectrum has the same functional stiucture, as the spectrum of

initial real oscillation.

After registering analytical signal in the form

A ( t e'  ,(Villa)

it is se n, that now e.veloping ar.d phase they are determined by the

only form:
, (t)

A(f) = I Ju 2i t) + v: (t); ?(t) arctg

in this case real part retains the assigned fcrm

(:) = Res (t) :-.4 () cobq (i).

Paae 27.

This removes ambiguity in the determinaticn of amplituda ar.d phass

_ : -, - .r. . . . :.. . . . . -.. . -- - "------ ,---"T ... - . . ..
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factors.

Composite enveloping.

If real function u(t) has rapidly oscillating character, then

phase 0 usually can be presented in the form cf sum of two the addend

T,(t) = O)t + 4)(t),

moreover second of them is changed relatively slowly ta'(t)<<) and it

characterizes phase modulation cf signal. Generally speaking, the

determination of the carrier frequency wo and with respect tc linear

component of phase #(t) also requires refinement. But for many

questions of the theory of signals linear component of phase does not

play the significant role. Therefore we can use with composite signal

amplitude envelope

disregarding the absence rapid cscillat-icn factor ef.s' and without

being interested in the value cf linear inphas? comjcent D(t).

For composite envelcpe (VIIIt) we retain the same designation,

as for signal (VIIIa). Moreover, fcr the brevity we speak signal4r
s(t, understanding by this ccmpcsite envelope (VIIb) without taking

into account ths carrier frequency.

Spectrum cf signal.

Ii

I- ~ -
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Transition/junctior to ccmpcsite envelope corresponds to tha

transfer of the spectrum from the carrisr to the zero frequency. The

spectrum of composite envelope (usually we call its spectrum of

signal) is plac=d both with the pcsitiv, ones and at the negative

frequencies, and, if the carrier fiequency wo is sufficiently great,

it is possible to consider that the spectrum is spread to entire

frequency domain -- <w<-.

Page 28.

After determining spectrum '(w) by the relationship/ratic

S (W) = 's (t) - "di = a w) e- J '

it is called a() by the amplitude spectrum, and a(w) - by th . phase

spectrum of signal.

Function of uncsrtainty/indeterrirancy.

j As it was noted, the funct-cr cf uncertainty/indeterminancy is

an apparatus function RIS in the coordinates "timp - frequercy". It

4 characterizes response ELS to the single pinpcir.t targc-t whcse rarge

corresponds to the moment/torque cf time t =O, and speed - to Doppler

V

- -_- *. .,.*
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frequency Q. Distinguish the crcss function of the

* uncertainty/indeterminancy

Xsh (t, Qy=

00

and eigenfunction uncertaint.4es/indeterminanci. s (Woodward)

fl) S -'r "l 't t \b

B. S

These expressions insignificantly differ from (VII~c) and (VIld), but

here the functions of uncertainty/indeterminancy are calibrated, on

the basis of tha conditior

Z,, h oj' It dtd; a (,0 d = I

The standardizing factor F is erergy of the ccrresponding signal I,

in particular

l. _ s(tj,'dt.

FOOTOTF 1. It is more Frecise, E is the doublel energy of real

SOsignal, since components u(t) and v.(t) possess equal energy.

ENDFOOTNOTE.

Page 29.

Examining the signals, calihratfd cn ths energy, i. .. after placing

I

'. -~- 2 7 ... ' - X ' : ..
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E=1, it is possible not tc write cut this factor. As is known, the

functions of uncertainty/indetproinancy allow/assume also the

equivalent recording through the spectra of the signals:

(S1 1 C-' 2j 'd*/:' L L.-. s- - - c;'. '-.jw d

S (I xd)

Autcccrrelation function.

If RLS is int.ndead for the ieasurcments cnly of thi range of

targets, then, as a rule, are used such signals, that Doppler

frequency switches become negligitle. Under these conditions the

vital importance has only one section of the function of

uncertainty/indeterminancy x~tO)1Rkii. This function is called the

autccorrelation function of signa]; for it we have two equivalent

expr.ssions, which ensue from (IXt) and (IXd) with 9=0:

R M d (X)

As in the case of functionirg thp urcertainty/indetrmifar.cy, herz it

is possible to use the standardized/normalized signals, after

assuming E=1. From (Yb) it is clcar th.t thc autcccrrelation function

is completely determired by the sFectrum of the power cf signal .(1) -

and ±n turn, determines this sp.ctrum.

,..1 ' =; . -.7 ' .. . ' - ... ." - - ,t .-' ..i. . . . . .. . "
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Page 30.

Chapter 1.

CRITERION OF PROXIM1ITY.

In question in this chapter general/coumon/total apprcach is

applicable to different tasks of the synthesis of signals, antennas,

filters, etc. For these tasks it is characteristic that we atteimpt to

find out thp parameters cf the syrthosized object or, more generally,

its structure, which ensures Ecre desired properties. The class of

permissible structure is always limited, since the objects of

synthesis must permit realizaticn under scme spicific conditicns.

Characteristic -also that the desired properties are usually

impracticable on the assigned class of structurss. For axample, Itheay

attempt to cbtain, but dc net cbkair filters wit-h thi strictlv

table-shaped frequency characteristic or antennas without the minor-

lobes of radiation patterrs.

In such casas, which are cf fundamental intrirest, the synthesis

of properties to finding cf the optimum structure, which gives best

approximation to the desired Lircperties. it is assumed also that the

desi.red prope~rtiss (er Frrperty) arp dletermined in a ce-rtain
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deterministic manner, without rescrting to the probabilistic

description of task. In particular, as the desired property can be

assigned the required antenna radiaticn pattern, the frequency

characteristic of filter cr the function of ths

uncertainty/indaterminancy of signal.

Let us attempt to give tc a siilar problem cf synthesis tha

adequate/aoproaching mathematical description, and as the first space

let us note its connecticn/communication with the task of

approximatiocn.

1.1. Task of approximaticn.

In sufficiently general/commcn/total fcrnxulaticn this task

consists in the follcwirg (1, 20, 24].

Page 31.

Is given certain multitude of the X functions x(t), and also

function y(t), which does nct belcng to set X. It is necessary to

deermine function x.,p(t)-X, which provides best approximatien to

y(t). The criteria of approxivatic./approach can be different. It is

possible, fcr axamplc, tc require, so that would b minimum a

quadratic difference in t o functicrs in the assigned tim- intirval

22'
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(-T/2, T/2) , i.e.

y(t) -x(tjrdt=m)n, (1.1)
-T12

or minimize the great divergence ef functions in the same intqrval

max ! U (t I - x (! t' --= min. (1.2)
ter

The first zonditior corresponds to thp quadratic crit.rion of

approximation/approach, thle seccnd - to uniform (minimax) criterion.

More general/more common/more tctal treatment is reduced to the

following. Of each functicn x(t), which belongs to set X, is placed

in the conformity certain non-negative number d(x, y), which depends

also on assigned functicr y(t). The condition for the best

approximaticn/approach ccnsIsts ir the minimization of value d(x,*y)

on all elements of set X:

d .. rind (x, y). (1.3)

Value d .... depends cn functicn y(t) and set X and charact.rizes

t1-T quality of the best apprcxiffaticn on this set. Different criteria

of approximation/apprcach, in particular mentioned quadratic and

minimax, are determined by the rule, according to which the pair of

functions x(t), y(t) is ccmpared iith number d(x, y). A change in

this rule leads not only to different vilues d,, ,. but in general and

to differant approximating functicns x.,,:Wi.

Value d(x, y) is called the distance between functions x(t) and

y(t), ths mentioned rul., which is datarmining this value,

I>
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characterizes the metric of certain abstract space. These impcrtant

concepts lead to the gecmetric Interpretation of the task of

approximation and many tasks of synthesis. In greater detail let us

pause at the mathematical essence of the concepts indicated.

Page 32.

1.2. Simplest concepts of functicral anilysis.

In many H elements/cells cf arbitrary nature (x, y, z, ... ) the

non-negative value d(x, y) is called distance, if it satisfies the

following axioms of metric:

1) d(x, y)=0 when and only When x=y - axiom of identity;

2) d (x, y) =d (y, x) - the axiom of symmetry;

3) d(x, zI ;d(x, y)-4-d(y, z) - the triangle axiom.

Set itself H is called the locked metric space, if tc each pair

of its elements/cells is set in the conformity listance d(x, y).

which satisfies the axioms indicated, and set H contains all

alemants/cqlls, for which specifically is !istance, switchirg on a.l

maximum elements/cells. Element/cell x is called the limit of
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sequence x,, xr....s..... or. it is shorter, by the maximum element/cell

of space, if d(x,x,).-,.4 with r--.-.

Any set X, entering H, is sutspace or region of space H.

The given determinations consider the most general/most

common/most total properties of distanc- and space and they are the

natural goneralization cf the proFerties of usual three-dimensional

spaces Strassing analogy with the geometric fcrms, the elem2nts/cells

of metric spaces frequertly call Ecints.

The dominant role in the functional analysis and its

applications/appendices play such spaces, in which are additionally

determined the operations of addition of elements/cells and their

multiplication by rpal cr ccmplax numbers, moreover both opf.rations

satisfy the normal conditions of ccrmutativity, associativity and

distributivity. Such spaces are celled linear.

If, furthermore for each elerent/cell x cf linear space is

determined norm x which satisfies the following axioms:

I b, .) C -I X 
2j

Key: (1). moreover. (2) . cnly if.
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si

the space is called standardized/rcrmalized. It is obvious, ncrm is

the generalization of the length cf vector in the usual space.

Page 33.

The linear standardized/ncrmalized space becomes metric, if distance

in the form

d(x, y) --i~x-yll.

which also specifically ccrrespcnds to usual thrse-dimensional space.

Finally, if in the linear standardized/normalized metric space H

is determined the scalar product cf elements/cqlls C, v) satisfying

conditions:

1) (x, y)=(y, x)*4

2) (x4x z  , y)=(x,, y)+(x 2 , y):

3) (X, y) =X(x, y), where X - any complex number, and norm lxIl

is connected with the scalar product with the relationship/ratio

11xfj 2= (x, x),

the space is called Hilbert.

The concept of a Hiltert space is sufficiently

:1.
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S7

general/common/total, it is added tc appropriate multitudes of

functions from one or several variable/alternating, to many vectors,

matrices/dies, numerical or functional sequences, etc. At the same

time whatever nature had the elements/cells in 4uestion, them it is

possible to liken to the Fcints cf space, after preserving analogy

with the geometric forms. In this case many dep-.ndences and

properties of the objects in questicn usually obtain demonstrative

geometric description, which sinplifies the solution of seriqs of

problems. We will attempt not tc use geometric analogies for the

proof of fundamental results, but they us will help to plan the

methods of solution, to explain tbe assential features of the tasks

of synthesis. Specifically, of this consists the "principal value of

the concepts of functional analysis for this work.

1.3. Space of signals.

In certain cases of the concept of distance, norm, space and so

forth it is possible to introduce ccmpletely naturally, but not

axiomatic, as it is done above. let us consider, for example, .many

signals of the limited energy, i.e., many functions s(t) with the

integrated square

" ;= 3 (t) d <
Page 3Z4.

i1

~'Iw

'1--
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After selecting certain crthcncrmal set of functions

(t), f().. ... ,(t) ... we can present signal as expansion

( t) = s,,f- (t). (1.4)

Then function s(t) is completely assigned by the set/dialing of

numbers - the coefficients cf expansion ss-(sl, s2 . . . . . . s, ... ).This

ordered sequence of numbers can be treated as multidimensional

vector, and numbers therselves s, - as the projections of vector on

some axes in the multidimensicnal space. After defining further

distance, norm and scalar product by the relationships/ratics,

similar to usual three-dimensicral space, i.e., after placing

d(s ,.-sJ E{s ,'-s .2'}2 1/2

(s,, s ) = , stSn, ,

I,

we satisfy (as it is not difficult to chrck) all axioms indicated

above. Consequently, many multidisersional vectors s (or, which is

the same thing, many crdered nuaerical sequences si s2....s,.... are

Hilbert space. In the functional analysis such space frgquently

designate 12. This representaticn cf signals - as vectors in the

Hilbert spacp - is used extensively, for example, in the thAcry of

freedom from interference fcr the geometric description of the

correspcnding tasks.

Ve introduced the valucs i-rd-cated, using -he zxpansior cf

-. : , : i -. 7 -- ' - -- 7 . ... -- " ...- +" • -,- ... i . .. -..
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functions s(t) in the Fcurier serlos (1.4) and considering base set

of functions -IR(t) as certain cocrdirate system, and coefficients S$

- as projections on the ccrrespcnding axes.

However, in the usual space all geometric concepts can be

directly connected with the parameters of vectors, without resorting

to coordinate representation.

Page 35.

similar to this, in the generalized space in qu.istion it is possible

to express distance, norm and scalar product directly through the

functions of time, withcut using their -xpansions in the Fourier

series. For this it suffices to use to the previous

relationships/ratios equality Parseval for serias/row (1.4). As a

result it is obtained

d(s,, S.)= 1 s, t) - s, (t) 12 t

',IIs = Is(t)I'di ; (1.61

; i (s,. s,) = "s, (t) s*, (t),dt.

" Consequently, these values dc not depend on the selection cf ths.

4 system of base functins /,() 1ransition/junc ion from one. systs, to

~ancther changes the ccsff4-cients cf expansicn s.. but their

.1

- . . .. .. - " - -- % " "- -. . ..
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combinations, which express distance, norm and scalar product are

invariant during such ccnversicrs and are determined only by the

structure of signals. Here also t ere is an analogy with the usual

three-dimensional space: the length of vector, the distance between

thp vectors and so forth they are expressed as projections cn the

axis, but they do not depend cn the selection of coordinate system.

Values (1.6) satisfy the axicms of Hilbert space. This space of

signals - the space of the quadratically summarized functions -

frequently designate L2 .

With axiomatic formal apprcach of space 12 and L2 - these are

different spaces. Elements/cells ¢f one of them are numerical

sequences, and another - function; distance, norm, scalar product

they arR exprassed differently. Eut we cb-ained, obviously, cnlv

different descriptions, various forms of one and the same laws

(similarly how Euclidean and analytical geometry they give only

different description of one and the same mathematical ess.nca)

Page 36.

Hire we come to the Important concept of isometric spaces. If

between the elements/cells cf twc spaces is astablished/installed

one-to-one conformity, such, that the norms of .quivalent ccponents,

Ii
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and also of distance and scalar prcducts for the corresponding pairs

of elements/cells are identical, then such spaces are called

isometric. In view of equality ef parseval for the generalized series

of Fourier (1.4) these ccrditior2 -re satisfied in spaces 12 and L2.

Iscmetric space are compietely equivalent in the examination cf

the questions, which are the cb-ect/subject of this book; it is

possible to use one or the other iscmetric space depending cn

convenience.

Fourier transform places in the conformity to each signal s(t)

his spsctrum s( .)-

S(o-) = ~S s (t) e-'dt.

Th.s ccnformity is mutually unambiguous, since also

2x(t -(..) e'd.

Many spectra s(w) form Hilbert the space (which we further d-signate

H), if we determine distance, ncr. and scalar product by the

relaticnships/ratios:

d , s (w) do ;

.,9.

1/21.4c

(wdw
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Equality Parseval (fcr the Fcurier integrals, but not for the

serigs/rows of the type (1.4)) shcws that the corresponding values in

spaces H and H coincide, i.e., sFaces arp isoniptric. This it

indicates the equivalence of the represntaticns cf signals in thk

form of the functions of time ard in the form of the spectra - the

functions of frequency.

Pagr 37.

However, complate equivalence occurs only if is applied the quadratic

space metrics, which correspcrds tc formulas (1.5)-(1.6). If, let us

say, is used uniform (Chetyshev) iaqtric, i.e., distancP Js measured

by the maximum divergence cf furcticns in certain interval -
d(s,. s,) = ma\ sft)- s: ) (i.84

ter

that iscmetric nature it is not observed and the space of the spectra

it is not equivalent to the siace cf signals.

' I ' , - - .: P "+"5: i . . + . . . . . .... - --F : " -', , +. .. . ..

+ +iT T - , -, _ _, . . , ~ + + •u , P= - .=
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1.4. Fundamental task of synthesis.

In the terms of the functicnal analysis (or, that almost the

same, in the geometric terms) task examined atcve of apprcximation is

formulated as follows. In functicr space H with metric d(x, y) is a

region X whose points xEX form many approximating functions. In the

same space there is a function y, which does rot belcng tc region X.

It is necessary to deter:ine Ecirt xp,(.=, least distant (in sensa of

space metrics) from the given peint y (Fig. 1.1) *

FOOTNOTE 1*. Using conditicral gecietric mcdel, we represent tha

elements/cslls of multidirensional spaces as the points of plane. On

figure to set X correspcnds one-dimensional curve. By this it is

stressed that a number of measurerents for rgion X is frequently

less than for entire space. ENDFCCTNOTE.

The criterion of approximaticr/approach depends cn msltr.c.

quadratic metric (1.6) leads to the least squares criterion (1.1),

Chebyshev metric (1.8) - to minimax criterion (1.2). An error in the

approximation is measured by the mirimum distance

x=y

from point y to region X.

€.

_.,.h: "'- i lr !---'y:- • ".. ..- -
'
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\X

Fig. 1.1.

Page 38.

"he operator of finding the Ecint of set X, nearest to y, is

called the operator of design tc this set and is designated Px, sc

that

Xo. = PX (Y)

and
dmin- iln d (idx, 11y - P (Y),

In certain cases of the Frcbl~e of synthesis they are reduced

and tc a similar task. Ir the ttecry cOf electrical circuits is kncwn,

for example, the task atcut the fcraing two-termiral nstwork when it

is nacessary to form the circuit whcse impedanca approximates the

assigned function. Thus, for the Jtpulse shaping, close to the

rectangular ones, it is necessary tc obtain a[proximation/approach to

an impedance of the open s-ecticr ef long line, in our desgnaticns

y cD)ctg .
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where r - pulse duration. With the synthesis cf circuits with the

lumped parameters region X contains the functions of fcrm

x():P(w)/Q(w), where Pm and Q, - pclynomials, to which are

superimposed also some further conditions.

Further frequently they resort to the artificial

receptions/procedures. Fcr example, it is possible tc obtain

approximation/approach to assigred y, if we use the expansion

ctg z - -2z

hI

and to be bounded to a firite numker of terms of this series/row.

Similar receptions/prccedures lead also to other kiown results (sea

for example [26]). Thus is found cut the rational-fractional

function, which approximates with certain accuracy the assignel

impedance, and on it is restored the electrical circuit of

two-terminal network.

Page 39.

Clear thus far questions about the criterion of

ipproximation/approach and accuracy, lpt us nct the fcllowing

special feature/peculiarity cf the task examined. Here to us it was

completely known function - impedanc3 of the sigment of the lcng lin?

approximation/approach to which was raquirsd to obtain. Spacifically,
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this made it possible to use apprcximation methods for the synthesis

of circuit. Hcwever, considerably mere frequent we dc not have so

perfect information about the desired structure of object.

For example, with the synthesis of filter frequently thpr4 is

known only the required amplitude-frequency characteristic, i.e., the

modulus/module of transmissicn factor; the phase r.spcnse of filter

can be arbitrary.

It is analogous, with the synthesis cf antennas frequently is

assigned only desired amplitude radiation pattern, but the phase

structure of field does nct play the significant role *

FOOTNOTE * In the series/row cf cases it is necessary, on the

contrary, tc perform anterna with th . assigned phase diagram with by

arbitrary amplitude.

Similar tasks werc called fixed problems of th. synthpsis of

2 antennas (2]. ENDFOOTWOTE.

Said means that in the a~prorriate metric space is not an only

element/cell y, which pcssesses the drsired pioperty, but certain set

Y, in each element/cell cf which irherently this property.

4

a

*1

-- .- 1 --
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In particular, set Y can ccntain all filters with the assigned

modulus/mcdule of transmission factcr or all antennas with the

assigned amplitude radiation rattfrr 2.

FOOTNOTE 2. Here is disregarded tte requirement of physical

feasibility, so that the questicn can deal with hypothetical filters

or hypothetical antennas. ENDFOCTNOTE.

We will sa_ also, that many tasks Df the synthesis of ths

signals of those characterizing by similar conditions. Therefcre,

applying for the concreteness the terminology of the theory cf

signals, let us formulate the fcllcwing task, which generalizqs task

indicated above of the apprcximaticn:

In the space of signals H are given many X signals x(t) , which

allcw/assume realizaticn in scme specific conditions (many

permissible signals), and also norintersecting with a X multituds Y

of signals y(t), each cf which Fcssesses the assigned desired

prcperty (many desired signals). It is necessary to determine signal

xrt(t)1". which provides best approximation to the prcpp.rty, which !s

dc.termining set Y.

Pig. .S0.

i -. . -.... . ..- -. .- . . .. . ..
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This task let us name the furdamental task of syiiThesis. with an

obvious change in the terminclocy those formulated conditiors can

relate to the synthesis cf filters, antennas cr units of another

nature. Let us emphasize again that has in mind the

apprcximaticn/approach to the prcperty, g.naral/commcn/total for all

elements of set Y, but rct tc any ccncrete/specific/actual

element/cell y-y.

Questions about accuracy ard critericn of

approximation/approach, let us again, clear clarify the general

method cf solving assigned mission. Us will aid the simple heuristic

consideration, based on the gecretric treatment.

If wq fix arbitrary signal y-Y, than, after using approxiiation

methods, it is possible tc deterrire th _ shortsst distance of d (X, y)

bstween this signal and set X, and to also find permissible signal

x*=Px(y)ex; ensuring best approximation to selected y (Fig. 1. 2) . This

approximation gives certain apprcxiration/approach to any property of

signal y, including to the desired property, general/comacn/tctal for

all yY.

However, if we vary signal y, being moved on the region (by

curv-d) Y, and to monitor distarce cf nearest x.V, then it is

pCssiblf to coma to light/dtcct/.xpose signal y,, arrang-d/lccated
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on the shortest distance from regicn X. This signal makes it possible

to obtain better approximation/apprcach on set of X in comparison

with all other signals set Y - indeed precisely distance d(x, y) it

is the measure of the quality of approximation/approach.

Since set Y contains all signals, which possess necessary

property, and permissible is any signal of set X, lcgical tc assume

that precisely signal !.. should te selected as the

"sample/specimen" with the apprcxImation. But the nearest to ,

signal cf sct X is signal . arranged/located on tha shortest

distance from set Y.

S

-.4.I
.4
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Fig. 1.2.

Page 4I.

As a result we ccmq to the fcllowing position which subsequently

is named the hypothesis (cr czitericn) of the proximity:

S olution of the fundamental Frcblim of synthesis givas signal

X'po, X, arranged/located cn ti(: shcrtest distance

dmf,tnind(x, y) (~O
xExFEY

from set Y. Using operatcrs of design on X and Y respectively, it is

possible to register alsc

SEY  zEx

The formulated task of synthesis and the hypothesis of proximity are

th, basis of this work. Many questions of the synthesis of signals

are reduced to this task cr Its generalizatiors, moreover the
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71
hypothesis of prcximity indicates the g%.npral/common/total way of

experiment.

For the first time the hypcthesis of proximity was formulated by

one of the authors of this bcck in 1967 [8]. From the works of

predecessors it is possible tc rcte the following.

Landau and Pollack [43], examining the task, investigated by us

in chapter 2, mention abcut the pcssible treatm-ent cf synthesis as to

the problem of the minimizaticn cf the angle between the appropriate

subspaces. This is close tc cur irterpretation (see §1.7).

Unfortunately, the more ccmplete wcrk cf the same authors on the

theme indicated (reference of 6 articles [43]) was not published.

In the number of research cn pattern reccgnition (see for

example (59]) as one cf cf the lcuristic algorithms of discrimination

is mantionqd that the called rule cf proximity, which consists of tho

following. The tested object relates to that class, of which is less

the distance (in the sense of certain space metrics cf

signs/criteria). Here it is pcssihle to perceive analogy with our

approach, but to another task, which differs significantly from the

, synthesis of signals, antennas cr filters.

L~t us ncte also that the thecry cf the synthasis of ralar

,I . . . . ..
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signals is developed/processed ccparatively recently,

approximataly/sxemplarily from seccnd half of the 1950th years. The

synthesis of antennas and electrical circuits has, at least,

thirty-year history. Under these conditions the appearance cf a

similar general/common/tctal idea in the theory of signals can be

explained, perhaps, only by the fact that the latter is the branch of

the theory of the freedcm frcm intetference whsre the geometric

representations, analcgcus by that used by us, are used extensively.

Page 42.

In connection with antennas or filters similar representaticns did

not win acceptance that it cculd ke reflected in the methcds of

synthesis.

1.5. Some generalizations of furdamental task.

Si

Above task of synthesis was formulated in the space of signals H

or, it is more general/mcre ccmaor/Nore total, in the space,

elements/cells of which are the objects of the synthesis of another

nature.

Howewv,:, a similar task can ke formulated also in som . cthar

spaces, in connection wit) the elements/cells which are conn-ctei in

m I. ,I | I. .. ,
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any manner with the cbjects of synthcsis, but they are not id-nntical

to them. For example, with the synthesis of filter it is possible to

examine as the objects nct of the structure of quadrupoles, but their

matrices/dies, transmissicn factors or let us assume transient

functions. Similar versiccs are ccrtained by the following diagram.

Let operator M place in accordance to each elament/cell s of

space H certain of his fcrm s' in sFace H':

eMs s-H; s'cH'

Regions X and Y of space H are ccnverted in this casc 5ntD thq

new regions X' and Y' in space F'. It is cbvicus, with the synthesis

it is possible to use a hypcthesis cf proximity in aniy of these

spaces, and depending on what space is sxamined, thr soluticn will be

either element/cell c,, Cf space H cr element/cell x%,. of space H'

(Fig. 1.3).

A

*1

4

91
It
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Fig. 1.3.

Page 43.

These scluticns; are not equivalent, diff~erant conversions lead,

generally speaking, to different tasks of synthesis and differant

solutions. Here it is ?,xpedient tc consider tlhrea fundamental cases.

First casa. L! t spaces H and H' be isomSetr'ic. AS it was noted,

this means that there is cne-to-cue ccnformity between the

alaments/calls and their fcrms, i .e., there is an inverse operator

if-1 which urambigucusly riflscts HI' or H:s=M 1 (s').

I Furthermore, isometric ccnversion retains the iistancq betweqn

ths appropriate pairs of the elements/cells:

IS,-S 2I - iis',-S'2iI.

I During this convqrsicn sets X and Y Jo act chdnge mutual
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location. Therefore element/cell x',1,, the realizing minimum of

distance cf Y' in space H9, is the form of element/cell x0,, cf space

H. Consequently, isometric conversicns they dc not llad tc the new

solutions of the problems of syrthesis, all isometric spaces are

* equivalent in these tasks.

The second case occurs, if oFerator M realizes the hcmeomorphic

conversion H on H1. This reans that there is cne-to-one ccnformity

between s and s' (there is an inverse operator 4-1), but the

distances between the ccrresponding pairs of elaments/cells are not

equal to s-safI-s'..l. This conversion is equivalent to the .lastic

deformation of space. Actually/really, it is possible to introduce in

the initial space H new setric, after assuming

d(s,, s2) =- fs'-s'211.

In view cn.-to-one conformity s and s', and also that th,

homeomorphic conversion is mapping cf a spaca if onto itself, new

motric satisfies the necessary axicis. Therefcre as a rqsult of

conversion some points ccnverge, cthers, on the contrary, are

separated/axpanded, but dces not cccur mergings/ccalasc-nces of

several points into one cr disccrtirucus changes.

It is cbviDus, those points cf regions X and Y which wer.

located at the shortest distarce frcm each cther, aftr d fcrmatior

they can not satisfy this ccnditicn. Th m will be z4placcd cthr

." ' . Jl [ ',J 1 ". m -
,

1 . .. '_ " ' .
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points, i.e., the soluticn of the problem of synthesis in space H*

will be obtained other, than in srace H.

* Page 4~4.

This change in the space metrics leads to a change in the

criterion of approximaticn/apprcach, moreover for each criterion

there is an adequate retric fcr which minimization of distance givles

approximation/approach in the sense of the? assigned criterion (see-

§1. 6). By other owls, therp is a reversibl;4 operator mi, which permits

to convert the initial space H Intc the homeomorphic for it space H',

where use/application of a hypothesis of proximity gives the

solution, matched with the assigned criterion of

approximation/approach. However, as it will be clear, fiLPnding this

operator it presents considerable difficulty.

High value for future reference has the third case of the

convirsions, during which space H is mapped nct to entire space H'

but to certain part of It Q. Set 79, which reflqcts the set of the

permissible objects, is included In this case within Q (Fig. 1.14).

4 Let us consider, for example, the transformation cf signal into

its a.utcccrrslation function

s'=JT(s)==R M~4 Is e+#)S-+)dr9
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Fouriar transform frcm autcccrrelation function is the energy

spectrum of signal, i.e.

I

, ,, ,:'-", -. -;. ,.Z ' . , -. , - - . •



DOC = 80206702 PAGE 

Fig. 1.4.

Page 45.

Consequently, the spfctrum of autoccrralation function is

positive. This conditior limits the class of tha functions, feasible

as autecorrelation, and are detsrmingd region Q of spac-a H',

containing entire autoccrrelaticn cf function. 3ut set Q does not

cover/coat entire space H'. the elements/cells of this space are also

the points, which are fcrzed, fcr example, with the linear

superposition of different autcccrrelation functions. As a result are

formed ths functions with the arbitrary spectral density (not only

positive), which supplerert Q reeicr to space H'.

The fcrmulation of th4 fundametal task cf synthesis assumes

that the assigned property is fea.eitle (since in space H is a set Y,

7
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I q
in each elqment/call of whicb inherently this property). However, in

a number of cases it is expedient tc be given as that required the

impracticable property which possesses not one element/cell sEH, and

to seek best approximaticn to this Froperty on the assigned set X.

Specifically, in these cases arc useful nonhomeomcrphous

transformaticns of the type in cuestion.

Assume it is necessary to find out signal xe.X with a "good"

autocorrelation function. It is thcught that this function must be

maximally crowded in the low tire interval (-'/2, T/2) and have low

romainders/residues out of this irterval. In thi absonce cf the more

complete information abcut the recessary autocorrelation function

R(t) it is expediant to take, fcr example, the condition

lbh .,H -T,12 < t <.T/2; 2
R (t) n(1.121

OnM t:>T 12.

Key: (1). with.

But this autocorrelation function is impracticable *

F T OTIE * Since spectrum F (w) alternating. ENDFOOTNOTE.

--. rssible Co indicate cne signal yUH. which possesses th-

. owever, after using transfcrmation (1. 11) ,

-- -,t tnp task cf synthesis r spaco H' - th _ space

I
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of the autocorrelation functions where among the elements/cells,

which supplement Q rpgicn, are tbcse satisfyirg ccndition (1.12).

many such elements/cells cf space H' let us designate, as earlier,

YIn, but now it does not have a Erctctype in the space of signals H.

Page 46.

As it i-s clear from Fig. 1.4, task is rqaduced to the minimizat4cn of

the distance between sets X* and Y' space H'. Optimum is element/cell

x 0 P,, for which it is necessary tc furthar f ind out protoyen

ragion xc=H.

Set XI can, ir, particular, cCver/coat entire realizable r~gion

Q. Then we comm to the task atout the bsst approxiinatior/approach to

the assigned impracticatle prcpErty on entire space of signals,

reresentaticn/trnsformaticn of which is Q region. This is c ns of

the most important of the prcbleas cf synthesis.

With the approximaticn/approach to the unrealizable prop-qrty is

applied alsc the followirg indi rect method. F!rst is fcund4 out

optimum signal s~p, ensuring br-st a~proximaticr, to the assignel

prcpsrty in fntir-e space cf sigrals H, and then is realized

2 approximatior/approach to this cptiffum signal on the psrmissibl-, sr-t

X. Since X is part of H, it is at first glan-ce, this method is
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correct: is solved the Frcblem cf synthesis it a broader class, and

then is obtained best apprcxigatic on the assigned subset. However,

this solution is reduced tc tbc ccnsecutive operations in space H':

first is determined the shortest distance between Y' and of Q, and

the then corresponding pcint Q recicn is projected/designed for X'

(dotted line in Fig. 1.4). As can te seen from figure, in general we

do nct come into that point x'o,,. uhich gives direct

approximation/approach between Y' ard X'. Therefore the indirect

method indicated requires further proof.

From a practical pcint of view this methcd frequently can be

justified by the fact that the doeslrd prcperty is nct known

completely accurately. In particular, conditicn (1. 12) is formulated

only on thp base of intuitive ccnsid-rations. It is possible to

rqplace the rqquirad ccnditicr with certain close on-: to it and to

!ise this possibility fcr simplification in the task. The replacament

of impracticable conditicn by clc-e one, but faasibls makes it

pcssible to formulata task in tbe Initial spac3 H (i.e. tc arrive at

the fundamental task cf synthesis), which gives the considerable of

simplification. The indirect methcd examin-d can be treated as one of

the realizations of this possibility. Frequently it also happens,

that the distance from Y' to Q is ccnsiderably mor (or, on the

contrary, it is considerably less)thar. frcm the appropriate (narsst

to Y') point Q region tc Y'.
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Page 47.

For axample, if region X9 corresponds to set Chl of signals, - Q

region to many arbitrary signals, and Y' is assigned ty th, desirad

(impracticable) autoccrre]aticr function, then as it is possible to

show, the distance between Y6 and of Q remains final, and the

distance betwean Q and is asymptotically apprcaches zero during the

large compression. Therefcre bith the synthesis of signals with the

sufficiently large compressic comFletely it is possible to use the

indirect method indicated, morecver main role plays the first stago -

the approximation/approach of the assigned autocorrelation function

on many arbitrary signals (see Chapter 4).

1.6. Criterion or hypothesis?

Upcn the correct fcrmulaticn of thc probl-a cf approximation it

is necpssary to assign not cnly desired function y(t) and many X

approximating functions, hut also the criterion of

approximation/approach. In othgr werds, it is nAcessary to clar4fy,

in what sense unknown of functicr x0,t(t) must approach assigned y (t)

The criterion of apprcximation/aprrcach is determined by a condition

of tho type

e(xY) =min, (l.13j

I,

.. .. a ~ , . ,_ ., . - . .. . , ... :. . T , . Z- T ' . . . . . . _
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where £ - positive functional, and minimization is produced on all

xeX. Special cases (1.13) are ccnditions (1.1) and (1.2).

The criterion of approximat_cn/approach, if .t is assign.d,

usually makes it possible tc estatllsh/install the metric (it is more

precise, quasi-metric) cf space in which must be solved the task of

approximation. For example, it is pcssiblq to assume

d(x, y)=qfe(x, y)1. (!.14)

where * - arbitrary increasing function. In particular, metric (1.5)

is connectad with quadratic critericn (1.1) with relationship/ratic

d=DZ and Chebyshev retric (1.8) is connected with minimax criterion

(1.2) with simplest dependence d=.

The selection of the critericn of approximation/approach is

almcst always a difficult and dispu4:ablo/debatable questicn. The

cases when it is possible with the Froper foundation t. indicate,

what kind approximaticn/approacb Is necessary, they are, it is

faster, by exceptions/eliminaticns from the general rule. WP already

mentioned the task about the forming two-tarminal network, which is

reduced to the apprcximation cf the impsdanc3 cf the segment cf lcr.g

line.

M

r .
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Page 48.

It is obvious that it is necessary to approach this ideal, but it is

in no way clear, what approximaticns/approaches - minimax, quadratic

or others - will give the best shape of pulse. Besides the fact that

does mean the best? how tc measure the divergences from the desired

rectangular form?

Frequently only the intuitive considerations are used during

this sslecticn, or preference is given up to that criterion which

more easily leads to the soluticn.

In the locating tasks the criterion of approximation/approach it

is possible, in the principle, to establish relying on the

statistical analysis of problem as a wholc, the det~ction prcblems or

measuremant under conditicns cf ore or tha other interferences. Some

research of this type is [15]. But here, as when selecting of

general/common/total apprcach tc the synthesis, fundamental

obstruction is connected with the incompleteness of the a priori

information about the ccncrete/specific/actual situaticn *.

4
FOOTNOTE 1. Should be distinguished the critgria of the

approximations/apprcachss under discussion, and criteria quality

:. (synthesis, optimization), that wera being mentioned in input

inu

.4

- --- --
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chapter. The criteria of quality fcrmulate main circuit of the task -

to obtain approximaticn/approac. to the assigned apparatus function,

to ensure the maximum cf the probability of detection, etc. Ths

criteria of approximaticn/apprcach play more modest role. They make

more precise some special features/Feculiaritiss of the decided task,

they indicate, what kind apprcxiraticn/approach is required to

obtain. ENDFOOTNOTE.

It is clear, for example, that for elimirating the masking

action cf close ones in the rance cf targets it is necsssary to

reduce the remainders/residues cf autocorrelation function. But what

criterion of the level of remainderE/residues to take, does approach

the decrease cf the gr.atest remalrder/residue (minimax criterion) cr

the average (quadratic critericr)? This depends on situation. If the

mixing targets are comparatively rare, the greatest remainder/residue

characterizes the worst case when useful signal interfereas with one

of that mixing. But if the mixing reflections are arranged/located

sufficiently tightly (dipcle clcud, the background of terrain echc-s

or sea), in each quantum cf range cccurs the imposition of many

random signals, and is tere aiprcriate quadratic criterion [15].

Thus, even in the tasks of approximation the selecticn ef the
criterion of approximaticr/aprcach must be produced or. the tas-i cf

thosp initial prerequisites/presises which led to the setting of

-71
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entire problem. Even more is colplicated this qu-astion in the tasks

of the synthesis when the object cf approximation/approach is not

accurately known, but is assigned cnly certain property, inherent in

many objects, and approxiaticn/aFFroach to this property is required

to obtain.

'1

4!

I-- . - .=,u m m m nnm nm ', :" : " ' " " ..
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Page 49.

Let R- be Hilbert space, elements/cells of which are the

objects of synthasis, in particular, tha space of signals. Set X

includes all permissible cbjects, and Y - objects, which possess the

desired property. We are interested in the specific property of

objects, for example, by the autcccrrelation function of signal. This

means that there is an cperatcr M, whom places in the conformity t)

each eleuent/call of space the Frcperty indicated. In particular,

with the synthesis according to tte autocorrelation function

Op srator M maps space H intc another space H'. But, in contrast

to the cases, examined earlier, set Y is converted in this case into

one point space H', since all Y Z possess one and the same dasired

.1 property

M(yey) =Me.

As a result of this conversicn the synthesis is reduced ta th-

approximation: in space 8' it is recessary to find point eop, of sat

X', nearest to point Mo (Fig. 1.5).

.I
I

-4oii
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It is here assumed that the space metrics is matched with the

assigned criterion of the apprcxisaticn/approach

e(x', Mo) =min. (1.15)

Of course the selection Cf czterion (1. 15) is so/such difficult

as with the usual approximaticn.

...

'I
4.

I
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HMM

XX

Y

Fig. 1.5.

Page 50.

But, furthermorg, it is necessary on obtained form x',., tc determine

the unknown object, i.e., to return to space H.

With this, completely correct formulation, thi problem cf

synthesis frequently prcves tc he extremely ccaplicated. The

hypothasis of proximity gives tle simplified approach to the

solution, which does not require mapping of a space H, but precisely

this fact leads to certair ccntradiction in a question about the

critericn of approximaticn/apprcach.

It is not di-fficult to establish/install, what condition

satisfies object xopt, that obtalned cn the base of the hypothesis of

proximity. As it is clear frcs Fig. 1.5 and fcrmula (1.10), this
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object realizes shortest distance in space H cf set Y, i.e.,

d(x, ')=mind(x, y)=Ix-Py(x)i=min, (1.16)
May

where the minimization is produced on all glements/cells xeX.

Actually, this condition formulates the criterion of

approximation/approach, utilized with our approach zo the synthesis,

and it is hera appropriate to speak not about the hypothesis cf

proximity, but, rather, atcut the critericn of proximity. If space

metrics H is fixed/recorded and in it there are many desired objects

Y, then ccnditior (1.16) it completely determines, what kind

approximaticn/approach is achieved at the synthesis. In this sense

our approach to the synthesis is reducel only to the special

selection of the criterion of apprcximaticn/aFproach.

As it was Fi::t:.d, a change in the mg.tric by the cor:espcnding

homecmorphic conversicn is equivalent to the elastic deformation of

space. This makes it possible tc show that for each assigned

criterion of approximaticr/apprcach there is an adequate metric with

which the synthesis on the critericn of proximity leads to the same

result, as dir.--t synthesis on the assigned crit rion.

Aztually/r3-allv, l.t init±al criterion (1.15) satisfy
4

element/cell X',p, of space H' (see Fig. 1.5). Being returned with the

help of the invers operator M-1 (ambiguous) in-o space H, let us

.establish that soluticr cf prcbl givws slemen-/ccl x",, form 0i

.
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which in space H' is x'opt In general x"%, is not lcatad at the

shortest distance from Y in the iritial space metrics H.

Page 51.

But, after fulfilling the appropriate homeomorphic conversion, it is

possibl it goes withcut saying sc to deform this spacs sc that the

element/cell x".pi would prove tc be nearest to Y. After such strain.

(it is obvious, not only) the use/application of a criterion of

proximity (1.16) will be equivalent to synthesis on initial critericn

(1.15).

Consequently, examining cur approach to th3 synthesis on many

different homecmorphic spaces, it is possible to speak about its

un'v-rsality in th- sense that the criterion Cf prcximity generalizes

all other criteria of approxiiaticn/approach. 4hataver initial

criterion was assigned, there is always an adequate metric, which

makes it possible to find the r.ecessary solution ca the base cf thp

criterion of proximity.

However, the regular methods cf finding this metric ars unknown,

and usually we forced to enter ctherwise. We choose metrics of spa==

d a pricri, it -s Irtuitiv-, and cnly -n the cours; of solution of

.D.rblem appears the pcssitili-:y tc checK (via :h-. analysis of
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c or. di4-ti-,n (116) what c rit eri on c -f ap p r oxi mat io a/ a ppr oa ch s at is.f ieSs

the synthesized object. of this ccnsists the heuristic nature of thl?

approach in question to the synthesis, this is why we speak not only

about the criterion of prcximitv, but also abc~it- the hypothesis of

proximity.

We will apply the hypothesis of proximity, mai-nly in the spac-

with quadratic metric (1.6) . 'This gives simplificatlon in the

solution.s. But, in spite of the so/such "lunjusti fied"l selection of

mtric, ccnditi'an (1.16) is reduced for the majo,..ity of problzms t:c

one of the commo)nly used cnes cr, at least, the acceptable crit-3=4a

of approximation/approach. This. means that iAn many instancss we

succcads in ccalfirming the applicability of tha hypothesis cf

proximity in. th? simplast versicn, demonstrating zha practical

acceptability of the correspcndinc resu:ts.

In other zases when with the quadriti' metric criterion (1. 16)

to justify is lifficult, ws attempt to indicat- thie adequate spac?

metrics wit - which the criterion cf proxi-mity -s equivalent to taha

given one. Frequently this can be dcne, but this path does not always

4 lead to th= prazti-cal rssults: ir thq n*:w, "ade'lua:3a" m--tric

ma:hematical lifficultics sharply they grcw tc -find optimum signal,

applying the criterion cf Froxaimity, it doe s not succee-d. Ir, suczh

prob.'ams th.: soluticn, cttained acccrdtinq to ta-i hypothesis cf
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proximity with the quadratic metric, is expedient to consider as

initial approximation/approach and to obtain its refinement by one cf

the known iterative methcds.

Page 52.

Moreover, applying the latter, nothing interferss to use the initial

critarion of approaching type (1. 15). specifically, this method of

synthesis, which combines the aralytical solution in the initial

stage (based on the hypothr-sis cf proximity) with the numerical

iterations, is most efficient fcr the complex problems of synthesis.

1.7. Standardization and the coefficient of proximity.

A question about the space metrics is ccnnected also with th-

method of the standardization of signals. Usually the significant

role plays form, but not signal atplitula, not its scale. All

signals, which are charactarized hy only scale, i.e.,

W .) (1),

where f - assigned functicn, p - arbitrary pos:.tiv_ value, frequently

can be treated as one object cf synthesis, since the scale does not

affect those characteristics cf signal which ar- important for

permission/resolution or measuring the paramet-rs of targets.

_

* *
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In this coansction it is expedicnt to superimpose normalization

the condition, which is urambigucusly determining factor y according

to function f(t). This condition usually fixs/racords energy of

signal cr its maximum amplitude. They assume/set

E= ( )dt

or
s~w =m € '('-) l- 1.: .  " (L18)

In the linear standardized/rncrmalized spaces two signals, that

are characterized by only scale, are represented as the vectors of

different length, directed alcng cna straight line. on waveform

depend the angular positicn of vector, while from the coefficient a -

only its length, norm Is5f Conditicn (1.17) or (1.18) can be

understood therefore as setting of the norm of signals. In other

words, the signals, which satisfy standardization condition, are

conveniently mapped by the points cf the single hypersphere S in

space H. Sqts X and Y are in this case some secTicns of tha surface

of sph3re. It is mcrs precise, X Y corrspond to the conical spaces,

shown in Fig. 1.6, but standardization condition satisfy only the

traces of these cones on the surface of sphere S.

Page 53.

Under these assumpticns condition (1.17) means that the norm :f

signal must be Ist-rminpd by the relationship/ratio

- .-- -
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II ll - I (t) 'dt

analogously, condltion (1.18) leads to the relationship/ratio
• , [Isjj= m ax [s ft)j.

Nrm determines, in turn, space metrics. Therefore

stanlardization on energy (1. 17) Is conveniently used in space L2

with quadratic m3tric (1.6), and standardization in amplitude (1.13)

- in the space with Chetyshev metric (1.8).

We examine the synthesis of radar signals according to the

I functions of uncartainty/indeterminancy or the autoccrrelaticn

functions. Both these functicns use the signals, calibrated on the

energy. Therefore the problems cf synthesis it is frequently

expedient to examina in space L2 , where ccndition (1.17) corresponds

tc standardizationz s!,=.

I"I
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Fig. 1.6.

Page 54.

Consequently, for the majority of the examined/considered by us

problems is more convenient the quadratic, but not minimax criterion

of approximation/approach, since Frecisely guadratic approximation3

are achieved by the minimization cf distanre to L2 .

Let two signals - x(t) and y(t) - have single norm, i.s., they

satisfy ccndition (1. 17). For the distance betwv.3n them we have

according to (1.6)

a" (x. y) Ix - yfl' dt = I Ix (t)1-j + ly (t)l2 -

2Pe x t) Y" (t)] dt IIxP' + Jy!12 - 2Re (x. y)
I--211 -Re (x, y)]. (.19)

I , " - - '. . --. . .., - " . . . " . . . " " . . . . .. - - T I : . . . . . . . .. ..

;, - I. ll I: = "' - "f r -' : ' " ' " " :: ' - : ,
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where (x, y) - scalar product.

It is evident that the minimization of distance of d (x, y) is

equivalent to the maximization cf the real part of scalar product (x,

y) . This is not difficult to interpret geometrically. Angle e bstweran

vectors x and y is determined ir the compcs-te Hilbert spacp by

relationship/ratio (43]

cFz 0 = Re (x; y)

For standardized/aormalized signals xlx=yo=IgD therefore

cos 8=Re(x, y).

It is obvious, the decrease of the distance between the unit vectors

is equivalant to a decrease of the angle between them and to increase

cos 6, that also cor-espcrds tc fcraula (1. 19).

Value cos 9, which characterizss the distance between the

standardized/normalized signals, plays in futur- large role. we will

introduce for it the special designation C(x, y) and we will call tha

coefficient of the proximity cf signals x and y. Thus,

C x, uY-i ?t tL., Yi Pe (x(t)!,* dt. (1.20)

moreover

The. co-efficient cf Froxiiity it is no: difficult to exprqss also

thrcugh ths spectra of signals.

A<

- ... ... 5i
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Page 55.

Actually/really, taking into account (1.7), we have

C(x.y)==e+ 2 1 (w); (a) do. (1.21)

Distance d(x, y) between the standardized/normalized signals is

oxpressrd as the coefficient cf Froximity by formula (1.19), i.e.,

d"(x, y) = 21-C(x, y)J. (1.22)

Analogcusly is irtrcduced the coefficient of proxzmity for a

signal and certain multitude cf signals, for example, for signal y

and set X. This coefficient ccrrespcnds to distance (smallest)

between y and X:

C(X, y)=maxC(x, y). (1.23)
XeX

Finally, the minimum distance between two sats Y and Y alsc can bp

characterized by the coefficient cf the proximity

C(X. Y)=maxC(x, y). (1.24)

Rey

In th. lattar/last fcrmulas It is assumed that sets X and Y ar:

arrarged/locatad on the surface of single hypersphers, . XYS.

Using the introduced concepts, it is possible tc formulate thz

hypothesis of proximity also as fcllows: solution of tnz fundamantal

I.,

.- 4- -. ~- ~ ---- r - -- m v-- - ..---

V.I-. . I
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problem of synthasis gives signal xopteX. tae realizing coQ-ff-4cient cf

proximity C(X, Y) between regiors X and Y.

in conclusion let us note that the coefficiant of proximity is

analogous to the correlation coefficient, used in the statistics.

Both values characterize proximity, interconnection of the phen~omena

in question. In particular, the ccefficient of proximity as the

correlation coefficient, does not exceed one and is equal to it, only

if signals cciacide. iMorecvcr, if x(t) and y(t) is the randem argodic

processes, calibrated on the dispersion, then the correlation

coefficient is formally de-termined hy relationship/ratio (1.20). We

introduced new tar. for the designation of this valua only because in

our case there is no any ccnnecticn/communication with the

probabilistic laws.

Page 56.

1.8. Three mc-thods of the solution of the fundameantal problem of

synthesis.

In Fig. 1.7 are clarified the most ccmmonly used methods of th-i

4 solution cf tha fundamental protlem of synthesis. The first method

consi.sts in t fact that first is chos -n arbitrary parmissible

signal x.-X and. is d'terwined best approximation to it on many
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/0

desired signals Y. In ether words, as the first space is scvqd th;

problem of approximation (desigr) cn set Y. The quality of the

approximation is characterized ty the distance

d(x. Y== r ind(x, y) = fl x - P, (x)iL.

This distance realizes certain signal Yt= Py(x), nearest to

sq!actad x (let us recall that PY - operator ef dasign to sst Y).

In order to obtain the shortest distance between regions X ani

Y, it suffices to further change signal x, bsing moved on by tha

I curva X and monitoring distance of rearest yI(Y (FJg. 1.7a)

II

II

I

-ll -.--
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YV

As a resulti 
a trie 

l

IUt

.re.

Fig. 1.7.

Page 57.

As a result is lietzrmined value

dm,=mind(x. y)= mn 1!.r - P. (x)nIi

and is located optimum signal Xoa., which solves the problem of

synthesis in azcordancp %ith the hypothssis of proximity. unknown

signal x0,, realizes tle minimum cf the functional

f(x)=d(x, Y)=;Ix-P(x)Il=min, (1.25)

whers thC minimizaticn is produced c all xeX. Ths same, result is

obtained during t1h maximizaticn cf the ccaffician- cf proximity C(x,

-- -------- -
------- --

------ ---
- - -- Y -

!1.+ t
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Y). Thus, synth3sis is reduced also to th-i variational problfm

f(X) =C (X. *') =C (X. P (xV)) = max (1.26)

* under further condition~s xaX and IxII-I.

This is on-3 of the classical problew-s of -che calculus of

variations - isoperimetric Frcblez.

The second method differs frcm previcus cnly in terms of thu

fact that the minimization of distarce Is producad in backward

ssqguncc (Fig. 1.7b). First is assigned arbitrary signal Yf--y and is

found out best approximaticn to it cn set X, La3., is determined the

distance

d(X.y)= indx . ) jy P ()

Thepn is determined value dm.in via a variation in signal y. The

sguivalenci cf th= first and secdnd m-thiods ascaps/ensu~s from thq

identity
* mind(x, y)=mind(x, yi).

MSY zeX

*As a result of the solution ty thc- socond mathod is determinad

not unknown signal x.,-r and sigral Yapt. arranged/locazed or, the

4 shortest distanCe from set X. As it is clear from previous, this

signal satiefiss the corditicns

f(y) =d(X. y) -'izj Px (o)i:=min (1.271

0r
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it(y) =C(X, y) =C(y, P. (y)f=max (1.28)

during further limitaticns y, Y and llylf=. Two methods indicated,

obviously, are very close.

Page 58.

In the general/common/tctal fcrmulaticn, given above, it is difficult

to disccver the noticeable difference between them. But difference is

and it is sufficiently substantial. The fact is that the structure of

the permissible signals x frequently impedes ths straight/direct

solution. In particular, these signals can be discrete/digital (for

example, phase-keyad). The majorities of variational methods are

adapted for the continuous functicns. Therefore functional (1.25) or

(1.26) frequently makes it pcssible cnly to -stablish/install, what

condition satisfies unkncwn sigral Xopt, to come to

light/dstect/expos= the criterict of apprcximation/approaca1, tut it

is possible to find the practical algorithm Of synthesis, the rule of

the construction of optimum signal with this approach more rarely.

set Y, characterized by the desired property, frequently

contains continuous, analytic functions. Therefore research of

functional (1.27) or (1.28) can prcve to be mcre efficient. True,

after dete-iining signal Ypi,

arranged/located on the shortest which satisfies rondii :n
,-'2. 2 t, i s then necessary :o ret- .rn to set ar-
determine signal x,.,,

. .. - -- . . - . . , -' I" " l-T. 7 . . . . . -"
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distance from Yopt. But this already ths simpler problem of

approximation, and its scluticn is comparatively siaple.

Letus nrodc nti ccnnection the import-ant for future

reference concept about the generating signal. 4e will call signal y

generating for signal x, if the lattsr realizes the minimum cf

distance (maximum of the coefficient of proxizity) from y to sect X.

In particular, the shown in Fig. 1.7b signal. y -generating fcr

signal x1, signal Yap, - generating for signal x 0pt. it is obvious,

transition/junztion from the generating signal to the appropriate

signal of set X gives design y cn X. Th-4 mathcd of the synthesis Fig.

1.7b can be named therefore the synthesis of thst optimum generating

signal with the subsequent design (approximation).

It is of interest also metlod successive ipproximatiois (Fig.

17c) . with trnis me-thod initially is assignad c:ztain signal of the

zero approximation xa. Then is determined signal y1=Py(xo)E=Y, n~argst

to x0 . Let the iistance between ti-ese signals ba- d, . Further- is

determinad signal x,=Px(yj~aX. nearest to yi and arranged/ located at a

distance of J2frcm it. Subsequently are dsterminsd signals yz-

4 nearest to XL, x2 -nearest tc Y2 and so forth.

A, Page 59.

rrI
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Obviously, this iterative Frccess is reduced to thS successive

design to sets X and Y respectively. The_ algorithms, which are

determining approximating sigrals (Frojections on X and Y), it is

frequently not difficult to establish/install, and iterative

proc-dure proves to be sufficicrtly conveniZntly, specially durirg

the machine calculaticns.

It is necessary to emphasize that this process does nct always

lead to shortest distance d,,,. Frcm previcus it follcws only that

with the iterations is fcrmed descendirg s:quence= of the distancas

d,>d:>d 3  .

Since this sequence is bcunded below (d>d,.j,), it converge to

certain limit. But such a limit can give the local, but not global

minimum of the distance between X and Y. In other words, if the

curves X and v hav: ccmplicated structure, they conv.rge at s.veral

points, then tz process cf successive approximations leads to the

minimum of distance, but, perhais, not smallest of the minimums. S

that as a result of approjimaticns/approaches would te obtained

shortest distance sigra] cf the initial

apprcximaticn/approach x0 must be sufficient to clcse )res to xI.

Finding this initial approximaticn/apprcach represents the

independent probisa, frequsntly very ccmplicatd. In more detail

quostions of the convergence ci iterations during tie successive

design are examin.d ir. §1.10. Let us now point out only that lar.y

I

r
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itarativa procasses, used by a number of the authors for the

synthesis of signals and antennas, are reduced to the described by us

procedure.

1.9. On the itarative methods of synthesis.

Thus, the problem of synthesis consists in general in the fact

that is required to find the permissible signal x(t), which ensures

best approximation to certain desired property. This problem is

reduced to the minimizaticn cf the corrsponding functional - the

critericn of synthasis f(x) - on a permissible multitude of signals

X: f(x)=min: x X. The structure of functional f(x) is determined by

the desired property cf the synthesized signals, and also by the fact

such as kind approximaticn/apprcach to this property we atrumpt to

obtain - minimax, quadratic, mean-dsgreke, atc.

Page 60.

The approach examined to the synthesis, based on the criterion

of proximity, -onsists, in fact, cf the special selecticn of

functional f(x). It is the distance between the appropriate sets in

the assigned function space. Frequently this criterion makes it

possible to trac5 the prctlem cf uinimization (i.e. synthesis) by

classical variational methods ard tc obtain thz analytical solution.

,-% '-' - -. ,,-. -.- ,,-.. : ' • =' "- _ ' r . - ':... ,
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But this accomplishes not always, and we recently mentioned the

iterative procedurs, which makes it possible in a number of cases tc

obtain successive approxivaticns tc the unknown solution. Generally,

one ought not to narrow the circle cf the problems in question, being

oriented only to the criterion cf proximity and to the analytical

methods of solution. Therefore let us consider briefly also the

numerical minimizations, applied, in the principle, to the arbitrary

ones (or almost arbi4trary(to furcticnals.

Such methols they allow being transmitted from certain initial

approximation/approach x(OtW, to find successive approximations

'(t), x(m(t),..., reducing step by step functional being investigated

value. In other words, is constructed minimizing saguence

.mt), xm(t). x(t),.... that satisfyinc the condition

The functionals f(x) in question make sense of an error in the.

approximation/apprcach, they are always positive and, theraforo,

bounded below: f(x)>O. Therefcre descending sequence of values

S (r)), f(x)... converge tc certain limit, and, after fulfilling a

sufficient numbar cf spaces, it is possibls arbitrary closely to

approach this limiting value.

.4

1' -. . 1 ; , .. I , 
'

, - l ' --, , .-
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However, the majority of the iterative methods of minimization

have lo-TJ. character, During the ccnstruction of naxt

approximation/approach is considered the behavior of the functional

being investigated only in certain low vicinity of the previous

apprcximaticn/approach. Spakinc in gran-ral terms, each fcllcwing

approximation/approach xl'l"(t) irtrcduces only small correction into

previous approximation/approach xh)(I). Although this correction gives

th- decrease of functional, the prccess of minimization can, in the

first place, flow/occur/last very slowly, and in the second place, it

leads to the nearest - frequently tc the local, but not global

minimum. We approach the vinimu, but frequently smallest of them.

Page 61.

Let us examine in mcr! detail the method of gradirnt - cn-- of

frqurntly that utilized and in a certain sense fundamental it3rativ

minimization. As it was ncted, any signal x(t) it is possible to

unambiguously compare the sequences of numbers (xi, x2,... ... ) - th_

coefficients of thq generalized series of Fourier (1.4). Thersfors

functional f(x) , dapendinc on sigral x(t) , can be considered as the

function of many variable/alterrating Ax(t)J=f(x. x .. x,...i In the

geometric analogy f (x) there is a surface abova thA hyp.r-lane

sufficiently large, strictly speakirg infinite, number of ccor-inatcs

(the hyperplane indicated we they trsated the previously as spice :)f

4
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signals).

Let initial approximatior/approach x )(t) correspond to pcint on
this hyperplane with coczdinates xxI(O).... Examining the

behavior of funztior f(x) near point x(M i is possible to ccme to

light/detect/expos a directions, along which f(x) grows or, cn the

contrary, it decreases. Attempting to decrease value of f (x) , it is

necessary, naturally, to Le sbifted from point x(o) on one of the

latter/last dir3ations. rreover in ord%r to cbtain the most

significant decrease of f(x) , ore should be shifted in the diraction

of most steepest/most abrupt descent, antigradiant. The coordinates

cf following, the first, apprcximations/approaches x")(t) in this case

will compose

X ) (0) ae z(Of (1.29)

Here ao - pcsitive constant, whicb is determining the length of

spacz. After fulfilling first approximation, it is necessary to study

the behavior of function f(x) near point xf, and, after determining

the new direction of antigradiert - direction of steBepest/most abrupt

descent from point x", tc be shifted in this direction for obtaining

the saccnd approximation/approach .' In general,

Itransition/junction from the k aplrcximation/approach to the

following is determined by the relationship/ratio
., , * .i -- - -

UIsefully ilso another interpretation of the process examined.

" -"" -T - " -.. . . - --
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The extremum of f unction f (x), naturally, gives the solutiJon of

system of equations

j- 0; 1.2..

Page 62.

It is not difficult to note that prccess (1.30) corresponds to the

iterative solution of this system, it is more precise, the equival;;nt

system of the form
Of

the use of sufficiently lcw values cf a fr-equently ensuring the

convergence of iterations.

Known several varieties of gradient method, which arR

characterized by the rule of the selection of tn~e- length of space .

in the simplest case the rethcd descends in the vsrsion of the- sim )le

iteration whebn tho l=ngth of space rsmains constant in all stag is

In the mor!9 complicated cases the ccnverge ncs is onsurqd only with

the variable space, selected, fcr example, frcm th? following

considerations.

During thz- motion in the direction of antigradisnr6t changes f (x)

occur in accordincs with th4 crne-dimsnsiornal curve

OfIX, X'k oj

)Sa =w.
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- by thc se.ctioa of multidimensloDal function f(x.....xa...) by ths

vertical plane, in:luding the selected direction. move one shculd,

naturally, to the point cf the iirimum in this section. Th refore in

order to determine the length of space, it is possible in each stage

to solve the on,-dimensicnal Frcblem of minimization tor function

(1.31). Thm corraspcnding methods arq axamined, for example, by Wild

(78]. In particular, if curve f(m) allows/assumes approximation by

the quadratic parabola
()r ;(,- +"0 ?, 0,

the value 1a is detarmined by the position of its apex/vertex

, - (~(0) ;q"(0)

Page 63.

The method of gradient is cne cf the numerical methods of

minimization, used in sisilar problems. There are other analogous

methods, in particular design- gradient, that considers the

limitations, assigned on the permissible set cf the X, the method

coordinats-by-coordinata descent (ralaxation), which does not raquir-.

the calculation of the diraction cf gradient, ravine methcd and th-

method cf layouts, that accelerate rinimizatica in some important

cases, etc. These methods are used extensively for the numerical

sclution cf the div. rse prcblems cf minimization, including fcr th.

synthesis of signals [34, 53, 61, 85], and we will use them in th:

-- --4 m ,.l (~m m ) ,l mm (- . .,., . . .. . . : -
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series/row of complex problems. But should be specified two

fundamental difficulties, connected with the usa/application cf such

methods.

First, thare loes not exist tha universal numzrical m~thcd of

minimization. The success of that, etc. of them depends substantially

on the thin propertiss of the functional - number of local minimums,

prest.nce cr absencq of "ravines being invsstigated,$, thseir structure,

etc. Similar properties nct always can be traced previcusly, and it

is expedient to test several methcds, to fit method to the problem.

In the second place, the already noted Iccal charactr of

it.rative methods does not make it possibla tc in general find out

the global minimum of functional. In this conract.ioa the determining

role plays the correct selection cf initial approximation/approach

during which the i eraticns originate from the point, located "in ths

zone" of the global minimum. The determination of initial

approximation/approach this is the independ-ent, frequently very

complex problcm for solving which arg necassary analytical research

or physical arguments, which make it possible to contain the

structure of functional as a whcle (lat it be approximately, with

scmo simplificaticns, but as a whcle, but local, in the lcw vicinity

of certain point)

A.
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Specifically, during finding of initial approxi.mation/approach

are exhibited the advantages cf approach; basing on the criterion cf

proximity. we -noose thv space metrics of signals arbitrarily,

without a strict proof. Tbe initial problem of synthesis is

substituted with this ancther, are changed criterion itself,

minimized functional. But this replacement makes it possilA to

frequently contain probleff as a wbcle, to find analytical resolution,

and intuitive consideraticn: make it possible to consider that the

simplifying assumptions art nct teo rough. Thus, ChM signals, which

impl.ment best approximaica ,c the assigned function of

uncertainty/in-ietarminancy. hardly considerably differ from each

other with two criteria of apprcximation/apprcach - quadratic and

minimax.

Pag$ 64.

The case cf guadratic approximaticns/approaches admits simple

solution on the base of th-a hypctbesis of the proximity (see Chapter

8), and the analytical study of minimax approximations is virtually

impracticably. But here it is pcssitle to use one of the iterativf.
methods, using as the iritial arprcximaticn/arproach the result,

obtained for the quadratic critErict. The corresponding refinements

v.Va !4toratiors will lead to the glotal minimut of ,-rrc=, if t'w

criteria indi'catad do nct give essentially differeat signals. At



DOC = 80206703 PAGE //

least, one cught not to disregard such possibility when there are nc

directs method of the solution.

We will meet alsc with the simplar problems where the

comprehensivs solution can be ottaired, applying either only the

critaricn cf proximity cr only iterativs msthcds.

In the examination of gradient method, it was assumed that

signal x(t) was represented by the set/dialing of its coordinates:

x,. x n .. ... With respect to the prcjection of gradiant (vector) on

the coordinate axss a partial derivativss af!dx.. Although this

representation is admissible fcr the majority of problems, let us

give the more general/ccmmon/tctal determination of the gradient (by

fi=-st-ord'r dzrivarive) of functional. Let H - space of signals, and

th- real functional f(x) is d.:qrmin-ad for all x-H. The diffar:ntial

of functional f(x) is called expressior. ([42], page 434) 1:

Df(x. h I (x + -h) i +

FCOTNOrE * It is more precise, by Gateau diffrenqial or by weak

differential. ENDFOOTNOTF.

According to the usual rules of differentiation, Df Cx, h)

lin.s rly dl3pcons ct h, and, since incrcment Df(x, h) is a scalar ral

value, is correct the represertaticr

V4. j'
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Df (x. h) f(r + -h) = Re (f'(x), h). (1.32)

Was here used the fact that in the Hilbert space the linear

functional always can be presented in the form of scalar prcduct

(421. The entering in (1.32) furcticn (operatcr) f' (x), which d3p.nds

on x, but not from h, and there is dprivative cf functional f(x). It

is easy to sce that during the cccrdinate-by-coordinate

repr.sentaticn of signals (in the Eucliiian space) this determination

coincidis with :hat used above.

Page 65.

The genrsral formula cf gradient method (1.30) in the new

designations takes the fcrm

X,- , II= Xo- kf' (xk) (1.33)

1.10. A projectiva-gradi-nt mr.thcd and its conncction/communicatior

with the criterion of pxcximity.

Gradi nt mithod is applied when on tha permissible signals x(t)

it is not placid any lisitations, ioe., when sst X "t corr-sponds to

entire space H. If set X is limitEd by further conditions, method

(1.33) cannct b3 used, since the addition of deriva-tivs f'(x) can

deduce for the limits of the permissible set and next

I ' :"'- - " i [ - i . -. - ;, , :, : -- ,: ...,, -
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approximation/approach -e' will nct belong tc x.

However, under these conditions, common for the problems of

minimization, it is possible to use, for exampla, %he appropriate

modification presented, called a Ercjective-gradient method. During

this modif±cation n-xt approxmaticn/approach is constructed

according to the rule

where Px - operator of design tc set X.

The projective-gradient methcd prescribes, thus, to do from

point x , a space on the antigradient (as in the previous methcd,

without taking into acccurt limitaticns on X), and then to define

next approximation/approach x- ,. as the point of sat X, nearest t:

cbtainid point xIhI--a*'V(x,)

L.t us look how appears methcd (1.34) in connection with the

minimization of the distance between permitted to X and desired Y

multitudes of the space of signals, in our terminology - for the

fundamental problem of synthesis.

4 Functioning using the first method of §1.8, we fix/rsccrd first

arbitrary alemrnt/cell xe. and it is determined shortost distanc' cf

I Y. Equivalint component ,leY is prcjection x cn Y, and distancs d(x,

ItI
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Y) comprises

The l*ast distance between X and Y is determined further by a

variaticn in the permissitle sicnals x. Thus, we come to the

minimization of fun.ctional (40]

lA) d:x Y = x-P,.v :=,x P.nr i-P~ , I 3.'

on all xeX Computing derivative acccrding to rule (1.32), we cbtain1

(x I IX - P y (.), tl:,.

FOOTNOTE 1. Functioning strictly, during the calculation cf

derivative should be constructed linear variety, tangent to Y at

point !=PT-xl. and, using the smallness of increment T.L to replace

design by Y with design tc the variety indicated, and then ccnsider

the known properties of the cperatcr of design to linear subspace

(see [42, page 312, 480) . ENDFCCINCTE.

Page 66.

S

Therefore the projective-gradient method leads to the following rula

of the ccnstruct'on cf the successive approxiiations:

In the versicn of simple iteraticn with space ah-l,2 we obtain

esoecially simple :ule
I. x(+1'%P-- ELPv (XOV) 1  (137)

__ . , . . ..7 .. -.,
-

,- . .. . .. . .
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indicating, obviously, consecutive design to sets Y and X

resp-ctivgly.

Was obtainzd that very procedure of successiva design which was

proposed in §1.8 as one cf the fethcds of the solution of the

fundamental problem of the synthesis (se Fig. 1.7c). The procedure

indicated corresponds, thus, to a projective-gradisnt method for

functional (1.35) in th* particular case a*Ilt2.

This conformity is importart on th3 follcwing reason. In §1.8 wn

led only the partial procf of the morthod of success-ve design. It was

shown that consecuti e distances tetween X and Y monotonically

decrease, approaching certain limit. In other words, is

Established/installed only the ccnvergence of process on functional

f. Now, taking into acccurt ccnrecticn/communicatior. with a

projective-gradient method, it is pcssibla to use the known

conditicns for its applicability (and alsc by some of their

expansions - see below) in crdr: tc trace questions of convergence

more fully, to establish/install, in what cases successive

apprcximations x,,. , 3pproach optimum signal x,, or at least

they converge, so that the ncrm cf difference 'XA,-X' vanishes.

Let us begin from scme detervirations. Se: x :s called ccnv.x,

if any two points of i- can be ccrnr-ctr by segment, withcut

-, ri I , ' '" , ; ., i ,, '. ,, .... -:r-
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excssding the limits of the sot indicatad. In other words,

x=rx1-r+(-T)xe=XLp x1, X f-X H 0<1<I. (1.38)

Key: (I). with. (70.,n .

Let zuH tne arbitrary pc-nt cf space and x,-Px(z) - nearest tc

it point cf set X. Then, if X is convex, occurs the inequality

Re (z-x. x-r)=Re (z-Px(z). x-Px(z <0. 11.39)

whers re:X and, as usual, the parenthesis desigaate scalar prcduct.

Not stopping on the proof of this known relationship/ratio, lst us

note that geometrically it corresponds so that in triangle z, X,, x

the apex angle x, must te blunt fcr convesx set X (Fig. 1.8)

Condition (1.39) is only necessary, while condition (1.38) is also

sufficient so that the Eet X would be convax.

Functional f (x) is called convex (dcwnward) on X, if w- 0<<-7

cccurs th- inpguality

- ( I-r X1 -, ; .k.I -

-ii
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Fig. 1.8.

Page 67.

For the differentiated functional the conditicn of convexity is

equivalent also so that

Rd ( (x,)-f'xi) r,- X.) ~ x, xeX. 1.4

Is valid the following general/common/total theorem: ccnvtx

functional has the only minimum cn the locked convex set this X and

minimum is reached at unique point xo ,V 140.

Furthpr, it is accepted to indicate that function fI (x)

satisfies Lipshitz condition with constant M, if

(X XX.x 1i.421

Let us now give the theorem relative to the applicability of a

pro jactive-gradient methcd, prcved by Lc.vltin and Polyak [0].

Let f(x) - the differentiated convex functional on convex set X,

t.he ierivativa f (x) satisfying Lilshitz condition with ccnstan- '1.
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Then, if the value of space a. is chosen in the limits

O<uk <2/M, (1.43)

then: 1) projective-gradient methcd (1.34) gives monotonically

descending sequance jf,. ccnvezging to -.":

2) sequenza x- converge to (uniqua) point of minimum xo,, in

particular ;x- "--xh'I!--"O.

In the interesting us problem cf the synthesis of functional

f(x) it ccrresponds (1. 35), and iD crder to use this theorem, it is

necessary to make more precise its Froperties. Let set Y be convex.

Then, if x1, x2 - points of set X, which do nct belong it goes

without saying to Y, and P>(x,) and Pr(x,) - their projection cn Y, on

thi basis (1.39) we can rqgister

O)Re (xi-Py (xPr(x2)-Pr(z,)) +Re (x.-Pr (xz), Pr (x,)-
-Pr (x2)) -Re (x,-x,-Pr x,) +Pr(x 2 ). Pr 1-PY (x. ) =

= IIxt-X-Py (Xe) +P7 (X21 'I'-Re(x-x-Pr (X X +Pr (x2). X,--XZ.

Or, taking into account thE value of i-rivativ- (1.36),

% lI['(X 1 ) -['(X 2 ) lI:-2Re (P (x, ).-f'(x,. x,-xa, 0

It is obvious, this is possitle only with satisfaction of
conditicn Re (' (x)-f' (x2 ), x 1 -r 2 ) )O, which, ±_l turn, it indicates

the convexity of functional f (x) (see (1.41)). Thus, the convexity of

s!t Y imply tha convexity of furctional (1. 35). Further we have

Or, which is th% samz thing,

f0,

L



DOC =80206703 PAGE

IHf(x,) -f (x21 Ii 2;,- 2,

we obtained Lipshitz condition fcr by the derivative f(x) with

constant M=2.

Page 68.

Thus, if both sets X and Y are convex, then all conditions of

the previcus th:or=m are satisfied and the prcjictive-gradient method

let us use with any space u <l, mcrecver is ensured the convrrgence

bo:h of the distances f(x',), and -icnals x"m to our (unique) optinum

values. In particular, after taking uh-1,2. let us establish th.

convergence of the prccsdure of successive design1 .

FOOTNOTE 1. From the results cf Levitir. and Pclyak it follows also

that when a-'/2 is 2nsured a maximally possible speed cf ccnvergence

in many important cases. ENDFCOINCTE.

Thus, for conv.x sats X and Y is a comprehensivi proof of th.

convergence Cf the ethcd of successive design.

with the fulfillment of iterations they are always limited to a

finite number of spaces. Therefcre from a practical point cf view the

convargancA cf prcess frequertly has small.;r valus than t he aoprrach

-7w V I7:r
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of the successive approximaticns x,, x 2 , X3 , ... at the initial

stagi. With convex sets X and Y the iterations according to the

ma'thod of successive design not cly descend, but also monotcnically

they converge from one space tc tke next. Actually/really, since

x(k&-Px(y(k)) and set X is convex, cn the basis (1.39) we have

O>Rey ,-rA, xr'I,-,) +Re (y,-+,,--t+t) rA., x,'_'-Xk,)_

=Re ~ y'~k+AIt~~A
"Re (y -' XAii--x ) + ix''-- '!.

1.-.

Thus, we obtain

I11xA + 1 I tl <~~ A lyth+11I I .. *

Further, since Y is convex and y¢Pr~xh-,,), analogously we have

Thes- two ini.qualities indicate., cbviously, th mcaonone apprcach of

ths consecutively/serially obtained signals2 .

FOOTNOTE 2. On the basis cf the principle of tha contracted mappirgs

((42] page 44) hence folicws alsc the convergence of process to th'-

unique point of th- minimum. ENDFCCINOTE.

But, unfortunately, with the synthesis frequently it is

necessary to dial concerning the rcnconvex sets. Lat us assume, for

example, is required to find the Ch? signal, which sanisfies a

cj.t .n cc-d-_tioL of cptimim charactir. S:t X :.:clud-s ir this cas-

* --:L " - - -... ..- . - - - "-"---~ ,.... "- -- " - -" .L- .- * .. .. .. - . . ..- ,
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the signals

x U) = B (t)e1I ~'). (1.44)

charact ,rized by only phase functions j(i, which depend on the law of

frequency modulation. Amplitude envelope B(t) is identical for all

permissible signals (for example, B(t) can be assigned rectangular).

Page 69.

This set X is not convex. Actually/really, after assuming in

accordanco with (1.38)

x ct) = -xd(,) + (I - )x , (t):= [ej  ('4 1 + (I - )eI "M]

we see that the envelope

I x (t) =SB(i) V-' + - :) - 2: (i-_t"9o (, (fJ- :: I))

diff--rs from a(t) with any v, oxcept 0 and 1, i.e., thi internal

points of the segm%nt, which ccbirecs x. x. do not belong to szt X.

Is similar to this, frequently ccnvexly and desired set Y.

of course the nonccnvexity at least of ore of the sets brings,

in general, to the presence of several minimums of the distancs

bqtween tham, and it:=raticns can l.ad tc th- local, tut nct tc glcbalIJ
4 minimum. Therefore it canrct te relied on the so/such comprerhtnsivn

prcof of method as for the convex sets. But neverthalass we will

cbtain fuzther scm; results, sivilar to pr-ivicus.

7'..
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Let us show first cf all, that for any set X, convexly it or

not, is correct the inequality, similar (1.39):

Re( ,- _ P 't (Z) "rX -  PX 1) 0 1 .
2-

Actually/rsally, since the operatcr of design Prz) assumes finding

the shortest distance. from z to X, with any x-E.

0 jjZ - PX (1 - z - S;j 1  .,!-* ;,P -)j - 2Re ;-. PZ jzj) -

- z' - 2Re (z. x) = ,P- (z)! ' - A

+ 2Re z. x-P (z)) = Re t. P(+ X. P Z)- X) --

+ 2Re(z. ; x-P (z))=?Re z-- , ,'X - P\.VM

Clear also that inequality (1.45) strict, if cperatcr Pz is unique,

i.e., if is unique the nearast to z point of set X. Geometrically

(1.45) it corresponds sc that, after leading median in triangle z,

x,, x, we will obtain triangle z, E, x with the blunt apex angle

(Fig. 1.9).

Let us now deaonstrate the theorem, similar (in certain part) to

ths theorem of Lavitin and Folyak, hut not assuming th ccnv2xity of.

set X and functional f(x).

Let f(x) - the differentiated functional, bcundg.d below cn sat

* X, the darivativa f' (x) satisfies tipshitz condition with constant n.

Then, if the value of space Is chosen in the limits

4

than: 1) projectivo-gradient methcd (1.34) gives tonotcrically
I

dscr:asing ccnvergen: s-2ris ,'X s,-qu.-.cc x descerds

. according to the norm of difference, i.., ,

.4
-.- - -v - --- -v-----,--'
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Fig. 1.9.

-AAA
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Page 70.

The following proof repeats (with some explanations) the

appropriata considraticn from [40], bur instead of inequality

(1.39), valid for convex X, it is used (1.45). First of all, on ths

basis of the d~terminaticn of derivative (1.32) we have

f (x+h)-f (x) = Re (' (x + %h). h) d-: = Re '(x). h) +

+ Re i" (' x + h) -f" (x). h) d'€ < Re (f' (x). h) +
II

+EIlII (X + %) -'(X)'li 1lh;I d-: < Re (f' (x). h) +

0
IM

+ M, IIhiL' d, = Re (f' (x). h) + - IlI.

moreov-r is h-re used alsc Li~shitz ccrdition (1.42).

Assuming/setting =zXk).h=%x(+')-x( h. we have in particular
f (x(1+, )- f (.,k") < Re (if (x o). x(h+') - , ,()+

+ -IX("+'1 - X(h)II.

First term of right sid we ccrvert as follows:

I

Re (f' (z()). ht)-x ) Re( '(x ),X) k I)

_ 1X(k+ 1 + X(k x(%+ ) - X(x)
4 -- Re (x) - f' (X() - 2 2 '

ON ZA+ I)) - - x(k+') - x k)!12 + - Re (x(k) - ,f' (x,') -

( i) . , ~~t~
X +) -)

.I )_X{ ')

:1 ,, ," _ .= , .-4r -".= '' ' _ T . ._ _ -_. ... . . .= . _ . ", ., , .: :.-' -:, . .
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Acccrding tc tha algcrithm cf tbe ccnstruction of

approximations/approaches (1.34) x' ', - and the latter/last

component/term/addend is negative by the force of inequality (1.45) ;

as a result
I ,, I ,)) f -- <

= - 1 -

If space a, is chosen according tc 11.46), valua e is positivq, aad,

thus, sequencs f(xk,,) monctcnically decreas-s. Since functional f(x) is

bounded below, this seluence descends. Finally, de obtained also

x(+') x? , ;-il ) - - j i.,,,S *

Page 71.

cons,-quantly, tha norm cf difference IjlzL')-'-Z vanishes by the force of

the convergence of sequence (0,I). Theorem is proved.

From the obtained results are cle-ar fundam.ntal diff-renc-s

under applicability conditiors fcr a projective-gradient method for

, ths cases of prasance and absence of convexity (set X and functional

f(x)). First of all, in thi. absenc3 of convexity is not guaranteed

convergence to the global (unique) rinimum and, in the second plac_=,

* upper bound for space iti must bc reduced doubly [see conditions

(1.43) and (1.46) ].
4

Peturnizg tc t.- prctlam of the applicability of the method of

.'4*
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successive design for the fundamental problem of synthesis, we will

use latter/last theorem for functicnal (1.35) with space a -Ir2. From

(1.46) it follows that with the ncnconvex set the X convergenc3 of

method (according to the norm of difference and in the functional) is

ensurad, if M>2, i.e., upon considaration (1.36) and (1.42), if

Ix,-xa--.Pr (z,) + Py (xj l IX,-Xzl[; x,, xeX. (1.47)

In the fundamental problem of the synthesis of set X and Y it is

possible tc vary by roles. Therefcre the convergence indicated is

ensured also with the nonconvex set Y, if
ilYt-- -Px(yt)+Px(yz) I<[Ilt-gll; Yt, yz-=). (1.48)

Thcsa conditions (is sufficient the fulfillment of any cf them)

set some further limitaticns on Y or X respectively*.

FOOTNOTE 1. Lat us emphasize that for the convergence of ths

Iistanczs betwer.n by X and Y of the conditions indicated i- is not

required - this convirgenci was independently proved in §1.8.

Ir.qualitiss (1.47) or (1.48) ensure also the convergence of

approximations/approaches acccrding to the norm of difference.

ENDFOOTNOTE.

It is possible to check that these conditions are satisfied, if for

4
sot Y or X is ccrrect inequality (1.39). So that is sufficient th4

cor.v xity only of cn-- of the sats.

I, .... . .
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Let us look how appears condition (1.48) in connection with sat

of ChM signals. Let
,( ,(t) ej% (f) )i y, (t) = A, (t) eJ1 (t)

- signals with arbitrary amplitudes and phases. It is possible to

show that thE JASign cf signal y(t) to -he set cf ChM signals (1.44)

corresponds to adding of its phase O(r) to the assigned amplitude

B(t) (see Chapter 8), sc that
P x ( ) = B ( t ) e j  , P v ' = ~ ~ J , t

Pagq 72.

In spaCe L2 coadition (1.48) takes the form

J(A, - B) eM' -( a I~ <~$ d A,eJ"' - A~e t,j

or, after simple conversicns,

B ) [B t) - A, (t)- A, ()1si 2 dt<0.

If w- do not set any limitaticns Cn the phases ot (t) and 02 (t), we

will Obtain thes sufficiert conditic.c
A,(t) +Aj(t) >B(t, (1 49)

which must be implemented fcr all t with which 3(t)#1. Evon mcr9

rigid (also sufficient) ccnditicn is simultanqo0s fulfilling cc two

inequaliti-is
".. .4, (t) > -L B (t). A2 pi > --- " B Mt. !.02 2

of _ thos- indicating, it is cbvicus, that the envalcpes Al (t) and

kz(-) must -t miff- nore than dcubly, from assigned -nve.lcpq 3(t).

...................0........
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Even latter/last ccnditicn is not especially limiting. It

indicatfs that the initial apprcxluaticn/apprcach must eSUsre csrtain

(apparently, too not high) quality cf approximation, so that the

desired signal too would not differ from those permitted. Then,

applying successivs assign, we cttain the; necessary refinements.

Lat us no-ta that if operatcrs Pz(y A Pyr(x) ar- unique, i.~,to

each point Y~ey corrssponds unique nearest to it point xi=PA teX and it

* is analogous for set Y, then entire process of iterations is

complatcly d,-.tsrmiaed by the initial apprcximati.on/approacb xa. In

particular, saturation signal, if it exists, depends only or the

selection of initial approximaticn,'approach. lh~a uniqueness cf

a appro x~mations/a ppr caches occurs for the majority of problems.
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Chapter 2.

SIGNALS WITH 1MAXIMN SELECTIVITY.

In the communicating systeins and radar it is frequently

expedient to apply the signals of the final duration, most

concentrated possible in the ra:rcw frequency band. This makris it

possible to efficiently use a freGuency range of

coanction/ccmmunication, rais-ing the salectivity cf

r sceptic n/procedura and decreasing the leval of interferences. In

connection with radar this prcblemf appears in the Doppler

devices/equipmant wh'tn thera _.s a set/dialing of narrow-band filt!3rs

for ths control/checking of target speed. The maximum concentration

of signal in thq band of filtir leads to the decrease of

:smuaird~rs/residu- s in thse adjacent channsls, making it pcssiolz to

raise accuracy and resolution iJr the speed. In both ths casr.s it is

assumed that the durati-.cn cf signal is l.imited, so twhat discussion

deals with the possibl* ccntracti.cn of the spsctrum for the assigned

duration I.

FOOTNOTE L. For pulss- coherent systsms has ir mind ths structurs of

lthe anvelcps of burst of pulsres and, corcrespondingly, the structur:e

of th.e spectrum in vicir~ity cf cne cf tne har-monics of rep- titlcn

>44
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frequency. ENDFOOTNOTE.

Page 73.

Analogous prool-3m appears in ranging of thi targets (but not

speed), when with the fixed/reccrded frequency band is required to

maximally concentrate signal in of the assigned to the intsrval time.

Because of symmstry of straight/dir.ct and inverse transfcrmat.cns of

Fourier these problems are equivalert.

Thus, the synthesis cf signals with the fxed period of time

(frequency band), maximally crcwded in the assigned band frequencies

(duraticn), is of known practical interest. These signals can bo

named signals with the maximum selectivity in the fraquancy cr on thn

:4ime respectively.

The propertiss of similar signals are studied sufficiently

fully. In the initial setting this question raisi.s even to th!

uncertainty principle of Heisenteig-Weyl, it is more precise, to his

intArprgtation in thi applicaticn/appendix to the vibration theory.

The appropriate problem cf the syrthesis of signals tor the first

tims formulated by Chalk in 195C (17, 30]. Its new scluticn gavq

Gurzvich in 1956 [22, 23]. The xcst ccmzl-t. rsults w -r cbtained :n

1961 of Landau and by ?cllack (43] whos rsearch has s:ecial

- "- m , " - l - - " " - -r' " - '; -- " - '
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importance for this work, since it is based on tae treatment, close

to cur.

In this chaptar it is nct contained any new results. Main target

lies in the fact that tc show the pcssibility of the synthesis of

signals with th.= maximum s lqctivity on th bas- of th6 criterion cf

proximity, to confirm the method cf synthesis, utilized further in

the new Frcblems.

Page 74.

2.1. Use/application cef critericn of prox-mity in spacc with

quadratic metric.

Thus, let us assume it is rccossary tc find tha signal cf

duration T, maximally ccncentrated in the assigned band of

frequencies (-Q, Q) . Ths p-rmissihle sst X conta2.ns in this cass the

signals, finite in interval of T, i.e., having the assigned duration:

0I)

Key: (1) with. 0 nH x(t > -2<KT'2;.

Furthermore, we normalize the permissible signals on the energy:
T12

x r = .x (t)i' dt (2.2,

Iwe ittempt to obtain the sigral, maximally concentrated in th_=

,-. I
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assigned frequancy band. Therefcre the desired property (not feasibl-

accurately on sat X) consists of the finitness of the spectrum, and

s-t Y includes ths signals whcse spectra are finita in interval(-,Q):

Y(®) (-) n'H -< <Q 0(2.3)
0nH >Q.

Key: (1) with.

and it is also calibrated on the energy

IIYI' d J (-)I'd- 1. (2.4)

According to the hypothesis of Frcximity optimum signal xopt,1 X nust be

plac-d at shortast distance dm,,i from sat Y. Fcr finding this signal,

functioning using the first retlcd (§1.8) , let us fix temporarily

arbitrary permissible signal x X an6 let us determine first nearest

-co i-t signal y,=Pr(x)EY Ecr this it is nscassary to maximtze tho

coefficient cf proximity (1.21)

C(x, y) [e l-IS)L (,)dU. ,2.5)

by selecting spectrum y (w) during limitation (2.4) . Lat us nct. that

the final limits in (2.4) and (2.5) are caused by the finitness of

spectrum (2.3) .

Page 75.

Similar problems frequently can be solved with th- hslp of

I Schwarz-Buniakowski's inequality. Apply."ng -hat indicatced .-quai-y
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to (2.5) and taicing intc acccunt (2.4), we obtain

2
C'ix.I W) --- (w ,_dw" . -

2%

w' ;2 d ® . (w ),, do, = 1 ! 12 , (2.6 1

w hP. rz .

X TL -c()! -2 d, (2.7)
I "-I

.- 2

- is enFrgy of signal x(t), included in th . band -Q(w<Q. LVt us

amphasize that wa maximize the coefficient of proximity, selecting

signal y, but, as follows from C2.6) and (2.7), this coefficiant it

is limited by the value, %hich derends on signal x, but not from y.

Therefore the coefficient of prcximity will achieve maximum (cn y)

value, if both inequalities in (2.6) become aqualities. For this is

necessary the proportionality of functions 7(w) and 7(w):

since only in this case is reached the equality in the

r~lationsbip/ratlo of a Schwarz-Buniakowski. Fropo-ticnality factcr

' it is not difficult to find from thq conditior for standardizazior

(2.4 :4)
--i --- '2 2- A>icj2w~ ~~d~:x-1

Tharefore "vl.l. Finally we can register:

_W IT11 ;7 .VIw) d -04-U 0.

I' Kzy: (1) w0h ti >~

6"A_

II " 
'J,2 b

- ._ ?_
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After substituting Lais spectrum in (2.5), we are convinced,

that the coefficient of proximity actually/really attains the

greatest value, determined by inequality (2.6):

C(x, Y)=Re j x. d- = x

Now in order to find the shortest distance between X and Y, it

is sufficiant varying signal x(t), to datcrmina maximum also cn x:

C(X.Y)=rmaxC(x, Y)=max[x 9..
zX XX

Frcm (2.7) it is clear that value 1lx 11 is partial energy of

signal x(t), included in the bard -r<w<Q. Therefore xot is the signal

of the assigned duration, which ccntains the maximum part of its

An-gy in the assigned freguency tard.

It is cbvicus, this correspcnds also to thz. minimum of ensrgy

out of the oand indicated how is Ensured high s-lectivity in the

frequency. Specifically, this '@energy" criterion of optimum chdracter

is used in th . works of Chalk C 17) and Gurvich C 22).

W-e began the soluticr of -br prcbl-.m of synth-isis, withe ut

defining concretely the ccnditicn of optimum character. It was

nrcessary in accordance with the hypothesis of proximity to only find

signal x,,f. arranged/located cn ths min-mum dias-anca from s.t Y. In

this case was used space L2 with quadratic metric (1.6). InsteaA of
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thq condition of optimum character we assigned spacA metrics and,

furthermore, determined sets X and Y in accordance with the content

of problem. The solution however satisfies the commonly used

critnrion of optimum character, w ich has clear physical treatment.

This confirms the applicatility of the hypothesis of proximity to the

case in question.

Analogous zondition satisfies signal y,pt. that possessing

maximum selectivity on the tie , tut not in the frequency; y9, is a

signal with the assigned width cf the spectrum, that contains the

maximum Fart cf its enargy in tte assigned duration.

6 Page 77.

2.2. maximization of partial energy.

Partial aa-rgy of signal x(t), included in thr band (-Q, i2), can

be countad as follows:

-2

T- dw i x- (t, e-'tdIx in e-j'di'=

' "~~~- S $ x~'ix'tao(. ,'idtdt'.,2 ,
r 2r

, n this casc.. . . u, = sin o 1 ,
G2 (t, t'= .- .-.(t dw--ti

a,7

-i-9

.. ..I, 7. : :.. . . . .,. . .
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According to said, signal with the maximum selectivity in the

frequency converts into the maximum value (2.9) under further

conditicn (2.2). Bcth the maximized value and the further

normalization zondition are quadratic functionals relative to the

unknown signal; therefore it is pcssible to use the well known

rsceptions/procedures of the calculus of variations in. order to

complete the solution.

It is not difficult to show that the unknown signal satisfies

the equation T1-
Sx(t')G, It. t')dt'= ;L(t). (2.11)

which it has solutions cnly at scre values .=- eigenvalues. The

ccrrsspcnding solutions, signals x,1(t) are the eigenfuncticns cf

equation (2.11).

Eigenvaluss ,,, allc/assume simple in-:srp-tation. Lst for

certain 7,, equation (2. 11) be satisfied by func-ion x-m. Let us

* multiply left and right side cf the equation cn x*, () and let us

integrate in the interval (-T/2, T/2). We will obtain

?,2 T/2

~' ~(f~fl*(, t')ddt'==;, ~t~t~tPage 78. _,,..

4
A
4 In accordance with (2.9) the integral to the left is partial qa.?rgy

E2 containing in th- band (-9, C). Integral in the right side is

.%,

"-. .- -- -r ----
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equal tc cne aazo--ing to the condition for standardization (2.2).

Therefore eigenvalus 4 is numerically equal to partial energyEs: ,"= E9

Wa should datermine the signal, which maximizes partial energy,

i.e., corresponding to maximum eicnvalue Xm== 0 . Thus, signal with

the maximum selectivity cf the freguency is the eigenfunction of

aquation (2. 11), which ccrrssFcrds to maximum eigenvalue Xo .

Analogous considerations show that the signal with tho maximum

selectivity on the time has a sFectrum s(w) , which is the

eigenfunction of the equation
A

1w s~'G(. -0) d,=Is (2.12).-0
and it answers maximum eigenvalue X0; kernel GT(W, 0') is determined by

t.he -crmula sin T (W- ( )

o r (0 , ') - ( , _ , (2 .13 )

Integral eguations (2. 11) and (2.12) sasily are reduced to the

known squations for the spheroidal functions (see the appendix)

XoPt(t) =Vo(2t/T) npw t <712,

Key: with. Yop(o) =40(w/Q) nPM 1o'<Q.

sph*rcidal functlcns ar. studisd sufficiently fully, and we w.l1

point out their below prcertes, which charact:?riza signals with the

I'
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maximum selectivity.

Value Xo is the portion of energies of signal, included in the

assigned band (with the selectivity in the frequency) or in the

-ssignd time interval 1with the silectivity cr thE ti.ms). Partial

energy X0 depends on Farameter c=CT/2. This dependence is shown in

Fig. 2.1.

9t

4

,4

.1

-S " -; . .. . - .. .I . .. .i ' " i. .
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12 3 4 c

Fig. 2. 1.

Page 79.

For the high valu-s of c is valid asymptotic formula [65, 68)

I - o0=4 c+e0' [l- )

showing that extraband energy very rapidly decreases wzth the

expansion of band. Let us emphasize that in view of the previous

conclusion/output not one signal of the assigned duration can have

largar an rgy in tar assigned band.

Signals wi:h th9 maximum selectivity are d.picted in Fig. 2.2.

W ith increase in c they acquize explicit b.ll-shaFed character. At

very high valubs of c the signals with the maximum selictivity

approach gaussian ones [6711.
C

Q) (2 14,

FOOTNOTE 1. Formula (2. 14) is valid in the middl- part of th. signal,

with t-- low ones . For E=1 is a ncticeable dlffez-nce from the

gaussian zurve.

4,

-0 ;,% - .' ? ;. , - -
- " , . . .. "" . .. " - " " " .:'- - .. . -- .
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Figure 2.3 illustrates the behavior of spheroidal functions

on an infinite interval. These curves portray graphs of spectral

density (for signals with maximum frequency selectivity) or time

graphs (for signals with maximum time selectivity).
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* Fig. 2.2.

Page 80.

For the signals with thq maximum selectivi--y i-n thi fr~qu~incy

argument 'j corresponds tc dimersicriess 4frequenrcy fi1 -wT'2-ctoi1?). while

for the signals with ths iraximum splsctiviry cn thce tims, - (-q=Qt=2ct/T)

dimensionless time

2.3. Use/application of critericn of proximity iJn spacp with

Chstvshevmerc

The synthesiJs of signals witb the maxi4mum selectivity is one of

a few problems whose soluti-cn succeeds in obtaining not only 4in space

L 2 , but also: in spice C with the Chebyshev metri.c. This sciutior is

4 of intmrest from two point of view. First, this example shows that

the criterion of pzcximity can. successfully be i.scd for ottaining nic,

*1only -thq quadz-atic, but also the vivirax apprcximati-cns. In. th:-



DOC =80206704 PAGE >Y

saccnd place, having solutions in twc differant metrics we obtain th?

possibility to compare them and tc be convinced, at least based on

particular example, that the selection of space metrics frequently

does nct l.ad to the qualitatively different rasults.

Examining for the concreteness signals with the maximum

selectivity in the frequency, let us designate, as earlier, through a

X multitude of signals, limited in the duraticn, and through Y - many

signals, limited on th- band.

W-a will solve the Frcblem of synthesis in the space cf the

spectra, but in contrast to previcus let us introduce in this space

Chebyshev metric. In cther words, the distance between signals x(t)

and y (t) lzt us detsrmine hy the relationship/ratic

d IXs, ,--ma, ,x - .y2.15)

.Z

* I

_ 4
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Fig. 2.3.

Page 81.

According to the hypothesis cf proximity the signal with iaxinati

s-ls:tivity xep, raalizes the minimum distance b itween X and Y, i.e.
d.n, =mind tx. y).

Functioning analcgous with previous, let us fix first arbitrary

signal x.Y and it is determined s~crtest distance of set Y:

d(x, Y)=mind(x, ui=min ma.x.(W)-Yw,.

Accorling to the ccnditicn, set Y contains th signals whose

spectra y(w) arz arbitrary in tle band (-Q, Q) and are equal to z-zo

cut cf this band. It is obvious, amcng these signals it will be

located by such, for which in the band (-Q, Q) function (w)

coincid-s with Selacted x(w) . Ccnsequently, distance d( x, Y) is

dest'minsd by values of i(w) out cf the band indicated, i.e., in the

region wh-?zc. $(w)=0. Thus, we cktain
d(x, Y)=max : w.xir 2.16

Signal x (-) is imized by duraticr.: ithare:e its spzctrum 7(1)

. ..
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is analytic fun--ti3n, difforent from z-,ro in any trpquancy interval.

Consequently, value (2. 1b) is pcsit4ve, and the condition of optimum

character takes the form

!Ila\ . ,, - 2. 1 -

Hera minimizatior is produced on all --. the signal, which

satisfi4s this conditior, realizes ninimum distdnce d . in the spa:e

in question. As usual, to this siCnal is superimposed also the

condition for standardization rix -I. With mctric (2. 15) this ccndition

fixs/,records the maximu value ct the spectral density

ma 1 Ui~ i 1~~ . 12  I

Page 82.

2.'4. Dolph-Chebyshev tyFe signals.

Relationships/ratios (2. 1I)- i d'.1) formulate the minimax

(unifcrm) ccndition tor th- best ap[rcximation. Thus, tha

us3/applicaticn of a hypcthesis cf proximity in space C brought Ls to

another criterion zt aprrcxilmatior/approach, than in space L2 , but

alsc to one of tht commcnly used criteria.

*1

Tho solution 3f this problem do.s not succ. Ad in cbtainin, by so

4 dir.-ct methcd as with th* iuadratic ap:roxiaations/aFproach'7s, but -t

is possiLle to ,ise t;.e tcl cwing a.lroach. Let lis J.compose ,1urati):-

7 in the low ,octianj 31,;in and w? will consid.-r that functixn x(.)

I" I
. -. , .. .. ... - r* .. . .. .
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is ccnstant within each secticn (it is -qual to xh). In cthcr wcrds, ws

substitute the continuous functior x(t) of corresponding stepped

curve (Fig. 2.4) . For the fixed/reccrded number of steps/stages 2n it

is possibl, to Jetarmin- ths cptiujf function x(.w), ;with which is

satisfied thc- :odition fcr best approximation (2.17), and further,

passing to limit of n-),-, to cbtain th- unknown continuous signal.

We will not dwell during the sclution indicated. Initially it

was obtained in the theory of antennas '127, 47, 63). The

corr-sponding antennas have the ririmum level of the greatest minoz

lobe of diagram with the assigned width of principal ray and are

called Dolph-Ch-byshav (since Dclph for the first time traced such

antrnnas, and th_ solution is based on zhe prcp.rtias of Chebyshev

polynomials). This name is used alsc fcr the examined/considered by

us signals with analogous properties [39]. Detailed

unpackings/facings, which lsad tc rclationshiFs/:a.iCs indicated

below, are, for example ir (7].

J

A

Omg-&
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Fig. 2.4.

Page 83.

I The spectrum of a Dolph-Chebyshev signal is determined by one of

the following formulas:

x.--cosc (2.19)

Xo3).. FCos C "I-cosc 'a-]. (2.20)

mcr-sover (2.19) ccrrssponds to the strictly optimum, but unrealizable

* signal, and (2.20) - quasi-opt-.ua, realized. Value c=QT/2

characterizes, as earlier, the Frcduct of duration to the band, whilsh

valus *N>1 measures the re sidual/rem anent level of the spectrur out cf

t.h:- assigned band:

MI.M(221

4 in this case condition (2.18) is assumed to be that cazried cut an~d
3.11=ch c=ch QT!2. ( 2
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Let us note also that the major lobe/lug of the spe.ctrum corresponds

to region !c:<Q, where the trigorcetric cosine in (2.19) passes into

the hyperbolic.

Th1 Dolph-Chebyshev signal x (t) is determined by Fourier

transform from (2.20). This it gives

t.(cI---L- < <
x(t)= I, (c) (V-. (2.23)

with.

Here e=2t/T - dimensicnless time, I, - the modified Bessel function.

In the case (2.19) the signal has further surges on tne edges (with

t= -T/2) cf the type of delta-function. These surges cannot te

z~aliz3d virtually, since the pulsi power of transmittz: is always

limited.

Fig. 2.5 shows the ctimum (arc mcre precise, quasi-optimal)

signals, constructed acccrd*ng tc fcrmula (2.23). The parameter is

the level o- remainders/residues M, which depends, as it was n~tad,

from the product 2T. With the lw remainders/residues the signals
have bell-shaped character. This is confirmed by the asymptotiz

formula x(t -

f that obtainz from (2.23) wth c>>1 and <<1.

I?
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After comparing this formula with (2.14), we see that in the

asymptotic approximation/apprcach tbe optimum signals, obtained on

ths base of two criteria cf apprcxiration/approach - quadratic and

uniform - coincide. The mcr! cciplete comparison of these signals is

givsa in Fig. 2.6, wher for value Cf c=4 are constructed ths

corrssponding graphs. In the safe figure there is asymptotic Gaussian

curve. The signals, satisfying twc criteria indicated, are

sufficiently close. The greatest differencas are near the edges of

impulse/momentum/pulse, with E-~1. The value cf jump on the edges

defines, as is known, amplitude and the speed of the decrease of the

spectrum with the large cnes w. Tber.fore certain disagreement of

curvzs is cause.- by different requirements for the structure cf the

spectrum out of the assigned hard.
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Fig. 2.5.

Key: (1) dB.

- - n. ' o,, 0,8

Fig. 2.6.

,0Key: (1) . Dolph -Ch? bysh,,v. (2). Crtimum enizgy. (3). Gauss.

~Page 85.

~2.5. Optimum autocor.-elation furcticns.

3HptUfCu

t aco

! , Key : (1). -- p:,-Ch b- _. (2) . ._,u .. ....g- . (3).-Gaus. ..... .... .

Page 85. ' ..I , i I- - "- ' i' '1I .." : -:= '
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The synthasis of signals with the maximum selectivity cn t4.h e

tima his close analogy %ith the selection of cpt%.imum autocorrelation

functions. The autocorrelatic furction

RM (sWt--t 2)s'(t' - t'2dt'=

=.7 i Ji w)! 'e 'duw (2.24)

is formed at the output of the receiver, matched with the signal.

This is an apparatus functior in rangings. one cf the main

problems of the synthesis of signals is determination s(t), for which

R(t) has the asslgned form.

This prcble3m is in do-tail examinad in chapt.er 4, but the already

obtained results make it possible tc indicate the optimum structurs

R(t), assuring b~st permission/resclutiJon. under soms conditions.

Fundamental requirement consists in this case in the maximum

concentration R (t) in the sufficiertly low interval of time near t0O.

Widening the spectrum of signal, It is possible to arbitrarily

4 decrease the duration cf autoccrrelaticn function. Therafore durn;

finding of the optimum form cf F(t) it is axpedzlent to bound the

width of the sp=ectrum by the assicned band Q-, ) and to seek P(t)
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most crcwded in thT assigned tifc intsrval (-T/2, T/2). W! ccm- tc

thr problem, aaalogcus to the synthesis of signals with the maximum

selectivity in the time.

many desired functions Y inc]ude, as .arl;.r, all functicns,

finite in the interval (-T/2, T/2). The permissible set X ccntains

the functions, limited cn the frcquency band. However, these

functions must be subordinated also to further condition.

As it is alear from 42.24), Fcurier transform from R (t) takes

the form
R(4a) =s(w)"-

Page 86.

Consaquently, sat X conta±rs the functions whose spectrum is

positive (more precisely it is rcr-negative) at all values W. This

further condition differs the prctlems indicated'.

FOOTNOTE is one additional difference, connectad with the

standardization which fcr the signals with the maximum selectivity

and for ths correlation functions, strictly speaking, is di._f.r-nt.

For greater detail, see chapter 4 (note on page 115). ENDFOCTNOTE.

The problem about the signals with th.a maximum sel-ctivity was

,1 .m , " " - ' ; t " ..



DOC = 80206704 PAGE 24

solved by us without this limitation, i.p., on a wide:r multitud3 cf

the permissible functions. Hcwever, as follows of that obtained

earlier results, the spectrum of optimum signals proved to be

positive. Consequently, the fcrrulas cf present chapter determine

also optimum autocorrelation furcticns. With the quadratic critarion

of apprcximation/approach we have

R (t) -Vo (q). (2.25)

In the cass cf minimax approximations respectively it is cbtainad

R1 1; (2 26)

R (t)= I[cs cosefl.

In these formulas e=w/Q - dimensicnless fr-quency, q)=ft=2ctT-

dimensionlass time. Let us note that parameter c enters also into tha

solution, based on the quadratic criterion, that it is not clearly

indicated in (2.25).

Summarizing the fundamental results of this chapter, let us not .

that the use/application of a criterion of prcximity to the

determination of signals with the maximum selectivity leads to the

results, obtained by other previcusly methods. The solution of this

problem in spare L2 reveals/detects tq signals, th maximum Fart cf

energy of which Is concentrated in the assigned frequency band or in

the assigned time interval. On this conditicn of opt-mum character

are based the works of Chalk, Gurevich and scme others.

• ;' "i -" . -,,,, , - , -.- - -', .... -'- ... -- - ": - . -" - - -.... - . . .--



DoC = 80206704 PAGE )Q-'

The signals with the maximum s.lectivlty, which correspond to

the condition indicated, aro descrikd by the spheroidal functions

whose properties are of interest alsc for other problems of tha

theory of the signals (see below).

Page 87.

The hypothesis of prcximity can be used to the problam in

qusstion and in thae space with ths Chebysh.v retric. In this case we

come to the minimax critericn cf afroximation/approach, and the

solution give function cf the type cf Dolph-Chabyshev, known from the

thecry cf antennas.

The rtsults, obtained tor the sign.als with tha maximum

sslectivity, ar- applicable alsc to the optimum autocorrelation

functions, feasible with +he limited frequency band.
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Chapter 3.

OPTIMUM WE- AT PROCESSING.

The practical realization cf signals with the maximum

selectivity meets with serious difficulties. Signal with the maximum

selectivity in the frequency has tell-shaped envalope and in tarms of

:he fact to th! larger degree it differs from r.ctangular, the

greater the product 9T and the less extraband energy.

For the realization cf similar signals it is necessary that in

the transmitter would be implemented a deep a iplitude modulation.

This it gives, at least, to the considerable insufficient utilization

of transmitter according to the averag=/mpan Fo~er (en,:=gy cf

signal) , since the pulse Fower is always lmited. Furthermorg,

powerful/thick generators of SVCh wcrk in the mode/conditions of a

d:esp saturation. They are not adapted for amplitude modulation;

sufficiently pr'cisq fulfilling of the law of modulation frequ atly

proves to be impossible. Analcgcus difficulties are in pulse-
coherent systems when according to thA appropriate law must ba

changed the pulse amplitudes in the packet.

Somewhat more simply proceeds watter during ths
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p-rmissicn/rcsoluticn in the time, but not in the frequency wharo

bell-shaped form must have not envelope, but the amplitude spect-um

of signal. Reta-ining the envelope cf rectangular, it is possible, in

the principle, to fulfill the necessary spectrum due to the special

law of ChM within the impulse/mcmentum/pulse (see Chapter 8). Brt

also in this case technical difficulties are sufficiently great.

In connection with that presentsd frequently is applied th3

further processing of signals ir the receiver, which ensures the

necessary permission/r-scluticn in the frequency cr in the time, but

connected with some energy losses, weight processing. The operating

principle of similar.devices/equipient is clarified in Fig. 3.1.

From the output of UPCh the signal with rectangular envelope

enters the modulator that gives tc this signal the bell-shaped form

w (t) (Fig. 3.1a) . Tc carry out amplitudn modulation in th rrceiv.r

at the low pcwar, obvicusly, it is simpler than in thi transmittsr.

It suffices to use, for example, a temporary/time gain control

acccrding to the necessary law. The signal of tne rounded off form

w (t) possesses the low remainders/residues of tne spdorrum cut of thS

assigned band, which allcws fcr tle frequency analyzer (set/dialing

*of narrow-band filters) tc work with the necessary selectivity.

Page 83.

4

2Bi.

i n i
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For increasing the selectivity in the time analogous operations

are produced with the spectrum cf signal (Fig. 3. Ib). The rectangular

spectrum is supplied to the filter with the bell-shaped

characteristic w(w), which gives the decrsase of re-mainders/residuas

in the temporary/time represer.taticn1 .

FOO NOTE 1*. For the realization of the processing indicated it is

necessary to know the time of the arrival of signal (Fig. 3. la) or

its Doppler frequency (Fig. 3.1t). These conditions frequently are

satisfied, sinc3 for the large duration of signal (packet), the

displacement due to the unkncwn range is negligibly small. It is

analogous for the range finders, which use signals with the wide

spectrum, are low Dcpplsr freguerncy shifts. ENDFOOTNOTS.

The silection of optimum weight function w(t) (or w(w)) it

repres nts fairly complicated proklem, Here necessary is a compromise

bptween the sel.ctivity and the energy losses. Somc authors assume

that optimum give Dolph-Chehyshev type functions, which possess as w-

saw, by maximum selectivity. In particular, in the worK of Tem-as (75]

is assumed that optimum gives furcticn of fort (2.23) and are founr

out the adequate/approaching apFrcximations it. However, from :he

follcwing it follows that optimum weight function can noticeatly.I
Ib ,

- - -,- -- -'
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differ in its structure from the sicnal with the maximum selectivity.

This difference is ccnnected with thp further requirement of ths

minimization of losses and it is substantial for the systems with the

weight processing.

In this chapter is given a strict soluticn of the problem about

optimum weight function ( 12].

3.1. Losses during weight processing.

Ideal fraquanoy analyzer (approximation/approach to which is the

set/dialing of narrow-band filters, utilized usually for the

frequency selertion) puts out t4.he spectral funcnicn cf th! vcltage,

which acted to its input. Examimirg for the ccncreteness diagram in

Fig. 3.1a, let us suppose that tc the input of device/squipmen: comes

thn signal cf constant amplitude, which has Dcpl-r fr'quzncy QD.

Taking into account amplitude mcdulation according to the law of

w(t) , realized with the receptic/rocedur - , spectral function will

takp the form

w ( ) = w (t) e1 ( D' 'dt.

7-.

4 "rm mm
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YflY\ a2-aO

W(W

Fig. 3.1.

Key: (1). modulator. (2). Frequency analyzer. (3). Filter. (4). Range

finder.

Page 89.

According tc ccrnditicn w (t) it is positivs; therefore for -he

maximum overshoot cf the spsct-ur (grzatsst lev.l at th cutout of

:he corresponding narrow-tand filter) we have
T'P2

() dt.(3.1)

Now let us assume that to the input of device/equipment acted

tho noise voltage n (t). This vcltage is also modulated of the

i mplitude by weight function and for tha output affact we obtain

respectively r-2
,4 n'(") = i ( . ( e) e 1',dt.

Assuming noise n(t) white with density I W/Hz, it is not

'7

-. r

I
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difficult tc show that the mean square of nois3 ccmponont at the

output of analyzer is equal tc
T

1 AI! = v w2 (t) dr. (3.2)

The comparison of formulas (3.1) and (3.2) makes it possible to

detarmine energy relation signal/ncise at the output of the analyzar:

w (t) dt

S ,=(t) dt

-T;2

Applying to the numerator cf this formula Schwarz-Buiakowski's

inpquality, wa find faci side for value p:
T/2 T/2

w" (t) dt* dt
I -to 2 T

J1 w' (1) di

Page 90.

From th Frcpsrti.s of th . relaticnshio/ratio of a

Schwarz-Buniakowski it fcllows that is herz achipved thE rquality

only by satisfazticr of ccnditicn w(t)=const with -T/2<t<T/2 and,

therefore, tho maximum axcess cf the signal aove -he noise- is4

.obtained for rectangular w(t). In thbis case., as it fcllows from

(3.3) = T

Thus, the -nergy losses, caused by nonrectangularity w(t), ar=-
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characterized by value

q [_. U 12, (3.4)=r 12 "

From previous it is clear that value q dces not exceed one and

is squal to it only for rectangular weight function. Analcgcus

ralationship/ratio for the case ¢f procssing in the frequency, but

not on the time (diagram in Fig. -.1b) is given by Tames (75].

3.2. Use/application of hypothesis cf proximity.

The synthesis of optimum weicht function hds much in common with

thq prcblem about the signals with the maximum sslectivity. As

earlier, we attempt to c tain function w(t)whcse spectrum is

maximally concentrated in the assigned band (-J, il) . Best anytning

would be have strictly limited cn spectrum band after weight

processing. This means that many de.ired functions Y contain as in

the previous problem, all functiors, limited cn the band, i.e.,

Th t- p;rmissible functions have final duration, i.t., s.t X is

characterized by the conditior

x( -.O with Itl>T2. (3.5)

'1-
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But w? must bound also energy losses during the processing. In

other words, parmittvd ar . only ttose weight functions, for which

valu_ q, expressed by fcriula (3.4), is constant:

q=const. (3.6)

This further limitaticn differs the probl.m in ques-ion from the

synthesis of signal with the waxinu: selectivity.

According to the critericn of Froximity should be found the

function, whicn belongs to set X Ci.e. satisfying conditions (3.5)

and (3.6) ], that is located on the shortest dis-ance
, = mii d (x. y)

from s3t Y. In §2.1 it was estatlished/installed, that in space L2

this conditicn satisfies tht furcticn the containing maximum part :f

its enargy in the band (-G, 9). Since this cor ciusion of §2. 1 usqs

only properties of set Y and it is suitable fcz any the X hypothesis

cf proximity i: l ads tc thi fcllcw&ng variational prcblem.

Pags 91.

It is nec3ssary to determire function w(t), different frcm zsrc

in the interval (-T/2, 7/2), whicb taximizas the partial energy

Ti '2 .2
= -- w( (t! (,') G9 U, ,') drit' C "

~~1

• , 1- i- i . . ... --.. . . . . - - -- .



DOC 80206704 PAGE %1

under the further conditicns
T',

E= dt =':0 1u2 t tI [3A)
-na

and
.4 W (1) dt = m-nst. :

Krnel Gg(. t) L s determined by formula (2.6) Condition (3.8) is

a usual rsquirement of standardization in L 2 . Condition (3. 9) is

equ-valpnt tc (3.6) , since, as frcm (3.4) , valu=_ q is clearly

uniquely determined by intigral (-3.9) with the fulfillmant of

standardization (3.8)

3.3. Solution of variaticnal Frcblez.

Accoriing to the rule cf Lagrange's factcrs maximum to

functional (3.7) undar the corditicrs (3.8) and (3.9) gives function

w(t), which is the extremal of anctber functicnal, namnely

S= E2 -&E + Amax. (3.

where p and - iadefinite factors. For the determination of this

* extremal let us use the follovirg method.

Spheroidal functions V-,I) fcrm orthonormal set, ccmplete in

interval (-1, 1) . Th-zr-ifcr-), introducirg dimqnsion1~ss tima.e 2r/T,

it is possible to expand arbitrary weight functon in the series/rcw

~~of the form u,} ,..'I i I{.1

.. .

:I
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Page 92.

The parameters of prcblex E2, E and A it is not difficult to

express through ccefficients a.. In this case arc used the prcpertis

of spheroidal functions, examined In appendix 1. Thus, for partial

energy E2 we obtain, taking intc account ralationships/ratics (1) and

(3) of thq applicaticn/appandix:

aa. R w ) m (a) 0 (. V') d% AV=
. am

m~n -!-, ama~ --J a

where K.- eigenvalues.

T is anal3gous, tctal energy obtains the rapressntaticn

B=
(t .

For converting the value A we will use relationship/ratio (8) of

applicaticn/appandix. This it gives

After substituting the obtained expressions in (3.1J), let us

register the functicnal being irvestigatsd in -ha form

Wa should fin; the valui.s Cf cefficients a.. which rcets th..s

valuie into tha maximum. This is rct difficult to do, after equatirJ

,-I . .. - - - ) ./',- ' . ., . : ' :. ,. - - - - " : :. _ . . , - .. - ,-;ii...
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to zero d-?rivattims ftqau. as a result it is ottain,,-d

Since spheroidal functions 't)ara cdd w-i,:h odd n, then

IP4 I ~(0)=O. Thar':fora :,,O

V ___________
a, T- k (0). (3.13)

Pags 93.

obtained coafficients a. dptermine unknown optimum weight

function in the form of series/ic% (3.11) . we sge that factor'

enters linearly into all coefficients and affects, tharefore, only

ths scale of thiz unknown functict. Sinc!:e the sca.le further is not

essential, factor vwrits cut be will nct be.

Value p. is determined by th~e permissible losses q.

Act ua lly/re ally, after substitutirg values a.~ fzom (3.13) into the

prqvious fcrmulas, it' is possible tc obtai-- ths following rnxprassions

for DaraMeteSrS E,. E and A, and alsc for extraband ensrgy E=E-E,.:
4

M:

J. I
'. (

a, --- (--I::-- .-.,--0). -.13
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S= (} -- 2h): ;Eb(&) 3: 4'

k

k

A = - _ . j,]i ,)

A

The factor of loss q is determirned by relaticnship/ratio (3.4),

which upcn transfe-r to the dimenscn1'ss time tak~s the form

q =.f2E. (3. 5)

As can be seen frcm (3.14 ), values= A and E d-=£end only on .h

parameter p. Therefore, fixing/reccrding coefficient of cj, w. ar:e

given implicitly the value of this j arameter. On the other hand,

* after r .gistering relative value cf extraband ene:gy in the fcrm
E' £ -E

P = - (326

it s pcssibic c ~:=at fcrmula= (3.1,)-(3. 16) as tn parametric f:.m

of tha pe~ond=.n of extraband ernergy (attained in the optimum case)

on he losses of processing. his de endenc is of geat intr.st,
s since it characterizes th axiu Fossibilities of wnight

['I proc.rss!ng.

p m 3..t p hinimuf losses during weight procssiog.

givIn frmuls (3. 1) tht paramevaur o can ta.k aObtrary vaas.

E,, E -

-E .. .. ..

iti csbc;ctI-tfrua (.4-3 6 staprmti o
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Howpver, so that the coefficients a.. apprcpriat: (3. 13) , would

convert the functional being investigated intc the maximum, but not

into the minimum, must te irplemented additior.al condition

dil-<0. =0. I.

*55

I

4

4
-a

- - ij
* .,
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* Page 94.

Differentiating (3.12), WR come to r~latioriship/ratic >*

which. Must br- '.i-pltm-rted fcr all n>/0@ Th---rifor'l:.~ bcunia-y

the rpaLam-tper p is d-rmndby gr~at-:St -Ig--nvalt /j .Ths,

* rlnge of values :)f the parameter comprises

wtrc:fizst lim~it4.g case p-->x 0 . A: it is cita: f :'ii (1. 13)

in this cas: all co'ifficients a~ wi~h K>0 are negligible in

c omparison witis ao. Thnrsfers z-ri- s (3.11) d-ig-.-nT:atrcF i-nc

m'!tbt-r, and a": S-lecting the appr ,priate scale, we obtain

xlo(t ) wQ(V Wo (.8

Cor s--quc- n tly,! 1A 4 .Itg CaSe -,- ai S'ton pt-,MUw W~g

function has thm sameT structure as sigra.l with -:he rnaximum

A* ~sal-c:tivity.

Tn sums (3. 14) else% ir: r..'ainzi cnly firs: -- =mrs. As a r-sul-

of f,rmula (3.15) ind (3. 16) thqy givc:

09

-2 , 6
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Latter/last relationship/ratio, obviously, will b cco-:diaat-=

with -h mtriils cf the pra vicus clhap:-r, sincc for %-hc signal w4.h

th- maximum selictivit16y the partial ancirgy, ircluded, ifl tht band. (-Q,

* Q, s n~um-.rically %qual to a.ir~valu- X0.

In Fig. 3.2 tnin l4.n- shcw-?d -Ib': d:?pr~-nc- o-16 lc-=ss q cr

=xtraband enesrgy p, del-ermined by fcr-mulas (3.19) . This d: oad~~' f-

ob4'ained as follows.

Valuis of x0 id 'po(6) dr-pcnd or- pan-am~t-? c=QT/2. Fcor

.i.genvalues ).. are del-ailed tables in r 81. Furthermore, for lar-j c

is valid the asymptotic fcrmula, us'-d w-.Ith n<2c/v

29-+ 2 n+e 6n2 -2n + 3 .01-X L 32c 3.n!
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_______ f' =15 ,40--- -- ° i r , ,=

25 50 75 125 150 175 200 225 2S0p,I5

Fia. 3.2.

Key: (1). Cosina-sg uare. (2) . dB.

Page 95.

Values '.IO for c<5 can be taken from tab! s rs0] or from -

graphs cf Fig. 2.2. But. in this case i is necissa:y -. fulffll

standardization according to conditi.on (3) of application/app:-ax,

(for example, by th . graphical ntgration)

For large cwe usird asymptotic fcrmula 651:

X (n D. ( ;,'-- 0 21

This formula -s applicabl- in 7 -g---: .... furc- 4 s f

Ucbr (parabclic cylindir)

- H-rmit.'s polynomial: factor N, provid-=s thn . srr

-.-
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etan~ardiz-1tor-.0 this ffactcr has a v;alu--

(C n)14 + c9

AS a r-SUIlt, taking 4.nito account kn.own r':vir-nships/rat4.os -

Eirm4ita's polynomials, wA. obtain

~~~:1 -,(C (2k-i)!! r 12k + .3 & . f.2
2A -(-k)!!

Taking i*:nto, acourt -6-h -s,:- valivis cf f:.rmuld (3.19) tht-y 4.ak,

formu, ccnveniant for thes calculaticn:

L~t us c ns--Iz-r t- results, wh5.ch scp/u:fr:m th, grarl,

1^f Fig. 3.2 (thin line) . If we allcw 1cssr-s dut, to the tr~atnerits,

which Jo not exceed 1 dB (q--0.8),* weight function (3.18)itnvA;

-hc zuppressiocn of extraband energy to 30 iB with c=5. When such

nrnt:s a=!, iz:.p-able, it i.s in xp;,Ai-nt te a poly a rc-rh':: 4i a

- c-tially, furcti or (3. 18) or o vtj s -n-* .4m um x,:7a b an

enar~y with fixed/recorded c. I f ho w av=r ar-t r-i u Id s ta !I,

ai r/rsusof th- sp- ct r u m, I- a ft---: p: s :rv irg s -

2structurs of w-ei-ght fu-nction, wvs are f.crcz! no-: cnily to ir.as=as=

Jurition of signal (to increas- c) , but also to allow Iar. anzrgy

loss-s. For many app!ictons/ap 4 -his sclu-6.on s

4 undssirabl-i, ard ther shculd bc suitchm ovsr to wz-ght f'inc- -c

another tyne, assuring smallir loss--s with larg= c. Le' us l

1urs-v:s ' -F-or- tc =-g;.cn C>>1,'.~ us -=i*7- 2-v-r Ic -1:ch-

:pt1-imum w-'.ght fu=-n cf mcr: ~rlm c~rnmc-/m~r. i
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zlass, which corcespond to othsr valuss of the oaramatzr jifrom

Page 96.

Let us conside-r another limiting casr - Accorl.ing to .(~14)

an~d (3. 15), in th~s casz: 4.S obtained

q 2E 2k' (0)

As is known from ths th,?cry ef intmgral equaticrs (M1z:czr

* thccc~m),k=-rr~l G( , el) allcws/as5urn i u-so

G (t V,) sine ~~'

Af I- a assi ia.ng here '=0, we f ini

(0. 0)== ~X,, (0)= ~3I2()

Ther-efor.: witr. p-> -;,- is cbtaircd

C I

As it was 23t3.blishbed/inst al led in S3.1, -.his limiting v.,inu-

is azbi/v,- cn2.y by =:0ctangular wei.ght fun-zc.. Ccns'qu''.t1v, w

shcw--d that with ssrfns/rew (3.11) I-ads to, th- furnc-:!ir. T!

form

Chcs~~r:.t~ ~ Ea'~valu-s I- - wi n Xa and :3 ' s" ~i1

J _"
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-e fulf ill transiti-on f rom wpight furct4on± (3. 18), whichhs

bell-shaped character, 1-c rectangular function (3.23) . In ordfr t-'s-

this transition be sufficiently smooth, wlL must assign to pariTtt=: j.z

valu-s vcry clos tc the 2genvalu- of X0, which, in turn,

i -s~nifi cantly d- iff :rs f rom ur 4 ty with laT ge c. Let us use h

spoc",l rulz. of tbt- sel, cticn of r- ading valu-s ~,nam-ly 1, us

assume

I1~+.I.-s,),m-0. 1. 2. (3.24)

Pago 97.

This will imak it possible tc Considerably simplif y

r:ationshfps/ratf.os (3. 114) , to load th m :o th- fczm, cc~vr--- t f:r

thn calculations. L--t uS consider, for zxarnple, fcrmul! for tl- valu-

N~. Substitnting (3. 24) in (3.14), w= obtain

Af-tzr d-composirg this sum to -hr- parts 4.n wliich k<M, k:~m

k>m, 1-+- us rz:4rtt lattepr/las axp==sston r. h form

A= 2r rn-I 0

C (I 2 .) , _1_?_2_

~i ~.itc xpansion (3.20) it follows that wit" k~rn

I-)i ., (CM)!

~ ~1i z corr,7t~cns cf or.!zr -2,
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tpossibl- to r-jact/thr-cw apprcpr .atz cn c-jrts/,'o:ms/%ddmrds -f

denominators in ths first sum. Analogous cons id- rat!-ions shcw that

should be disr~garded/neglectad the latter/last sum of formula

!=ad 'heMJ following relaticshi ((a--C

2-

I- 4

Calculakior aaccr-!.r g I-o fsrmulas (3.26) -.s -. nl.Th-

ne-csssazy numbar of compon-:nts/+srms/aI~sris is comparativ~iy 3nill.

-.hus, for --=10 it is necessary to taike no+ more than thrsz imimb~rs :

suim (m.<2) , for c=30 -a~ no' mcrr- than rtn- (m,3) . zr. ~-7al n<-:/w.

mako it Possible to det;-rminer furti-mr *I- lctir c' Icsf 1 1-1~

r~.a: 5v: 1~v~ of '*h! -xtrabard or~-:qvy p, att a-- at :n inw

fuarconr. For values of c=10, 20 and 30 corrF-sp'~i::!4 7 raphs irz

shown in Fig. 3.2 (heavy lineRs) . Thgesn .rauhs hrcrz-'h

ma x mu m p cs sJ.b - It I A-s of veigh t raAm- - I

Pig7 99.

Ilk
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according to tha cosine-squared law

w()cost--;-< ~! (3.27)

As it is eisy to check, in this case

A'

For the approximate computation of extraband cnergy wz w4-11 us=-

th= asymptctifc formuala

w (. = S (~ e~w ~in w + 0 (co-4).

escape/ensuing fros the general/ccmmon/6-otilrt.osi/a',

C

F' 4ts

?0OTI'!TF 1. A o:aecis- formrula fcr the =Kt:abard qn- gy cf

cosine-squiared signal is in [23". ENDFOOTTITE.

Ftor c=10, 20, 30 the corrsspciviing valx.~s p and~ q arsww' :71

* Fij~. 3. 2. 1' is- ci.:-az thV' 'h-- Cpt4nZa,.C. -f -4hz- 0q2nC~- A

* :pissb ~o v-i:y !substantially tmcrmis-a -hc tnrs:f-,

v-- n cmpar.so-. w'h this arIequa-/appr:)ching law as
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cosine-square.

3.5. optimum weight functions.

in §3.3 w-i c j1et er mined co ef ficient s w~ wit h whi: h s= rl zs,/,:)w

(3. 11) 7, gv-s o pt Im um wc!.ght fu rcticr. .Th s- cLef ficier -s den ani on.

tht- param te r Li ac~r-d!~ng to fcrmula (1. 13) .W- ;aw alsi, 'hat,

giviino P special vdalues iA In accordarce with (3.24), it is ~~j

to considerably simplify cilculaticns, sinze c ff'tsa. b- -o%

r'-glig5.tl- wtth r>2m.

Paqe 99.

*Jsinti (3. 13), (3. 20) an d ( 3. 24) , It is not 1:f 1-: tc SK W a

h wh l 4-0. cp-,;M'Im IN-gh- f un'.c' 13s cxr-1 y !)Y

Dur!:g thr I-rtva'.'.cn cf this formula is all-wtd a rl'v

mrroL in. crd=r :2, and! scale facto:: d is s4l1.'"'i so -hat w' il, t,

simplified the expre ssion. Let us nct-m that -4g -nva.luss it 7M~ Vt-

*clos7 tr untyfj.y

-' ~Uncrtune-atly, th stifficir"n-lv comnl-6 Ibl-. of p~r1
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functions are absent. Therefore, for some values of k and c fu:4i-

v-,k. in th'. i'ittrval 0.fe%<1 wer,; spercially designed by E~sV11 i;~g6al

computzr] !1-20. Calculaticr was pre'duc,:d by thz nm,.ric l sol'il~c7--

-nt.~ral mquat;Lon (1) cf applicatf-cn/appc nV.x by tl1r mt'hci ' f

. t-rations. Eig-4rvalues wsre taken frcm wcrk E68]. As h z1!

dPP_ r.X'mation/aoprcach was used tieq first 3imb-: of asymptot~c

expansion (3.21)

The graphs af optimum weight functions w (),cilculatl: by

f ormula (3. 28) , th- y ar- -,hcwr ir Fig . 3 .3a-c. Fach figur e

ccrr!-spcnds to o)n: valus of c, oach curvi - to nn valu~i m. T~z

-),%ramstars of tz-atm-rnt p arnd q, at~al-di t co-:4iuu w-igh

functi.ons, are depi.cted as the ap~rcpriatt poi".:s :,i r-,7. 3. 2.

Frcm th, graphs cf F4 g. 3.3 it follcwi th-: p-:iu-npv

flinc:ions actlially/r-ally occupy ths intermalda:S oos:.tzcn hntwd--

Jt.: bqll-shapad sigrals with thq vax± mlm s-4.ct.v.- y ar.5 '1-'

Pula,. In th xui."1- part ef fuinctie'r w(e) thmy ar chan.g-d 1 4 1 .

t hzv a:* clcs% to a constant value. Th- lur at .o-. of "flat/plane pir'',1

isp-,As on t:hz factcr c.4 leoss q. Th- gr:.at~z g, is * ht Me:-

"f0-lat/plano part" ani the neare-r tb- functtior w(.) to -he

:ectaniular. The low level of extraband energy is provile(I duz to t'-%

xpct~eI f:r~t" f furct_-!r. This -jiv- vr.-y 1-,w val- c " d(r)

....... =1, lcw jump o:- the .-dgcs. T- 4., ocqs~b1- to sqhcw t~a rv'ir -,z
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:-ig:! furct-ion w(e) is changed accerding Ito. th!- la w, cl: Sp -C th~

gaussian [65], and with W= value W(f) 4S of th= orrder

As is krov'., th valua of jump zdgzs s ubt in'-. ally affect3 lh

soqctrum at ths high frsqir~ciqs, tc ths eytrabani -3nsrgy. The 1:)w

valuv of jump,. :xpcientially decreasing with increase of c, ani makes

it orssiblo 4c Dbtain sc low a 3evql of extraband -n':rgy.

Lzt uzs pay ajtt ,n5or alsc t c ttl gi:o of transi-len frci-2

Irorlt 4-c thr- flat/o lane, part. 14qre ihr s ar :)scillatory strzuctu:z

,with theP aaxiu overshoot of order 20o/o of th- st -ady l'qvil. vit '

incr-ast in c th --v-rshcct is reduzc!d -. nsigrift-zan.1y, bu'

cscilla*-ions/vibrat ions "ara. wrung cut" to thq front &rn occupy tht

low par* of th o complete eiuraticn. In this 4,11 4-7 pcss:ble- *-(%
ane!l:gy w'*:h G4.bbs's p =rcm-ncn., we;ll known~ fr:i -h- th-ory -f

F'o'nrir 9s::lis. 1ncrr-asc c is aralcocus, in -- s-ns-, t:) th, - o~q

of band, to an increase in the rurbar c'- m-33b-r!s of so~~ z:'a

The sup-racsitV'.a of a larga, rut f--ii- rumbcr -f *:r.ms -if A-h'.s

s-4ri's/row gives?, as is krovn, function with th-: th:Aoc i1 t,): ty

Pje:ctions near the fronts. It is importint, howtvce: t.t 5azl

f signal :%a= e=1 s ' V.Ir cscl 1liorE/v!.brati--ns dor's rc hav?. any.

4z~r '-hl:- m.ctone decreas'o w (t) provides +tha low level of (-trbrJ~

FA-qy
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Page 101.

* Chapter L&.

THE SYNTHESIS OF COPELATIOn FUNC9IION.S.

In present chapter is sxamined '-hm task of th-- syn'hzs4 s

ra1zabl1, autocorr~la±. cr funct~cr.s R(t) , which ar co"nactd wiln

signals s(-) with th, known ?quivalc-rt :-rla ti cnshps/ratics

ania

Thz autrccrr-laticr. fur.r-tr P(-:) .s a :aor-ct :pt ium -:.-

-3f PLS (matched fil' ir) tc -he signal, r!fl-ct~i ftrou "he fix~i

p'npt~ir.t t-t:7t. In. cthr wczds, 'hts 4--an appiratus furc--1 -f

in sr,, cas2 of zh m'snt crly of rang-- (- m* of arr-vp1)

4 chrac~r~zss acca:acy anhi r-sciutien - such m-asu--qufnt.

'Mn
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We examine the task cf approaching thz aut-ocorr-ition funct-L-)

RMt to cartain d:sired function F(t). usually for -t, radar i±3

substantial only the apprcximation/apprcach of ths tuoduli/modulas :f

the functions indicated, in connection withi which, bsing lin'it,- 1-

quadr!a':-.c critzion, wa will. mi r4.rz: va2.u-'

f = ' {IF(t)j-jIR(t):} 2dt. (4.5)

assuming/stt.r4 '.h spectrum of functf-n R('6) by :hat lim.i1-i by

corditions (4.3) and (4.4). Furthermore, sinrce usually 4t. Is ps~l

to consider that thp spectrum of signal 's%() occupies ':ho firalI

f:-qu,7cy band, lzt us intzcduci the further limita:ion

?age 102.

'irambigiiously signal s(t). In accorlanc? with (4.2) an-' (L4. 3)

given only amplitude spectrum

whi1= the phas- sptctrum of sigal 4 ramains arbitrary. The-zeforn

:qalizatblp 1(t) is rtalz- by any sigral d_4th :ha sp--:-'rim "f

A S~ Y= (w f,~

'~hrg(.) -thz szn-ctrum )f the~ ccrrslation fu-r~t_-.r R (ti, an! i(w)
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i t is arbi-trary. The dr-trminatien of tht opt..mum sp-ctra g (a)

*which satisf y :ritzrion (4. 5) under furt haer conditicns (4 .3) , (4. 4)

* and (4.6) , is ths- task cf this chaptar.

4 .1. S'%4,s X and0 Y.

Th-' p'rmiss! bl- szt X in this task, naturally, includ-4s all

realizablo aut~correlat ion functicns R(t) . This set doe s not fill

space L2 , since in accordance with (4.3) thz spactrum of the

furctitr~s g () 4.nd.Ct'L 4 S pcsttiV2j (±t is more precise, it i15

non-negat~ve) , and it is also limited by conditions (4.4) and (4

Lut us corsid:r 4. scm-what more dinail th-a pr-_p-Lry of flinct4.--rs

R ('1).

L! t signa1 s (t) na ra . ccrpcs 4.t c, bG r- p~~ i-n

f orm of6 tha sum of -iven ani odd (ccxposite:) the component

S M)=s St) W-Sd:ft);
s,() (-):S2(IM--S2(-t).

jTh-n, as !.-f ~s :ct liff icult to show, t~ thq -!i ?ry sptctrum vW

11 ~)I = I T. (w) 12 + s. (w) 12+2Re (I. (u)s0,()).

4 Pag- 103.

H' s' a s t is I~ f roCm pr,- ' !uS , f - _ 3t I-W~ c :l M f In c

Ifrzillncias, ani ths latte!: -odd. T*hus, thz_ v'. q.4ral -tra
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spsctrum cf signal has both th- rv-n and edd of part. From (4.2)

follows, naturally, that the autocorralation function R (t) has - al

and imaginary parts, i.e., R(t) - ccmposit? function.

However, if for all w is satisfied th conlition

R, ,( -) ?*, .) 0, (4.7)

th-n the s.ectr,im of power Is(w) 12 is even, and R(t) - is r-a!:

R(t) = -L sIi Jef- td --  i', cos wt dw. (4.8

It is n-t difficult to nctl_ that this occurs for th ov=_rwh-lm-_na

majority of ths signals used. Lattir/la_=t condition is satisf._d, a-

least, ±n th- fcllowing cas:s:

1) s(t) - .vz- funct4oen (ir th-.s cas - sf (-)-0),

2) s(t) - odd functicn (in this casA s, (t)-0),

3) s(I) - th. rsal function (in this case s (w) is r-al, an!

s2( ,) is imaginary)

4) S (t) - imaginary functicn (it is analcgous with thr p--v.7us

Sss ) . Th-s;" cass can be still suppl-m-rt:d, using taLl fac' .h.-

R(t) Is not chang-d during -h. displac=mnt of signal on thz -'m-,

and also it do-s not depend on initial Dhas!?. Thzr:for: cas- 1) a -
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2) a pply to sign als s (t) , symmr trica. of rt ati-v aly arb: +:a ry to

cas-is 3) and 4) - to the signals, 1l':d to rsal chang:-s i-n th,: i"ni 1_;z

P ha s-:

As a r ?sult, -v-' withcut subm-rgi4.g in~ th, study rf all

conditions, under which ars inmpleuentqd equalit-4=s (4.7) , (4. 9)

*.s possible to take without the essential damage for the qctnaralfity,

that :,wl~ vzn function, but Rk(t)-isra.

FOOTN1OTE 1. From thF commcnly used signals thqs3 conlitios ar-I n"

satisfied by th'4 Chl impulsps/mcmenta/puls; s wil-h symmerical (ever)

law of a chanq= in tho frequ;:-ncy. Suich !;4gnals are examinrd 4. §.

by arothar m-zthod. ENDFCCTNOTE.

Ii this cas-' .4 acordanc- vit. ('4.2) a-d (4.3)

As can b~ sqtt fromi from thr 'o.zig his furth-r 1, m-:;t '

substantially simplifies syntbqsis. Slimmarizing "thc, af-rqsai-d, w=

will consider that X - many autcccrrelation functions x (t)=R (t) whzos;-

spactri 'i(.i) =g(w) ars lim5.t.-d by cor .i1-.cr3 (4. 3) , (4.4) , (4.6) a-(!

(4.9) . For f'uture :-iferznca it Ais ±portarn: that- d-:- rmn.nv:thu

Sis convex. Actually/really, after assuming -n accordarc w-
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(1. 38)

X=TXi+(1-)X 2, SO 4"hat'

9 g((i (")) + (I -r) g2(W),

no-, diffi0cult to asc-r~ain, that sp-cttum g(w) sati--fieS ccndi_4izn-

('4. 3) ,(4.14) , (14. 6) and (4. 9) , if the-se cciditions satisf y g, (W) =-a

Now let us examine dqsi-red set Y. Dtsir- d mqodulus/mciul'- JF(t) I

=an be, ge nerally socaking, selected arbitrarily. Bat has sirsz t

gi~ n on y .v_ f nc ,,-rs I F(t) I =jF (- ) 1. (4.10)

odd - cmponznt cf modulus/modulr F),ifLis, .tdo.3s nc- i." n-v

way affect the obtained sclut--or.

Acually/rzally, daesigrating IF(t)dt~c, 1.*t US :wt ('4.5)

* in the form
f=c- 2 S!F(Q!Run~dt+i f'Rofl-dt.

Varying R(t) , hsre it Is pcssibls to :-hanj- crily two /le

ccmponcirts/tw:rns/add-nds, mr;:cv~r cnlv cn- of th~m - int-grel :

*form c

-d-p,-!s cn !FK Vj Thi: mrdul-is/meiu>- -.f cc:: lip.ior. fp

~ ~ v -n-
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IRtI

FOOTNOTE 1. This is correct fcr arbitrary R( t) , vt-n with"oult

li mita tion (4. 9) s sp (14. 1) .ENDF COTFOTF.

Page 105.

Therefore latter/last integral does not d-oend an odd =ompo-n.t of

ass.,:n-d rcduluF/mc-dul- IF(1) 1. Tr-is ccmpoznznt carno- bs cctnsal-,

f or, slec- In g R (t) , it cr ly -J-crsa sss gz n=ra l/co mncn/-c t al i rr f:

the approximation/approach, while thez r~sult of th= solution (unktr-wn

R~))itd- -n'AS -rly on =v-~n ccmrnnl.

Furth-,r, azccr 4rc tc (4.5) w-- ate: btafir

aoor: ximation/app-.ach to finc4-icr F(t), assign-- only cn -:h

modlulus/module. Th: phase of this function lo-es not play --- -ir -ta3*

cf any rol-. In othz-: wcrls, all funct4,-nS F(L) , that hav.- n'c-sr,=-

modulus/module, pcssass the assignpd de sir=d prop-r:ty. Any of s'ich

functions can be selected as the "1sarnple/SD;%CirnM=" With thf%

aPp-xirnat-cr. Thzz:-fcr- In acccrdancz w-f1h th-- -t-a~m-nt -1- -h

problem of syn-.hEsis, presented 4-r ehpe ,w= must cuz~

in the desired set Y all functiocne of thq form
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y (t F () A t) e(4.11)

Hqr- A(t)=IF(t)I- positiv- rial functicr, whi4ch cc.ncidas wi+h Ahz

d-,s~.r,;d molulusimodula-, and 'e-arb--Irary phase. E1smnts of s-- Y

diff-r from i azh othrr in termis cf phas- functions ~~)

4.2. Applicab-li'ty of ths critaricn :of prcximity.

Thus, bring bas--d cn the fessencs of task, v3 th-iy d-:tzrminc-d

that permitted and that dc-sired sets X and Y we can. pass to the

sciution. Accord1ing to the hypothesis of proximity th-? optimum

corr!-lat-ion fu'n:tior P (t) is 1ccat'zd at tb-. sh,'rtzst d.-tnc! from

ths iesired set Y, i.e., rsalizqs tcminimum of value

-in

=minnmin AII' kPRt) Idt. (4.12)

* L=-t us show that the crit:?ricn ef proximity (4.12) is =quivalz-: 7

* nit al crit,rlon (4. 5), and therefcre le-i us use to the task in

q umstio.. Fcr tails w- use- the fcllow:'.nc order cf th? m-.nim-4zat-.cr -f

t-he distance betwszen X ard Y.

Page 106.

L-At us f~x f.Orst arb-Itrary r-1,F?nt cf s-t T, i. -,corr-lalfnn

fuctior 'R(t), and we- will st?=k spall di-stanc,: :f s--t Y, ar' t-i- w

Awill obtain dm.i, by selecting also 9 (t) . T--- firat 34tag-i C, :,r) splt
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to firding valus

dt (x, Y)=nin SjA(t)e'"(fl- Rt)I dt

mi S { 2 $(t) d + fR (t) adt -

2Re S A(tR (t) di}

On var4.-d phas! V~ d,3ponds only lattzr/last como~on,:nt/4,,rn/a=dd--r.d,

and ws com? to zh- max .izaticr~ cf valu,-, analcgcus to th'-;

coe fficient of the proxImity

-00 (4.13)

Here it is consi-d--rzd that -In acccrdarc- wtth (4.9) !h- ccrr a 4-,

function R(t) is :esal.

Furthsr, fzom (4.13) w,! have-. , :ak-4-g Lnto acccun, v-r-5vr=

A(It).

C< SA(t)IR~tIdt. (4.14)

The right side f the latter/last in, guility do~s not izpc--d n-i

vari-*d phas- VOLt) thzrafcr-P ths acH vsmn--nt of -2qual.±ty in (4.14)

provides the grsatzest pcssi4ble valus C. From (4. 13) aP2 (4. 14) is.c

I evident that this is achisved by satisfxactior of ths dt~

4cos (t) It sign R (t).

or, which is equivale-nt,

P~ige 107.

- - il~7- 7".
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F it) = A (t) eJ+  A (t) sign R (t). (4.15)

After detirmining functicr. F () , which r'alizs thq shortest

distarc- bstwr-n s=!-ct-d R(t) ard sft Y, it is possibl tc sw-'-ch

ovzr to the scond stage in which variation it undzrgoes by R( )

Substituting (4.15) in (4.12), we ottain

d2 = min [A)signR(t)-Rd(t> t--

- rai ' {! F (t)) - IR(t)I }' dt.REX -;

Lattr/last nxprzss.cr ccncids wi.'h 16h- initial cond4 tion for b--t

approximaticn (4.5) . Consequently, the crit-rion of proximity, b:-

ippliel to the examined task, gives its foll solution'.
i

FOOTNOTE 1. Lct us noti that, aftfr fore going condi-ion (4.9) an1

assuming/s-tting R(t) by compcslt% func'ic:, we would arrive at

cor1-ition (t-argRW) irstoad cf (4, 15). With sa-i.sfactirnr :f) hi

mor gerr3l c~ndit ion the crit.ericn of proxiity (4. 12) also

coincides with (4.5). Other limitations for the permissiblz f inc t!ons

R (t) in th-- prvious corclusicr/cutput. ar- t is-d. Thmr-for, f'r

set Y, detqrmiaad according tc (4.11), the crittrion of prcxiri'y !s

applicable with the arbitrary set X. ENDFOOTNOTF.

4.3. Methcd cf "cutting".

Iii7

4~d ,2 k &&6''*~
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In thia majority of locat-;rg us:-s/anpli cation~s -hf: dcsfrc!

structure of tht correlation furcticn of signal is charact-4riz*ed by

two requirements R(t) must have sharp/aautle central peak near t=O arl

low rr ma ndrs/r: si.dues out of thoa assignF-d cerntral rC-4 .or. In

accordarce with such rsqui=ements lst as assumq that assigr.md

modulus/module IF(t)! is dete-rmined somihow in ini:-rval1 (-1 .1) , whioa

corr',spcnds to =3ntral pgak, and Is equal to0 z-;ro. cut cof tlhis

* interval.

Sincs irt- cva1 -1? must not cv~m:lap W4it , th-- r,-gicn ,f '6lh-

remainlirs/=-sidu- s (m5.rc= lobss) of cccrzlation function, lat us

*requirs so that synthesized R (+) wculd satisfy the conJ4ition

* But undir thpsz issumptons fcouula (4. 15) qv~

F(t) -A (t) (4.17)

4 a d, thr ?f or: , cpt 4 mum F (t) dc4os nct depen-d o:' R (t)

Pagoa 108.
4

Furctior~ (4.17) bilcngs 16-r thA dcstr~d qst Y, 4-: -'s cn-- ca '

I ~-l-M~ts/ce lls, moreover' F=Scisely this ~lmn/~lis pac-1 alt -h-

I smallest distance from arbitrary P(t) , *hi:h satisfie--s -hr st'-ula--:.
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conditions, from any :l-mnt/16 / of t h p,,rumis s bl~ s-t S!- . T his IS

rare sp-ecial fsature/peculiarity -the prqsencs of only elsment/cell1

Y0 ~tESY, cf tha nzar-4st to all thcse permitted xvc-::X- substantially

simplifi ?s furthl-r solution. As it 5.s n, t difficult to compr-hird,

this spe cial f at ure/pcu liar it y is caused by th:? structura of s~r Y

(4.11), and also by further limitations (4.9) and (4.16),

superimpcszd to simt X.

Now, b'--ng t.h-:y ars confidlent i-n :-hz fact -hat functicn F( 1),

which cor:-zsponls (4.17), !.s lecatqd at t sh::!:':st distancce from

set X, we bring ths task cf synthesis to the simolse: task of

approximation. It is ccncrtq/svPcifi-c/actual, fxing/7r-ccre.--r3 F(t)

indicated, ws th:y mnus t fird R(t) , which satisf.-s the os d'.

= j Aj)-(t)}dtt~=min.

Corr~sponlirg R(t) is opt-,mum, nfernst --o stt Y.

After drsi'-gating through A(u) the .spectrum cf Ath- assi;,gn-?d

functior. A(t) , :)n the basis of the -qua144ty of Parsnval w- vii11

I ob-ain

(418

mo-:3vcr thr: unknown som-ctrum ai(w) irust sattsfy the.:% gi~-~
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the fo~as ib 4 .ljty of cc rr- Iati4on furcticr, *~ to cc nditi or.s (4. 3),

* (4.4) and (4.6).

nost limiting from thasp rsquir~m-?nts is cond,;.ior (4. 4) , w .±ch

corre sponds to th@ standardization cf ener-ly of signal. But w- will1

*f4.rst obtain thn snliuticn. without taking into account this

* standardization, i_.e., by subcrdinating g(w) to tbal corditiens:

Kzy: (1). with.

Pegs 109.

Sinc, iuring suc-h lim 4.A-ati-or~s t-hr urknown sp- ctrum g(w)a car lak-

i~bitrary pcsitt-;vc va2.u.:s, ws Ic th-r grla-st dagree decrease

distancs (4. 19), if for all frsquqncies at whichi 'A(w), ,, 1=t us Dll!C?

g (w~)=A(.a) (in the interval (-U, 0)) . Thm c,-rrsponlin g fr:-qu,= ncv

iomains in this case will not make any contribution to ints-aral

(4.18). Thus, wn-zr- A(w"O, shculd bz takn- g(w)=O. In h.scaz h-

morulus/mcdul,? of 14iff-renCCs j.T()-g(wfl Will bz M~.n~ma1.

Iconsmquently, the Mminim to furcticnal (4. 18) gi VIS fcl1CWin-q

I function':_ flHA)>H af*
g -w) (4.19)

mp0 AU < IHIfe>f

K~y: (1.wlih. (2). and.
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appropriate the "cutting" of the nigativs valuqs of th= assign=!

spectrum.

FOOTNOTE 1. In tha wcrk (7, pp 169-170] t1h:4r- was propo sed aot:hr

soluti-on of analogous prcbl,:m dur±:,,,g thi sams limil-atio-ns. But "his

* soluti-on dc -s not g4 ve th= beRst apprcximation, ard, strictly

spocaking, it shouild be recognized srrormous. Th~m vs-rificatio. t.~st

shoved that relationship/ratio (4.19) leads to the best results.

* ENDFOOTMOT?..

As a r:!sulA', w:- -oin- to th= fcllcwing p:oc1=duri of syrth,;s4-= (i'4 g.

4.1):

1. From assign'-d A (t) J.s ccmput,"d sp- ctrum 'T(w~)

2. SD=CtrUng ;(w) 4-s fcrmo~d by path "1cuttingTs" (,f nga4--v~ v -i s

A X(w) and limitation i-n assigned frequsncy intsrval.

.4 3. By in.vzersg tr-ansfcrmati4cn cf Fouri4,r from q(w) -.s lirce-I

A unknown R(t).

As an exampl.e let us consider synthesis R(t) ,n-martst to tl.t

.cAtangular f unct.-
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A (t) npt< 1;

K,:y: (1) . w th. 0 nll >1 (4.20)

Sp,,ctrum cf this funct4.on -;.s cf altirnal-±ng sig-i

Aftzrward thir: ":uttinrgs" cf th'c r. geivz valuas Tf this SnD--rn T

invsrsa transformation ef Fouriar were found tlhl: nzarest corrzlati,.

function. They are shown in Fig. 4S.2 for ths vilu~as 9=2; L4 ani 100.

4
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Page 110.

A(do) I~t

.A5 - !=;oo

Q 0 
A W)

Palge 411,11.4.2

Lt us rot-) th.at in '-- ir~cgr.al of facrm r.I~id he nagal v-

v aluss A(w~) partially ccmpensaltf pcsitive on;es. W i h

fcrmat: cn/czducation g(wa) these negative values cut themselves.

That-forl b-ginning Q=2 value

4 16 -'xcirds A (0) =1 an~d t6h~s -xciss is grs! ;'at -r, th mc:,- 0? (wil.

0--valwM F(0) innitl grows) A 2, a rs u t , ~he b e h

IV
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approximat.cn/appr3ach tc 4h- assgnd furzticn, th- gr'-a r th"

required energy of the signal, cbtained with this approximation

method.

4.4. Account cf th- limitation cf n:-gy. Simplex method.

W= will now ml.n-mize functional (4.18) upon consideration of al1

limitations to p-riissible R(t), i-n cth:r wcrds, we will szk P('),

nearest to optimum F(t)=A(t), assuming condition. (4.4) perform--3,

i.e., normalizing energy of signal.

Let us first of all note that quadratic functional (4.18)

conv--x, sincn for any r of t he int-:val cf (0. 1) -ccirs th i."qua!'ty

/[Tg, ((o) + (I-) g:()J.
< T91(W) I+ 0 -T) A92 (W,)

If wz. assume in (4. 18) g(w)=rg1 (w)+( 1-r)g, (w), it is p:ss'.l= -o b:

convinced of the validity of this inrquality. As i- was nc- -!

§4.1, the permissible set the X, which includes unknown spctrum

g(w), is also conv'x. Consequ-ntly, task cnsis,:s of the minimization

of convex functional on the convex set.

In ordrr t3 usA krcwn ittrekiv- m,-hods, 1 - us r-duca th? ;-ay

in qusstion to th_ orobleir of squa:z pcgramminj. For -- is, a'"77

dCcm pos 4 ..q the assig.ed frequency interval into the arbitrarily 1w

II
- . r-. - '---'" ;
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strips by width Aw, let us switch over to the 14 scrste/ligita

representation of the spectra

w hr r g riaiirgs of functicn g(w), undirtak-ni with I-h, in"-_:

Paqs 112.

Af+'-r r- -lacinig furth~r inte-crals with sums, w- com: c~~

following task:

it is nscessary to find the minimum of the functional

(g A g) - (4.21)

* durin-g the limizatic-ns

gj (4.22 1
2=I

For 'h soluticni cf this problem we will use simplex method (11, 921,

conv-nipnt durin.g thf linqar li4mitations, in particular (4. 22) ard,

(4.23). Ths us=-/-arpl-caticn of the simplex msthod is ccnnat'd wi'r

4:h ... .onsqcutiv- approx-mation ef ass-i;gr.'d func-_.onaJ. (4.21) wi~th

* lir.-ar. Aftezr s-l~zt-ng certain in~t-al aooroximat4.cn/a.pprcach

g \.we aSSum-z/s~t
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f (g) Z f (g,01 + C, (g. - g 1(,)) + -C. (g, - 92') +

±c.(g-ug.( hC.+c~g,+C.-.,...+c4 g, (4.24)

where c2 (i>O) thars are partial der~aie at point g~x

aC g) (gO)-
dgI g~gm)A)--

For thq dL-t rmtnat-,cn of thi pcint c-- U'ii cf 1-ircar

furctionral (4.24) lu-rg limitaticn (4. 22) shculd b= sslec-,-d ore of

the variable/alternating, for example g.:. as that r~solving", Aft~r

assuming

gi; (4.25)

and to carry out minimization thrcugh the remaiinrg n-1

variablc/altF rnitinq. A f ter subs' t tul-ing1 ~2 5) -*.r 14.2 4) , w" w - 1

* obtain

f g ,+ (CE -cj) gi, i=/j (4.26)

* 2agt- 113.

"Ire sclv-4-nqI" var~ibl=/alternatirgg sh-:u2.d bc -ak'.r s: t~a- th

coofici'.-ts with all unknowns woull prov to b- non-nCati.v-. r--

coresnorls to smallast c,, I.~

cj =min ctn in (g(o) -A) 42

Duri.ng thib.s se-4ctio Or X a ppr CX i Ma-ion/01!r C=,:h Wi ISp -fv
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corditicn (4.23) anOd, therraforc * it--:at'.on! will rot d:duc- for th,

permissible set X. Actually/really, the minimum to functional (4.26)

under the conditions (4.22) and (4.27), giv-s v~ctor g, which hias

only onA ncnz-o ccdinat-:

g a( 0 , '0. 1, 0,..0,, (4.28,

mor- ovir I is locat-I on j-th pcsition.

Vectors gO and g are given the simplexc direction, in which Jq

rsalizsd the spic-- 1-f valu4. a,

gI')=gO)+-(g-gO)); 0<,a,<. (4.29)

As can aasily b; szn, with any a of s-gm-i (0.1) all compeon'rnts -f

v-actcr gil) ar,- ron-n-gativ'-. The cp-imun leng-h of space aopt is found

frcm thr condilticn cf '-he minimum ofictta fiunc'oral (4.21) fo-n h

sselcti-d direct-cn. After substitu'-.- (4.29) --'- (4.21) andl

dif-F-rertiating on a, we come tc the condition

a'I

M opt n

(gf(gf'+-gfo) 2

c:! 1a14. no cout(42)

Furl~n.:: inst-a! f g) -- I- k~r.9", -- d at-73!" ar
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FOOTNOTE 1. If it =rrtair space, a,,,, prcvad to b, mo=-- than. 1 cr le;

than 0, should b-t take-n 1 or 0 rasp ?ct-4v 17. ENDFOOTN0TE.

Sinc- value aoPt ccrr.esponds '.o the minimum of functional in the

scl,'ct-Fd dir- ction, th~- cbta~ nr d s',qwlcc of

approximatiors/app~oaches gives ths monoton decreas- of th-t valu-s

of functional - the distance bptween by X ird Y. Thi-s s~quznci

unavoidably l--ads to th - crly shorte-st distanc -, sinca functicnal

(4. 21) and permissIble set T arc- ccnvt-x, and it-'rations ar- ~lz

in the limits of this sst. The malor advantags of' th-i? si-mpl~x t~!:

-If that coflsisLs, that hain -crmodiat- solut~ons a-. reach specz

satisfy conditions (L4.22) , (4.23) *ie b=-onqT tc ths- prmissA--l

convex set.

*Fia. 4.3 sftcws '.h- cor-laticn function. riar('s- to rtecttngulir

furctIon (4.20), obtained by a sirp'21eks-m~thcd, and also -h-

* sclutior., fcu.-" i, A-he or--,v5ous paragranh with ^hr- metrhnd "cuttinra=",

that not considaring the standard ization of ener,-gy.
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A (t);

A IV

21 0,5 1 ,5 ZT2 t
2 W

Fig. 4.3.

K~y: (1) . initiil approximaticn/appreach.

paq' 115.

3oth solut- ons zorraspond to 0=100. As vi:,.h

stanlardizatifon of ?rergy of signal significantly changems th-

struuvb of tn, silutien. Wo- obta~:'d ',h, b, l-sk~auad for-, r-f-

f unction R(t) , zilos- to ili~ally-sph:r4.c-i. fur&c-i.On WV(t. whicll w4as

-r-Vllc 4, 62.5 is A-h- seolut,,c cc a s-mila-. pro bl--m urd -: a

4 sc~wht d.stizt normalizaticr cct!.t.-:)rt.
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FOOTNOTE 1. In §2.5 rPtimum au--cccr.r:l;-.ic--- furictl-~s w-r- cons~-.I ]

-is thp ganzrali-zaticn of signals wi.4h 1-h maximum selectivity. Oor

th quadratic =rit1-r4.cn th- corrcspondirg stardard--zati-c~n takes th'

form

,go 0) da.

w hich is closm to zond-iticn (4i.4~), but 4-', is nc'- i4d nt-cal w~ th 4-

EMD FOOTNOTE.

Similar to sohzroilal funct-cr., +tb-: cb'-ainrd au-*ccc=rclat.cn u.-

R~)has tho limited on the- exte-nt spcltrum (sz- lowzr grapt -- Fig.

4.3), although 4in tis casE, we-re allowed/assumed the values W <(l0O,

*sp'-ctrum g(w~) *t p,=ovcd to b~p l-4mi-6-d fn thz tand, which 1ices rcl,

exceed w. Virtually spectrum g(f.) completely '1 clits itself", bzcT4inir,,

from that frequency w~here A-he assigned spectrum A(wi) for the fir-s*t

t:.mz tak-s z*tro valu-.

L~t us nct: that was h,=r4, usced '-h-- i4.-:ativ Pr-c-ss nr ': r

minimization of thz- distance, bstwesn two salts as in P1.9, but fnr,

approxmation known to function Yopt on set X. At the same time, the

=l:mt/rc-l of das.:7d s-'- yorpt. rrzaresl t-- thor Drr1ssi.bl-- slt X~,

was possibl -:o f ind out "analy tica lly", w thcu- r= scrtirq IcXn

iterations. In S4.6 it is shown that thm taisk of synth-1sis in.

ju - s- - r a!ir-,t-- also 1-h: compr'h-s~v, ar .iyt- C'? nu-~-,
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*connected with iterations. The givmn r~sults will b,; thzer= obtalnm!

by another uwthod.

* 4.5. Synth~s~s of th- mult~.prak ccrrelaticn func'tion.

As i~t was aottd, for thR majcrity of lccat~ng usas/applc--,

are requirsd singl-?-pmak correlation functicons. Signals with h-

multip-3ak cocrr-laticr functicns (F5.g. 4. 4) ar? 7f 4-nt~r~st 4." somi

Sspcial cases. Without stcnping during the possiLbl

applications/appendices, let us ccnsider gu~sti-ons of ths syrt-.si-

of such signals, by assuming that assign- d. F(t) has savtral

equidistant identical peaks, and, i4n vie w of condition. (4. 10) , a

number of peaks is odd (it is equal 2N+1 . en iiei se-

by the roal coccelation f unct ions R (t) , w- will assums/sse: F (t) cf

real, see (4.15).

* Page 116.

Let us first of all note that if F(t) is issign:ed compl-4tzly,

6 '. thc. molulus/molul , ard th- sign, the, task j.f sy-.s s -. r -- rms 'n

I lit'-1le diffqrs from that sxamined. After computing '_() ,I~ s

possible to use the simplex met hod, or ths method of §4.6 in orl.e:

d det - r mi! th n-a r: st p-r miss ib 1 sn ct: u m g(~ As -~ali: mat

.s r-ducid tc -: mtn±!4.zet 4 .cn of f unc'" crl (4. 21) dur ing
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* limitations (4.22)- (4.23) , and the solution of this probl~m is

singular. But for tht sing1p-poak ccrrttlatio. functionr we coull

pr~viously establtsh that w.it.h poct5tiv F(t) , th:

approximation/approach will be best. Now thi4s i;-6 is not possibl --I

do. The peaks, shown in Fig. 4. 4I, can have diffs-ront siAgns, an-

*dDn!.nditg on th: ir rctation will b obtai.cd. t-i-t~t or- wcrsc qiel-y

o! approximation.
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A (t),

6 -'4 -Z 0 2

*Fig. 4.4.*
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Page 118.
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Page 119.

Thzrzfor,! 4-r g-izral should b. tc try I2N thq virsions cf :Fu'In&4C-

?),the characterized by rotatic-i signs, and selzctel tha', ~

which the error is minium. This completqly ccrrect, the iethcl o"

synths sis '.

FOOTNJOTF ~.~ha smtall numbcr of peaks IN this matthd 14s coutl:-:"y

accimptabla virtually. Morrcvsr, sirnc-: 4% '-:hs case is Aeterminel '

spcc-tru, of pcw-r j (o.) , but rc, cr! cfI th :calizin.g s-'nals s(,-) ,

shonld be nrsfscred th- "Straight/dirsct" ml~tbod, sst forth bslow.

E NDFOOTNOTE.

Let us consider also anotheFr mmthc1 r 531 L-t us r-wr':i6 tt

iAt'al crfit--rion 31 ap qrcxI mat icn/apir- ach (4.3) -,r th- fcru

F r12 sod' ! 4.30)

Fcr th? miniaizatl.cn o~f this functicnal acc-,=dig '-o funct 4.rrs s (1)

* it is pcossibl: to us- a pro j-ct lv,-gradf.,znt m tand. Th7 ii~.'

Cond44-4Cn n jS only th= stardardi4zatic. of thi f!- rgy

3jrct any furthzr limmitat 4 or~s nrn thn struc'unr- -of signal w-- 0( o

hirs sp-. Thus, the D-ru'issibl1? set is -:, sinql- sphsr-, S in' s.tc

AL2
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The algorithm of minimizationi is comparativ'sly sImpic. ris-g

* genzral./common/totaJ. do-terminal-ion (1.32) , it is possible 6 c sho w

that ths gradiint of functional (14.30) Is equal to

( S) (IR j,) I _I F(tN}:-e'argR(t') s (f - t') dt'. (4.32)

Design Io thc single spher- S ccrr-spords to t!h- s-_andardtzation cf

signal on thc- energy. Therefore tbe rulm- of thq construction cf

approximations/apprcachqE (1.34) takes ':hQ form

= I~k - CLJI (4.3.3)I

Fig. 4.5 shows several signals and corresponding correlation

functions, obtaired by this metl~cd. The assign-d modulus/mfoeul- F(6

includsed three or five peaks with liffazent distancss bstwl?r th-m.

Was variqd also th- ccmvlrts, duratifcr :f th-- synth-siz-ad sigral. F, r

* the threg-peak correlaticn functicn ths 1livgl of latsral pcaks in all

cases composes approximately/ex~mlarily 0.7. f, r th= FI;v-oa-I 0.3

and 0.5 resp-ctiv'vly. Although with thi.s m.-IthcJ of synthc-s4 S -

quality of approximaticns/approaches lcenends cn --h initial signal

sP(t) (functional (4.30) has many iccal extrema), the-;=rs ar-1

founlations fcr assuming that the -.&tained level of peaks is close Io

maximally possible.

4.6. tUse/applicatIon Of Gibbs's lemma.

Th, prz v:4.ous r-sul's or syrthb,'s,_ r r rla -61c r func, r -S~

I ob-alr.-d by nunmr ical, itq~ative tr-!thor~s, but, '_t prov-1
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importart of tha tasks -xamin~d' admit also ar alytical sc'luA- -n.

Pagg 120.

This solu+t4.cn is bas-d on G-;.bbs 4' fllceving 1,?m-na r 90]:

if h(gi)

u nd qr f urth -r c o nd I;ti*on s gi:--O and Ecnt 1r#Iv~

componsnts/terius/addends fi(gi) are diff=_rsntiat11-d. Then th,%r' ar

constant rnuber X., such, that

190 pu,> (4.34)
;;'.(pu g2 0.

* Key:() with.

It is rot 44f'iC.UI4t to r.ct, that ~.f:n1'i:(4.2l)-(4. 23)

th task of synthssis i.n qu--sti cn ccmplnttly co:-s ponds ti th-

conditions of le-mra, in. this case

h(9f)=C~i6@

Thsersfore, applying (4. 34), we chtain

f'(g9)=(gi - A)-
Kzy: (1) . with.

3 or, which is eruivalint,
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Key: (1). with.

wher-; X, - certain new constant.

Relationshio/ratio (4.23) gives th' unkncwn solut on. It 3'--W=

that th=e optimum spectrum g(cw), which minimizss functicral (4.21),

ob~-ained from the assigned spectrum .4t) by certain of its

1displacamant on th-_ vertical 1-.re w4.th --he suL-sz~uent "cutting" of

nogaltivc valu-is (F".g. 4.6). Th- a~oirur ,f 1-4splacrm-nt 4s s-l-_ctzd sc

as to saltisf y normali-za-ticn corditicn (4. 22) . F~oM fig 4. 3 il. is

possible to see that the iterations according to th- msthod of

simpl~x dizecti ,ns lid ?arlir-r tc th- samc :-esult (of c-u~s,- i~iti

1=ss common formal-) . In crdsr tc find unknown R(t) ,:rmairs 41 o nly

fulfill inverse transformation Fourinr.

Page 121.

As it was noted, the desired unrealizable autocorrzlation

I) f~uncio usually is assigned ir th4 fitm r~ r~.Te

al't-rnating sp~a:trum Aw) of this funct) or d~cr-as-s w4i-.h -h, -'-:c7
4

on-2s w. From Fig. 4 .6 it is clear that ths optimum spson rum a~4

whIch repalizes best apprcximaticn, is in all such cases limit0-- or

-71
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Ih- band, sinrce- thle high-frsquency compon-trts "cut thpmsav, lvs. ThIF,

the best approximatf on/approach fc: th- fun~ctions, l4-i5ted ir thQ

ti4 proveis to be limited on the frequsncy band. This again confi-:is

the expedience of conditicn (4.6)

In th-is chanter- wo examined only -he quadratic

Appoximatibcn~s/app?-oaches of the ccrrilatiJon functifons and t-h!ir

spe-ctra. Howeverc, Gibbs's lemma lgads also to th=e more gseneral/m-ar-

common/more total results. Actual ly/really, passirq to -hs

F-pprcximat-*ors/apprcach-es inr spacs LP, 1-1 us ccrnsAdr 4.nstead r"

(4.21) the functional ot the form

f . j -~ g =) mn

Under coniditilons (4.22)-(4.23) tc t-his task is alsc appli-cabl2a

3-4bbs's l-mma, iat, as i4t i4s nct diff~cul- -o sh,-w, 4 1- scluticn

th e s a m - as in -:h= q iiad ra t ic caec-. s D = vc tr 11 gw) c or. s,1r-ic t e

according to (i4. 35) , provides bsst approximnation in L., with 31l P>1.

This represents to very rr.:arkabl---. Varyingj p, w-a includel- is

th= broad class of m-.tr~cs and ccrr~srpcnd*.ng c-4t~zr~a Tf

* aonroximati-cn/approach, includirg m4inimax crit-rion, which is

4 obtained in the limit, with p---.
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Fiq. 4.6.

Pagz 122.

Wit_4h some stipulat-*or s i-t is pcss hl. c c.-nsi1,11 hat ar- cons 4 d:

all commonly uszed metrics of the furction spaces. In entir= ~this

class of criteria solu-ion (4.3!) proved to be universal. So complat-

an 4:nvariancr cf th- solution With-' r~-- 4 to d-'ff-r, nt c'racf

ap:14m-_4r/prc -4s the: rare spzcial o~~r/~u~rt f

this task.

W, spnk, hS:z abcut th, apprcx ma"icr./app:_,ac- of the spec-ra,

*but- ,,ct qu:.t: zr'a 4 n.func'icns, that, cn th-. whcl-;, n,:-cn n

th- 3ams. only for the, guadratic critmriocn, w-.t.n p=2, i.s known -

lirect conn ection,'commun icat ion betwpgn th= appoxmat-_ns/apoa- =

c f sp,:cl'a and cc:rasnnd4.na furct-_Jcns f ',im-a. SP-citicallv, ""~S

connccti4or/ccmmun -catIc n (ogquality Fars--val) p,?mi"tt=ed us tc Diss

* .jfrom initial criterion (4.5) for F(t) to criftr.or. (4.18) ; n (4.21)
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f or g ~&

Applying t_- gtnrralJzai'_'c cf th 1.:mma off Gibbs {s- § 6.9),

is poss4.bi- tc s~ow, hcc-v-r, "bat'li a pproximation/appr ach in LP

corr~lationi funztions 1,ads tc thr sam- solut5oIa (4. 35) . Th4.=';a

indlcates thr crs univm-reality of -he ob4-ainsl solution.
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Gohapter S.

SynthqS43 of thi furct~cns of w- x 1t±,m/indeterminancy.

In~ joir.t :=ncings and target speed of apparatus function of 9LS

is ths function of Wcoodwar'i'sunrtiyidtrmnc, prs'

by t-hz followv-ng f:7rmulas:

X. (t. ~ S (t'+4)st- te12t't (5.1)

+Cc

The 'ask of tht syrnth-sis of signral. acc::zdtig 4t th'! fun.ct-.cn of

uncqt-aintv/i-nd~at~rminancy consists, in g,:nsral t?=ms, inr ths;. fact

*that is found out signal. s(t) , for wh-ch Xj(t, 92) liar, th- d7-sir--i

sq~ruzturi. This - -r~ ef th, c*-ntral pro,-bl~rs c' th~ svit'.~

zmva: signals.

Th- furnctiorc urcerl-ainty/IrYt. :-:minancy i s ca1-b~a'-A-

so that

4~- 0d,)i. (5.3)

J Pig:? 123.

Furtherumor=, oczurs th invariarce cf th- zoarl-- of th= !"Odv ot
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uncort~nty/id~trrla.nanc 1-c~ wav-fcrm, *

The latter/last property, called ths- unzt@rtainty pri-4ncip*l= in th-4

=ada; substan -ally limits th~ class cf th~ r~ali4zabl: furc crs f

unicertai-ntv/indestermi-narc, sc tl-at in any way not always i't 4-5

possible to find signal with that dssirnd X019).

Limitation (5.L4) indicates, in particular, that, s~l-mcting

w;*vvzfcrm, i.t i*;s not pcssiblc, to 4=rsurc ':h, ri:a~l high accniz:

of joint rangings and ratq'.

$FOOTNOTE 1. Lst us emphasize that ths accuracy :f m-asur:~mrtts

dzrnznds also or. no--s- lqve l, but h~w- sozak cnly ab -ut th- ffr

of wivzform. MNFOOTNO~rE.

Ncrmal-"za!-'-cn ccr,!itions (r.3) and (5.4~) a:,% pro-vkd.d 1,y sc-

1/E fn (5.1) and (5.2). Hcwever, assuming/s.-ttlag signals by thcsz

calibrated on the energy, i.e., afte r t.ki-ng th- furthnr cn 4 4

E = Isl- Is tt)I dt = 1 (5.5)

4 it is oossibl-~, obviously, not tc w-.-4- ou' '-his f,-czo:,.

S. .G.1tr- a k
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WS will examins Hilb'-!rt space 1H',z lsnts /cells of which r-

arbitrary functions two the variable/alternating F(t, Q). In this'

spac- thgr: Is a regilor Q, which Corresponds to many all functions of

uncsrta.inty/4nd1.'t=-m-nancy X-(t. P.). To this S ,go of Spaceq H'

(5. 1) maps qntire spacq cf signals 1i (Pi-g. 5. 1).

Let bz assi-gn~d c-rta-in furct~or. F(t, 9) , which ic;

adequate/approach from the point cf vi~-w of ranqing and rats. For

xa mvla, P(t, Q) has sharp./acute central peak w4ith t=Q=0 and is tq~nil

to zero everywhere out of this peak. This function of

uncart ai-nty/nr-.et rm-rarcy is rot r-al-'zid. Cens-quintly, F(", ~

doe s not belong to Q recicn.

* Pigs 12L4.

It is roossi-blq, howz-v-7r, to cbteain b-s', apprcxinmat.or. th, iss 21

function, i-f we dcetermins projecticon F on Q. Thus

aoproximatior./approach to function F(t, 0), assigned completely of

t h -!modulus/modul- and thc' phase, i-s reduced to 'the approximation in

soic, H'. If inr th space of s!.grals H ass5 gned c--rtair subset ") h

pzrmissi-blq signals X, then mattfr --s rmducad to approximation F r:

II
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=orta .ns thr-: funzttions of unce rtal "Y/i-kt rm-in'ancy x,Q) if all

permissible siqnals x(t)eX. It is furth.?r nicessary to find th-4

*r.ealjZjng sign.al, 4~. tc return from spacie HI In -rhs tnitlal spaze

of signals H.

The phase of the function of uncertaiity/,i e':=rm:ira-,y dons

play in the, ral. of th- significant rcl,:. Ther:;fcz. d~sigrnatig JF(t,

Qj=A (t, 9), ilk is possitle to replace original function F(t, Q) wit-.

any function of the form

whe&r~ Ii(. t2i - -*s arbitrary. This it means, it is obvious, that in

spaci HI is nct an cnly desirr-d rtlcwmzn4/cll F, bu- man~y such

alsm::n-ts/cslls, which we will designats V'. Functions FEY'i* hev, ci-

and the same moi1ulus/moduls A (t , * , but arbi1trary phasss *,I,. Q2), ;t

any cf0 th,-sz f-luncti-ons can be selected as the "sample/specimen" with

tht approxT.Mation.

6(It is obvious, we come to the situation, charactleristic for appl.y~ag

the hypothesis of proximity. Task is raducsd to thes detsrminat,-n -i f

shortest distance in space HI betwean rmgions Y' and Q or, in ths

4 presence of further limitations tc the D?=missible signals, be:tw-mn

r~gions Y1 and X1 (moracrv-r x'cQ).

AAJUL-
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Fig. 5.1.

Page 125.

This task is illustratod in Fig. 5.2 ,

FCOTNOTE 1. In contrast to Fig. 5.1 we represent now s'-t Q in ths

form of onr-dimnnsincal curve cr th- plant. Thi-. mere corresronds 'o

th4 :cne..tiors of task, since set 0 has lss d-grr:-s of fr-d'm thar

spacs H'. Fig. 5.1 this set depicts in th: form of flat/plarz gi'.

in order to simplify the image cf sot X', which is part of Q. If

course all these geometric constructions ari vsry conditional.

ENDFOOTNOTE.

L't us 2stabl.sh, first cf all, th: cornd.Vt.cn cf -pt..num

character which satisfies the function of unc.rtainty/ind.mintny

.opt, .QfQ, realizing shcrtest distant- dm,..

II]N
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Lqt in spazz H' br. introduced tho. quadratic m,-tric, i.e., the

distanco be:tween furcticns F, ard IF, is dete rziliad in tb form

d" (F,, FS) 4 'JI SjF, (t. D) -F,(t, D)jldtdO. (5.7)

If ar- -xa3irl~d functions cn 6'hr singl1% sph~r= ot spacs: H', f:r

which

11IlF2=-L F (t 012dtdOi 1. (5.8)

the--n, as it is not difficult to nct,?

d- (F,, F)= 2[11 - C(F,, F.)1.

C (F, F,)= Re~ F1 ft 41.QbF*t, Qi dtdQi 15.9)

-th- coefficient of proximity.

This relationship/ratio generallz~s th ccacept of th--

cccfficinnt of preximity during th-e functiJ.,.n of I-wo

* variablct/alternating, and, as earliar, -ths minimization of distan=-

is aquivalint to ths maximizaticr of tht coafficiart of prccximity.

4

-AL
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P~.g. 5.2.

Page 126.

set Q, which includes the functions o' th

urnc, rtanty/ dt; :m-narcy of arbitr"ary signals, also Is plac-id cn za

unit sohers. Thi-s follows from relationship/ratio (5.4) , whi;ch.

expresses the uncertainty principle in the radar.

Let us fix the now arbitrary function of

urczrta 4 rty/4.Inat=:ni~r~ancy x(EQ and w,, will ss--k shcrtst distarnce,

from --his furc-:io n to set Y'. Ry cthar owls, lst us dqtzrminrm th:

A.. INcoefficient of the proXimity

C (I. Y')=max C( F- max 7 Fddl

D~sgntin 1 t,~)= 1 (~i and taking -ntc acc-un,

I.1d-,tqrmiratior (5.6) , w-i ottain
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C (. Y') =aA - Re , (j.j IFI e; -- ) dtdQ-
FEY 2w - o -- or2 r S

Mnax- - S Sj Ijjo( - )tO

of the conditions the. tasks cf function 1X], IFI arl 0 a=-

fix-d/rcorded, maximization 4s produc-d according to phase functions

*(t, 0), which diff-:r on* signal cf st Y' f:.cm znoth-r. But, as it

follows from latter/last relaticnship, maximum reaches in tlat ani

only when
V(i, Q)q, (t, 1). (5.10)

We comr, to thz follcing thecrem:

The shortest distance between the function of

uncr+a4 nty/in t :m.rnancy y(t, P.) and s - Y' -- !;izss funct on FeY',

Dhas - of which coincides with the phase of the ftinction of

uncertainty/ind3trrmi.rancy i.(t. Q)=argX(t .Qj.

S, By others by owls, design 7 to set Y' is reduced to the adding

of the phase : P ( z) =F (t. 0(:.el

4 If condition (5.10) is satisfied, then, as it follows (5.7), tV

14istance bstween salected funct-cr x and set Y' comprises

.-d2(Z' j F hAY dtdf).

.21

. ...."
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Page 127.

In order to obtain mini-mum dlstanci? dmin betwean se-ts Q and Y1,

it is necessary, varying functicn 7, to be moved on set Q. Thus, the

optimum function of uncertainty/irdetearminancy X.. realizss the

shortest distance

a* cc

This re!lationship/ratio dceterminss thm- ccndi4ticn of optimum

character to which it leads the criterion of Froximity.

The use/application cf a criterion of prcximity in space if wi-th

metric (5.7) makes it possible tc ottain bast approximaticn on the

modulus/mcdul3 to assigrod functicn in th-9 sens.- cf lea~st squaress

critsrion 1.

FOOTNOTE 1. From previous it is easy to nota that in thc- proof wf-r=

not used the properties cf set Q. The formulat-ad theorsem is valid fez

any Q, not orly multitude of the function of

I uncertainty,'Indeteruinancy. ENDFCCTNOTE.

W4 usaed th-: hypothpsis of prcximlity to a comparati1vely

Za lt&I1
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complicated case. The minimization of distance was produced not

directly in tha space of signals H, but in spac3 H', which is

connected with H by nonhomeomcrrhic ccnversion. This complication is

connected with the fact that precisely in this spaca it is pcssibl=

to determine sits Q and Y', the dstanc6 b-atwe:n which characterize.s

the proximity of the unknown furcticn of uncertainty/indeterminancy

to the desired sample/specimen. But the hypothesis of proximity le!

to the complstely "raascable" criterion cf approximation/ap roach

(5.11), which corresponds to the essence cf assigned mission.

5.2. Approximation/approach to the arbitrary function, assign.d cf

the modulus/module and ttE phase.

Wq will now produce the minimization of distance in ancther

order.

Let us fix cartain function F(t, Q) , which belongs to set Y',

and wA will seek shortest distarce from this function to set Q.

Page 128.

For this it is necpssary to maximlz2 thR ccefficient of tha prcxiwil.y

CtF. ,= e- F,: l, ; ,. :.fl 5.2
S- j

a,2
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by selecting signal s(t), i.e., by varying the function of

uncertainty/indeterminancy x,3 Q. Taking into account the conditicn

for standardization (5.5), we must find the maximum of the functional

f(s) =C(X, F)-XE=rnax, (5.13)

where X - Lagrange's indefinite factor.

Lat us compute the drivative cf functional (5. 12) . Substitutin g

s(t) by s(t) +rh(t) (where h(t) is arbitrary, and v - low parameter)

and using dctirminaticn of the function of uncB:tainty/indeterminancy

(5.1), it is not difficult tc cLtair

-5:= Re -LI F (t, ) e- ' X

xs*,+) (t, - dtddO +

+Re f (t, Q) e- t X

Xs-(t, - h* ( +) dtdt'd,,.

In the first integral let us replace the integrand of that

compositely conjugated/combined. This is admissibl.e, since further 'S

computed the r al part. Let us then replace variable/alternating

,.ntegrations for the formulas

4 In thA srond integral let us replace variablA/altrnating

according to tha formulas:

u~ .- ; - '- • .--- .

l i -L i
+ .- _ _ .-. . .. .,, -. -... ... . . . . ..
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As a result it 4s obtained

- e 7 h* (du + [F(u-. 2)+

+ F*(v - u, -f)]exp (-2 afl+ s (u) dud.

Page 129.

Somewhat more simply is computed a variation in functicna! {. 5)

-- =2Re h* (u) s (u) du.

Therefore in accordance with (5.13)

=Re Sh* (u) I F (u - 1 t~O- F~i~ -u. fiA-00 (- jq --o '

Xexp - .-- s (v) dfldv - 2is t u du.

In accordance with (1.32) the exprzssion in ths curly braces is

derivative cf the functicnal

S .- qu --c. 0 -i- F,"--u - ]

Xexp (-j-T s 2;su;.

V Functicnal f (s) rcach~s maximum, if f' (s)=O, i.n.
[G~u s i:', '--;.s (uL 15 1

wher-3 kern~l G(u, v) depends on tho assigned tunction F(t, 0) ard is

d.tl-rminsd in the form

U -G (U. C)- Fn (lu- Sv, m F1U - -(V - d:

(5.15)

. ... -- _*
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As it is not difficult tc note that kernel hermitian:

6 (u, G,) =(,;, U).

Page 130.

Thus, approximation/approach tc function F(t, Q), assigne-d of

th. modulus/module and the phase, is reduced to the solution cf

homcgen- cus equation (5. 14) with he.mitian kern:l (5. 15) 1.

FOOTNOTE 1*. This equation is for the first tire found by V. I.

Dobrokhotov. ENDFOOTNOTE.

Let us explain the sense of eigenvalue X. Let signal s(u)

satisfy equatior (5.14). Then, mu]tiplying left. and right side (5.14)

to s*(u) and inargrat±ng piecemeal, we obtain taking into acccun.t

(5.5):

X Is(u)'du=Z= . E G (u, v) s (u) s* (u) dudv.

Or, using (5.15),

4

-jO'dudvdO.." x - -: - , , 2
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Being returned in these integrals to to the variable/alternating

t and t', i.e., implemsnting the r£plac-ment cf variablei/alternating,

reverse/inverse by that used abcve, it is not difficulk tc ohtain

A Re F j (t. f s(t, 0))dtdf -=C(F, t)

Thus, rigervalus X is numerically equal to th coefficient cf

proximity. Since the task consists in the maximization of the

coefficient of proximity, solution gives sigenfunction of equation

(5. 14), which corresponds to waxiwum eigenvalue )rasx=L. To thesa w,2

de.monstrated also that eigenvalues cf kernel G(,I, v) ware limited:

Frcm (5.1) it is clear that the function of

uncrtainty/ind:tqrminancy x(t,Q) Fcssesses the prcp:rty of thq

symmetry

X. 0( ) (5.16)

Page 131.

Let us present assigned fur.ctior F(t, Q) n the fc:m of ths sum

F(t, 9)=F,(t. .) -Fw, ,

V..
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where
F,ft, F t

F,(t. 0) -L[F (. Q) - F -. -Q)]=- F*. . 1.

If we substitute this sum in (5.12) and to take into account symmetry

(5. 16), it is not difficult tc ascartain that the coefficie-nt of

proximity depends only cn first tern F1 (t, Q) ; valu.3 Fz (t, 0) Joes

not affect value of C. Therefcre assigned F (t, 9) expedient tc

subject to th4e condition

F(t, Q) =F*(-I, -f2), (5.17)

with which exprassion fcr kerncl (5.15) is simplified

+

G (u, u)S= F (u - v, /)exp i --

Let us consider also the degenerate case when assignad F(t, 0) is thm

: alizable function of unca=tairty/ind-erminancy. It is possible to

shcw that for any rsalizatle functicn of uncer-ain-y/indetzrmuna.cy

is correct the identity (see §7.1).

-r -. Q)ep - J 1\:-\ .

-, i5 . 18

Therefore, if F(t, 0) - the realizable functicn of

uncertainty/indeterminancy, then kernel G(u, v) is degenerated:

G(u, 'i=siu)s*!,.),

-7-L
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equation (5. 14) takes the form

is(u) =s(up ) Is(P)i: du--s (u).

It is obvious, it is satisfied only with X=1. Consequently, th=

coefficient of proximity attains one in that and only in such a case,

when F(t, Q) - realizable function cf uncqrtainty/indet--rminancy.

Page 132.

5.3. Apprcximation/apprcach to the arbitrary function, assign d on

the modulus/module.

As it was shown in §5.1, approximation/approach to the functir.,

assigned only on modulo, is equivalent to finding minimum distance

dm,, betwvqn sets Y' and C in space- H'. Th. cri-terion of

approximation/approach ccrrespondE in this case (5.11). If we fix

function F(t. Q)EY', then, by usirc the method of the previous

paragraph, it is possible o find the distance btw~en this function

and set Q. This distance is characterized by tha coefficient of

proximity (5.12) and solution gives eigenfunct!on of integral

e-qua:ion (5. 14), which ccrrespcrds tc grqatest .Aign.nvaluA >o. In

order tc arrivs at uin.num distancq dm,,, it is necessary to further

lead minimization on the elements/cells of set Y'. This it mpans that

necessary to replace function F (t, ) by function A,(t, ) er 2  wh(1.21

phas% ;It. Q) is arbitrary, and tc select this jhase in order tc arriv-

Z. ZZ1
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at the minimum of distance. Since the coefficient of prcximity is
s.qual te eigenvalue Xo, we come tc the following task: it is

necessary to determine phase V0t, q), maximizing the greatest

eigenvalue of kernel (5.15).

The straight/direct analytical methods of the soluticn of this

problem are not known, ard in §5.5 let us consider the appropriate

iterative methods, and in §5.7 - cne approximation method of the

solution. But thera is an impcrtant for th. practice class of

signals, for which the Ercblew sukstantially is simplified. As shcw7.

Stutt [70], if signal s(t) is either the even or odd function of tire

(but not the arbitrary function, uhich has even and odd parts), then.

the function of uncertainty/indeterwinancy ,xi-. Q-) was real. Is

correct reverse/inverse: if the function of

uncertainty/ind. terminancy is real, then signalis eiither the evr cr

odd function cf timr.

L-t it be the approximation/approach -.o the function, assigne~d

on modulo, must be obtain.d cn the subset of even and odd signals. We

must ascribe to thA assigned real function A(t, 0) phase t(t, Q) so

tnat thP approximation/apprcach would prcve tc oe best.

4

Pag= 133.

-i7
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This occurs if t(t, 0.)m0. Actually/rsally, let ths function

Fo,.(t, )=A(t, G)e '" (t. U)

be arranged/located on the shortest distance fom set Q. Acccrding tc

presented in §5.1, it has the same Fhase, as the function of

uncertainty/indeterminancy xoptgt, Q). But the latter is real as the

function cf the uncertairty/indsterminancy of signal from the

assigne3d class, that alsc prcves t e expressed confirmation. Thus, in

the class of even and odd signals synthesis or criterion (5.11) is

reduced to the single solution cf Integral gquation (5.14), in which

F (t, .2)=-A (, .)

- real function.

In chapter 6 we will consider close task on this class of

signals'.

FCOTNOTE 1*. In chapter 4, examirirg the synthesis of correlation

. functions, we obtained analogous simplificaticn by somewhat a broaler

class of s 4.grals. ENDFOCTNCTE.

* 5.4. Mathcd of Sussman.

Sussman proposed the method cf thp synthesis of signals

according to th - functicns of urcErtair.ty/indete.rminancy, basd cr

clcs- prerequisites/premises (7;]. It will be snown below that this

~~MW=
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method is equivalent presented.

Let us give the first one imrcrtant relationship/ratio, which

* also belongs to Sussman. Let there be two arbitrary signals s(t) and

h(t). We form tha cross functicr cf the uncertainty/indatirminancy

these signals

1 " (t'- -l'2) h* t' - 1 "2) e Jtdt' .

(5.19)

The relationship/ratio cf Sussian determines two-dimensional

Fourier transform from the prcduct cf two cross functions of th4

uncertainty/indeterminarc y:

S"' o .(t Ql z.,, (t. fl) ej kgl,-ft', didil =

-O -0

= Z , , ,*(t U Q,). 5.2

Its proof is in (7, 72].

Page 134.

Now lpt us pass to ths presertaticn of th - methcd of Sussmar.

Lqt there be function F(t, 0), assign.d completely on modulo and

phase, and it is nacessary to find signal S(t), function cf

uncertainty/ind .terninarcy of which x,(t. Q?) giv.s bast appzcxii.atior.

:o F(t, Q), n zhv s.nse cf least squares crit -icn, In cthsr wc.ds,

A
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* it is necessary to minimize value

This is equivalant tc the maxjiization of zhe coeffic-lent cf

przoximity C(F,x), expressed by fcritula (5.12).

Let us decompose the unkrcwn signal s(t) along th' arbitrary

system of orthonormalized functicrs f~)

,s=0

The function of uncertainty/indeterminancy X.'(t, 12) can be

exprassed through ths ccefficierts cf expansicn So. For this 1l)t us

substitute (5.21) in (5.1) and will integrate piecemeal. Wip will

obtain

7 8 (t, 0)=V sns*mK.nm(t, M). (5.22)

w h r

Knm (t, Q)=-f~('+t2 ~ t- 2 s'd' .3

As it is cicar f rom (S. 23) , f unctcns K,~(,Q) ara cross function~s cf

the uncertainty/indeterairancy cf signals f,,(t) and fwdZ0. These,:

functions form orthonormal set in the entire plane (t, Q)f , i0e..
00 0

A,,,, it. 0AyKa~i. Qi2dtd0=

B 0CTaibHbr; c~iytia,,x.

Key: (1) . with. (2) . in remaining cases.
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The~refore functions Ai,,(r, f) call durived base functions.

Pag"s 135.

For the proof ef orthcgcnality (5.24) w~z will use relJatiorship/ratic

(5.20), after assuming ir it t 1 =Q,=0. We have

7 SK,,t 0 (K*,. O)dtdo=

But according to definiticr (5.23)

Kay: 1 with.

wh;qrs is taken into consid--rati4crn tht- c~thogonality of bas3 flanct-zrs

fiand fm(t). Analogous rcelaticrs1liF/ratio cccurs for K,ndO,O). This

prcves zquality (5.24).

Sussmnan indicated also that the system of derived base functions

is ccmplat-Al; this makes it pcssitkk to dqcomposc assigned furcticr

F (t, 0) along th-i syst'.m

A ~F (t, 0)V Fniim~. (5.25)
n.~f

indicated wher.-

FCOTNOTE I.Th-= completeriss cf syta K-(.I' m w;11 bi confirms- in
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chapter 6 (sf.e note on Fage 155). ENDFOOTNOTE.

Coefficients Fnm. form the square matrix/dia, which depends arly

on the assigned function F t. 0). Analogous matrix/die forms the

coefficients of expansion (5.22), which are determining the function

of uncertainty/indetirminancy ys(t,!).

Being returned to the task cf approximation/approach to the

arbitrary unrealizable functicn F(t, 0), let us substitute expansion

(5.22) and (5.25) into formula (5.12), which is determining the

coefficient cf prcximity. Taking Into acccunt orthogonality (5. 24),

we find

w her' G,1m= (Fnf,+F*.i),,2.

..Page 136.
j

if th! assign.d function F (t, 0) possassas synaeqty (5.17),

* *hen, as is not difficult to check Gnm=F,,m=F*m.

4
Task is rsduced, thus, tc the ffaxirnizaticn. ct quadzat-ic formn

( (5.27) undr furth;: ccrd±'.'icr s expressing

. .I

I_ ..

,, - ,- N - , - . . .... . . . - - -- - - - ' . . .,- '2 -; . 22 .. . . -
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standardization on energy (5.5). It is well krown that this problem

solV 3s the eigenvector, which satisfies ths hcmogensous matrix

equation
Gs= s (5.28)

at maximum eigenvalue Xna==o This iganvalue is equal to tha

maximum of quadratic fcro (5.27) I.e. to tha maxirmum value of th.

coefficient of proximity and

C(F, X) -%o. (5.29)

From that presented it is clear that integral equation (5. 14)

gives the solution of the same prctlem, that matrix equation (5.28).

This task consists in the maximization of functional (5. 12) under

further condition (5.5) and has urique soluticnl.

FCCTNOTE 1. Since functicral (5.12) quadratic r-lative to the unknown

signal s(t) , see also (5.27) . ENDFCCTNOTE.

Therefore equatLons (5. 14) and (5.2E) are equivalent. Using gsometric

analogy, it is possible tc interpret th = difference bb.wesn th4

method of Sussman and our methcd as follows.

The introduction of crthcgcnal basi functions ,J(t) is -guival~r-

to the use of certain cccrdinatc system in the space of signals H.

Each signal s(t) is rrpresented as its projections Sn on the

sslacts.d ax:s. Simultar.*cusly 4s intrcduc!d tba systesm cf orthogona!

-Warr--- ---. - .AA
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coordinates in space HI, matched with the refer-ance system in spac.= H

and expressed by derived tase functions K,(t).The assigned

function Fit, Q) is mapped thrcugh proj~ctions Fnm on the axis of

this system. Matrix equation (5.2E) establishes the necessary

conformity betwaeenr ccordinates S,1 cf the unknown va ctcr s and

coordinates Fnm of the assigned function, the ansuring best

apprcxi4mation in the se-ns;e of the selected critzrio. Integral

equation 15.14) *gives the same ccnfcrmi4ty without the use of

coordinate representaticn.

Paga 137.

Here the same difference as during recording cf one and thme sama

aecmmtric confirmation in the vectoz and in th,: coczdirat': fc--m.

Th- mzthcd of Sussman cxtf~rds alsc to the app~oximation/app.rcach.

to the function, assignpd cnly cn thc- modulus/modul . For this is

proposed the i-:erative prccess, wtich makes it possible to increase

stcp by stip maxi4mum eigervalue Xc cf aquatiJon (5.28). Wr- wil1 show

further that this process is equivalent to iterat ions according to
-d

ths method of successive dssicn fcr thp task, formulat d in 5. 3.

A How-:vzr, usirng with thc cccrdinat- reoras, nta-ions, -4- is r.01

posble 'oidcate exlicit dependenc-? cf matrix/die F on rphasa

*1s 1 dA

* aM 7r
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C__-Inthis rasppct tbs "vector" form of recording is preferabls,

which will be used in §§5.5-5.7. Cn the other hand, reducing cf task

to matrix form makes it possible tc use numerical methods for solv-r~g

level (5.28) . Thus, two fcrms of the method in question mutually

supplement each other.

5.5. Iterative methods.

Lat us consider first the methcd of successivg design in

connection with the task cf synthesis, formulated in §5.3, whqn that

desired function F(t, 0) is assigned by its modulus/module

IF (, Q)=A (, QI

It was noted that this task was characteristic for applying the

hypothesis of proximity. T he desired set Y' ircludes functions F (t,

* Q) with the given modulus/module, and the perm'issible s:?t X'=Q - all

realizable functions of uncertainty/indeterminancy. The following

* iz-4ritive method complctely corresronds tc the overall diagram,

.6., Ispresented in §1.8.

Let us select certair furcticn of unc:4rtaint6y/-nd-termi-nancy

xo Y, Q) Q and let us deter-mine stcrtest distance from this fuictiz--.

i to sat Yt. Let this distan~ce be dj. As it was shown 3.n §5.1, functiec.

-~ F1 . f GY~.noeaZ2st to xo(t, Q). will be fcrmed, if we to the assigned

Imodulus/module A (t, 0) ascrit c the phass of th.= f uncti-on- of th
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uncertainty/indatermirnancy

F, (t, 9) = Py W

=A(t, Q) exp (j'argxo(t, 9)).
Page 138.

Now let us fix F,(t, Q) and we will seek the function of

uncertainty/ir.daterminancy x,(t, Q), arranged/loca-ed on the shortest

distance of D2 and Ft. In accordarce with 55.2 this task Is reduced

to the solution of integral equaticn (5.14), wi-:h kernel G(u, v)

which dsppnd on F1 (t, 0). The ccrrespondirg ccefficient of proximity

is the greatest sigenvalue of equaticn X0 . Equivalent result gives

th. sclution of the matrix equaticn of Sussman (5.28).

Then, fixing/recording the function of

uncertainty/indatarminancy x,(t, s). is scught function F±(tQ)GY',

arranged/located on the minimum distance of d3 from Xt. . For this to

modulus/mcdule A(t, 9) is assigned phase argX,(t, 0). Then, on obtainel

F2 is ditermined the function of uncertainty/indeterminancy X,

nearest to F2 and, etc. As usual, this process leads to descending

sqquencs of the distances
"d >d2>d3; ., (5.,30)

since at Rach spacs is determined tbhe. shortest distanc between

certain of functions and corres~ording set, This sequence is limitzd

from below and, therefore, descends. Thus, each space of iterat-or.s

givns an improv.ment in t1, approximatior./approach and, after mak!.r.g
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a sufficient number of spaces, it is possible to approach maximum

distance (5.11), which characteri2es best approxima-6ion to function

F (t , Q), ass igned only a r the mcdulus/module.

Usually there are several local minimums of thi distance betwacr.

sets Y' and Q and during the unsuccessful selecmion of initial

approximation/approach it is Ecssi1ble to arrive not at the smialles-.

of them. In that case it is pcssitle to only tegin a flaw series of

iterations, being transuitted frolt another initial

approximati on/approach.

It is not difficult to ascertain that this iterative process

* complqtely ccincides with that Frcpcsed by Sussman £72]. Thus, ar.d

this part of ths method of Sussuar will be cocrdinat,--d with th,?

criterion of proximity.

The resolution of integral equation. (5.1L4) or equivalent matrix

* eguation (5.28), cennected with tb4 detgrmination of eigenfunctions

and eigenvalues, is one of the cst labor-consuming (by the spactz of

calculaticns) calculating problems. Since such solution is

implamented at each space of iterations, has sense to use

substantially simpler gradient wethcd for the direct maxim'ization 74f

*th? co f f icient of proximity (5. 12) undar condition (5. 5) , cr, whic.:

A is the same thing, for the maximi7atlon of 'furoti oral f (s),
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determined by formula (5.13).

Page 139.

Thp d~rivativa (gradifent) cf the functional indicated is

calculated in §5.2:

where kernel G(u, v) corresponds (5.15), and eigenvalua x is

numerically equal to the value cf tle coefficient cf proximity (5.12)

Thus,

f'(s) = [SG(u. v) s(z')dv-C(s)s (u)j.

According to the general/comacn/tctal algorithm of gradient mithod

(1. 33) thp maximizing sequence takps the form

Sfk+i)(I) =sk)(t) -'u's'

=.S&)-(t) ±2a4f f G~t, t' '(~d'C ' ~ (5.31)

it is not difficult to ncte that functiJoral (5.13) being

investigatsd quadratic relative tc s(t) .

Sequence (5.31) ccnv,-rge to optimum signal in the version of

simple iteration from any initial arproximaticn/apprcach s"(t) [33].

Simultaneously the value cf the ccefficient of proximity C ccnvzr;--

to greatest its own numter '

;ir~ Z7i~- - - 77 7'- -- Y - . .
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FOOTNOTE I. If only s°{t) for the crthogonally unknown signal;

probability to selact this signal as th3 initial has a measuri zero.

ENDFOOTNOTE.

As a result w= ccm* to the fcllowing procidure of "dcubl"

iterations:

1. From the initial signal sc(t) is computed the functicn of

uncertainty/indatermina cy Xlt. Q).

2. Tc assigr.ed modulus/mcdule A(t, Q) is assigned phase cf this

function

F, t, .Q) =4 (t. Q) exp[j arg ,,(!, ra)]:

3. From functicr. F,(t, 9) Is ccmputfd karn-l G, (t, Q) according

-c (5.15).

4. Is chosen space ao frcm arbitrary initial signal s""(t) it is

constructed maximizing sequence (!_21). These iterations are

impl:manted, until the ccefficient cf proximity (5. 12) noticeably

increases.

Page 140.

When the rate of ircrgase C descends to th4 assiy,.nd limit,
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"internal" itpraticns ceas3, the latter/last memb.r of maximizing

sequence si,%-t(t) is accepted for the signal of first approximation

s,+1)(t)=s,(t) and is produced the rext (sccond) cycle of "extsrnal"

iterations, beginning with p. 1.

It is possible to propose also -he "singl3, itirativz process,

based on the gradient methods. For this we will minimize directly

error (5.11), expressed through the modulus/mcdule of the unknown

function of unc-artainty/indeterlinancy. We havs

E=d:(, Y)-L JAIt. )-(yt. 0:Idtd= 1

=2(0 -C)=min,

It is here assumed (not to the detriment of the generality) th=:

the assign3d modulus/module is sutcrdinated tc the normalizaticn

condition
I{A,= -i A2 (t. 0) dtdQ= 1. (5.32)

and the coefficient of rrcximity bas a value

C =. C(S) = (t, /(t, 0)! dtd£i. (5.33)

This coefficisnt must be maximized, varying signal s(t) and

satisfying further condition (5.5).

Let us compute the d-;rivative (gradiant) of fuacticnal (5.33).

On signal s(t) here deperds crly the function of

urc-rtainty/ind... nnancy 0). T r=eforA af-:4: _r.writing (5. 33) i'
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the form

C (S)= SA t, 0) 11 7(t,0 Z* y. 0 ) dtdQi

and after replacing s(t) by s(t) *h(t) 4 we obtain

xd +*dX

jt = 1 I A  dtdl--

= Re Aixiatdo. (5.34)

Page 141.

Introducing a dasignation argz(t. Q)=?(. 0), we have further

* _ jarg e (1. 2)

d7 " d 1  t'+~i.+ _ x
I LI - /I

Let us substitu: this value in (E. 34) and let us assume v=O, thzn

I + ( ) -. 'dQ L -IIS

: S* (t + - , . .'.., +
(te,. + ,- t , .~' '' - J " I,)

J s t -- t h-*(t'-- (It - -dtd 0D

W will considert tht the assigne 4 odulus/mcdule A(t, ) possss

:he symmetry

q ~A (t, ;1=,I(-t, - 2j

-2.
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In §5.2 it was shown that this assumption is justifi-d, sse

(5.17) . In view of property (5. 16) the phase cf the function of

uncertainty/indeterminancy (t, 12) has a symmetry of the form

Yt, 9 1 -- (-t, -. i

Therefore if we replace irtegrard ir the secord integral with that

compositely conjugated/ccmbined, and then to change

variable/alterrating integrations fcr formulas t=-tt, Q=-Q,, aftsr

simple ccnversions it is cbtained

xs(t' h (t'- dt'dtd.

I I

, ... - -- w --- ,-. . .. .. - . . . . . ..-
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Page 142.

Finally, after doing the appropriate replacement of

variable/alternating,

dC Re A(-t )exP(j?(t'-t. fl)-

-- j " -- ") s- t') h (t I dQdt'dt.

In accordance with general/ccmon/total determination (1.32) the

derivative C' (s) has a value

C' .S)=L t' -- Q) ep -

-ja . (. ) drdOlct, 5.35)

that it is possible to register alsc in the fcrm of the scalar

product C' (s) = (S, z7(S ),5.6

where operator z (s) is determined by tha relationship/ratio

- j -- - d (5.36a)

4 and he depends on the phase of the function of

4I

.1

• -A- , . ''7" " r -? ii i - ", . .: q. .
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the assigned modulus/module A(t, ),

Now, having a value of the derivative of the functional being

investigated, it is not difficult tc construct maximizing sequence.

Permissible in our problem are all signals s(t) with the single

energy, see (5.5), those the permissible set is the single sphare S:

scS,if jjsj!--. Therefore, applying Ircjective-gradient method (1.34),

we come to the maximizing sequence

s~+1)(t) = P s")k Mt + a1c' (s1)) ].(5.37)

The cperator of design tc single sphere Ps is reduced to the

standardization of signal on the energy, (5.37) indicates the

following algorithm of approximaticn/approach:

1. For initial signal s 0)(,) is computed the function of

indefiniteness X 0 (t, Q) and its phase 00')(t. 9).

Page 143.

2. In accordance with (5.35) , (5.36) is computed gradient

IC

3. For selected space a is ccmputed corrected signal

4. This signal is normalized on snergy, after which it is

........



DOC = 80206707 PAGE

accepted for signal of following (first) apprcximation/approach

s(')(t). Then it is implemented next (second iterative loop, for which

the process is rapaated, beginning with p. 1, but already with signal

s()(t), but not so)(t).

By the space of calculations the latter/last method, which

switches on one, but not two iterative loops, apparently, it is more

economical than previous. However, both methods are comparativ.ly

unwieldy, and, as they was noted they bring, in general, to the

local, but not to the global mirimum of distarce. Necessarily good

initial approximation so that these methods of synthesis would be

efficient.

5.6. Evaluation/estimate cf greatest eigenvalue through the traces of

kernel.

As it was shown, synthesis acccrding to function F(t, 2), given

completely, on the modulus/module and the phase, consists of finding

of eigsnfunctiom s, (t) homogen~cus equation (5.14), that corresponds

to greatest eigenvalue x0. Value cf X0 is equal to the coefficient of

proximity and characterizes, therefcre, the quality of the obtained

approximation/approach. In this ccnnection it is interesting to

consider even before finding cf eigenfuncticns, what degree of

approximation can be obtained fcr assigned F(t, Q). This is useful,

=7
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in the first place, in order to rationally assign F(t, Q), beginning

the synthesis, and, in the secord place, in cider to control the

results of synthesis, obtained, for example, hy iterative methods.

Furthermore, the results cf this and follcwing paragraphs have the

general/common/total value for the synthesis cf signals accorting to

the functions of uncertainty/indeterminancy.

The necessary evaluation/estimate of the quality of

approximation/approach is reduced tc the evaluation/estimate of the

greatest eigenvalue of Xo according to the kernel of equation (5.14)

and can be carried out on the base of the known positions of the

theory of integral equaticns [46].

The iterated kernels of equaticn (5.14) are formed according tc

the recurrent rule
6 , (u, ,)- [G (U. Z ),)d = G"0u, ,)Om (v. ) .

(5.3,R)

moreover G, (u, v)=G(u, v). The m-trace of kernel G(u, v) is the

integral
P. -- G. , . u) du. (539)

Page 144.

Traces are connected with its eigenvalues:

p, ; X,=).M+ X +X+... 40)
i=O

IJ
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The greater the order of trace m, the less contribution introduce

into value P. all components/terms/addends of series/row (5.40),

except the ft , the greatest. Therefore as the approximate estimate

for greatest eigenvalue cf X0 it is possible to take value
. .) { ) ,'" . (5.41 )

Approximation/approach here is cbtained with the excess and the more

precisely, the greater the order v. Furthermore, the

evaluation/estimate the acre FrECSe, the more rapidly decrease the

eigenvalues ).

Let us refine an error in apprcximation formula (5.41):

(5.42)

Us it will further interest the case when kernel G(u, v) is

calibrated, i.e.,
= C iG (u. v ) d,, .-- (5.4.)

Assuming/setting m=2, from (5.38) and (5.39) %e have

o - (u. U1 da= tG (,. G (a. E) dtd =

=.SG (u, v)!1 duda (5 .438)

It is clear that avaluaticn/estimate through the trace P2 gives only

trivial results <i. Therefore let us construct higher

approximation/approach, using a trace of the fourth crder p4.

Respctivly, ir formula 15.42) we should consider the value cf the

1 0 1 
-
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sum

i=l

As a rule, for sufficient "good" kernels eigenvalues decrease very

rapidly. Therefore, providing certain "reserve strength", we will

assume that k, decrease with the speed of gecmetric progression

'k,+,-q'. q<i. Value q can be counted, after assuming in (5.40) m=2 and

using (5.43a):

Therefore q==1 -X2 o .

Page 145.

Further we find

and fcrmula (5.42) gives ,.th m=4:

BA = ', .2 a
!, 2 - i.,

The value of error 6X as functicn of X0 is rerresented in Fig. 5.3.

It is obvious, the calculaticn cf greatest eigenvalue of X0 according

to approximaticn formula (5.41) is admissible with m=4 in the most

important rangs of values 0.84X <1. Specifically, in this region is

provided the high accuracy cf synthisis, and error in approximation

u Lot u - -e ')n t' cc11 ' t-"!? r -- (5.' )

tn ".' .-ch -.e, . ,, .. u e -
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simplified repraserztaticn of kertel (5.15~a):

whera

ii-

!2

and v (jacobian of this ccnversicn is equal tc unity). This it gives

'6l '- 0. didt,

F 1", e) i I F2 2t 1 ,- I jZ ,215.4I

i SS F (t, Q) F (, Q)e8 Sr- d2 'dQ

II (1.--)1. did--
.J.JJ

condition (5.32) is shown further, thn the standardizaticn cf krnls

(5.43) actually/really is icn eiserted.

YM7 :7

". F(.O]F t 'e
it  

-1,i~ Od

'°1

~.' 4

-- - _ . ."-', I -_--" - ...,--..... . . ..L_
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42.

, - 0,2 0, 0,5 0,8 tA.

Fig. 5.3.

Page 146.

The second iterated kernel G 2 (u, v) we will find from (5.38) and

(5. 15a):

G2(u., U)=J G (a, )G .(u di,

(2} F (U -- . Q') F* (v, -- ?: , ) X

Taking into account symmetry (5. 17), this expression can be

ccnvert-d to th- form

G, - - v, Q) exp _- ,  ,

wher 
6j 2, (5.45)

w here/

,FS - 2 exp /f? ' (3.46)

Function L(t, 9) plays subsequently noticzable role. In particular,

* - ' . -' . - '" " . - " '' -. - r
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it makes it possible to compute the fourth trace of kernel p..

Actually/really, from (5.38) and (5.39) it is possible to obtain

,,= SIG, (u. v)i, deudo.

Therefore

P- L (a Q,)L ( v. 2) x

X exp 02 -2,) -2) dg, dgdud=

!SSS$ L 1. 2,)L (t, %. expQ-(2i,)X

x exp (iv (22 2,)) do dd2,d, t = + IL (t. 9)11 did2. (5.47)

Relationships/ratios (5.46), (5.47) (5.41) make it possible, in

the principle, to obtain the necessary evaluation/estimate of

greatest eigenvalue through the fcurth trace cf kernel.

5.7. Equation of optimum phase.

When is assigned only modulus/module A(t, Q), synthesis is

produced according to the function

IF (t. 2) = A (t. 9) eJ (t. ).

where phase i(t. n) is arbitrary. Cnly iterative m;thods permitted fcr

us to thus far find the "adequate/a~proaching" phase for which the

approximation/approach is good.

Page 147.

Ii
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However, the revealed analytical ccnnection/ccmmunication of greatest

eigenvalue of X0 (coefficient of prcximity) fcr assigned function

F(t, 9) permits to additicnally trace this questicn. The fourth trace

of kernel p., determined according to (5.47), depends on phase V ,ti:

It detsrmines, in turn, the greatest eigenvalue of X o (however,

approximately). Therefore for optimization of phase it is necessary

to find maximum p, frcm functions nt n Substituting for this 'tt Q)

on 11. 9.-th(; let us ccipute the derivative dp 4 /dv. From (5.46) and

(5.47) we obtain
do I f L L d d

j (L L--+L' T LJc

d-
= (2Re-L(. o)- -dtdo=

= (f' t , -- h t ' I- -- "

or, after the simple ccnversicns, wbich consider that in acccrdanci

with (5.46) L(t, Q)=L*(-t, -Q),

d -Re . M F*(t,. Q,) L (t, -f.. 2, -_09.

It is clear that the trace p4 reaches maximum only with

satisfaction of the ccndition

-al,.
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Im F(t, 2) L (t,, o,- F F .t . . p [j

-2 , t , d0dQ 2  0

which, as it is not difficult tc Ehcw, equivalent to the following

equation

Jm L (t, -- 1:. 2, -2QF(t ,
tg ( ,, 2 ) = R e L (t, - t- , , - -. ) F (, . 4 2

24
exp [J ' - ") dl~cdg'exp F(7 i- dt,d22 -

2t 2 2

Page 148.

This equation (containing unknown phase V both to the left and to

the right) is determined, in the principle, optimum phase Vt, Q), which

gives maximum to greatest eigervalue cf Xo with the assigned

modulus/module A(t, 2) Q)

FOOTNOTE 1. Is strict this ccirectly for the trace p4, which is only

approximately connected with eicenvalue of X.. ENDFOOTNOTE.

Apparently, a similar equation is cbtained for the first time, but

the efficient methods of its soluticn proposed could not be.

-ZN
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5.8. Necessary and sufficient ccndition of realizability of the

function of uncertainty/indetersivancv.

Known several conditions of the feasibility of the function of

uncertainty/indaterminancy (7, 721 cne of which will be by us

obtained in §7.1. For these conditicns it is characteristic that

testing the realizability of the assigned function F(t, S) as the

functions of uncertainty/indeterminancy is reduced to finding of the

realizing signal s(t). Hcwever, using the previous results, it is

possible to formulate the ccDditicr cf "locked" type feasibility,

which does nct require the determination of the realizing signal, but

which sets only certain invariance, characteristic realizable to

functions.

As it will be shown, for the feasibility of function F(t, Q) of

the function of uncertainty/indeterminancy, is necessary and

sufficient the satisfacticn of the condition

F (t, 2)= "  F ' T (f X .

X P 2t' - - - exp [- j di'dg', (5.50)
F 1 . )Jxp~J ~2 2

which, taking into account (5.46), can be registared also in the form

F~t, M)-10, 9). (5,5081

The nacessity of ccnditicn (5.50) follows from th. known

property of the cross furcticns cf uncertainty/indatsrminancy,

I
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established/installed by 'itlebaum (76]:

X.(1, + 1, !2'- 9,)x toQ'11 . W-Q,) eJ( "k2 "s)dtdg
Yx,(1, + to. 91 + 9,) %q (too- to. 2 1-,)

Assuming/setting all signals ty identical s (t)=h (t) =r (t) q (t), andi

alsc tl=t2=t/2, Q1=,=2 Q/2, we ottain, that the realizable function of

uncertainty/indeterminancy 0f.91~ satisfies condition (5.50).

Sufficiency escape/ensues frcm the following. Let F (t, 9)

satisfy condition (5.50). We will seek signal s(-.), the function of

uncertainty/intlaterminancy of which x7a'0) realizes a best

approximation to F(t, 2). According to presented, this signal is the

solution of equation (5. 145) with kernel. G (u, v) , connected with F (t ,

Q) by ccndition (5. 15a)

Page 149.

The seccnd iterated kernel cf this equation G2?(U, V) is expressed as

L(t, 2) according to (5.4~5) From 15.15a) and (5.L45) it follows that

4. with satisfaction of condition (5.50a) kernel G(u, v) coincides with

G2 (U, V):

Frcin the thacry of integral equaticns i.t is known that th-9 iteratedi

kernel of equation allcws/assumes the followirg aigenfunction

- expansion:
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moreover G (uv)=G1 (u, v). Therefore taking into account to the

orthcgonality of eigenfurctions equality (5.51) can he fulfilled,

only if

,= ); i=0 1. 2.

but this is possible only for ;,,=i cr ..- o Thus, from condit.cn

(5.50) it follows that the greatest eigenvalue of equation (5.14)

.,=I. (5521

This eigenvalue is a coefficient cf proximity, (5.52) it indicates

therefore that the distaDce i, space L2 between F(t, 2) and nearest

realized by function uncertainties/indeterminancies .i. are equal

to zero. consequently, Fit, 0) is realized as the function cf

uncertainty/indater minarcy.
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Chapter 6.

MAXIMUM AND MINIM1UM OF THE PARTIA1 SPACE OF THE BODY OF

* INDETERMINANCY.

6.1. Maximnization of partial space.

In this chapter are examined the signals ths functions cf

* uncertainty/indeterminancy of wtich in a sense can be considered

optimaumn.

As it was noted, for joint rangings and rate was desirable the

* "highly directional" furction of uncertaint y/indeterminancy, which

has narrow central peak and it was equal to zero out of this psak.

This functior is impracticabzle, since the complete space of the body

of uncertainty/indeterminancy dces not depend on the structure of

signal and is equal to unity, see 15.4). However, let us attempt to

* obtain some approximaticn'apprac to this ideal form.

Page 150.

Let us fix in the central plane (t, 2) the region (Fig. 6. 1),

which possesses3 central symmetry, i.e., if point E=- c r, then

Ii
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(-Q.-) o, and we will seek the signal the function of

uncertainty/indterminancy of which is maximally concentrated in the

region e, i.e., let us require sc that the partial space of th3 body

of uncertainty/indeterminancy, included in this field, would be

maximum
V, TJ)IF. / t, fl)j dtd = ma.x. (6.1)

Let us clarify this condition. In 6hapter 2, examining signals

with the maximum selectivity cn the time, we attempted to bound

signal by the assigned duration. When making these assumptions this

proved to be impracticable, but cne of the methods of

approximation/approach was reduced to the maximization of the part of

the energy, included in the assigned duration. Analogous property

possess the optimum autoccrrelaticn functions, axamined intc §2.5.

Here, dealing in by the to-dimensicnal function of

uncertainty/ini3terminancy, we use a similar condition and we

approach that so that the body cf urcertainty/indeterminancy would be

completely included within the regicn a. Is accurate this

impracticably, but the maximizaticn of partial space (6.1) provides

certain approximation/approach to this ideal. Since the complete

space of the body of uncertainty/indeterminancy is fixed/recorded,

autcmatically is provided the minimum of "energy" of

remainders/residues out cf the reg.cn a I.

FOOTNOTE 1. Let us emphasize that the formulated criterion of optimum

M;.- -MS. -.-
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character assumes that within the region e the targets can nct be

permitted, but is provided possible fully peraission/resolution for

two targets, which do nct fall into one region o. ENDFOOTNOTE.

The formulated prctlem bcrders on also fcllowing. In certain

cases it is possible to indicate in the plane (t, Q) the regicn a, in

which should ba expected the intense mixing reflections. For example,

if the radar system, established/installed on the satellite, is

intended for the detection of ancther satellite, then mixing will be

reflections from suppress surfaces.

-Au

~_1
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Fig. 6.1.

Page 151.

Knowing trajectory and rate of a satellite-carrier, it is possible to

indicate in tha plane (t, G) the region a, which corresponds to the

Doppler rates and the ranges cf different sections suppress surfaces.

Logical under these conditions to select signal so as to minimize the

partial of the space of the body cf uncertainty/ind3terminancy in the

region : Q

One of the problems cf this Nind is examined in the seccnd part

of this chapter (§§6.5-6.10)

6.2. Quasi-optimal signals.

7 PA
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Unfortunately, it is impossible to propose the straight/direct

method of maximization 16.1). In this connection let us introduce

further limitation to the class of the permissible signals and let us

first somewhat change the formulaticn of the problem.

We will consider that signal s(t) can be either the even or odd

function of time. As was noted, fcr such signals thG functicns of

uncertainty/indeterminancy are real (70]. Kaximum value ix(O, 0)=I,

and, because of continuity, in certain vicinity of the central point

t=Q=0 the function of uncertainty/indeterminarcy is positive. We will

seek signal s(t), which maximizes value

W (.. (t, )dtd max. (6.21

Logical to assume that the function of

uncertainty/indaterminancy, which satisfies ccnd-iticn (6.2), is

positive for all internal poirts cf region v (further this is

confirmed based on example). Therefore the maximization of int.gral

(6.2) is connected with the achievement of the highest possible

positive values Z.,(t. Q). within the region and, therefora, with an

increase in partial space v,(oi. of that determined by formula (6.1).

These considerations show that the signals, which satisfy condition

(6.2), we will call their quasi-cFtimal - they are close to tha

optimum signa-s from the class of those permitted (svsn and odd).
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Important for future reference generalization is obtained, if we

introduce real weight furcticn g(t, 9) and to examine instead of

(6.2) value
W.(g.~ ~~~ .~t 0t ,t ~tf 63

2

The signals, which maximize this value, wa will also call

quasi-optimal, they depend not cnly on region a but also on weight

function g(t, 0).

Before passing to the determination of optimum and quasi-optimal

signals, let us note that during some strains of regicn a the

structure of the signals indicated is changed in an cbvious manner.

Let us introduce instead of t and 9 the dimensionless

cocrdinates
- t H

where r - arbitrary scale time unit. It is easy to see that pi to

this replacement of variable/alternating all previous
4

relationships/ratios retain their fcrm. Let in new coordinates 0). 1).

be selected the region a and for It is determined signal s(,q. the
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giving maximum to value
W,,g. :,= - .L~ 9 I,. E) Z,(. (-r,E)d 4q -max.

If we return to coordinates t and 9, then it is obvious, a

change in the scale r will lead tc the arbitrary extension of region

along the axis of time and its ccrresponding compression alcrg the

axis of frequency. Quasi-optimal signals are characterized by during

this strain only scale and are given by thi expression

Therefore the soluticn of assigned missicn, for example, fcr the

circle (this example is examined telow) is easy tc spread to the

elliptical region, equivalent with the initial circle, if the

principal axes of ailipse coincide with axes t and Q.

Page 153.

,oreover, applying kncwn thecrew cf Klauder [7, 38], it is possible

to turn this sllipse to the arbitrary angla e (Fig. 6.2) , after

determining new quasi-optimal sigral according to the formula

e "-4-t 2  n'
,-ex-- ct -- - -- cosec6 d . (6.4)

Thus, after determining cptimum or quasi-optimal signals for

some "base" rg~icns, it is pcssible to considerably wldsn

uses/applications due tc the strai -s indicated.

Ii
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Let us switch over to the determination of the quasi-optimal

signal, which maximizes value (6..). In view cf the done assumptions

weight function g(t, 2) and functicr uncertainties/indeterminancies

XU(r. Q) are real. Being ccngruent/eouating (5.12) and (6.3) we see

that in these assumptions value W(g, c() is nothing else but the

coefficient of proximity for furcticning the

uncertainty/indaterminancy &-ii, Q) of the function

gFt,(1 nH.1 (6.5)
1 0 1p ,,° ( .) !

Key: (1). with.

Consequently, in acccrdance with the hypcthesis of proximity the

task of determining the quasi-optimal signal, which maximizes

W, (t, Q), is equivalent to apprcx-mat4cn/approach to function F(t, 9),

assigned in the form (6.5). It is ocssible to us. the results of the

previous chapter for the soluticn cf th-_s prokl m.

N

' _7

- ' ' " -" : ,m'.. Z i- - -- .. . . .. - . . .. - .... t . .... .- . .. . -.g
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Fig. 6.2.

Page 154.

in this case i .t is ccnvenient to use the method of Sussman,

which uses coordinate representaticns. As it was shown, solution

gives eigenvector of matrix G whose elements/cells are determined in

the fcrm
g (t, !Q) K,, (1, fl. dtdQ, (6.6)

and the maximum value W (g, a),attained at the 4uasi-optima. signal,

is grt-atest eigenvalue A,~of this matrix/die.

4asre K,- darived base functicns, connected with t1he selected

#!t*2 c! base3 functions with :eslaticn-ship/ratio (5.23). It is

J tilsc t.-at functicr g (t, G) Fcssasses symniatry (5. 17).
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As is kncwn, finding eigenvalues and eigenvectors of matrix is

connected with th3 diagcnalization. There is tha unitary conversion

rn

with which a base system f.(t) it is converted into this new system

f.')(t), that the matrix/die G tecoves diagonal, i.e.,
RW

fl'&4 m=n.
Ain a) HM n.

Key: (1) . with.

The elements/cells cf principal diagonal are eigenvalues in, and

new base functions f(I)(t) are eigenvectors of matrix G. This method

of finding of eigenvectcrE and eicenvalues not only and always not

best, but in the task in questicn it leads to the necessary risults.

6.3. Circular region.

Let the region be a circle of radius R t:

t2 + 2r2 rZ< R2.

FOOTNOTE 1. Hara and throughcut t and Q - dimensionless quantities.

Such dasignations are used for simclification in the recording, it

,I
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Z-73
would be it is more apply coordinates n-i/i and 9-.T ENDFOOTNOTE.
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Let us select as the base functions in the space of the signals

of the function of Hermite
[(t)=VW-2 I!). e-"' H. (t,

where Ht)=(1)'e f, d" -_ - Hermits's polynomial.

Then, for the derived base functions we cbtain according to

(5.23):

00ft I - (t'o ! *1 )'2 H (' + X

XH - exp - - t 2 -j jft' dt'

or, after simplze conversicns,

e - '+ al) '4 ((n, t2-.
"
t T n! m 1.

I/r'-  
e x

XH x HS x t\V

The value of latter/last integral is known (( 21], page 852). After

using polar coordinates (r, 0) in the plane (t, ), finally we find:

K.m(r, ?) p,,n (r) e'(6-" a; 7
w he ra

,"IMF
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. ... r a,> \.p..r / ,.:-" \i112 .rmL .7 (f _r -4

Pnn (r) -

\ :2"")rm-nL(") i5)e 4T  , nm

He r -() .*i d" . "

Here L ,')7ixv=J e=x A - z.v"- Laguerre's polyncmialt.

FOOTNOTE 1. Thase results are of interest alsc in the following

sense. As is known, the functicrs cf Laguerre e- 2 x2 2 L[) x; form

complete crthogonal system in interval (0, -). Taking into account

the completeness of the system cf harmcnic functions e'l in the

interval (0, 21) it is net difficult to note that functions (6.7)

form complete system in the entire plane. Any other system of derived

base functions is connected with functions (6.7) with unitary

conversion. This proves the cca[leteness of the system of derived

bases, by any generated ccmplete system of orthogonal functions in

the space of signals. ENCFCCTNCTE.
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Let us now count matrix elements G, by assuming that weight

function possesses the circular slametry: g(t, Q)=g(r). Passing in

integral (6.6) to the pclar ccordinates, we find

R 2s

nm -f~ "~g g pr) (r) rdr d n-' ) 0 d.. (6.8)
U o
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Is obvious, G, 1m0 with m~n and

R
G.n - g "(r)p.p(r) rdr= g(r) e -"

4 L,( - ) rdr -

LU U

-J g (1V'x)J-'/ L,, (x) dx.(69 (6.9)

Consequently, G - diagonal matrix/die. This means that after

selecting for the functicn of Hervite, we "guessed" that cnly system

of base functions in the space cf signals, for which matrix/die G was

diagonal, this occurring for any weight function, symmetrical on 0.

From previous it fcllows that the base functions of this system

- the function of He'rmite

-I e-"t H (t ) (6. 10)

are the signals for which the pertial spaca W(g, u) takes outer

limits.

Outer limits themselves are equal to sigenvalues ., and they are

expressed by integral (6.5), and, although eigenvalues depend on

weight function, extreme signals - eigenvectors of matrix - th" same

for weight functions, which pcssess circular symmetry.

In order to find the quasi-cptimal siqnal, which maximizes W.(g, a).

it suffices to now select greatest cf the zxtrnma, greatest

- V, 'I .. _-; -,.-, '-- " _ - - ., - .,--" - - -" . ~-,. -- ....., Smmm l 
m l

i l b W r mi I W , . ' .. ...
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eigenvalue *,3. As it is clear frcm (6.9), values ;., are coefficients

of the expansion of the function
' (I/' ) < Rl'"T

.F(V (VT)-RJ IHX%
0 ahX >

. T2

Key: (1). with.

according to the functicns of Laguerre.
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From the character of the latter it is clear that if function g(r) is

positive and mono-tone decreases (it does not grow) with increase in

r, then zaximum , is obtained for n=0. Therefore for any decraasing

weight function quasi-oFtimal is the Gaussian signal

S' Y 114 e-" 6. 111

for which
• . t ') e -  (

10
+

2 
)  4 = e- " "A . (6.12)

Consequently, setting g=1, we have from (6.9)

"R
max W, ( 1 e-" ' 4rdr -= 2 (1- e- R 41.

For weight functions of ancther type, which have an oscillatory

nature, quasi-optizal sigDal car te another function of Hermite, but

these cases us further interest will not be.

f
141



. ... . ... .~ ~ --- --. -- --I -i

DOC = 80206707 PAGE F41

6.4. Optimum signals.

Let us return to the task abcut the optimum signal, which

maximizes partial space V,((I. determined by formula (6. 1). Without

having the capability to propcse the direct method of determining

this signal, let us construct tbe iterative process, which leads, in

the limit, to the soluticr. Being limited to the again real functions

of uncertainty/indeterminancy (even and odd signals), let us

introduce intc the examination value

W"h () = U-. ) /h (I. L) dt di). (6.13)
2 .-

where X. and xh - functicns cf the uncertainty/indeterminancy of

signals s(t) and h(t) respectively, and we will increase this value

as follows.

Let us assign first certain signal 4o)(t) and after defining

function '))(t. Q). maximize value Wh(i) by selecting signal h14t) and

by considering function X.10) (tQ) as weight

Page 158.

.Owl
As we saw, for this it is necessary to determine from formula (6.6)

satrix/die GO\and to find its eigenvector, which corresponds to

maximum eigenvalue '). -Maxifum value W,(0) is equal to this

hi
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eigenvalue max 1V, 1.

Then, fixing/recording the ottained signal h(Olt) and the

function of uncartainty/indeterliancy .'(t,fl,. it is determined the

quasi-optimal signal s (1t), maximizing integral (6.13), in which now

weight function is 7.0"(t, Q). Apprcpriate eigenvalue let us designate

The following apprcximations/approaches ara obtained

analogously: with fixed/recorded 411.Z(t) is determined the

quasi-optimal signal 1i) t), and then, on the contrary, on signal

h('Nt) is determined the signal cf the second approximation/approach

42)(t) and so forth. It is easy to see that this process leads to the

ascending series of eigenvalues

(s ME
N  (6.14)

This sequence is bounded above. Actually/really, as it is clear

from (6. 13), Wah (0) is a ccefficiert of the prcximity of functions

.(t, Q) and j(t, 9). Consequently, Xr.a 1.

The aforesaid means that sequence (6.14) converge to certain

limit. As a result are determined two saturation signals s°,,(t) and

hop,(t), for which value Wh(G) takes createst (limiting) value. Let us

demcnstrate that without taking into account unessential phase factor

these saturation signals coincide '? ,r,()=s,,t) and, therefcr-,

" - - - - - - - ---.. " . . - - ,--, .
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iterations lead to the maximum value

V.(o) = W.. (7)= I- SJZ. (t, 0) di do.
a

Let for the selected region c there be one or several optimum

functions of uncErtainty/indeterminancy Xh(t, s?). for each of which

partial space V,(o) it has the greatest possible value of Vo:

max V, () -=- max . Z2 dtdc = _ Lf dt d-V(z
is
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Then, applying to (6.13) Schwarz-Buniakowski's inequality, we

can register

2= x,~~jf~(.0 dt dO X

* X-3 x (t O d dOV~() Vh~) em(6.15)S

Lf will be achieved/reached equality in both cf these inequalities,

value W..(o) will take greatest Fcssible value. But in the

relationship/ratio of a Schwarz- Euniakowski equality is reached only

in such a case, when factors are prcportional. Taking into account

standardization, this means that the functions of

uncertainty/indeterminancy must coincide. As a result in order to

.nsure equality also in the latter from relationships/ratics (6.15),

it is necessary to satisfy the ccrdition

x' ft = x,, (t. 0 = hit. .6.16)

The function of uncertainty/irdeterminancy uniquely determines

_ , _ . _ . ... ... .-
r---*- - -- -- - ": '- . .. .. . . . . . .
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the realizing signal, if we dc not consider the arbitrary initial

phase (see §7.1). Therefoze wit.cut taking into account this phase

condition (6.16) is equivalent to the following:

S- =h (t) =3A (t),

where sit(t) the signal, which realizes the optimum function of

uncertainty/indaterminanc I 7,t (t. a).

Thus, when iterations actually/really give global maximum to

value Wh(o). they lead tc twc idertical signals which are determined

as a result of approximations/a prcaches.

Relative to the uses/applicaticns of this method it is possible

to note the following. It is sutstantial, what signal sCON(t) is

selected as the initial on first stage. The nearer this signal to the

optimum, the more rapid the iteration they lead to the target.

Furthermore, the unsuccessful seliction of initial

approximation/approach can lead tc the erronecus result: will be

found the maximum of value Wh(o), but not greatest, global.

Iterations one should begin frog the signal, close to the optimum,

and as similar it is expedient tc select the quasi-optimal signal,

which maximizes value (6.2). As it was noted, the quasi-optimal
4

signals arg close and optimum.

Page 160.
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The method examined creatly easily leads to the result fcr the

circular region a. After selecting as zero approximation the

quasi-optimal Gaussian signal (6.11) with the function of

uncertainty/indaterminancy (6.12), it is necessary during the first

stage to determine signal h(O4)(t), that maximizes value

2X R
SI e 4 (r.)rdrd .

00

Since weight function g(r.y)=e -"-' depends only on r and mcnotcnically

it decreases, as shown ir §6.3, signal h(O)(t) %ill be Gaussian -

=r-1/4 e- "

It is obvious, further approximations/approaches will also give

Gaussian signals in each stage. Thus, for the circular region we

again" guessed" optimum signal - this is the Gaussian signal, which

coincides with the quasi-optimal.

Knowing optimum signal, it is easy to count the maximum partial

space of the body of uncertainty/indeterminancy for the circular

region:
max V, 1.) -(t. D dtd,

= S rdr 17) R2'iI

r. ;3

h- ._ e - '"
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If, using the formula of Klauder (6.4) tc deform circular region

into the elliptical with the arbitrary inclination/slope, then

optimum will ba in general Chm impulses/momenta/pulses with a linear

change in the frequency and gaussian envelope (7]:

,SI =exj - -
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But in accordanae with that presented the value of partial space

during this strain is nct changed and it is as before given by

formula (6.17), which is conveniently registered in the form

max V ( ) = I - (6.18)

where S - area of ellipse in the plane (t, Q). This result can be

used for the evaluaticn/estimate cf maximum partial space in cther,

not elliptical regions. It is easy to show that if certain region a,

is wholly included within a,, then V(o,)<V..J.9 Therefore, if the

assigned arbitrary region a is described by certain ellipse with an

area of S, and is inscribed in it another ellipse with an area of S2 ,

then on the basis (6.18) we obtain

- max 1'. (.;1 > I - e- ('" 6.19)

Apparently, this relationship/ratio sufficiently fully considers

maximum partial space for the regions, which are of practical

interest#

As showed Klauder [381 her wit an signals (6.10) ara cnly, for

I, - - ' -,,: r - " . . . , . - - ; : ..- ' ...
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which the functions of uncertainty/indeterminancy possess circular

symmetry. It is logical tc assume that the maximization of the

partial space of the body of uncertainty/indeterminancy in the

circular region requires a similar symmetry. A strict proof of this

position is given abcve ( ].

The global maximum of partial space gives Gaussian signal - zero

function of Hermite. For this signal the contraction coefficient is

of the order of one. One cf the ways cf transition/juncticn to the

signals with the large ccmpression is connected with the straia of

region into the elliptical. In this case is ottained LFM

imoulse/momentum/pulse with gaussian envelope. Ancther possibility

consists in the fact that after preserving circular region we are

given ccntraction coefficient, but we seek global, but one of local

of the maximums of partial spacE. As can be seen frcm that presented,

in this case should be selected the function cf Hermite of high

order, moreover order mcst be matched with the assigned ccmpressior.

S

Subsequently will be shown that this path it leads to the

signals whose satisfactcry apprcximation give signals with the phasP

manipulation. Thus, the task abcut the maximum of the partial space

of the body of uncsrtainty/indeterminancy leads to twc most widely

used classes of serrated signals - ChM and Fl.

-i7
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Page 162.

The maximum partial space of the body of

uncertainty/indaterminancy %.as traced also in the work of Price and

Hofstetter [55]. In this work are cttained useful

evaluations/estimates for the maximum partial space, but are not

revealed the signals, which realize this space.

6.5. Minimization of partial space in the assigned interference zone.

To the minimization cf the partial space of the body of

uncertainty/indeterminancy leads the task about the decrease (or

complete suppression) of the mixing reflections from the distributed

in the space multipls reflectors - dipols cloud, the underlying

terrestrial or sea surface, etc.

Let in the plane (t, 9) be assigned the interference zcn- a,

i.e., the region, in which are concentrated the mixing reflections,

and with t=9=0 is located the otserved pinpoint target. Signal

. amplitude from this target is prc crtional to the value of ths

furction of unc'?rtainty/indeterinancy Ix(0,0)1, and the average/mean
4

power of passiva jamming - to value of the partial space V(a). If we

take into account also the inherert ncisa ot r;ceiver, thz :atio

"signal/(interfarence + rcise)" chtains expression (with an accuracy

t,=EE

*1 . ., +- -. - 7 . .; +- " . ... .. .I
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to unessential for us constant Iactcr)
SC us

nluT-- =v ) +-T U=lx(.o)1. (6.20)

where - constant, which depends cn the relationship/ratio of the

noise density and specific jamming intensity.

Therefore the maximizaticn of the axcess of the signal atove the

interferences is reduced to the task about the minimum of the

functional
M= V(a) - U=min, (6.21) ,

where - indefinite factcr of Lagrange. This task has great

practical value, and by it is given much attention [58, 62,A71, 89,

91, 92, etc. ].

Not always the maximum cf the excess of tha signal above the

interferences is achieved by the agreement of the sounding signal and

filter. Therefore into the space the case it is necessary to examine

the cross function of uncertainty/indetarminancy xh(tQ) and the

partial space

V~~~X- (0 . (,) 12 did)2.

Page 163.

In this connection ar_ studied three tasks:

7- - - -7
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1) the opt'imization cf filter (receiver) h(t) with the assigned

signal s(t), i.e., the task akout the optimum mismatched processing;

2) optimization of the pair signal-filter, i.e., determination

s(t) and h(t), with which functional (6.21) reaches the global

minimum;

3) the optimization cf sigral s(t) during the matched

processing, i..., with s(t)=h(t).

Let us nota that in the latter case U=IX(OO)I= and

minimization (6.21) is reduced to the "pure/clean" task atout the

minimum of partial space.

It is not difficult -o note also that in the case of the

mismatched processing the partial space is a quadratic functional

relative to h(r) and relative tc s(t), and during tha matched

processing V there is a functional of the fourta degree relative tc

s(t). Therefore the first cf the tasks indicated are substantially

simpler than the others. But even this task is reduced in the spac3

the case, to the problem cf eigenvalues, and finding of the

4 corresponding eigenfuncticn (cptitu characteristic cf filter) it

requires bulky calculations1 .
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FOOTNOTE 1. Let us note the close analogy of this task with the

maximization of the partial space where we succeeded in only"

guessing" the solution in the particular case, and also with the

synthesis of the functicns of uncertainty/indeterminancy, examined in

Chapter 5. ENDFOOTNOTE.

The synthesis of optimum pair signal-filter and task about the

optimum matched processing is even rore complicated. The general

efficient methods of their scluticn apparently there does not exist.

So is matter, if interference zone a is arbitrary. we will

examine interference zore in the fcrm of infirite Doppler band (Fig.

6.3). This zone is of practical interest for the Doppler systems and

in some analogous cases. The zone of this form was traced in (92],

but the work indicated ccrtains faster the fcrmulaticn of the

problem, than its soluticr.

Page 164.

meanwhile as it will be shcwn, for the zcne of this form it is

It possible to obtain the comprehensive analytical solutions of all

three tasks - about the crtiuum misiatched prccessing, about the

optimum pair signal-filter indicated and about the optimum of signal

with matched filter. we will see also, that thesa tasks, althcugh

-.~I

Th
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they examine thin functicn of uncertainty/indeterminancy, are close to

the synthesis of correlation furcticns, traced in F-hapter 4. In

particular, the solution significantly uses Gibbs's lemma (see §4.6)

and its generalization, given belcw.

Let us note also that after using the theorem of Klauder (6.4),

it is pcssible to place interference band at arbitrary angle in the

plane (t, Q) and by the fact to scoewhat widen the field of

applicaticn of our results.

6.6. Interference zone in the fcrs Of infinite Doppler band.

For the interference zone in question the partial space of the

body of uncertainty/indeterminarcy has a value

4.~dil .,~t ~ dt = - Sv(Q)dil. (6.22)
i& 7,,k-Q)2 2

where v(Q) -"space on lines".

I Fig. 6.3.

*Key: (1). Interfer~nce ?one.

Page 165.
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Using a repres.ntaticn of the function of the

uncertainty/indeterminancy through the spectra, we obtain

,,).[ (a, +t -2 -2 X

X h('+ eJ' -"' d d ' dw-=
\

w ') dwdw'=

I~ 2~

-,,,,0

=4-" a~b'(w+Mdw (6.23)

---

where a(w.) and b(w.) -the auFlitude spectra, which correspond to

signal and filter.

As with th3 synthesis of ccrrelation functions, we will t3

* bounded to the class of tke ever ar~lituds spectra a(w) and b(Wi) (s*e

§14.1) . Then from (6.23) we have

= -- ® - ) - ® --

* *1 - F S' .1 fldw-

I )

-hr- l)an () h am~wiub( spetraQwhch or(spod)t

-z -a(- ,b- -f~

1'-' b.
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From this relationship/ratio it is clear that, without changing

* the value of partial space, it Is pcssible to supplement to the

interference zone in question the symmetrical band, shown in Fig.

6.3. Therefore we will use instead of (6.22) the expression

where Q(Q) - even weight functicn cf the form

Q (0) 411<192< +A (6-4)

Key: (1). with. (2). in remaining cases.
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Taking into account (6.23) , Is easy to lead the expressicn of

particular space to the canonical bilinear fcrm relative to a2(w.) and

SQ(wn - (U')a (w') b2 (in) dw din'. (6.25)

In view of Q(Q) the kernel of this form Is symmetrical'.

4 FOOTNOTE 1. The symmetry cf kernel ds caused by the fact that we

4 examine only the even amilitude spectra. But this simplifying

limitaticn does not have fundamental valuA. Further results ars valid

and in gensral. ENDFOOTNOTE.

* ~~ -- IF -.. -
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We see that the particular space in the tand does not depend on

the phase spectra of signal and filter. This leads in the final

analysis to the generality with the task of the synthesis of

correlaticn functions. On the other hand, value

G€oU1 1 (0. O)1 - j()*( )dwmj

it is obvious, it depends on phase spectra. Hcwever, with any

assigned a(w) and b (w) faxiauu U takes the place when phase spectra

are matched, i.e., when

arg s()=argh(-), (6.26)

U=- -- (a) b (w) do. (6.27)

Therefore the maximization of relation signal/noise (6.20) is

reduced for our zone to variaticnal problem (6.21), moreover V and U

are determined according to (6.25) and (6.27). In this case tha

function of uncertainty/indeterminancy must, cf course, be

normalized, which indicates the stardardizaticn of energy of signal

and filter:

Ta- (w)d = -L IF (m)dw =1. (6.28)

In the case of the assigned signal (task 1) ths amplitude

4 spectrum a(w) is fixed/recorded acd should be sought only the

characteristic of filter L(w). During the optimization of the pair

I signal-filt.r (task 2) are found cut both functions a((w) and b(.).

, -"Aba ;7. A- 7
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Finally, for tha optimization cf signal with thq matched filter (task

3) should be to place b(w)=a(w) ard U=1 and minimized space V,

selecting a(i).

Page 167.

In all tasks the phase spectra remain artitrary (with the

fulfillment of agreement (6.26)). This means that there are many

optimum signals, which are characterized by by phase spectra, and it

is possibla in the latter/last stage of synthesis to select the

signal, most convenient fcr the practical realization.

It is not difficult to be convinced however that without the

further conditions the formulated task has a series/row of trivial

solutions and is not of interest. Actually/r.ally, as we now will

show, retaining maximally pcssitle value of U=1, always it is

possible to obtain arbitrarily lcw partial space, including V=O,

moreover Pven in this case the scluticn is not singular.

As it follows of(6.27) and (6.28), value U=1 is always achievad

by the matched processing, i.e., with a(w)=b(). Assuming this

condition carried out, let us ccnsider first the case of narrow

interference band, i.e., b-->0. Then V is space on the line and

acccrding to (6.23)

~~- --- - - - - ......'7
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V -L (e) a' . v) dn.

Fig. 6.4a shows the spectrum of the pericdic structure with

which this space is equal to zerc, sinc-a a(m) and a(u-v) nowherg

overlap. In general, with the final width of zone A, it is necessary

to only respectively widen zero regions in the spectrum, as shown in

Fig, 6.4b.

II

4-.!
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Fig. 6.4.

Page 168.

Then for each value Q from the interference zcne space on the line is

equal to zero. Let us ncte alsc that in the ncnzero regions of the

spectrum can have arbitrary fcrm, prcvided these regions did not

overlap with ths apprcpriate shifts/shears. Furthermcre, it is

possible, of course, to vary the span of the spectrum, changing a

number of nonzero zones. Let us ncte that the particular spectra of

this form correspond to the signals, characteristic for DcpFl.r RLS,

to monochromatic oscillaticn/vibration and to coherint packet.

So that our task wculd become meaningful, it :s n.cessary to

superimpose further limitaticr cr atilitud - spectra a(,d) and b(,)

and, therefore, for the ccrrelaticn function

-7r
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R(t)= (t, 0) --- S a(w)b() t do.

But av.n limitation of the duraticn of correlation functicn

(parameter of permission/rescluticr according to Woodward) is here

insufficient, since this duraticn depends in essence cn the overall

width of the spectrum which, as we saw, was arbitrary.

The practical limitaticn of necessary form is obtained from the

following consideraticn. The pericdic spectra of the type Fig. 6.4

give the multipeak correlation functions R(t) (cf. the case of

coherent packet). From previous it is clear that with this

correlation function it is pcssible to obtain zero interference level

(if only interference zone does nct switch on axis 9=0). But in

multipeak R(t) is .ssential tIp asbiguity of the measurement cf the

time of arrival. Therefcre should be sought a compromis_ betwsen the

interference level and the desired form R(t). For this we will bound

amount of deflection

W = [iRUt)-F(t)l'dt=

2. Ja (.) ( - Fb(,)1 do= coast, (6.29)

wher? F (t) - the desired (single-peak) is correlation function, ard

(w)- its spectrum.
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Let us not= that F (t) can be unrealizable and with respect to

F (w) can take negative values.

Taking into account 6.29) we ccme to the minimizaticn cf the

functional

D= V - RU - cW, (6.30)

where c - new arbitrary factor. In the case of the matched processing

U=1 and ccrresponding ccmpcnent/ters/addend in (6.30) must he

excluded.

6.7. Optimization is filter with the assigned signal.

Let us pass to the solution cf the first of the tasks in

question, problem about the oFtimum mismatched processing. we will

ccnsider that the spectrum of signal a(w) is assigned, and we

minimize (6.30), selecting the spectrum of filter b(w). After

rewriting (6.25) in the fcrm

V- " IK(n b ®w d,

where =

K )=w')

IW
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taking into account (6.27) and (6.29) let us Fr-sent the functional

being investigated in the form

(K kw. g (w ) -:.L ,' )] - -

-c [a (m-) 'gw() -F (.]-} rin,

moreover the unknown function g(w)=b2 (,) it is subordinated to ths

limit at. is

g(m)~ H 0.* 5g (.) do= . (6.32)

The second cf these limitations ccrresponds tc standardizaticn

(6.28)

'I

1

4

,1.
I .. ,
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In view of Gibbs's lemma (see §6.9) optimum g(w) it satisfies

the condition

(# I
K () - ca-^ () - (I,. - cF() -="F. , z() 0

Ksy: (1). with.

wher? > - certain constant. Therefore

b () = g (,a)- 2 ~ o - (6.3-3)
X (W1 - ) ( )

moreover for those w, whet9 thf lattc-r/last inequality is not

fulfilled, should be placed t(w)=C.

The parameter X in (6.33) must be fit-.ed so as to satisfy

standardization (6.32), and the parameters ja and c so as to fulfill

assigned U and W. The detgrminaticn of these Farameters is ccnnected

with some difficulties. But, bjnq givenr u and c (and sqlec'ing x

'rcm standardization condition), it is possible to construct

biparam4trc family of curves b .w)=b(w; ;,, c), which minimize part.al

4 spac:, with diff r--nt U and W. Acccrding tc (6.33) with the arbitrary

4
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sig nal optim um f ilter with it is not matched (b(a (w.)) Af tsr

assuming in (6.3 ) c=0, wo comp tc the decisicn of task (6.21)

without f urther condition (6. 29) . In the case of the assigned sigral

this task makes sense.

6.8. optimization vapors signal - filter.

Let us consider first the task, reverse/inverse of previous. Let

the spectrum cf lfilter b(w) be assigned and is required to fit th-

optimum spectrum of signal a (w) in crder tc mir.imize functional

(6.30). In view of the complete sytexetry of these tasks not difficult

comprehe.nding that unkncwn spectrum is dat~rminid from the samr,

formulas*(6.31) and (6.33), if ue in thsm interchange the position

a(w) and b(w.), i.e.,

a> . (6.34)

w hwe 2 a

the ramtr ,jiadcaedfnda ti ale.I shr

taen paamter c Xnsideain tate dernel as it is symmieri. ti a

Page 171.

. ......... k 7
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Using these results let us show that the optimization of the

pair signal-filter leads in cur case to the matched pzccessing.

Actually/rpally, baing transmitted from the sui4tabla initial

approximation/approach a0(cd), it is possible to construct the

following iterative process. First through the spectrum of signal

a0 (w) we find, using formula f6.33-), optimum for this signal speIctrum

of filter ba(w). Then tbrcugh bo(u) we find through formula (6.34)

optimum for this filter spectrur cf signal a1 ('4 and, continuing, we

d deter mine bn on a;, and an+ on b,,.

Since at each spacei (during thi def initicn of signal from the

filter cr filter on'the sIgnal) is used, I.n assence, one and the same

* formula, thr- process in question can be trsated as the prcccss of

dstermining not two functions a (w) and b (w) , but one function z (w),

the algorithm of successive approximations taking the form

Z~~~~. 1 ~~ (w F() w 0.(w) c,-' (a) (6.35)

Values z, with the ever, ruffbers i=2n give succassi-ve

approximations an~, and with the cdd i=2n~1 - vallue b,,.

if this process descends, values zi and will converga and

j in the limit they will ccincide. Ue will arrive, therefore, at t'am

agreement of signal and filter: a jw'4b(w) . Howev~r, the ccnvergancM

of prccess (6.35) is not proved. Therefcre we will use ancther
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consideration.

If pair signal-filter is optimum, then signal is optimal for tl:

filtar, and filter - for the signal. In other words, a(.a) and b(w)

s imulta neously sat--sfyI ccndi ticors (6. 33) an d (6. 34) . Er om (6. 33) it

is evident that if with certain w spectrum a(F.)=0, then alsc tj)0

whila from (6.34) fellows reverse/inverse confirmation. Therefore the

frequency domains, in which a (w1 )+C and b (w) 0 coincide. We will

further examine only this frequency region, i.e., to assume/set

a (w)>0 and b(w) >0. Let us intrcduce the designation

Page 172.

Then, combinIng (6.33) and (6.34) ,it Is not difficult to obtair

*where 0=0(c.) - certain unknown function. Thus, a 2 (w) and b2 (W) a~r:

the decisions of the linear integral equation

(6.36)

which i.s not difficult tc reduce to the equation cf Fradholm ofz thea

A saccnd crd,:r ia th:- standard fcrm. L-t us note -hat th-i ccrst~nt X

-~~ can ble differ~nt f--r a2 (h)ania for h2 (c),but furct2.on 0 an)df
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op rator L the same.

In vi-w of Pr~dholu's alternative with any functicn 0(,w) the

dscision cf r-quation (6.36) is singular, if it exists (excluding,

perhaps, certain multitude of values c of zarc measure). If d-cison

exists, it linearly deperds on X (since the equation is linear).

Consequently, spectra a(w) and t(() are proportional to each other:

or, considaring standardi'zaticn (6.28),

a ( b (6.37)

W9 ccme to thA c onclusicn that for thz intarforfnca zone in

question the task of synthesis cf the pair signal-filter doss not

hav indepsnd.nt value. After sciving this task, we will not obtain

the best results how during the latched processing, i.e., by

--xamining ccnditicn (6.--7)as fu:tter limitaticn.

6.9. Genralizazion of Gibbs's lemma.

Passing to the task about the cptimum matcn.d treatment, w,

4p
a ss u m es et a 2 )b 2 ()g( a rd U =I1. T h; n f u nd a men ta I .unrc t i nal

(6.30) takes the form

-".D . If(K (m) g (m) -c g[g( - F(W]') d min. (6.38)

'2-
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The unknown function g(w) is as befora subordinated to

limitations (6.32), but in contrast to the previous tasks now K(w) it

depends on g (w)

K(I)=+ g QW-')g(o')d-'. (6.39)

This fact does not Fprmit us tc us-. ftr the minimization Gibbs's

lemma, formulated in §4.6 and used above, but, as it will be shown,

decision can be constructed on the tasis cf the follcwing

generalization of Gibbs's lemra.

Let vector g={gl, g7 ... , gin), satisfying the limitations

n
g,-0 ard V;g=cons, (6.40)

it minimize the function

(V(g)= f ( K,),

where Ki - linear form

In

moreover function fi(g,K) they are differentiated cf g and of K. The-

there are a constant X, such, ttat

II
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Qpi ~ fj(j j ' (6.41

* Kay: (1) . with-

Let us demonstrate this ccnfirmaticn. Let gt>O. Let us tak4!- siiar

e>O, that gn -;;O.- Then the vectcr

flpi i)

Key: (M) with

i t satisfies limitations (6.40) .Iberefore, in view of condition,

~~~~~ f~ (ge. +jw~ E( K) +I g-.Ks

* where

K~ = = V Q,.,,g], A. ( Qj)

Page 174.

Latt'~r/last ineaquallty can bre rewritten in the form

~If (qj. K,) - f j (g,. K- (Q1  -Qt,))] <

~ ~ g, . K'.,) + -i--,~- K',, f,(g,. K'1)-

-- -- - -- -
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After dividing both parts on e ard after passing to limit e--- ,

aftar simple conversions be will chtain

K ) + Q,,, - i (g,, K,)

< 9-bg f -- i (gi K,). (6.42)

If also g>O, than -r the same fcundations correctly rsverse/inv~rs--

inequality. Cosequently, when gn, gj>0 in (6. 42) occurs equal sign,

i.e., there is a ' !onstant X, which satisfies upper line (6.41). If

gj= 0, is correct inequality (E. 42), which corresponds to lower line

(6.41). Ccnfirmation is Froved.

When functions fi dc nct depend on Ki, it is obtained G5.bts's

usual lemma [90]. Th? previcus Frccf also, in the main thing, is

repeated (90].

It is nct difficult to ser that occurs alsc the analcgcus

confirmation in the ccntiruous version.

Let function g (w), satisfyinc the limitations

-I - . - .- 1 " . . . . - .. .. " .' . .. . . . ..



DOC =80206708 PAGE 30

g(.)bJ9 Hn fgdw cost,

minimize the functional

0(g) f (wn. 9(w).1()) dw.

where K -litear operatcr-

morsov~r f (w, g, K) it is dif f -rent iatad on gand crn K. TE-zr th'srs

are a ccnstant X., sucb, tkat

(6.43)

Key: (1). with.

Page 175.

For the proof it suf fices to decomnpose intz-rval (a, b) in -the

arbitrarily low sections and to replacn integrals with sums, and

* then, after using (6. 41) to return to the integral form.

specifically, the ccnti.nucus verS4-n of Gi-bbs's 1-rmma was usead

* n 16 .7 f or the conclusicr/c utp t c f cornditicr (6. 33). In thi-s cas-

cf f dois not lepend cn 9 and or the left side (6.43) there remains
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only first component/term/addend.

Let us note also that the Ercved necassary condition of minimum

(6.43) can be interpreted cthervise. As usual, the normalization

conditicn

E (g) = g (w) d. == cost
a

can be taken into account with the help of Lagrange's factor X, i.e.,

task consists of the minimizaticn cf the naw functional

0, (g) = p(g) -%E (g)

during limitation g>.0. In this treatment (6.43) has the form

(I(

(g) g=o,

Key: (1). with

whsra 't--grada$1  - derivative cf the functional (see §1.9)

This result is natural. Limitation g(w) ,C letsrmines many

psrmissibli functicns, th# ccnditicn g(,w)=0 indicating its

"bcundary".

Page 176.

If the minimum of functicnal cccurs at any intm.rnal Foirt of sat,

~*7-7



DOC = 80206708 PAGE

then, naturally, in it derivative is equal to z.ro. But if the

minimum (is more precise the lower tound) it is reached on thB

boundary, derivative at the apprc~riate point can be pcsitive.

These considerations prompt that the resulz, close to (6.43),

must occur, also, with the more cemmen format of functional D, but

this generalization by us will rct te necessary.

6.10. Optimization of signal durirg the matched processing.

Being returned tc minimizaticn (6.38), let us note that in th-s

case

Of =K2cT2g, -=g

Theresfore, applying (6.43) and taking into account the symm.-try of

kernel Q(-w*), we come tc ccnditicr (6.44):

I
c w ) - .- Q Q ( w -- i n ' ) g ., , ) d o , ' = C ( ) -- ] n p g ( w ) > 0 .

.4 ~~<C c{(-a ;In A e{---o,

Key: (1). with

moreover the constant x is detereinld and ths cond.t-on for

standardization (6.32).
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The method of deciding the integral equation, which corresponds
to upper line (6.44) is well known. However, the presence of
inequality in the lowe line doesnot make it possible to directly
use this metnoa, and is required thinner consideration.

Let us assume that the correlation function R(t), connected with
g(u) with Fourier transform

g (w) = R(t) e-'w ~t (6.45.)

decreases rather rapidly with large t, i.e., belongs to L2 . With
this, we virtually do not reduce generality: sgc# R(t) are possessed,
for example,i-all signals of finite energy whose spectrum is con-
tained in an arbitrarily wide finite band. Then we can select such a
large time interval (-T, T), first having limited the area of integration
in (6.45) by it, we obtain an air arbitrarily small distortion g(w).
In other words, taking a sufficient y large T. we can acceptT

g (M = R (t) 'dt.

We substitute the last expression in the left side of (6.44) and
consider that QM ) is determined in accordarce with (6.24).
This provides cg()- . Q(w- ')g(') dw'

R (t) F" cos Vt e-tdt.

We see that the left side of (6.44 is an analytical function of w.
We also assume that the functions F), which stands in the right side
is analytical, i.e., for example, that a given F(t) has finite duration.

Further, assume that in some frequency inzerval g(w) O and con-
sequently, the equality which corresponds to the upper line of 6.44)
is satisfied. Since the functions of both sides of (6.44) are
analytical, this equality will be formally satisfied with all
and not only in the indicated interval. This means that where g u)
is positive, it agrees with tbe solution of the equation

g (.) --L S (w- ') g(co' du'== w)-.. (6.46

which is obtained from (6.44) without consideration of the lower
line. Using the normal procedure, (see [931, sec. 11.1) we take the
Fourier transform from both parts (6.46) and after simple facings
we will obtain

4 r i ,-'•;. . . .
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F it (6.47)

*where Fit) the assigned functior, see (6.29).

Page 178.

* 4aab~ t us emphasize again that this formula is accurat-e, only i

obtained g(w) is positive. if rIglHt side givas nagativs valui, one

should accordi4ng to lower line (6. 44) to E lace g (w)=0, i. e. , p-roduc.-

the "cutting" of negative values as in §4.6.

Formula (6.47) gives the urique in L2 solution of squation

(6. 46) [93). From other sid- the cperaticn cuttings" is alsc

irplzmrts by only form, sincce th-: urkrnow ccn-3tar.: X .s uniju?ly
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determined from the condition fcr the standardization (see below).

Thus, if the soluticn of our problem exists in L2, it is

singular.

However, decision exists nct at all values of parameter c. Frcm

(6.47) it is evident that with scie c the dencminator of integrand

can become zero, then integral diverges, and g(w) cannot be

detear mined.

At the arbitrary medium frequency of zone V the d=cisicn

exists, only if c>&/w 1.

FOOTNOTE 1. This limitaticn cf allcwcd values of c is substantial

during attempts at the numsrica] sclution of task. T.t is necessary 'o

chccse c from thp permissible rcgicn, otherwise --?.ult can be absurd.

But without having analytical decis.ion, this fiald tc virtually

detarmine lifficultly; a~parently, there is nc indicaticns cf

physical character, concerning the appropriate selsction cf

Lagrange's c - indefinite factcr ir functional (6.30). At least, our

attempts to fulfill numerically minimization (6.30) proved to be

unsuccessful -for this reascn. This is one example where the numerical

methods arc barely aff'.ctlvs. EnPCCTNOTE.

I]

I. + , ,= ,+• + + . .. ' . . - -' + ....
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Let us consider tht? important practical casq. Wq will at:ampt -c

obtain high the practical case. We will attempt to obtain high

rescluticn in thg time. Than desired F(+.) has short duration r, such

that rA<«1 and vr~I, 'i.e. the ittef~r~nC3 zcn-- is placed ir h

center section of spcCtrum F(w). I!hrn intsg~al (6.47) has Itial

limits, moreover denominatcr little is changed in the range of

int-pgraticn. Therafore

g (0 - =c, F(o)- .

The construction cf the spectrum is shown in Fig. 6.5. Aft- r

assigning certain c 1 >1, we must ircrease spectrum F (w) in c1 ti M9S,

and then displace in the vertical line by X, and "to cut" negativ-7

value s.

Pig- 179.

Thc a.mcunt of displacement is selectced so as to satisfy

standardization (6.32), i.s., sc that the area of positive s1?gment of

a curve would be equal to unity.

is thc! more cl, th3 greater ths displacement X1, and by the fact

:n .i= smaller- band Is irciuded sp-ictrum g(w) . Chocsing sufficiantly

lazg-; c,, it is possibl.? tc na::cw dcvr. g(w) so, that the spac4 or
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th~p body of uncartainty/irdatervinarcy in the interference zcn-:, will

be equal to zero. But irterfererc* zcne is arranged/located in thz

center section of spectrum "Fw, therefore- in order to obtain zz-rc

space in the zone, it is necessary to take g(h) , therefore in order

to obtain zero space in tta zcne, it is necessary to take g~w

substantially narrower than 7F(a) . Th,- quality of the

approximation/approach of correlaticn function to assigned F(t),

naturally, will be in this cas-e pccr. or. the cther hand, ixpanding

g(~) we will obtain better approciiation/a pproach to F (t) , tut space

in the interference zone sharFly will increase. we sas that tha

conditions ofl low partial space in the band and good

approximations/approaches to a rarrcw single-Feak corre~lation

function substantially contradict each other. Durin; the atringnnt

r-nquirements for ths value of partial spacs tc find a satisfactory

practical compromise hardly pcssitly.

ALA.;
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I*NI

Fig. 6.5.

Key: (1) . Single area.

Page 180.

L~bt us not3 also that case c 1 =1 leads to the task about the best

* approximation. of autocorralation function to assiqn~d unrealizable

F (t) (cf §14.6). From the results cf chapter 14 it is clear that at

least in many instances, we will cbtain the single-peak co-r'4liticr,

functions, similar to that shcwn in Fig. 4.3. This result

I cortradicts, for example, the assumpticas of work (92].

J

Howevar, durirg arcth';r lccat~'cn of Intsrf:_rs.c4~ zonf- arl!
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obtained multipeak correlation fuuctios. In this connection lt us

consider anoth3r example. Let the sufficiently narrow interfertnca

zone be arranged/located cn certain removal/distance from the ce.nter

section of spectrum F(w). Then (6.47) accepts tha form

1 
F (t

After using further next by Fourier

I - a cos vt j/'I - ne

we obtain

&h

rC

It is clear that g (w) is ccnstruct-d similarly to previous, tul-

instead of the single s ectrum F(w) is used the sum cf such snactra,

f re quency-displ aced on ±v. and so forth and undertaken with th-

decreasing ccfficients. If V -s sufficiently great, these scectra

arp considerably spread, end afterward cuttings will remain not :na,

but several lobes/lugs cf the sFectrum. As a result of g(w) it

approaches the periodic structure, shcwn in Fig. 6.4, and R(t)

*1 beccmes multippak.

4

"

I,



DOC = 80206708 PAGE

Page 181.

Chapter 7.

APPROXTLATION OF THE BEAIIZABIE FUNCTIONS OF INDETERMINANCY AND

AUTCCORFELATION FUNCTIONS.

Examining in the previous chapters the synthesis of the

functions of uncgrtainty/indeterminancy and autocorrslaticr.

functions, we did not assign any ]imitaticns cn the permissitl'.

signals. With this apprcach are revealed/d9tected the maximum

possibilities cf approximaticn/apprcach, at best ara determini1l the

optimum signals, which realize these possibilities, but all this it

is dcnz without taking into acccu.t that, how tachnically arz

difficult to achieve these or cthet signals. I- particular, the

signals, examined in chapter 6, maximize the partial space of the

body of uncfrtair.ty/indetermirancy, but they ara complicatsd for th.-

* realization, since is required a deep amplitude modulation at -.ha

high power level.

Therefore, beginning the synthesis, it is expedient to bcaznd

many psrmissibla signals by kncwirgly r-alizatl) in th& prgd-ctd

equipment. In particular for the radar of main interas- ar. signals

-N.. . .



DOC = 80206708 PAGE 3f

with the frrgu3ncy modulaticn cr the phase manipulation with

rectangular envelope.

A similar limitaticn of many permissible signals narrows the

possibilities of sElecticn, and tke quality of approximation/apprcach

frequently provs.s to be consideratly worse, than with the signals of

arbitrary form. Therefore it is pcssible to ccnsider "ideal" the

results, obtained with the artitrary signals and, without sxamining

more general problom, to te bcurded tc ipproximaticn/approach to the

realizable funztion of uncartainty/indstarminancy cr autocorr.lation

function, optimum on many all plysIcally realizable signals.

It is obvious, we come tc the fundamental task of synthesis in

the space of signals. The r~alizatle function cf

anc'ertainty/indatsrminancy (autccc.rilation functicn),

approximation/approach to which is found, determines many desired

signals Y. Each signal yr ' possesses similar functions of

indafiniteness or autcccrralaticn function. Finding out the minimum

of the distance between Y and many permissible signals X, it is

possible to determine the signal, nearest to the dq.sired sst.

Page 182.

in accordance with the hypothesis cf proximity this p.rmissibl.

I/
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signal provides bast approximaticn to the desiread property, i.e., to

the assigned realizable functicr cf uncertainty/indeterminancy or

autcccrrelaticn function.

However, it is impcrtant tc establish, as

approximaticns/approaches in the space of sigrals they are ccnnectad

with the approximations/a~proaches cf the functions of

uncertainty/indaterminancy and autccorralation functions, what

conditicn of optimum character satisfy the latter, if signals satisfy

the criterion of proximity. In ctber words, it is nscessary to

-xplain, is applicable the hypothesis of proximity to the tasks ir.

question. Two theorems cf presert chapter positively answqr this

question.

7.1. Synthasis according to the function of

u nc.rtainty/ind ate rminancy.

Let thr3 b9 the function cf uncortainty/indeterminancy Xr('. 0),

realized by certain signal s(t). It us explain first cf all, is the

realizing signal only, are there cther signals and what they lust ba

so that the function of uncertairty/ind.tsrminancy would coircile

with given or .t

L-t us turn to th- determ-ratict cf ths function Of

Lug
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uncertainty/indeterminancy (5.1). This relaticnship/ratio can be,

obviously, considered as Fourier transform on variable t'. Thirefor.

on the basis of inverse transformation of Fourier we have

or assuming/setting

+ Ut t-- = 0 , -,

S (U)S= . C(u - v.-)exp 4 v dQ. (7.1)

This ralationship/ratic is the condition of the feasibility cf the

function of the uncertairty/irdeterinancy: function X(, Q) is

realized as the function cf uncertainty/indeterminancy in that and

only in such a case, when integral is to the right :he prcduct of twc

identical compositely harressed factcrs'.

FOOTNOTE 1. From previcus follcws crly the need for conditior (7. 1)

sufficiency it is easy tc shcu, iiplementing th r-verse/inversE

replacament cf variable/alternatirg and Fourier transfcrm. This

brings to (5.1) . ENDFCOINCTE.

Page 183.

Further, aft'er assuming hare v=-O and again changirg desigraticns, w-

14n: find

LI'' " '.'F;....
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2--14

Here we did not write out value E, after taking the normalization

condition

From (7.2) it is cle-ar that the f unction of

u nc ert ai-nty/i nd ater mi na ncy XS, determines t,,he realizing signal

s(t) with an accuracy tc the factor

Amplitude js(O)j is uniquely determined further by the conditiocn fo-r

stan dardization (7.3), but initial rhass 00 remains arbitrary.

Consegur-ntly, twc signals,, realizing one and the same function

uncertainties/indeterminancies, can be characterized by only initial

phase. It is not difficult tc note that this condition is alsc

sufficient: if signals are charactarized by orly initial phasq, then,

*they have the identical functions cf uncertair,6ty/nrde terminancy.

* Actually/raally, product s[t'+(t/2) ls*Ct'-(t/2) ], obviously,

do-:s not depend on initial phase, but the function of

uncertainty/indeterminancy (5.1) conmains signal only in the? fozm c f

* the product indicated.

Thus, lfit thpr* b.: the f unction of uncertainty/indeterminancy

ICF
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X,(t, o), realized by signal s(t) . According to proved thp same

function of uncertainty/indeterwinancy have all signals of the form
y (t) = s (t) (| '  7.4 j

and any signal, different from (7.4), it has another function of

uncRrtainty/indatermirancy. Therefcre, .xaminiag thr task of

synthesis according to the realizable functior of

unc-rtainty/indetarminancy Xs(, 9). wa they must include/ccnnec- in

the desired set Y the signals of form (7.4), wnh.ch diffir only 4n

terms of initial phase frcm eact cther.

Further, let there he an arbitrary multituds of the p~rmissibl:

signals X.

Page 184.

Let us explain, what condition cf cptimum character satisfi.s 3in i

Xopt, nearast to set Y. Fcr this let us fix first cz-tain prrmissibtl

signal xG.Y" let us find stcrtest distance from this signal to sat Y.

As usual, it is necessary to determine the coefficient of the

proximity

C(x, }')=maxC(x..y)=:max Re x(t)y* (tdt.

Taking into account (7.4) we have further

N,
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C (x, Y)= max Re e. J ,c (t) s* (t) dti

=max Re e"-(x, s).

It is her-- taken into ccDsideraticn, that the signals of set Y ar"
characterized by only initial pFa5e; therefore maxiizaticn is

produced cn 00. Value (x, s) designates scalar prcduct. Aftsr usinj

the identity

(x, s) = I (x. s) I4 e ( '"

we have further

C (x, Y) = (x. s); max cos [arg (x. s) - yj.

maximum cn 0o, obviously, reaches at - 0=arg (x , a) ; therafore

CQx. Y) =I (x, s) l

In order to obtain shortest distarce d., between sets X and Y, it is

necessary to maximize the coefficient of proximity also in signals

X (t), . .
CiX. Y)=rnaxC(x, y=max (xs)

and d- = 2[l-CX, Y)=---2[l- max tx. s~j1. (7.5,

Thus, thA shortest distance ftveo.n sats X and Y rpalizes signal

xot which maximizes the mcdulus/mcdule of scalar product (x, s).

Page 185.
4I

..,J
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Let us now show that the same condition satisfi;s the signal

which minimizes a quadratic difference in the functions of

uncertainty/indeterminarcy, i.e.,

d' Z,, ) = "  , . (t, ); x 'dt dQ =min.
t- -00Z

(7.6)

Actually/rsally, taking into acccunt condition (5.4), it is not

difficult to cbtain

0o 0

2C[1 - C (Y.e+X-

- coeffici.nt of the prcximity cf tha functions cf

ur.cirtainty/indztprminancy. For calculating tha lat:er we will us

the conversion of Sussmar (5.20). ihis it gives

Z A00 "00

- Z -00 ---i ,,--

I (t)s- (t) dt'=ix.si (7.8)

Is hara taken into consid-araticr also th-i determination of th cross

function of uncertainty/irdeterffirarcy (5.19) . Thus,

Com/p.rsn=2 -v -n -. 9le -C l,x.YQ Y . 9)

Comnparison (7.5) and (7.9) l1.ads %0 the fcllcwing th' c. ,n:

.- ,, " , - = -'-- - , '-~ , - .---- --- ,r .1: ' - ' ... .. . . -
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In order to obtain the best quadratic approximation of ths

functions of uncartainty/indsterminancy, it suffices to find th?

signal, which realizes the shortest distance be-ween sets X and Y in

the space of signals H.

We obtained the convincing ccnfirmation of the hypothesis of

prcximity. In tha task in questicr quad-atic

approximations/approaches in the space of signals proved to t

completely equivalent tc the saae a~proximaticns/approaches in

furction space of uncertainty/irdeterminancy.

Page 186.

Lst us r.ctz. that a special case of this th-cr:m is pzovsd by

Sussman. In (72] it is s1cwn that if set X is a lineaz variety of %

finite number of measurements (hy erplane), then ths.

* approximation/approach cf the functions of uncsetainty/indeterminar.cy

/s and x (in the sense of criterion (7.6)) it is reduced tc the

design cf signal s(t) to spt X. It is cbvious, under given ccnit4...ns

this is equivalent to the minimizaticn of the distance between s and

M77

-iI



DOC 80206708 PAGE

FOOTNOTE 1. Phase 00 in this case role does not play, since sat X

contains signals with the arbitrary initial phases. A change in th-

phase of signal y leads cnly to a change in the phase of signal Xort,

without affecting the value of distance. ENDFCOTNOTE.

Our proof is applicable to any set X. In this fcrm the th-orrm

can be used, in particular, witk the synthesis of signals with the

frequency modulation or tha phase manipulation.

7.2. Syrthesis according to the autccor-alaticn function.

Let us consider the analogous task when it is nacessary to fid

approximation/approach to the realizable autocorrelation function,

but not to the function cf uncertairty/indete-rmnancy.

In this case set Y must include all signals, which possess th

assignsd autccorrrlation function. Eut autoccrralaticn furcticn

uniquely determines the spectrut cf the pcwzer of the signal

a,()= Qo(lh= [R(t)e-'"dt, (7.10)

."

therrfors signals y(t)Y hav= cne and the sa .= amplitudc spectrum

a(w), depending or. assigned R(t):

4 y() = a(,) e- ' (7.11)

Phasz. spectrum a(w) is artitrary,±. tr--ms of this difftrs c,-? sigi.

l.,

- - .'
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of set Y from another.

Let there be the arbitrary permissible signal c(t) with the

spectrum

As with th= synthesis according to tht function of

uncertainty/indeterminancy, let us determine the first shortest

distance between signal x and set Y.

Page 187.

Let us show the following thecrem:

a). Eest approximaticn to signal x(t) with spectrum (7.12) gives

or. st Y signal y(t) whose spectrum is detnmined by t h ccndition

Y() = 2 a (w) e- j ' 7.I3

for all values w, at which b,(w)=*O.

b). If amplitud! spectrum b.,(,, is differqnt from zero in any
interval w of final measur-, signal of best arproximation/approach c-

set Y only.

c). Minimum distance between signal x(t) and set Y and

I corr-spcnding cofficiant of ;rcximity ccmorist.

.I

- -
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d'x. Y'== w b[--, (w) dw . (7.141

For prcof we will use the reprqsentation of thi coefficient of

proximity through the sFectra of signals, see (1.21),

C(X,Y)=Re IL Sx-'4 wd

Substituting the valus cf X'(i) and 7((w) from (7.11) and (7.12),

wa gmt

According to theorem conditicns the amplitude spectra a(W) 0

and ?.(,. 0 ar- . here assigned. Is assigned also phasA spectrui f,'" ,

cf signal x(t). We should maximize the coefficint of proximity C(x,

y), selecting signal y(t), i.e., varying phase spectrum (w).

Paqe 188.

But, as it is clear from (7. 1f ,

4 'quality is r-achd in th.at ard cnly ir. such a cas , wh,n a(,,,}=b3r
-i

A

- ." - S - "- -- : , - . ... -. :
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for all values w, at which a(w)=Obx(to)#O 1.

FOOTNOTE 1. With excepticn of ar arbitrary multituds of zero maasur:.

The signals, which differ on the rull set, in space H are not

distinguished. Such signals have identical autocorralaticn functions,

functions of uncertainty/indeterminancy and, iorecver, give ientical

output potential of any reali2able receiver. ENDFCOTNOTE.

Since with a(w)=O the phase spectrum of signal y(t) is not

determined, this serves as proof to the first two confirmaticns of

theorem. The third confirwaticn directly follcws from formulas

(7.12), (7.13) and from the detereirations of distance and

coefficient cf proximity 11.7) and (1.21). Theoram is proved.

Let us emphasize, that for tl- unicuenqss of the best

approximation it is significant tkat amplitude spactrum bN(w) is

different from zero in any finite froquancy range. If for certa'.n

int!rval (W,, W2) spectrum bz( )=o, then, as it follows frcm (7.16),

phase spectrum a(w) can ke artitrary in this interval: th. value cf

the coefficient of proximity (but, therefore, and distance) doc.s not

depend cn a(w). Thus, best apprcxImation is ambiguous.

Thi formulat~d thror:.m it Is not d'.ffIcult to intr-rprzt. Since

the signals, which belcrg tc e-t Y, havy_ arbitrazy phass spmctra
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a(wa), and the amplitude spectrua a(iw) is fixed/recorded, finding out

approximation/approach to certain signal x(t) , logical to ascribe

a(w.) the phase spc-ctrum cf signal xft). the diffsrences btstween th-

signals, the distance betueen tI~en will then depend only on tha

unvariabla amplitudo spectra, that also is exp:rsssed by fcrmulcas

(7. 14) , (7. 15).

This theor-am will te further used with the3 synthesis of Chn end

FM1 signals. we will now cktain vith its aid the condition of optimum

character which satisfis sigmal xopt, near-ist to sat Y.

In order to obtain sbortest distanced,.,,, it, is necessary t.)

*minimize right side (7. 14) alsc cr signals x(t) ,.30

d 2 = min d' (x. Y) = in Qa (o) b (*Idw (7.17)

or, which is qguivaliznt,

C (X, Y') ma -L Sa ub, (w) dw. (7.18)

Page 189.

Thus, the optimum Fermissitle signal xEEX, realizing distancs
4

dmn., aivss the bcst quadratic approximati-on of amplitud-a spr-ctrum

1''J 0 o- the assigned affplitudr= spectrum a(w)
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As it was noted, the amplitude spectrum cf signal is mutually

unambiguously connected with its ccrrelation function. Therefore th;

approximation/approach cf the ampl±tude spectra, attained at th,

use/application of a criterion cf proximity, Frovides the specific

apprcximation/approach of the ccrrelation function of signal to the

given on,. In particular, from 47.10) follows the ida.ntity

showing that the best quadratic approximation of correlation

funczions is achieved by the analcgcus approximati'cn/apprcach of th-

spectra of power - squares cf tle auplitude sFectra.

Moreover, the value standard deviation of correlation functions

can be approximately connected with the distarce between thp signals.

For this l-t us do some ccmpletely acceptable assumptions.

Lat us assume that signals x(1)sX have the final duraticn T.

This corresponds, in particular, tc examined/considcred furth-r FM

and ChM signals. Then, autocorrelation functicn.R,(t) is differnt

from zero in the interval (-T, T) . Assuming also that this int -:va-

4 contains thF most 3ssential part of the assigned function R(t), lt

us determine root-mean-souare eircr 6 by the relaticnship/ratio

-fiR ( - R, if]' z. 47.20'
-4=

.4,
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Taking into account (7.19) we have further

Sla (a) + b. (,)1" (a (a) - b, .)jld.. (7.21)

Page 190.

Using the law of mean, let us take out the first factor for th.

intsgral, after taking it at certain midpoint of the axis of

frequencies. Taking intc account (7.14), we ottain

V a ( -) - .( )] .,d (x , Y . (7 .2 2 )

After preserving acceptable for our qvaluation/estimate

accuracy, it is possible to ccn-aiderably simplify this

rslationship/ratio. First, we will count the approximation/approach

cf the spectra sufficiently tc gccd ones, so that for the interesting!

us msdium frequency

In the second place, let us determine the effective bandwidth 1,

occupied by the assigned spectrum a (w), being based cn the

standardization on the -.nqrgy:

cc

Therefore 2 (®)=zO.

As a r=sult formula 17.22) tek-s :hci fori
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*,W

QT- .(x,Y) (7.23)

where

M=OT/: (7.24)

- ccntraction coefficient of signal x(t). This valui is d=fine.d as

the product of ths duration of signal T to the sffactive, bandwidth cf

the desired signal y(t).

For optimum signal xovu of that realizing shorm-ist distancedmin.

from (7.23) we obtain resrectively

&w. n II d,,..,,. (7.25)

This result has basic value.

First, establishing the direct dependence between tho

approximations/apprcaches in the spacp of sigrals and thp standard

deviation of autocorrelation furcticns, we ccnfirm the applicabil.-y

* of the hypothesis of proximity to the task in question.

Page 191.

In the second place, formula (7.2!) givs the diract msthcd of the

J .j evaluaticn/-1stfmat cf thb miniuir div-.rgence of autocorrelatior

functions of distan.-c_ dmn.Fcr tIe signals of some :ypas, in.I .
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particular for phase-keyed, this sakes it possible tc come tc

light/d3tect/expos3 the ispertant laws, which characterize the

maximum possibilities of the aprrcximation/apfroach (ses Chapter 9)

one should emphasize that the cbtained evaluaticn/astimat' is

approximate. The minimizaticn cf the distance between X and Y,

providing the best approyimation cf the amplitude spectra,

nevertheless does not guarantee the best apprcxi-maticn of corralaticn

functions. Said relates as to quadratic criterion (7.20)), so, and

with the even largq foundation, tc the minimax criterion, frequently

utilized with the synthesis of sicnals. Therefore, the solution of

this task, obtained on the base cf the criterion of proximity, front

*is only initial approximation/apprcach, and it must, he further made

morq precise with the helF of tte iterative minimizations. This

method we will apply with the synthesis of ChM and F.4 signals.

* 7.3. A change in the space metrics.

The results of the previcus Faragraph leave certain

*dissatisfaction because the apprczimations/aprnachas in the- spacm cf

I signals proved to be ccspAi-.tely nct equivalent to

approximaticns/approachqs in the space of autccorralaticn functions.

tr. fact w- havi two different criteria of optimum characters (7.17)

I and (7.20), which weakly differ frca sach other. But would te to
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pref-rably proviously assign the criterion of approximaticn/approach

for the autocorrelation functiors, for example, ths minimum cf qrro:r

(7.20) , and seek the decision, thicb strictly corresponds to this

crit-pr2cn.

As it was notead in eahapter 1, it is possible to change- tha svace

metrics of signals so that the mirimIzation of :he distance between

sets X and Y would provides best approximation in the sense of the

assigned criterion. '
In thq case in question it is easy to indicate such metr~c (--t

is more precise, quasi-metric). Let the distarca between signals

* s1 (t) and 32(t) bq is determined in th-i form

d'~is,= (a))~) d. (7.26)
_2x
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Page 192.

After assigning, as earlier, many permissible signals X

(arbitrary) and many d-sirsd signals Y, which possess the assigned

autocorrelation functior R(t), ue use a criterion of proximity for

finding the optimum signal xopt.

If we fix cartain signal xaX, then, aftpr repeating the

considerations of previcus secticr, it is poss-ible tc show that short

distance to set Y comprises

d*(X, Y) [3 b() ,. (7.27)
X

the nearest to x signal yE=Y. kavirc the same Fhase sFsctrum, i.:.,

Comparison (7.27) and (7.19) shows that minimization of the

distance between X and Y in the srace !n question is equival.nt to

the best quadratic apprcximaticn cf autoccrrelation functions. Thus,

after salecting special metric, we actually/really arrived at the

complete agreamant wi.th the assigned criterior. Hcwaver, mctric

(7.26) we will not in practice use for the syrtnisis cz signals. This

Ii

' - ,- IN: -r ' { .- r :7 , " ,. . .. . .. .- - - - " -- -.. . . . . .
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is connected with ths fact that with this mitric th3 ccnditicn of

single energy of signal dces net ccincide with the condition of

single rcrm. The correspcnding complications, gsnerally speaking, Are

surmounted, for example, with the help of the simplex method (si =

Chapter 4, where we met with a siuilar difficulty), but for this task

are preferable other iterative vethcds.

7.4. Special features/peculiarities of the synthesis of

composite/ccmpound signals.

many signals, which have practical use/applicatio in ths radar,

are coherent bursts of pulses - wcrds, which consist of the

rqp4ating, elemqntary impulses/ror'?nta/pulses (discretes) of th:

assigrqd form. Such signals we will call compcsite/compourd. They

include, in particular, the quartified FM sigrals, in detail

examined/considered further.

Pagi 193.

In general composite/cozpcund sigral can be registered in the form

X (M Xiq (t I (7.28)

wh--rs x, - composite amplitud,.s cf samolas, and t, - -h-ir

displac-ment in thz time. As a rul., szparate sampl-s dc rot overlap.
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In order conveniently to reflect this special fiature/peculiarity, w .

will assume the following.

The duration of th-. singlf- ele3mentary signal u0 (t) 1st us place

single:

. (t)/
0,t Q11 It> 2

Key: (1). with. and we normalize, furtharmore, -ts -nergy:

T
U.=u,' = (t) I 1, 'dt= 1. (7.29)

--F

Moments/torques 14, whicb charactErize the crdsr of alementary

samples in the time, we will assure/set by whcle numbers. By this is

=xcluded, obviously, thp cvorlaF cf sampis in =he. time. Firally, w-.

normalize also energy of ccalcsite/compound signal as a whols. Takir.;

into account what has been said we come to the condition

-!x tI '=E _it = . (7.30)

In accordance wi-th (7.28) the spectrum of composit=/compound signal

has the expression

wh---r: 1/2!i ,.(. -- ,(t) e-'dt (7.32)

-1 r
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- spectrum of elementary impulse/mcmentum/pulse.

Page 194.

Value

1I=

we will call the spectrum of the ccde. Since t - whol- r.umters,

H(w) - the periodic function:

Let us note also that in accordance with (7.32) uo(w) is a Fourier

transform from the function, finite in int-rval (-1/2, 1/2) Therefore

uo(,) is the integral function of drgr- of 1/2 [83]. Somei prcprt.i-s

of the integral functions cf firal degree are us-a bilow.

The synthesis of ccmFos.t/ccmpcund signal is reduced to th4

rational selection of ccmFcsite aurlitudes xi and crder of

impulses/momenma/pulses in the tit, characteriz.d by valups ti. In

:his case they striva, mainly, not to distort th4 autcccrrclation

function of single sample, whict, i particular, indicates the low

level of the remainders/residues cf the obtainad correlation

finction. Examining this task cf synthsis, wi will ccnsider that th
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desired set Y includes the signals, which possess the corralation

function cf singin the .saiple

i.e., signals with the auflitude spectrum

I ,,e)[=a()=ju,(.

The permissible set X includes coopcsite/compcund signals (7.28),

which satisfy the enumerated above conditions.

applying in this case the: bypcthesis of proximity taking intc

account (7.31), in the ccplete acreement with the theorem of §7.2 wq

come to the minimization cf the value (see (7.14))

d'fx Y)= 2- Uo(H l .j -I )ldo, (7.341

moreover varied are hera rarametczs x, and t,, which are determir~i-n

the spectrum of code H(w).

Page 195.

It will b- shown bglcw that thF task 2n qu-stion allcws/assumms

=_quivalen. formulation in the space, elsments/cslls cf which ar!

4 scomp i amplitudes x. This formulation substantially simplifies th

i synthesis of ccmpos~.te/cc¢rpcund signals.

...iI. .+ -+ " -" l -I Z . . . . . . . ..
I + +. " _ . . + . •: . i ' _ " . . '- ,, . . + + .. .



DOC 80206709 PAGI 3,/0

Let us prvliminarily establish onc usaful proparty of thn

integrals, which contain integral functions (10, 11].

Lat f(w)=f (w+2v) - Feriodic furction allcwing r:scluticn intc

zvqrnly ccnvergent Fourier series

and g(w) - the whole analytic functicn of final dagree a, which

satisfies one of the follcwing ccnditions:

a) or o< ,

b) or a=1 and 1g()I decreases with w-->-- mcre rapid than [I[.

The- n is ccrr.ct the id-entity

g (w do w) d do. (7.36)

For the proof of this identity let us substitute saries/row (7.35)

intc l ft side (7.36) and w4.12 Intograt = piQcem.'al:

:I .[g (a) (e ') do.- cl, (W,,e- ,,= Ck .

"7.37)
value

J

g 0 k
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is a Fourier transform from integral function g(w). In view of th-i

thecrem of Wienr-Paley [1, 83 ] function 9(r) is finite in the

interval (-i, u), i.., g(r) =0 when IT! > ". he second of condit _ons

(b) indicatcs, besides the fact ttat '(r) is continuous.

Page 196.

Thprqfore with satisfacticn cf corditions a) cr b)

m(")in0 with k- + I.±2....

As a r-sult in sarifs/rcw (7.37) thor% .-mains only the

component/term/addend with k=O, wlich, as can easily be seen, and

corresponds to right side (7. 36) . Identity (7 .36) is provedd.

We convert with the help of this identity int-grai (7.34f), which

is detcrmining thc, distarce between the composit:/compound signal

x(t) and the desired set Y. Fcr this let us ncte, in the first plac2,

that function f(w)=[(-IH(w)IP has a period 2w, sinc-3 -his is correct

tcr H(w). In the sccond place, as already mentioned, spectrum Zo(w)

there is the integral function cf degree of 1/2. hith multiplication

cf integral functions the degr , cf product dcas nct excecd tMi slim

of thq degrses of factcrs. Therefcre th function

.1 (W) LL* I 20 , -- (-).* o i-)
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has a degree not more than 1. This function, furthermore,

sufficiently rapidly it decreases with w-+--, which follows from thq

limitc-dness cf energy (7.29):

Thus, g( w) satisfies tte conditic s cf tha previous theorem.

Applying (7.36) to (7.34) , we find

In the complpt4 agreement with the critericn of proxim.4ty thl-=

value should be minimized, selecting the parmissible compound signals

x(t), i.e., varying xi and ti. Ccnsaquzntly, the task of the

synthesis of composite/ccrpound sJgral in question is reducsd tc

finding xi and 4, with bhich the spectrum of cod! H() least

deviatss cn thc modulus/mcdule frcm unity.

We will examine further space 12 (-w, w) the functions of

frsquency (spectra) , assigned ir the interval (-,, v)

Page 197.

The distance between two such spectra x(w) and y(w) is determinid in

-:he fcrm
-2

-' .u :. . 2'.
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Lat us show that the task cf synthesis (7.38) corresponds ;-- the

usF-/applicat,.ica of a criterion cf proximity in this space. Let the

permissible set X turn cff/disccrrect the spectra of code (7. 33)

and the desired set Y - spectra of singls amplituds with arb--trary

phases Y()=eThen

d2 (x, y) H ~-~e H(a) Ihda. (7.39)
2

The minimization of distance of d(x. y) corresponds, as usual, tc th-z

maximization of the coefficient cf the proximity

C (x, y) = Re (x, y) = Re J() (wn) do,. (7.40)

this maximization can be produced ir any order. In particular,

fixing/recording cz-rtair allohed spactrum -Xi(ka)=H(w) , w. will Taximiz-

vilua C, sslecting phase spectrum ().Maximum r-eaches a,:

a (w) = a rg H(7.4 1)'

Substituting this value ir (7.39) , we come to tha short;?st distance

between the selected with x and desired set Y

*d' (.x Y) e ori f (- -H ,,wj 12do I=~ [ -I H()112 den.
2x -

(7.42)4
4 ~which must be further mirisized or all permissible spectra of acd-

A(w). The same result will be cttaired, if we maximize the
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coefficient of the prcximity

U

C(XY) =- J i H(I(od. (7.43)

-

Relationship/ratio (7.42) coincides with (7.38).

Page 198.

This proves the admissibility of the use/application of a criterion

of prcximity (in the version in question) for the solution cf our

problem of synthesis.

Let us give one additional uscful representation for the

coefficient of proximity (7.40) . laking into account (7. 33) , we find

C (x, y) -- Re x, ) e ;I')jed,.

L.t us designate thrcugh y fk) Fourier coefficisnts function

e -
j'1

-', assigned in the irterval (-t,, w):

A y(k)=T- e-e('e'dok---I"2

* According to t-- conditicn, values t, ara whcla numbers; the:fore

C (x. y) = Re xjy (t,). (7.44)

Applying the crit; ricn cf prcxizity, this valuc, should be maximizzd

or. all x, and t. that charactErIze ccmpcsite/compound signal, a.

i2A _,

4i

- - -'2T '
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alsc cn the. arbitrary phase spectra a(w) the desired signal.

The task of the synthesis cf ccmposita/ccmpound signals in

question is reduced, thus, tc the use/application of a criterion of

proximity in the finite-dimensicnal (Euclidiar) space. The

elemaLts/cvlls of this space are in general the Fourier ccafficients

of the corresponding spectra. Fcr tte composite/compound signal her =

we have in mind the spectrum cf ccde (7.33), Fourier coefficients

which are simply the amplitudes cf samples.

As onp additional example fcr the use/application of identity

(7.36) we will obtain isFcrtant representaticn for functioning the

uncertainty/indeterminancy of the ccmposite/ccmpound signal through

the spictrum of code [13].

Pag. 199.

Iz acccrdance with (7.31) we have

m4-

o7---" ®-"uo,+ H'--T
-- 2, -2-~If

Functionsluo(w-Q/2) and u*o(w+Q/2) -whol-s dsgra.as of 1/2, anl
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H(w-9/2) and H(ka4Q/2) - periodic with the period 2n,. we will be

interested in the values cf the function of

uncertainty/indsterminancy with tboi whclos t=0, +-1, *-2p ,. Thon

*ew alsc has period 2w, and acccrdi4ng to (7. 36) is cbtain=-d

I ~
z~ ( Ht - )H==-r-±2+ -) d" X

X -hOQ H - +lw+ J J-td

-'2 /

(7.45)

Hers xp(t, 9) -function cf the urcertainty/indeterminancy cf single

sample on axis t=O.

AL.K Z -a
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Chapter 8.

SYNTHESIS OF FREQUENCY- MCCULAT E IGNALS.

The methods of the synthesis of signals with the frequency

modulaticn are worked out comparatively fully. This type ef serrated

signals found use in the radar cf earlier thar others [39], and tc

questions of the optimization of ChM signals ars devoted many works.

Let us point out, in particular, the article cf Kay, etc. (361, wh=ra

is for the first time published tke asymptotic method of synthesis

according to the assigned autcccrrelation function. This method later

was made more precisn and was develcpced with a numbsr of the authors

[7, 29). It is possible tc note alec the work of Cock and Paclillo

[18), of thL indicat',d the need fCr refinsmant asymptctic decisions

and proposed tha method cf cbtaining mere accurate results. Cwtr-ain

special forms of ChM signals were traced in wcrks [ 13, 57].

Pagg 200.

Primary task of prqspnt chaptqr lies in th- fact that, after

rthinking the known methcds of syrthesis of ChM signals, to show

tha,: in fact these methods are based on the hypothesis of proximity.

This will mak. it possible tc Iztrcduci the series/rcw of

-,
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refinements, and, which is mcre iuportant, to work out further

analogous methods for the signals cf cther types.

8.1. Approximations/approaches cn the sst ChM of signals.

Furthsr by many permissible signals X ws understand many signals

with the frequency modulation, %hich have the final duration T,

X(t)=B( tt/2. (8.1)

It is assumed that amplitude envelope B(t) is fixed/r-cordcd,

for example, it has square form'

B(y)=17 T nR jt<T/2(2;( 0 i (8.2)

FOOTNOTE 1*. Amplitude '1VT, provides standardization cn the enargy.

ENDFOCTNOTE.

The law of phase mcdulation ¢(t) is arbitrary, arbitrary also

ths law cf a change in the instantaneous frequency

* 4-

One signal of set 7 differs frcm another in terms of the

structure of frequency (phase) changes. in certain cases wS will

consider arbitrary also duratior cf Ch.1 signal T (retaining the shap -

of the env.icpa of the given cne). e will r~spc-.ively d-stirguish

se- cf Ch, signals of fixed Fericd cf rims X. frcm the sst cf Ch.

signals of drbitrary duration X Is obvious, Xr(.X. Let there b3 in

-- I.
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the space of signals H certain desired signal

y(t) = A (f) eJ() (8.3)

L~t us find ChM signal x (t) cf1 duration T, which -3nsures b ,s=

aporoximation to assigned y(t), i.e., will solva the task of

approximation on set XT.

Page 201.

As usual, this task is reduced to finding of tha coafficiant cf

proxi6mity between set XT and sigral y

CkX,,y)= axty*td(84

XEXT

Let us demonstrate the fcllcving theorem:

a) Best quadratic apprcximaticn tc signal y(t) is provided on,

set XT. with the coincidence cf tle phase functi4ons of th-i unknown.

and approximat=ed signals

00 =00);(8.5)

b) If signal y(t) is difforert frcm z3r0 in any time interval of

'.--:al measure with ItI<T2, signal cf best apprcximation on sets only;

C) Shortest distance d(Xr,y) and coefficient of proximity

4C CXT-Y) d19F~nd only on amplitudr crvaloprts and are given, by the

sx~crassions
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S(X r, y)= S[A(t - B(t)]j-dt; (8.6)

C(Xr Y) S A (t) B (t) dt. (8.7)
-T12

For the proof lst us substituta values (8.1) and (8.3) in (8.4)

7/2
C (Xr .y) = max Re fA (t) B (I ed iY[t)-(t)Idt -

T12
max j A1 0) B (t) os [,( - 1) !dt.

-12

of theorem conditicns are here assigned tha positive functions

A(t) and B(t), and also pbase (D(l) cf signal y(t). maximizaticn is

prcduced according to the functicrs 0(t), which differ one signal :f

sqt Xr from ancther. It Is cbvious, maximum reaches when (t)=4(t)

for all values cf t, at ehich A(t) 0 and B(t)#C .

FOOTNOTE 1. With excepticn of an, arbitrary multitude of the z=.ro

m'-asurq (s--. not3 on page 18E). ENDPOCTOTE.

Page 202.

Case B(t)=O is not of interest, since in this case the phase cf

signal x(t) is not dete rmined. The aforasaid ptoves all ccnf;rrnati. rs

of theores.

Let us focus attcnticn cn the -o.mila~ity of this 1hecrem to -h
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thecrem of §7.2. In fact are examined completely analogous tasks, but

cne of them is treated in the frequency domain (is determined the

optimum phase spectrum cf signal with the assignad amplitude) , and

other - in the temporary/time (is determined ths optimum law of phas?

modulation with assigned amplitude envelope).

If duration of ChM signal previously is not assigned, but it is

determined with ths synthesis sc that would be cbtained the tgst

approximation on set X, additiorally is produced maximizaticr or T.

Taking into account (8.7), in thiE case we obtain

F/2
(X. y) -- axj A (t) B (t)dt. (8.8)

-T12

8.2. Synthesis Chm of signals acccrding to the function of

uncertainty/indeter minarcy.

Lst us use these results fcr the synthesis of ChM signal

according tc th2 assigned realizatle function of

uncertainty/indeterminancy. In §7.1 it was shcwn that for this it is

necessary to determine signal Xot, nearest to many desired signils Y,

more.ovs.r tht latter is determined in ths form: yY. if

Y () = s (t) eJ,

whers s(t) - thi signal, ohich realizes th- assigned function of

unc.-rtainty/.ndt-rminancy Xs(t,Q), and $o - artirary ir-tial Fhas-.

Or.- si4nal of s.--. Y differs frcr ancth?:r only in terms of this

-Mil4
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initial phase.

After fixing certain signal yeY, possible, using the previous

theorem, to det3rmine the nearest to it signal cf set X, and thezn,

varying initial phase 0a (beirg mcved on set Y), to cbtain the

shortest distance dm, *.

FCCTNOTE 1. Let us note that this crder of the minimizaticn of

distance rsverse used in §7.1. ENDFCOTNOTE.

But, as it is clear from (8.6), distance from signal y to set K does

not depend on initial phase 00.

Page 203.

This means that many desirad signals Y aquidistantly in this -ask

with the set of Ch.i signals Xr;,all signals yoY th.ay are placed at

equidistarces frcm Xzr Tberefcre Jnitial phase 00 can be solected

arbitrary, fcr example, tc assume 00=0, and this will not influence

the quality Cf approximation/ap~rcach.

L-t us consider furthcr a specific example. As it was shcwn in

Chap-:?r 6, cr:- of th,:. signals of cptimum ones frcn "ha pcint cf v5 .w

of the concentration of the tcdy cf uncs.rtainty/indstermir.ancy, is
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LFM signal with gaussia, envelope

.-4 -(8.9)

Here the first factor provides standardization on the energy. This

signal is difficult tc achieve, since is requir- d a deep amplitudr,

modulation. Therefore let us syrtl.esize Chi1 signal with rectangular

envelope (a. 2) , which gives best aproximaticr -o a function of tha

uncsrtainty/indaterminancy of sigral (8. 9).

In accordance with tha previcus th-oream th- unknown signal must

have with rectangular envclope cf B(t) the sane law of phase

modulation, i.e.,

2 ii _ (8.10)

If duration T is assigned previously, then on this synthesis is

finishpd. But if it is necessary tc determine tna optimum value of T,

we come to the maxisizaticn of value. (8.8):

) =n -I4 r/2=( )1 0 (L
-T=- max. (8.111

-M,,

H~i z=T!12V!2, and O(z)= 2Se'dx - error function.

Page- 204.

Differentiating (8.11), we ccme to the aquation

O(Z)= 4

- - . -.z-e
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which is satisfied for z--1. Thus, the optimum valus T comprises

ro., :: 2 V2 . (8.12)

With such a T the ccefficiert cf proximity attains possible

maximum. This maximum it is nct difficult to compute according to

formula (8.11), after assuming z=1:

C (V Y)-- max C(X r . Y _[. ,4 qw() - 0,95.

Fig. 8. 1 shows the dependerce cf the coefficient of proximity of

the duration cf th- apprcximating signal T: along the axis cf

abscissas is daposited/pcstpcned dimensionless juantity z=!T/2v2r . Is

there dipicted bell-shaped envelcpe of the assijned signal and

cptimum rcctangular envelcpe cf duration Topt. Th: instantanecus

frequency of these signals is ctarged equally, according :o ths

linzar law.

Tha distance between the given cna anil that approximating by

signals it composes

. (X.Y)l = 2[1 - 0,951 0 o .

The standard deviaticn cf the corr.sponding functions of

uncsrtainty/ir.dterminancy is cas) to count according to formula

(7.9):
,' (7. -- 2 [I - C (X Y1 211 -0.95' -0.2.

-1Q-

-- " : " - *'t, -- -. ,-- --- - - - " " '- - .. . "'* i - - - - " - -- - -*.... . . . .. . .
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Fig. 8.1.

Page 205.

As is known, the functions of the uncartainty/indr-terminancy of

LF.M signals with gaussian and rectangular envelope, arc sufficiently

close. For th.sa signals the body cf uncertainty/indetzrminancy has

the elongated, elliptic fcrm. The incl'nation/slope of the axis of

-lipse depends on rate cf chance in the frequency and with the donr

approximation is identical. Scme differrnc-s arc in the fins

structure of th- body cf uncortairty/indst3rminancy, in particular,

in the fact that the secticns alcrg the axis cf frequency are

reprssented as diffsrent functicns. For rectangular envAlcpe this

section has the form X OQ sin 97/2
7-2

while for gaussian envelcFe

0,Q)

Mty M0. 0)-
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The optimum selecticn of duration T provides, in particular, the

possible approximaticn/approach of these sections.

Taking into account as a whcle the general/commcn/tctal

structure of th . body of uncertainty/indetrminacy, i is pcssibl3

to say that the character cf frequency modulation has the prevailing

value. The msthod of synthasis examined leads to the idsntlcal

friquency modulation for the assigned and approximating signals and

thus provides the proximity of the functions cf

unctrtainty/ind-t-rminanc'. Is retained only tha differ-ncs in the

, nvelopes, caused by the structure cf the permi-sted ChM signals.

Although the obtained results are comparatively trivial, one

should emphasize that we fcund the ccrpletly strict method of

synthesis of ChM signals from tle assignned realizable furcticn of

uncertainty/indeterminancy. Metl.cd rrovides the minimum of quadra:.ic

error for the arbitrary given ervelcpe shape and is realized v:?ry

simply. This simplicity cf decisicn is caused, obvicusly, by the fact

that we realize synthesis acccrdirq to the realizable functicn of

uncertainty/indeterminancy, which is found preliminarily without tna

limitations to many permissibls signas. For fi-idirn this functtcn cf

uncertainty/indetarminarcy it i ;cssible tc usi the mqthcds,

presented in Chapter 5.

VV 7
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But is feasibl'e arother, generally sp-vaking, more correct msthrd

of synthesis. With this CbM sigra] x(t) it is selected so that its

function of uncertainty/indeterainancy X.(t.Q) would implement best

approxi4maticn to the arbitrary dc-sired function F(t, 9).

Page 206.

The latter is not reali2ed as the function of

unc-ertainty/indaterminancy and it 4S Usually assigr.ad cnly cn the

modulus/module. In particular, in wcrk [85] is used ths follcwing

criterion:

rSJI 'P(1 L-) - I .t,)L2IdtdQ min.

Th? function. of uncartaint y/irdet erii4nancy X4,Qf) complicat-.dly

* depends on phase 0(t) , determirinc (with assignad envelop?) Ch"'

* signal x(t). 'The minimizaticn of functional E according to th-?

* functions 0(t) is the t-arqet cf calculation. 7he analytical

minimizations of so complicated a functional, it is understood thzrr

dc~s not ;!xst. In (85] is used iter-ativs gradient mr-thod.

* CZalvilaticn, is characterivad by the large spacs of oaloulaticns
Furthermore the nonlinear functioral being invastigated has local

zxxtr--a, and also characteristic "ravinT1 structurc-. Apparenrtly,

4 simpler mctho.d ?xamirad ahove of synth-sis is advisablc, a-- liast,

for obtainIng the Initial apprcxivaticn/approach, which thsn can ht

- ~ ZM T~ - ----
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made morq precise with the help cf the iterations.

8.3. Synthesis Chd of signals acccrding to the autocorrclaticn

function.

The known methods cf synthesis of Ch1 signals have by main

target an approximaticn/a~prcact. to the assigred autocorrelation

function. This is conrected with the fact that ChM signals frequently

ars used for measuring only thq rangp cf the targets when the

expected Doppler effects are low. The signals with linear ChM (and

close to them) possess also that special feature/peculiarity, that

the secticns of the bcdy cf uncertainty/indeterminancy at tha

different values Q are siiilar tc each other. This provides

pe rmiss5.cn/resolution in the range even when Doppler rates are

r'latively grrat. During this use main role again plays only the fcr:n

of autocorrelation furcticn.

5%

As shown in §7.2, synthesis according to the realizable

autccorrelation function R(t) is reduced to the minimization of ths

distance bstween many permissible signals X and many desired signals

Y, the latter having thq assigned autocorrilaticn function P (t),

i.q., the assigned amplitude spectrum a(w):

?.!y =a (w) e-"" (a)1 U

[. I Pags 207.

A g
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Phase spectrum ((w) is arbitrary, this differs one signal of s-t

Y from ancther. Here we examine the task of synthesis in space L2 , so

that apprcximation/apprcach is understood in ths sense of criterion

(7. 17).

Let us giva two formulaticns cf tht task indicatad. Let us fix

first certain permissible ChM sigral

x (t) = (t) (')(8.14)

and it is determined distance from this signal to set Y. The

corresponding theorem was by us proved in §7.2. According to this

theorem, to the assigned amplitude spectrum a(w) it is necessary to

ascribe the phase spectrum of signal (8.14), i.e., to place

whert Px(tv) is determined from the expression

T12(- ----b(®)e-' °)= B(t)e"'l-']d1" (8.151

* -1/2

The corresponding coefficient of prcximity C(x, Y) depends only or.

amplitude spectrum bx() and it Is given by formula (7.15) . Thin in

order to obtain shortest distance dm, it Is necssary to maximiz. th'

coefficient of proximity alsc in signals x(t).

As a resul: ws ccm4 to the fcllcwing variation probltm. It is
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nscessary tc datqrmine thp furcticn 0(t), which givas maximum tc

value

, . a () b.(u) d® = ax, 16

where .b.(w) is determined in the fcrm

b =, B(t) eJI'(-1v) dt .8.17)

The function 0(t), which satisfis these conditions, and is thr

unknown law of phase modulaticn.

Page 208.

We will now obtain tFe same distance dmi., functicning in cthe:r

ordqr. Let us fix arbitrary sigra] y(t)eY and i1 is determined

distance from it to set I. Accordirc to thecrem of §8.1 for this w4

must ascribe to assigned envelore cf B(t) phase function 0(1) of

signal y, i.P., to assume 400) =-00)""

Here function 0(1) is drtermined in accordance with (8.13):

y (t) = A (1 ) e J (" = - - e " - 1 d .( . 8

The coefficient of Froximity C(X, y) depends only on amplitudi

-nv.lopr A(M)- and it is given ty fcrmula (8.7) or (6.8). In crdar to

ob4ain further distancA da,, it is nic.ssary tc -Iad minimizatior. also

A-1L
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on signals y. As a result we come tc the maximization of value

C X, y) = B 12t Bt) A (t) dt = max, (8.19)

where

A (t) = S (,) (8.20)

Unkncwn is here function -(w) - tha phase spectrum of cptimum

generating signal yo,t(t) (see §1.8). If is determined phase spectrum

a0 1(w), which satisfies ccnditiors (8.19) , (8.20), then further is

located mcst g:nrating signal, fcr which is ussd the Fourier

transform (8.18) . Obtained phase furction D ,zt is assigned finally

by assigned by amplitude envelope, that also gives the unknown ChM

signal: -x0  0l =B(t) exp fjo.t (1)]

In the latter/last transitior it :s takn intc consideration,

that signal xp, is the element cf set X, nearest to Yopt. Therefora w!=

applied theorem of §1.8 tc determination of xot with respect to

y9p. Let us remamb-ar that in k1.8 this method of synthe.sis was named

thf synthesis of the eptimum generating signal w5.th the subsequent

approximation.

4
Page 209.

J

Frcm that pr-sented it is cleat that both apprcaches tc tha

Ii
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synthesis lead to the similar variational problams. Conditions

(8.16), (8.17) and (8.19) (8.20) are characterized by only tha fact

that the temporary/time and frequency dependences vary by roles'.

FOOTNOTE 1*. Thus it was cttained tecause sets X and Y were dtermi.el

in this task analogously, besides cne of them is assigned in the

frequency dcmain, and ancther - in the temporary/time. With th;

synthesis of FM signals we will meet with the larger differencs in

the structures of the sets indicated and then these methods cf

synthesis will be essentially distirguished. ENDFCOTNOTE.

Unfortunately, does not succeed in proposing the direct method

of d,;ciding the variaticnal prctlems indicated. main cbstruction li-s

in the fact that conditicrs (8. 17) and (8.20) contain the

moduli/modules of integrals. Tc cerate with such 9xpressions is

difficult. Will bq axamined belcw thl corrispcnding apprcximation

methcd, suitable for ChM signals uith high corpression when integrals

indicated can be computed with the help of the principle of steady

-' stat'e.

However, is nct difficult tc ccnstruct the iterative prcc~dur',

which makes it possible tc reduce step by stef -.he distance tstw. n

' examined/considerea by sets X and 7. This procedure comple-:ely

I correspcnds to ths. mothcd cf the successivs design (se,: §1.8 and

A I
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§1.10).

Being transmitted from certain initial signal xlX, let us first.

determine nearest to it signal Y1=PY(xo)cY. Let the distance Letws-=n

,hese signals be d 1 . Then let us find signalxE=X, closest to y, ard

located at a distance of d, frer it. Let us further determine signal

Y2EY, nearest xZ, then - signal x2sX, nearest Y2 and sc forth. It is

obvious, this procass leads to descending sequence of the distances

d,:-d2 d3,> ... (8.21).

Since this sequpnce is bcunded below d it converga to

certain limit.

Does coincide this limit with a smallest distance of d;. it

depends on the form of the curves X and Y. If tha minimum of distance

is unique, then as a result of the fact that sequenc6 (8.21) conv.:g,.

to the minimum, process unavoidably leads to th- shortcst distance.

Page 210.

But if the curv.s X and Y have complicated character, there ar:

several local minimums cf distarct, then process leads to som.i

minimum, tut, perhaps, not smallest of base. Success of decision

dapends cn how closply te x0,, is sal~cted the signal cf th4 initial

aporcximation/approach x0 . Further the method of obtaining thl



DOC = 80206709 PAG E .10-

initial approximation/approach in questicn prcvidss (at least, in

some important cases) prcximity tc the global minimum of distance.

The process presented is reduced to the consecutive fulfillmrnm

of two basic operations: to findirg ChM signals xjeX, closest to some

signals yi, and to finding desired signals y, Y, nearest to ChM

signals xi. Both these cp.ratiors we know how to make. The first of

them is determined by thecrem cf 8.1: in order to obtain xi(t),

nearest tc yi(t), it is necessary fcr assigned amplitude envelcp _ B(t)

to ascribe phas-a Dj(t) of signal Yi(t). The second cp' ration is

determined by theorem of §7.2: in crder tc obtain signal yi. n-ar'.st

to x1, necessary to determine phase spectrum P(o) of signal x and

to ascribe this phase spectrum tc the assigned amplituda spectrum

a(w). As a result will he formee spectrum p(o) of the unknown signal,

and further it suffices tc fulfill Fourier transform in order to

switch cv~r to the functicn of tive.

Thus, the process in questicn is rqduced tc the successiva

adding of phase functions in the terporary/tim and in frequenzy

domains respectively. This adding of phase is a design to the

appropriate sets X and 1.

Ws arriv.d at cne cf th- krcwn msthods of synthass. This me:-hcd

was p.opossd in 1959 by Tartakovskiy for the, Equivalsnt task tf thl
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synthesis of antennas [731. In the application/appendix to the

synthesis of ChM signals the methcd was modifiad in [7]. This mthod,

therefore, is nothing else but the method of successiva design,

based, in turn, on the critericr cf proximity.

In §1.10 were traced questions of the ccrvergence of the mezhod

of succqssivo design. It %as estatlished/installed, in particular,

that an in qu-sticn in this task woIltitudg of tha permittcd by Ch-

signals X is not convex. for analcgcus reasons convexly and d=sired

sat Y.

Pagp 211.

Thsrefore the itarative methcd -'n question, altaough gives mcnotonrc

decrease cf the distarces betweer the sets, can, generally spiaking,

not converge in the sense that the cbtained successive approxia-i:2s

x o (t) , x1 (t) , x 2 (t) . .. dc not aprrcach th4 specific limi . As shcwr.

in §1.10, for tne convargence of iterations it is necessary that

obtained Chl signals X,(t) too wculd not differ from nearest to them

d'sired signals y•=Py(x) (see cc.diticns (1.49) , (1.50)). In cthcr

words, it is r-quired sc that the initial approximation/approach

would provide sufficiently low distance between the sets, proxirnity

tthz- cptimum. This again indicates th. n. :d of obta-i.ing gccd

ititial anoroximations/aFrcachesl.

-~1

Ii
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FOOTNOTE 1. Below we will see, that the asymptotic decision (utilizei

as the initial approximation/apprcach) makes it possible to obtain

for ChM signals with the large corpression the arbitrarily lcw

distance between X and Y. This Ercvides the ccnverg.ence of method.

Convergence was confirmed alsc based on spscific examples by the.

calculaticns of L. B. Tartakcvskiy [74]. ENDFCOTNOTE.

Th. proved abovs thecryms zfake it possible to establish also

that during th complete.ly accetablr limitations occurs the

uniqueness of approximaticns/apircaches in each stage of iterations.

Let in the course of iterations be cbtained certain signal x,(t).

Becausa of theorem of §7.2, the transition frcm xi tc yi it is

rsalized by an only form, if spectrum i (',) is different from zero in

each finite frequency rangg. But ChE signal x. has the final

duration T. Consequently, spectru .Z,() is the whole analytic

function which can take zero values only at tha isclated points of

th _ axis of frequencies (cn the null set), and the condition of

uniqueness is satisfied. Let us ccnsider now transition from yi(1) to

following ChM signal x,.,(t). By tte fcrcL of theorem of §8. 1 this th-

transition is uniquc, if signal yt) is differcnt from zoro in a.y

finite tims interval with -T/2<t<1/2. This condition is satisfis d n

many instances. For exampl., it is Fossible tc assume tha- th-

t
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assigned amplituds, spectrum a (w) is limit~d by the arbitrarily larg,,

but final frequency band:

Then any signal yEEY is a whcle aralytic function, and the condi4tion.

o.f uniquaness again is satisfic-d.

One should howuver emphasize that for the practical use cf a

mcethcd questions of ccnvergence ard uniqueness of iterations have

nevertheless secondary value.

Pagi 212.

I n V7.2 itwas shown that prec-4sely distancz 1 Ax is .6-

satisfactory masuze for t1hr- apprcximation/approach of

autoco-rrelation functions, see fcrmuila (7.23). There-fore th- monotz'n-

decrease cf distances di the ccnvprgence cf process on thr-

furctional, which does nct require any conditions, alzmady provids _

* the practical applicability of iterations.

If we take into acccunt this cbservation,.one should r;,cjnr.z4

that the principal value has a questicn nct about .hat, dsescenJ

- ticns crrt~ isgbu'-cl ab-cut tha-t, thiey do lead tc
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shortest distance ;dii_. or the maximum distance dr is more than di,.

In the latter Case signal xe', found as a result of iteraticns, will

not bF ctimum from the pcint of view of th3 approximation/approach

of autocorrelation functicns. As it was noted, a similar situation

was possible, since there are several local minimums of distance.

Consequently, the fundamental condition, which ensures the

efficiency of method, is +he selection cf initial signal, it is

sufficient close one to tle cptimuf; are necessary the special

methods, which make it possible tc find rough approximation, and it

subsequently i is possibli tc wake mor3 precis3 via iteraticns.

One of such apprcximaticn methods is zxamined further. This

method, based on th. asymptotic sclution of thi formulated prcblm cf

synthesis, is used for the mcst iifcrtant virtually case of Chm

signals with the large ccwpressicn has also ind-psnernt value.

8.4. Chm signals and the methcd cf steady stati.

Furthsr th; mthod of synttpsis in questicr. is bas ed on th

approximation calculus cf integrals of the raFidly oscilla:ing

funct-lors - p-incipl- of steady state. Lit us crns-i.er ths integral

! F ',x) ejmfrx)dx.-i a
.-. . . .-,. . .. .rA" .." " < q r.' .. . .. . .-- ,
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Functions F(x) and f(x) are assumed to be those slowly varying, i.:. ,

functions themsalves and thiir derivatives are of the order cf oflS.

If parameter mi is sufficiently great (m>>1) , then the functicn

ej-1"4 -Cos Mr W)+ Jsin Mt W

is rapidly oscillating.

Page 213.

The integrand can be likened to the high-frequency oscillaticn,

modulated on th3 amplituds and the phase. Integral J gives the

I "constant component" cf this cscillation and the less, the greater m.

This it is possible to explain by the fact that neighboring

* half-waves of osci4llaticn - positive and n~.gative3 - almost cciupensat%-;

sach other and is made a very lcw ccntribution to valuz J. Howver,

* the comupensation for adjacent balf-waves stops ineffective near the?

* points steady state, determined by the conlition

*f(X0) -O. (8.23)

At such points "instantanecus frequency" it becomes equal to

*zero and cscillating process ceases (it is morp precise, it stops)

As a result the main cortributicn tc the integral introducc pr-cis' ly

the points of steady state, if they exist in thi interval (a, b) . Fcr

I calculating th3 contribution frcom the stationary pcint it suffice s -a

-l take into account behavic: FWs and f (x) in its vicirity. This 1' =_d

to dependence [6)

Lo
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Xexp j [f(x.) I (8.24)

It is here assumed that in the Interval (a, b) is only one stationary

point', which satisfies ccnditicr (8.23) , .or which jmf"(xo)rf>>.

FOOTNOTE 1*. If there are several stationary pcints, it is necessary

to take the sum of corresrcndinc ccwponents/terms/addends.

E NDFOOTNOTE.

In the index is taken plus sign with f'(xo)>0 and minus sign is -

with f" (xo) <0.

Correction term 0 (11m) gives the astimation of error in this

formula: error considers, in particular, contribution trom other

sc.cticns cf rarga cf integraticn in which there ari no staticnary

points. Therefore evaluaticn/estiiate 0 (1/m) is valid also for

entire integral, if there are nc Ecints of steady state.
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Page 214.

Let us compute on this base the spectrum of Ch4 signal (8.1)

T12

x i) ( B (t ePi9t)--tdt.
-f!2

Let the instantanecuE frequercy be changed for time T within the

limits - ( so that the deviation of fraquency comprises 2Q.

Since the instantaneous frequency is derivative of phase, it is

possible to register

Here - dimensicnless time, ( ) and f(n) - the function of

the ordar of one and m=GT/w - ccntraction coefficient.

As a result it is cbtained
"I/

1/2

S-12

where ;=/Q - dimansionless trequency. After using to this integral

formula (8.24) and baing returned after this to initial to the

variable/alternating t an5 w, we find:

;:

--r"/ . . irr ." ' ' - " - -' ' '% '- E- . -? .... ..
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(") = ' I- B (t ) X

>e.p(P +I(, -t (1 + 'm. (8.25)

Here moment/torque to is defined by equation (8.23), which, as can

easily be seen, has a fcrm

qY(t)-=0

or, which is equivalent,

(j) (to) o). (8.26)

This relationship/ratio makes simple physical sense. It tcgether with

(8.25) shows that in acccrdance with the principle of steady state

the spectrum of ChM signal at the frequency w is determined, in

essence, by the behavior cf signal at the mcment (or moments/torques)

of time t., when instantaneous frequency passes value ,.

Page 215.

This will be coordinated by the kncwn approximaticn methods, utilized

in the radio engineering calculaticrs.

Formula (8.25) assumes that there is only one stationary point

in the interval of integration; tkerefore it is applicable for the

signals whcse instantanscus frequency vary monotonically - it grows

or d-creasas. With a change in the frequency h uation (8.2E) is

....
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satisfied at different values of to, stationary point is moved in the

duration of signal. Thus far frequency w is selected in the limits of

band +-Q, spectral function x(t) Is determined by the moment/torque

of time to=to(w). In other words, in this frequency domain the

spectrum is approximately determi:ned not by signal as a whole, but it

is local, by the moment/tcrque of time to, which depends cn w. This

connection/communication tetweer the instantaneous values of

frequency and time is the base cf further calculation.

If spectral frequency w is selected out cf the band +-Q,

equation (8.26) is satisfied rot with what t in the interval (-T/2,

T/2), i.e., stationary Foints are absent. Formula (8.25) in this case

becomes meaninglass. However, spectral functicn in this region is

low, it is estimated at value cf 0 (1/m) and can in the first

approximation, be disregarded fcr the signals with the large

comFression. Tha fundamental porticn cf ensrgy of such signals is

concentrated in the band +-Q, i.e., frequency domain, by the running

instantaneous frequency.

Let us consider in wcre detail the structurs of spectral

function in the fundamental regior (-Q, 0). For the amplitude
II

spectrum we have from (8.25)

-2i
2 - ~bb (). - B. . ...+0(1 ... 2-)
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This relationship/ratio shows ttat the amplitude spectrum depends on

the signal amplitude at mcment/torgue to and cn rate of change in the

frequency for this moment/torque. The greater the rate of modulation

w'c(to), the less the level cf spectral function. This dependence is

confirmed by known physical ccnsiderations (61.

For the phase spectrum we lave respectively

x'( ) -[q-r(to)-,o-.t,± /4]. (8. 28)

Page 216.

l-

Let us show that derivative P';(.1 ) is a monotonic function of

frequency. Actually/really, taking intc account (8.26), it is not

difficult to obtain

d& _ da. "P" No

[So -. ) - .(t.) - 40 . -VA

Co.sequently, again applying (E.26), we find

d, .) t. __ ,

For the signal with the morctcnically changing frequency value

wc(to) does not change sion cr the entire duration T. Therefore

A"X(oi) alsc does not reverse the sign, that also proves the exFress-ad

ccnfirmation.
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Let us focus attenticn on the following property of symmetry.

According to the conditicn, the law cf a change in the phase 0(t) is

such, that its derivative q'(t)=(oc(t) is monotone. Phase spectrum Pz(o),

proves to be, possesses the similar property: derivative A' (,i) is

monotonic, besides has the same ctaracter of the change (it grows at

the increasing instantaneous frequercy or decreases - with that

decreasing). So stand matters, at least, in the

approximation/approach cf the metlcd of steady state, i.e., with the

high contraction coefficients m 1.

FCOTNOTE 1. On the base cf the wethcd of steady state it is possible

to compute the spectrum of ChM-cscillation/vitration also in the more

complicated casas, in particular, when there ars several stationary

points [5, 6 ]. But the cktained exrressicns are not used with the

synthesis of signals due to the unwieldiness. ENDFOOTNOTE.

Let us now consider inverse Froblem - recovery of signal on its

spectrum. We have

y(t)= a (8.29)

It is assumed that the amplitude spectrus x(w) is limited by the

final band of frequencies - GS<w< (howevsr this assumption is not

I.
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sssential). The derivative of the phase spectrum

. - =I" (8.30)

has a dimensionality of time.

Page 217.

This value pcssasses the physical ccntent. If, for example, signal

y (t) is formed at the outFut cf the corresponding forming filter,

then a(u) is the phase response of filter r(w) - group delay time for

the frequency w. Analogous treatment is valid for the signals, which

extend in the delay lines, in tte dispersive media, etc. Let in the

frequency interval (-Q, 9) in question the greup delay time vary

within the limits - T/2<<T/2 '.

FOOTNOTE 1. The selecticn of the 2ero time reference is arbitrary.

Therefore, without enterirg intc ccntradiction with the physical

sens?, it is prmitted the negative values of 1ilay time.

ENDFOOTNOTE.

Then it is possibla tc register

0 = ',.m, ( ov )

w.er , - iinensicrless frequercy Ti't and i (v - the

I!
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dimensionless functions cf the crder of unity, m=QT/w. Value m is

great, if in the frequency interval of the variation in question of

the phase a(w) occurs to a large number of periods. After doing this

assumption, we come to the integral of type (8.24) and find

Y(0 ( e'a, j a (W,) +

+ ) . (8.31)

lt is here assumed that the delay time r(w) varies monotonically with

the frequency, so that the staticnary point is unique. This point is

determined by the equaticn

'( ) ----- (fo) =t, (8.32)

i.e. it depends on the current time t. Thus, tha value of signal at

moment/torque t is determined, jn essence, by the structure of the

spectrum at that frequency wo, fcr which group delay time coincides

with t.

For the signal amplitude we cbtained, obviously,

A (t) t)+ 0 (1 ,,,). (8.33)

Page 218.

Discussing analogous with Frevious, it is possibla to show that

when making th-s3 assumpticns the instantaneous signal frequency

coincides for the current mcment/tcrqu- t with the frequency wo:

F . - . . . ... " . . .. 1' - - ' . . . . . ." . . . ..
,- "f""r i ... .. , ,. : .. . . . ,, , . . :, , . ....
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d,~ (. - e =(0).t % '4]=w_ (t)=-A!T -[..-.t± T'J

d [" a( .et, (M)± _._ w

and it vary monotonically in the interval (-T/2, T/2). Consequently,

in the approximation/apprcach of the mqthod of steady state ChM

signals with a monotonic change ir the frequency possess the phase

spectrum whose derivative is monotone, and, vice versa, this spectrum

can be realized only by mcnotcnic Chb signal.

L.t us nota one additional fact. As can be seen from (8.33),

signal amplitud3 is low at values of t for which equation (8.32) doss

not have a solution. This means that fundamental energy is

concentrated in the interval (-7/2, T/2), determined by the range of

changes in the group delay r (w). Consequently, value T, which depends

on the structure of phase spectrui, is close to the pulse duration,

and parameter m=QT/, is a ccntracticn coefficient. we see that the

calculaticn of spectrum of ChM signal and the restoration/reduction

of signal according to the spectrum can be carriod out on the basis

of the principle of stady state crly for the high contracticn

co fficie nts.

8.5. Asymptotic synthesis of ChM signals.

-.

,"-

• '5 T
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in §8.3 were proposed two methcds of synthesis of ChM signals,

escape/ensuing from the hypotbesis Iroximity. The first of them

(formula (8.16)-(8.17)) is reduced to the maximization the

coefficient of closeness

where b.(w) - amplitude spectrum of the unknown signal x (t) . If we are

bounded to signals with a monotcne change in tha frequency and large

compression, it is possib~le tc use approximation formula (8. 27) for

spectrum bx(o)).

Page 219.

As a result it1 is obtained

Are here undertaken final integration limits, s--nc-c the dominant tz-rn

of formula (8.27) is suitable orly in the band (-0, Q) . Out cf thi-s

speqctrum band available estimate 0(1/in), that also gives the

appropriate correction in (8.34). Let uis racall that the

A moment/torque of time to is trcnctcric functiJon w. This dependence is

determined by equation (6.26). Since to and w are connected, it is

j pcssi-ble to pass in int-egral (8.34) to the variable/alternating to.

-iAccepting for concre teness u)'>O, I.e. 4-nstantanecus fr. qut ncy it

*17
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grows, from (8.34) and (8.26) it is not difficult to obtain:

712

-T/2

(8.35)

moreover in the lattar/last expressicn is omitted index in the

variable/alternating of integraticn t. For the research of th.

obtained expression fcr the Iaximum we will use Schwarz-

Buniakowski. Disregarding the ccrrection term, we have

r/2 712

C'(xY)~ B: B(t) dt.S a wJ Sd
-T;2 -r12

T/2 2

= B:.t)t S a2C d-.
-12 -m

The first int-agral is energy of signal x (t) and it is equal tc

unity by standardization strength. The second integzal exists,

strictly speaking, the part cf the energy of signal y(t) , included in

the band (-0, 0) , but it also it is very close to unity, since

residual energy decreases during the expansion of band, at least as

0 (1/M 2 )

S

3 Consequently, without intrcducing the further arror (by crder cf

value), it is possible tc consider that the right side of the

latter/last inequality gives face side of the coefficient of

proximity C(x, Y).

-
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Page 220.

This face side is reached, if in the relationship/ratio of

Schwarz - Buniakowski occurs equal sign, i.e., when the factors of

integrand in (8.35) are proporticnal

B(t)= y ! a(o i 2

dt

So it is easy to check by straight/direct substitution, factor

of proportionality I in the optimum case is equal to one. As a result

we come to the differential equaticr'

B' (t) t = - a2 (so) d-o. (8.36)

I being datermining the optimum law Cf the frequency modulation of the

unknown Chm signal.

FOOTNOTE 1. If instantaneous frequency wc() decr-aases, and it does

not grow, the right side cf the eguation rsverses the sign. This does

not lead to the essential differences. ENDFOO1INOTE.

Equation (8.36) is the base cf calculaticn in the series/row of

works according to the syrthesis cf Chm signals [7, 29, 36, 39]. Our

conclusion/output shows that thIs most important method of synthesis

is based, in fact, to the critericn of proximity and directly it

4 follcws from the appropriate task cf the minimization of distance.

L2t us now consider the second method, indicated in §8.2.

'I

A~I
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According to (8.19), (8.20) we rust maximize the coefficient of the

proximity
T12

C (X. 1 _ A (t) B (t) di,

selecting A (t) - amplitude envelcpe of the geneating signal. For

approximation calculus A(t) we will use formula (8.33).

This it gives

T1-'
C (T/2Y B~t a (() dt +-O(1/)

-_V2

Pae 221.

Here frequency wo is connected with the current time t with

equation (8.32), which makes it pcssible to switch over in the

integral to variable/alternating wo . Then it is obtained

a [ do + 0(1

This integral can be traced to the maximum, aftar using, as earlier,

Schwarz - Buriakowski. As a result i t is clarified, that

the coefficient of proximity C(Y, y) is maximum with satisfaction of

the condition
ai (a. = B'

i.e.J
Bi e= - (*) d,. (8.37)

-.! - v,. - ~ - - - ... -- -.-. ~ *----~*--*~. ~-
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We arrived at the equaticn, which coincides with (8.36).

Strictly, otherwise and te it cculd not, since both methods of the

minimization of distance, examined in §8.3, must lead to one and the

same optimum signal xopt(Q. This ccrclusion/output is of interest for

future reference. For ChM signals bcth those examined of the method

of synthesis are equivalent. As noted, they are characterized by only

the fact that the time and frequercy vary by roles. In the asymptotic

approximation/approach ue could cttain the solutions by each of the

methods and clearly demcnstrate their identity.

It is possible to 4stimats the error in th-i asymptotic solution

examined. If instantaneous frequercy satisfies equation (8.36), i.e.,
"'. =-- A L

then formula (8.35) gives

*r12

Ct X, Y)== ma%. Cx. Y) B-(t)dt-+O(1.m)=

-+--1OI M . (8.38)

Therefore for the distance tetween sets X and Y is obtained the

evaluation/estimate

Id =2j1 -C(X, Y)j =0(/,n).

Page 222.

5,,1



DOC = 80206710 PAGE

We saw in §7.2 that a root-mean-square error in the

autocorrelation functions 6 depends on distance dmin. This dependence

is given by formula (7.25):

8mtu = ]/ .'

therefore .

S(Vm)- O( i'm),

i.e. an error in the apprcximatio/approach of autocorrelaticn

function dacreases as 1/m.

Of course these evaluaticns/estimates are insufficient in ord3r

to determine numerical magnitude cf error in this or another specific

case. From further examples it is clear that the quality of

approximation/approach depends cn the form of the assigned spectrum

a(u) and the envelope B(t). This ccrnecticn/ccmmunication is easily

explained - indeed the task cf synthesis lies in the fact that with

assigned envelope to ensure the necessary amplitude of assigned

envelope to ensure the necessary afflitude spectrum. Is accurate this

possible not always. There is a series/row of the conditions with

nonfulfillment of which it cannot he combined assigned B(t) and a(w).

For example, it is not pcssible to fulfill the rectangular spectrum

with rectangular envelope, since ce of these functions must be

analyticall.

71
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FOOTNOTE 1. The known conditicns cf the "compatibility" a(w) and B(t)

are indicated by Fowle [29]. ENDFCCXNOTE.

In our treatment of synthesis the discussion does not deal with

a precise fulfillmant of the assigned spectrum. We realize a test

approximation to it, but the degree of this approximation/approach

depends it goes without saying cn structure assigned B(t) and a(w).

However, obtained estimates Ebcw that with synthesis of ChM

signals the error can be arbitrarily decreased, increasing the

compressicn coefficient. This corresponds to tha fact that,

increasing duration of Cbm signal, it is possible to fulfill the

given spectrum with ths low tc arbitrarily fulfill the assigned

spectrum with the arbitrarily lcw final error (has in mind the error

on the average).

of this consists one of the special features/peculiarities of

the set of ChM signals in question. We will see further, that with

the synthesis of FM signals occurs different picture. There thare is

a final limit of distance d.,, so that, even increasing compression,

is not possible to arbitrarily _mfrcve the degree of approximation cf

signals.

-4s
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* Page 223.

Correspondingly, an error in the correlation functions decreases f~r

FM signals not as 1/m, but as 1II/m. However, a similar positicn is

characteristic also for ChMl sigrals under some further conditions

(see §8.7).

8.6. Examples.

we will use several simple exaifples in order to illustrate the

efficiency of asymptotic synthosis. These qxamplas are borrowed from

* works (7, 29, 36-f 39].

Example 1. Lat us ccnside: first the case wihen they are assigned

rectangular enveloping

01) Ta T

* Key: (1). with.

and the bell-shaped amplitude sFectrum of the form

VI~c.2-Y -~)<to< + 'X).

Substituting these values in (8.4j6) , we obtain

#1 -T,
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where the signs ± correspond tc rising or falling instantaneous

frequency. Solution of this equation gives the required law cf the

frequency modulation -

t
S(f) =± tgu. -"(8.39)

Assuming/setting the frequency of that falling, for the

instantaneous phase we cbtain respectively

t)= [ t -t=mIncos r- +,..

where 0o - arbitrary initial phase.

Let us further determine ptase spectrum- .(w). For this we will

use formula (8.28) and derendence of t on 9 (or, which is the same

thing, to from w), expressed by relationship/ratio (8.32). As a

result, after simple conversicns it is obtained

70-) -arctg +.

whers .o is also arbitrary.

Page 224.

In accordance with the thecrem of §7.2 ) there is the phase
* spectrum not only of signal zo,,(t). but also sig.al vo,,) - the'nearest

s
signal Cf set f, i.e.,

I~
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XeXP~j IjM+a .t

* An error in asymptotic soluticr can be ccnsidered now, being

congruent/squating found ChM signal z.,g(t) with ganerating signal

* ~Y0-,tM The latter is deterrfined by numerical method, by Fourier

transform from ~,w The necessary calculations are carried out in

[29]. Fig. 8.2 shcws the values of instantanecus frequency and signal

amplitude envelope x,,,wt and Vors(1 ) (latter are noted by points)

Calculation is carried cut for ccaparatively low contraction

coefficients m=5/w and m=50/s. as can be seen from figure, even for

such values of m asymptctic soluticn gave very good

* approximation/approach.

Example 2. Now let us assume that both functions -envclcping

and the auplit1.udc- spectrum -arc- assigned ractangular:

"70 - a< < +Q

* Key: (1). with.
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It is obvious, equation (8.36) has in this casG a form

and it lqads to the linear lab cf mcdulation

We(1) f- -

We obtained, therefore, LFF signal with rectangular envelope.

His spectrum

. 7

4 it is not ifficult to express through Fresnel's integral. In

4 particular, we have

II
*t
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* Here

2 2

C(Z)+rjs(z)J-jeiz dz.
0

It is possible to consider the quality of approximation/approach,

being ccngruent/eguating the assicned spectrum with that obtained.

The corresponding graphs, carried cut for ccmraratively high

ccntracticn coefficients, are depicted in Fig. 8.3 [39].

As can be seen from figures, a difference in the spectra is

exhibited, mainly, near the hand edces, with w=+-9. To the flat/plane

part of the spectrum superimposed oscillations whose amplitude weakly

is reduced with an increase ir the compression. However, the region,

cccupied by these cscillations/vitrations, with increase of z is

reduced, oscillations/vitraticns "are wrung out" to the assigned

boundaries +-Q. These oscillaticns/vibrations call Fresnel

p pulsations, since they are connected with the st.ructure of Fresnel's

integrals. we see also that cutJide the boundary of the assigned band

is a comparativaly slow decay in the spectral function on which alsc

4 are present Fresnel pulsations. Tie greater the compression, the

I steeper this decay. As a result, with an increase in the compression

,.1

"1
... €-
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the spectrum approaches .tbe given one, but, in the first place, this

occurs slowly, and they are necessary very more than value of m so

that the distortions would be insignificant, and, in the second

place, improvement occurs not due tc the decrease of maximum

divergences, but as a result of the contracticr of the sections, in

which these divergences are essential.

Page 226.

One way or another, but was obtained considerably worse

approximation/approach, than in tie previous example, and it is

necessary tc bR dismantled/selected at the reasons for this

difference.

Using a method of steady state for calculazing the spectrum, we

assumed the envelope B(t) of that of slowly varying. In the case of

rectangular B(t) this, of course, it is erroneous near the pulse

edges where the envelope endures abrupt changes. Therefore, when the

stationary point to is ucved to tie pulse edge, the utilized

'4 formulas, are incorrect. But the point of steady state coincides with

one of the fronts on ths Land edges of frequenciss, with w

Logically, in this regicn were obtained the grqatest errors.

Therefore it is possible to conclude that an error in the

apprcximation/approach is substantially ccnnected with irregularity

,-fr

°S
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B(t) near the fronts'.

FOOTNOTE 1. If envelope has steady character, errors are obtained

still smaller than in example 1. This case is examined in (29].

ENDFOOTNOIE.

However, in example 1 also was examinad rectangular envelope,

and errors proved to be very low even during the small compression.

This forces in greater detail it will dwell on the ccncept of the

slowly varying function.

Let there be certain anvelcpe B(t), which is thus far assumad to

be continuous. After selecting arbitrarily moment/torque to, it is

possible to register variaticn AB in tha form

Other conditions beirg equal, the variation AB is the greater,

the greater the interval At.

We saw that during the use cf a method of steady state integral

value depends, mainly, cn certain lcw vicinity of stationary point.
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0,4 0,8 1, 2 0,4 0,8 1,2 C.,n- -0, 125 2 ,7=60

a. 0,8 1,2
M,-120, 125

Fig. 8.3.
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The extent of this vicirity is characterized by tha so-called radius

of effect and dapands on t'e fcrm of phas3 function (28]. In

particular, for the integral

P.-. weConsequently,

SiB'~ (.)

Thus, inconstancy ct enve.cpe is manifested the more weakly, the

greater thq razl. of mcdulaticn at the appropriate moment cf time.

Taking into account (8.27), we car register also

I'

- ,, -*.---- .--. -- *.-.. .:. r - - . ... .. .. .
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I B'.t.) ( t'
tro,~q b.1I-_.7

-=2:Y8

Here w - current frequency, which coincides with the

instantaneous signal frequency at *cment/torque to.

Now it is possible tc clarify the difference between examples 1

and 2. In both cases the envelcle is identical, so that factor

B'(t)/B(t) is retained ccnstant/irvariable'.

FOOTNOTE 1. Let us recall that for simplification in the

considerations is assumed the final duration cf fronts, so that ths

derivative BI't) is limited. ENDfCCTNOTE.

But the laws of fre-guency modulation essentially are distinguished.

In the first examplq the rate cf modulaticn grows with the

approximation/approach tc pulse edges, reaching infinite value with

t=+-T/2. By this is provided the tell-shaped form of the spectrum

with the attenuation at the high frequencies. The previous

relationships/ratios shcw that sioultaneously is weakened/attenuated

the effect of the irregularity cf envelope on the sdges. In example 2

r at of modulation and level of the spectrum are constant; therefore

the "adge affect", connected with the puls3 edges, it is exhibited to

the greatest degree 2.

I"
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FOOTNOTE 2. In a recent work Millet experimentally confirmed that the

distortions, caused by Fresnel pulsations, they are manifested more

strongly for the rectangular spectrrm than for that rounded off (49].

The theoretical explanaticn tc this was not given. ENDFOOTNOTE.

From the aforesaid it is clear that the cases examined are in a

certain sense, maximum fcz rectancular envelope. Signal with the

linear Ch,1 (example 2) , which realizes approximation/approach to the

rectangular spectrum, shcws the maximum divergences, connected with

rectangular envelope - Fresnel Fulsations.

When the assigned spectrum is rounded off, occurs a relative

increase in the rate of gcdulaticr cn the edges, and means, an

improvement in the quality of approximaticn/approach. Fresnal

pulsations are weakened/attanuated to the greatest d.gree fcr the

signals of the type of example 1. Here the rate of mcdulation on the

edges is infinitely great and, furthermore, the region of the

greatest distortions is extruded/excludad for the infinitely high

.Ii1 Is frequencies. These facts provide a Scod approximation/approach.

' Example 3. In the previous examples the form of autocorrelaticn

4 function (amplitude spectrum) was chosen arbitrarily.

Page 228.
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However, in ehapt*c 2 and 4 we came to light/detected/exposed the

optimum structure of the autoccrrelation function, maximally

concentrated in the assigned duraticn with the fixed/recorded width

of the spectrum. In the case cf tte minimax criterion, optimum is

Dolph-Chebyshev type function, and the cor-esponding form of the

amplitude spectrum takes the fcrm, see (2.26):

', 
< (<+) 

=: . -.

Here c=QT/2=m/2 - value, proporticnal to contraction coefficient.

The scale factor k must be selected so that wculd be satisfied the

condition of normalizaticn on energies. This it gives (7]

2nChc-i

Let us recall that the level of the remainders/residues of optimum

autocorrelation functicn is determined by the relaticnship/ratio

M-ch c-ch m/2

which corresponds to the exponential decrease of remainders/residuas

in an increase in the ccntracticr ccefficiznt.

If, as in the previcus exatiples, amplitude signal amplitude

envelope assigned to rectangular, equation (8.36) takes the form

dt C , c/ - Q2) d,:

Therfore the apndence cf instantanecus f-.qu-ncy on ths timg is

I l , - ,-- -"-', , ' -
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given by the relationship/ratio

-cju
t C C I,(cI' )
- c - J - - dx. (8.40)

Q

This dependence is shown in Fig. 6.4. The parameter is value M - the

level of thG ramainders/residues cf the assigned autocorrelation

function. A decrease in the remairders/residues is provided due to an

increase in the rate of modulaticr in pulse edges. As it follcws from

previous, this raises also the accuracy of the asymptotic sclution.

A good apprcximaticn/approach to Dolph-Chebysbev type

autoccrrelation function gives, as is known, tha function of Hemming,

for which the form of the spectru: takes form (75]:

This spectrum monotonically drops to the edges of band and has

jumps on the edges. The value cf fump depends on parameter g. With

g=O the form of the spectrum rectangular, the jumps are maximum, with

g=1 is obtained the cosine-squared form without the jumps, in the

intermediate cases O<g<l the value cf jump comprises r(l-g).

Page 229.

Chanqing g, it is possible tc obtair approximation/approach to
4

PCpimum curves for varicus levo2s cf ramainders/residues. The

parameters of tni corresponding autcccrrelaticr. functiors are given

.P' I
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in (7, 751.

The approximation of the optimum form of the spectrum by the

function of Hemming makes it possible to simplify calculaticn.

Actually, equation (8,36) take in .his case the form

-= 7; !- Co. ; d-..

As a result it is obtained

T~ ~ ~ ~ ~~S 11"-) sn-y. ,.I

Fig. 8.5 compares the optinuu law of modulation (8.40) with

approximation/approach (8.41). Calculation is carried out for level

of lobes/lugs M=40 dB, parameter a in this case is equal to 0.85.

A, evident the curves are bathe- close. -his conf.rn.. the

expedienc-r o" usin- the Herninr .  nn -i,

it "oud le t t to asure that ' .ven the rr.oe dnn

,itior n the holhh-C'eb',shev t'-e (or an a rto ., e

• ill actual>_', obtain so lowr a level o reaiAnders. As
it was shown, used asymptctic sclution has an error of tha level cf

the remainders/residues cf the autoccrrelatior function of order

0(0/m). This error can prcve tc be considerably the assigned lavel,

so the latter more than decreases expcnantially with increase of m.

I

4i

i:,I
a.1

" " -' . .. ... --: " . .. - - -- . . ." ." : . .. .. .. . . .
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Fig. 8.4.
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In this connection is of interest the rsfinament of the

asymptotic solution. One cf the methcds of refinement gives the

iterative procedure, examined in §E.3. By using the asymptotic

. solution as zero approximation, it is possible to obtain more precise

results via consecutive iteraticrs.

* Another method is tased on mcre precise asymptotic

I evaluations/estimates of integral (e.24). As we saw, th=s neglect cf

"edga effect", allowd in formula (e.24), leads to the fact that tha

form of the spectrum cnly approximately corresponds to th". giv=_n one.

i,2L,

I
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The spectrum holds the Fresnel pulsaticns, not taken into

consideration in the calculaticr, cr some other inaccuracies. It is

possible to compensate (at least, partially) Fresnel pulsations,

cutside special oscillatcry addition into the law of Chm. Such

"predistortions" of the structure cf signal make it possible to

decrease the remainders/residues. Cne of the methcds of calculation

of predistortions (by tke way very approximated) is propcse.d ky Cook

and Paolillo (18].

The introduction of correcticrs into the law of ChM (designed on

any of the methods indicated) is conjugated/ccmbined with the known

technical difficulties. Is required to satisfy complicated the law of

modulation, which contains fluctuating component of changing of

amplitudP. Here we will nct In detail trace the n ,czssary structur.

of corrections.

8.7. Signals with the symmetrical fr.equency mcdulaticn.

*In the previous examination the law of a change of the

* instantaneous frequency It was assufed to be monotonic. This

limitation made it possible tc use the simplest version of the method

of the steady state when there Is cnly one stationary point..I

" I ';
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0,8

O 0,2 0, ' 06 t

Fig. 8.5.

Key: (1). Dolph-Chebyshev. (2). Hemming.
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Limited application find also mcre complicated ChM signals with the

nonmonotonic law of modulation. The use of similar signals

expediently during the sirultanecis permission/resolution in the

range and speed since their functicns of uncertainty/indeterminancy

have the not elongated, elliptic fcrm, but they possess mcrc. or less

expressed central peak [13]. In this respect the signals in question

are close to phase-keyed.

As shown below, analcgy with Fn signals extends somewhat
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further. we will sa, that the methcds of synthesis of FS signals 3nd

the examined signals with the fzeguency modulation have much in

common.

We will ba bounded to the cases whin instantaneous frequency is

changed symmetrically relative tc the middle cf

impuls;/mcmentum/pulse and, furthermore, it is monctone in each half

of signal. A similar signal is used, for examFla in tha system,

described in work [56].

If the envelope B(t) is alsc symmetrical, the spectrum of the

signal being investigated has ar expression

+T/2 r/2

V*=- B (1) e' ( )-tdt = 20 B(t cos I?(t -call d.

For calculation 7(w) we will use the principle of steady stateq. W-3

can use formula (8.24), after taking real part from both its Farts.

As a result it is obtained

(8.42

Here, as earlier, to - stationary pcint, determined by equation

(8.26), but now to must be placed in half of the duration:

O<:.<T2

Instantaneous frequercy :i is assumed to be that increasing in

this half of impulse/momentum/pulse (otherwise formula (8.42) is

I6
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insignificantly changed). Let us Ecint out also that

relationship/ratio (8.42) is unsuitable with t0-.O, when rate of

change in instantaneous frequency ,'{.=q"(z kecomes low.

Page 232.

Fcr this ragicn is necessary more general method (asymptotic

approximation/approach cf the tlizd order - see [6]), but here we

will not concern this refinement.

Spectrum X(w) is real functicn, i.e., phase spectrumfx(w) takes

only two values - 0 or w. There are here also an analogy with FM

signals which possess a similar prcperty, but in the temporary/time,

but not in the frequency representation.

Functioning according to the methodology accepted, let us fix

arbitrary ChM signal x(t) frcm the class in guestion and is

determined the first nearest to it signal of set Y. According to the

theorem of §7.2, for this it is necessary to equate phase spectra

a (w) and X{IO so that spectrum ( ) will prove to be real and

coinciding in sign T(). Then, varying signal x (t) , we will obtain

shortest distance drn, between sets X and Y. This consideraticn

completely ccrr-sponds to tne derivation of fc:rmula (8. 16), and wA

come to thq maximization cf value

Ii

a.,i4
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C (X, Y) +a b ,

where in accordance with approximation formula (8.42)

bz.)21'..B (t) ICos [ -t., + - +0,-!

As a result, passing in the Integral to the variable/altirnating

to [in this case is used equaticn (e.26) ], we obtain the condition of

optimum character for the unknown signal in the form, analogous

(8.35) :

C~x.Y)=J/'TB (t a (c)[ iJ~

0

X cos [1F t- -d+ 3dt = max. (8.43)

Here there is a cofactor Icos[.-. .11. caused by the more complicated

structure of the amplitude spectrum with symmetrical ChM. However,

after using the expansicn
0C

it is not difficult. tc note that the main contribution to integral

(8.43) intreduce~s first term, nct% containing rapidly-oscillating

factcr.

Page 233.
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Being limited to this ccmucnent/term/addend (role of the others let

us consider later, in ccnnection with FM signals), we obtain

2 ? ,3/2 P
C(r. Y I - (1) di. (8.44)

As earlier, for tha rosearch for the maximum it is possible tc use

Schwarz - Buniakowski. Irtegral (8.44) is maximum, if the

factors of the integrand are prcpcrtional, i.e.,

a a,, [A L" ==yBlt). (8.45

By satisfaction "f this ccnditicn is achieved the shortest distance

between X and Y, therefcrp, from (8.44) is obtained

T12
C (X, Y):=' - 12 B2(tidt = • (8.41

In order to determine ccefficient I let us raise equation (8.45) into

the square let us integrate frc zero to T/2. Taking into acccunt

standardization, we find

T'2 T,2

y-' B'(t) dt= j a-(% tt.

Let us switch over in the integral to the right to

variable/alternating we. This it gives

C* (T12)

a-(w)dw=.

Here integration limits ccrrespcnd to total variation in the

instantaneous fraqusncy cf thc unkncwn signal. As usual, w- assum

that this frequency regicr ccr tairs the range in which is contained

.1
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basic part of the energy of th# assigned spectrum. Therp-fore taking

into account standardization it is cbtained

-2 a(a.)& dw=4r.

Page 234.

As a rasult formula (8. 46) gives1

C (X.y) 2Y)011/ ) (.

FOOTNOTE 1. Correction term o(IIV,;)3 considers an e~r~cr in the- previous

calculation. We will refine this ccrrection in ehapter 9.

E NDFOOTNOTE.

Simultaneously equation (8.145) , which is dztrermining the

required law of fraquency mcdulaticn!, cbtains tae form

B (t) dt f a 2 (() dw ,, (8.48)
4r.

It is obvious, we obtained the results, close to previcus.

Equation (8.4i8) is similar (tc .8. 36). Difference in the coefficients

is connected with the fact that ncw total variation in the

A instantaneous frequency occurs for half of the pulse3 duration.

However, the comparison of -the coefficients of proximity (8.38) and

(8.147) indicates the essential difference.

It is earlier, for the sigrals with a monotone change in the
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frequency the coefficient of prcximity was approximately/examplarily

equal to unity, more precise value C(X, Y) how conveniently differed

little from unity during sufficiently large ccmpression m. This means

that, increasing compression, we cculd arbitrarily reduce distance

dmi,. obtaining how convErIently high degree ot approximation.

For the signals with symmetrical ChM the coefficient of

proximity does not attain one even within the limit with m-->-. There

is a final distance between sets X and Y

d2 =-2I -C(XY) =2fI - 0.91=0,2.

characterizing the limit cf error in the apprcximation/approach to

the assigned amplitude spectrum.

This is clarified in Fig. 8.6, where they are depict ed the

assigned spectrum a(w) and amlittde spectrum b,(o()) of signal with

symmtrical Chl. In accordance %ith (8.42) the latter has a chiracter

of the "rectifiad sinuscid", since contains factor Icos[... I. Selacting

the law cf modulation, it is Ecssible to approach the spectra

indicated "on the average", as shcwn in figure, out the available

dips/troughs in the points where b,(w)=0. limit the quality of

approximation/approach.

Page 235.

4
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There is no this limitaticn for the signals with tha monotone law of

modulations whose amplitude spectra have steady character and are

distorted only due to ccmraratively small Fresnal pulsations. This

difference reflect the chtained values of the coefficients of

proximity.

Let us point out alsc a differencs in the procedural nature. For

ChM signals with the monctone law cf modulaticn it is possible to

arrive at results presented above scmewhat simpler. It suffices to

require so that the amplitude spectrum b,(u), expressed by

approximation formula (8.27), would coincida with the assigned

spectrum a(.). This method is used, for example, in [7]. Howeve r,

from previous it is clear that this consideration is correct only

because without the accourt tc an error in th asymptotic

approximations/approaches it is pcssible to oktain a precise

conformity between the given cne and that unkrown by the spectra

(coefficient of proximity C(X, Y) it is equal to unity). For the

signals with symmetrical ChM this not thus. We will not obtain the

solution, if we will attempt to equate assigned and unknown th3

spectra. Here it is possible to only carry out approximation/approach

of these spActra with final errcr. Cur approach, based on the
J

criterion of proximity, ccntains tcth cases, shile the utilized

previously methods are suitable crlj for the ftst task.

-a-.
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The task examinad abcut the signals with symmetrical ChM is of

special interest also because it tas very close analogy with the

synthesis of signals with the phase manipulation. This questicn is in

detail examined further.

a440

.AAA
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Page 236.

Chapter 9.

SYNTHESIS OF FM SIGNALS.

9.1. Quantized and not quantized FM signals.

Signals with the phase manipulation are cscillations with

constant amplitude and constant frequency of filling, whose Initial

carrier frequency is changed %ith jumps at some moments/torques

t,...... ... ... and it can take fixed values 1.4. .....

.4

. ..-.
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Page 237.

If'! A fu-damental use find Linary F1 -sgnals, which allow/assume only the.

two values of initial phase 01=0 and 02=W. Only such signals aze

examined below. Composite envelcpe of binary FM signal is step

functicn - square wave - with the ccmmutaticns of sign at
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moments/torques t4 (Fig. 9.1). The key advantage of such signals ever

the signals of another type lies Ir the fact that is not required a

steady change in the parameter; the intermittent character of

modulation of phas. (manipulaticn) makes it possible to ensure

necessary accuracy with a comparatively simple equipment.

Let us give the determination of binary EM signal. Let the

function X(t) be equal tc +-1 fcr all values of t, except certain

multitude of values t11 of zerc measure; at the points of last s'-t the

function X(t) endures intermittent sign changes. Functions X(t) are

the envelopes of FM signals of single amplitude and infinite

duration. FM signals of final duration are obtained from X(t) by

limitation in time. Furthermore, we normalize signal amplitude so

that its energy would be equal tc unity. Finally we have

1 .71 (t - T'2 ,tg T 2;
X(" (t) 0 P t f V > T 12.

Key: (1). with.

Frcm Fig. 9.1 it is clear that FM signal it is possible to

depict also as the imposition of the functions of

inclusicn/connection. The amplitudes of Jumps have single valua in

4 the beginning and at the end cf the signal and the dcubled value - at

intermediate points. Therqfore, after designating total number of

-~ jumps through N, we obtain ancttex form of recording, equivals.it

I (q. 1)-:

,..
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2 ! -1 (t -- tt.) Il !9.2)

+ LaL I t t(9.2)

Page 238.

Since the spectrum of function l(t) is 1/jw, for the spectrum of

FM signal it is easy to obtain expression*

(9.3)

FOOTNOTE *. Here is not taken intc consideration deltoid component in

the spectrum of the function cf the inclusion, it does not play in

this case any role. ENDFCCTNCTE.

Here tk the moments/torques cf the commutation cf phaso, to=-r/2,

tN =T/2.

It was above assumed that the mcments/torques of commutation can

be placed arbitrarily on duratic T. However, fundamental

use/application find FM signals, ccmprised of the samples of fixed

pqriod Cf timP. Not to the det.riment of th_ gensrality we will

--loo
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further assume/set this duration cf single. The moments/torques of

commutation for such signals are rultiple the duration indicated,

i.e., tA=vk - whole numbers. We will call these signals those

quantified (KFM), keeping in mind quantization on the time.

It is not difficult to give the determination of KFM signal,

analogous (9.1). Let numbers Xi take values of +-1. Then KFM signal,

which consists of the n samples, can be presented in the form
* I'

0(t) - 1'.u.(t -i) x.u(t-i). (9.4)

I= - .=!

Here, as earlier, factor I/Vn provides standardization on the energy,

since under ths stipulated conditicns the duration of signal T is

* equal to a number of samrles r; uO(t) is a square pulse of the single

duration -,'

j 2 < t 2 I'200 i.' t 1 '2

Key: (1). with.

value . ]- the amplitude cf samples.

From (9.4) it is clear that [FM signals relate to the

composite/ccmpound, examined in §7.4.

Page 239.

I~~~~~~~~ .:+ ', ,+ ., - ..... .. ... - " ' '7 +: --$U ... '-...
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The spectrum of KFM signal can be presented in the form (s-(7.31))

where
sinw 2Uo !, ~ ~).- -. - .,

- sgactrum sample, and

H x e i =-- 1e j (9.7,

- spectrum of the code.

Formulas (9.4)-(9.7) do not contradict previous, since KF4.
signals belcng to the total set of PM signals with the arbitrary

arrangement/position of ccmmutaticns. The isolation/liberation of KFM

signals into the independent class is explained, mainly, by the fact

that during their formaticn and processing inter to use

slements/cells of digital computer tcchnology - shift rezgisters, thq.

pulsa counters, etc. This it simplifies to apFaratus. creovr, by

the methods of the synthesis cf KEM signals are characteristic soma

special features/peculiarities, which consider their discrete/digital

time structure.

9.2. Brief su-vay/coverage of best KFM signals.

It is cbvious, that KFM signal, which contains n cf samFl3s is

completely determined ty the sequence of coefficients K e-ual to +1,

Aik
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or -1. Therefore to each such signal it is possible to supply in the

ccnformity the binary numerical sequence, which is determining its

structure. For the analysis of the sequences indicated are applied

the methods of the theory of nuwbers, the algebra of binary

polynomials, combinational analysis cr another discrete/digital

apparatus. These mathcds are the tasis of the overwhelming majority

of works on the synthesis of FM sigrals. Althcugh the precisely

discrete/digital methods made it pcssible to obtain the majority of

known KFM signals with gccd properties, to us it is represented by

that not substantiated to be limited only to such methods of

synthesis. Keeping in mind to clarify the aforesaid, let us consider

briefly fundamental KFM signals.

Special position occupy Earker's signals, proposed in 11953 g

[3]. These signals have siallest Ecssible remainders/residues of the

autocorrelation function, which do not exceed i/n. It is possible to

show [7] that the spectrui of ccde H(w) fcr BarKer's signals least

deviates on modulus (in the sense of quadratic

approximation/approach) from unity. Consequently, according to

presented in §7.4, Barker's signals provide best square approximation

to the spectrum of single sample - square impulse/momentum/pulse.

A4.
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Page 240.

By Barker were indicated t1e ccdes with th=_ remainders/rqsidues

1/n only for n413. Those codes are cbtained by ths selsctier: after

the calculation of corresponding correlation functions were

salected/taken those signals, fcr wbich tha remaindars/residuas do

not exceed 1/n. Were done the repeated attempts to find Barker codes

for n>13. In particular, are indications that were tried all binary

sequonces for n.31 [4] 1*

FCCTNOTE 1. Let us note that cnly with n=31 ther: is 23't2*109

d.ffer4rt signals. ENDFCCTNOTE.

However, after research cf a number of the authors it is possible t-o

consider it established/installEd that Barker codes for n>13 there

dcs not 'xist (32, 77).

Because of the need to apply KFm signals with a large number cf

samples, were r'vealed scre cthar ccdes with th? r~saindqrs/r!.sidu-s,

large than 1/n, but by reverthr-less sufficiently low. Hers should b.-

*
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notsd M-Sequenc3s and signals, which uss the given residua classes.

Th-s particular form of the latter are the codes of LegendrR's

symbols, called also Pe-iI -Plctkin Is codas.

The synthasis of the, sigrals indicatc-d is : duced +c the

following. Fir-st, is applied certair algorithm (selected a priori,

without the proof of its cptimu character) fcr the ccrstruction, of

the infinite periodic ssquence cf binary symbcls (+1 and -1 cr 0 end

1).

In the case of M-sequences is assigned one of the irraducibli

binary polynomials of the ccrraspcnding degree q. There is a

comparatively complete table cf such polynomials (51], and sequenc:

is constructed according to the ccefficients cf pclynomial by

completely regular form (13, 614 2.

FOOTNOTE 2. Are known also other equivalgnt algorithms, which 1-iad to

X-Saquer~COS [44, 81). ENEFCOTNOTE.

The period of sequence comprises

where q - whole number.

For each qi are several irreducible pclyncmials. Thus, for 4=6

In -7
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(number of signs in period n=63) it is known 6 irr'e:ducible

polynomials, for q=7 (nuiker ef signs n=127) - 18 polynomials.

Choosing cne or another pclyncmial, it is possible to obtain signal

with one or the other properties, and thers is no general rule for

this selection 3.

FOOTNOTE 3. With the selection cf pclyncmial frequently is ccnsiderced

the larger cr smaller ccoplexity cf signal shaper [81], but this

question here is not examined. ENLFCCTNOTE.

signal in the form of periodic infinite sequenca usually is not

applied in the radar, it is necessary to still select the appropriate
segment of this spquence, and here also is certain arbitrariness (s

oelcw)

For the constructicn of the sequrnce of th:. given residu .

classes is used the algorithm cf ancther kind [4. dere thq priodi of

sequence n is assigned equal to tDq prime numt3r P and is chosen on-

of the primitive roots cf this rurter g. The Froperty of primitiv=

rocts ccnsists in che fact that, raisins root of g tc the daorz4 frc,

0 to P-I, we obtain the numbers wtcse deducticns, undertak-n on

modulus/module P, take all values from 0 to P-1 inclusively. Th-s-

4 deduzticns can be deccmpcs.d -tc scmL jiv-n r idu: class-s. Furthc:

to cne group of residuq classes is assigns.d symool +1, and to

-. 4i
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remaining classes - symbol - 1.

Page 241.

Finally, computing consecutive indeces of a radical g, is cons':ructe!

sequ:nc3 from +1 and -1, sign ir this casa is chosen in accordancf

with the fact, to which re.sidu.P class be.longs the next degree of

primitive root.

Although the rulss irdicatcd assumis ths sorting of a

sufficiently large number of versicns, they provide the synthesis of

gcod KFM signals with the permissible space of calculations. It is

sstablished/installed, that the seguences indicated possess th-4

minimum remainders/residues cf autccorrelaticr function. But hzrr

hive in mind the autocorrelaticr functions of infinite periodi=

sequencl.

In order to usr. the sequerces indicated in the radar (and also

4n some communicating systems), it is necessary to be bounded to th-.

segment of finite length, which leads to a furth3r detnricrationr in

the correlation properties.

It is proved that the autoccrr-.lation fur.c-icn cf onz pi.ric _-t

seuence (apezidic autcccrrelaticn function) is connected with th

-q- ---
"" j7
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correlaticn properti-s of infinite sequence. Tha low

remainders/residues of the autoccrrelaticn furction of aperiodic

signal can be obtained only when the remainders/residues of the

autccorrelation function Cf the irfinit; seguence, formed by its

repetition, are also low [4]. Tlerefore, synthesizing aperiodic

signal, it is expedient tc use one period of a good periodic saquenc-

of the number of those ireicatee ahcve. However, beginning signal

from different alements/cells of sequence, we will obtain ncncyclic

signals with thz worse cr best prcporti.=s. In other words, th . cyclic

permutation of the elemerts/cells cf sequence in the limits of one

period leads to the different value of remainders/residues. Usually

it is nicessary to sort cut all n of signals and tc select/take th7

best of them on the level of reiainders/residues.

Employing high speed calculating means, it is poss'ble tc

surmount the appearing difficulties. During the latter/last decade

wsre obtained much KFM signals %ith good correlation functions. In

lable 9.1 are generalized the results, indicatel in works [4, 45,

501, moreover are here given signals with the smallest known lev!l of

rzmainlirs/r;sidues. In the table are accipted thz following

designations. Signals are assumed tc be those not standardized, so

that the main peak of ccrrelati.cr function is -i4ual to a number cf

samples n. The greatest rsmainder/zrsidue is expressed by wh:T-

number p. In the previous desigraticns the levc.i of thi griat.st

- 7 , . ":.. . .
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remaindir/rasidus comprisrs p/n. In the fourth column of tahl . is

indicated the type of sigral, ir this case the letter of "M"

designates M-sequence, "B" - sequence of the civan residue classes

(among cthsr things of leg, ndrc's symbols), letter "rr" mean that t hs

signal does not relate tcthe types indicated.

It is known that the level cf naximum remainder/residue for KF,!

signals is close to value z,'y7 (besides Barker's signals). This is

illustrated by data in the third cclumn 'able 9.1. Is here indicated

valus k, equal to the relaticn cf th-c maximum r)mainder/rsidus to t'.

For the normalized autoccrrelaticr functicn (Frincipal maximum of

which is equal to unity) te have

R..8

In the region in question we cttained

IT
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Page 242.

Table 9.1.

-- ____-____ ____Tnii

15 3 n,77 133 7 0,66 B 383 15 0.77 B
16 2 0,5 .p 127 7 0,62 B 397 16 0ja0 H
17 2 0,49 B 127 8 0.71 , 401 15 0.75 I
19 3 0,69 B 139 8 k). 68 3 409 15 0'1 B
23 3 0,63 B 151 8 0.6.5 B .419 15 0,7H
28 2 0,38 ',p 157 8 0,64 B 431 15 0.72 13
29 3 0, 5ti p 163 9 0,70 B 443 15 0.71 B
29 4 0.75 B 167 8 0.62 B 449 15 0,71 H
31 3 0,53 B 179 9 0,69 B 467 ,5 0 70 8H
31 4 n,71 M 191 9 0,6-5 B 487 - 15 o.,8 H
37 4 0,(6 B 193 10 0.72' B 491 16 0,72 B
41 4 0,63 B 199 10 0, B 499 17 0 76 13
43 4 0.61 B 211 10 0.69 B 503 18 0.8o 13
47 4 0,59 B 223 10 o., B .521 17 0.7.5

553 0,,19 B 227 0 0,65 B 547 18 0' -, H
59 5 0 65 B 233 I 0,72 B 1563 18 0 76 8

I S 0.64 B 239 12 0,78 B 577 17 0,71 B
63 6 0 :76 .M 251 I1 0,70 B 587 I9 0,78 H
61 5 0.61 B 255 13 0R M 99 19 0,78 B
71 5 0.59 B T57 12 0.71, B (9i 19 0,77 1373 6 0,70 B 283 12 0'' 7 B 19 3, 7179 6 0.68 B 293 13 10, 76 B 631 18 7 ""

83 6 0,66 B 311 13 0,74 B 643 19 0.7,
89 6 ,64 8 317. 12 O. -8 B 1,73 2() 1.78 B
97 7 0,71 B 3, 1 14 0,,77 B 6:'4 19 1) 71 B
101 6 060 B 347 14 0,75 B 1 661 20 0.78 B
103 8 n: j B 353 0 0,80 B 674 21 o . 13
107 7 068 B 359 4 0.74 B ,83 20 0.77 B
109 8 877 1 379 , '.07 13 719 20 H

Kay: (1). Type.

Page 243.

In other words, for the signals with large n the maximum lav-i

cf reuaind-rs/rsidu-s is clcse t I v;

L't us tmpas.zv again that arc he: :c used the best achiV" .:4...

- mm
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of latter/last time. In particular, from the data of Table 9. 1 it is

evidsnt that M-sequsnces are tot optimum: value k for them scmswhat

higher than for other signals.

9.3. On tha methods of synthes-4s P? of signals.

Ono should assume that many authors' intense searches tc a

considerable degree drained the pcssibility of the synthesis of KFN

signals. It is difficult to expect from other methods of

substantially best results. But arproach itself to the synthesis

causes, in our opinion, certain dissatisfacticn.

In fact, for Fri signals there are no regular, variational

methods of synthesis. Different methcds use different a priori

algorithms fcr the ccrstructicn of infinit- sequnca. Furthcrmor:,

nscessary is selection during the determinaticn of the best cyrlic

permutation, which gives the zirizuu of rsmainders/resiiu-s. Wi-th

this apprcach one cannot, of course, h.-. confident that was cttainpd

the signal with the best (in the assigned sense) properties.

with a large number of samples th. sc:ting varsions prcves tc ti

very bulky and can prove to te Frcblem even fcr ccntamporary TsVM.

Iiar.whilg "h.r3 is a clear tendency to apply FM signals with all a' a

larg-. numbt'- cf samples, and this justifies th? search for cth :
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methods of synthesis, not connected with similar difficulties.

Focuses attention also a qualitative difference in the methods

cf synthesis of ChM and Fi signals. As we saw, synthesis of Ch

signals is produced by regular retbcds, withcut the selscticn, and

asymptotic decision provides the necessary accuracy precisely duriig

th. large compr.ssion, i.e., in that rsgion wl.qze the synthesis of FM

signals is most hindered/tampered. The methcds of synthesis of ChM

signals possess physical clarity. There is a sufficiently obvious

connoction/communication betwern instantaneous speed of modulation

and level of the spectrum, that :akes it possible to come tc

light/dstect/expose the structure cf th- unkncwn law ChM according to

the assign d autocorrelation furcticn. Ths known methods Cf synthesis

of FM signals completely disregard similar physical considerations.

we will show furthqr that the critirion cf prcximity pfrmits zc

work out substantially ancther fethcd of synthesis - method, which

does not rsquira salicticn and hhch reveals/detects generality, the

inherent in ChN and FM for oscillations. The proposed below

asymptotic decision allcws/assuies rhysical interpretation and it is

useful for FM signals with the large ccmprzssion. Although during the

use of this method are not obtained thi bnst signals, than givir

higher, it has advantages in the serse of simrlicity and clarity.

*i1i
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As it follows from that presented, with the synthesis of KFM

signals it is accepted to use a minimax criterion of the

approximation/approach: cptisum ccneiders sigr.al the smallest lcvel

of the greatest remainder,/residue. This criterion answers the asseace

of problem. Remainders/residues (minor lobis) mask signals frcm th-

weak close targets, and it is desirable tc bound the level of

rsmainders/resilues by the permissiblr low value. We will, however,

apply the hypothesis cf proximity in space L2 , which correspcnds tc

thc quadratic approximaticns/apprcaches, which characterize scmehcw

I ths averag-/mean, but net maximum level of rgmaind-rs/,residuss.

Page 244.

Of course this is ccnnected, first cf all, with thq fact that th

quadratic criterion simplifies decision, but th=re are other

consideratiors in favor of this criterion.

The levetl of the greatest remaindsr/rasidui unconditionally

characterizes resoluticn, if discussion deals with resolution of two

targets. Comparing signal frcm cne target with the maximum

ramainder/residue from ancther target, we obtain th. evaluaticr of

permission/resolution urder the wcrst conditicns. But, if is tracMd

s rsclutici with th,. multiple chactically arrang d/locatad mixing

reflections wh-n signal at ach rcm-nt sf .im, -s formed duin th.:

VIX
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impcsiticn of many elementary resronses, position substantially

varies. Under thesa conditions the task of permission/r-sclutlon has

a static character and a quality cf signal it is characterized by th?

root-mean-square level cf remainders/residues, but minimax. This will

be cocrdinated with the criterion, utilizad below, sae also [15].

In this chapter further is examined the synthesis of the. not

quantized by vi signals with the arbitrary arrangement/positicn of

ccmautaticns. Such signals form wider set than KFM, but on the set in

question arc rztained the fundarental special faatures/peculiari14ies

of phase manipulation - irtersittert character and the constancy of

amplitude. These special features/peculiarities characterize main

technical advantages of FI signals cvpr the signals of othor typis

and, as it is clear from the fclcwing, precisely, they are

determining in the prcbleu of synthesis. we will show that th!.

important prcpa.rtiEs of F14 signals which, until now, could te only

assumed on the base of available experiment, are revealed/detscted

completely naturally with the hell cf the proposed method. In

particular, asymptotic decisicn will coma to light/detp-ct/expcss th

maximum level of r-mainders/residuss, which is apprcximatcly

coordinated during the large corpression with tne given results.

But nevertheless largar practical interest represent KF1

signals. The corresponding methcds cf synthasis ar-- examin.d n '.

A
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following chapter. These m.thcds ars tha straight/direct d,=velcpman

of the methods, set forth belcw.

9.4. Approximations/approaches cn the set FM cf signals.

Let us switch over tc synthesis of FM signals. As we usually

assume that in the space of signals H are many X permissiblc signals

and many Y desired signals. Set X ccntains all F1 signals with thq

arbitrary arrangeuent/pcsiticr cf ccmmutations, i.e., satisfying

conditicns (9.1)-(9.3). The structure of set Y depends on specific

problem. If synthesis of FM signal is produced according to th.

function of uncertainty/irdeterairarcy 7(t Q). by realizable certain,

in general, by the continuous sigral s(t), then set Y contains all

signals, which possess this function of uncertainty/indaterminancy.

As it was shown in chapter 7, these signals are characterized by crly

initial phase, i.e.

Yj() -s(t) e (9.9)

Page 245.

We will trace also synthesis of FM signals according to the

assigned roalizabl3 autcccrrelaticn function F(z) . In this casa set 7

contains all signals with assigred R(t), i.e., with the assigned

amplitude spectrum a(w) , connected in a known manner with R (t),

'---I .,,i
-4 a , e g.- -
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where a(w) - arbitrary rhase spectrum.

Let us designate thrcugb X~r the set of FMl signals of thg

assigned duration T. Let there te the arbitrary signal y (t) . tat us

find FM signal x (t) , which belongs to sat XT. ensuring b,?st

approximation to y(t), i.e., will scive the task cf approximation or.

the set of FM signals. Result gives the following theorem.

a) Best approxinaticn to signal y(t) gives on set Xr signal

x(t), sxpressed by fcrmula (9.1), fer which ths function X(t) is

determined with -T/2<t<7/2 by the condition

Q e0)0 (9.11)
-1 .iR BC t, flpH KOothx Regy (t) < 0,

* Key: (1) . for all t with which.

or otherwise X(t)=sign Reyit), where sign - function of sign. Tha

moments/tcrgues of commutation o f signal x (t) coincide with zero

Rey (t) , i.;!.

* Re y(tJ,) O

b) If with -T/2<t<7/2 real part Say (t) is diff arent f~cm zarc in

any int'srval of t of final measure. tho signal of the best

* I approximation on set Xr cxrly.

4 c) 1he coefficient cf Frcximity br-:wein signal y(t) and s- t Xi~

:1 comprise-s

aix Re a it i 1.3
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Actually/re ally, as usual, the task of approximation is radilcad

to the maximization of the coef ficient of jrc ximity which taking into

acccunt (9.1) obtains the expressicr

C(x, y) =Re I x(t)y i) di 7j,-_ja (1) Re y (t) diI.

Page 246.

According to th3 conditicr X(t)=11, therefors,

C~~~~~~~7 (X ) 2 )R- tId

Is here achieved equality onily by satisfaction of condition

(9. 11) which, as can easily be seer, proves all ccnfiraiaticns of

theorem.

For the unliqu,:fl--55 cf the test approximation it is significan'

that function Ray(t) is differert frcm zero in any finite interval

-with -T/2<t<T/2. Actual ly/reall1y, if in certain section TCT fucti~:

* Reymmn)O. then, as it is cle3ar from the formula for the coeffic&.ent (-f

4 proximity, its value doqs not dr-erd on what function )4(t) is

J~ selected in this section. Consequently, unler these conditions best

appro-ximation is rnct unamtiguous.
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The proved thaorem has fundasental value for the synthesis of F.'

signals. It determines test appicxiiiation on get XT for any

continucus signal y(t). TIhq fundamertal content of theorem is reduced

to the vqry simplez rule: for cbtaining the best approximaticn on sn*

of FM signals it is necessary ard it suffices to produce the ideal

limitation of the assigned signal (are mors precise, its real parts),

so as to the given one and apprcximating signals would coincide in

the sign (Fig. 9.2)
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Fig. 9.2.

9.5. Synthesis according to the function of

unc ertainty/i ndeter mina nc y.

Lst us use the proved in the prsvious paragraph theorem for thp

synthesis of F. signal according tc the realizable function of

uncertainty/indeterminancy. As it was noted, set Y contains in this

case the signals, which are characterized by cnly initial phase and

* determined by relationsh.iF/:atic (9.9).

Page 241.

In connection with this task we ccnfirmed the hypothesis of proximity

% in chapter 8, after showing that test quadratic approximaticn to th =

assigned function of uncertainty/indeterminancy gives signal xop(t),

* nearest tc the sat Y indicated.

For finding this signal let us use the fcltowing order f thx

minimization of distance. First, fixing/rqcording arbitrary signhil

.7 -

I8
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yrY, it is detarmined the nearest tc it signal of set X. If the

latter contains F3 signals cf prescribed duration T, then result is

determined by the previcus theorem and distance d(X, y) is

characterized by tha coefficient cf proximity (9. 13). It is possibl--

to consider, however, the mcre cereral case when duration of F.

signal T is not assigned previously, but it must he determined in thi

prccess of synthesis. Then it is necessary to maximize the

coefficient of proximity also ir value 1, i.e., taking into account

(9.13) :
T,'.

C(X, y)=wmaxC(X,. y)=nlax Rv s tt c"I d!.

Then we will maximize the coefficient of proximity alsc in set

T. In the task in questicr the sicrals of set Y satisfy ccndition

(9..9) and diff r frcm each cther cnly in t;:ms of initial phas-. 0o.

Thersfore

r!2

C(X, Y)=maxC(X, y)=max R 7d
T., T.2

Separating/liberatirg in sigral s(t) amplitude and phase facto.rs

s(f)=A(t)e'(').we finally obtain

C (X. Y) = max -=(

.r42

Lgt us considzr a specific exarpla. As it was shcwn in chapt-;r

6, optimum function uncertainties/irdeterminarc-es in the s=r.sa of

its concentrati3n in certain central circle give the functicn of

*-N
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Hermite. We will seek approximaticn/approach to this function of

uncertainty/indeterminancy of FM signal.

Page 248.

The function of zero-crder Hermite - Gaussian signal - has a

compression of the ord.r cf one. Attempting tc obtain F! signal with

the large compression, lcgical as t.e "sample/specimen" to take thq

function of Hermite of higher crder. Let us place

{~~ s~ A (t) = (!2j;] " )': -H. , ). 19.15)

where H, - Hermite' polynomial.

We examine tha real signal fcr which $(t) O. Therafor. from

(9.14) it is obtained

T12CtX. Y)=maxLC - l ., I/ Is(tWdf.

TVT !stdi
-r;2

Obviously, maximum cn 00 occurs with 0o=0. Th-s c--nditicn

determines signal gof, nearest to set X. Consequently,

C (X, Y)= Ma. - Ut)!dt. (9.16)

Fig. 9.3 show the assigned sigral, the function of Herm:tz of

the 10th crder. Stepped line rerresents unknown anvslcpe of FM

signal, ccnstructei in accordance with che previous thezcrcm (4--. Zc

-hat .hq omc.rts/torq - cf ccmrutaticn fall to z.rc s(i)). Th'

optimum duration T is determined according to condition (9.16).

Brcken line showed the dependence cf intagral (9.16) of th-- duraticr.,



/
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4, 1 5 -"' 6 "d

Fig. 9.3.

Page 249.

Maximum occurs with T/2z5, that also determines the unknowr. duratior..

In this case

C,. = C (X,' 0,) 6 ~e7.

As usual, the value of the maximu coefficient of proximity

detarmines thz_ sh.test distance totwe~n sits X and Y:

dM, - 2 j'- C(X, }')]:=211- 0,87.)-= 0,26.

In § 7.1 it was shown that the smallest quadratic difference in

the correspording functicns ef uncertainty/indeterminancy also is

sxpr3ssed as the coefficient of the proximity:
Go =

d- (Z. ) min ; '. /.;/,I I , Vd:dQ
*1

=2[I-C2rX YI]=2 l-0,871= . 49
The comparison of the two-divensional functions of

uncertainty/ind-tarminancy, represonted in the form of th. surfacf.s

abov the plane (t, Q), prasertE Oncwn difficul-:y. e will th ,

tc tic secticna, s hown in Fig. 9.4. Th. f'inction of th"

uncartainty/indaterminancy of hernitian signal is a bcdy of

revolution.
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,2

Fig. 9.4.

Page 250.

Its section along the time axis (autoccrrelation functicn) has an

expression
/., t, 0)=--R (t) = e-"1'i,,(t: "21,

where L, - Laguerre's pclyncmial.

Analcgously czcurs secticn alcng th, axis of the frequencies

Z., A0) = e-'/4L. (02,12).

This dEpendancp is shown ir Fig. 9.4 by dotted in . Scuii lirrs

represent the appropriate secticns cf the function of
uncertainty/indetcrminancy X,(tg) fcr the approxma-ing FM signal,

shcw-i i Fg. 9.3.



DOC =80206711 PAGE

We obtainad satisfactory approximation/approach. For the

autocorrelation function, which depends on the code, broken line,

which ccrressonds to FM signal sufficiently fully describes ev.n fine

structure of the functicr of Laquerre, approximataly repeating th-

form of main surge and all remainders/residues. Sections x(O,.Q)

approach to a lesser degree. Here satisfactory coincidence takas

place for the main surge and near lateral ones. Further curves

diverge. This is explained by the fact that fcr FM signal with

rectangular env-lope section x(OQ) 1t does not djpind cn the code, it

is described by the functicn

(o )=sin QT.'2* Xx(0, Q)--- g--f -,i r 2

which is completely determined by cne parameter T. Logically, the

possibilities of apprcacbing this section are very limited.

Lzt us notz, however, that the dotted cuzve, waich ccrresponds

in Fig. 9.4 to continuous herritiar signal, is placed in the

considerable section between the sclid lines. Th.s makes it possibl_

to assume that the apprcximaticr/approach of tha same order give all

other sections. In any case, we cktained best quadratic approximation

to the assigned function cf urcertainty/indeterainancy.

One shouli emphasize that the quality of approximaticn/appracl

f 4t

~~~i --- LAM- L7I F -
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depends substantially or what furcticn of uncertainty/indet~rrinancy

is assigned. we considered the case when the realizing signal s(t)

real. This sets known limitation cn the structure of the function of

uncertainty/indaterminancy 1

FOOTNOTE 1. The latter pcssesses symmetry relative to the axes of

coordinates t and U. !NDFCOTNCTE.

Page 251.

It is obvious, the real generating signal t6o approach with the help

of F?! signal (which alsc real) is pcssible better than the signal of

* general view, which has imaginary component. In part-icular, an

at-.empt at the app--oximaticn/apprcach to ChM signal (in which real

* imaginary the parts are ccmmensurated on the ene rgy) gives

* considerably worse results. Fespectiv-1y, is cbtain.3d worse

* approximation/approach of the functions of uncertaint-y/ind-ite rinar cy

*9.6. synthasis according to thr- autccorrelaticn function.

I W-3 pass to ths ccmpL~x protlem - synthesis of F?! signals

according tc th- autccorrilaticr ucin.A tis3 cl-ear frcip th

orzvi-ous s'rvey/coverage, precisely, this prctbim is th-. basis of

-. J
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majority cf the known methods cf -synthezsis FM.

The ggneral/common,'tctal treatment of a question remains

previous. If R(t) - the assigned rializable autoccrrelaticn functi~r.,

then many desired signals Y include the signals, which satisfy

condition (9.10) and which are characterized ty only phase spectrum;

tha amplitude spectrum is uniquely determined by the assigned

autocorrelation function:

;y(w)f'a, ()= SR (t) e-j di

After selecting certain desired signal yY we we can determins-

FM signal xE=X. nearest to it. Ir accordancs with the theorem § 9.4

for this it is necessary and it suffices to fcrm FM signal x(t) so

that the given one and approximating signals would coincidq in the

sign. The corresponding ccefficiert cf prcximity gives

r'--1ationship/ratio (9.1--)

FOOTNOTE '.Here and thrcughout is examined set of FM signals of

fixed pariod cf time T. This does nct lead to the loss of generality,

if comvrts-sicr, i's sufficiently great (see belcv) . ENDFOOTMOTE.

in order to find signal ronazest -. set X, it Is rzcqssary,

varying signal y to obtair the ffaxzifum of zhis valui.
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Page 252.

Satisfying this condition signal Yo;- is generating for unknown by F11

signal ',:. in order to det'.rmine th-e latter, it suffices to furthrr

again use theorem of § 9.4.

Thus, the criterion cf prcxisity laads to thg following task:

it is necessary to find phase spectrum ao,.,',,, the maximizing

coefficient of proximity (9.17) when signal y(t) is connected with

a(w) the relationship/ratio
0C

wher_ a (w) - the assigned amplitude spectrum. The moments/t:crquqs .f

commutation ht of thi unknown FF signal x(t) ars dstarminad futher

from the condition
Reyopt(th) =0. (9.191

Signal xop, satisfies the criterion of prcximity, i.e., r.aliz.s

the minimum cf distance cf set 1. After using another order of the

minimization of distance, we descnstrated in § 7. 2 that this signal

provides best quadratic arprcximaticn to the essignad amplitude

spectrum a(w) (see fcrmula (7.17)), and it also gives the

autocorrelition function, clcse tc thq optimur (in the sersq of

jl
h.
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quadratic approximaticn/apprcach - see formulas (7.20), (7. 25)) .

The proposed method of synthesis is reduced to finding cf

generating signal yop,(t), and not directly not unknown FM signal

xo (I). This leads to the variatioral problem, where unknown is

continucus function - phase spectrum a(w) . Failure of the direct

synthesis discrate/digital FM cf signals allows, as we will see, to

work out the regular methcd which, at lqast, in thr asymptotic

approximation/approach gives decisicn without any selection.

As for ChN signals, is here possible the it-rative procedure of

decision by the method cf succeesivE design. Itaraticns make it

possible to obtain more exact solution, being transmitted from

certain signal of zero approximaticn. Such iterations completply

correspond to the overall diagram, pressnted in § 1.8 and which was

being rapeatedly applied by us earlier.

Aftqr assigning FM signal cf the zero approximation xa, wm

* Idetermine signal YLI which belongs to set Y, nearest to x0.

4 Page 253.

4. then seek signal .-V r-arest tc y,. R-Spiating this process, w-

obtain descending sequence of tle distances

9.,

- -d-c:, ...-
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Let us dismantle/select in greater detail than these iterations.

After assigning FM signal of the zero approximaticn xO, we can

datermine its spectrum, using releticnship/ratio (9.3). If we

separate/liberate the real and imaginary parts of :he spectrum, it ".s

obtainad

- ' --j

V-I|

oi I)sflwt("i).~

V () ( I) cos -C.9 -

~re t2 -momefnts/tcrques cf ccmmutation for signal xo. In

acccrdancp with the theorem of § 7.2 in order to d.termine signal

yt¥Y. nrarc.st to xO , it is necessary for the assigned amplitude

spectrum a(w) to ascribe the FhasE spectrum of signal xO. In other

words, spectrum y(w) shculd be registered in the form

y (w-o=a fw

- ( toS l C

Signal y,(t) as the functicn cf time is determined furth-.r by

inverse transformaticn of Fourier:

-1w V I :1(0192

Ait

r----- ,-A= l - ,- -- - ----------:-----,
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It is hr- assumed that the amplitude spectrum a(w] occupies the

final band (-V, a) and is even furcticn.

Page 254,

Finally, it is necessary tc fulfill transition from signal yL to

the nearest signal x, of set X. This transition gives theorem of §

9.4: the moments/torques of ccmuutaticn of FM signal x, correspond to

zero rsal parts of the approximated signal y ( t). Since signal y1 (t)

r:al, finally is obtained the equation

y,(tj(t)) =0; -T2<thW<T/2 (9.22)

for determining thE momonts/tcrques of commutation of FM signal of

first approximation. Further stages of iterations are produced

analogously.

In chapter 1 it was shown that this iterative process

corresponds to projective-gradient method. Is minimized here distanca

between X and Y. Was considered alsc the convergence of iterations.

In accordance with the theorams cf § 7.2 and § 9.4 when making thtsr-

assumpticns occurs the uniqueness of approximations/approaches in

each stage, and itsraticns lead to certain minimum of the distanc.-

between sets X and Y. However, this minimum can prove to be lccal. So

that th. itsrations would lead tc the shortest distance (global

minimum), th. signal of zarc apprcximation must br selected

----
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sufficiently closely to xo ,

The detcrmination cf zero aprrcximation is ths independent

problem, which is reduced to the straight/direct rasoluticn the

formulated earlier variational Frchlem, see relaticnships/ratios

(9. 17)-(9.19). We will ccnsider the asymptotic method of its

decision, suitable for the high ccntraction ccefficients. This

decision has much in common with the appropriate methods synthesis

ChM and is of independent interest.

9.7. Asymptotic synthesis FM cf signals.

Above established/installed, that the synthesis of optimum FM

signal x,,- is reduced tc findinc cf optimum generating signal p,

nea7-Rst tc set X, and this, in turn, rsquizrs th 3 determinaticns cf

optimum phase spectrum (L-.otoi. with which th. coefficient of proximity

(9. 17) it reaches maximum. On tke cther hand, signal ye,, is lccat;ol

at the shortest distance from FM cf signal x,. In accordance with -h

thpcrem of § 7.2 its phase spectrum is phase spectrum of FM signal,

i.e., the odd function cf frequency, se (9.3) and (9.21).

Page 255.

WS can thercfcr3 b- bcurded tc the xaminatior of odd phas-, spactr-,

7- -;L- a.] -. -- .... r -
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after assuming

U~ (-w) = -((.~I) ; (t (0) = 0.

Furthermore, tha amplitude spectrum a(w) makes sense to assign only

by even function of frequency, since the amplitude spectrum of any FI

signal is eiven and the ccefficient cf proximity in the form (7.15)

does not depend on odd ccuponent in a() . Under these conditions the

generating signal y(t) is real. As a result, proposing also that a(w)

is finite in ths interval (-Q, G), we obtain instead of (9. 17) and

(9.18)

T,.TC C(X , y) --- - y (t) 1dt = m a-, 1!.23 ,

0

Task consists cf the determination of function a w) , that

realizes maximum C(X, y). For the apprcximaticn calculus cf integral

(9.24) it is possible tc use the m-thod of steady stata. This is

connected with one more assumaticr: one should consider that the

derivative of the unknown phase spectrum a, (u) varies monctcnically

in interval (0, Q). The aforesaid means that we will seek optimum FM

signal frcm the subset, subordinated to further condition. We must

also explain, how this a limitaticn is dangerous from the pcint cf

view of the loss of the best sicnals, which ersure high degree of

approximation.

L Thus, ccunting for thi concreteness, that :ha functicr. (W)

'r , ,
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monotonically grows 1, we can use the formula of the method of sta-i

state (8.24) exactly so, as this was done during the

conclusion/output of relaticnshirs/ratios (8.31) and (8.42).

FOOTNOTE 1* It is possibl, to take that decreasing al (w), this leads

only to the inversion of the chtained signal, the opposite refarence

direction of time. ENDFCCTNOTE.

As a re.sult it is obtained

moreover frequancy w. is connected with the current tima t with

stability condition of the phase:

u' , t; 0<,am< Q. (9.26)

Page 256.

Formula (9.23) leads further to the relationship/ratio

-,2

Here the sign of approximaticn/approach indicates the error,

connected with the methcd of steady state. It is belcw,

allcwing/assuming also scme cther errors, we we will not first write

out ths appropriat, ccrrections. Th . evaluaticn/estimat% of thLs2.

approximations/approaches is dcre acre ia-tely.

&&6 -LO AL6 -W-
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Using dependence of t on wc, by axpressed formula (9.26), let us

switch over in the latter/last integral to variable/alternating wo.

Frcm (9.26) we have dt/dwo=a" (i.) ; therefore

C(X, y) Taw)(.cs )
V-2,

- e' () '4] dw. (9.27)

Is here omitted index in variahe/alternating w, and integration

limits Q1 and a correspond to the boundaries of the signal:

a'(i,) --(i2, '(Q) T2. (9.28)

Furthermore, taking into account (9.26), is assumed to be that

perforined condition 0.<Q 1 , Q24G.

As a rule, the assigned amlitude spectrum a(w) is the pcsitiv

flat function, which slowly varies in interval (0, 0) . A similar

character can b _ assumed, also, In a" () . However, latter/la

factor under integral (9.27) has cscillatory structure.

Using the expansion

cf. , .. 4 zI co 2 z (9.29)

wA we can isolate from "his factcr "constant coiponent" 2/-.

* Pe 257.

On" should .xp. t that this cccer ak s a malin contribution
4' O ~~~ I o)q*LZ (92

,,, -w can ...... f o " f t cn componlint ln2/r.
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integral (9.27) while raFidly fluctuating additions give small

correction. Therefore, being lizited thus far to the first term of

series/row (9.29), we ottain

C (X , y ) -- 2 a ( u) iw )d . :9 .3 0 1

the coefficient of proximity C(X, y) has a maximum. Applying

Schwarz-Buniakowski's inequality, we obtain, taking into acccunt

(9.28) and standardizaticn conditicn:

2, 22C, (X. Y) ()d- a'.)dw=

=, ( )- (L),)] 2va2 (w) d

2,

d , (wldu, (9.31)

Here there are two irequalitims. The firs of them is ccnvert-

into the equality, if factcrs urder intagral 19.30) are propcrtional,

a"(w) =ya 2(a) (9.32)

Th%. second in- quality beccmes oquality, cnly if integratior

limits comprise

Q,=0 Q2=..

So that the coefficient cf pzcximi-:y would achieve maximum, it

is n-.csssary to take bcth these ccnditions. Fec-or cf propcrt'!na1i.-y

T it is easy to determine further, if we integrate aquaticn (3. 32).

This it gives
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0 U

Moreover here are again taken into consideration

ralatiotships/ratios (9.28). Corsequently, T=1rT,.

Page 258.

Thus, optimum phase spectrum satisfies the nquation

T a () (9.33)

under the initial corditicns a' (0) =-T/2 and o(0):-0 .

FOOTNOTE 1*. Latter/last ccnditicn fcllows frcu the odd parity of

optimum phase spectrum a(6) and its continuity. ENDFOOTNOTE.

Direct substi-ution in (9.27) sbcws that value C actually/r-ally

reaches in this case a maximally rcssible value, detarmined by

inqualit y (9. 31)

C (X, Y;:=:-!f7 [/T (w, d-~A (9.34''

Fig. 9.5 illustrates these results. In the upper part of ths

figure is shown the assigned spectrum of pcwer a2 (w).

4

-t

-1161
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Fig. 9.5.

Page 259.

In th- low,: part is given odd furct-on a" (w)whoss each half is

proportional to this spectrum ir accordance wi-h (9.33). Is there

shown function (0 (w) and are. oted integration limits Q, and 92,

which satisfy conditicn (9.28). Thb value of thq coefficient Cf

pro ximity is proportional to integral of a 2 (w) withIn the limits

indicatid and :-ach.s ma:,mum with C1=O and 0 2 =q.lbviously, we

ir:ived at the relaticnships/ratics, very close to the case cf ChM

signals. Equation (9.33) is similar (tc 8.37) for :ct&rgular
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envelope. Furthermore ChM signals with symm-trical modulation,

examined in § 8.6, they gave accurately the same value of the maximum

ccefficient of the prcximity (see (8.47)). Thezr3 is suggested the

assumption that there are certain internal connection batwecn ChM ard

F, oscillations. This ccrrecticr/ccimunicaticr will be

actually/really revealed subsequently.

Lat us now point out only that a structure of ChM oscillation

has the optimum generating signal, which satisfias the previcus

conditicns. Actually/really, with It[<T/2 this signal is determined by

relationship/ratio (9.25), which taking into account (9.33) and

(9.26) acquires th- fcrm

Yo, t) M -- cs 10 ( %)!41. (.

Hqrq

0IV ) = ) - M,' ( ) a (0 ) - [ + " ( )d

T '
7' a' do, 9.36)~

0

but frequency is connectid with time t with r1;la-ionship/ratio

(9.26), which can be registered alsc in the fcrm

t ()

* 0

T~+$7T ' a, D. 93 )
Page 260.

WI

p4
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Oscillaticns of type (9.35), which have ths structure

y(t) =A (t) cos z(t).

we will furthqr call real ChM sIgnals (in contrast tc usual CbM

oscillaticns for which is characteristic the representation cf ths

form A(t)eJ()) *

FOCTNOTE 1. However, them it is pcssible to name also FM signals cf

variable amplitude, since the phase takes values of 0 or r depending

on the sign of cosine. Let us recall also that we everywhere deal

concsrning composite envelope, tut not with strictly thq signal.

ENDFOOTNOTE.

Instantaneous frequency cf this ex!sts z'(t). For generating signal

(9.35) instantaneous frequency vary mcnotcnically. Actually/reaally,

taking into account the previcus relationships/ratios, we obtain

* (t) -- -- d=Zd __D dwd

-a' (= a' (,) w

formula (9.37) it shows further that &)() is a monotcnic function.

Thus, which generates fcr the cptimum FM signal is real ChM

signal of constant amplitude vith the monotone law of a change in 1h1-

frequency.

In Fig. 9.6 is clarlfisd t e methodology cf synth sis, which
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directly escape/ensues frcm tbe attained relationships/rati4os.

*Optimum F11 signal x~p is nearest tc yopt. Its moments/torques of

commutation correspond tc zerc yopt(t). i.e.

Y.t(6.) r CosB- (ft) + -iI0.
Therefore, after constructing of the assigned amplituds speqctrum

function (u), in accordance witt (9.36), we must determine values wJh,

with which It is implemfnto-d latter/last condition. These valuas

determine, in turn, moments/tcrgues t,% according to equation (9.37),

and also the unkncwn FMI signal, skcwn in the right side of the

figure. Charactaristically mcinctcn? condensation of the

I moments/torques of commutaticn tcvard the end of the signal,

connected with the assuapticD about the monotcni4city a' (w).

L:et us explain now, what degrpe cf approximaticn gives this

* method of synthesis. The distance tetween sigrals xo0 . and y.,, is

determined by ths cbtained coefficient of proximity (9.34~):

d-:,=2j1 -C(X, Y)1=2(1 -,9)=,2. (9.38)
Page 261.

* The method examined has as a goal to approach autocorr-latior

4 functions, an~d It is impcr-tant to consider, hcw this is rceached. 1:!~

J . 7.2 was obtainad ralaticnship,-ratio (7.25), which -stablishes tha

approximate dependence ketweer a rect-mean-square error in thi

autccorrslation functions and with a distance of dmin.
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This relationship/ratio takes the form

Thereforq, taking into account (9.3E) , we obtain

8,.; 1 0,4 tn -s0.63 1 m. (9.3911

This result has furdamental value. we can claim that during th,

large compression the remain dere/residue s of autocorrelation function

in the optimum case are cf the crder I/V. Until now, this ccnclusioc-n

followqd only from the analysis cf known signals I

FCOTMOTE 2. DUring the ccrclusicn/cutput of relationship/ratio (7.25)

ware assumed some average/mtaan ccndi4ticns. For the best signals the

root- mean-squarz lavel of remain~ders/residues can be less (9. 39). but

it has the silu.m order relative tc valus m.
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Fig. 9.6.

Page 262.

9.8. Ancther treatment cf method.

As it was mentioned, the generality of tha methcds of synth3ss

makes it possible to assure certaln ccnnection/communication betweenr

ChM and F3 oscillations. This ccnnection/communication lies in the

fact that any FM signal it is pssitle, it prcv;s to bk, to ripr.-s::t

in the form of the impositicn cf the corresponding Chl signals.
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In order to show this, let us begin from formula (9.3) for ths

spectrum FM of the oscillation

2-+

+e_) 2 (9.40)

Let us introduce instead of the index of summation k ccnltjnuous

the variable/alternating z and we will consider that there is a

continucus f unction t (z) , which takes values ti, at pcints zk=0, 1,

N. Then it-1 is possible to us. the summation formula of Pcisscn

(see for example [1)

___?(k+0)+'f(k-0) fJ J(z) eJ2"lEdz (9.41)

for converting expressicn (9.40). Actually/really, if we determine

functiocn 0(z) by the relaticnshipiratio

V (z) - exp{(-j [0.(z) - =t j 0 <z <N

Key : (1) . with. (2) . and.

that, as can easily be seen, left side (9.41) is converted int o th Z

expression, included in the trackets in fcrmula (9.40), and we obtain

* I on the basis of Poisson's formula:

do V
XI Wc)= ex ',Ijt(z 2 1) nz)dz.

v=-= 0

Sinc': t (z) - m.notor.ic furcticr., It is possible to pass in the

latt~r/last int-igral to by the variabl, /alt -rnating t. As a r,?sult
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after the series/row of the ccnversions (is used integration in

parts, the terms outside the integral vanish with the summaticn) is

obtained

Z-a 2-+,1xp ((2v+ 1) cz (t)- .t]),dt.

(9.42)

Page 263.

Finally, banking in pairs the members of this sum, it is !asy to

~~obtain

T12

It is ncv clear that in the interval (-T/2, T/2) of FM signal x (t)

can be presented in the fcrm cf the infinite sum of real Chli si.gnals:

(0 f,-+ sin [(2v + 1) -z (t)l. (9.44)
V=0

This result it is not difficult to interpret. Let us consi-dar

thq segment cf rectangular oscillaticn (meander) ,shcwr. in Fig. 9. 7a.

As argument here serves value z and jumps occur at the wholea values

of z=0' 1, 2, ... , N. In the interval 0<z<N this oscillation can b-4

deccmposed in the usual EcuriEr series on the sines. The fundamantal

harffonic of this rqsoluticn is alsc d-pict-sd in figura. it is raot

difficult to ascertain that the ccefficients cf this series/row th=

sams as in fcrmula (9.44) . Since the variable/alternating z

nroline-arly dr-pnds on tims, ther cn scalze t lumps occur thzcugh -tc
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unequal gaps/intervals and is obtained FM signal, shown in Fig. 9.7b.

On the cther hand, the nonlinear depend3nce of z on t leads tc the

fact that each harmonic cf Fcuriez series is converted in Chm

oscillation, but this ccmulicaticr, obviously, in any way does not

affect the ccefficients cf series/rcw.

Lat us examine In more detail the first "harmonic" (maximum in

the amplitude)

Fig. 9.7.
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Page 264.

Of the condition, function z It) takes the whole values of z=k=0,

1, 2, ... , N at the mcments of the commutation of phase la ChM

oscillation/vibration x1 (t) passes at these mcmeants/torques through

zero. Ccnsequently, we obtained ncthing else tut another form of the

recording of generating signal 19.3!). In acccrdance with the rule of

standardization it is necessary tc cnly change the amplitude of this

signal so that its energy would be equal to unity. If we

disrsgard/neglazt integral of rapidly-vibrating component, this

standardization gives

S(t) (9.45)

This completely will be coordinated with (9.35).

In light of this new represertation methcd -?xaminad above 3f

synthesis obtains the fcllowing treatment. Intending to find the F1

signal which approaches the assigned amplitude spectrum a (w), we

sel.ct its the first "harmonic" (9.45) and we assume that in certain

approximation/approach the spectrum of entire signal corresponis to

IhA spectrum cf this "harmonic". It is further naccssary to datormir

!.
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phases z(t) so as to fulfill the assigned amplitude spectrum.

Lcgically, we coma to the problem of synthesis of ChM

oscillation/vibration and we use a :ethod of steady state. In

accordance with the results of fapter 8 is selected the law of a

changs in the instantaneous frequency so that tha deviaticn ccincides

with the width of the assigned spectrum, and a change in the rate of

modulation provides the necessary structure of the latter. This

explains the similarity cf the rethcds of synthesis of ChM and F,1.

Certain difference is connected with the fact that signal (9.45) real

and ccnsists of two ChM usual type cscillations/vibrations:

u (t = P" )---- i  .J-,(t)

If instantaneous frequercy wc()-az'(t) vary within the range of 0

to 0, then in the approximaticn/a~proach of the method of steady

state first component/term/addend describes the form of the spectrum

in the band from 0 to 9, and the second - from 0 to -S. This will ba

in complete agreement with that presented earlier (see Fig. 9.5).

This treatment makes it possible to come to light/detect/expose

the series/row of important positions. In particular, we can considar

the minimum interval between the ccmutations. If the assigned

spectrum has higher frequency Q, then the great.st instantaneous

frequency of Chl signal (9.45) is also equal to Q (in accordance with

the principle of steady state), and the smallest half-period cf
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oscillation/vibration ccmprises w/C. The moments/torques of

commutaticn r are determined ty zero "sinus cids" (9.45) ; therefore

FOOTNOTE '. The given evaluatior/estimate is cf certain interest for

the iterative process, described in §9.6. It is not difficult to

comprehend that a number cf ccmautations N can be changed frcm one

space to the next and aFpears the fear that number N will with the

iterations unlimited grow. Then tc te obtained the unrealizabla

virtually signal. On the basis cf that presentad it is pcssibla,

however, to claim that this it vi3l nct happen, since the minimum

interval between the commutations is limited by the higher freguency

of the spectrum. ENDFOOTNCTE,

The average value of the interval between the commutaticns

approximately/axemplarily correspcnds to averags rapid of the

spectrum 0/2, i.e., a

Page 265,

Consequently, total number of ccmmutations on duration T obtains

evaluation/estimate T1%cpT'rm. his will be coordinated with the

known property of "good" F1 sagnals: a number of alternaticns in the

I
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We can in a new way throw light also assumption about the

monotonicity of derived a" (w) . s it was noted, this assumpt-4cn is

equivalent so that the irstantarecus- signal -fte-juency (9.L45)

mcnctonically depends or time. This limitation is substantial only

during the datqrminaticn cf law ChM, which ensures the assigned

amplitude spectrum. Simply we dc rct know ancther locked methcd of

synthesis of ChM signals, besides the method cf steady state, but the

lattar gives the forseeab.e scluticn cnly witl this restricticn.

Resolution of FM signal into the "harmonics" (9.44) is useful during

any arrangement/position cf ccmzutations, and, if we could construct

nonmonotonic Chm signal %ith the assigned spectrum, then would be

obtained the corresponding ncrmcrctcniJc FM signal.

The main error in the apprcximatica/apprcach, which lfeads to ths

final distance between sets X ard Y, is ccnnected with the

rpplac~ment of "'sinusoidal", oscillation (9.45) oy squarr- wave (FM

sig~nal); in cther words, with the neglect of all terms of serieas/row

(9. 44) , except the fi-rst. But this ap pro xim ation/approach does not

depend on monotonicity or nonucrctcny of tas law cf: modulation.

4 Therefore ore should expect that rcnimorctonic FMi signals must not

give substantially best a~prcxiuatiJcn/approach to the assigned

spectrum, than monotone cres, exanined higher.
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Let us s'ow this more strictly. Any real signal can be presented

in the form

y(t)-A () cos 0). (9.46)

Assuming this signal to be rapidly vibrating, it is isolated the

slowly varying envelcping A (t)7O and carry rapidly-vibrat-ing

structure tc the slccnd factor. Then the coefficient of proximity

(9.23) obtains the form

T2
r(X. , - f A (t) I cos z (Oldt.

-T2

If we again use expansion (9.29) , then without taking into

acccunt integrals of rapidly-vilrating components/t3rms/addends the

coefficient of proximity will depend only on amolitude envslcpa

T2
C (x. U) .4 (t) dt.

-TI".

* In order to obtain maximum, it is necessary tc fit optimum A(t). For

this purpcse lt u4 again use Schwarz inquality - Burnzakcwski:

T/2 r/2

C' (X. Y) S dt. A' ( t l) dt=

-T12 -12
r/2

Ps 266.

-t'r /las- i.tigral can be expressed throujh the enorgy of
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signal y(t) . If we disregard/neglect integral of the

rapidly-vibrating function, then It is obtained

T/2 T12

I 'A2 (t) dt -2 f 1 (1'dt 2.-r/2 -4/2

Thus, C2(X )<8,'. and, as usual, upper bound reaches at the

proportionality of factors, i.e., under the ccndition

A (t) = const.

This means that the real generating signal with rectangular envelope

makes it possibls to obtain better approximatioa/approach by FM

signal in comparison with all other signals of type (9.46).

Any amplitude changes make the quality wcrs% cf approximation.

However, if envelope is rectangular, then, independent of the

character of phase modulation, attains the limiting value of the

coefficient Cf proximity C(X, y)=2V*,. -1 The aforesaid msans that

nonmonotonic F1 signals cannot ci,e the best approximation/approach

to the assigned spectrum, than norctonic cnes sxamined above'.

FOOTNOTE 1. This conclusion/output is valid with that degrSe of

accuracy that is accepted above. If we take into acccunt corrections

to the asymptotic soluticr, mcnctcne signals can prove to be

non-optimal. ENDFOOTNOTE.

It is nevertheless interesting to axplain, what structure have
"good" F11 signals, obtained by ether .thcds; aze enccuntered Among

them monotone. Analysis shows that the monotonicity actually/really

occurs for many such signals.
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Ilil

Fig. 9.8.

Page 267.

In Fig. 9.8a according to discrete/digital values th is

constructed tha plotted functior t(z) for aarker's 13-digit signal.

Is therce depictad the smoothed curve, In which is absent certain

superimposed fluctuation. This curve is ccavex, it does not change

the sign of curvature. Mcre clearly this structure is vi4sible in Fig.

9.8b, whera are shown the same curves minus linz-ar ccmponert, i.e.,

is constructed function '~)rm~1vT,.adits "averaging".

A. it is obvious, in certain apprcximation/approach D(t) thsre is

the symmetrical convex furcticn, clcse tc the quadratic parabola.

This means that each term of series/'raw (9.42) corresponds to the

spectrum of Chn signal with the mcnotor.*3 (in thil casez of parabola-
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linear) law of a change in the frequencY. In ig. 9.9 analogOuslY

constructed function % (t) for a 4--digit F1 signal, based on

L-ag3ndre's symbols. It is obviOUS, the gensral/common/total structure

of curve hper the same as in the freceding cas3.

{*
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6-2

Fig. 9.9.

9.9. Estimation of error in the asymptotic solution.

From previous is clear the nature of the -arrors for the method

of synthesis examined. These errcxs are ccnnect-ed, in the first

place, with an error in the method cf steady state, used for the

determinaticn of the generating CbM signal, and, in ths second place,

with the neglect of all terms of series/rcw (9.29), except the first.

The first reason to equal measure relates to the synthasis of ChM

signals, it is exhibited, in particular, in the Frrsncl pulsations,

2examined in §8.5. The seccnd reasc¢ is specific for FM. As we saw,

she was equivalent to the replaceent of the stepped structure of

that shcwn in Fig. 9.7, smoothly curve.

'4

It is possibla to consider an error in the

approximation/appr3ach, if we deters-ne mcre accurately the value of

- + 'I",. - -- ", , . . .-. .. .. ......... - - -- - - - - ... . '
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the coefficient of proximity, which is in our methcd the measure of

the quality of approximation, here it is possible to discuss as

follows.

Page 268.

The examinad method cf synthesis led to the generating signal

y (t)= cos ID (t) +x/41; - T/2 < t < T/2, (9.47)
(r
where the function b(t) was determined in the parametric form of

relationship/ratio (9.36)-( 9.37). In accordance with precise formula

(9.13) the coefficient of proximity for this signal and set of FM

signals X comprises

C (X. y) T~() + i
If we agaia use expansion (9.29), then the first term

*immediately will lead tc cbtained previously value C=2/1., and the

others will give the correspcnding correction. As a result

C(X,)

where r/2
4 I- (- - 1)1-C = -FT 4 '- _ os2L [D(t)+-.]-dt.

12

Using Ieprnden:a (9.37), it is pcssible to switch cver in this
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integral to variable/alternating w. This it gives:

Morsovar function o(w) is defined by specific relationship (9.36).

For calculating the integral let us use the method of steady

state. Stationary point we is determined by ccndition

'(oo) -(o) =0.

Page 269.

Consequently, w0=0, and the method of steady state leads to the

expression (are here cmitted scze intermediate conversions)

-0) cos (21&- 1) -- +(1 rVY)
2V

,,rnA4,&t - -)- -

where it is also considered t tat

Further we have

(4,1 1) V 23+T723

and it is final

C XY)2V-2 02
C(1y+= 71 0f (9.49)I .

d,

I]
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Thus, an error in the asymptotic solution is of thq order i,/1

and the less, the greater the ccntractiDn coefficient. Let us

emphasize, however, that here has in mind the quadratic

approximation/approach to the assigned amplitude spectrum, evaluated

by the value of the coefficiert cf Eroximity. With this criterion of

synthesis the asymptotic soluticn can be, apparently, considered

satisfactory, beginning with m--50, when relative error dces not

exceed 5%. For the minimax criterion, and especially for the

quantified FM signals, this scluticn requires further refinements.

9.10. The refinement of asymptotic approximation/approach by

successive design.

One of the methods of refinirg the asymptotic

approximation/approach are iteraticrs by methcd of the successive

design, which in connection with thp task of synthesis of FM signals

being investigated are in detail examined in §9.6. Are giver talow

some results, obtained by this asthcd.

The desired spectrum of power a2 (w) , to which was produced the

approximation/approach, was assigred in the form of the Hemming

function

As it was noted in §8.5, this fcrm of the spectrum gives

4

- -i i i- -il i i ' i - i i- - i -.--- " --.
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satisfactory approximaticn/apprcacb to an optimum and it does not

lead to the excessive ccuplicaticE. Upper bound of the spectrum is

here accepted equal to w. This does not break generality, if the

duration of signal is numerically egual to contraction coefficient

(T=-m). Parameter g it is expedient to select in such a way that on

its average part spectrum (9.50) %as close to the spectrum of the

ideal compressed impulse/uomentuu/puls9 - rectangular the sample of

single duration. This leads to values of g--0.25-0.5.

Page 270.

For the spectrum of the form in question the general formulas of

asymptotic method (9.35)-(9.37) give

Y T an I

0< <w.,

moreover w is connected with tine t with the dependance

m (a+ gasn ).

In thp lattar/last relationsip/ratic is not taken into
consideration the unessential shift/shear of entire signal in time to

value T/2, cm (9.37). Acccrding tc these formulas were calculated

moments/torques 4&. in which the generating sIgnal y (t) it is

4 converted into zero. Values 4 determine th- signal of zero

approximation. rhese values ccrrespcnd to the roots of the equation

,-i

(Ot ~sc ) -! 7 k 1, 2...
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which was solvel by the method of polecat during the division of

interval 4w(w into 512 parts. The text step reduced to the

determination of amplitude spectrum ,f(w)! of the found FM signal and

coefficient cf proximity C(x, Y), which characterizss degree of

approximation to the assigned spectrum. Amplitude spectrum z(n0! was

calculated from formulas (9.20) . In accordance with the theorem of

§7.2, see formula (7.15), the ccefficient of proximity has a value

C(X. r) = --.a (4-) 1; (-)l do.

0

This integral was computed frcm Simpson's rule, also with the

division of interval intc 512 parts. Preliminary check showed the

accuracy of this calculation cn the order of 4-5 signs after comma.

After the calculation of the signal of zero approximation and

its characteristics was implemented the first space of iterations.

The generating signal of first apprcximation y, (t) was determined by

integral of Fourier (9.21). Calculation was ccnducted through

Simpscnis rule into 8 m the pcints cf interval (0, m). Further by the

method of polecat were determined values tot). in which Yi (t) it is

converted into zero. These values are moments/torques of commutation

of FM signal of first approximaticn. As earlier, was calculated the

spectrum, the coefficient cf ircxixity and the correlation function

I.1

,7*
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of the obtained signal. Then all calculations were repeated in order

to determine the signal of the seccnd approximation/approach and its

characteristic, etc.

Table 9.1 depicts the results cf these calculations. Are here

for some m given the values of the coefficient of proximity C,

obtained with the consecutive iterations. Furthermore, are indicated

the maximum remainders/residues cf the normalized autocorralation

function p, and also the value cf ccefficiant of k which was used in

§9.2 for the evaluaticn/estimate cf the level of remainders/residues

(with respect to V).-

I

Ph

4w

T 1.
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Page 271.

1,0

0,9 (M=t..53
- Nyo mpufotumemue (C 0, 9041)

Ol0,8A0ct mpex umepagugl (C= 0, 9 r8)

0,7-

0,6-

0,3-

0,2-

00,08

* Fig. 9.10a.

Key: (1). Zero approximatioL. (2) . After three iterations.
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Page 272.

49

0,8

0,7-
m=73

0,6- 9= 05
0=0,915

0,50

0,4- R

0,3- ,7

42-

0 V

Fi.91b
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Page 273.

0, M1703 0- 0. YU

=685 -0 _ 95 -LjLIL

0,56

0,5-77.

0,4-

0,2- 5K V

Fig. 9.10c.

Page 274.

The analysis of the data indicated confirms fundamental

* theoretical results. The coef ficiert of proximity' monotonically

increases with the iterations. TIhe theoretical evaluation/astimate of

this Value C=2VT/a-.goo is compl~etely satisfactcry.

Maximum remainder/residue is changed with the iteratior-c
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irregularly, it can both ke reduced and increase. of course this

occurs because the uethod of syrtbesis uses quadratic

approximations/approaches, and the level of the greatest

remainder/residue is only indirectly connected with the utilized

critericn. But as a whole the level of maximum remainder/res±due

comprises 0.6+.7)Vrn. which corresrcnds to the best known signals,

given in §9.2. However, one shculd emphasize that we here synthesize

the not quantized FM signals and ccparison with those quantified,

examined in §9.2, it is nct completely justifiable/legitimate. The

correspcnding methods of the synthesis of KFM signals are given in

ehapter 10.

Fig. 9.10 shows the cbtained nct quantized FM signals, and also

their autocorrelation furcticrs.

-M1
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"Table 9.2.

2-4 1,0 4re0u 5--pi~uriei-I " ~

C 0.897 0,906 0,908 0.909 0,910 0.911M r= 0 n- 1 0.1t24 0.133 0,129 0,126 0.114 0,116
k 0.55 0,59 .0, 58 0,56 0.51 0,52

C 0,903 0.909 0.910 0,911
m = 41 1& 0.101 0.093 0,098 0,089

/ 0,65 0,59 0.63 0.57

- 0.904 0.9i0 0.914 0,918
0,089 0,088 0.087 0,081

k3 C 0.65 0.64 0,63 0.59
C 0.9W8 0,915 I

m -- 73 L 0,079 0,079
It 0,67 0,68

C" 0,909 0,915 I
m = 103 1, 0,071 0,064

0.79 0.65

Key: (1). Zero approximation. (2), Iteration.

9.11. Other itarative methods.

The method of successive design (projective-gradient) this is it

goes withcut saying nct the only iterative method, suitabla fcr

refining the obtained approxisaticns/approaches. Furthermore, in the

version examined this method is used only for the synthesis on the

critericu of the proximity when is minimized the distance betwien X

and Y and is provided arrrox±maticn/approach to the assigned

amplitude spectrum in sense (7.17). Other iterative methods make it

possible to solve more general Erchlems of synthesis of FA signals,

to in particular find approximaticns/approaches tc the unrealizable

correlation functions.LII

- - .- . - r-v.- -- - ~
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Page 275.

For example, it is possible tc vininize the functional

[~) IF (I)l - IR (0)1i dt, ~ .I

where F(t) the arbitrary assigned (on the modulus/module) function,

and R(t) - the autocorrelation furction of the unknown FM signal. Are

possible also other versicns, when functional f(x) is connected in

ancther adequata/approaching manner with the unknown signal. The

characteristic feature cf problem is the fact that the minimization

must be produced on the set of FM signals, characterized for edch

moment cf time only by sign (+-I or ±i/y'j. i.e. the permissible

signals are rigidly limited'.

FOOTNOTE 1. Analogous tasks are erccuntered in the theory of optimum

control [25]. To the not quantized FM signals correspcnd in this case

the so-called relay steering functicns. ENDFOCTNOTE.

when selecting of the method of synthesis should be considered the

limitation indicated.

However, Krup.tskiy and Sergeyrnkc [34] racsntly showed that it

i

4s
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is possible to bridge this difficulty and to construct iterations on

the base of the usual gradient method, which does not assume the

limitation of the permissible set. Their methcd is based on the fact

*that in accordance with (9.2) any FM signal is unambiguously assigned

by its moments/torques of commutaticn tA (see Fig. 9.1). Considering

values t, as the independent argusents, it is easy to note that the

minimized functional f(x) is a furction of a finite number of

variable/alternating

AX) =f(t. t ..., ts-,) (9.52)

the latter can take any values In the interval (-T/2, T/2). Gradient

method is used further for the minimization of this function of many

variable/alternating.

On the base of this method were obtained the solutions cf

several problems of synthesis of FM signals fcr comparatively small

compression (m<25). Among other things were ccnductsd the iterations

from the asymptotic initial approzimations/approaches, examined above

[61 ]. These calculations show, in particular, that asymptotic
-4

solution gives a comparatively gocd approximation/approach, it can be

only a little improved.

But one should indicate certain nonoptimality of method, which

ascaped, apparently, frcm authors' attention. Ths recording cf th.?

functional being investigated in the form (9.52) loads in a number of

.1

+ + : -. + ' -- T-- *- - -*----- "., -- -.-- *-7. ---- T-- , . - ,
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cases to the appearance of the local extreaa which no during cther

represantation of the unknown sigral. Let us assume, for example, is

required to find FM signal x(t), bhich ensures best approximation to

the assigned real signal 4(t). In this case the functional being

4nvestigated is a coefficient cf the proximity

f(x)- C(x. Y)-;- 2 9 (9) X(Mdt (9.53)

and it must be maximized cn all x(t)aX. We know (see §9.4) that unique

solution of this task gives FM signal of the form

Page 276.

It is possible to show that if FM signals are representad not through

the moments/torques of ccimmdtaticr, but in the form (9. 1) at this

solution it is possible tc arrive, for example, by a

projective-gradient method, functIcnal (9.53) having sole maximum,

and it is possible tc begin frcr any initial signal. On the ether

hand, introducing the designaticn

, (1) (t) di

and using (9.2), we come to the exFression

'(4
2 0-) + + (t) + +

+ (-z - r~)+ -(- -2

w hich cor responds t o fo re (9.52) . In th. a pa rticu lar cas e of y (t) =Cos
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(see Fig. 9.11a) gradient f'(x) is a vector with the componants

rh=(--I - - costi; k=- .2..... N-I.

The maximization of functional (9.53) according to the method of

operation [34] is reduced to chances it, in the direction of

gradient, i.S., t, increases, if f'*>O and vice versa. It is not

difficult to see that the result cf this maximization depends on

initial signal. At the initial signal, shown in Fig. 9.11b, reaches

the global maximum, which corresrcnds to Fig. 9.11c, but with the

initial signal of the fcrm Fig. 9.11d, method leads to the local

maximum Fig. 9.11e.

Further the iterative methods in question use the represqntation

of FM signals in the form (9. 1) and, apparantly, they do not have

this deficiency/lack.

99 will minimize functional (9.51) by a projective-gradient

* method, examined in §1. 10. In this case the signal of next

approximation/approach x-,,(t) is formed from the signal of previous

approximation/approach ,,: according to the rule

xkh'' ='P~x&~.[ .aaf(g4A')]. (9.54j

Hero p,. - operator design to t e set of FM signals X. In accordance

with the theorem of §9.4 this design (approximation) is reduced to

the ideal limitation (see Fig. 9.2) , so that

;I
-f P (t - sign (Re y (o).

..
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It is possible to show that the gradient of functional (9.51) has a

value T 12
F' (x) 2 IIR. ('I-IF (i')1I sign R.Y(') x(1 - ') d'. (9.56)

where R40- correlation functior cf signal x(t).

Page 277.

Thus, construction of the mirimizing sequence consists of the

following operations:

1. Is taken initial F11 signal xw(t).

2. is computed direction cf gradient according to (9.56).

3. is chosen length cf space a and is implemented space on

antigradient

4. Signal !" undergoes ideal limitation according to (9.55) for

obtaining signal '

I Further process is repeated, beginning with p. 1. This process

I realizes approximation/approach tc an arbitrary (unrealizable)

autocorrelation functior.

Y1
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Analogous results can be o~tained, applying the

- conditicnally-gradient sethod, prc~csed by Demlyanov (25]. During the

use/application of this method for the synthesis of FM signals the

minimizing sequence is ccrstructed as follows.

-lo

-4

i
:.5

;q - .,I.. _ -. ,. - -. - -" -. , . ,_ . .. -
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Fig. 9.11.

Page 278.

If signal x ,', and gradient flx(k"t)l dc not coincide in the sign, then

X(k+i) M = x')().

If for certain interval of time pt<t<q,, signs -,0(i) and i'xhe,) ar-

identical, the signal of the follcwing approximation/approach is

constructed according tc the rule

sl , x""' ( si .gn O~ ts M 9PI. p, < t < r', 4-:2 (0, --P,); --

S-sin N" ix" (01] .' r., + .. (q, --p,) < t < q,,

Key: (1). with.

w I
where = - space of iterations (O<o<l).

-- -- - Y -
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e Page 279.q~ I~

I i -

i 0

Thus, construction Cf the inliizing seguence consists of the

following (Fig. 9.12).

" 1,

-ig.-9-12
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1. Is taken ititial FM sig-al x"11).

2. Is computed gradient f'(m") according tc (9.56).

3. Obtained gradient undergces ideal limitation (Fig. 9.12c).

4. Are noted intervals of time, for which signs o itX',o)) and

signx0, do not coincide (Fig. 9. 12d) .

5. On part of these segments, corrasponding to (9.57), sign of

signal vary by reverse/inverse iFig. 9.12e is carried out for Z=1/2).

Further process is repeated, teginning with p. 1 I

FOOTNOTE 1. A conditicnally-gradient methcd let us use in general, on

we presented its version, suitable for F,4 sigrals (two-positicn

controls) . ENDFOOTNOTE.

Both methods (design-gradient and conditionally-gradient) can be

used, in the principle, for the minimization of any functional, not

only form (9.51). Is changed in this case only formula for gradient

(9.56) . The major advantage of these methods cver synthesis on the

critericn of proximity ccnsists, as already mentioned, in the fact

that it is pcssible tc find apprcxisations/approaches to the

unrealizable properties, in particular, to the unrealizable

. r

" -', -"r : i - - , * .. -. . ----- - -, . -,.- .;... . ... . .
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correlation functions. It is Ecesible for this purpose to use also

the method of coordinate-by-coordinate descent, but this metbcd is

more convenient for the quantified FM signals and it will be examined

below.
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Chapter 10.

SYNTHESIS OF QUANTIFIED FM SIGNALS WITH GOOD CORRELATION PROPERTIES.

10.1. Use/application of a critericn of proximity.

In §9.1 "- was established that KFM signals relate to the

corposite/compound ones. The spectrum of the code of KFM signal has a

value

H= -- O N1, l0.1 )

Here n - number of samples; value X characterize their signs and

allcw/assume values of +-1. The latter is a main difference of KFM

signals from tha composite/compcund signals of other types.

Page 280.

We saw also that mcst imFcrtant problem Is finding KFM signals

with the low remainders/residues cf ccrrelaticn function, i.e.,

approximation/approach tc a ccrrelation function of single the

sample. Specifically, this task is examined in this chapter'.

FOOTNOTE * The fundameantal results of this were main published by

N1

'-I,

' -" ' 'S ,_ * -- - -.1"t- - . . . .. . . ." - - :- - , . .. . . . ..
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the authors in article [10]. 1he asymptotic sclution, close tc our,

previously obtained by L. Ye. Varakin (14]. ENDFOOTNOTE.

The method of its soluticn, applied to the artitrary

composite/compound signals, Is fcrrulated in §7.4. Method assumes the

best quadratic approximation cf the amplitude spectra: the spectrum

of the unknown KFM signal and the spectrum of single sample - in

accordance with general/common/total criterion (7.17). As usual,

matter is reduced to the iaximizaticn of the coefficient of proximity

C(x, y) moreover in accordance %Ith (7.44) for KFM signals we have

C(x, Y)-": = 'y," (10.2)

Here values yj depend ca the pbase spectrum cf the generating signal

*j Y=Se-( e-)-d-=+Scos2(m)-ioldu. (10.3)
-U 0

Phase spectrum a(w) is arbitrary, but, as for ta- not quantized FM

signals, should be been bounded the odd phase spectra

(1 .4a(-- ) =--a(o); a(0) 0. (10. 4)

This odd parity is takon into ccnsideration ir (10.2) and (10.3).

The task in questicn is, thus, of finding of phase spectrum a(w)

and values Ai (equal to +-I), witb which the coefficient of

proximity (10.2) attains maximum. This corresponds to the overall

I-

diagram of the use/appliaticn cf a hypothesis of the proximity:

7 A
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changes ;.i indicate displacement/mcvement over a permissible

multitude of KFM signals, and changes a(w) - cn a desired multitude

of signals with the assigned ccrrelaticn function (corresponding to

single sample).

As in other similar tasks, the maximization of the coefficient

of proximity can be fulfilled ir ary order. We will function as

follows.

Page 281.

First, fixing/racording phase spectrum a(w} and, thereforo, value

Y, let us find signs 2,, with which the coefficient of proximity

(10.2) it is maximum, and then let us fulfill maximization also on

a(w}. The first stage is the task cf approximation (design) on a

permissible multitude of KFi signals, analogous of that examined in

§9.4.

If values ' allow/assume crly values of +-1, and Y, are

fixed/recorded, then, as it is clear from (10.2),

'lC(..y) - .;

Here is reached equality, only If

i cyn v,,10 5)

i.e. when signs ;., and y, ccncide. This detarmias optinum values

- * . *- -I
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i),ensuring best approxlmaticn on the permissible set X, moreover

C (X. y)- max C(x, y) 1 , (0.6)
, x = ;'- _ i, YS:,s

ZEX nE

This result is completely analogous to theorem of §9.4. It is

now necassary to find the phase spectrum a(w), for which the

coefficient of proximity (10.6) is maximum. The signs of the samples

of optimum KFM signal are determined then acccrding to (10.5).

10.2. Asymptotic soluticn.

The optimization cf phase spectrum we will fulfill under the

assumption of a large nurter cf savples n, when to integral (10.3) it

is possible to use the method of steady state (8.24). Analogous with

that presented in 59.7 we obtair

17',H 0<Wt,0 <rt;

Key: (1). with.

Page 282.

Here ., - the point of steady state, determined from the squation

a'(,,)ii; i:1; 2;... n. (10.8

I | I .I1 - -. i I in I |. - . . I.. .-' 4
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and function c0 (w) has a value

00

* (10.9)

Let us note that the approximation/approach of steady state has

* an error in order 1jra Its use/aprlication is limited also by the

cases when derivative al(w.) vary bcrotonically in the interval of

integration (0, r). It is concrete/specific/actual, in (10.7) we

assume e' (i) increasing, so that o"(w)>0. This limitation restricts

the class ofl the si-gnals in questicr, and we already indicated that

it can, generally speaking, lead to the loss cf the best signals.

This question additionally is discussed below.

But use/application of a method of steady state gives direct

analytical dependence y, cn a (4. and this makes it possible to

fulfill research for the vaximuff to the end/lead. Substituting (10.7)

* in (10.6) , it is possible with an arror in the ordsr 1/n (smaller

than an error in the met1hcd cf steady state) to replace sum with

integral. As a result it is chtaired

+0 (10.10)

4 Is here carried out also the replacement of the variable/alternating

of integration in iccordarce isith (10.8) *Corrsction tr-rm considers

an error in the method cf steady state.
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The obtained relaticnship/ratic is completely analogous (with

9.27) and furthar research repeats conclusion/output of §9.7. After

using axpansion (9.29), we negligible rapidly-vibrating

componants/terms/achiands under the integral (as was shown in §9.9,

this is connected with the further error, which is also of the ord3r

IIIn) and we come as a result to tbe maximization of value

C9 I ,-I -
Page 283.

The latter is implamented with the help of the Schwarz-Buniakcwski

insquality upion consideration of condition (10.8):

C7 (X. Y

Here is reached equality, only if

cuns no 0 w <: (10.1!)

Key: (1). with.

41

These relationships/ratios detourmine optimum phase spectrum in the

asymptotic approximation/apprcach of a large number of sarples.

-N
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Coefficients y, are found further from (10.7)-(10.9)

i-I
tn-i-'

€(,,. -- n- ,, ni-I)

lt 1Yj Cos '2 ,4 -- < i-

Finally, the signs of the sauples of the unknown KFM signal are

determined according to (10.6)

Aj~ == sign cos L -gi•, 10. 12)
2 - i 4 j

The maximum coefficient cf proximity, attained in the asymptotic

approxiuaticn/approach, it comprises

C IX. Y)-9- ---0 - - 0

,! 0. !3,

which completely will be coordinated with the results of the previous

chapter.

1

RII

4 -,- t; . . '. ... . ..--- .::- -=.-:..

-i " i I r ' I k ~ i-
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* Page 284.

10.3. Iterative refinements by cocrdinate-by-coordinate descent.

The approximate, asymptotic solution, found above, can be made

* more precise, applying iterative methods. For example, with~ the help

* of the successive design it is possible, analcgous with the case of

the nonquantized signals, to take into account the error in the
method ef steady state (Fresnel, pulsations) , and also other

inaccuracies in the previcus calculation. Algcrithm of these

* refinements even somewhat simpler than in §9.6. But, apparently, to a

question about the refinements here one should approach from somewhat

different positions.

* The previous solution, based cm ths criter!ion of proxi.mity,

assumes approxiulation/aprroach to the amplitude spectrum of single

- A sample, namely: ws seek the KFM signal whosa amplitude spqctrum
j b1() saisfies conditicr, see (7.17)

4 ~~ ~ d (fx, Y)w2 1 . ] 'do= niin.

This crit~zrion, although it is ccrnnact.;I somehow w~th the approprii-le
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* correlation functions, nevertheless does not guarantee their bast

approximation, in particular, the low lavel of remain dars/r es idues.

This confirm concrate/sprecific/actual calculations. The

* remainders/residues of ccirelatict functions for the KFH signals,

found from fcrmula (10. 12), ncticeatly exceed minimally known ones

and luring the large comp:rqssicn they reach apprZoximately/iexauplarily

* FOOTNOTE 1. For n=13 for& 7a (1?.12) gives Barker's signal with the

smallest possible remaind'!.;, residues. ENDFOO'INOTE.

To preferably filfiZ. refinement, using the more straight/more

direct criteria, connected directly with the remain dars/r esid ues of

corrslation function. we will use as a measure of the quality of

signal the maximum remainder/residue- of tha ccrralation functiona

jL=maxIRhf. 1-<,k<n. (10. 141

the sum of the squares of all remainders/residueas

and also the sum of their fcurtt pcwers:

4 A .6 k R.. 1451

I Page 285.
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Two first criteria extensively are used with the synthesis, the role

of the latter is clarified further.

All criteria indicated are some functionals (or functions) from

the parameters of signal .. Shculd be selected the

adequate/approaching iterative methcd for their minimization. During

this selection it is necessary to take into account that, in the

first place, the arguments X alleb/assume only values of +1 and -1,

and, in ths second place, method must br sufficiant to econcmical

ones so that tha calculations wculd prove to be virtually feasible

with a large number of samples. We used undaer thess conditions the

method of the coordinate-ty-coordinate descent which, in ganeral,

consists of tha follcwIng.

Lat us assump it is nicessary to minimize function /,; ?....

depending on the n argurents (cccdinates). Being transmitted from

certain initial approximation/arcach

we we attempt to change the value, for example, of the first

argument, aftar assuming

10) 1o)

whArz u sciectad previouisly space of --t-ration~s. If this givis th,,
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decrease of the function being investigated, is accepted new value,

i.e., o) it is substituted on )a(1). Otherwise is done the attempt to

be shifted in the opposite directicn, after assuming XA(er:

() 101A, = ~ - ..

Even if this at:emut is ursuccessful, is leaved previous value X10.

Then is implemented analcgcus displacement on another

cccrdinate, for examplcm, )6.

Page 286.

Having selected all coordinates and after changing them in the

directions, which lead to the desired decrease of function, we obtain

the first approximation

Thcn prccass is repeated.

After such several stages the approximations/approaches cease,

since changes in each of the cocrdinates do nct give the desired
decr~as of funztion. This can occur not only the unknown m'ni.um,

but also due to th3 high value cf space a. Therafcre after tba stop
of iterations the space tIey reduce, for examFle doubly, and they

again attain imprcvaent, changing all cocrdinazes alternately.

Finally iterations cease, when there is nc improvemant even with th
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sufficiently low pitch.

The method of coordinate-by-coordinata descent does not, require

the aalculation of derivatives, in connaction with which it is less

labor-consuming than gradient. This method ensures also the higher

speed of convergence and is insensitive to ravining of functional

(52]. 14creover, the presence cf "ravines" can be us-3d, if tc use the

appropriatp mdification cf cocrdinate-by-coord3.nata method, which

ensures increasing motion in the direction, which

approximately/exemplarily correspcnds to the low place of ravias

I [~78)

A deficiency/lack in the ccordinate-by-ccorldinate descent lies

in the fact that aft~r catching accurately into the "bottcm" cf

* ravine, it is possible nct to be shifted on the low place, if

displacement on each of the ccordiaate directions Is connected with

1hp lift to the "slopes" (78]. In other words, are possible th3 false

points of stop, which dc rct coincide with the minimum of function.

Besides this, the point into whicb it gives ccordinatez-by-coordinate

driscant, gqnerally speaking, depends on the crdir of sorting

coordinates. Finally, as with other sim-'lar methods, we come in

general, to the local, but not glcbal minimum of function.

I In the problema of the synthesis of KFIM signals the method of

""op
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coordinate-by-coordinate descent additionally is simplified because

the parameters (coordinates) .i allow/assume only values of +1 and

-1. Therefore each coordinate can be changed in the unique direction

so that the sign ).i would vary fcr the rzverse/inverse. Is assigned

also the length of space faj=2.

As a result, coordinate-by-cccrdinate descent is reduced in our
r

problem to the following. After taking one of the coordinates . wc

we attempt to cdange its value with +1 to -1 cr vice versa.

Page 287.

If this gives the decrease of the functional (I, A2 or A4) being

investigated, is accepted new valUe, otherwise is leaved old. In each

stagi this is mada with all cccrdinates , from i=1 to i=n .

FOOTNOTE 1*. In order to decrease the effect of the order of sorting,

w3 in pach case implemented descent twice - in the ascending crder

and with dacreasa cf numbsr i. Usually the rasults were identical.

END FOOT NOTE.

Iterations cease, when change in any of ths coordinates does not give

the desired decrease cf functicral.

- *" - i -1 '1 i --.- - ,- , , . - " .,' T 
' - ,

. .- -
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With the fulfillment of iterations on criteria (10. 14)-(10.16)

it is necessary to rapeatedly ccmpute the values of correlaticn

function2

R,= , k= 1.2...., n- I. (10.171

FOOTNOTE 2. As in §9.2, we use the further nonstandardized

correlation functions fcr which Bc=E(O)=n. ENEFOOTNOTE.

With a la:g; number cf samples straight/dizect calculation according

to this formula is very labor-ccnsuming: it is required order n of

operations in ordr to find one value R,. and order n2 of operations

in crdar to obtain all values of ccrralation function. However, with

sign change one sample it is rossible not to computa anew correlation

function, but to supplement tc its Frevious values of the

corr-ctions, computsd from the formula

rn-k I. m--kk< 1. I:

2 .n m I, m -- 1.

Key: (1) . with.

Here 4- - old value of that varied sample. Tha use of this

ccrrsction significantly reduces calculations and considerably widens
-ii

practical po~sbilit'es. It is rcw required only order n of

operations for obtaining all values R. As a r-sult the machine ti z,

I

',
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expended on tha iteration, is sbortaned approx-mat l.y/^xemplarily

proportional to a number cf discretes of signal.

10.4. Results of synthesis.

The rvsults of the syntbesis Cf KFM signals with a number of

samplss n from 13 to 901 are givem inTabla 10.1. In the first column

is indicated a number of samples.

4%

4

44

'4

&4

94
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So'
Pages 288-289.

Table 10. 1.

36 pa co, i .

4 1, at- A IA ____

13

19 97 49 3 49 3 41 3 3 3
23 ii7 l719 3 59 3 67 4 3 3
31 1 9 5 I 9 147 4 132 4 3 3
37 138 5 l:LQ 5 218 5 154 15 4
41 3O 9 116 5 388 5 280 6 4
43 4b3 3 21,9 6 Z81 5 301 5 4 4
47 I1 199 7 611 7 183 "4 4
53 362 '1 286 f 66 7 315 5 9
9 93 i1 413 9 717 7 550 8

61 44t lI 358 7 806 7 499 7 5
63 431 9 343 7 611 6 495 7 6 6
67 1009 13 505 7 1121 8 b85 7 5
71 755 q 483 1 1159 8 707 9 5
73 636 1/ 534 8 1088 8 604 7 6
79 1079 13 713 7 1531 9 976 8
91 2333 15 1237 10 1517 8 1313 9
93 886 "1 7112 13 1694 9 870 8 6-8
95 1255 17 .,71 9 1935 9 1227 8
97 2392 19 1364 9 9 1277 10 7
99 1217 13 10-33 13 2041 9 1065 9
101 1378 112'; 3 1599 9
103 1947 IS ',I II 2,..,5 9 9 6-8
105 876 13 1,1 13 2056 to 1508 9
107 1965 1II I I 1405 9

.I

. .. . .. . --- . . - - "7 - -,.. .



109 1486 !291 13 41 9
[ifi 106 13 2, 2167 14T1' 1 7-8113 2168 15 i I '" L'; '
115 260 1 17 10 I (; t7

117 217 342 11 I 742
J~ ~ ~~~ I .' 2 9 1 5" I I I '2IO 1

121 2076 17 1704 12 3736 2 2220 I7-
123 2613 21 I1645 14 3fl' 2 2 $93 III
123 2294 19 2070 II 2918 10 11;12
251 9349 27 73 ,3 17 14701 Ili 76 ,1 13
253 8222 20 (0*-7-1 I107 8990 3
255 9431 23 7023 I 7 I-12
257 12832 31 7i61 8 11 1 t 15
259 13777 41 SA 33 17 1573.3 17 7rI 13
261 F64. 31 6;386 20.,2 f "
299 1903S 37 10073 T8 22 1 Co -2()
301 13702 2n ,122 P11 2_'22314 -211 ' 2 ; I 1 13
303 1121.1 21) 9.117 23 21343 1H 117,, 7 111305i 13672 "(1-152 19 1'2,, 1~ -1 ,11
503 3117 79 47 '25 "..'3 r 27 :.:-,, 7 2 2i 505 412I 2 i 52 244 3.3 I7, 72 ' ',. ;,3 6 2 1 q

.A1 1'R 7. 55 27*111 .,g -o.1 ,27.-3.;

5 13 r." 37632 2 10144
901 119194 54 f 35 I0 17 I0 (54

Key: (1). Numbbr of samples. (2). Initial approximaticn/approach.

(3). Descqnt along quadratic crit'.ron. (4). E*tscsn- according to

-5

4r
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* *±nimax criterio)n. (5). Descent along mean-ex.Fonential criterion.

* (6). Known signal. (7). Descent of random initial

* approximation/approach.

Page 290.

In tha followi-n; two columns are given the values A_2 and for the

initial approximation/approach, attained according t-o, asymptctic

formula (10.12). Further are respectivo-ly arranged/lccated the

results of desceznt alcng the tins (10. 15), the iinimax (10.14) and

mean-exponential (10.16) to criteria. The tenth column shows the

maximum r _maindars/rssidues of the best known signals, found with

other methods (see §9.2).

The comparison of data of tatlg makes it possible to considar

* that the method of synthesis examined gives sufficiently good

results. on thQ level of maximum remairnder/residue the obtained

signals ars only a little infericr to "-he best codas, known earliqr,

and by the obtained path of vast sorting.

4Is focused attention, that with the descent along ths

root-mean-squarze critericr value y noticeaily grows with an increase

:1in the number ~fsampl-s and for r=901 it -eachas 1.51n. This can be

Txplainrd by -:hz fact that with large n thp quadratic critqrion
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weakly reacts to the separate large overshoots. With the descent

along the minimax criterion the picture is reverse/inverse -

criterion reacts to the maximum surgos W, and value Az sharply grows

(Table 10.1).

The analysis of the best ones cf the obtained by us codes shows

that with the low maximum remainder/residue they possess a

comparatiwvly low sum of squares Z2. The examination of detection

problem shows, besides the fact that they are important both the

maximum remainders/residues and rit level. De ending or situation, in

particular from the relationshbp/ratio of the useful and interfering

signals, the dominant role plays either that cr another criterion

[151. Therefore it was desirably use this criterion of the synthesis

which would react not only to tte maximum zemainders/residues, but

also to their total level. This led us to mear-azponential criterior.

(10.16) , which corresponds to apprcximations/approaches in space L".

As can be setn from table, such approximaticns/approaches lead

usually to the bast results, in particular, the value of maximum

remainder/residue comprises (C.7-0.9) V r .

FOOTNOTE 1. It is possitle tc assume that for even largar n an

expedi-antly further increase in the degree, fcr example

approximaticn/apprcach ir spaces I6 or L9. ENLFOOTNOTE.

K=,
,

, -I-.
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Page 291.

Tabl* 10.2.

11 2 1000111010 100!00

17 2 I 1 00000 iOl01lo

19 3 I 1011O 1 1 10 1 1 i0001I 1

23 3 110 1001000 1000100000 Il

31 3 l 1 I1 I000IlO0lO

43 4 1101000 10 1l1 i000010 100
43 !O00011 1{O 1 10 00 0 (OO ) ~

11111 11100001! 1100011

471 4 0.01100110110110100101
010 67 ooi 00lot(00

3 5 001111 1101101100011100

1010101

110000 1 O)(1 lo10000to I 1 00
5 i 00 I I I 0000011

10 1 10101 1 1001

I O1 I I I 1 0!11o I 0 o; i
11010 I 100010010101011011

9.Ol!10000010llO000]Oli 100
0 l 0I 01I1010001O0 10111 11
0010

00011111 I l 100010001 I
I l 10000011 1001 1O000 0

00011 0! (!11001100100 110' 125 1 7 11 if)~ 00 i 10 I l00 1;1I )1 10 01 10 1 1. 11

1 IO O ! 0 , 1 110010(0101010

OlOl 10

A0" i7 100(000
,', n~ ,' : i i I !n O q O ', i I ' {i I

0 00,,- I I 1 1 0 I 0001 )0l)
i 0001: !i 00 i I U 1 : : 000

i ' 1 ' (I 0 ( 00 1 0 1 1t(10

I I l {t 0 1 0 I ( i IO1 1 0IlO 1J 1 l I ,) I I ',r In II I ~ I I 10 oO!I
S (I ( I,' (Ior) 1 0 ( lo 0 ( ( m lb

101O01010(1lOl 1 10 1110

O llOlIOIuloIOlIO

- - . .. -- ,T - ,. - - - r-- .....- ~ ~ - - -- - -- -~ - . -
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Pago 292.

0000101010101010101011
01010 1010 110 10 101001010
100101011010010101 101011
010010011100100101101101
00100100l001001101101101
10010011001,0011011001100

303 15 1000110011011100110011-00
11000011001 1001110011100

1 01110001111001I001110010

1111110n00011111 10000000
()1I111111100010000000111 1

- 00100011001010100010

100100100I0101 01012
001010~l~10010101
010101010010101010
l10100100101000101
101011010010010"101
01I 10100011001011
o10110010110101010

1001100111001100010
01101100100!1101 10011
0110011001001 10011001 21100110001001100110011001100o11000110011 001o00011000l000010I
100111001110011101
1001100111000011101
1) 1 11000011100001111001

I0 I1100 I 1no.II10 1 1110 1 1
r) (In I noon000

I !001 0! 0 0010
60 (m 11 1(00 0

1 0101I!0! 11 01 110101110ni1011100010
00 ti : o I 0 I 0 I I 0 I 0 00 ( I n0 10 0 II 01 10 1

1110 010 1 11 10101 10 101010000110010 1
I,111 j I ( 1 1 1)1 10 1 no101 ()10 110 110

1 110u1 001 0111110010110110101101000

A10110011~'10011001 O

2mag =I
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0101010010110110110110110)1101101100
10010 110010 1110110100110010010)01!01

000011010110011101100I11 Ol 000001I
10010001001100110011001100110011001I
11011001100110(011001010011001100011

901 26 11001110011100110000 1000ojo! 1000110
00012Iloolollo100011000110111200010
lI 110001111000111100011100(10 1110000

1111000111110000011110000011111000n

0)000010111 11010000001111 1111000000
000*111111111 10100(00000001 11111110

121111111111112111101112111

Key:() Code of signal.

* Page 293.

Asymptctic in:itial approxiwaticn/approach (10, 12) detsriuines the

signals, which po:3sess thc- prcpcerty of monotcncity, the fregu~ncy of

* commutations gradually increases tcward the and of the signal. This

monctonicity, caused by tb-? limitations of the previous

conclusion/outpuit, one way or anctber is retained also after

iterations. it was possible to assuue that this, insufficiently

I general/commor/total structure cf initial approximaticn/apprcach did

not permit us to obtain smallest pcssibls raainders/residues.
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For explaining this questicn was made the following calculat!or..

Was implemented descent alcng rfs critericn (10.15), but as the

initial approximation/approach were used the random codos, obtained

via the equiprobable selection cf signs. Initial

apprcximation/approach repeatedly was changed for each n. Results are

given in the latter/last column cf table. In many instances

actually/really were obtained minimum kncvn remainders/residues. .Th

Table 10.2 gives the best found by us signals.

I

-- V P- •,- . - , ..- . .. ;. • • , " .. .
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Page 294.

Appendix 1.

PROPERTIES OF SPHEROIDAI FUNCTICVS.

Spheroidal functions V,(t) are the eigenfunctions of the

integral equation

,,(V,) G(t,. V') ,d,' ,,,,()(

with tho kernel

sin c (-') , e-J d- dn

They possess the series/row of the properties, which are of interest

for the thpc-y of signals. Let us pcint out briofly these prcpsrties,

relying on the series/rcw of sources [43, 65-67, 80]. The

translaticns/conversicns of fundavertal works on spheroidal functiors

are in [95].

1. System of spheroidal functicns. As it follcws from (2.9), the

quadratic fcrm
S W

i - -!

-47
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s/3

is partial energy cf signal s(M), included in the band (-c, c). This

value is positive for any functicD s(k). The aforesaid means that the

symmetrical kernel G(e, E') is determined positively. From the theory

of integral equations it is known that under these conditions

eigenfurcticns t.-() form complete crthogcnal system in intirval (-1,

1).

Equation (1) determines furcticns *.() with an accuracy to thp

arbitrary normalizing factor. Therefore it is possible to carry out

such standardization that'

I' m m n; (3)
;Nm=n.-I

Key: (1). with.

FOOTNOTE I. In the works cn sphercidal functicns frqquently ars usad

othsr rul~s of standardizaticn. Standardizaticn (3) is used, in

particular, in :65, 68]. ENDFCGTNCTE.

Any function w(E), integrable squared, can be in interval (-1,

1) expanded in thq convergent (c. the average) Fourier series

2 .%M (4)to

whers coefficients o. are determined in tho form

- i ., - -- '-- ... -y--7- --- .-- -.. , -
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a. -, . (5)

Page 295.

Sincq kern.l (2) 4is rqal, spheroidal function ) is also real;

therefore the sign of ccmposite coupling in formulas (3) and (5) it

is possible not to write cut.

It is not difficult tc show also (see for zxample [ ]1 what

function *, ( is even for even r and is odd - for odd n.

2. Fcurier transform from V.(. Let us compute Fourier integral

of ( which l3t us register in the form

(r%= ,eJ:'-. (6)
-!

Taking into account (1) and (2), wa find:

II

dt (') eGE c dd-? e- -) d .

ST.-I - -1

-I4
here

eJ2 td, "nC r - 'q
-- |

,.1



DOC 80206713 PAGZ Q

This result means that the Fcuriar transform 9.(n} satisfies the

same integral aguation

T5 (IQ') G(0I. I') dr W.0

as function itself , Consequently, spheroidal function and its

Fouripr transform are characterized by only scale factor. In cther

words, we come to the relaticnsliE/ratio

M . eJA A =* ,d,. (71).(7

which is also the integral equatien, which are detarmining spheroidal

functions.

Page 296.

E.genvalus a. c. this equaticn can be connected with aigenvalues

X. of initial eluation (1). Actually/r rally, taking into account

that v.(,) is real, we ottain via the iteration

e(1d -! (') E

1 2

...... .....
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Thus, equation (1) can be considered as first iteration (7), if

we assume 12,L-2nA,,c.

It is not difficult to show also that value a. is real, if

n,. is eVer, and imaginary, if v,(a) - is odd [66].

These consideraticns lead to the dependence

taking into account to which formula (7) can te rewritten in the form

m -C 1B+4/0 (8)

Inverse transformaticn cf Fourier gives

j-" (+) e- /C) =C < <- C n .

-0 nP14 Ilo > C.

Kny: (1). with.

W3 initially w!re intqrosted in ths bshavior cf spheroidal

functions in limited interval (-1, 1) . But formulas (8), (q),

obviously, determine these functions on the entire axis (--, -). From

(9) it follows that function v(rij. examuned/ccnsidered on the entire

axis, has i Fourier transform cf the limitsd extont. In that r-gior.

wher this conversion is excellent frcm zero, it repeats (without

taking into accourt constant factr) function itself. This it

ind.catcs ci. tain g-nprality cf sph-ro:dal func--c-s and functions cf

V
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Hermite (in particular, Gaussian signal). The latter possess a

similar duality and are close tc the spheroidal functions with c-+-.

This mcrs fully quastion is traced in connection with asymptotic

expansicns of spheroidal functicms (65].

Page 297.

3. Dcuble orthogonality. Atove it was shcwn that the set of

functions v. was orthogcnal in irterval (-1, 1). This is the direct

consequence of that fact that the sFheroidal functions are the

solutions of homogeneous equaticn (1) with the positively determined

symmetrical kernel. The rare special feature/Feculiarity of

spheroidal functions consists in the fact that, besides orthogonality

in the finite interval, tbase functions arc. orthcgonal also in the

interval (--, -) . Actually/really, taking intc account (9), on the

basis of equality Parseval we can register

( 1,) 7 ") d ] = Fz P. a+£

The obvious replacement of variabl-/alternating leads right side

to form (3), and is obtained

riPmn.:# n.
It

Kay: (1) . with.

* II

.,+ i i %, - .+ - . .- *+ *--.- , . ,. . . . . . . .+ -"-- -.- - V. -- = L .. +
'. . .. . . . .
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The double orthogonality of spheroidal functions makes from with

ideal apparatus with the scluticn cf such prcblems of the thecry of

signals as the approximation cf arbitrary signal with the help of the

function whose spectrum is livited by extent, or the extrapolation of

the signals of the limited band cut of the given one time interval

[7, 67).

Let us emphasize, however, that if in interval (-1, 1) the

system of spheroidal functions is complete, then for the infinite

interval this not then. Actually/really, since functions t.(,) have a

spectrum of the limited extent (this is clear from (9), their

superposition cannot form the arbitrary signal whose spectrum falls

, outside band (-c, c).

However, it is Pasy to sbcw that in the class of signals with

the spectrum, limitsd by the tard irdicated, th- system of spheroiial

functions is ccmplztc, so that any signal of this type can be

* decomposed according to functions w,,n, and this resolution is useful

for entire axis -m<q<aa.

4

La

II
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Appendix 2.

Determination of the concepts of amplitude, phase and instantaneous

signal frequency.

As it was noted in iDput chaster, one of basic concepts of the

thecry cf signals is the analytical signal s(t), formed from the real

signal u(t) during the additicn by its imaginary component,

St)-U(t) +JV(Y). -

moreovir the latter is fcund frcu the conversion of Gilbert:

(1) , f uQ() de. (2)

Page 298.

This selection of imaginary ccmpon3n-nt is connected with

determining of the fundamental characteristics of signal - its

amplitude nvelipe, phase and irstantaneous fraquancy. It will be,

shown below that only during the use cf conversion of Gilbert the

charactaRristics :naicated will ts ccordinated with the completely

obvious physical requir.em.nts, sc that any ancther salection of

imaginary component in (1) Is c-xcluded [941.

,Nit
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It is not difficult to comprehend that the observed ((fcr

example on the oscillograph) real signal u(t) it is possible more or

less arbitrarily to disengage tc the amplitude and fluctuating

factors, i.e., to present in the fcrm

u (t) - A (f) cosip (t) - A (t) cos 1[ot+ ID(t)! (3)

In other words, only the left side of equality (3), signal u(t), is

the physically observed value, and for the concrete definition of

right side, for determining the aiplituds A(t) and phase 0(t) it is

rqquirad certain "conjecture", speculative interpretation of the

cbserved ph.nomanon. This means that are possible different

definitions of amplitude and phas*, and, as it will be shown, this

ambiguity is connected %ith the selection of cne or the other

imaginary part v(t) in (1).

1. Connection/communication with ccmposita representaticn of

signal. Let us consider ccmposite signal (I) with the arbitrary

imaginary part of v(t). After rewriting (1) in the form

s (1) --- u'(') + U' (t) exp J arctg A (t) eJ9 0) (4)

where

u(!).A(t) cosqp(t) and v(t)-A(t) sinip(t),

it is not difficult tc ncte that siparazio. u(t) tc the intrestir.

us factors actually/really it is rcssible tc fulfill diff3rsntly,

f% !;WNW 
-- ,
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but, when v(t) with any form is selected, amplitude and phase are

determined unambiguously:
o (t)

A (f) = -' (t) + '(t) , ) = rctg-. (5)

It is easy to be convinced also cf the reverse/inverse: any

separaticn u(t) to the factors of fcrm (3) indicates certain

concrete/specific/actual selection cf the imaginary component v (t)

Actually/really, if A(t) and 0(t) are undertaken so that u=A cos 0,

then, after placing v=A sin 0, we come to the composite signal s(t)

in the form (L4).

Thus, with the assigned reel signal u(t) is one-to-one

conformity between its amplitude and phase, on one hand, and

imaginary component v(t) cf ccmposite signal - on the other hand. In

ordir tc unambiguously determine amplitude and phase (and alsc

instantaneous frequency w N).-d t), it is necessary and it suffices to

indicate the rule of the selectiov cf the imaginary compcnirnt v(t) on

the real signal u(t). In cther bcrds, it is nec.-:ssary to indicate

operator L, which realizes the ccrversion

V(Y)-L U(t)1 (6)

each operator generating cne cf the pcssible determinations of

amplitude, phase and fr.quency, ard their comrl-te sat corresponds to

4 all possible daterminaticrs.

2. Physical conditicrs fcr seIection of cperator.
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* Page 299.

However, not with any operator L(u) the generated by it concepts of

amplitude% and phass will te ccordinated with tha physical,

engineering representaticrs, not any operator can be therefore

recognized as satisfactory. let us formulate conditions to the

amplitude and phase of signal, ta-sed only on physical considerations,

but such, that the need fcr their fulfillment occurs sufficiently

cbvjcus.

1). Let us raguire sc that to thr- small changes in the initial

signal u(t) would correspcnd siall changes in its amplitude A(t) and

phases 0 (t) (latter, if A (t) #G)

* Since ccnversions (5) are contirucus, for this is required thq

cont-inuity of operator (6) . Further, in tha space of continuous

operators are diftfarentiatid operatcrs they fcrm everywhere denss

* set. Using this, it is pcesible tc consider that operator (6) is

* differentiated, i.e.,

4(-0 Ln 'uqu 0~i 7

Transition/junction from the ccnt'nuous cpiarator to that

diffzrantiatsd inAl.catits, strictly spiaking tha: we changa values of
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A(t) and 0(t), but so that for any signal these values are changed

arbit-arily little. It is obvious, this replacement is permitted.

In general, L' (u) is derivative of tha unknown operator, and we

require, thus, the existence of tb.s deriv%tiva for any signal u(t)

2) . Let us require so that the phase (and, therefore,

instantaneous frequency) would not depend on th3 power (norm) of

signal with its constant/invariable form.

I This means that with any positive constant k rsplacament u(t) on

ku(t) must not lead to tke change 0(t), i.e., taking into account (5)

Hence it follows that operator L sust be uniform of the first dagra!:

iLtku) -kLeu). k>0. 9

3) . There is a uniqus class of thp signals for which amplitude,

phase and frequency they are kncwr completely accurately. These are

the strictly harmonic, monochromatic oscillations/vitrations

tl) -,.4-, cos # too - (D.,,li

in which AG and T - constant. Any attempt to dete.rai e amplitude

and phasa for other signals is a generalization of the corresponding

concepts, known for the harmonic case.

4

Therefore let us require sc that for the harmonic s14tals th"

-TM 7M1ZEM
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introduced concepts of amplitude and phase become knowns.

I.s., for signal (9) we must obtain

4 it) -Ao, (t) -w),t+0 ..

Page 300.

From (5) it follows that for this the harmonic signal must be

transformed by tha completely specific form, ramely

ILcos (ot +40)1- in (~gt+ o). (1 O)

Wa will show furthir that the operator of Gilbart (2) is to all

only satisfying conditicns indicated, and therefore the corresponding

concepts of amplitude, phase and frequency are singularly

permissib l.

3. Proof of uniqueness. The unique linear (additivs) operator,

. which satisfies conditicn (10) at any frequency w., is ths ope3:atcr

of Gilbert [93, page 159-161]. Therefore we will demcastrate th-

uniqueness of p-rmissible conversicn (2) , if we ostablish that from

conditicns (7) and (8) fellows alse the linearity of oparator L(u).

After introducing in the spac of signals cartain basq, it is

possible to reducs the prcblem tc the analysis of the transformatiDr.

cf ths multidimensional vqctcr 1= (ul, U:. Ui..... ) into
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multidimensional vector v-(v,. v. .... ,.... Components ,. and t. are

coefficients of tha expansion of signals in terms of the selected

base system; strictly speaking, a number of such components

infinitely, but virtually always it is possibla to be bounded to

finite expansions.

In general, the transformaticn of the vectors indicated is

assigned by system of equaticrs

u,=fj(u,,., U. ... , ... . ) j-i, 2,

wherze f, - arbitrary functions of many variable/alternating. We

should shcw that with satisfaction cf conditions (7), (8) these

functions are linalr. The appropriata proof we will lead for

functioning two variable/alternating, generalization to the

multidimensicnal case. As cbvicus.

Let function f (x, y) be uniform tha first degree and has both

particular derived at all values cf x and y (thase conditions

correspond (7) (8)). Than, in vif w cf diffarantiability at point

x=y=0, we have

f(x, y)-f(O O) +ax+by+e(x, y). (11)

Here a and b - :orrosponding partial de:ivativs s, and functicn

4 x,,) on any ray/bsam y=yx vanisbz more rapidly than x, i.e.,

11M - '. (12)

But f(x, y) is alsc unifcrm and, i.n view of thi known Eul.-r
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formula.

f (Z'. M) -xr(x, Y) + YV,(X, 9).

Therefore f(0, 0)=0. Further, from (11) we have

C(x. y)-f(,, y)-(ax+by).

We see that

s(x, y) is a difference in twc unifcrm functions and, therefore,

itself is uniform. Therefcre cn the ray/beam

u(x, Vx)- x(1, V). (13)

-in question.

Page 301.

Since ,(1. .) does nct depend cn x, on (12) and (13) it follows

that ,,x.I'X' is equal tc zerc with all x, on entire ray/beam.

Finally, in view of the arbitraziness ot selected ray/beam (x. , it

* is equal to zero identically and, according tc (11), f(x, y) is

linear. This completes prcoft.

FOOTNOTE 1*. We were based higher by differentiaDility f(x, y) at the

unique zero point. This can cause the doubt of "rhe correctness of the

formulation cf the problem, since the point indicat.ed correspcnds to

the signal of zero point en-rgy, hbich is not of interest. But from

. previous it follows also that the uniform function, not

•. . ~~~~~r-.- .. . ------ ...-r_-- - ,-- - .% ,--. .
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differentiated somewhere, is rot differentiated also in zero

(otherwise it is linear, i.e., it is differentiated everywhere).

Therefor3 the noted contradicticn only seeming. ENDFOOTNOTE.

Thus, the conditions of differentiability (7) and uniformity (8)

lead to th2 lin3arity cf cperatcr L(u), and then condition fcr

harmonic signals (10) proves the uniqueness of Gilbert's operator

(2).

4. Discussion of results. The use/application of transfortatiDn

of Gilbert in the thecry of signals is well known, and in many works

of his property thoroughly was studied frcm that point of view in

ordr to be convinced of the suitability of the corresponding

concepts of amplitude, phase and frequency (fcr example, see, [ 30]).

In connection with narrow-hand, quasi-harmonic signals all
proceeds happily. But when the hand of signal - commensurated with

the medium frequency, the demcnstrative character of envelope is

lost. In particular, if u(t) - the rectangular radio pulse of

sufficiently short duration, the envelope A(t) differ from

rectangular and contain the "tail-, of infinite extent. These "tails"

are reduced with an increase in the carrier frequency when signal

approaches harm:nic, but this structure of envqlope does not give

demorstrativc- representation in tle non-narro%-band case.
I

7 7,j
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in connection with similar contradictions frequently they are

voiced about the fact that fcr the broadband signals the

corr=-sponding concepts of amplitude and phase have only formal

character. Thus, analyzing one characteristic example, Cramer and

Leadbetter wril.,e (96, page 307] that obtained with the help of the

transformaticn af Gilbe-rt the evvelepa "has nc sense from the point

of view of the physical ccntent cf concept.... Although the

mathematical determinaticn of envelope unambiguously, it is necessary

to be fcr careful ones with the physical interpretations, which

relate to the broadband signals".

Hardly it is possible tc agree with similar propositi.ons. in

fact, here it Is possible only tc say that in ttia broadband case the

*transformaticr of Gil-ber1t does net 1l:ad to the demonstrative

* description of the signal thrcuch the amplitude and the phase. But

* for this signal, substantially different from the harmonic,

damcnstrative Jzscripticn through the~ amplitude and the phas-e -t can

and not exist: indeed during the ccrstruction of this description ws

* always attempt to preserve the rarrcw-band modal, inadequate t7 the

cases in quastion.

Ths essanc: of this p--cb1cm In any way is not reduced to
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obtaining of demonstrative representations. From a physical point 3f

view is mcrR important not to break the accepted by us condition,

which are reduced to the continuity of the determined concepts, to

the independence of phase cf frequency from the amplitude (scale) of

signal and tc the agreement with the known determinations for the

harmonic oscillations. In the ccnfirmation let us consider some known

methods of measurement, in which these conditions are disrupted.

Page 302.

1) The spread method of measurement of frequency is based on the

calculaticn cf number of zeros, zorc-level intersections per unit

time. In this - se the measured value of frequency, obviously, does

not depend on signal amplitude. Fcr the harmonic oscillation of the

measurement metal to be carried out correctly and it is very

accurat-. This means that the seccnd and the third cf the acc-.ptsd by

us conditions are implemented. Eut continuity condition here is not

satisfied: it is not difficult to indicate such signals and such

slight disturbances, that a number of intersections will he changed

with jump, several zero will be supplemented cr will vanish. For tha

quasi-harmonic signals these juEFs are usually unessential. But fc-

th- broadband signals with a small number cf z.ro such methcds of

measurement does lead tc the unccntrollabla errors and the series/row

virtually is suitable.

I1
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2) EVSni grossor discontinuity is allowed in the method cf

measurement of frequency, based cr the so-called structural

properties of signals. Cne of ttese properties gives the known

differential equaticon ul' (t)+wZluft)=0, valid for the harmonic

oscillationls. Based on this equation, in [97) it is proposed to

measure the instantaneous frequency, using the rilationship/ratio

Always it is poSSibl= tc fit this slight disturbanice of signal, which

at certain moment/torque will be cbtainad by u(t) =0 at the finite

value of second derivative u''(t) . At this moment the value of

* frequency according to formula (14) goes to infinity, i.e.,

continuity is not observed.

The absurdity of this method of mpasursent, is almost etvious,

* since it is unsuitable nct for what signals, except Strictly

sinusoi4dal onea. Actualy/really, if signal is modulatced in tho

amplitude, u(t)=A(t) cos wc0 t, substituting in (114), we obtain

Analogously, for Ch,1 signal u~tl-ccs ,,,-~j~ we have

;M
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With any, aow conveniently slcw changes in the amplitude or

frequency this result is deprived cf any sense: in each period of the

carrier frequency the radicand varies from +- to -- , aad it is not

possible to extract rcot simply. Cnly with the harmonic signal, for

which correctly initial equation, result of measurement is correct.

3). Tikhonav proposed the determination of signal amplituli

envelope cn the base cf operatcr (98]

For tha harmcnic oscillation cf frequency wo this operator gives the

same as the transformation of Giltert. Furthermore, linear operator

(15) satisfies the continuity ccnditions and uniformity. But for th;

harmonic oscillation of any other frequency, different from wo,

conditicn (10) is broken, and ttis leads to the explicit

contradiction.

Page 303.

For axample, signal amplitude envelcpe u(t)=ccs w~t obtains

exprassion

I

I- -I o 2.,

''. -, .- , - - - -- - " . . . . .. " " .. . . . ."- - - ': , --:-'''-- --- .. .. . . . . .. . .. "
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* Rapid changes ia the envelope (with the frequency 2w1) here cccur

even fcr the harmonic signals, what, obvicusly, must not be.

14). Lat us point out also the example when is broken the

condition of uniformity, indeFendence of frequency and phase from the

signal amplitude. This examFle Sives the measurement of frequency or

phasa by the corresponding discriminator withcut the preliminary

amplitude limitation. Then the result of measurement depends

substantially on the amplitude that it does not make it possible t:

apply such met.rs.

Let us not3, hcwevcr, that with the broadband signals thq

limiters conduct to the ncticeahle distortions of phase and

fr'quency, in connaction with which it is expediqnt to pass to other

methods of measurement (94].

These xamples sho'w that the disturbance/breakdcwn at least cf

one of cur requirsmints can lead to ess:nt-al contradicticns. Results

I
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are either clearly absurd or they wili not be coordinated with those

expected even for the narrow-hand signals. on the other hand, the

transformaticn of Gilbert, satisfying all requirements indicated, in

fact doos not lead to the contradictions, since certain inadequacy of

the concepts of amplitude and phase for broadband signals is causad

by their nature itself. Finally, since only tba transformaticn of

Gilbert satisfies all ccnditicns accepted, wa come to the

single-valued deterainaticn of amplitude and phase, and we also

introduce naturally the concept of analytical signal.
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Pages 3011-308.
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