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Page 2.

Is examined the wide circle cf the tasks, connacted with :he
cptimizaticn of thzs sigrals, used in ths radar. All tasks are “rea+t-d

from the positions of the critericn cf proximity - new universal

approack tc ths synthesis, eapplied not only in tha thecry of signals,

but alsc in othsr regions., It is skcwn that the synthesis of signals
according to the functicns the uncertaintiss/indstzrminancies and
according tc th2 autoccrrelaticr furnctions, and also the cptimgiza*icn
of most ccmmonly used sigrals witt the frequercy modula“icn and wizh
the phase manipula*ion can successfully be carrisd out on tha basis
of the general/commons/tctal agprcach indicatad., Are
developed/processed also the iterative m2thods of synthesis with ths
us<sapplication cf the nerclassical calculus cf variations. Az3 givan

the ~ew rasul+s, obtained by the authors.

The book is intended for sciertific workers, graduate studsats
and engineers, who are interested general by cusstions of radar arnd

“heory cf signals, ard also ir prctblems of synthasis in cother

regiors,
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Page 3.

PREFACE.

duraction

ths confirmation of

characteristi

PAGE 3

c feature cf contsmporary radio electrecnics ‘s

use of serrated sigrals, i.e., signals whose produc* o5¢

to the width

of the spectrum considerably exceeds unity. As

tha afecresaid car ssrvzs the fcllowing data abcut

a quantity of pateats, given cut in the series/row cf the foraign

countries (USA, Great Britain, FBRG, Prance) according tc *the m2%thcis

of fecrmation, proczssing and on the usas/applicatioans cf the

complicated sounding sicpals in radacz [41]:

Key: (1).

The
sclution
Py

(Hloau
1961
1962
1963
1964
1965
1966
1967

Years. (2).

the years 196

(2 Buiaano narextos
4

18
36
55
78
88
34

Patents issuyed.

1-1967 313 patents ware issuxd.

use of serrated signals is connected not only with th2

cf sarious “echrical prctlsems (abdout which %testifiecs Thsz
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' mentioned flow of inventions), kut it resquires alsc in-depth
thecretical studies, especially cr the synthesis, “he optimizatior cf
the structure of signals *hemselves. This question already has vas=
literature., Of the bocks, published in the Russian language, i+ is
possible 4o mantion ths mcnograph ¢f varakin [13], Slcka [62],
Petrovich and Razmakhnin [48], Ccck and Bernfeld [35), and also werk

of cne of the authors of this beck [7, 8].

Page 4.

Shculd be nctzd alsec the excellent book of Franks on the principles

| of the theory of signals [30]. All these boocks touch on one way or

ancther quastions of synthesis,

But *he known methcds c¢f synthesis ar= very haterecgenacus.
Depending on ths structure ¢f sigral and concraze2/spacificr/actual

requiremen*s are applied the different methods of the sclutior,

diffarant critaria of aprroximaticnsapproach and sc forth, etc. Thus,

“he methcds c¢cf <he synthesis ¢f the signals with tha frequercy
modulation ir practice d¢ no* have general/cosmons/total with those
which usually are us2d for the discret2/digital sigrals with *h»

phasy manipulatiorn, ‘

Meanwkils ¢c thw divacse *asks of “h: syrtnisis ¢£ sigrals, arnd

e
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‘ : also synthesis of antennas, filters and other units, is
characteristic certain genmsrality, which makes it possibls tc
formulate these tasks frce unity cf cpinion. This universal agproach
simplifies the understanding cf different problems of synthesis ard,
as frequaatly it is during sirpilar cznecalizations, cffzars furtther
possibili*ies in the socluticn of the tasks, almost inaccessikla €or
the methods, which were being afplied carlier. The
davs=lopmant/detscticr of such general/common/total apprcach is the

furdamental purpose of this wuwcrk.

l For this is used the rCepresentation of signals (or cther obijects
. 0of synthesis) in the form of rultidimensicnal vac+ors in certain
‘ abs4ract space. This rezrresenta*icn is widaly krown from the thsory
of freedom from interference arncé adjacant regions, it is based on th-
- simplest positions of functicnal analysis. In applicaticn *o0 *h=
preblsa ¢£ synthasis this represeptation makas it pcssible tc obtair
the demonstrative gecmetric descripticon of the corrssponding tasks.
It is clarified, that independert cf th2 naturé of ths objacts of

synthesis and concrate/sgrcificsactual requiremants the prokl:m is

reduced to the minimiza*icn of tke¢ distanca between soms sats ia +h:

o 'vl' .

appropriate space. This pcsiticr, named tha hypothesis (or criteriosn)

of proximity, is the basis cf this werk,

This hypothasis was formulated by ~re of +<ha authors in 1947

+
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[8]). This book is, thus, ty the development of the work indica==d,
moreovar substantially are used and are generalized authors* grovious

publications [7-12, 53, €0, 63].

one shculd emphasize “hat the approcach ir juestion %c the
synthesis contains only the determiristic tasks when the desired
rcparty of synthesized clkjects is formulatsd withcut the
us2/application of statistical criteria of optimum character. Such

tasks meet very frequently.

Pages S.

They include the synthesis of antennas according to the radia*ion
patterns, ths synthesis c¢f filters acccer-ding to the fraguency
characteristics, *he synttesis c¢f signals acccrding to the functicns
of uncertainty/indeterminancy, etc. But besides the merntioned
dzt2rministic <reatmznt fcr the synthesis of signels are frequenily
used the probabilis+<ic criteria, sisilar by that used in the *hsory
of detection and evaluaticnsestimate of tha paramet2rs. In this
connsction 4c matzrial of ~he becck is presuppes=2d4 “he input chapter,
vhich elucidates role ard place c¢f ths detarministic me“hods of <kLs=

syrthesis of signals in th: series/row of cthers.

It chaptar 1 !s ir deteil presarnted the proposed universal
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approach to the synthesis, while in the subseacu2nt chapters i% is
applied tc som2 tasks in the cptirization of sigaals. In this case
into some cases w2 come crly tc the new treatrent of known resules,
in cthers - are achieved the generalizations, which have independent
valu2; finally th=zre is a series ¢f precblems whzre *his apprcack

leads tc¢ the nev results.

Some of <th: examined in the lcck tasks havz th?
general/common/total value in ¢ke given regicn, others ar< of
intarest bacausa are determined the signals with gocd in this or
another sense prcecperties. But it gces without sayirg tha book doss
not claim to the complete sccpeyccverages cf the problem o0f the
synthesis of signals. The authors attemptad, rainly, tc ccnsider
different “asks, using single methcd, of confiraing the univarsali+y

of the latter.

Mathed is adapted fc: the synthesis of single (in particular,
that sound) signals, tha fproblew c¢f the syntheszs of tha grcups of
signals accecrding “o the mutual-ccrrelaticn properties in the bcok is
not examined. In the equal measure are not =xamined any questiors,
cennact=d with tha constructicn cf syst=ms as a whcls.

Th~ synthcsis c¢f signals as c*h-T tasks ¢f cpuimizaticn, s

reduced %0 “he variatior croblers., The knewn mezhoeds of sclving <t

(P
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variational problems can te daivided ir“c *wo la-ge grcups., Classicazl
calculus of variations gives the aralytical resolutions of seri:s of

problems or, at least, reduces them to othsr groblzms of analysis, *c

the differzntial cr integral =2quaticns, But tcday intensely thay ar-»
applied and ar:z jus* as irtersely developed also nonclassical
variational methods, based cn the iterations, the successive

approximatiors to the unkrown sclution.
Page 6.

Contzmporary coaputer tachnolcgy makss i+t possibla +o apply itarativa
numerical methods with tte great success, and it is fossible %o hear
propositions about the fact that the analytical methods becam2
obsclats, they arsz lass efficiert in th2 practical itasxs <han

numerical, itsrative,

Hardly it is possible with this %o agree. Classzcal and
R nonclassical variational methcds mutually supplament =2ach o%thaz; in
“h~ complex problems ©f the synthesis of signals i% is expcdiant tc
. join %thcse, etc. The authers c¢f this book hcpe =zhat <+hsir

collaboration contributed to this interpen2tration cf me*hods. i

VRN

Introduction, chapter 1-3, €-G (besid:zs §9.11) arz writ+aa by D.

e}

Y=. Vakman, r:maining secticns cf teck - tcgyath:z by both au*hszs. 5y

. "u
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B. M. Sedletsxiy are performed alsc calculaticns on TsVM [digital

computar ] for obtairing the ccncrete/spscificsactual resul:s,

Thz authors are gratsful tc th: doctor of “echnical sciemnces L.
Y=, Varakin and tc the dcctcr c¢£ technical scisnces A. M. Trakhimar
for ths critical observations ard the councils, which con“ributed zo

an imprcvement in tha beck.
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Pags 7.

INTRODUCTION,

PROBLEM OF THE SYNTHESIS CF SIGNAIS IN A RADAF.

shert historical survey/coverage.

Examinirg questicns c¢f usesagpplicaticn in chs radar cf tha
sounding signals of differant structurss, it is possible <o isola+*:
several historical stages. In the first develcpment period a gqusstion
about the sslection cf wavaferm, ir fact, was not placed. ThL?
practical possibilities c¢f gereraticn and preocsssiag of sigrals w=c=
so limited that were apglied ¢r tle singyle-frequancy
impulsas/mcamsnta/pulses ¢£ the sher+ du-ation, cles: tec the
centinucuas cnzs, ob*ainsd from usval type vacuum-tube cscillators.
Respactively 2van during the first stage were dszmac-cated twe
directions - pulse and ccntinucus, Tc 2ach of them ware
charac*eristic their limitaticns, each solved its problems. Pulse
method was appiisd in the devicessequipment with a ccmparatively lery
range of action, ccntinucus ~ with «he lcw, but in this czsa was

reached higher accuracy.

B iadas Sncabed. . seedci i
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The following, secord s*age, is connactad with th: advant of a
pulse-coherent technology for the selection of moving objects.
Selacticn is rzachcd due +to the ixgroved methcds of processing the
echo sigrals on thz condition that an indispersable sequence cf 1
sounding pulses possesses sufficiently high stability. They are
required, in particular, the low frequency drifts of filling for
several periods. In a certain sense such a requiremsat draws tcgeths:s ]

pulse radar with the continucus.

Page 8.

At lsast characteristic time scale increases sevaral the orders: it
is not the duration ¢f single puvlse, but rapeti<iorn period. Cchersnt®
pulse sequence is already *the serra%2d signal, whcse product cf q

duraticr tc the wiizth of %tha2 spectrum is sufficiapzl reat.
P

But this undsrstanding arrived scmcwha+ later, ia third, 1

con+temporary developmeéernt stage cf radar technclogy. Certain thrsshkeld
of this stage it is pcssitle to ccnsider the first successes of tho
statistical thsory of radar, whick relate <o th: middls Fifties wken
i« was establisked/ins%alled, ir fparticulaz, that <he most importarnt
characteristic of RLS (prctability of datecticn) is detarmined witkh
th: op4imum rec2pticn/procedur< by zsnergy of tan» scundirng signal, bu:

do not dep2rnd or th2 special featvrzes/pzculiarizies cf its fcrom, !

i
%
1
:
)
|
|
|
j
1
i
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includirg from the pulse power, duratiorns, widths ¢f ths spectrum and
so forth, 2tc. This it irdicated thke possibility to vary waveform,

satisfying other requirements with the maximum d=tectable range.

The straight/direct continuation of this idea is the wid-=ly
utilized today technique c¢f the ccmpressicn cof
impulses/momenta/pulses, which makes it possible to raise accuracy
and range resolution at tte limited peak pow2r and long range of
detaction, It is possible to say tha* compression t=achnique Jcins
somehow ths advantages cf pulse ard ccntinucus methods in the radar.
Used for this sounding signals pcssess the wide spectrum for the
iarge duration, thase are serrated signals with the frequency

modulaticn, the phase maripulaticr and the likel,

W

FOOINOTE !, The first puklicaticn on the usa/applicaticn of th
complicated sounding signels in tts radar partains to thz year 1960
[39]). From tha Sovi2%t scurces skculd be menticned Ya. D. Shirman's
invention [86, 87], who in 1956 proposed analogous method. In 10-15
years of davelopment the compressicn tachnique of serrated signals
achisved surprising successes. Is “cday realized comgression of Ch™
siynal 10% times (!), the duraticn of the sourding signal being 1 as,
ard <h2 duraticn of cecmpressed - ¢nly of 1 ns. By *this is provided

rzsclution on ta2 crder c¢f 15 cv (37]. ENDFOOINOTE,

- . — .- Faait SR —— wgre——— e g ———— -.—-~-T-:'r—-—o——~- A e s =
\ . MY
. . M . " Lo T . N . S
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, The middl: Fifties includes general/commen/tctal posirg of %h»
question about the simultanecus seasurements c¢f all parameters of the
mection of object - its cocrdinates, rate and acceleration. This also
was dcne in th2 plan/laycut cf the statistical treatment cf problem,
but made it possible to deterzire the cffect cf waveform on tha

guality of the measurements indicated.
Page 9.
Here should be noted Wocdward's basic vork [16], who for th=e first

[ time introduced the generalized craracteristic of the sounding sigral

: - function ¢f uncsrtainty/indeterrinancy, which ccmparatively fully

dsscribss “he 2f£2ct ¢f the latter cn the measuraments of “he delay
time and frequsrcy. The functior ¢f uncertainty/ind2termirancy is
similar to the antenna radiaticr fpattern: in th: same msasurs in
which the radiation pattern charactsrizzs accuracy and cesclu=ion cé¢
angular measuraments, the furncticr ¢f uncertainty/indeterminancy

characterizes accuracy and rescluticn of rangings and rats=.

[

Logically, as soon as was understood this valu= of the functicn 1

of uncarstaintys/ind<stcorminancy, wes kegurn the d2tailzd study cf iz:s

Py

properties and were dcne the first attempts at “ha synthesis of th= 4

. I
. o olla aae

signals, which possess the desired functions c¢3

uncertainty/irdstarminancy. 1

s

v ;‘. VTS A
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Bzginning from the end/lead Pifties,'ihis complicated in
mathamatical sense probler of synthesis intensaly is
develop2d/procasszd ard atroad. T¢ some methods of its scluticn, ir
th? opinicn o0f the authors sufficient to efficizn%t ones, arnd is

dadicated this bock.

In parallel with the develcpment cf the th20ry of serrat<i
signals occurred the development c¢f technology of their gerera<ion.
T2chnical capabilities ccnsiderably were widened in the latter/last

| decad2, and although frcm the pcipt of “heorist's view these

possibilities still leave to desire the best, the contempcrary stage

; cf radar it is unccnditicrally characterizad ty ths wid2 application

0f diverss sarrated sigrals. Therefcre *he methcds of synthasis,

- op~imization of these signals, especially those of +hem, which to <ta2
maximum degzes consider th® pcssitilitics of ganerazicn, dc ncet less

and canrct le¢s2 urgency.

. Most recently was planned, apparently, new, fcurth stage in *+h=
process of the imprcvement of thke structurs ¢f signals. This stage is

ccnrn2ct~d with the general/commcn/tctal tendency of the

radar., Ia the initial setting 4his qussticn rais=zs ever tc %ne 1

1
j us=,sapplicaticn of the self-*uring, adaptive davices/equipmso%t in =h»
)
o
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sequential analysis of Wald. But if at the early stages ths t=achnical
capabilitizs of self-adjusting wer= limited in :ssance tc variable
speed of scanning cn tha angle, then *oday thers is a possikility ir
principle “o change alsc the structure of sigral and the methcd of
reception/procedure in the dererdence on th2 cbhserved situation,

accerding tc thz2 pravicus observaticns.

Page 10.

As a charactecistic sxample of this typs car serve the radar systenm,
which, after determining roughly lccation and *arget speed, ani
having also considered interference situatiorn, automatically changas
th2 form of the sounding signal and (or) tha mechcd of
recapticn/procadura in crder to ir the best way isclats sigral from
the predicted target frcp the available interfsrencas, and *o also
make mo-e precise i4s cccrdina*es., In proportica tc the refinement c¢$
real situaticn “his process cf adaptation of FLS continuocusly is

continued?.

POOTMOTE !, In the literature already thers atre indications about =<h2
davelcpment cf similar adaptive RIS, which automa*ically change the
operating moda in the d2pendence c¢r the results cf previous

observations [54]. ENDFCCINOTE.
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The synthesis of signals fcr the adaptive systzms is
characterized by the series/rcow cf special features/peculiarities.
The selection of signal, its cptimization, must be producsd not a*
the writing desk and rnot after *he fpancl of TsVM, when for ckttaining
the resuolts and for their aralysis can be expended/consumed hours or
waak, but it is direct in the ecuippent, during several seccnds or
milliseconds. Of course so rigid a r=qulation of time sets }
substantial limitations ¢n the methcds of synthasis, But nevertheless
ncre fundamental is ancther spscial feature/paculiarity, cennscted

with «he fact that cnly the adaptive systems mak2 it possiblz %o 4

virtually obtain necessary, a gricri for the task of synthesis,
infermaticn about the ccncrete/specific/actual situaticn. This

special featur2:/psculiarity in detail is considcrad below.

Opzraticnal dsscripticn cf lecca%tirg sys=tem.

L2¢ at th» peint ¢f space, charactarized by radius-vacter r
{orijin of ccoriipa*es is comktired with RLS), “har: is a pinpcint
target, which moves at a rate of v, If “hs scunding signal is s (%),
“hen with *he usual assumptions alcut not too higbh a target sp2ed anl
abcut the narrow-band characteristic of signal (wih respsct *o0 *“h»
carrier fraquency) the =2c¢ho sigral can be prasaanted in +he fecrm

Xg(t) =’-’7‘5-’ ghrisit —x) e,

deras r=\r‘— th3 range cf tacge<, g9(r) - thy antanna radia%icn pat-:=:on

-~
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(on the field), »=2r/c - dolay ¢f the 2cho signal, Q=2ww.c = the

Doppler shift of the carriar frequency wge, 0, - thz radial velocity
. of target.

Page 11,

The coaposite coafficiant of reflection a(r) characterizes thes lavel

of the echo signal (reflecting surface) and the phase of rs=flection.

In gereral target is nct pcirt, it occupi?z c2a:i:ain space V. in

the space, and then

' x.(l)_—..S _"_‘:_;L gins{t—-= dV. {la)

Moracver hare a(r, t) is density ¢f reflection coefficients, so “ha+t
a(r, t)dv is the coefficient cf reflaction of volume element,
Deperdence on t characterizes ctarges (usually slow) in coefficient*

cf r2flsctior, Zor example, dus t¢ *the motion cof tacget.

: Basides usa2ful signal x. (/) c¢p BLS coms mixing reflecticns xuff)

alloas et

from other reflecting okjects. These objects ar: characterized by

density b(r, t), by analcgous a(r, t), and they occupy certain ragioca

. .

Vo in the space. I+t is aralogous with previous

)= J: WD g (r)sit — = e™av. (16)
b

b L < gy
<‘A‘J~A.Akt‘
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Firally, tha input ¢f receiver entar noisss and other additivs:
interferencas, The sources of such interfer?nces also are scmehovw
distributed in the space, but it gces without saying in“erferance
level dces not depenrd on the ferm ¢f the sounding signal, but
radiation pattern hece participates only in the process of
recepticn/prcecsdurs. Therefcre, designzting ncise ccmpocnent cf *he
sigral through =xn(f), it is pecssitle to register

r= [ gryav. (1)

\4
L)

where n(r, t) - the density of the sources of additive intsrfzrenc:s,

and Va - counterpar:t of the space.

The resulting input signal is put togather of thres that
irdicated the componant
X(f) =Xa(!) FXntl) =X ().
Thas: ccamponcnts ace randem functicns, since +hay depend, fc:

example, cn the random lccaticn c¢f *the -eflac*ting cbjec<s.
Page 12,

We will thus far assume the statistical desscriptiorn of “he chtsacvel
situation krcwn, i.e., ccrsider kncwn probabilistic distributisns fer
valuzs a(r, %), b(c, *) ard n(r, t). input signal d:pernds als¢c eon

characteristics ¢f RLS - form cf th: scunding signal s(+) ard

e g - ey e . ——
L « A L -
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radiation pattera g(r). Ttr2 protler cf synthesis (d=sign) lies in th>

fact that to s2lect these characteristics by certain in better shaps.

Receiver of RLS always cocntains linear or quasi-linear input
part - the circuit of awmplificaticr or %“hs high and in *hs
intermediate frequancy. Fer the brevity vwe will call this part simply
r2ceiver. This receiver can te described by its pulse reaction h(*),
the output signal of receiver exists a roll of input and h{t):

tec
yi)= [x()ht—r)ar. ()
—
Togethar with s(t) and g(t) receiver rasponse h(t) alsoc must b2

synthesized on without scm2 ccnditicns of optimum character.

From previous it is not difficult ¢c comprzhsnd *hat RLS can b=
treated as certain operatcr, which converts the characteristics cof
the cbserved situation into the cutput signal of receiver y(t).
Grouping the functional arqguments c¢f this operator which depend orn
structure of RLS and are subject to optimization, and the arguments,
vhich depsnd only on the cbjects ¢f observaticn, can be registarad

y=Y{s.gh, abn). (It a)

Operator Y has cemparatively simple structure, he is linear
relative *o all kis argquments, excert radiaticn parttern (where the
dapendence is gquadratic). In particular, the cutput signal y (%t 1is

put tcgethsr cf£ thres ccomponents, ccearscted with a(sc, t), b(z, &) 274

ot A o et I e et —— e g e - —— e .
Lo . i R -'F, v X B -
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n(r, t) respectively, so that occurs the superpositicn

uity=y. 1V +u,lt) +yall).

In the operational designaticns

Y=Yo(s,g. h)+Y.(s.g. h) +Ya(s.g. ). (111 6)

Page 13.

Furthsr, bacaus2 of the linearity of the conversion, resalized by a
receiver,
l Y=HX4(s.g) + HX,(5.8) + HXa(s.g). (It 8)

{ where operators H and X are detertgirned

! _ concrete ly/specificallysactually ty relationstips/ratics (II) and

{I).

The cutput sigral y(t) is used for det=2rmiaing the parame:=rs cf
motion or other characteristics c¢f targets. Fcr example, can be
mcnitcred the range of target, its angular positicn, rate, acd also
number of targsats, their reflecting surfaces, etc, Let us designats

th2 con*rollabla/controlled/icstected parame<ers through 24, 2z, «c.,

and their set - by multidimensicnal vector z.

According to locating obsetvations is determined the ir gznsral

., v S S
PUPNE PR NV AR NI

rct trus bziem vactor of parame+ers z, but its caly cerrairn

bt )

aporcximats estimats zfz. Evaluvaticn/sstima*te is formed as a rasult

»

1
4
~
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of scma actions, procduced abcve the output signal ¢f rsceiver y (%) -
by the only source c¢f infermaticn atout the observed cbjects. Thssa
actions are implemented avtomatically or with the participaticn of
man, but it is possible tc assure that for each system is certair
regular algorithm (instructicn fcr the opsratcr), paraitting =0
obtain the vector of evaluvaticns/estimates z according to tha
r=2alizaticn of “he cutput signal accepted: 1
zZ=2Z{y )] (V)

Operators Y and Z give from a fundam=ntal point c¢f view +hs

[ complete description of lccating system. Operator Y characterizes *hs

t formation of the echo signals in "ether/ester" and their conversion

in the recziver, h3 ccnsiders alsc the form of ths scundiﬁg signal
and the an+‘enna radiaticrn pattern. This opsrator, iden%ical fcr all
radar systems, is defined ccncretely/spscificallysactually wish %he
help of the praviocus r=2lationships/ratios and, as 1%t secmed, i% wacs

linear relative to almost all its arguments,

The second oparator 2 characterizes further procassing of th=

echo signals, beginning from the de*ection. The
concratesspecific/actual structure ¢f “his operator is more
complicatesd, it depends cp marny facters and, in *he first place, focm

squipm? nt usage.

page 14,
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Depending on type of RLS are mcritcr2d one or the other paramstars c£
. “targets - components ¢f vector z. Intc 2 number of tasks ¢f tr2atman<
can enpter in gs2ansral such "“glcbal" operations, as tha

zvalua<ion/estima%2 of situaticr as a wholz or da2termirnation of zhs=

type of the targets, which relate to pattarn rscognition. Even such
casss can be included/ccnnacted in cur descrirption, aftar assuming j
~hat operator Z maps many signals y{%) *o th=2 discrate set of th=
possible solutions about the situation. Th2 simplest varsion of this
type is a detzction problem wher vector z allcws/assumas cnly the twe

values: 1 (target of e€atirg) ¢r 0 (therz is n¢ target).

Straight/direct and indirect aprrcachas to the synthesis,

L2t us attampt %0 fcrmulate thz task of +h

i

synthesis cf sigrals

and cther charactecristics of locatirg sys+tzm in a stric+t focom.

The vectcr of parareters z, understood in “he generalized,
indicated abcve sense, ccopletely characterizes the
desigration/purpose of the prcjectad/dssign<d system., The ccmgrerarts
of this vector are *he cor+tinucus farameters c¢f targets, which are

subijsct ¢tc mzasuream~nt, such as rangs or ra*e, and also ths

discretey/digital solu*icns abcut thke situaticr as a whcle - prassncs
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of targets, their number, type, etc. Evaluaticn/2stimate Q} obtainzd
as a rasult cf prccessing the echc signals, differs from “rue b=zam
vector z and is random varialtle, whkich depends on tha2
concrete/specific/actual realizatjen of signals and interferences.
RLS implemarts its desigration/purpcse tha better, “he nearer the
egvaluation/estimat= 2 +c the trte value of Z, moreover herz i+ ygoes
withcut saying it is necessary %¢ have in mind averaging cn many
realiza*tions, and also, pcssitly, *c¢ give varying "w2ight" to the /
different components of vectcr z. Therefors as the criterion of the
quality cf systsm it is pcssitle tc¢ selwuct certain ;
adequate/approaching furcticnal, ¢epending on differenc= 2-z. Net
stopping in mcr=s d=2tail on a questicn (gensrally sp2aking, irportant
about the appropriate structure cf this functional, let us no%tz that
as the measure of guality it car serve, for example, th2 msan squarce
cf the difference

s=lz—2" (V)
where the fcature dssigratas averaging ¢n many r2alizations c¢f
signals and interferences fcr the ccncra2ta/specific/actual situatior,

or, possibly, on many situaticns.
Page 15,

The problem of synthesis consists in this selection of |

characteristics 2f PLS sc =—hat the valuz ¢ would ke minimum,. -
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This approach to the synthesis is straight line in the sense
that the critericn of quality (V) ccnsiders final <ffec+t and i+ is
directly cornected with equipment usage. However, <herz is a
series/row of the reasons, duvue to whichk this apprcach in practice is

not usad.

In fact, w2z only fcrmalized tc some degree the problem cf design
of BLS as a whole, Miniwrized value e derpends on all important
characteristics of system - the fcrm of ths sounding signal, puls:
r2action ¢£ recziver, antenna radiation pattern and algorithm of
further prccessing., A1l these claracteristics substantially affect
the quality of the execution cf tasks and tkey all, according tc *h=
pravicus s=tting, thAay must te cptimizad togeth:r, taking irn'c
account mutual effacts, Of ccurse cf this consis%s strictly cpt-imun
design. But the problems cf a similar scale nct randcmly are s3lved
usually on tkes bass of 2ngireering intuitiocn, and ro% aralytical
methods. To regulacize the scluticr cf rthis proolam is completaly

impcssible and even, in cur opiricn, it is not always sxpedient.

After stepping back from the strict apprcach indica%ted, <hey

dismembsr task on the part, as far @&s pcssible szl=cting <he locked

grcups cf Juestions., Thus, <the preblem of angular m2asuremsnts,

. SV
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connsct=d with the dasign of antenna, is 2xamin:zd indepzndsn+ of
rangings and rate where the mair rcle play waveform and method of

recspticn/procedural,

FCQTNOTE ). With the sufper wide-fband signals angular measurem3nts ard
measursments ¢f a range-sresd are nct indspeandent variables and must

be axamined tcgather [79). ENLCFCCINCTE.

In the separat? group are usually scleocted also tha requirsments,
conrtected with the concrete/sgecific/actual designation/purpoess of
system and which affect in essence the 2lgorithm of trzatment, in dur
t2rms - tc the structure c¢f operatcr 2. Other a%t ths sanme iire

requirements, vhich affect, mairly, to opsratcr Y, to a cecnsidarable

(7]

2grae are gensral/commcrstotal fer all lccating systems. The same,
for example, is the requirement of the daximumr prodability cf =he
target det=cticn or correspcnding reosclution from tae mcasured

parameter.

Pags 16.

Similar "particular" requiremsnis ra2late %o th= s~paraie ncdes,
but not to 4h2 system as a whcle, ard on their basis ars
csv22led/d2%2ct2d ~he "working® critsria ¢f ofptimum character,

quipme™t, L~

a

utiliz=d during th: design c¢f *he ccuntarparts of <he
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us note that the "particular"™ criteria indicatsd in any way always
cannot ba connectad quantitatively with the genzral/ccamon/tctal
critericn of a quality cf +the type (V). Applying such critzaria, wr
are based only on the aprroxirate estimats of that how it affacts,
lzt us say resclution tc tha accorplishment of -he £inal chjective of
system, Furthermore, very concept cf rasoluticn and analogous
characteristics allows/assumes different interpretations, which 1

affzct, gencrally spcaking, the results of synthesisi,

FOOTNOTE !. Let us menticn the "classical" corcept of resolution,
kncwn already tc Rayleigh, but just as valuable tcday [83], cr its

ceontemporary definiticns, which are bas2d on tha2 statistical

treatment of the tasks of detecticn and measuriag parametars [19].
ENDFOOTNOTE.
geaxceral/commen/total critericn (V) and the transiticn %c *he2

All this shows that unavcidable virtually rzjection from a strict, *;

particular critaria, which characterizs tha gquality cf separa*:

4 davices/equipmert, is always ccrnected with certain risk.

But we will also use cthe pearticular criteria of gquali*=y, #hich

consider only the prcperties cf sigrals y(t) at the output of
rzcziver and disragarding *he sukbsacuer- procs:ssing. In o*har werds,

we limit our analysis by cperatecr Y and wish to indicate sufficien:ly

v ia ). . & e
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! most substantiated from which, apgarently, is the following.

gensral/common/tctal requirements on it without taking in+to acccur:

th2 subsequent operator Z. Here alsc thare are saveral approaches,

Being returned at the beginning of tha przvious section, we will
considar that for certain situaticn ths three-dimsrnsional/spacr
density of "usaful” chjects tc eat a(r), and th= density cf the
mixing reflectors and scurces of additive interferznces - b(r) and
n(r) respectivaly, As it was ncted, thes= valuss wera by chance, but

it is assumed that their preoktabilistic distritutions are known. Th=

afcrzsaid indicatas, for example, thkat in certain region cf sfpace

suppesedly are "usaful" targets with th2 knowr middle reflecring

surface.

. of datzction affact also charac*eristic RLS

) of this selection of these characteristics,

of detection would be maxiwmum let usc assun2

3
"y prcbability of false alarrss.
¢
4
{
- Page 17.
|
o~y

e ey -

Due to the different kind ¢f fluctuations and iaserfaren

sc¢ <hat the proba

with thz assign=1

ey Y e s e
. 'h D .

ce s

“hes:z targets zithsr will be disce¢verzd by RLS or no. The pzchtability
- wavsfcerm, the diagranm

~ of actenna and th> pulse rracticn of rsceivsr, and is placad *he %ask

bili«y
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Somswhat less strict, Fut close cre is the requirem2nt of the
greatest eoxcess (on the average) cf useful signal at the output of
the receiver above the level c¢f tle mixing reflections and cther

irnterferences, In “he desigraticres c¢f the previous saction (see

(IL1Ib)) for the critericn of quality of RLS ir this case is acczp*:zd
valuy=
p==y. (o +yal*.

which it is necissary %c maxinmize on argumercts s(%t), g{r) and h(t).

This approach %o “he syntkesis is sufficien<ly prcductive. It is
usad, for 2xample, in the works cf Spafford ard Stutt [69, 71)], ard
also Yakovlev (89], Upon this fcreulation of ths rroklzn
"automatically™ arc= considered ard are optimized ths rasolving
proparties ¢£ signals, tley ir the test way are coordinatsd with +h= 5
task cf 4h~ isolaticn cf usaful reflec<ions cf all othsrs feor “he
selected situation, morecver even dces not apgar the needs for
inercducing and d:fining the concert of rzsolution (as i+ was nc+=4d,
<his can be done differ~ontly). We will use this approcach fer selving

one of *he tasks of the synthesis c¢f signals in chap%er 6.

Th= impor-tan+t result, cktained on =he base of this apprcach, ;

consists, in particular, cf the fact that the matched filter is

o
w
r
th
[¢%

cptimum rec.ivez cnly in casss wher additive in arernces cf 4ha

lections, 3ut if &n-

ri.

Y of whize noise prevail arcve tle mixing r2

'Q
(1Y
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leval of the latter is relatively great, the structure of cptimum

signal and optimum receiver is scre complicated and it depends

substantially on the concrete/sgecificractual situatiorn.

Specifically, this srecial feature/peculiarity blocks th=
widespread introduction ¢f this aprroach to the sycthesis. Thz
necessary a priori inforraticn abcut tha concrete/specific/actual
situation - predicted mutual locaticn of the usz2ful and mixing ;
cbjects, a level and the character c¢f interferences and sc¢ fcrth it
is possible, apparently tc obtain ard *o in proper time use only in

l adaptive RLS cr analogous deviceS/equipment, which make it pecssible

to cperationally change fundamenta2l characteristics with chénges in
! the situation. In connecticn with such devices/2quigment the m2thod
in question will be, it is necessary to assume/se%, tha*t prevail.

Page 18.

But in the application/aprendix tc the usual, not adaptive systems c£

“ th2 advantage of this approach they can become its
.4
f} deficiencies/lacks, since for tte situation, which was not being
'% assumed with the synthesis, the cttained solutions can prova %> be
1 4
T4 very distant from 4hz ofptimunm,
4
1
<
,3 The aforesald relates alsc *¢ «hes straight/direct critericn cf
:‘,"f
=
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synthesis (V), since here is required the knowladge (in the
statistical sense) the ctserved situation. Therefore not only the
practical need for disengaging the task of the design of systam as a
vhole to the individual fparts, tut also ths abs2ncs of reliable
informaticn abcut th> sitvaticn blccks “he usesapplication cf tthis

direct method:?.

FOOTINOTE ', Let us note cna additicnal appronach to “he synthesis of
signals, which also uses further a rricri infcrmaticn but this tim2
about the special fcatures/peculiaritiss of th= mcticn of %args+

[64). ENDPOOTINOTE.

I+t is possible tc ncte two rtypass routes of this difficulty.
First, relying on the play treatment cf problem, it is possitls *o
attempt to determine the worst situation durirng which the prcbabilicty
cf *args% detection is minimum, ard to optimiz~ the syszenm
characteristics for this situaticr. Besides “hs obvicus complexity of
this task let us note certain of its artificiality: in any way in all
usss/applicaticns 2f FLS is jus+tified the assumption about +te
sufficiently great possitilities ¢f each "player", Furthermcre, if w=
allecw such possibilities, task, agpparently, will bz reduced %o a
certain ¢rivial situaticn of the tyre of dstaction agarnst the

background of white necise.
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The alternate path is baseé cn the assumption that there ar=
characteristic, typical, the situations which ars sncountered
comparatively fregquently, and tlrey by hypothesis th2y are sufficien+
for the development/detection c¢f ths optimum characteristics cf
equipm2nt. Ir fact, pracisely, this assumption is the basis of these
placed classical of the tasks alkcut the detection of the sigral of
known form or about permission/resolution of two or more similar

signals against th2 background cf interferances.

These rasearch has a2s a gcal t¢c cpesimize c=:rtain part ¢£f the
equipment (usuvally receilver respcnse) tor the typical situation, In
the case of detection tbis situaticn assumes ths prasence of on2
pinpoint target against the backgrcund, for axampls, c¢f white noisz,
in *he case of permissicr/rescluticr - saveral clcsa-together
targats, In this case is used a strict statistical critarion 3sf %h-
cptimum character, wheén thle measure of quali+ty is the probability of
the correct solutions akcut the situation - about the presenca cf

targsts (d2tection) or atcut their rumbar (permission/resclu%ion).

Page 19,

But fecr +hy typical situa*ions indicatad this apprcach na*ucally is

N4
v
th

clcsad with other, indirec* and krcwr long before “hz davelormn

the statistical methods cf synttesis,
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Actually/rsally, from the soluticn of the mantioned statistical
problems it follows that thare a2re two greoups of values, which affach
the probability of the ccrrect soluticns. The first group ircludss,
for exarple, relation the signal/noise. These values are directly
conracted with thz prcbatilistic pa*urn of radar surveillance and
their rcle is correctly revealeé/detected only during the statisticel f
analysis. The characteristic refresentativ2 of the second group is
apparatus furcticn of RIS, i.e., its response to tha single rinpoin+
target in the absence of interfererces, Agpparatus function this is
determiristic of its nature characteristic whcse
concrete/specific/actual structure depends cnly orn the type and th=
parameters of RLS, Morecver fcr tte typical situaticns indicated th:
cptimizable charactecristics of equipment - waveform, ths anterna
cadiaticn pattsrn ard the pulse reaction of Tecaivar - affect t“he
probability of thes correct scluticns no%t directly, but thrcugh
changes in the appacatus functicr. Fcr this very reason apparatus
function can with a sufficient fcurdation serve as the object 2%

synthesist,

PCOTNOTE 1!, The aforesaid is correct in ths mer= gsneral case. As

showsd Spaffcrd [69], the excess c¢f the signal above the interference :

fer 4h2 arbitrary situaticn depends corly on tha Zuacticn cof +h2
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uncertainty/indeterminancy (apparatus function - sze balow), but rot
froam the waveform or frequency receiver rasponss individually.

ENDPOOTNOTE.

The corresponding deterministic apprcach 2o the synthesis, which
uszs a concept of equipmert functicr, in greater detail is ccnsidered
belcw, Now, summarizing the aforeszid, it is fpessible to nota that :in
proportion to unavoidable simplifications in the straight lin=2 anad
the general/common/total apprcach tc the optimization of equipmeat is
substitut2d by less general/ccmscry/tctal, based on tne analysis of
characteristic, typical situvaticns, But this, ia turn, frequently i<
leads to the fact that straight, /direct probabilistic evaluation
critaria cf quality proves o be pcre or la2ss equivalent to indirect
detarministic critericn, knowr it is considerably eacli=sr. Th=
lat*sr, althcugh has lax, in a sense heuristic, character leads in
many instances to the results which obtain only fu-ther ccnfirmation

with the help of the prclatilistic rethods.
Page 20.
Synthesis according to the apparatus furnction.

The apparatus functicn cf reasuring meter this is its cespons:

o pulscd input 2ffect, which has *hz character of delta-func+ion.
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Initially the concept of apparatus function related only %o ths
optical instrumsnts - telescope, the micrescope and ty cther, arnd in
the application/appendix to them she was used alrsady by Rayleigh,
but with the same foundation this ccncept is applicable to the linnar

instruments, which measure any ghysical guantitias.

By linear is understood the measuring metar whose output
respors» 1N is conn<cted with the input «ffect & by linear integral

trarsfecrm. In one mesasured parageter t “his ccnversion *akes the form

@

= (&)x(t—1)dr. (VI)

-0

Kernel {Ul is an apparatus functicr, since, as can easily bs seer,
n()=x(t) fcr the case cf impulsive offzct E(%)=6(t). Lzt us

dismantle/serl-ct some? slucidazing c<xamples.

0f course conversicr (VI) is irplemented by linear electrical
circuit, ia particular by receiver cf RLS. In “his case is mzasursi

time t of the entrance c¢f input sigral €(t), and 1n(f) is an inpu

(34

signal of receiver. Apparatus function ¥(!) is its pulse rsaction.
The widar, is mor:z prolcngad, pulse -=acticn, ks more strongly is
distorted “he input signal ané *he rcugher cther ccnditions Leiag

egqual occur the measureperts cf tte time cf arcival,

In the case of the ortical instrumznt t is a

. e s R L e b daliad, by Susteliasbbadba -
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three-dimensional/space (angular) ccordinat=2, ard €& (t) and n() -
brightness distributicn in the plane of object and in image plane.
Apparatus function x(f) is the pcirt-source imaje, obtained taking

into account to the diffracticn alsc c¢f other distertions, i.2.,

agair thke respcnse of instrument tc the input affzct cf th. tTyp: ¢
the delta-function (now delta-function corresponds to signal at tkh-=

fixed pecint cf space, but not at the spacific mom2nt of tims).

Page 21.

The extent of apparatus functior characterizes the width of
elzmeptary spct cn the shi2ld of instrument; ¢h2 larger/ccarser th?
spct, tk> g-eater th~ intrcduced bty instrument distcrtions apd “hs=

more roughly is measured +he positicn of the lizht source. -

L2t us censider even fregquency measurzmerts, for sxample, witn
. the help of the usual wavemeter. Iet to ths irput of wavem=*er be
R supgplied the monochroma*ic signal, i.,e,, input :ffzct has a characse:
of d21ta-function on the axis cf frsquenciszs. Rzconstructing

vavemeter, is fixed/reccrded the respcnse of instrument to this

i
4
1 ;

) . .
. effact which will be, obvicusly, the resonance ckaractsristic of i
(]
3 wavemeter, If we study *he serrated signal, which contains many ]
- harmonic components, with the retuning of waveamster is ob<ainzi ¢h-=
. :
X compound curve, which is bty ¢he igpecsiticon c¢f :zl:mza%tary c-=Sgcenses.

Lt ‘

o‘.. "
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v
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This curve is the spectrum of signal, measured with some distcr+ions,

the larger, the wider the rescnence characteristic. It is rnot

._l
rm

difficult 2o se2 tha*t this curve alsc corresgcnds to integral (VI)
ve ty t understand frequency, by 7(!) - the resonance charactaristic u
of wavametzr (s-victly speaking, dyramic), and by E(%t) 2and n{8) - =h=
tru= and maasurad spectra resgectively.

1 In all

xzmpl2 xamined the resolution ¢f instrum=snt th2

0
D

[Q]

kigher, the less the extent cf apraratus function. Th2 correspondin
( detz2rpinaticn ¢f rescluticn as the extents of apparatus function, was

' introduc2d by Raylsaigh [63]., Althcugh it has detarministic character {

; and is not considered tte statistical zatuca cf maasuring =rrecs,
+his determination frequently is vsed, since ths "fine structure" of
inpu*t effoct is distinqguished tte Ebetter, “h= lzss <he cxtent of 4

apparatus furction,

But not always tho task c¢f measurement rejquires the undistori:d
transfa2r of input effect, Por exasple, it is russibpla %o bs
interestsd orly ia the fact suchk as encrgy ¢f signal is included ir
“he assign2d fragquency tard. Then arises a question apbouat the
syn*hesis, the constructicn ¢f the instrument whos:z £raquency
apraratus function (rescnance claracteris=zic) has ractanqular focn

4i=h the assignad a2xtent. Cf ccurse using usual =szainology, hars

should speak about the synthesis ¢¥ banl-pass filtar., Ccnszquaa+ly,
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the synthesis of filters acccrdirg to *h= fraquancy characteristic

can be tr2ated as synthesis acccrding to the apparatus functicn.

From somewhat smaller foundaticn, but similarly it is possibl-
to treat the synthesis c¢f the circuits, which form ths signals ol

sparclial fcrm,
Page 22. i

In this case is usad th? rulse reacticr cof circuit, i.>,, apraratus
func*tioer in the t2aporarystime, but not in the trequency

representation.

Passing to th= radar, we will censider RLS as ths linrear
instzument, which m~asures the angular coordinates, rcarge (lelay
<im2) ard the radial velccity (Ccppler <reguency) of the r2flacting
objects., During this treatment apgparatus rfuaction ¢f RLS is its
rcsgonss, reacticn tc *he sirgle pinpcint tarcos which corcesrerds,
cbvicusly, to impulsive irrut effect, Frcm relaticnsnips/ratios (I2)
and (II), the describing conversicns signals in th= lin-»ar
Jdavicas/aquepmcat 9f RLS, Zcllcus the concrete/3pacific/actual
structure of apparatus functicr, shich lat us writ- out hale withou*

“aking in*c account scme unessertial factors:

g 6, Qy=-gha) {sunVhe —re®™dr. (Vi)

—30




DOC = 80206701 PAGE 3E

It is clear that if we are ir*erested only in angular
measurements, apparatus function ¢f RLS thare will b2 the antenna
radiaticn pattsrn (according to thke power

1 (r) =g2(r). (V11 6)
But if wae corcan4trate attentior ir rangings and rat2, the significan<

role plays joint apparatus functicn ¢f cocrdiratzs ¢ and Q:

o
7t Q)= S sV Rt — S0 dr, (Vile)

—_—0

It d2pends cr *hz fcrm of the scunding signal s(t) and the puls=
reaction ¢f r=zc2iver h(t) and is ¢alled in the theory of radar the
cress function of uncertaintys/irdeterminancy (cross-ambiguity

function}.

Principal value takes the rparticular fors of this function, #h=n

cacaivar of RLS is matched £ilter,
Page 23.

In these cases pulse rzac+ion is ccrnnectad wi4h tho sounding signal

vi<h r2lationship/ratict?

Ry =s* (=1,
ard we com2 to the functicn ¢rf Weccdward's uncers-ainsysind=tecminercy,
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callad also th2 eigenfunction of uncertainty/indeterminancy

(auto-ambiquity functicn) and which depends only on the wavefcrm:

-
Vst Qy= (s(t')s*t' —tye™ dr. (Vilr)
2

FOOTNOTE !. By astsrisk are here and throughoutr designated

compositely conjugats values. ENCFCCTNOTE.

Finally, for the limited applications of radar Doppler target
spseds can be considered regligible, Then RLS is us:d ornly as rang»2
[ finder, and the function ¢f uncertainty/indeterainancy is ccnverted

intc the autocorrelatiop functicn cf the form

Rity=yit. )= ({s(&s*(t' —nadt'. {Viia

—®
The match2d filtraticn is the cptimum m2*hcd of ths recepticr ¢t
the 2chc sigrals in %Lke sense <tat in this cas2 is reached the
grra*est probability ¢f detscticen against “he backg-ourd of whit=2
nois2., For this very reascn the funrctioa of th2

= uncertainty/indsterminancy cf Wccdwerd and autocorrslation furctier,

M

that assum2 ¢this type of rsceiver, havs so high a vilue in *he %hecry
of radar (in particular as the c¢riteria of the qualicy of signals).
Sut in light of the aforesaid earlier it is pessibla to emphasize
that the us2/applicaticn c¢f agparatus functiors in the tasks cf

synthesis always assumes farticular situa<ica - impulsive irguz

s _— g — e g R T WL T T S e e -
. Y. = S -

=
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effect con the measuring seter. The use of function of WoodwarAd's
uncertainty/indeterminancy is assumed also that the obszarvaticn
occurs against the backcrcund c¢f th:z additive white ncise, whkich
prevails abcvs all other interfererces [ ctherwise matched £ilter is
rot optimum recziver, and should ke used <he cross furc+icn cf

uncertainty/indeterminarcy (VII c)].

However, wz sza that the synthasis c¢f signals accczding *o ths
func-ions of uncertainty/indeterrinancy or according to the
aytocorrelation functions is justified completzly in th2 same
measure, in which is justified the synthesis cf an*t2nnas accerding to
th2 radiation patterns c¢r the syrthesis of £iltsrs according “o th=

frequency characteristics. In all these cases are used th=2

deterministic critsria ¢f quality - apparatus functions ~ ins%aad of
stricter statistical criteria,
Pags 24, ;

In a stric* satting as *hs critericn of syathesis must serzve +h:

rh

probability of isolaticn cr evaluation of the parameters cf us2ful

sigrals against “h= backagrcund ¢f *hcss mixing, #h:=n tha signals
indicated were dist:-itu*ed screbcw in “he appropriace iaterval cf

s of

angles (synthesis of antennas), ir thz2 frequancy Jdcmain (syrth=s

[ X

th

al

in
re

£ilt=rs), crnL %hz planxe *im: -

requesncy (syn*tk:sis cf sig

'3

-

2T
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RLS, which measur2 the range an¢ thke rate) or, £inally, only in th:

time (synthesis of signals for the range finder).

In the principle statistical agpprcach always offers furthar
possibili+irs in compariscn withk the synthssis accccdirg <c “hz

apparatus functions, Thus, with tle synthesis of artenna it is

possible, for example, to attemfpt tc fulfill th:= mutual compensaticrh

th

or interfarencss frcm different scurces, which active on the
differen*t minor lobes of diagras. In some cases this is possibls,
although is required, otviously, the vary compl2tz knowledge of
concrete/specific/actual situaticn, But usually wz use “he sigplar
and more universal methcd cf syrttesis, being givarn in a certain
adequate/approaching manner very radiation pattarn - appara:us
function for ths angular measurements, In this case are ccrsidared
th: ac*ual conditions fcr *the werk ¢f system in that measure, in
which they are frequently kncwn with a sufficieat r=liability. In
view of such conditicns we are given fer som2 systems “he highly
directional, "psncil" diacgram, fcr cthers - the diagram of sgscial
form, fer 2xampls, cosecant., The sama apprzach is used for %ha
synthesis of tans £ilters when we chcose thz "ad:gyuatz/approaching"
frequency characteristic - apgaratus function for the frequency
m2asura2m2nts, although, s*rictly speaking, scaboacd would bes sclivz
“he s+atistical problems atout the isclation ¢f +hes signals cf

diff~rent frequanciss fzcr the interfe-ancrs.

-t .

- —— S N s a
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The aforesaid entirely relates to tha synthesis of signals.
Bairg given th2 desired structure c¢f ths corresponding apparatus
functions - function c¢f vncertaintysindeterminancy or autccorrslation
- W2 we ccnsid=er th2 actual cecnditions for work of RLS, withcu:
cverloading at the same time the prcblem of synthesis. The rcls of
stricter, statistical mathcds is roeduced in this cas2 to +the poceof,
the 2valuaticn/zstimate cf the adsissibility c¢f this determinis+ic
apgroach, mor2over in cur view, statistic stcudies sufficiently

convincingly confirm its legitiracy.

From ths afor:szid claar alsc that tha detarminisvic trsza%amznt
of syn+hesis, which assumes the fpra3liminary selzaction ¢f£ +he desirz4d
apparatus furction, alwvays leaves cartain scop:z for the erngirierirg
irtui+tion, Choosing on2 cr the cthker desirzd function, desigrer us:s
his experiment of the scluticn cf apalogous problems. The richer this
axpariment, th2 more cecmplate +the urderstanding of possibilitiess arnéd
limitations, inhs3rent in the fprciected/designed =2quipment, *he bst<::
to it to match different, usually ccntradictory rejuirsments and it

.
9
-

m

possibls 40 zak: intc acceur® the sprcial featuras/peculiarities

trh

cf the equipmFnt r:alizaticr cf its projach.
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Apparently, by the expensive c¢f tests/sarplzs and =rrors,
successes and disappointpents it sust pass anyone who s2eks th2
sclutions of similar protlems. 2re tco ccmplicatzd thes= tasks, sc
that always it would ke pcssitle tc arrive at the forseeable
soluticn, using only straight/direc*, completely s=rial modzs ard
without resorting to hruristic cpes, Synthesis acce-ding *o the

apparatus functions exists, in a sense, this heuristic method.
Basic concepts of the thecry cf sigrals.
Signal.

By th» sounding signal it follcws, sirictly spzeking, *c cell
tke real fancticn of time u(t) =A(t) cos [wel + @ (1], ~he dzterminiag
form cf the emitted oscillation /vitration. Here A(t) and @( - laws
of amplituds and phase mcdulaticn zZsspectively, It is ﬁcssiblg o
consider that the signal has the firal duraticn T, but this value

requires certain refinement.

Evan whaer th? #mi*+ed signal is cocnveniantly dapicted ir :ths
form of infipize sa2quence, “he scluticn about ta2 prasence and th:

parameters of tarjet - range, cf rate, the angular coordirates - is

B i 4 b e andhad

>

s <l

et ekt S R
-I“""Q-' ey "

i
1
1
{
|
!
{




DoC = 80206701 PAGE 44

always accapted on certain final packet of the =cho pulses ¢r cor ons
impulse/momentun/pulse. Therefore, without decreasing generality, it

is possiblz tc bocund the signal ir questiona by the final duraticn T,

but this value depends cn aquipmert usage ard method of informaticn

procassirg. Us further ipterest crly rangings and targat speed.

Signal u(t) it is possiktle in ¢this case to examine during one or the

maximum of sevaral repetition periods., At lzast, duration T does no+ j

eéxcead the time of the coherence cf signal. /

-
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Page 26.
Analytical signal.

The separation of the single real signal u(t) to the envelope
A (t) and *he fluctuatirg factcr ccs [wot+()] alsc requires
refinement. These factors it is pcssible %o select more or less
arbitrarily, roetaining tbeir rprcduc*, in connection with which
appears the difficulty with a strict formulation of concepts of

amplitude arnd phase mecdulaticn. These ccncepts prove to be ambiguous.

The most substantiated way of eliminating “his ambiguity leads
to the introduction of aralytical signal. In this case real functicrn

u(*) is supplemented by the irmaginary component v(t), sc *hat is

formed the complex signal s(t)=u(t)+jv(t). Component v(%t) it depends

on u(t) and it is connected with it with the conversion of Gilbert:

This selection of functicn v(t) has the weighty physical

fcundations (appendix 2). Furtherrcre, for each ccsinuscidal

ey - ————— e e

B e st ol A a8
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component in spectrum U(w) functicn u(t) is the same in the amplitude
harmonic componsnt in spectrum V(«) of functicn v{t). Therefcre
spectrum §(w) of the compesite signal s(t) is different from zero
cnly with the positive cnes w, and in this region of the spectrunm
ﬁ(u) and S(w) coincide in fcrm and are characterized by only the
scale factor:

S(o) = %u (O)Q}I;JH 0>0,
0 anu w < 0.

Key: (1). with,

Thus, the conversion ¢f Gilbert leads t> the composite sigral whose
spectrum has the same functional structure, as the spectrum of

initial real oscillation.

After cegistering analytical signal in the feorm
s(t)y=A(ye* ", (Vllla)
it £s sean, that now enveloping ard phase they are detarmined by the
only form:

()
a(t)

Aly= V@) +v(); ?()=arctg

in this case real part re*ains the assigned fcrn

4(¢) =Res(!) =A(?)cosg (1).

Page 27.

This ra2moves ambiguity in the determinaticn of amplituds ard phase

e g - e—— w.-vq..,_,..-._ e m—— e e
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factors.

Composite enveloping.

If real functior u(t) has rapidly oscillating charac%ar, then
phase ¢ usually can be presented in the form ¢f sum of two the addend
o) =i +D 1),
moreover second of the» is changed relatively slowly (@'()«w, 23R4 it
characterizes phase modulation ¢f signal. Generally speaking, the

determination of the carrier frequency wg and with respect %¢ linear

componant of phasa #(t) also requires -efinemen*t. But for many

quastions of thae theory of signals linear component of phase does not
play the significart role. Therefcre we can us2 with compcsi*e signal
aaplitude anvelope

s{)=Ayye®, (VI

disregarding the absence rapid c¢scillaticn factor ef¢ and withcu*

being interested in “he value cf linear inphase compcnent O®().

For composita envelcere (VIIIL) ve retain the same designation,

as for signal (VIiIIa). Morecver, fcr the brevity we speak signal y

understanding by this ccmrcsite envelope (VIIIb) without taking

- ¥
.‘J\.uz. B “v‘

s(t),

into account tha carrier frequercy. i

it . .

Spectzum ¢f signal.
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Transition/junctior tc ccmpcsite envelope corresponds %o tha
; transfer of the spectrurm from the carriar to the zero frequency. The
spectrum ¢f composite envelope (usually we call its spectrum cf
signal) is plac2d both with the pcsitiv~ cones and at the negative
frequencies, and, if the carrier frequeuacy wo is sufficiently great,
it is possible to consider that the spectrum is spread to entire

frequency domain ~=<w<=,

Page 28,

After determining spectrum ©(w) by the relaticnship/ratic

L
sto)= {st)e™"'dt =awjei*™,
—o

i+ is called a(w) by the amplitude spectrum, and a(w) - by th=2 phase

spectrum of signal.

Punction of uncertainty/indetergirancy.

As it was notad, the functicr c¢f uncertainty/indeterasinancy is

an apparatus function RIS in the ccordinates ™ ime - frequsrncy". It

M, A
ol at — -

characterizes raspcnse FLS to the singls pinpcint target whese rarge

corresponds to th: moment,/torque cf “ims <=0, and speed - to Dopplsz

n
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frequency Q. Distinguish the crcss function of the

uncertainty/indeterminancy

7sh (8, Q):

= ’ t
VEL, _‘""‘_’1*(‘ -

-0

je e*dr (IXa)

and sigenfunctior uncertainties/irdeterminrancioss (Woodward)

\

o0
i ?l ’ ,
/_‘(f' Q)=I_:— j‘ .%. .'t' __;__) enf dt'. (lxb) ','
——C0 )

These expressions insignificantly differ from (VIIIc) and (VIId), but

’ here the functions of uncertaintys/ipdeterminancy are calibrated, on

( th2 basis of tha conditior

‘ *’:‘S‘ L (6 D dfd9=jl—ﬂixs(t. QP drdQ=1.

—0

The standardizing factor F is erergy of the ccrresponding sigmal 1, 4

in particular

2
= {Is(f)[ds
—
~§ FOOTNOTE !, It is more precise, E is the doubled enezgy of real
a signal, since components u(t) and v(t) possess ejual energy.
B
1 ENDFOOTNOTE.,
S
¢
4 Page 29.
z
Y Examinirg the sigrals, calitra*ted cn thz energy, i.<., af*er placirg

el SR -- g — -
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s0
E=1, it is possible not tc write cut this factor. As is krown, the
functions of uncertainty/indeterminapcy allow/assume also the

equivalent recording through the spectra of the signals:

. — I ~/ 2\ ‘ 2N\
Zsntly Q)= ———— Sim— —ih* —_— N et g
=T j S O

UXe;

[~}
y Iy -——] Pl 9‘.'* , 2
/“”Q”‘EFXS”W'T' \“ffrg”u” (1xd)

Autccerrelation function.

If RLS is intended fcr the measurements ¢oly of the range of
targets, then, as a rule, are used such signals, that Doppler
frequency switches become neglicitle. Tndar these conditicns the
vital importanrce has orly one secticn of the function of
uncertainty/indeterminancy xuﬂp;R(u. This fupction is called the
autccerrelation function cf sigral; for it we have two 2quivalant

expr2ssions, which ensue from (IXL) and(;Xd) with 0=0:

k-]
l . . 1 \ . ! N
Rt)—-.—:- SS t"-—;——S” | A {. %}
( E N ( T dio (Xaj
( -}
R = g 1S e, (Xb)
R

As in the case of functionirg the urcartaintysindetzrminarcy, her= it
is possible to use the standardized normalized signals, after

assuming E=1. From (¥b) it is clear that “hec autcccrrelation functicen
is completely determired Ly %“he sgectrum of the power cof signal |#u)]°

and ir turn, determines this spectrunm,

R e T,
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Page 30.

Chapter 1.

CRITERION OF PROXIMITY.

In question in this chapter gereral/common/total apprcach is
applicable to different tasks of the synthesis of signals, antennas,
filters, etc. For these tasks it is characteristic that we at%tampt to
find ocut *he parameters cf the syrthesized obiect or, more genarally,
its structure, which ensures scre desired properties. The class of
permissible structure is always lipited, since the objects of
synthesis must permit realizaticn under scme specific conditicns.
Characteristic also that the desired properties are usually
impracticable on the assigned class of structures. For zxample, thay
attempt to cbtaiz, but dc nct ottair filters with ¢he strictlv
table-shapved frequency characteristic or antannas without *he ainor

lobes of raciation patterrs.

In such casa2s, which are cf fundamental irtarest, the synthesis
0f proverties to finding c¢f the oftimum structure, which gives bes<
approximation to the desired prcperties. It is assumed also that the

dosired oroperties (cor rrecperty) are determined in a certain

- - -y — e e e aom
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deterministic manner, withocut rescrting to the probabilistic
description of task. In rarticular, as the desired proper%ty can be
assigned the required antenna radiaticn pattern, the frequency
characteristic of filter ¢r the function of ths

uncertainty/indsterminancy of =igral.

L2t us att2mpt to give tc a sirmilar problem ¢f synthesis tha
adequate/aoproaching mathematical description, and as the first space
let us note its connecticn/coamunication with the task of

appreximaticn,

1. Task of approxima*icn,

In sufficiantly general/cormc¢nstotal fcrrulaticn this task

consis*s in the €fcllewipg (1, 20, 241),
Page 31.

Is given certain multitude of the X functions x(t), and also
functicr y(t), which does nct telcng to set Y, It is necessary to
datermire function x.,(f)e=X, wkich provides best apprcximaticn %o
7(t). The criteria ¢f arrrcximaticns/approach can be differznt. It is
possible, fcr axaample, %¢ require, so that would b= minimum a

quadratic difference in the furncticrs in the assigred time intarval

}
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$3

(-T/Z, *T/Z)' icen

T/
[ 19(0) — x (O dt = min. (1.1)

-2

or minimize the gr2at divergence cf functions in the same interval

max'y{t) — vt =min. (1.2
te=r

The first condltior corresponds to tha quadratic cri“erion of
approximation/approach, thke secc¢nd - to uniform (minimax) criterion.
More general/more commron/more tctal treatment is reduced to the
followirng., Of 3ach functicn x(t), which belongs to set X, is rleaced
in the conformity certain non-negative number d{(x, y). whick depends
also on assigned functicp y(t). The condition for the best
appreximaticn/approach censists ir the minimization of value d(x,’y)
on all elements of set ¥:

dmin=mind (x, y). (.3
=X

Yalue 4,,, dep2nds cn functicn y(t) and set X and characterizes
th> guality of the best apprcxisaticn on +his set. Different criteria
of approximation/apprcach, in particular mentioned quadratic and
minimax, are dstermined by the rule, according to which tEe cair of
functions x(t), y(t) is ccmpared sith number d(x, y). A charge in

this rule lealds not only tc different values 4, . but in general and

to different approximatirag functicns .0

Value d (x, y) is called the distance betwean functions x(t) and

y{(t), the mentioned rule, which is determining this value,
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characterizes the metric cf certain aktstract space. These imgpcrtant
concepts laad to the gecmetric irterpretation of the task of
approximation and many tasks c¢f synthesis. In greater detail la2t us

pause at the mathematical essence cf the concepts indicated.

Page 32.

1.2. Sinsplest concepts of functicral analysis.

In many H elements/cells cf artitrary nature (x, y, 2, +..) th2
non-negative value d(x, y) is called distance, if it satisfies the

follovwing axioms of metric:

1) d(x, y)=0 when and only wten x=y - axica of identity;

2) d(x, y)=d{y, x) - the axicos of symmetry:

3)  dx, 2VKd(x, y)+d(y. 2) - the triangle axion.

S3* itself H i3 called the locked metric sopace, if tc¢ each pair
of its elements/cells is set in the ccnforaity distance d(x, y) .,
which satisfies the axicms indicated, and set d contains all

slemants/calls, for which specifically is iistance, switchirg on all

maximum elements/cells. Elezment/cell x is callzad the liai* cf
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l sequgnce Xy, Xn ... Xgp. .

.., ©¢ry it is sherter, by the maxiamum element/cell

of space, if d(x,x,)—0 with p=de,

Any set X, 2ntering H, is sulsgpace or region of space H.

The giver 3etarminations ccnsider the most gereral/most
common/most total properties ¢f distanc2 and space and they ara the
natural gensralization cf the progerties of usual three-dimensional
space., Str2ssing analogy with the geometric fcrms, the slem2ants/cells

of metric spaces frequertly call pcints.

. The dominant role in the functioral analysis and its

; applications/appendices play such sfpaces, in which are additionally

determired the operations cf adcdition of elements/cells and their
multiplication by real cr ccmplzax numbers, moreover both cperations
satisfy the normal conditions of ccamutativity, associativity and

distributivity., Such spaces are celled linear.

S If, furthsrmore for each elegent/cell x c¢f linear space is

,f detarmined ncrm i, which satisfies *he following axicms:

RIS at@mmqwx.féJﬂanW)uﬂHX=“
I . e -

S -y
U A

-

Rey: (1) . moreover. (2). cnly if.
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the space is called standardized/ncrmalized. It is obvious, nerm is

the generalization of the length ¢f vector in th2 usual space.
Page 33.

The linear standardized/ncrmalized spaca becomes ma*ric, if distance

in the fornm
d(x, y) =ilx—yl,

which also specifically ccrresrcnds to usual three-dimensicnal space.
Fipally, if in the linear standardized/normalized metric space H

is determined the scalar product cf elements/cells (x, V) satisfying

conditicns:
1) (x, ¥)=(y, Xx)*:
2) (xy3*+xz2 o ¥) =Xy, Y)*+(x2, ¥):
3) (M\x, y) =X(%X, y), where \ - any complex numbar, and rorm jx|
is connected with the scalar precduct with the relationship/ratio
lxli2= (x, x),

the space is called Hilbert.

The concept of a Hiltert space is sufficisntly

F

T e —
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gereral/coamon/total, it is added tc appropriate multitudes c¢f

functions from one or several variables/alternating, to many vectors,
. matrices/dies, numerical ¢r functicnal sequences, etc. At “he same
time whatever nature had the elements/cells in yuestion, them it is
possible to lik2n *o the pcints cf space, after prsserving analogy
with the geometric forms. In this case mary depandences and
properties of the objects in questicn usually obtain demonstrative “
geometric description, which sigplifies th2 solution of series of
problems., We will attempt not t¢ use geometric analogies for the

prcef of fundamental results, but they us will hslp to plan the

me thods of solution, tc explain *he zssential fsatures cf the tasks
of synthesis, Specifically, cf this consists the principal value cf

the concepts of functional analysis for this worke.
1.3. Space of siynals.
In certain cases of the concept of distance, norm, space and so

forth it is possible *to introduce ccmpletely naturally, but nct

axiomatic, as it is dcne above., le* us consider, for example, nany

signals of the limited energy, i.e., many functions s(t) with the
integrated square ‘
+Q0
E= ([s()ftdt < oo.

—

Page 34,

- e e —— —
. T _
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After selecting certain crthencrmal s2t ¢f£ functions

fi(8), fa(t)s..wfa(t),.... @ can fpresent signal as expansion
st)=Y safnl®). (1.4)

n=i

Then function s(t) is corgletely assigned by the set/dialing of
numbers - the coafficients cf expansion s==(s;, s, ..., sn ...). This
crdered sequenca of numbers car be treated as multidimensioral
vector, and numbers themselves s, - as the projectioms of vector on
some axes in the multidimensicnal spacz. After d=2fining further
distance, norm and scalar product by the relationships/ratics,
similar %o usual thrse-divensicral space, i.e., aft2r placing

)= { Ylsm— s..'r}"’ :

n

Isl= [}‘ls,.r}“’ , (1.5)

(si 8))= 2 SynS®ane

ve sa*isfy (as it is not difficult %o check) 211 axicms indicated
above, Consequently, many multidisersional vectors s (or, which is
the same thing, many crdered nugerical sequences S Sa...Sn,...) are
Hilbart space. Ir the functional analysis such space frequently
designate 12, This representaticn cf signals - as vectors in the
Hilbert space - is used ex*tensively, for examgfla, in the thecry of
freeadcn from interference fcr the gecmetric description of the

correspcnding tasks.,

We introduced the valucs irdicated, using <he sxpansiorn c¢£

— - ——- - - s T i eegee——— sy — w"f‘-’:‘.- T ame e o e
2 - e . N R . . - - o .
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functions s(t) in the Fecurier series (1.8) ard considering tase set
of functions fa(t) as certain cocrdirate system, and coefficients sa

- as projections on the ccrresgcnding axes.

Hovwever, in the usual space all geometric concepts can be
directly connectad with tha parameters of vactors, without ressrting

to coordinate representation.

Page 3S.

Similar tc this, in the generalized space in quastion it is rpessible
to express distance, norm and scalar product directly *hroughk the
€functions of time, withcu% using their expansions irn tke Fourier
series, Pcr this it suffices to use ¢0o the previous
relationships/ratios equality Parseval for serias/row ('.4). As a

result it is obtained

+

dw“sg=l “g“)—sdufmrﬂ.
: -

§

]

+00 12
HSII={ fIS(t)l’dt} ; (1.6)

+a0
(s, s)= [ s,(0)s* (1) dt.

—0 i
Consequertly, these values dc¢ not depend on the selecticn cf tle
system of base functicrs j,(r). Trarsitionsjunction from one systenm to

ancther changas the ccefficients c¢f expansica s, but %heir
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combinations, which express distapce, norm and scalar product are
invariant during such ccnvarsicrs and are determined only by the
structure of signals., Here also threre is an analogy with the usual
three-dimensional space: the length of vector, the distance between
the vectors and so forth they are expressed as projections cn tkhe

axis, but they doc not degend c¢n the selection of coordinate systeam.

Values (1.6) satisfy the axicms of Hilbert space., This space of
signals - the space cf the quadratically summarized functions -

frequently designate L2,

With axiomatic formal apprcach of space 12 and L2 -~ these are
diffarent spaces. Elements/cells ¢cf cne of them are numaerical
s2quances, and aaother - functicen; distanca, notm, scalar prcduct
they are exprassed differently. Eu* we ob*ained, cbvicusly, cnly
differoent descriptions, various fcrws of cne and the same laws
(similarly how Euclidean and analytical geometry they give only

different description of cne ané the same mathematical sssence) .
Page 36.

Here we coma to the important concapt cf isometric spaces. If

betveen the elements/cells cf %iwc spaces is sstablishad/installad

one-to~-one conforaity, such, that the norms of z2quivalent ccmponents,

T ,..-..\v_...1....'.~__»-...«- B
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and also of distance and scalar prcducts for ¢he correspornding pairs
of elements/cells are identical, then such spacas are called
isometric. In view of equality c¢f Farseval for the generalized series

of Pourier (1.4) these ccrditiors .re satisfied in spaces 12 and L2,

Iscmetric space are complietely equivalent in the exasiration cf
the questions, which are the cb-ect/subject of +his book; it is
possible %o use one or the other iscmetric space depeniing c¢n

convenience.

Fourier transform places in the conformity to each sigral s(t)
his spectrunm §( w):
-~ +a0
i s(w)= Ss(f)e""'dt.
—%
This ccnformity is mutually upambiguous, since also
1 +0
st)=5 (5@)e e,

LS

-0
) Many spec*ra E(a) form Hilbert the space (which we further designate

?g ﬁ), if we determine distarce, ncre and scalar procduct by the

.

rela*icnships/ratios:

j +00 - - lie
¥ d{s,. S.)={% j‘ls‘(O)—-S.(w)l’dﬂ ;
"9 - 1 |
¢ T 2
) |,s;g_{% 5 (m)]"'dm} : (1.7)
j —0
"1‘ (S, $ D=TI. jﬁsjun):’ {0 dw

Y ¥

¢ ot

.Jv L 2

- ep———— - - FTIRT T m epe  eeesye w—*-—w‘-—vv—— e et —— -
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Equality Parseval (fcr the Fcurier integrals, but not for the
series/rows of the type (1.4)) shcws that +#he corresponding values in
spaces H and ﬁ coincide, i.e., sraces are iscwmetric. This it
indicates the aquivalenca of the representaticns ¢£f sigrals in tha
form of the functions c¢f time ard in the form of the spectra - the

furnctions of fraquency.
Pages 37.

Howevar, complate equivalence cccurs only if 3is applisd the gquadratic
space metrics, which correspcrds tc fcrmulas (1.5)-(1.6)« I£, lat us
say, is usad uniform (Chetyshev) mratric, i,e,, distance is measured
by the maximum divergence cf furcticns in certain interval -
d(s,. s,)=max,s,(l) —s,i) . (.84
=T
that iscmetric naturo it 1s nct cbtserved and +he space of the spectra

i* is not equivalent to tlke space c¢f signals.

i e s eI
) g ‘ugs
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1.4, Fundamental task of synthesis.

In the terams of the functicnal analysis (oz, that almost the
same, in the geometric terms) te2sk examined akcve of appreximation is
formulated as follows. In functicr space H with metric 4(x, y) is a
region X whose points x=X form many approximating functions. In the
same space thera is a function y, vwhich does rot Ltelcng *c region X.
It is necsessary to destergine pcirt x,p;=X, least distart (in ss3nsa of i

space metrics) from the given pecint y (Fig. 1.1) 1,

FOOTNOTE !. Using conditicral gecsetric mcdel, we represent *h2
! elements/cells of multidirensioral spaces as the pecints of prlane. On
{ figurs to set X corraspcrds one-dimensicnal curve. By this it is
stressed that a number of measurergents for recion X is fregusently

less than for entire space. ENDFCCTINOTE,

The critarion of approximaticr/approach dzpends cn metric,

quadratic metric (1.6) leads to the least sgquares criterion (1.1),

“ Chebyshev metric (1.8) - to sinimax criterion (1.2). An error in the
‘j approximation is msasured by the sirimum distance {
7 1 Amin=mind ., y=d(X. )
_" It
‘ frcm point y to ragion X. ]
- i
M -
; ;
K
n o
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Fig. 1.1.
Page 38.

T™he operator of finding the pcint of sest X, nearest t5 y, is
called the cperator of design tc this set and is desigrnated 2, sc
that

Xopt = Px (y)

and
dW":TEﬂW-W=Wy—PAm% (1.9)
=

In certain cases of *+he frcblenr of synthesis ¢hey are reduced
and tc a similar task, Ir the *trecry c¢f electrical circuits is knewr,
for oxample, “h2 task atcut the fcreing tvwo-termiral ne+work when it
is nacessary 4o form the circuit wvwhkcse impedancs approximates tlre
assigned function, Thus, fcr the irpulss shaping, close to the

rectangular ones, it is necessary tc obtain arproximations/approach <o

an impedance of *he oprn secticr ¢f long line, in our d2signaticns

Yo =ctg 3,
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wker2 v - pulse duration. With the synthesis ¢f circuits with the
lunp2d parameters region XY contains the functiors of fcrm

x(@) =Pm(w)/Qa(w), vhere p, and Q, - Fclynomials, to which are

superimposed also some further conditions.

Further frequently they rescrt to the artificial
receptions/procedures. Fcr examrle, it is possible tc obtain

approximation/approach to assigred y, if we us2 the expansion

2z

28 —mip2?

1
cigz=-——+

s

and to be bounded to a firite numter of terms of this saries/rov.
Similar receptions/prccedures lead also ¢o other known results (se2
for sxample [26]). Thus is found cut thes raticnal-fractional
function, which approximatas with certain accuracy the assigrnai
impedance, ard onrn i+t is restcred the electrical circuit of

twec~-terminal astwork.

Page 39.

Clear tnus far questicns akout the criterion of
approximatiorn/approach and accuracy, 1let us nct2 ths fcllewing
special fea*ure/peculiarity cf +he *ask examiped. Here to us it was
completely knowa functicn - impedance? of the sagment of +he lecag line

approximatiorns/apprecach %o which was raquic-?d %o ct%*ain. Specifically,

i S i S Sl e
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this made it possible to use aprrcximation methods for the synthesis
of circuit., Hcwever, considerably mcre frequenrt we dc not have so

perfect information about the desired structure of object.

For example, with *he synthesis of filter frequently thera is
known only the required amplitude-frequency characteristic, i.e., the
modulus/module of transmissicn facter; the phase respcnse of filter

can be arbitrary.

It is analogous, with the synthesis cf antennas frequently is

assigned only desired arplitude radiation pat*ern, but the phase

structure of field does nct play the significant role !.

FPOOTNOTE 1., In the series/rcw c¢f cases it is 1ecessary, on the
cecntrary, “c perform anterna with ths assigned phase diagram with by

arbitrary amplitude.

Similar tasks werc called rixed problams of thz synthesis of

antennas [2]. ENDFOOTNOTE.

Said means that ir the approrriate metric space is nct an only
element/cell y, which pcssesses the daesired property, but certain set

Y, in each element/cell cf whick irherently this property.
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In particular, set Y can ccntain all filters with the assigned
nodulus/medule of transmission facter or all antennas with the

assigned amplitude radiation patterr 2.

POOINOTE 2, Here is disregarded tle requirement of physical
feasibility, so that the questicn can dsal with hypothetical filtars

or hypothetical antennas, ENDFOCTNOTE.

We will s22 also, that many tasks of the synthesis of the
signals of these characterizing by similar conditions. Therefcre,
applying for the concreteness the terminology of the theory cf ;
signals, let us formulate the fcllcwing task, which generalizes task

indicated above of the apfrcximaticn:

In the space of signals H are given many X signals x(t), whick “
allcw/assume r=elizaticn in scme specific conditions (many
permissible signals), and also rorintersecting with a X mul¢jtude Y
of signals y(t), each ¢f which gcesesses the assigned desireqd

”{ prcperty (many desired signals). It is necessary to determine signal

Xoptil)=X. which provides best apprcximation o the prcperty, which is

.} determining set Y. 1
3
.Q’, ’
! p e U0 o
- age 49, ;
3 J i
2
v
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This task let us nase the furdamental task of syuthesis, With an
obvicus change in the terminclccy those formulatad conditiors can
relate to the synthesis ¢f filters, antennas c¢r units of ancther
nature. Let us emphasize again that has in mind the
apprcximaticn/approach to the prcperty, gensral/coammcn/total for all
2lements o0f set Y, but rct tc any cencrate/specifics/actual

element/cell y=v.

Questions about accuracy ard critericn of
approximation/approach, let us agair, clear clarify the general
nathod cf solving assigned missicn. Us will aid the simple heuristic

consideration, based on the gecretric treatment.

I£ wa fix arbitrary signal yeY than, after using aprroximation
methods, it is possible tc deterrire the shortsst distance of 4(X, y)
between this signal and set X, ard to also £find permissible signal
:ggpx(y)e_-_x"ensuring best apprcximaticon to selected y (Fig. 1.2). This
approximation gives certain agpgrcrirationsapproach to any prcperty cf
signal y, including to the desired rrcparty, gsneral/cemmcn/tctal for

all y=v.

Howaver, if we vary signal y, being moved on the region (by

curv2d) Y, and to monitor distarce cf nearest x=X then it is

pcssible to coma to light/detect/exposa signal 4, acranged/lccated
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on the shortest distance from regicn X. This signal makes it possible

+0 obtain bettar approximation/eprrcach on set of X in comparison

with all other signals set Y - indeed precisely distance d(x, y) it

. is the measure of the gqguality of arprroximation/approach.

Since set Y contains all sigprals, which possess necessary
property, and permissible is any signal of set X, lcgical tc assume
that precisely signal u... should ke selected as the i

"sample/spacimen® with the apprcximation. But the nearest to :.n

signal cf set ¥ is signal «x,, arranged/locatasd on the shortest

distance from set Y.

. -
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Fig. 1.2,

Page 41,

As a result we ccme to the fcllowing position which subsequently

is named the hypothesis (cr critericn) of the proximity:

Solution of the fundamental frcblem of synthesis gives signal

Yo X, arranged/located cn the shertest distance

dmin=mind (x, y {1.10)
xex

. 'e)’
v~ﬁ from set Y. Using operatcrs of desigr on X and Y respectively, it is
: possitle to register alsc

'J %m=mﬂy—ﬁ@m=mMM—Pﬂmﬁ(mm)
’ 4 1734 xeX

? The formulated task of synthesis and ths hypothesis of proxiamity are
3 the basis of this work. Many questicns cf the syntkesis of signals

1

i are reduced to this task ¢r its generalizatiors, amorsover +<he
A
s 4

L |
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hypothesis of preximity indicates the ganeral/common/total way of

experiment.

Por the first time the hypcthesis of proximity was fcrmulated by

one of the authors of this becck in 1967 [ 8)]. From the works of

predecessors it is possible tc rncte the following.

Landau and Pollack [43], exawining the task, investigated by us /
in chapter 2, mention abcut the rcssible treatmant cf synthesis as to
the problem of the minimizaticn cf the angle tetweer the appropriate
‘ subspaces. This is clcse tc cur irterpretation (ses §1.7).
Unfortunately, the more ccmplete wecrk of the same authers on the

theme indicated (refererce of 6 articles [43]) was not publisked.

In ths rumber of resqarch ¢n pattern raccgnition (see fcr
example [59]) as one c¢f c¢f the leuristic algorithms of discriminaticn
is ma2ntionad that the called rule cf proximi%ty, which consis*s of the

following. The tested olject relates to that class, of which is less

;i the distance (in the sense of certain space metrics cf

‘f signs/criteria). Here it is pcssitle to perceive analogy with our
{i approach, but to another task, which differs significantly from the
'? synthesis of signals, antennas cr filters.
»

é L3t us ncte also that the thecry cf the syathasis of radac

;j

-

O
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signals is developed/proccessed ccararatively recantly,
approximataely/axemplarily frem seccrd half of the 1950th ysars. The
synthesis of antennas and electrical circuits has, at least,
thirty-year history. Under these ccnditions the appearance cf a
similar general/common/tctal idea in the theory of signals can be

explained, perhaps, only by the fact that the latter is the branch of

the theory of the freedcws frcm interferance where “he geometric

representaticns, analcgcus by that used by us, are used extensively.

[ Paga 42,

j In connectior with artennas or filters similar representaticns did

. not win acceptance that i+ cculd te reflected in the methcds cf

synthesis.

1.5, Scme gereralizations of furndamental task.

Above task cf synthesis was fcrmulated in the space of signals H

or, it is more general/mcre ccmacr/zore total, in the space,

e

e Tk
)
il ra” o

elements/cells of which are the clkjects of the synthssis of another

nature.

However, a similar *ask can ke fermulated also in som2 cthar

spac2s, in connec%ion with the elements/cells whick are connactedl in

AR

v * o ko). . . o

e
+
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any manrer with th2 cbjects of syn*thesis, but ¢they are not idsntical
to theam. For example, with the syrthesis of filter it is possible to
examine as the objects pct of the structurs of quadrupoles, but thair
matrices/dies, transmissicn factcrs or let us assume transient

functions., Similar versiceps are ccntained by th2 following diagram.

Let operatar M place in accerdance to sach 2lament/cell s cf
space H certain of his fcrm s ip sgace H':

s’=M(s); seH, s<H".

Regions X and Y of srace H are ccnverted in this case in%s the
new regions X' and Y' ir space E', I+ is cbvicus, with the synthesis
it is possible to use a hypcthesis cf proximity in any of these
spaces, and depandirg on what space is examined, *he soluticn will be

either element/cell cf srace H cr element/cell x,, . cf space H'

Xope

(Pig. 1.3).

J
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Fig. 1.3.

Page 43,

Thes2 scluticns are not equivalent, differant conversions leag,
§ generally speaking, to different tasks of synthesis and differ=ant

solutions. Here it is expedient tc consider threa fundamental cases.

Firs* cass, L2%t spaces H ard H' be isometric. As it was noted,
this meanx that there is cne-to-cpe ccnformity betwsen the

¢laments/cslls and their fcrms, 3§.e., thera is an inverse orerator

~ M™t, which urambigucusly raflects H' on H:s=M"1(s'),

‘% Furthermore, isometric ccnversion re*ains “h2 distance between
¢ ths approcrriate pairs of the elements/cells:
'3 Nsy—sall = Ils"\—s"all.

'i During this conversicn sets X and Y do nct change mutual

o

Q’Q
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location. Therefore elepent/cell x’,, the realizing minimum of

distance c¢f Y' in space H', is the form of element/cell ,,, cf space

H. Consequ2ntly, isometric conversicns they d¢ not lzad tc tha naw

solutions of th2 problems of syrttesis, all isometric spaces are

equivalant ir these tasks.

The seccend case cccurs, if orerator N realizes the hcmeomorphic

conversion H on H', This ®means that there is cne2-to-one ccnformity

be*ween s and s' (there is an inverse opsrator MT1), but the

distances betwean the ccrresponding pairs of elzments/cells ars not

equal to fsi—sall lls’i—s"l. This ccnversion is equivalent to the 2lastic

deformation of space. Actually/really, it is rossible to introduce in

he initial space H new metric, after assuming

d(sy, s3) =lls"+—s"ll.
In view cna-to-one conformity s and s', and also that the
homeomorghic convaersion is mapping ¢f a spaca {4 onte itself, new
metric satisfies the necessary axicrs. Therefcr: as a rasul* of
conversion some points ccnverge, cthers, on the contrary, are
saparated /axpanded, but dces nct cccur mergings/ccalescences of

several points into cne ¢r disccrtirucus changes.

I+ is cbvious, those points ¢f regions X and Y which were

located at the shortast distarce frcm each cther, aft2r defermation

thcy can ro* satisfy this ccerditicn, Them #will be -=2placed c+thar

- . = ———
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points, i.e., the soluticn of the problem of synthesis in space H'

will be obttained other, than in srace H.

Page 44,

This change in the space metrics leads tc a change in the
critericn of approximaticn/apgrcach, moceover fcr each criterion
there is an adeguate retric fcr which minimization of distance givas
approximation/approach in the sense of the assigned cri<erion (see
§1.6) « By Other owls, there is 2 reversible opgrator M, which permits
to convert the initial srace H intc the homeomorphic for it srace H?Y,
vhere use/applica*ion of a hypothesis of proximity gives the
sclution, matchad with the assioned criterion of
approximation/approach. However, as it will be clear, f£inding this

operator it presents considerable difficulty.

High value for future reference has th2 third case of tha
convarsions, during which sprace H is mapped nct tc 2ntire sraces H'Y,
but to certain part of it Q. Set Y¥', which reflacts the sat of the

permissible objects, is included in this case within Q (FPig. 1. 8).

Let us consider, for exanmple, the transfcrmation cf signal into

i+4s autccesrelation function

R4

s’—_-;if(s'):—-R({):-}E— Ss(t"-{—-{,—) s* (t'-—-—l—-) dt'.

(1.11)

[
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Fourier transform frcm autccerrelation function is the energy

. spectrum of signal, i.e.

R(e)=|s(w)[.

——— ....._‘ - 1_.7:»- V.A.“__ -




R .

PPN

-~ at

PR Y

..
‘3 .

DOC = 80206702 PAGE 2%

728

Fig. 1.“.
Page 45,

Ccnsequently, the spectrum of au*toccrrzlation function is
positive. This conditior limits tte class of th2 functions, feasible
as auteccorrcelation, and are determined -egicn Q of spac: §¢,
ccentaining entire autoccrrelaticn c¢f function. 3ut szt ) does rnot
covar/ccat entire space H', the elements/c2lls of this space ara also
the points, which are fcrmed, fc¢r example, with the linear
superposition of different autcccrrelatior functions. As a result are
formed the furnctions with the arktitrary spectral density (nct orly

positive), which supplerert ¢ regicr to space H'.

The fcrmulation of the fundamertal task ¢€ synthssis assumes

W
Ly

sst Y,

that the assigned property is feasitle (since in space H is

-+ gcvs prsvaig VN
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in each element/cell of which irherently this property). However, in
a number of cases it is expediert tc be given as that raquired the
impracticable proparty which pcssesses not one slement/cell s=4H, and
to seek best approximaticp to this froperty on thes assigned set X.
Specifically, in these cases are uvseful nenhomeomcrchous

transformaticns of the *ype ir cuestion.

Assum® it is necessary to f£ind out sigral xeX with a "good"®
autocorrelation function, It is thcught that this function must be
maximally crowded in the low tire interval (-71/2, T,/2) and kave low
remainders/residues out ¢f this irterval, In tha absence c¢f the more
corplete information abcut the recessary autocorrela*tion function
R(t) it is expadiant to take, fcr examplz, the condition

[Onon —T/2t T

R(ty=
ldsnpn T2,

(1.12)

Key: (1) . with,
But this autocorrelation function is impracticable 1.,
F-rTNNTE ', Since spectrunr PR ({w) alternating. ENDFCOTNOTE.

-~* ~ercsible to indicate cne sigral ye//. which possesses the

- t ,+7*y, 1owever, after vsing traansfermation (1.11), it is

» - --zaylite «he %ask ¢f synthesis ir space H' - *he space

A
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of the autocorrelation functicns where among the elements/cells,
which supplement Q regicn, are thcse satisfying ccndition (1.12).
Many such elements/cells cf space H' let us dasigrate, as earlier,

Y', but now it does not have a frctctype in the space of signals H,
Page 46,

As it is clear from Fig. 1.4, task is raduced %o th2 minimizaticn of
the distance between sets X' and Y' space H', Optimum is element/cell
xop,, for which it is necessary tc furthzr £ind out prototyve in

ragion Xc4.

Set X' cen, in particular, ccver/coat entira realizable ragion
Q. Then we com> *0 the task aktout *the best approximation/approach to
the assigned impracticatle prcperty on entire space c¢f signals,

reoresentaticn/transformaticn of which is Q region. This is c¢cn2 of

the most important of the prcblemrs cf synthesis.

With the approximaticns/aprprcach to tha unrealizable property is
applied alsc the fcllowirg indirect method. Fizst is fcund out
optinum sigral s, ensuring best arproximaticn to the assigned
prcp2rty in entire space cf sigrals 4, and then is realized
appreximatiorn/approach to this cptirum sigaal on th2 permissitla set

X. Since X is part of H, it is at first glance, this method is

Radihe i clbid e R E R
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correct: is solved the prchlem ¢f synthesis ir a broader class, and
then is ottained best apprcxisaticn on the assigned subset. Hcwever,
; this sclution is reduced tc twc ccnsecutive oferations in space H':
first is deterained the shortest distance between Y' and of ¢, and
the then corresponding pcint Q recicn is projected/designed for X*
(dotted line in Fig. 1.4). As can te seen from figure, in general we
do nct come into that pcirt x,p, . vhich gives direct
approximation/approach betweern Y' ard X*, Thersfora the indirect ,

method indicated requires further proof.

Prom a practical pcint of view this methcd frequently can be
justified by the fact that the desired preparty is nc¢t known
completely accurately., Ip particular, conditicn (1.12) is formulated
only on the base of intuitive ccnsiderations. It is possible %o
replace tha raquirad ccnditicr with certain closs ors to i+ and to
use *his possibility fcr simrlification in the task. The replacanment
of impracticatle conditicr by clcse one, but f2asible makes it
pessible to formulata *task in tle initial space'H (i.@s tc arzive at
the fundamental task c¢f synthesis), which gives the considerable of

simplification. The indirect wmethc¢cd examinad can be +rsated as one of

o

9 3
%: the realizations of this possitility, Frequently i+ alsc hagppens, '
| f that the distance from Y' to ¢ is ccnsiderably mcre {(or, on th2 3
-3 i
o contrary, it is consideratly less)thar frcm the aporopria%ts (n2arsst )
- {
; to Y') point Q regienm tc X',

‘l‘.

> o4

2o 1
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Page 47.

Por 2xample, if region X* corresponds to set ChM of signals, - Q
region to manpy arbitrary signals, and Y' is assignsd ty the dssirad
(impracticable) autoccrrelaticr furction, then as it is possible to
shovw, the distance be+tweern Y¢* and of Q remains final, and the
distance betwe2n Q and X' asymptctically apprcaches zero during the
large ccmpression, Therefcre with the synthesis of signals with the
sufficiently large compressicr ccepletely it is possibla %o use the
indirect method indicated, morecver main role plays the first stage -
the approximation/approach of t+ke assigned autocorrelation functior

on many arbitrary signals (see Charter 4).
1.6, Criterion or hypothesis?

Upcn the corrsct ferrulaticn of 4¢he problea ¢f approxima*icn it
is necessary to assign nct cnly desired function y(%t) and many X
approximating functions, kut alsc the critericm of
approximation/approach. Ir othér werds, it is nacessary tc clardfy,
in what sense unknown of functicr x,,(f) mus* approach assigned y(%).

The critarion of apprcximaticnsapgrcach is determined by a ccndition

of the type

e(x, ¥) =min, (1.13)

- ————r- - - =T - e g r—
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where =~ positive functional, and minimization is produced on all

x=X. Special casas (1.13) are ccnditiens (1.1) and (1.2).

The criterion of aprroximaticnsapproach, if it is assignegd,
usually makes it possible tc estatlish/install the metric (it is more
precise, quasi-metric) cf space in which must be solved the task of
approximation. For example, it is pcssible to assume

d(x, y) =¢le(x, y)} (114
where o - arbitrary increasing functicn., In particular, aetric (1.95)
is connectad with guadratic critericn (1.1 with relationship/ratic
d=¢!'>, and Chebyshev getric (1.8) is connected with minimax criterion

(1.2) with simplest dependence d=¢.

The selection of the critericn of approximation/approach is
almest always a difficult arnd distu*takle/dabatable ygues-icn. Tha
cases when it is possible with the rroper foundation tc irdicate,
vhat kind approximaticnsagproact is necessary, they are, it is
faster, by exceptions/elirinaticns from the gensral rula. We already
nenticned the task about the forming ¢vwo-*mrmiral network, which is
reduced to the apprceximation cf the impedanca c¢f the szgmer® ¢f lerg

line.

e - . — e - . - i g e e~ — JR—— e e s = —— e o
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Page u48.

It is obvious that it is necessary to approach this ideal, but it is
in ro way clear, what aprroximaticns/approaches - minimax, guadratic
or others - will give the best shape of pulses. Basides the fact that
does mean the bast? how tc measure the divergences from the desired

rectangular form?

Frequently only the intuitive considerations are used during
this s9lecticn, or preference is given up o that critericn which

more easily leads to the scluticen.

In the locating tasks the criterion of agproximation/aprroach it
is possible, in the prirciple, tc establish relying on the
statistical analysis of problem as a2 whole, the dstsction preblams or
measurement under conditicns cf cre or the other interferences. Some
research of this type is [15]. But here, as when selecting of
general/common/total apprcach ¢c¢ the synthesis, fundamental
obstructicn is connected with the inccmpleteness of the a priori

information about the ccncrete/specific/actual situaticn 1.

FOOTNOTE t. Should bs distinquished the criteria of the

approximations/apprcaches under discussion, and criteria quality

(syath2sis, optimization), that were being mentionsd in input
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( gs
! chapter. The criteria of quality fcrmulate main circuit of the task -
to cbtain approximaticns/approact tc tha assjigned apparatus function,
to ensure the maximum cf the prcbatility of detection, etc. Tha
criteria of approximaticnsapprcach play more modast role. They make

mcre preciss some special features/reculiariti=zs of tha decided task,

th2y indicate, what kind apprcximaticn/approcach is reguired to

cbtain. ENDFOOTNOTE.

It is clear, for exaomple, that for elimirating the masking
action cf close ones inr the rance ¢f targets it is neczssary to
[ reduce the remainders/residues c¢f autocorrelationr function. But what
¢ criterion of the level of remainders/residues to take, does approach
i the decrease c¢f the greatest remainder/residue (minimpax criteriom) cr
the average (quadra*ic critericr)? This depends on situatior. If the
mixing targets are comparatively rare, the greatast remainder/residue
characterizes the worst cese when useful signal interferees with one
of that mixing., Bu+ if the mixircg reflections ars arranged/lcca<ed
sufficiently tightly (dipcle clcud, the backgrouﬁd of terrain achess

“ or sza), in each quantum cf rarge cccurs ¢he imposition ¢f many

-

random signals, and is tere agrrcrriate quadratic cciterier [15].

Thus, even in the tasks c¢f apptoximation the selecticn c¢f the !

those initial prerequisites/prenicses which led to the set<ing of

3
{
% criterion of approxiraticr/apgrcach must b2 produczd orn the tass cf
i
F ]
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entire problem. Evan more is conplicated this gquastion in the tasks
of the synthesis when the object ¢f approximation/approach is not
accurately known, but is assigned cnly certain property, inherent in

many objects, and approxiraticnsarproach to this prorperty is required

to obtain.
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Page 49.

Let H - be Hilbért srace, €lements/cells of which are the
objects of synthasis, in particular, tha space of signals. Se% X
includes all permissibls cbjects, and ¥ ~ objects, which possasss the
desired precpsrty. We are interested in the specific property cf
objects, for example, by the autcccrrelation function of signal. This
means that there is an cperatcr ¥, whom places in the conformity ¢>
sach elgrpent/c21l of space the prceperty indicated. In particular,
with the synthesis according to tle autocorrelation function

®
Mis)=Rit) = _gs (t’-{—- —§-> s* (t' - %: dr'.
—=

Operator M maps space H irtc ancther spaca H'. But, in coatrasz
to the cases, =xamined earlier, set Y is converted in this case into
one point space H', since all YEY rossess one and the same dasired
proparty

M(yeY) =M,

As a result of this conversicn the synthesis is rzduced t> th=z

approximation: in space H' it is recessary *o find pcirt Yop of sat

X', nearest to point M, (Fig. 1.5).
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It is her2 assumed tlat the space metrics is matched with the
assigned criterion of the apprcxisaticn/approacha
e(x’, Mg) =min. (1.15)

0f coursa2 the selection ¢f criterion (1. 15) is so/such difficul:

as vwith the usual approximaticn.




DOC = 80206703 PAGE 8q

Fig. 1.5.
Page 50.

But, furthermorz, it is necessary on obtained form «,,, tc determire

the unknecwn object, i.e., to return tc space H.

With this, completely correct formulation, “he problem c¢£
synthesis frsequsntly precves tc ke extremely ccaplicatzd. The
hypothasis of proximity gives tlte simplified approach to the
solution, which do2s not require mapping of a space H, but preciszly
this fact leads to certair ccontradiction in a queétion about tha

critericn of approximaticn/apgrcach.

It i{s not 3iZficult to establish/install, what conditior

satisfies object Xopr, +that oktained cn the base of the hypotkesis of

proximity. As it is clear frcs Fioe. 1.5 and fcraula ({1.10), *khis
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object realizes shortest distance in spacz2 H ¢f set Y, i.e2.,

d(x, Y)y=mind x, yy=|x— P (x)j=min, (1.16)

ey

wvhers the minimization is produced on all =2lements/cells xeX
Actually, this condition forsulates the criterion of
approximation/approach, vutilized with our approach <o the synthesis,
and it is hera2 appropriate to speak not about tha hypothesis cf
proximity, but, rathar, atcut the critericn of proximity. If space
metrics H is fixed/recorded and ip it therz are many dssirsd objacts
Y, then ccndition (1.16) i*t completely determinss, what kind

apprcximaticn/approcach is achieved at the synthssis. In this s2nse

our approach to the synthesis is reduced only to ths special

selecticn of tha criterion of agprcximaticn/approach. j

As it was n2t3d, a change in the metric Lty the corcespcnding
homecmorphic conversicr is eguivalent to the e2lastic deformaticn of
space., This makzs it possible tc¢ shcw that for 2ach assigred
critarion of approximaticr/apprcach “here is an adeguate metric with

"; which the synthesis on the critericn of proximity l2ads to the same

rasul%, as dirsct synthasis on the assigned critarion. .

\c+uvally/r2allv, 12t icditial criterioc (1.15) satisfy

e et

elenent/call Y. of space H' (see Fig, 1.5). Being returned with thL?

o bis & v camn

help of the inverss: operator ¥~! (ambiguous) inzo spacs H, lat us

astablish <hat scluticr c¢f poceklenr gives zlement/csll 2o foerm of

iy e 4 s

T

. M .. *
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which in space H' is %+ In cemeral «x”,,, is not locatzd at the

shortest distance from Y in the iritial space metrics H.

Page 51.

But, after fulfilling the approfpriate homeomorphic conversion, it is
possible it gozs withcut sayicg sc to deform this space sc that +the s
element/cell «x".p, would freve tc be nearest to Y., Aftser such strain ;
(it is obvious, not only) the use,sapplication of a criterion of

proximity (1.16) will be esquivalent to syathesis on ini%ial critericn

(1.15).

' Consequently, @xamining cur approach to th2 syn+hesis or many
diffsrent homecmorphic spaces, it is rossible to0 speak about its
univarsality in th2 sense that *the critsrion ¢ preximity generalizss
all other criteria of aprroxigsaticnsapproach. Whataver initial
criterion wvwas assigned, there is alweys an adequate metric, which

makas it possibla tc find *he rnecessary solution co the base cf the

iy criterion of proximity,
| :
‘ 1 . . . k
-1 However, the regular methcds cf finding this metzic arz unknowrn, .
f and usually we forced *c enter ctlerwise, We chooss metrics of spacs !
j -
: d 2 pricri, i+ i1s 2rtuitive, and c¢nly zn the coucss cf solutien of 1
ﬂ; pr~blem appears <he pessitili<y t¢ checx (via th=2 analysis of

|
ey § |
-
:
r

."
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corditien (1.16)), what critericn c¢f approximaticn/approach satisfiss
the synthesized object. Gf this ccnsists the hesuris+ic nature of th=2
approach in question to the synthesis, this is why we speak not only
about the critsrion of preximity, btut also abcent +the hypothesis of

proxiaity.

We will apply the hyrothesis of proximity, mainly in *he space

3 with gquadratic aetric (1.6). This gives simplification in the

solutions. But, in spite of the so/such "unjustified" selec+ion of
ma2tric, cendition (1.16) is reduced for the2 majority of protlzms %2
' one cf *the commonly us<d cneées c¢r, a* leas*t, +the acceptable critarcia
of approximation/approach. This means that in many instancess we
succe2ds in cenfirming the applicatkility of +£ka hypothesis cf
oroximity in th2 simplast versicn, demonstrating tnz practical

acceptability of the corrsspcnding results.

In other cases when with the quadratic metric criterion (1.16)

.. to justify is 1ifficult, we attempt to indicat: the adequate spacs
. pecsrics with which <he critericn cf proximity is equivalent +o taz
1 given one. Frequently this can b€ dcne, but this path does not always

B

lead to +thz practical resuvlts: ir the n2w, "adajuata" matric
nash2matical difficulties sharply they grcw tc £ind optimum sigaal,

apolying the criterion c¢f groximity, it do2s not succesd. In sucn

probizas th= scluticrn, cktained acccrding Lo tans hypechesis cé
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proximity with the gquadratic metric, is expedisnt to consider as
initial approximation/approach and to obtain its refinement Ly one cf

the known iterative methcds.
Page 52.

Moreover, applying the latter, pothing inteffezss o use the initial
critaricn of approaching type (1.15). Specifically, this method of
syrthesis, which combines the aralytical solution in the initial
stag2 (bas2d ¢n the hypothesis cf proximity) with the numerical

iterations, is most efficient f<¢r the complex probleams of synthesis,
1«7. Standardization and the coefficient cf proximity.

A gqguesticn about *he space metrics is ccrn:a:ctad also with the
mathod of the standardization of signals. Usually the significant
role plays form, but not signal arplituie, not its scals. 2all
signals, which are charactarized Ly only scale, i.é.,

() =nf (),
wher2 f - assiyn=d func*iecn, p - arbitrary positive value, £requently
car be treated as one object cf synthesis, since the scale does not
affect those characteristics cf signal which ar» important fcr

permission/resolution or p2asuring the parametars of targets.

T T e e e g T T A s e o
. ‘A * v . . oy .. .
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In this coanec*ion it is cxpedicnt to superimpose normalizatien
the condition, which is urambigucusly determining factor u accarding
* to function f(t). This conditicr usuezlly fixs,racords energy of

signal cr its maximum awmplitude, They assumz/saz

E= { [s@Pde=<1 (1.17)

Sm=!gékls.(f).l_-é!ff:’ T (L1

In the linaac standardized/ncrﬁalizég épaces two signals, tha*
are characterized by only scale, are representad as the vectors of
diffsrart length, directed alcng cna straight line. On waveforn
depend the anguler positicn of vecter, while from the coefficisnt p -
only its langth, norm fsl. Conditicn (1.17) or (1.18) can be
! undaerstood therefore as setting of the norm of signals, In cther
words, the signals, which satisfy standardization condition, are
convenisntly mapped by the points cf ths singl? hypersphere S ia
space H. S2ts X and Y are in this case some secticns of tha surface

¢ sph2re, I+ is mcre precise, X Y corrz2spond to th? ceonical sracss,
P P

shown in Fig. 1.6, but standardization condition sazisfy only the

i

traces of these cones on the surface of sphere S.

+ r o
L.

- ‘¥

L]
o aoat o ¢

Page 53.

Under these assumpticns condition (1.17) mzans tha%t the nora 2f

signal must be izt:c-mined by the relationship/ratio

- '

~a “‘144 |
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tev={ Jreoral”

~a0

; aaalogously, condition (1.18) leads to the rslatiorship/ratio
. Bsl=max(s )]
Ncrm determines, in turn, space metrics. Therefore
standardization on =2rergy (1.17) is conveniently usad in space L2
with quadratic ma2tric (1.6), and standardization in amplitude (1.13)

- in the space with Chetyshev metric (1.38). }

We examine the synthesis of radar signals according to the
‘ functions of uncertain+y/indeterminancy or “he autoccrrelaticn

functions. Both these functicns use the signals, calibrated on the

| energy. Therefore the problems cf synthesis it is frequently
sxpadient to examira in srace L2, where cendition (1.17) ccrrespornds

t¢ standardizaziorn |si=]

.
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Fig. 1.6,
Page 54.
Consequently, for the majority of the examined/considered by us

prcblems is morz convenient +he quadratic, but not minimax critsriecn

approximation/approach, since precissly gquadratic approximations

(o]
Lal]

are achieved by the minipizaticn c¢f distance to L2,

“g Let two signals - x(t) and y(t) - have single norm, i.¢., they i ;
F satisfy cendition (1. 17)., For thke distance betw22n *ham w3 have
? : according %o (1.6) _ D
.'1‘ @ ' @ ;

) £ gy= [le@)—yitfdt= [lxif +lyoF -

: —o . -
- — 2Re i)y ()2 = elf -l — Re(x. )=

. =2{l —Re(x, y)). (1.19)

A

y
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: whers (x, y) - scalar product.

It is eviiznt that the minimization of distance of d (x, y) is
aquivalent to the maximization cf *he real part of scalar product (x, 4
¥)« This is pot difficult tc interpret geometrically. Angla @ batwaen

vectors x and y is determined ir the compesite Hilbert spacs by

Re(x; u)

cos 0= o

For standardized/normalized signals jxi=lyl=1, therefore

relationship/ratio [43] A

cos@=Re(x, y).
( It is obvious, the decrease of the distance betveen th2 unit vectors

! is aquivalant to a decrease of the angle betwesn them and tc increase

cos 8, that also correspcrds tc fcraula (1. 19).

Value cos 9, which characterizes the distance between the
staniardizzd/normalized signals, rlays in futur? large role, We will

introduce for it the special desic¢nation C(x, y) and we will call ths

coefficient of the proximity ¢f signals x and y. Thus,

L.

. oo
Cix, m==Reix. m=Re [xtyu*indt.  (1.20)
-
moreover
Fal="yt=1.
The coefficient cf proximity it is not difficult to 2xprass also

thrcugh ths spzctra of signals.
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Page 55.

Actually/really, taking into accocunt (1.7), we havs

®
C(.t.y)=Re—,_,|;- S;(u) y* (@) da. (1.2
&

Distance i(x, y) between tle standardized/normalized signals is

axpressed as the coefficient cf preximity by formula (1.19), i.e.,
&(x, y) =A1—C(x, y)] (1.22)

Analogcusly is intccduced the comfficiernt of proximicty fer a
signal and certain multitude c¢f sigrals, for example, for signal y
ard set X. This ccefficient ccrrespcnds to distance (spallest)
betveen y ard X:

C(X, yy=maxC(x, y). (1.23)
=X
Firally, the mioimum distence betweer tweoc ssts ¥ ard Y alsc can be

characterized by the coefficient ¢f the proximity

C(X. Yy=maxC(x, y). (1.24)
=X
=Y
In tha la*tsrs/last fcrmulas it is assumed that sets X and Y 7=

arrarged/locatad on <he surface of single hypersphsre, i.2., X, YcS.
Using the introduced ccncepts, it is possibles tc formulate the

hypothesis of proximity also as fcllows: solution of wnz fundamantal
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problem of synthasis gives sigrnal x,pr=X, tne realizing coszfficiznt cf

proximity C(X, Y) between regiors X and Y.

In conclusiorn let us note that the coefficiant cf preximity is
analogous to thz correlation coefficient, used in the statistics.
Beth values charactzrize proximity, in4esrconnectiocn of the pheromana
in question. In particular, the ccefficient of proximity as the
correlation coefficient, does nct exceed one and is equal to it, caly
if signals cciacids. Morecver, if x(t) and y(t) is the randcm 2rgodic
processes, calibrated on the dispersion, then the correlaticn
coefficient is formally determined ty relationship/ratio (1.20). We
introduced new tarm for the designation of “his valua only because in
our case there is no any ccnnecticn/communication with the

probabilistic laws.

Page 56.

1.8. Three mecthods c¢f the solution of the fundam2ntal problem oZ

synthesis.

In Fig. 1.7 are clarified the most ccmmonly used m2thods oI taz

sclution ¢f tha fundamental protlem of syanthesis. The first method

A

fa

3 d2terrined best approximation to it on many

ot

consists in =h:z

~
1

~at first is choson arbitrary permissitle

.

signal x=X arnd

At ve el mitailiad be N B Mot i e
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dgsired signals Y. Ir cther vwords, as the first space is sclvad th=»
problem of apprcximation (desigr) cn set Y. The quality of the
approximation is characterized Lty the distance
d(x, Y)=mind(x, y)=[lx— P, (x)jj.
Y

This distance realizes certain signal 4= Py(x}). nearest to

selactad x (let us recall that Pr - oparator cf design to ssat Y).

In order to obtain the shortest distance between regions X ani
Y, it sufficss to further change signal x, being moved on by ths

curvz ¥ and monitoring distance cof rearest uEY (Fig. 1.7a).

- R .- . e i = e Sge———- g g e v e = —— 2+ =
o, VT b 3 FTE . . " T DR N R
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Page 57.

As a result is det:rnired value

dyp,=mind{x, yy=min{x — P, (x)]

/=14 W=y
=X
’; and is located optimum signal Xopr, which solves the problem of
S synth2sis in accordance with the byrothasis of proximity. unknown {
- signal X« realizes tle winimum cf the functional ;

flx)=d{x, Y)=]lx— P, (x)]| =nmin, (1.25)
vhere the mipimizaticn is produced cr all x=X. Ths same result is

obtained during th2 maximizaticn cf thas ccafficians cf proximity C(x,

.AALA:J. | Y. A lloa’ cas :
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Y). Thus, synth2sis is reducec 2lso “o thaz variaticnal problen

filx)=C(x. V)=C(x, P,(x))==max (1.26)

under further conditiors x=X eand |(xl|=1.

This is on2 ¢f the classical problzms ¢f che calculus of

variations - isoperimetric prcbles.

The seccnd met hed differs frewm previcus c¢nly in terms of tha
fact that the minimizaticn of distance is produczsd in backward
saquence (Fig. 1.7b). Pirst is assigned arbitrary signeal ysY and is
found out best approximaticn to it cn set X, i.2., is determinad the

distance

d(X. y)=mind (x, g)=|ly — Py (.
=X

Then is dstermined value dmin via a variation in signal y. The
squivalence cf ths first and seccnd methods zscape/cnsues frem th2
identity

mind (x, y)=mind (x, y).
=14 =X
=X [1=33

As a tesult cf the sclutior ty the second mzthod is determinad
not unknown signal x... and sigral ¥Yepr; arranged/locazed con the
shor+tes* distaace from set X. As it is clear from previous, this
signal satisfizs the corditicns

f(y) =d(X. y) = y—Px ()i =min (1.27)

- - —— e —
S v T e T
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[1y) =C(X, y) =C(y, Px(y)) =max (1.28)

during further limitaticns vsY and llglt=1. Two methods indicated,

obviously, are very close.

Page 58.

In the general/common/tctal fcrmulaticn, given above, it is difficult ;
<o disccver th2 noticeable difference between them. But differsnce is

and it is sufficiently substantial. The fact is that the structure of

the permissible signals x fregquently impedss thz s+<raight/direct

solution. In particular, these signals canr be discratesdigital (fbr

exampla, phase-key2d). The majorities of variational metheds are
adapted for th2 continuous functicns, Therefore functional (1.25) or
(1.26) frequently makes it pcssible c¢cnly to =stablish/install, what
condition satisfies unkncwn sigral Xty to com2 %O
light/datect/=xpcsz the critericn cf apprcximacion/approaca, kut it
is possiblzs to find the fpractical algorithm ¢f syathasis, the rule of

the construction of optimum sigral with this approach more rarely.

Set Y, characterized by the desired property, Irequently i
contains continuous, aralytic functions, Therefore rescarch cf 1
functioral (1.27) or (1.28) can prcve to b2 mcre efficient, True,

after detecmininy signal Ysee

§rran§ed/located or. the shortest which satisfies :onditisn
11.27), 41t I1s then necessary to return to s2t X and --
determine 3iznal X.pu
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distance from Yp: But this already the simpler problem of

approximation, and its scluticn is ccmparatively siaple.

L2t us introducs in this ccnnection the important for future
reference concept about the gencrating signal. Ae will call signal y
generating for signal x, if the latter -ealizes the minimum cf
distance (maximum of the coefficient of proxirsity) from y to szt X.
In particular, the shown in Fig. 1.7b signal y - generating fcr
signal x,, signal Y ~ generating for signal.xwp It is otvicus,
transition/junction frem the generating signal to the appropriate
signal of set X gives design y ¢n X. Th2 methcd of the synthesis Pig,
1.7t can be nama=d ther=fcre the synthesis of th: cptimum gesnerating

signal with the subsequent design (approximation).

It is of interest also metltod succsssive approximations (Fig.
«17¢) . With tnis mathod initially is assignad carctain signal of +hs
zaro approximation xge. Then is determined sigml y=Pr(x)<Y, nzares:

to Xgp. Let the listance tetween tlese signals bz d;. Further is

determined signal x=Pys(y,)=X, nearest to y, and arranged/located at a

distanca c¢f Jz f£rcm it. Subsegquently are detarmined signals y, -

n2arast tc x,, X, - nearest tc y, ard so forth.

Page 59.

2
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s
Obviously, this iterative prccess is reduc2d to th: successivs
dasign tc sets X ard Y respactively. Th2 algorithms, which are
determining approximating sigrals (froj2ctions on X and Y), it is
frequently not difficult to estaklish/install, and iterative
procadure provas to be sufiicicrtly convsanicatly, sspecially durirg

the machine calculaticns.

It is necassary to emphasize that this procsss does nct always
lead to shortest distance dmin. Frc¢m previcus it follcws only that
with the iterations is fcrmed descendiry saquencs of the dis*taaces

diz=d:>d:> ...

Sinc? this sequencs is bcunded belcw (d>d.in), it converge to
certain liait. But such a limit can give the 1local, but not global
minimum of the distance tetween X ard Y. In othar words, if the
curvas X and V hav: ccmplicated stzucture, they converge at sevaral
points, then L~s process cf successive approximations leads to the
minimum of distance, but, perhajgs, not smallsst of <the minimums. S>
that as a result of approximaticns/apprcaches would te obtained
shertest distance dmin, sigral cf the ini¢ial
appreximaticn/apprecach xg must be sufficient to clcse cnes %0 Yopr
Finding this initial aprroximaticpn/apprcach represents the
independent problsza, fraqusntly very ccmplicated. In more detail

qu=sticns 9f the convercerce cf iteraticns during the successiva

desigrn ars examinadé ir §1.10. Let us now point out only that TALY
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itzrative procssses, used by a nusber of the authors for the
synthesis of signals and antennas, are reduced to the dsscrited by us

procedure.

1.9. Oon tha itarative methods of synthesis.

Thus, the problem of synthesis consists in general in the fact {
that is required to find the permissible signal x(t), which ensures
best approximation to certain desired property. This problesn is
reduced to ths minimizaticn ¢f the corrsspondiny functicnal - the
critaricn of synth2sis f(x) - on a permissible multitude of signals
X: f£(x)=min: x=X. The structure ¢f functional f(x)'is determined by
*he desired property c¢f tlke synthesized signals, and also by the fac:
such as kind approximaticpn/aprrcach to this property we attempt o

obtainp - minimax, quadratic, mearc-ds¢gre<, 2%tc.

Page 60.

The approach examined to the synthzsis, bas2d on the critarion
¢f proximity, cocsists, in fact, ¢f “he sp2cial selecticn of
functional £(x). It is the distance between the afppropriatz ssets in
the assigned function spacs. Frequently this critsrion makes it
possible tc¢ trace “he prctlem cf wminimization (i.e€. synthesis) by

classical variational methods ard %¢ ottain th: analytical solutiorn.

. - e s e g p————— ————— e e o e e = L e -
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But this accomplishes not always, and we recently mentioned the
. itsrative procedurs, which makes it pessiblz in a numker cf cases tc

obtain successive approximaticrs tc the unknown sclution. Genserally,
one ought not to narrow the circle ¢f the problems in question, baing
orientad cnly to the critericn c¢f proximity ard to the analytical

met hods of solution,. Thérefore let us consider briefly also the /
numerical minimizations, applied, in the principle, to the arbitrary

onss (or almost arbitrary(to furcticrnals.

Such methols they allov being transmitted from certain initial
approximation/approach (¢, t¢ find successivs approximaticns

(), x®(t),..., reducing step by ster functional b2ing investigated

value. In cther words, is constructed minimizing sequence
A0(), x(t), x@(f),..., that satisfyirc the condition
F(x+0) < F(£W).

The functionals f£(x) in questicn make sense of an error in tke
approximation/apprcach, they ac-e always positive and, therzfcres,
bounded belcw: £(x)»0. Therefcre descending sequence of values
f(x?), f(x¥), ... converge tc certain limit, and, after fulfilling a
sufficient numbsr c¢f spaces, it is possible arbitrary clesely to

approach this limiting value.
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However, the majority of the iterative methods of minimization
have lou..l charactar, During the ccopstruction of nzxt

approximation/approach is considered the bzhavior of the functional

being investigated only in certaip low vicinity of the previous
apprcximaticn/apprcach. Sr2akinc in genaral terms, cach fcllcwing
approximaticn/approach x**"(¢f) irtrcduces only small correction into
previous approximation/agpprcach x™(f). Although this correction givss ’
thz decrease of functional, the precess of minimizaticn car, in the
first place, flow/occurs/last very slcwly, arnd iﬁ the sacond place, it

( leads to the nearest - frequeptly tc th2 local, but a0t global

' minimum, We approach tke sinimur, Lut frequently smallest of *henm.

Page 61.

Lat us examine in mcr: deteil th2 method of gradisnt - ¢n= of
frzguently that utiliz=d and 1n a certain serns> fundamsntal itarativa

ninimization. As it was pcted, any signal x(¢) it is possible to

4.

unambiguously compare the sequences of numbers {x, x3 ..., Xn, ...} = th2

coefficients of th2 generalized series of Fouriar (1.4)., Thersfor:s

3

0

N
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functional £(x), dzpsndinc cn sigral x(t), can b2 considered as the

function of many variablesalterrating fx(f)l=f(xs %2 ....%n,..1 IR the
ge2omstric aralogy £ (x) there is a surfece abovs ths hypsrrplane
sufficiently large, strictly speakirg infinit2, number of ccoriinatcs

(the hyperplane indicated we they trcatzd the praviously as space o€
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signals).

Lot initial approximatior/eprroach x"(t) correspond *to pcint oc

this hyperplane with cocrdinates x™ x¥..., x®, ... GExamining the

behavior of functiorn £ (x) near point x® it is possible <o ccme %o
lighn/dstect/expos2 diractions, along which £ (x) grows or, cn the
contrary, it decreases. Atterr*ing to decrzase value of f(x), it is
necessary, naturally, to te shifted from point x@® on one of the
latter/last dira2ctions. Mcreover in ord=r to ch:ain the most
significant decrease of f(x), ore should bs shifted in <he diraction
of most steepest/most abrupt descent, antigradia2nt. Ths coordiaatses
cf focllowing, the first, apprcximetions/approachas xM(t) in this cese
will compose

of

(1) (0)
X=X - =— .
" » 0%y |ems®

(1.29)

Her2 g, - pcsitive constant, whick is datermining the length of
spacs. After fulfilling first approximation, it is necessary to study
the bzhavior of function f(x) rnear point x and, aftsr determining
the new direction of antigradiert - dirsction of staepest/most abrupt
descent from point <", tc be shifted in this direction for obtairing
the saccnd approximaticon/appreoach o In general,
trarsition/junction from the k apprcximation/apprcach to the

following is deterained Lty the relationship/ratio

PR n’ )
ta T T . 130,
LIPSl

Usefully also another interprztation of th2 process exaain:zi.
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The axtremum of functicn f(x), naturally, gives the solution cf

system of equations

‘-;)7,;:0; n=1 2
Page 62.
It is not difficult to note that rrccess (1.30) corresponds to the A
iterative solution of this system, it is more precise, thz2 equivalert
system of the fornm
Kn=dn— g0 n=12,....

the use of sufficiently lcw values cf a frequently ensuring the

convergenc2 of iterations.

Known seva2ral varietiss of gradient methcd, which are
characterized by *the rule cf the selection of the langth cf space a
In the simplest case the methcd descends in th: version of th2 simple

iteraticn when th2 langth of space r:zmains constant in alli stagis

=q= .., =q,

In the mors complicated casss the ccnvergence is ansured only with f
the variable space, selected, fcr example, frcm ths following

considarations.

During th: mction in “he direction of antigradient changes £ (x)

i

occur in accoriancz with the crnz-dimensioral curve 3
I4 of of — i
fzf'\x'—"ﬁ?‘”'x"_"a_x,,’“')““’) {l-3‘\ 1
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- by the saction of multidimensijoral fuaction [(%....%....) by tha
vartical plane, inzluding the selected diraction. Move one shculad,
naturally, to the point c¢f the girirum in this sectiorn. Thereforse in
order to determine the length of srace, it is possible in each stage
to solve the ons-dimensicnal grceblem of minimization for furnction
(1.31) . Ths corrzspcnding metheds are =axaamined, for exaample, by wWild
{78 ). In particular, if curve f {a) allows/assumss approximation by
the quadratic parabola

212~ 510, 43 (O 2 4 T ot
the value «: is detarmired by the pecsition of its apex/vertex

w=—¢ (0)iq710).

Page 63.

The method of gradient is c¢ne cf the numerical methods of
miniamizaticn, usad in similar protlems. Thzre are other aralogous
) methods, in particular éesign- gradient, <hat considsrs the '

§ limitations, assigned on the permissible set cf the X, the method

coordinate-by-coordinata descent (rslaxation), which does not raquir?

the calculation of the dirzsction ¢f grediznt, ravine methcd and th: ﬁ
mathod cf layouts, that accelerate rinimizaticn in some important
cases, etc. These methods are used extensively for the numerical

sclution ¢f the diverse precblems ¢f minimizaticn, includirng €ecr th:

PP D TN

synthesis of signals [34, S3, 61, 85], and ve will uss *hem in *=k:

P
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series/row of complex proktlems. But should be specified two
fundamental difficultiss, connected with the usa/application cf such

methods,

FPirst, thare does not exist tha universal num=rical ms*hcd of

minimization. Ths success of that, stc. of them depends substantially
on the thin preperties of the functional =~ number of local minimums,
presence cr absance of "ravines being investigatsd®", thsir structur~,
etc. Similar properties nct always can be traced'previcusly, and it

[ ' is expedient to test several wmethcds, to fit method to the prohlen.

In the second place, the already noted lccal character of

) -

itarative methods 2o0ss not make it possibls tc in general £ind out:
the glotal mipimum of functicral, In this conrsction the determining
role plays the correct selection c¢f initial approximationsapproach
during whick thes icera*ticns originate from the point, located "in the
zone" of «he global minimum. The determination of initial

s approximation/approach this is the independesnt, frequently very

ccoplex problcm for solving which are necessary analytical research

.

or physical arguments, which make it possible to contain the

structure of fuanctional as a whcle (lat it be approximately, with
scm2 simplificaticns, but as a whele, but local, ir thz lcw vicini=y

of certain pcint).

3
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Specifically, during findirg cf initial approximationsapproact
are axhibited tha advantagss c¢f approach; basing on the criterion cf
proximity, We snoose the space metrics of signals arbitrarily,
without a strict proof., Thbe initial problem of synthesis is
substituted with this ancther, are changed critarion itself,
minimized functiorz2l, But this replacement makes it possitle to
frequently contair probler as a wtcle, to f£ind analytical resolutior,
and intuitive consideraticn~s make it possible to considaer that the
simplifying assumpticns are nct t¢o rough. Thus, ChM¥ signals, which
implament best approximatica «c¢ tte assignad function of
encer*ainty/indatarminancy, hardly considarably differ frcm each
other with twec criteria of apgreximation/apprcach - quadratic and

oinimax,
Pags 64,

Tha cese ¢f quairztic approximaticas/approaches admits simple
solution on the base ¢f th2 hypcthesis of the proximity (see Chaptar
8), and the analytical study of minimax approximations is virtually
impracticably. But here it is pcssilble to use one of tha iterative
me*hods, using as the iri¢ial aprrcximaticn/approach the resuls,
obtainsd for the guadratic critericn. The corresponding refinpements
via iteratiors will lead %o the glctal mirimumr of srrez, if tuc

criteria indicatad dc nct jive esserntially different signals. At
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lzast, one cught not to disregard such possibility when there are nc

directs method of the sclution.

We will meet alsc with the simplar problems where the
comprehensive sd>lution can be ottaired, applying either ornly <+he

critaricn cf proximity cr only iterative msthcds.

In the sxamination c¢f gradient methcd, it was assumed that

signal x(t) was represented Ly the set/dialing of its coordinaées:

Xy, X2,...,%n... With respect tc the prcjection of gradiant (vector) or
the coordinate axes 2 partial derivativss Of/dx.. Although this
representation is admissitle fcr the majority of problems, let us
give the more general/ccmmon/tctal determination of thz gradient (by
first-cord=r dzrivative) c¢f functional. Let H - space cf sigrals, ang
th~ real functiosnal £(x) is dezerminad for all x&H. The differcntial

of functional £(x) is called exgpressiorn ({42], page 434) 1;

Df(x, hy=—%[(x4h)| =lim Hx o) —f()

=0 -0 ® .

FCOTNOTE 1. It is more precise, by Gateau diffsrengial or by weak

differsntial. ENDFOOTNOTE.

According o the usual rules of differentiation, Df (x, h)
iirearcly d2pends ct &, and, sance incrcment Df(x, h) is a scalarc cuel

valus, is corract the represertaticr

S
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Df(x. hy=-=f(x+3h) L_O=Re(f'(x). r).  (1.32)

Was hesre used the fact that in the Hilbert space the linear
functioral always can be presented in the form of scalar prcduct
{42 ). The entering in (1.32) furcticn (operatcr) f'(x), which d2apends
on x, but not from h, and *there is derivative cf functioral f(x). I*
is sasy to see that during the cccrdinate-by-coordinaze
reprasantation of signals (in the Euclidian space2) this determination

coincidas with =hat used above.
Page 65,

The ganzral formula cf gradient method (1.30) in the new

designations takes the fcra

Ak = g f (0H0) (1.33)

1.10., A projectivas-gradien* methcd and its connzctions/commurication

with the criterion of prcximity.,

Gradisnt mathod is arplied when on th: permissitle signals x(%)

it is a0t plac23 2ny lisitations, i.z., wh

=
W

n szt X 2t corr=2sponds to
2ntiras space H. 1If set % is lamited by furthar conditions, method
(1.33) cannct b3 us~d, since the addition of derivative £'(x) canx

jeduce for the limits of the permissible set and next
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approximation/approach «*+" will pct belong tc¢ X,

; Hovwaever, under these conditiocns, common for the problems of
minimization, it is possitle tc use, for examfplz:, the approprizte
modification praesented, called a grcjectiva-gradient method. Duriag

this modification n=xt approximaticns/approach is constructed
according to tha rule

X 4+Dm P (M), (34 /

whers Px - operator of design t¢ set X.

‘ The projective-gradient methc¢d prescribes, thus, zo do froa

poiat r» a spacs on the antigradient (as in tha previous methegd,
‘ without taking into acccurt limitaticns on X), and then to define

nex%t approximation/approach «x*+t as the point of szt X, nearsst t>

cbtairad peint xM—ar’(x).

L2%* us lookx how appears me+thecd (1.34) in connection with the

W minimization of the distance Letween permitted to X and desired Y
$ .
multitudes of the space of signals, in our terminology - for the

fundamental problem of synthesis,

-*

“‘l“. | Y. ...‘\.\A‘._..hr_" ~

Functioning using the first method of 31.8, wa fix/rsccrd first o
arbitrary elen2nt/cell r=x and it is determined shortest éistance c¢f

Y. Equivalant compohznt «usY is prciection x ¢n Y, and distancs d(x,
q L FIC’

. s

nd -

R
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Y) comprises

dix, Yi=tx—=Py(x).
The l@2ast distance between ¥ and Y is determined further by a
variaticn in the permissitle sicnals x. Thus, we come to the
mirimization of functional [ 40]
Ftxy=d2x, Yi= x—Pyix) 2=ix=Py(x) 2—Lyr10 1] 3%

on all x=Y Computing derivative acccrding to rule (1.32), we cbtaint

Fix) =205 =Py (x) (130

POOINOTE !, Functicning strictly, during the calculatiorn cf
derivative should be constructed linear variety, tangent to Y at
point «=Psixn. and, using the smallness of increaent r:- to reglace
design by Y with design tc the variety indicatsd, and then cecrsider
the known properties of the creratcr of design to linsar subspace

(see [42, page 312, 4807) . ENDFCCINCTE.

Page 66.

Therefore the projective-gradient aethod lsads to the following rule
cf the censtruction cf the successive approxizations:

X+ m P ¢ [xI)—2q, (xM—Py (x14)))].
In <he versich of simple iteraticn with space av=17 we obtain

gspecially simple Cule

4
{
|
|
|

1‘“‘"-?: {Py(X‘“‘)], 3 k¥a)

.- g —— .-r-o-_'..w«:‘-f-’.,v-,_..-. C e
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indiczating, cbviously, consecutive design to sets Y and X

raspsctivaly.

Was obtzinzd that very procedure of successive dasign which was
propesed in §1.8 as one cf the methecds of the soluticn of the

fundamental problem of the synthesis (sze Fig. 1.7¢). The procadurs

indicatsd corresponds, tLus, tco a rrojective-gradient method for

functional (1.35) ir the particular case m=ip £

[ This conformity is importart on th2 follcwing reason. In 1.8 w~
: lad only the partial procf of the method of successive design. It was
i showr that consecuti e distances tetween X and ¥ monotonically
decrease, approaching certain liwmit. In other words, is
esteblishad/installed crly the ccnvergeace of process ¢n functional

£. Now, takirg intc acccurt ccnrecticn/communication with a

projective-gradient methcd, it is pcssibl2 to use the2 known
ccenditicas fer its applicarility (and alsc by some of thei:
sxpansicns - s=2¢ below) in c¢rder tc¢ trace questions of convergsncs
: more fully, to establishysinstall, in what cases successive

apprcximations x" ¥ . approach cptimum signal ;. or at least

they corverge, so “hat “he nctm cf diffarencs 'wi+r—xmt vanishes,

S VI Y SV

Le* us bejin from scme cdeterrinations., Sev X as called cenvex,

ke !

| if£ any *wo pcints of i- cen Le ccrnacted by segment, wishcut

-k

- ¥
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excezding the lipits of the set indicatsd. In other words,

“
x=tri+ (I—t)reeX pu x, neX ¥ 0<i<l. (1.38)

K2ey: (1) . with. (2).and.

Let z=H tne arbitrary pcint c¢f space and x=Px(2) - nearsst tc

it point of set X. Then, if X is convex, cccurs the imequality
Re (z—x;, ;t-—n) =Re (2—=Px(2). x—Px(2M) <0, 11.39)

whers =X and, as usual, the parenthesis dssigaate scalar prcduct.
Not stopping on the proof ¢f this kpown relationships/ratio, 1zt us
note that geometrically it corresgonds so that in triangle z, x;, X
the apex angle x, must ke blunt fcr convaex set X (Fig. 1.8).
Conditicn (1.39) is only necessary, while condition (1.38) is also

sufficient so that the set X would ke convax.

Functioral £ (x) is ca2lled ccnvex (deownward) on X, if with (0<»<’

cccurs the ipeguallity
flex, - (1—1)xa] <viia) =
Stl—=nfan); xoaasy t

— ey ——— TR T TN e e

)2
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Fiq. 1;8.
Page 67.

Por the differentiated functional the conditicn of convexity is
( equivalent alsc so that
Ra ('t} —Fixz), xi—x) 20, 1, xz&X. th4n
Is valid the following general/common/total theorem: ccrvax
functional has the only pinimum cn the locked convex set this X and

minimum is reached at unique point xope= \ {40]

Furthar, it is accepted tc irdicate *that function £°* (x)

' satisfies Lipshitz condition with ccnstant M, if

‘\ o (x) = (xS Mixy—xaii; xi, x2e2X tha
“ .
;\3 L2t us now give the theorem relative to the applicability of a
%‘J pro jectivs-gradiant methcd, prcved ty Levitin and Polyak [40].
{
3 Let £(x) - the differentiated convex functional on convex set X,
{
- tha derivativa £*'(x) satisfying livshitz cordivion with ccecrs+tant M.
1
A |

-“_v
i~
) :
Yur ad

e
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Then, if the value of spacz a is chosen in the linmits
0<u. <2/M, (1.43)
then: 1) projective-gradient methcd (1.34) gives monotonically

descending sequancs juwx), ccnverging to fmi:

2) sequenza «x+- cohverge to (uniqu2) peint of minimum x.,, ik

particular fxtsr—xh|—0. A

In the intesresting us prcbler cf the synthesis of functional
f(x) it cecrrasponds (1.35), apd in crder to use this theoram, it is

naecessary to make mOre€ precise its properties, Let set Y be convax.

Then, if x,, x, - points c¢f set X, which do nct belong it goes
without saying to Y, and P,(x» and Py(x:) - their projecticmn cn Y, on
“ha basis (1.39) we can ragister

0=Re (x,—Py (x1), Pr(x2)—Pr (%)) +Re (x2—Py (x3), Prix,})—
—Py (x3)) =Re (X4—x:—Py ixy)) + Py (x3), Prixs)—Py(xy)=
=[xy —%2—~Py (X1) + Pr (x2) 1*—Re (Xy—Xp—Py (X} + Py (X2}, X1—Xa).

Or, taking into account the value of isrivativz (1.36),
{F(x4)—F (x2) 2=2Re (i (%1) ~{"(x2). Xi—x21 <0
It is obvious, this is pcssitle cnly with satisfacticn of
conditicn Re (£ (x,)-£f'(x,), Xx,-%X3)>0, which, in %turn, it indicates
the convexity of functional f (x) (s2e (1.41)). Thus, the convexity of

s3+ Y imply tha ccnvexity of furcticnal (1,35), Furtheér we have

‘v'q'.gy‘-‘”h\’:) A N T R SR L B

<2 — v e

or, which is th: sam: +«haing,
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B (x0) ~F (23} [ < 2k y=xals.
We obtained Lipshitz conditiop fcr Lty the derivativa f(x) with

coastant M=2.
Page 68.

Thus, if both sets X and Y are convex, then all conditions of
the pravicus thsorszm are satisfied and ths prcjective-gradisrt asthod
let us use with any space a<l. mcrecver is ensured the convergence
botk of the distances H«v), ané sicnals «» to our (unique) Optinum
values. In particular, after taking w=122 let us establish th2

ccnvargence of the prccsdure of successive designt.

FOOTNOTE !, From the results c¢f£ Levitir and Pclyak it follows also

r

ha+ when a='"» is 2nsured a maximally possible speed cf ccnvergenca

ian many important cases. ENDFCOINCTE.

Thus, for cornv2x s3ts X and Y is a comprehensiva procf of the

convergence cf <he methcd of successive design.

with the fulfillment of iteraticons thesy are always limited to a
finite number of spaces., Therefcre from a practical point cf view the

corverg:znca ¢f precess frequertly has small<r valus than *he apprcach

c. ot A -
o Sl - - w— IMAERES: WSttt PN
B S O Y S AU < - G U A A ST S S -
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of the successive approximaticns x,, X, X3, ... at the initial
stagd. With convex sets X and Y tke iterations accordirg to the
; me*hocd of successive design not conly descend, but 2lso morotcnically
<hey converge from one srace tc the next. Actuvally/really, since

' xM=Pr(y*) and set X is convex, cn the basis (1.39) we have

0= Re(yt1—xh), xarti—xh) +Re (gh+tm ks k. gk _yk-t) -
=Re (y‘“——y"“"—x'.')-{-g\lﬂ)' LR I I T
=Re (YRl ¥ PR+ O_giht) ket pihif2 1

lxd bt I Re (yrro—y®), Frei—xt <
Sl teiey il it en—ahl,

Thus, we obtain

1 x4 DR [y + 0y b,

Purther, since Y is convex and yM=p,xr-v), analogously we have
' g+ Dy o Y0 —xh =1y,
Thes: two irnequalitiss irndicats, cbvicusly, tha mcnotone apprcach of

~h2 consecutively/serially cbtained signals?,

FOOTNOTE 2, On tne basis cf the principls of the contracted mappirngs

({42]) page 44) hence follcws alsc the convergence of procsss to th2

unique point of +ths minimum. ENCFCCINOTE.

-

But, unfortunately, with the synthesis frequently it is

VTS DI "IN NVCUE

nacessary to d=2al concerning the rcpconvex sets., Lzt us assume, for

example, 15 required to find the Ch¥ signal, which satisfizs a

§

¢c2t4%ain cendztiorn of cp*imum charactar, St X izclué:s ir <his cas:

¥l ad

Ramne Sagated ‘wie b At



DOC = 80206703 PAGE Je&

/24

the signals

x(t) =B (tyels ", (1.44)
characterized by only phass functiors «¢(n. which depend on the law of
frequency modulation. Amplitude epvelop2 B(t) is identical for all

permissible signals (for example, B(t) can be assigned rectangular).

Page 69.

This set X is not convex. Actually/really, after assuming in

( accordarnce with (1.38)

‘ X (1) = 25,1} 4 (L = % (0= B (1) [re? O - (1 =) b (],

! ve see that th2 eavelepe

Ix () =B () VEFT =7 =22 (1 — % 05 (& (1) — v: 1)}
) diffars from B8(t) witk any r, cxcept 0 and 1, i.2., ths intsrnzl
points of the segmen%, which ccabires »x» =X, do not belorg t¢ sat X.

Is similar tc this, £ra2quently ccrvexly and desired set Y.

“ Of course the nonccnvexity at least cf ore of the sets trings,

'j in general, to the presence of several minimums of <he distanca

. 1
% between tham, azd it-raticns car lzad ¢c ths local, tut nct tc glecbzl ;
] ainimum, Therefore it canrct e relied on the so/such comprehensiv=

{ prcof of method as for the convex sets. But nevarthsless ve will

_? cbtain further scme rescl®s, similar to pravicus.

A |
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L2t us show first cf all, that for any se* X, convaxly it or

not, is correct the inequality, sieilar (1.39):

P_\» (2) — % ,
2
Actually/r2ally, since the cperatcr cf design /«(zy assumes firnding

\
Re (z— x —lez)) < 0, x& V. (1.43i
the shortest distance from z to X, with any =¥

0= jjz— Py (D —liz— %7 = {7 S+ wPylrhi—2Re s, Py2)) —
— iz — x4+ 2Re (2. x) = Py ()P — X7+
+2Re{z. x— Py () =Re(Py(}+x Pyis)—x)—
Pylo)y+ x
9

+9Re(z. x— P (2)) =Re (z_. ' x——P\-(z)).

Clsar also that inagquality (1.4S5) strict, if cperatcr 7~} is unigque,
i.e2., if is unique the nearast tc z point cf set ¥X. Gecmetrically
(1.45) it corrssponds sc that, after leading redian in trianglsz z,

Xy, X, We will obtain triangle 2, &, x with thz blunt apex angla &

{Pig. 1.9).

Let us now demonstrate the thecrem, similar (in csrctain part) to

o
j=
(D]

th2orem of Lavi*in and Folyak, tut not assuming the cenvaxity of

set X ard functional £ (x).

L2t f(x) - the differantiated functional, bcunded below cn sat
X, the darivativa £'(x) satisfies lipshitz conditioa with constant Y.
Then, if the value of space + 1is chosen in the limits
Ocuns 1M, LAt
then: 1) rrojective-gradient methcd (1.34) gives wmonotcrically
dscr-asing ccnveigant serias 'y 0 szquince " descernds

according to the nora of difference, i.2., v**'—xt —i

- R — .- e e R S aiva st s S sanea wow Aeierasinb e G eaul L aiiel
2 acian . : X < O o e - o T TS . R . -
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Page 70.

The following proof repeats (with some explanations) the
appropriata considzraticn from [40], buc instead of inequality
(1.39), valid for convex X, it is used (1.45) ., Pirst of all, oa ths

basis of the determinaticn of derivative (1.32) wve havs

Flz+8) —f (x)=Re [ (" (x+ ). by d= = Re (' (x). k) +
]

1
+ Rer (P (x + th) — F' (x). h) ds<<Re (7 (x). h) +

1
+ {17 (x4 <8) — " Coll ) = < Re (F (). ) +
0
I M
+6[ M A2 de = Re (F (2), B) + 5 IAIE.

morecvar is hzre used alsc Lipshitz cerdition (1.42).

Assuming/set4ing x=xM hA=x+)—xn, we have in particular
flxM1 — [ (%) K Re (7 (x%), x0+1) — x)) 4
M
+ 5 [l — i,

Pirst term of right side we ccrvert as follows:

Re (f' (x(M), x(**+1) — x(*)) == Re (~/" (x(*)), x(*) — x*+1)) =
xM 1) Lox(M) gAY — x%)
3 +

1
= re Re (x(® — 2, f" {x(*) — 3 .

1, i
g% — xR+ 1)) = — Ty frx(rd) — xihhf2 N Re (x(® — 2, f' (x(M) —

x(X+1) o xth)
— XM — xR+,

. e e g iy - . e oo e = e e
R — S . ——— R amas Sagania, b reabmaten "
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Acccrding tc ths algcritho cf +ke censtruction of
approximations/approaches (1.34) x*t=Prx*—af(x»)) and the latter/last

component/tern/addend is negative by the force of inequalizy (1.45);

as a result
. 1 71 |
Fxt )= f(xM) &G ~— =5 ——= M : [x*+1) — x M) =
PAREN )

= - e || (A1) — (W12,

If space a« is chosen according tc (1.46), valus ¢ is positivs, axd,
thus, sequanc=2 j(»*) monctcaically decreasas. Since functioral f(x) is
bounded belcw, this sequence descends. Finally, <4¢ obtaine=éd also

)
Hx(h+1) — xihmi? £ e Fx™) —j (xvt ).

pPaga 71.

Conssquantly, tha norm ¢f difference ix*+"—x™| vanish3s by the force of

the convergerc2 oi sequence f(x™. Thecrem is proved.

From the obtained results are cleer fundam:ntal diffserencas
under applicability conditiors fcr a projective-gradient methced for
*hs cases of prasance and absence of convexaty (set X and functiornal
f(x)). Pirst of all, in ths absenca c¢f convaxity is not guaranteed
cornvergence %o the global (unique) rinimum and, in the second placsz,
uppar bcund for space = must be reduced doubly [sez conditicns

(1.43) and (1.46) ].

Raturnirg tc the® preltlsm of ths applicability of the method of

T IR R W st e SR e

-,

it i

e
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' successive design for the fundamental problem of synthssis, we will A
use latter/last theorem for furcticnal (1.35) with space a=i2 Prom

(1.46) it follows that with the ncnconvex sst the X convergenc? of

method (according to the pnorm of differencs and in the functional) is

epsured, if M>2, i.e., upcn ccnsideration (1.36) and (1.42), if
lxs—x3—Pr (£1) + Py (x2) I <Hxi—x2ll; x4, x2=X. (147)

In the fundamental problem of the synthasis of set X and Y it is |

possible tc vary by roles. Therefcre the convergyence indicated is

ensured also with the nonconvex set Y, if

iyr—y2—Px (1) + Px (92) 1 <Myr—yall; w1, y2Y. (1.48)

Thesa ceniitions (is sufficient the fulfillment of any c¢f tham)

set some furthar limitaticns on Y or X respectivealy!,

FOOTNOTE %, Lzt us emphasize that £cr the convargence of the ‘
jistances betwear by X and Y of the cerniitions indicated it is not
required - this convargenc: was independently proved ir §1.8.

.‘ Iraqualitizs (1.47) cr (1.48) ensure alsc the convargence cf

approximations/approaches acccrding to the norm of difference.

2.

oo I
ENDFOOTNOTE. |
d -4
1 , _
i It is possible to check that these conditions are satisfia:d, i for
(]
i s3t Y or X is cerrect inequality (1.39). So that 1s sufficient the
i
2 conv-xity only of cnz cf the seis,
» '
BN | ‘
» i

S —p——- - - P AR cem v eegem—— e g e ~ﬁ“7“’7-7~~“- e -
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L2t us look how appears condition (1.48) in connection with set

of ChM signals. Let -

n =4, (e p gty = A, ()e!n D
- signals vwith arbitrary amplitudes and phases, It is possible to
shew that the dszsigp ¢Z signal y(t) to ~h=2 set cf ChM signals (1.44)
corrzsponds to adding of its phase ¢(r) to the assigned amplituda
B(t) (see Chapter 8), sc¢ that

Pyln) =B (el " poip)eeBnelai,

Paga 72,

In space L2 condition (1.48) takes the form
'ﬁuﬂ—m&%—Lh—BmmFﬂ<(!AM*—Aﬁhgﬂ~
: or, after simple conversicns,
SB W [Bt)— A, ) — 4, (1] sin"ut—)-;—:ﬁﬂ dt < 0.
1€ w2 do not set any limitaticns cn the phases »; (t) and ¢, (t), we
will cbtain th: sufficiert conditica
AN+ A >B(), (149)
vhich mus%t be implsmented fcr all + with which 3(t) #0. Even mcra
rigid {also sufficiesnt) ccndi+icn is simultaneoas fulfillirng cf two

inequali%izs .
i ]
'4'(”>T8(”' A,(l;}-rj—BH), {1.50)

of thoss indicating, it is cbvicus, that the envalop2as Ay (t) and 3 :
A>(=) mus%t net 2iff:z more thar dculbly, from essigned znvelepe 3(%).

- L i R —

e e v . e e e
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Even latter/last ccnditicn is not aspscially limiting. It

indicates that zhe initial appreximaticn/apprcach must ensure certzin

{({apparently, too0 not high) quality cf approximation, so that <+he

desired signal too would not differ from those permittsd. Then,

applying successive design, we cttain the nacessary refincments.

Lat us nota that if operaters Pz(y) g Pr(x) ar< unique, i.=., to
cach point y&Y corresponds unigque nearest to it poirnt x=Px(wieX and it
P P

is analogous for set Y, then entire process of iterations is

complately d=ta2rmined by the initial apprcximation/approach xg4. In

particular, saturation sional, 3if it exists, depends only or *ha

salsction of initial approximaticn/approach. Th= uniqueness céf

approximations/apprecaches occurs for the majority of problems.

et Alhe " . . ) e -
e ol it . . -
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Chapter 2.

SIGNALS WITH MAXIMUM SELECTIVITY.

In the communicating systens and radar it is frequen+tly
expedient *o apply *the signals ¢f the fipal duration, most
concentrated possible in the partrcw frequency band. This makes it
possible to efficiently use a frecguency range of
connaction/ccemmunication, raising the salectivity cf
recepticn/procedurs and decreasinc the level c¢f interferences. In
connection with radar this prcbles appears in the Doppler
devices/equipmsnt wh3n there is a set/dialing of narrow-band filtars
for +ths centrecl/checking of target spesd., The maxiamum concentratiorn
of signal iep +hez band of filtsr leads to the decresase of

czmaindars/residuces in thes adjacent chacnz2ls, making it pessinla +

o

raise accureacy and resoluticr ir the spced. In both the cases it is
assumed <hat the duraticn cf signal is limited, so that discussion
deals with the possibls ccatracticn of the spectrum for the assigned

dqurationt,

POOTNOTE !, For pulsz- ccherent systems has ir aind the structure of

the

(1]
=]

velcpe ¢f burst of pulses and, cecrrespondingly, the structurs

r

of thz: spectrum in vicinity c¢f c¢ne ¢ %ne harmonics of repatiticn

dontadlin man. . Aw- Fasals o0

SRS
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Pags 73.

Analogous probl=am aprears in rarging 2f ths targets (but rnot
speed), when with “he fixed/reccrded fraquancy band is requirad to
maximally concentrate signal in of the assignel to the interval tine.
Becaus2 of symamstry of straight/direct and invarse transfcrmaticrns of

Fourier these problems are sguivalert,

Thus, the synthesis cf signals with the fixed pcriod cf tinme

'(frequenCy band) , maximally crcwded in the assigned band fregquencies

(Quraticn), is of known practical interest. Thase signrnals can bo
named signals with the maximum selectivity in the frequancy cr on %k~

~ime respectively.

The propertizs of sisilar signals are studied sufiicisntly
fully., In the initial setting *his quastion raisas evan to thsz
uncertainty principle of Heisenlkerg-Weyl, it is moras precise, to his
intarpretation an the acvplicaticn/appendix to the vitraticn theory.
The appropriate problem c¢f the syrthesis of signals for the first
“ima formulated by Chalk 3in 195C [17, 30]. I%“s naw scluticn gava
suravich in 1956 [22, 23]. The mest ccemplet: rrsults w=I¢ cktainzd in

1961 o0f Landau and by Pcllack [43] whos2 -2search has special

“ !’" -;“ ’-A—» ~“———v - R . - '~'———v- Ras - - e - '?1\'—7‘.? R T e
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importance for this work, since it is based on thz2 ireatment, closa2

to cur.

In this chaptsr it is nct coptained any n=v results. Main ta-get
lies in th2 fact %that tc show tte rcssibility of the synthesis of
signals with th2 maximum sslectivity on thz bas2 of the criterion c¢f
proximity, to confirm the method cf synthesis, utilized further in

the new prcblems.
Page T74.

2.1. Useyapplication of critericn of proximity in spacc wish

quadratic metric.

Thus, let us assume it is recessary tc £ind tn: signal cf
duration T, maximally ccncentrated in the assignzsd band of
frequencies (-Q, Q). Thz pzrmissilkle sc% X ccntains in this cass the
signals, finite in interval of T, i.e., having the assigned duration:

()
x(H l‘l{:H T2t <<T'2;

(2.1
0 mu | >T 2 ‘

. x(t)_—_—{
Keys: (1) witk.

Furthermore, we normalize the permissible signals on th2 energy:
112

x|l = jlx(f)l'dt=l. (2.2
-T2

We attempt to obtain the sigral, maximally concentra*ed in 4hs

C g e g o e
. . * T
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assigned frequsncy band. Therefcre the desired property (not feasibla

accurately on set X) consists of the finitness of the spectrum, and

set Y includes the signals whese spectra are finits an interval (—Q.Q):

~
am=%M"W—Q<O<Q (2.3)
0 mu wj>Q,

Key: (1) with.

and it is also calibrated on the snergy

Iyl =5 [li@rae=1. (2.4)
According to the hypothesis of é;innity optimum sijnal xopeX aust bz
placsd at shortast distapcs dmin frem set Y. Pcr finding this signal,

furctioring using the first methcd (§1.8), let us £ix temporarily

arbitrary permissible signal x&X and let us deta2rmin2 first naaras:

ot

t0 it sigral y:=Pr{x)€&Y. Fer %his it is ngcassarcy to maximize “he

coefficient cf proximity (1.21)

C(x. y) =Re—..,-l; j:f(w) ¥ (o) da. 12.3)
-8
by selz2cting spactrum y (w) during limitation (2.4). Lat us nct2 that
the Zfinal limits in (2.4) and (Zz.%) are caused by ¢he finitness of

spectrum (2.3).
Page 75.

Similar problams freguently c¢an b2 solvad with ths help of

5chwarz-Buniakowski's inequality. Applying that zadicated insguali=y

e e 'v-——a.\*_.-..‘.—?.’—.-,j_,.._. R R L
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to (2.5) and tacing intc acccunt (2.4), we obtain

-' Cix peld [Rmitef <

lc‘———uo

Q <
g [1Feirdes; [lFmrda=ye. @0
-

whara

B3 L X () F doo (2.7)

2-

0t—"2 10

- is enFrgy of signal x(t), included ir the band -Q(u(ﬂi Lzt us

amphasize that wsz maximize the coefficient of proximity, selecting
‘ signal y, but, as follows frop #2.6) and (2.7), this coefficient it
is limited by the value, shich degends on signal x, but not from y.

Therefora the coefficient of prcximity will achievs maximum (cn y¥)

. -

valu2, if both inequalities in (2.6) becom2 equalities. For this is 4

necessary the proportionality of functions ?(u) and X ()3
§lw) =yE(w);, —2<0<Q.

sincz only in this case is reached the squality in the
' ralationship/ratio of a cchwarz-puniakowski. Eroporticnality facter

~ it is not difficult +o find froeo thn cornditior for standardizatior

g
(2.4) 2 | 2 , .
8 it = fl!l“mi:’dw=f_§_—__— flz(mli’dw=*{° <=L ;
"y A |
5 Tharzfore 7=17v1. Firally ve cen r3gister: %
4
j 1 -~ KX 3 3
' o mym | —— vio) Ain — Qo T,
. polo =93 ¥ , REY
; K=y: (1) wizh. 0 fioy (o >0
Y

f

>
LR e 8
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After substituting tais spectrum in (2.5), we ar2 convinced,
that the coefficient of proximity actually/really attains the
greatest value, determined by inequality (2.6):

C(x, Y)=Re-.3—;-.|-i]7E S;;("*)-;*(w\dw=ilxlla'

Now in ordsr to find the sboréggt distance between X and Y, it ‘

is sufficiant varying sigral x(t), to dstecmin2 maximum alsoc cn x:
CX.Y)= rgg; C(x, Y) =n:1;xxﬂ X lig-

Frea (2.7) it is clear that valua Uxﬂi is partial ensrgy of
signal x(t), included in the tard -¢<w<2?. Thersfore x. is *he signal
of the assigned duration, which ccntains the maximum part of its
enszdy in the assigned frequency tard.

It is cbvicus, ‘his correspends alsc o th= minimum of 2nergy
out 9f the pand indicated how is ersured high szlectivity ir <+ha
frequency. Specifically, this "energy" criterion of cptimum charcacter

is use2d in ths works of Chalk [ 17] and Guravich [ 22).

-

x

i2 begar the soluticr cf <Pke prchlom of syathasis, withcut
defining concretely “he ccaditicn c¢f opsimum character. 1% was

necessary in accordance with the hyfpothesis of proximity to only find

signal x,»n», arcanged/located cn the mip-mum diszance from se* Y. In

this case was used space 12?2 with cuadratic mstric (1.6). Instzal of

- ‘.~o~' e ...-_\__._-.“.,.??:_,_,._.. e ot
. . O «
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“ha condition 2f optimum character we assigned spaca metrics and,
furthermore, determined sets X and Y in accordance with the content
of problem. The soluticn however satisfies the commonly used
critzrion ¢f cptimum character, wlich has clear physicel treatmant.
This confirms the applicatility of the hypothesis of proximity to th=

case in gquestion.

Analcgous condition satisfies signal y.,r. that possessing
maxinum selectivity on the tigse, tut not in the freaguency: ¢..r is a
signal with the assigned widtb ¢f the spectrus, that contains the

maximum fpart cf i%ts en2rgy in +<te assigned duraticn,
Paga 77.
2.2. Maximization ¢£ partial <nerogy.

Partial =2n:rgy <f signal x({t), includsd in ths band (-R, ), can

bs ccunta2d as £foilows:

, [T
En*‘-ﬂg==;: f.ankdm==
= )

-_—Q
N 7.2

= g do { x* it et
Qo T

5 xuye Mdr =

T
= S 5 Xy x* Gyt tvddr, (2.9
< =7

|
|

e
Gt V)= o= SJ““""m:s"‘%—-j’_‘,—,}l. 12.10)
e

- - . . — - ey g v g v e
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According to said, signal with the maximum salectivity in the
frequency converts intoc the saximum value (2.9) undar further
conditiecn (2.2). Be+th the maximized value and the further
normalization condition are quadratic functionals ralative to the 1
unknown signal; thersfore it is pcssible to use the well known

receptions/procadures of the calculus of variations ir order to

complete the solution. W

It is not 3ifficult to shcw that the unknown signal satisfies

the equatiorn -

[ x(t)Gott. tydt' = ax(h), (2.11)
—f,’?
which it has solutions c¢cnly at scme values /.=/»— eigenvalues. The
cerr2spending sclutions, signales x.(f) are the eigenfuncticns cf

zquationr (2.11).

Eigenvaluss 4, allcusassume sipple incergretation, Let fer
csrtain »n» equation (2. 11) be satisfied by function x.i/1. Let us
multiply left and right side cf the equation cn x*,(!) and let us

integrate in the interval (-T/2, T/2). We will obtain

2o r- ;
X (Y X (1) G, 6t, ¢t - ST 3
Page 78. 1 sy o =i {anza |

In accordance with (2.9) the integral to the 1l2ft is partial ea2ray

E, contairniang in th+ band (-Q, €). Integral in the Zight side is
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équal tc cne accociing to the cerdition for standardizetion {2.2).

Therefore eigenvalue 1, is numerically equal to partial ernergy
Eg dp= Eg.

W3 should datsrmine the sicral, which maximizes partial energy,
i.e., corresponding <o rmaximur eicervalue Amez=Ai. Thus, signal with
the maximum selectivity cf the frequency is the eigenfunction of

aquation (2.11), which ccrrespcrds to maximum eigenvalus Ag .

Analogous considerations show that the signal with the maximum
s=lsctivity on the time has a srectrunm g(u) , Which is the

eigenfunction of the equation
Q

S‘ 5(0") G, (@, @) do = 15 (w) (2.12)
-8
and it answers maximum 2igenvalue Ag; kernsl Gr(o, o) is determined by

R T
zhe fcromula sin 5~ (0 — o)

Gy (o, o)== (2.13)

= (0w — o)

Integral egjuations (z.11) and (2.12) =sasily are reduced t> thsz
known squatiorns for the srhercidal functicns (sc2 the appendix)

Xopt (t) =1po (2t/T) t(lyﬂ [t<T/2, :

1) ~ ,
' Yopt{@) = (w/Q) npy lo!<Q. '

Key:iwith.

Sphercidal functiccs ar: studisd sufficiently fully, arnd we will

point out their below prcper*ties, which charactariza signals witk the

7y P
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maximum selectivity.

Value Ay is the portion of energies of signral, included in the

assigned band (with the selectivity in the frequency) or in the

assignzd time intarval (with the sslectivity cr the time). Partial

energy Ao depends on paragseter c=0T/2. This depandence is skown in

Fig. 2.1.
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For the high valuss cf ¢ is valid asymptotic formula [65, 68]
L—2,=4) = cPex [1 ~ %+0(e"')].

shcwing that extraband enerqgy very rapidly decrzases with the

gxvansicn of band. Let us cmphasize that in view of the previous
conclusion/output not one signal c¢f the assignazd duration can havz2

largez enzrgy in the assigned bargd,

Signals with th2 maximum selectivity are ds:picted ir Fig. 2.2.
With Increase in ¢ they acquire explicit b2ll-saaped characier. A+
very high velues of ¢ the signrals with th2 maximum selectivity

apprcach gaussian ones [67]1.
ttl

G ~e © . (2 14)
POOTNOTE t, Formula (2.14) is valid in 2he middls: part c¢f 4“tke sigrnal,

£
Wwith ths low onaes €. For €é=1 is a ncticz2able diffeceace f-om tha
gausslan curve.
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Figure 2.3 1llustrates the behavior of spheroidal functions
on an infinite interval. These curves portray graphs of spectral
density (for signals with maximum frequency selectivity) or time
graphs (for signals with maximum time selectivity).
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Page 80.

For the sigrals with “he maximum selectiviiy ia th=z fregusacy
argument m corresponds t¢ dimersicrless frequency (n=wl 2=cw/Q). whiles
for 2ha signals with the rgaximup selesctivicy ca the time - (n=Q=2c/T)

dimensionless time

2.3, Uscoy/avplicatisn cf critericn of proximity in space with

Chetyshev mezric,

The synthesis of sigrals with the naximum s2lectivity is one c¢£f
a faw problems whese soluticn succeeds in obtaining not only in space
L2, but alsc in space C wi*h the Chebyshev metric. This sclutict is
cf int2rest from two point cf view. First, this example shows that
“he critericr of procximity can successfully be uscd for okrainiag acr

orly the quadzatic, bu* also the rmirigzax appreximaticns. Irn the

Ehadte i ahad . i Sl

I T P YT T




DOC = 80206704 PAGE ,1—9’<
/Y4

szccnd place, having solutions in “we diffzrent meirCics we ok*ain tha2
possibility to compare them and t¢ be convincei, at least based on
particular example, that the selection of space metrics frszquently

dces nct l2ad to th2 qualitatively diffsrent razsults.

Examining for the ccncreteness signals with the maximum
selectivity in the frequency, let us designate, as earlier, *hrough a
X multitude of signals, limited ip the duratica, and through Y - many

signals, limited on the bard.

W2 will solve the fprcklem cf synthesis ip the space cf the
spectra, but in contrast to previcus let us int-oduce in this space
Chebyshev metric. In cther words, ttke distance between signals x (t)

and y(t) l=%t us determine Lty the relationship/ratic

dix, yr=ma« X (w) —‘ZJ {w)'. 12.15)

i, b il . ¢ e
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Fig. 2.3.
Page 81.

According to the hypothesis ¢f proximity the signal with aaxinum
s3lectivity xop realizes the minisum distance batween ¥ and Y, i.:.
dmin=mindx, y).
x=1
el
Functioning analcgcus with previous, let us fix first arbi+rary

signal xe=\ and it is determined slcrtest distanc2 of sz+ Y:

d(x, V)=mind (x, yr=min maz!.xiw}— yiw, .
Y =

According %o the ccnditicn, set Y contains the signals whosa
g

cut ¢f this band. It is otvious, amcng these signals it will be
located by such, for which in the tand (-Q, Q) functior }Xu)
coincid~s with selacted X(w). Ccnsequently, distance d{ x, Y) is
det=rmined by values of X (w) out cf +he band indicated, i.e., in the

regicr wheze V(w)=0. Thus, we clttain

du.Yp=mmg}um; 2.1
jw! >
. . : . - . . - . o~
Signal x(z) iz limitsd bty durzaticn: thecefore its spacerum X ()
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is analytic function, diffurent frem 22ro in any ftregusncy interval.
Consequently, valus (2.16) is pc¢sitive, and the condition of optimum
character takes the foram
AN el - omin. 1217
Y |
Hare pinimizatior is produced on all v=\. +“he signal, which
satisfiss this conditior, realizes aninimum Jdistance J.., in th2 space
in question. As usual, tc this sicnal 1s superimposed also <he
conditicn for standardization v =1. With motric (2.15) thas ceadition
fixs/r2cords the maximumrw value cf the spectral density
max viwl o= . (2.1
[
Page 832,

Y

2.4, Dolph-Chebyshev tyre signals.

Relationshipssratios (2.11)~-({ <.18) formulate the minimax
funifcrcm) cendition Zor the bes* eprroximation. Thus, tha
usaszapplicaticn of a hyvpcthesis cf proximity in space C brocught us %o
another criterion of aprrcximatior/approach, than in space L2, bdut

alsc to cne of <he commcply used criteria.

Tho solution >Z this proltlem dess ne* succ2ad 1n cobtaining by so
direc* methcd as with the juadratic approxtamationssagpproachcs, but ¢

is possitble to use <he tcllewing artrcach., Let us deacompose Juration

T in the low sections 85=T1,.n and we will considsir thnat function x (%)
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is ccnstant within 2ach secticr (it is =qual to «). In cthzr werds, w2
substitute the continuocs functior x(t) of corresponding stepped
curve (Fig. 2.4) . For the fixed/reccrdei number of steps/stagas 2n i<
is possibla tc detsrmirc the ¢piirur function x(w), :with which is
satisfisd *he -orditiorn fcr best aprroximation (2.17), and further,

passing to limit of n—>=, to ckbtaln the unknown continuous sigral.

We will not dwell during the sclution indicated. Initially it
was obtaiped in the thecry of artennas 727, 47, 63]. The
corrasponding antennas have the mirimum level of the greatest ainoc
lobe of diagram with the assigned width of principal ray and are
callad Dolph-Chzbysh2v (since Dclph for the firs¢ <ime <raced such
aptennas, and ths soluticn is based on the prcepesrtizs >f Chetyshev
polynomials), This name is used alsc fcr +the examined/considerzd by
us sigaals with analogous properties [39]. Detailed
unpackings/facings, which lead *c relationshigs/catics indicated

below, are, fcr example ir [7 ]

B o ——— _,....:‘.—’- e et
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Pig. 2.4, J

Page 83.

The spectrum 5f a Dolphk-Chebyshev signal is determined by one of

the fcllcwing formulas:

: X =orcosc)y o 1 (2.19)
Xlo)= ﬁ [coscy “;T’ — | —cosc %—] 12.20)

acc=2over (2.19) corrzssponds tc¢ the strictly optimum, but unrealizable

-~

sigral, and (2.20) - gquasi-cptimal, realizsd. Valus c=QT/2

characterizes, as earlier, the rrcduct of Juration to the band, whils

~ values ¥>1 measures the residual/remanent level of the spectrur out cg ;
"i th: assignad band:
. max | x (o) | = 1/M, (2.21)
b} lw|>2
1
q in this case condition (2.18) is assumed to beé that carried cut ard
i M=chc=ch QTN 12.29)
4
1
A
- ‘ :
20§ i
. ’
3 '
N
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Let us note also that the majcr lcbes/lug ¢f the spectrum corresponis
to region !o0i<Q, where the trigorcmetric cosine in (2.19) passes into

tke hyperbolic.

Tha Dolph-Chebyshev signal x (*) is determined Lty Fourier

transform from (2.20). This it gives

LieVT—gn \D )
xO={1()VT—8 ﬁ;-_l<s<l' (2.23)
Keyid) 0 mon |8 > 1.

with.

ilere &€=2t/T - dimensicnless *ime, I, - the nodified Bessel function.
In the case (2.19) the signal has further surges on the edges (with
t=+-T,/2) cf %the type of delta-function. These surges cannc:t te
cealizad virtually, since the puls~ powzr of transmittsr is always

limiced.

Fige. 2.5 shows *he cptimum (are mcre pracise, Juasi-optimal)
signals, construcce2d accerding tc fermula (2.23). The parameter is
the level of remainders/residues M, which defernds, as it was na>tag,
from the product 2T. With the lcw remainders/residues the signals
have bell-shaped character. This is confirmed by the asymptotic

fornmula XN a a—ct2

cf that obtainzd from (2.23) wi*h ¢>>1 and &<<1,
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Pagz 84.

After comparing this formula with (2.14), we ses that in the
asymptctic approximation/apprcachk tt¢ optimum sigrnals, obtained orn
the base of two criteria c¢f apprecxirationsaprproach - quadratic aand
uniform ~ coircide. The mcre ccrpletz comparison of these signals is
given in Fig. 2.6, whers for value cf c=4 are constructed :h=2
corresponding graphs. In the same figurs there is asymptotic Gaussian
curve., The signals, satisfying twe critaria irdicated, are
sufficiently close., The greatest differerncss are near the edgses of
impulse/momertum/pulse, with é&~~1, The value ¢£ jump on the edges
defines, as is known, amplitude and the speed of the decrease 5f the
spectrum with the large cnes &, Therefore certain disagreement of
curvss is causei by differert requirements for the structure cf tha

sp=2ctrum ou*t of thz assigred tard.
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Fig. 2.6
hf Key: (1). Delph-~Ch2byshev, (2). Cprtimum en2zgy. (3). Gauss.

Page 85,
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- 4 2.5. Optimum autocorrelation functicns.
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The synthasis of signals with the maximum salectivity cn the
tim2 has close 2nalogy with the selecticn of cptimum autocorrelation
functions, The autocorrelaticr furction

«©
Rih= (si'--t2)s*(t' —t2)dt' =

—

=L j} St e*d (2.24)
-—Cn

is formed at the output of the receiver, matchad with the signal.

This is arn apparatus functior in rangings. One cf the main
problems of the synthesis of signals is determination s(t), for which

R(t) has the assignzd fcrwm.

This prebl2m is in detail examinzd in chapter 4, but the already
obtaina2d r=sults make it rossible tc¢ irdica%*e the2 optimum structur:

R(t), assurirg ba2st permissicn/resclution uader soms conditions.

Furdamental raquiremen< consists in this case in the maximun
concantration R(t) in the sufficiertly low interval of time near ¢=0.
Widening the spectrum of signal, it is possible to arbitrarily
decr2ase the duration ¢f autoccrrelaticn function. Therefore during
finding of tha optimum form cf F(t) i+t is axpediant to bound the

4idzh of the spzctrum by the assicned band (-G, ) ard to sesek P (%)

B
!
P
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most crewded in the assignsd time intzrval (-1/2, T/2) W2 ccms tc
the problem, analojcus tc the synthesis of signals with the raximunm

selectivity in Lhe tinme.

Many desiresd functicrs Y include, as sarli:r, all functicns,
£inite in the intarval (-1T/2, T,/2). The permissible set X ccntains
the functions, limited cn the frequency band. However, these

functions must be subordinated alsc tc further condition.

As it is clear from (2.24), Fcurier transform from R(t) takes
the form

R(w) = s(w) 2

Pagz 86.

Consequently, szt ¥ contairs the functions whose spectrun is
positive (more precisely it is rcr-negativs) at all values w. This

further condition differs the prctlems indicatedt.

FOOTNOTE is one additional differenca, connectad with %he
standardization which fcr the signals with the zaximum selectivity
and for th2 correslation functions, strictly speaking, is diffar=nt.

For greater detail, see chapter 4 (note on paga 115). ENDFOCTNOTE.

The problem about the signales with thz maximum selactiviiy was

——an
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solved by us without this limitation, i.e.,, on a widser multituds cf
the permissible functions.Aﬂcuever, as follcws of that obtainad
sarlier results, the spectrum of cptimum signals proved to be
positive, Consequently, the fcraulas c¢f pra2sent chapter determine
also optimum autocorrelation furcticans. With tha quadratic critcesrion

of apprcximaticn/approach we Lhave
R(w)=|s(w) P=ve(?), [Sl< s
R(t) =vo(n). (2.25)
In the case cf minimax approximations raspectively it is cbtainzad
I, (c Vi — &)

Rio)=|sla)*=1vr=

e (2.26)

RIO= 7=

[cose V7' — | — cosen).

In these formulas é&=«/9 - digmensicnless fraqueacy, 1=U=2cT—
dimensicnlass tims. Let us note that parameter c enters also into tha
solution, based or the quadratic criterionm, that it is cot claarly

indicated in (2.25).

Summarizing the fundamental results of this chapter, let us nota
that the use applicaticn of a criterion of prcxiaity to tha
determination of signals with tle paximum selectivity leads to tha
results, obtained by other previcusly methods. The solution of this
problem in spacs L2 reveals/detects the signals, the maxioum part cf
anergy of which i{s concentrated in the assigned fre¢ juency band c¢r in

the assigned time interval. On this conditicn of optimum character

are based the works of Chalk, Gurevich and scme others.

e —
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The signals with the maximum sz2lectivity, which correspond to
the condition indicated, are descrited by tha spheroidal functions
whose propertiss are of ipterest alsc for other problems of the

theory of the signals (see below).
Page 87.
The hypothesis of preximity c¢an be usad to ths preblzam in

gquestion and ip ths space with tkhe Chebyshev metric. In this casa we

come to the minimax critericn c¢f apprexima~ions/approach, and the

solution give function c¢f the tyre ¢f Dolph-Chabyshev, known from tha

“hecry c¢f antennas.

The r:isults, ob*ained for the signals with ths maximum
selectivity, arz applicatle alsc to *he optimum autocorrelation

furcticns, feasible with $he limited frequency band.

. e i ey e Yy -
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Chapter 3.
OPTIMUM WE. .T PROCESSING.

The practical rsalization ¢f sigpnals with the maximum
selactivity mests with serious difficulties. Signal with the maximunm
selectivity in the frequencyvhas kell-shaped envalopz and in tarms of
the fact to th» largar degree it differs f-ocm r:ctaagular, the

greater the product QT ané the less extraband en=szgy.

For the realizatiocn cf similar signals it is necessary that in
the transmitter would be implemented a deep anmplitude modulation.
This it gives, at lesast, to the ccnsiderable insufficient utilization
of transmitter acccrding to the averaga/mean powar (easrgy cf
signal), since th2s pulse power is always limited. Furthecmecre,
poverful/thick generators of SVCh wcrk in the mode/conditions of a
d:-ep saturaticn, They are nct adagted for amplitude mcdulaticn;
sufficiently pracis= fulfilling of’the lav of modulation frequ=2atly
provas to be impossible., Analcgcus difficulties are in pulse-
cohsrent systems when according t¢ th= appropriate law mus: 2

changed the puls2 amplitudes in the packet.

Scmewhat more simply proceeds ratiter during ths

- — ~—vop - v - S, v ee— e—ge——— e —— B — T e - — e
- e YR . ’ R T TR T T

ons . DI
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m

‘ DOC = 80206704 PAGE 3%

3 |
permissicn/resoluticn ir the time, tut not in the frequency whar
bell-shaped form must have not enveliope, but the amplitude spec::un
cf signal. Retaining the envelope cf rsctangular, it is possible, irn
the principle, to fulfill the necessary spsctrum due to ths spacial
law of ChM within the ispulse/mcmertum/pulse (s2e Chaptzr 8). Bu%

also in this case tecknical difficulties are sufficiantly great. i

In connecticn with that present=d frzquently is applisd tha

further processing of sigrals ir the receiver, which ensures the

necessary permissiosn/rescluticn in the frequency cr in the time, but
' connacted with some energy lesses, weight processing. The operating

principle of similar.devices/equiprent is claxified in Fig. 3.1.

Frcem the output of UEFCh the signal with ractangular envelope

enpters tn

[{1]

mcdulator that gives tc¢ this signal the bell-shaped fornm
w(<) (Fig. 3.%a). Tc carry cut amplitud:z mcdulation ir ths Tecaiver
at the low pewar, cbvicusly, it is simpler than in th:z “ransmitter.
It suffices to use, fcr exanmple, a temporary/time gain control {
acccrding to the necessary law. The signal of tne rounded off form \

w(t) possesses tha2 lcw remainders/rasidues o0f thae spectrum cut of %k

(]

oA

assiqgned tand, which allecws fcr tle frzgyueancy azalyzer (set/dialing

cf narrow-band filters) tc¢ work with the necessary selectivity. ;

PP PTS DAE V O N
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For increasing the selectivity in the time aralogous operations
are produced with the spectrus c¢f signal (Fig. 3.1b). The rectangular
spectrus is supplied to the filter with the bell-shaped
characteristic w(w), which gives the decrease of remainders/residuss

in the temporary/time represertaticnl,.

FOOINOTE !, Por the realizaticn of the processing indicatzd i%t is
necessary to know the time of +te arrival of signal (FPig. 3.%a) or
its Doprler fraguency (Fig. 3.1L). These conditions frequently are
satisfied, sinc2 for the large duration of signal (packet), the
displacement due to the unkrncwn rance is nagligibly small. It is
analogous for the range finders, which use signals with the wide
spectrum, are low Depplser frequency shifts, ENDFOOTNOTE.

The s3lectisn of optimum weigh*t function w(t) (cr w(w)) it

raprzssnts fairly complicat:d protlem. Hera necassary is a comproaicse {

n

between the selactivity and the energy losses. Somc authors assuma
that optimum give Dolph~-Chekyshev type functicns, which possess as we :
saw, by maximum selectivity. In particular, in the work of Tem2s [75]
is assumed that coptimum gives furcticn of forr (2.23) and zre fournd j
out the adequate/approaching aprrcximations it. However, from =hsa

fcllewing it folleows that optimum weight function can noticeatly 1

- - - S ke T ol Y Setuiin
.. 3 A a

- oo —— - .
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differ in its structure from the sicnal with the maximum sslectivity.
. This differenca is conpectad with the further requicement of the
pirimization of losses and it is suktstantial for the systems with the

weight processing.

In this chaptar is given a strict soluticn of the problem about

optimum weight functicn [12].

3.1. Losses during veight processing.

Idsal frequsncy aralyzer (approximation/approach to which is ths
set s3ialing of narrow-band filters, utilizzd usually fer the
frequsncy seliection) puts out tte spectral functicn cf ths vcltage,
whick acted *o its input. Examirirg for the ccncreteness diagram in

Pig. 3.%a, let us suppose that tc the input of davice/zquipment comss

the sigral ¢f constant amplitude, whick has Deporler frsqusncy Qo
- Taking ints account ampli+tude mcdulation according teo the law of 7
<

w(t), realized with the recepticn/frocedurz, spectral functioa will

take the fernm .

w (@) = ( wit)e
—F

1@~ .

W, a . e e
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Key: (1). Modulator. (2). Frequency analyzer. (3). Filter. (4). Range

findzr.

Page 89.

Accoriing tc cendition w(t) it is positivz; therefore fecr the

ct

k

n

maximum owvz2rshoot cf spsctrum (grsatest lev:l at tLz cutrput cof

the correspording narrow-tand filter) we have

T
Frmew = S « (1) dt. @3.1)

. =TI .
gf Now let us assume %that to the input of device/2quipacnt acted
o the noise voltage n(*). This vcltage is also rodulated of %he 1

1 amplitude by weight furction and for tks output affact we obtain j
-

‘ respectively ra i

j' a(w) = Vo) w () e 1%y, ]
» H —7",‘2

i Assuming noiss n(%) white with density N W/Hz, it is not 1
3
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T
difficult tc show “hat the mear square of noisa ccmpon=nt at the
output of analyzar is squal tc
i}?=&'3;wunm. (3.2)
The comparison of fcrmgfas (3.1) and (3.2) makes it possible to
det2rmine enerjy relaticn sigpal/ncise at the output of the anmalyzar:

T','Z 2
[ \ @) dt]
1 | =Fr2

[ ar(nat

~Ti2

Aprlying 4o the numerator cf this formula Schwarz-Buniakcwski's

iraquality, we £ird fac2 side fecr value p:

T‘/2 T.IZ
\ wﬂﬁdbs dt
1 ¥ Fr2

T
A T2 =
5 w? (1) dt

Pagz 90.

th

Prcom ths prepertizs c¢f the relaticnship/ratio of a
Schwarz-Bunizkowski it fcllows thet is herz achieved the equality
cnly by satisfacticr of ccnditicn w(t)=const with -T/2<t<T/2 aad,
+herafore, tho maximum 2xcess c£ the signal ateve <he noiss is
obtained for rsctangular w(t). In this casa, as it fcllows frem
(3.3, T

P == Pmas = “jT *

Thus, the 2nergy losses, caused by nonrectanqularity w(t), ars:
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characterized by value
T/2 2
[ ( wu)a]
o=2—=1=2 . @3.4)

Pmes
r { wrar
—F2

Frem previous it is clear that value § dces not exceed ona ani
is egqual to it only fer rectangular weight function. Aralcgcus
rzlationship/ratio for the case ¢f precessing in the fraquency, but

not on the time (diagram in Fig. 3.1b) is given by Temes [75].

3.2. Usesapplication of hypothesis cf proximity.

The synthesis of optimum weicht function has much in common with
the prcblem about tha signals witbh the maximur selectivity. As
earlier, we att2apt to cttain functicn w(t) wvhecsz spectrum is
maximally concentrated in the assigned band (-v, ). Bast anytaing
weould be have strictly lirited cn spect-um band after weight
proc=ssing, This means that many desired functions Y contair as in
the previous protlzm, all functiors, limited ¢n <th= band, i.e.,

L iTh
§(o) =0 ngn {0i>Q

The parmissible functions hava final duration, i.z., set X is

characteriz2d by *he conditior

r(N=m0 with [tI>T2 (3.5

——— -y - -—-...‘ﬁ..w‘_—v-ﬁ-._“._.._.. - ————
. . N e . R
v a . R . - . . e -
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But w2 must bound also energy losses during the processing. In
other wecrtds, parmieted are< cnly ttose wsight functions, for which
valu2 g, expressed by fcrwmula (3.4), is ccnstant:

q=const. (3.6)
This further limitaticn differs the preblem in question from the

'synthesis of signal vith the wsaxisum selectivity,.

According to the critericn ¢f proximity should be found the
function, whicn belongs tc set X [i.e. satisfying conditions (3.5)
and (3.6) ], that is lccated on the shortest distance

doyy = Min Jd (X, y)
.(EY
=
£rem s3t Y. In §2.1 it wes estatlished/iastalled, that in space L2
this cordi*icn satisfics the furcticn ths contairing maximum part of
its ana2rgy in <he band (-G, 2). Since this corclusion of §2.1 uses
only properties of set Y and 1t is suitabls fc¢r any the X hypothasis

cf proximity i: 12ads tc the fcllcwirg vaciational prcblen.
Page 91.

It is necassary to determire function w(t), different frem zezc

in the intsrval (-T/2, T,2), shichk maximizes th2 partial cnergy

T T2
Eq—= g ( wiyw () Galf, 1) J1dr’ ()
—Fo 52
B T SR T e . T T T T S I e e T e s e

o o e . .
e Y- o, 8 -
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under the further conditicns
T
E= [ ex@at=1 (3.%)
-T2
and
T“I‘.‘
y A= | () dt =const. (2.9)

= g

Kernel Gg(t. ¢) is d2termined by fermula (2.6). Condi=ion (3.3) is -
a usual r2quirament of standardization in L2, Condition (3.9) is

equivalen* tc (3.6), sinc2, as frcm (3.4), valus g is cleacly H

uniquely dstermined by intagral (3.9) with the fulfillmznt cf Y

standardization (3.8).

3.3. Solution of variaticnal prctlesn.

Accordiing %5 the zule cf Lagrange's factcrs maximum to
func-ional (3.7) undzr the conpditicrs (3.8) and (3.9) gives function
4(t), which is the extremal of ancther functicnal, namaly

Q=Ey —aE +vA = max, 3.10

where y and ~v— iandefinite factors. For the determination of this

extremal let us use the fcllowing method.

Spheroidal functions ¥.(}) fcrm orthonormal sat, ccmplete 1in !
istsrval (-1, 1)., Tharefcra, intrcducirg dimepnsionlass “imz £€=2+/T, i

it is possible %0 zxpand artitrary weight function in the series/rcw

o«

= 3
of “he form it = B aaba (3 ~1<EL], (10

n=0

P Oy PR LTy JYIN S
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Page 92.

The parameters of prcblewm £, E and A it is not difficult to
express through ccefficients 2. In this case are usad the prepsrtizs
of spheroidal functions, examined in appendix 1. Thus, for partial
energy £, ve obtain, takirg intc account rz2lationships/ratics (1) and
(3) of the applicaticn/aprzandix:

] i
Eo= | [e@me®moe vyaa =

=19

L
=X ot [ (4@ 016G ¥ a3t =
mn —1

!
=X tntatn [ 4m @4 @) at= alh,
m,n - | . n

whers J),— eigenvalues.,

Iv is analogous, tctal erergy obtains the rspresentaticn
1

E= (w@dat=Xa
-l n

Por convarting *+he value A we will use relationship/ratio (8) c=
applicaticn/appandix. This it gives
1 1 —
” . 2
A= j'(s)dﬁ=24. )*n(t)da=V';2anj'“V‘l—.%(o).
-I n -1 n
Aftsr substituting the cobttained exgressions in (3.10), let us
register th2 functicnal teing irvestigated in <h2: form
ogz[(k.—»)ai+va.j“‘/-?-’\n¢.(0)]- (3.12)
”n

W2 shouli £ird the values ¢f ccefrficiznts a-. whick rctate tals

valiaz2 in%e +he maximurm. Tlis is nc¢t difficult <0 do, after =2gquatirny

. - e e S —— - o ——— ey eh— ———— e e
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to zaro darivatives o0jou,; as a result it is oktainzd
2=,

__!— —ﬂ——(—+ 0
Ay = 2 j P'_')\n a( )'

Since spheroidal functions #¥.(}) ar=2 cdd wizh odd n, *hen

Yu+1(0)=0. Thar=fora

Ban+1=0,

yfgih.
r

B— Ay

Gyp = % (—1)m Yaa (0). (3.13)

Pags 93.

Ob*aincd cosfficients a. determire urkrnown optimum weight
function in the form of series/zcw (3.11), We see that factor v

enters linearly into all coefficients and 2£fects, therefore, only

»
-

32
"

scale of %+h: unknown functicrn, Since the scale further is ncot

11
n
n

antial, factor v write cut we will rnct ba,

Value u is determined by tke permissible lossss q.

Actually/really, aftsr sukstitutirg values u2. f-om (3.13) into the

previcus fcrmulas, it is possible ¢c obtain ths follcwing exprassions
for paramet=zrs F£,, E and A, and alsc for extraband 2nsrgy £ =£-E&,

o e g g e e e
) ” ‘_‘!s.._.....‘,
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R

_x

tn
!

(B — 2y )

pace vz /(8

Q

2

— 2
* =t )? *2e (1),

b .
vap (0):

[ERET

The factor of lcss q is de%ermined by relaticnship/ratioc (3.8),

which upen transfer to0 the dimensicnless time € takss the

g=A3/2E.

As can ke seen frem (3.14),

parameter u. Therefore,

(3.15)

valves A and E

fixing/reccrding coefficient of g, w2

e
scIim

da2rend oaly cn the

are

given implicitly the value of this fparameter, On the other hani,

after rogistering rzlative value cf extraband enazgy in the fcrm

EI

E

i+ is pessibple e trza+t fcrm

p:

of

on the losses 0f processing.

E—E,
“E
alas

This dependencs

(301"‘)- (3' 16)

' (3.16}

a3 thé parametric Iora

the derp2ndédsanca 9f 2x*raband ernergy (at*ained in ths optimum casa)

is of great interast,

since it characterizes the maximus fpossibilitias of w2ight

procec ssing,

3.“.

In fermulas

Minimum losses during weight processing.

{(3.14) tha perame*er u can tak-

arbztrary valu-s.
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Howaver, so that ths coefficients e~ apprepriat: (3.13), would
convert the functional being investigatsd intc the maximum, but not

. into the mianimum, must te irplemented additioral condition

75 ]

0(1',';

n=-0 12, ..
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Page 94.

Differentiating (3.12), we come to r=lationship/ratic udi.
which mus* be Laplim-rted fcr all nd0., Th:ir:for: lcwar bcundarcy ¢f
the paremnter py is d-+~rmined by gr2at-st -igznvalus Zmex=i. Thus, *h-
rang2 of values >f “he parameter comprises

Ae<p< oo, (3.17)

W2 trac: firs:t lipiting case p—>rg. As it i3 clear fo2mn (3.13),

b

rn this cass all coafficients dom wi*h k>0 are negligible in

comparison with ag. Thrrefers sorins (3.11) deginarates inte

2
i)
»

m=mbiz, and af~:r 3~lec%ing *he appropria“e scale, we obtain

@) =Pe(f) wirth  p—rio (3.18)

Cnrssquen+ly, i1 th= 1limiting case in guzstion cptiaum woight
function has *h=z same structure as sigral wi4h <he maximunm

sa2ltctiviey,

In sums (3,14) 2lse acs re*ain=d cnly firs: *:c-ms. AS a r-sul*

of £~2rcmula (3.15) and (3.16) +hey give:

[ ¢

ko¢£ () p=1 =M, (3.149)

, — - . - - D e Tt
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Latter/last relationship/ratio, obviously, will b2 ceozdinat=3
with *hr materials cf the previcus chap:zr, sincs for the sign2l wi-h
“he maximum sel2ctivity the partial 2nergy,

irclud=4 ir ¢th:
Q) ,

band (-9,
is rumsrically =qual %0 aig=nvalus \g.

In FPig., 3.2 tnin 1in~» shew2d “he dz2p=endznc= of lesses g or th-
zx+~raband znergy p, de*ermined bty fcrmulas (3.19), This d=p=endanzc= |

ob*ained as follows.

i

| v2luzs ¢f Ay 2nd $(0) deperd or pavam~4ar <-=QT/2. Fcr
‘ sigenvalues X are de~ailed tatles in f68). Furthermore, for largy:

(o4
is v2l1id *he¢ asymptotic fermula, us~d with ad2c/»
] A

gunes Y7 Al g
=2, = — [1—

6n? — 2n 4+ 3 0
—55 TV )J (3.20)
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Page 95,

Values .00 for ¢<5 can be taken from tabl=s f80] or from =h-=

o3
7]

graphs cf Fig. 2.2. Bu*¥ in this cas=~ it isg c¥ssacy T2

rh

apolicati

s

standardiza~ion according %o corndi*ion (3) o

(for example, by the graphical intagra%ion).

For large c w2 used asymptotic forzula [65]:
¢;ﬁ)=\;l
Xn—3) Dy (% VT)}+0(«‘=)}-

This formula is aoplicabls in wTegion aziwe n iz

Wsbar (parabeclic cylinds=r)

Da(z) =2""e~ "Y1,z VD).

fulfill

on/app 1iix,

— l —
’D,,(EV’.’() c'-3—2-‘-{D,..H¢El y)—nin=N (=2

"I

furc-f2ns3 ¢

H. — Hermitet's polynomial: fac+or « nrovides +h= nec:issary
- a . g
o e — R R UG AP




DOC = 80206705 PAGE , 7 S

staniardizaticn, this fac*cr has a valuy-=

(¢ .’.)”‘

~n=——ﬁ_ [t 4+ 0c-?)].
As a r=sult, t2king into acceount known re=lazicnships/ratios £&-~-

Hzrmit2's polynomials, we obtain

, 2 (2% — 1) 126 + 3
*5.‘“»‘2(_:.‘>’ ( «"k)") {'— T M(m)]' (322

Taking into accourt zhose valunas cf Zozmula (3,19) %hvy *ak" -2

€orm, cenvenient for +t+he calculaticn:
q= V?—?‘?[! - -—-+(t(«“=)].

p=4Yrce- [1 —3%4-0((--:\].
L=+ us censidz:r +he results, which =scaps/insur frcom ¢he grach
cf Fig. 3.2 (thin line), If we allew lesses dus to *he tr=zatmeats,
which 10 not exceed 1 d8 (qgq~~0.8), weight Eunction (3.18) i+ orovwiiles

<h= suppression of extraband energy to 30 1B with ¢=5. When such

i

c&rrg azr 3zc-p*able, it is irnsxpzii-n® < apoply zroshwr 4-igh

2

para
furcziors - actually, €function (3,18 providzs ainimum =x<=-abarl
anerqy with fixed/recorded ¢, If howsvar arz r=jquir:d +hs sgall=:
camaini~rs/r:sidurs of *he spictrum, *h°n, af4:r- prisitving “h: sam-
structure 2% w2ight furctinn, we are fcrc=3 not cnly to incosass +h
duration of signal (%o increase ¢), but also to allow largs =anst3v

loss~g, Poar many applicationssagrendicss *his seclu~son *s

!

undezirabls, apd +her shculd be swi<ch=d over %o w:ight faunc*is~z -~°

inothker tyoe, assuring smaller lossss with larg= c. Le* us 1liri®

" ) -

wiish 2wvsr *¢ ©-g-azch oFf

cptimum weight func*fons ¢f mer: grntTal/moaTy cramen/mas toval

in

aurs-1lv-s *h-z:for- =¢ T-gicn ¢>>1, Y=+ us
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zlass, which correspond to other values of the varametzr p from

Lat us considar another limiting cass u-=>=. Accoriing %o (3.14)

and (3.15), in %his cas= is olttained

2= >
E~ca 2 Aaxtby (03
&

2 Y
A =% Aty (0);

A2 ] o
9=3 ~ E Asndsy (0).

kR
int=2gral equa<ticns (M2rcar

'h

As is known from the “hecry ¢
~hecrenm), kzrr2l G(&, &') allcws/assumes eigenfunc-ion ~xparsi~n:

R Y rba s,

]

A€%er assuaning hers E=E'=0, we Find

Thev2€for: with p=>e i+ ig cbtained

Bs it was =2s5tablished/installed in $3.1, “his limiting valu=z ;
is 2chi~v=? c¢nly by =ec*tangular weigh® functfcen., Conssguertly, w:

show2d *ha% with u=->e serizs/rew (3.11) 1=3ads %o tha furc=icn =% =%

W) =const, —1<i<Cl, (323

[
.
+
-
n
o]
)
(1]
v/
,e
o
—
L

Chensing fateom diat=s valu~s y, b tws"n XAg anG =, $& is




/
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“e¢ fulf€ill ~ransiticon frem weight furnction (3.18), whick Rras
bell~-shaped character, %c¢ rectangular function (3.23). In ordnr t+a-
this transition be sufficiently smooth, ws mus*: assign to param:tz:s g
valu-s v=zy closz tc %the =igenvalu~ o€ A4, which, iz *turn,
irsignificantly 3if€-rs f£rom urity with large c. Le% us use *%h2
sprzial ruls of th: selacticn cof rcadinyg valuss u, nam-ly 1+*% us
assuma

popm=[+{l—Aam), m=0, 1, 2, ... (3.24)

Page 97, i

This will nak2 it possible tc considerably simplify

r:lationships/ratios (3.14), *c lead th2m 20 %h~ fecom, cornvensiars Zor

“he calculations. L2t us consider, for =xample, fcrmula for *“ha valu-
A. Substituting (3.20) in (3.14), w= obtain

1 2= ~ l:u'v"gg (M
T ¢ [ (1 — Rgm) -+ (1 —Fay) °
k=)

Af+=r d-composing *his sum €0 *hzs: parte in which k<m, kx=x -3

(8]

k>m, 1% us z=svwrit> latter/las* sxprc=ssion in “h» form

i m—1

- o E lzu‘l’:"g ) N
(1= Am) | 1 PR
lk=u "= Am
| % ham Pl |
2 . Ry ) .
+-,3— Lambin (0) + S 1__.,:“ T vy sl S R

kxms+] -2,

Fr~3 1cy73%3*t1 ¢ expansion (3.20) it follcws that with k<nm

=2 2m)!
7 _.P: -Fj%)'. (Se)~2M=R) =3 0 [c~Hm- 1y,

- 3aciiny ot2 correcticns ¢f ozlap 272, is- in
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possibl=e *o r~j3

Q
o

/thrcw apprcpria%~: crapertrnts/*ecns/zéddzinds of
j2rominators in *h: first sum. Analcgous considzrations show +hat
sheuld te disrsgarded/neglectad the latter/last sum of formula

{3.25) . Similtudz, being “h-y are us=3d 2l1lsy %c s%th:== formulas (3,13},

12ads 4~ *he following relaticrnships/ra=zios:

-1
2= < - L A
E=tr=mr E Paadig () Pewil (M O0mn 1

A=0
, 2= ! - ;
E = oy | e @ 0 @
N mn—i ]
A= m{; .A:."v:.(‘-’")'?’?.’:m;:‘mt'\\- n(('“:,J.

! Calcula+ion acccriing *o £2rmulas (3.26) *s =impl-, Th-

.

a1e~czssary numb2r of componants/*terms/atienis is comparativ=ly snall

Thus, for =10 i* is necessary to take no* more than thre: a<mb-rs

'h

sum (m€2), ZcT c©=30 - ¥ no* mczIe than rin- (mg3) . In gen-Tal n<z/w,

W
<
3
)
[ 4
'
<)

Jalu~s nd y:h d4 de ~asy %0 crunt accordi-tgy te as
Zarmulas (3.20) ari (3,22)., Relaticrships/zatins (3,19 a=i1 (315)
make 1% possiblz to deteraineé furthsr +ha “acens ¢f lcss 7 a~1 =h-
r2lazdv: 1lzvel of +hs ~xtrabard er~cgy p, 3%t*ai->131 a< cp*tianm woriga- !

- function., Por valuss of c=10, 20 and 30 cerrespnniing 3rarhs ar=

shown in Pig. 3.2 (heavy lines) . Thase Jraohs charzc=eeriz: *%=

!

b,

_; maximum pessibiliti~s ¢f weigh* 4r=a“m=r*,
]

|

S Paga 98,

| .

F -

g

§ 0n +h2 gap> £iquze Js 3llus*rascd -h: caz® ~f w-ith* ~z-atq:--

o o

'I:. ‘
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according *o th2 cosine-squared law
©
wl) =cos' 58 -1<t <1. (3.270

' As it is eisy to check, in this case

1
E= [w®a =31

1
A= (ema=;
~t
A2

=

§=57=273, j

For the approximate computatjon of extraband snergyy ws will us-= i

“h= asymptetic formula
1

P nt
| © () = s.w(i) e"".’i ::.—sinw-f-O(m").

ascape/ensuing froa the general/ccamon/*otil r:lationships/rasios,

avzilabla ir [33]. Theraferat

o
’ ! ":l ¢ 1!., - |
E;—.—’_.— o4 (mnk_m\g‘—‘.?O(L )
¢

£ 40
p = T=T§1+0 {c-%).

. POOTVOT® 1, A priecise formula fer ¢h= =2x%rabarnd =en~ gy c€ -t
F cosine~-squared signal is in {237, ENDFNOTNOTE.
o
f
- For c¢=10, 20, 30 *he correspending valnas p and q ar=* shwn 2
¢
3 Piz, 3,2, I* is cl=az “ha* *h~ cptimizasicn £ 4-33h= fnnctin== nmav ~=

B}

i< p3ssibls “0 vary substantially dzcr=3s= ke zzmaindzrs/c-siluz=

n ccmparissn with this adequa*e/approaching law as

1
3 =vn




Fﬁwi
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cosine-square.
3.5. Optimum weight functions.

In §3.3 war2 letermined coefficients a. with whizh szrizg/cov

(3.11) i+ 3iy-

n

the param~ter u 2ccezding “¢o fcecrmula (3,13)., W- saw alss, “ha=~,

bl
a ]

to considerably simplify calculaticns, since cozf€iciznts as besow-

r2gligibrl- wieh n>2m,

Paga 99,

Isina (3.13), (3.29) and (3.24), i+ is ro* difficul<s = sk

LV ]
<
»
) -
u
<

thaz wh*n p=ua cp~‘mum w-ighs €ynctic~ 13 exp-.ss:i by h-~ Si-27

3nn

n-|
—_ ! _ .
. 3 (';)zv =¥ a v i e 13 = (=Y e B
- K
A=y
. [
-
-
‘ Duzing ¢hs 3darivasicn cf “tis formula is allew:d a rcla*tiy-
|
4 . - o
S 1 srror in evd=sr 272, and scale facteczr ¥V is s2lec=e! s0 *hat w21l ®
[ 4
} simplified the expression. Let us nc*= %“hat e2iy-nvailuzs += azs y=-y
3 cleosgs te uni+y,
4
4
-
'y

Unferturet-~ly, “h~ snfficien*lv compl-*- “2hbl-s cf sph-vei izl

optimum weight furnctior. Thres~ coefficien~s deoani nn

giving p spvecial values um in accordance wish (3.,24), i+ is 9333°bl:

—— . ———— - . - . P - - -y —— -—:‘-—?:- I L
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functions are absen*t. Therefore, for som2z valuzs of k and ¢ funz=<is-s
gaid) in the intzrval O0ECT wer= specially desigred by ETsvM™ [digé-al
-

compu%t=r} ¥M-20, Calcula+icr was prrnducsd by % hs num.rical seclu*<¢r =€

int=23ral squation (1) c¢f applicationsapceniix by <ke mz-hcd ~€

3
-

it3rations, Eig2anvalues *» were taken frem werk [68]. As <hs inie:
approximation/approcach was used tte firs« m=3mb-- cf agyap*osic

a2xpansion (3.21).

The graphs o0f optimum weight func-iors w (%), calcula4=1 by
formula (3.28), they azc~ shewrn $n Pig, 3.3a~c. Tach figqure
cerrispends 4o 2n: valus of c, each curve - &o »~n< valua m, Th>
parapetars of <r=ata-rt p ard q, a+~afn-d 2 cozimua w-igh*

functions, are depicted as -he apgrecpriate poin=s a1 P71, 3,2,

Frem “he grapns c€ FY3, 3,3 4+ €ollcws <ha: ~p=<igum w 477"
functions ac<nally/really occupy th: in-ermedia~> posizicn hase-a-
<k bell-shaped sigrals wi<sh th2 wmaximum s3lect<vi-y and “h: syuas»

puls>, In “h: wi3dl- pact of functicn w(E) “h=y ar chang-d 1lés=1-,

, .

“h=y aze clcs=2 tc a constant value, Th~ duration o€ "fla%/plane pa-*"

o 4

l .
:,' Yep2ads on ¢h: fagcter ¢f lnss g, Th~ gr.a%~>:- g, is <he mcx
1
r’ *€la- /plan> par“" and “he nsarer the func*ion w(€) <9 «he
']
} P cec*tanqular. Thez 1low lavel of extraband energy is proviled du= +o ti>»
{
i 2 cxpenantdal "f-opesm ¢f furction, This 7ivee vocy 1sw valu~s cf w(F)
. X
l] ~=ar £=1, lcw jump or <he 1:dg=s., I~ ig ocssibl- “o5 shew tha* nrar -2
1
ok
p

.ﬂ -~

sl

b I




.
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-~

z3g: function w(E) is changed accerdirg ¢o th~ law, close =c tha

gaussian [65), and with &=1 value w(f) is of th= order
@ () ~ D g,
As is krowar, <h~ valus of jumsp «dg-s substan*ially affects *h>
specarur a% “hez high frequ2ancies, %¢ thz =zxtraband 2n2rgy. Th= low
valus of Jjump, :xpchentially decreasing with increase of c, and makes

¢« poassible “¢ >b%ain sc low a level ¢f extratand ~n~<rgy.

L=+ us pay a%t~a*ior alsc %¢ “he T:qicn of transi~fcon frer *h-
front ®c <he fla%/olane par%., Here *her: s an d>scillatory stzuctuc:
vi*th *he maximusz overshcot of order 20o0/0 of the stsady leaval. Witx
incr-asz in ¢ 4h=: cvaregheet is reducsd ‘asignifican*ly, bu-
oscilla*tions/vibracians “are wrung cu4s" tc the fror=- ard occupny th=
low par* of the comple*te duraticn., In *this #{* i35 pcssible %¢ paccs’vs
analagy wi=<t Gibbst*s pk=recm-ncn, w3ll krnwn frza “h. th-ory -f

Tonrier gsricsg, lncrease ¢ is analcagcus, in a2 s-s-, t5 45 :xpangi o

oy

of band, to an increase in *the rushzr cf mrab2rs of Fousi:r sacia
The syp-rocgition o0f a lazge, but “firis- rumber ~f <:zms ~f +hie
garias/rov givas, as is krown, function with ¢th: ths oscillasnTy
ejections near the fronts, It is 4mrortint, how:=ves, that ¢h= Hhasis

2 f signal =2z E=1 s‘milar csc?llatiors/vibratisng deoes ne* havs any.

Y2r= ¢h: merctone decrease w (&) provides +he low level of extrabarni

sn~rgy.

T T . e

— nidha R — ~— e




PAGE ’@,

80206705

-
=

bocC

— —- - o
[ 2 —_—-
. ; L 2
. 4 —-++4
s w mﬁ L1 &
) L5 S S GO S « L]
. o s m\\ Qa
7 . 44 . \\
| LY IV el ] ” prgPd
ol L < T 1S ‘\\4!. A3 »’ 3
il \ \ T Z\Z A
’M.\ \ J Allvm T ” ‘X‘ 7 g
[/ Ao [ Je ~_ LA
4 b 1 J.\BIL hA B s
PRy TR W [ B Sy . -
L 3 [~
11 Tl“- 4ler!\|.l;ll r,... - r.l“ \N — .!“ .
- X % o . N o ( - L..O ~
0o T % ¥ & @ T3 s 3 o3 o ORI
o 5
o .
_ g e ey




‘ DOC = 80206705 PAGE I”,

l' page 101.
Chapter 4.
THE SYNTHESIS OF CORRPELATION FUNCTIONS.
In present chapter is examined *h= task ¢f th= synth=asis 2¢ -t~ 1

realizabl~ autocorralaticn funceiens R(2), which ar: connec%=24 wi*n ;

signals s(=) wizh =he known equivalsn® cela+icnships/ratics

@®
] ’ ' [
Riy= - Ss.t'-;-—f_,—)s' (=) b

| < o
Ry = — S; (@) ! *'do = ?); Sg(’w) Mdw, 4.2
—co -

In
| wherTa
go=-—2" o 43
anA « «
'..Tl:_ Sg(m)dmzz EL_F' .')-\‘;(m”dw—— l. 4.4
—ac —

Th> aysrcerr-laticn €yurcsdnr B(:) 4s a raspars- ¢f optimum T arives

4

2¢ PLS (matched £:il+2r) <=c <he sional, -2flsc¢2l from “he Six?

pénprint tazg:%., In cthor wersds, *his ‘3 an appaTtatus func-fen ~Z LS

o 4

ol LU 'O RO

$ .-

in <n+ cas: cf cha measuremsnts cnly of zargs (-‘m- cf arrivaly,

Eatd. e 3
-

characterizass accusacy and rescluticn ~f such mr2suctemznts,

T T e T SRR TR
i R
~alk

N L2
i’i«t

b2

e e s g e o o o
B R L
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We examine the task c¢f approaching th: auzocorrela<ion functisr
R(%) *o certazin d:sired function F(t). Usually for zhe? radar is
. subscan+ial only *he apprcximation/apprcach of the moduli/modules of

the functions indicated, in connection with which, being limi=za

bds

)
quadra*ic crit~cion, we will mirnimiz: vzluo

-
f= V{F@O, =R} dL, (4.5)
-
assuming/s ttiny “hc specitrum ¢f function R(%) by —=ha*t limi*<d by
corditiens (4.3) and (4.4), Purthermors, since usually i+ is oossibls /
to consider that the spectrum of signal E]u) occupies *he €iral

fr~qu2ncy band, l:t us intrcduc2 the fu-ther limita:ion

glo)m0 wi%th |u|>Q. (4.6)

Page 102.

Th: raalizabl- au*occrralaticen furcéizn R(e) dcrs meo* d=+scad--
nrambiguously signal s(%). In accordanc: wi<h (4.2) and (4.3) °*- ‘=

given only amplitude spectrun

) ~ ——
- [sw|=1 Eg(w),
T vhil= %he phas~ sp=ctrum ¢f sigral - -2mains arbi*rary. Therefor= 1
,; cealizable R(tr) is r-aliz~d by any sigral wi*h :h3 specztrum ~< -~ ]
+

4 form ]

14 s() =| Egla) e i

3 :

- |
k‘ Wbzr~ g(w) = <h> so=ctrum »f *he ceorrelatinon funac<ien R (%), an?! x(w) 3
. 4
-
| b3

£
»
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- i+ ig arbitrary. The determinaticn of +th: optimum sp-ctra g(s),

which se*isfy critsrion (4.5) under fucthaer conidi%icns (4.3),

ard (4.6), is ®h: *ask cf *his chapn=er,

4,1, S»+s X and 7Y,

Th- p>rmissibl= s2% Y in +his “ask, na%turally, irnclud=s
realizable autocorrelaticn functicns R(%). This se* do=s not
space L2, since in accordance with (4.3) th= spictrum of ¢the

furctisns 3 (w) indicat=qd +s pecsitiv: (it is meore precise, i+

(4.4)

all

111

is

non-nega*ive), and it is also limited by conditions (4.4) and (4.9 .

La% us cornsid-r in scmewhat more da=ail th> precp-riy cf £unctsnors

R(*).

La* signal s(*), in grneral compesi4te, be -:aprigented in

form cf the sum of 2ven and odd (ccrposits) tha component

S{ty=s(t) +52(1);
S {ty =$(—1): Sa(l) =—s3(—1).

- by -
CIEY T

Then, as 3% s ncs di€ficul% t¢c shew, £2r *he 2n>rgy specerum w: r=v-

[S(@) P =5, (@) F + 5, (@) [ + 2Re (5, (0) 5% (@)).
Pag= 103,

H £ty T Zn Enzm eve .

vz, as it isg =1l=z3:- frcem oreviens, fic

w
1))

f1agrien

€rzquenciss, and +he latter - odd. Thus, *hz 3in gznaral en=rqy

——— ——— g e
o M via

i i T NP

i asices,

e G
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spectrum ¢f signal has bo*h *the even ard cdd of pac-%. From (4.2)
follows, naturally, that the autocorr2lation func*ion R(t) has =22l

and imaginary parts, i.e., R(t) - ccmposit2 function.

However, if for all w is satisfied thz condi+ion
Re(s, (0)5*, (w)) =0, (4.7)

then the spectrum Of power |s(w)|® is evsp, and (%) - is rzal:

-] -4
1 - e -~
Rit)= 5% fls«wn’e’ 'do = Sis(w)l’cosddm. (4.8)
— —c0

1t is not difficult “o nc*2 that this occurs for k2 ovsrwh=lming

mnajority of thz signals usad. La*t~r/laz* condizior is sa%*isfi:d, a-

least, in the £cllcwing cas=s:

-—
~
n
—
o
~
1
w
<
)
]
th
=
R}
(9]
(4.4
18,
0
e
—
10
3
o+
o
p!
n
O
o
n
b
n
N
-
[
~—
"
Q
-
-

2) s(=) - odd functicn (in this casz2 s, (%) =0),

3) s(*) - “he real func*ior (in this case g;(u) is r-~al, an?

$,(w) is imaginary) ;

4) s(+) - imaginary functicn (i* is analcgous with *he provicuac
zag32), Thes: cas2s can be s+ill suppl-me-r%*-d, using “n- fac* %“ha*
R(%) is no+ chang=d during <he displac=zment 0of sigral on *<hs <im-,

and also it doa2s no* depend on initial phas2. Th2z=forz cas- 1) a=}

c ——— - . - -- —yo— W

- ——— .—'1—? e e

"% g
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2) apply %o signals s (%), symme¢rical cZ r=latively arh:rtzary %4, 22
cas2s 3) and 4) - to the signals, lad to r=2al chang=ss in the inixial

. phase,

As a r=2sult, ~ven withcut sutmerging in *h- s*udy cf 3ll
conditions, under which are implesented equali<izs (4.7), (4.9, =
s pcssible to “ake without the essential damage for the gsnerilisy,

tha* |S(@)|*— =2vap function, Lu* R(t) - is raalt, ' ;

FOOTNOTE !. From the commcnly used signals thes: conditiors ar> nnt
satisfied by *h3 ChM impulses/mcmen<a/puls>s wi-h symmetrical (evar)

law of a changz in the frequency. Such sigrals are examin=d in §8,7

’ by arothar m=thod, ENDFCCTNOTE.,

In this cas= 32 accordance with (4,2) and (4.3
gle)y=g(—w) and R =R(—b. (4.9)

Pag= 104,

2.

13

As can b= s2=:n frem from «he €cllcwing, +his further limitation

‘'

g { substartially simplifies synthesis, Snummarizirg “he af~resaid, w=
¥ 1
2] will ccrsider tha* ¥ - many autcccrrelation functions x(t)=3 (%) whos:
L i
~ Py s

f sp2ctra X (w)=g(w) 272 limi4t-d by c¢cor-dirions (U4.3), (4.4), (4.6) a=4d
|

! (4.9) , Pn= fu*ure -afer=nce it is impor+tant %ha- d=z->rminsd *kus = -~
; -
}=; Y is convex. Actually/really, after assuaing in accnzdanc> wi=h
-
IR
e !

-

NS
/.
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(1.38)

x=1x1+ (l—1)x;, S0 =ha*
g(0) =7g1(0) + (1—1) g2 (w),

ro* difficul%t ¢o asc-r*ainr “ha* spec*tur g(w) satisfiss cendizicns
(4.3), (4.4), (4.6) and (4.9), if +hess conditions satisfy g, (W) z1d

J2(w) .

Now 12t us examine desired se* Y. D=sira2d modulus/mcdul= |F()[
zan be, generally speakirg, selected arbi+rarily. B84% has sens® *2 b:
givan only <vzn func*ions

[F(t) | =|F(—1. (4.10)

0dd zemponznt cf madulus/meduls [F()], i ix 4

n
#

'

(<)
[o]
W
n
3
2]
»
s
3
1)
1
<

way affec+ “he obtaired sclutior,

i

Actually/r=ally, dssigratirg |F(hi*dt=¢, 1.4 us cawsis= (4.5)

—

in the fornm

@ @
f=c—2 [IFeiRmd4 [tRupar.
- . —a0
Varying R(*), here it is pcssitle “o chany: cnly “we la*%=2z/1az%
ccempenacts/terms/add-nds, merecver conly e of th:p - ia%:gral <f£ th-
form e
jmnf'Rm:dr
-
- = G-p~nig cn [Fiy). tha medulus/medul: ¢of ceor-lation furcidar <
*v-nt




L

1
B
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|R(0|={PP—Ul

FOOTNOTE '. This is correct fcr arbitrary R( %, ev=n withou+

limitation (4.9), see (4.1 . EVDFCOINOTE.
Page 105.

Therefore lattar/las*t integral does not depend on 0dd compon=nt of

assign~d medulus/mcduls [F(H|. Tnis comosn<at canno- b2 compensat-?d

fo-, selecting R(Z), i%* crly ircrea

n

€S gsn=ral/comncn/tctal error o8
the approximation/approach, while the r=sult of th= solution (unknywn
R(2)) i+ d=2psnis ~nly on even cecmren-nt,

Furthar, acccerdirg ¢¢ (4.5) we a%*enp: *+c¢ ch4zirn
aopraximation/apprrach “c func*ticr P(*), a2ssign:d only cn =h=

nodulus/module. Tha phase of this function does not play in ~ur

b
'
wn

¢€ anry rol-, In

(o}

thsr werds, all functisns F(*), =2hat have ne»cigr

a

Ty
modnlus/modulz, pcssess the assigrad desiczd groperzy. Any of 3uch
functions can be selected as the "sampl=z/spacim=n" with th=
approximaticen, Thaz:fer= *n accerdancs wi*h “h: *r-g*m n* ~€ zhn
problem of synzhesis, presz2nted ip €hapzar 1, w= must includa/sa=n-2=

in the desired set Y all functicns of +the Zornm
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yiy=F(t)=A(t)e*® (4.11)
Hare A(f)=|F(f)| — posi+iv~ raal functicn, which ccincides with *he
desired modulus/module, and () — arbitrary phase. Elsments of s-:

diff-r from =ach othrr in “<rms cf phas= func*tions ¥().
4,2, Applicabil®ty of *he critericn of preximity,
Thus, bring bas=d cn the =sserce 2f *ask, w3 -hzy de%zrmin-ad

that permit+t=2d4 and tha+t desired sets X and Y we can pass *o ths

sclution. According to the hypothesis of proximity th2 optimunm

ot
w
13

ce from

R ]

corz-lation func4ion R{%) is lccat=2d a% tha shoartzst dis

the desired set Y, i.e., realizes +bte minimum of value

b

d. =min [ Fin—Ru) dl =

™A Ry

F=!
m .
=;n~ir:min g:.qme“ M Rt 412
= - _&

Lzt us show that the critzariocn ¢f proximity (4.12) is =quivalan= =2
dnitial cri<zrian (4.5), and therefcre le* us use “o the task in

u:stior., Fcr tals w? use “he fcllowing order c¢€ th: minimiza*icr ~°

W

*h2 dis~ance betwesn X anrd Y.

Paga 106.

La% us fix f£irst arbi4rary element ¢f s-+ v, i,+,, corr~la“~fen

furc=ion R(=), ard vwe will seck srall dis*ance »f s:=+ Y, ard “a:r oy

will obtain dmin, by selecting also R (t). Th= Zirse s+%ag= corr=sponis

- - s o U
A T 7 POl ST R S
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0 firding valus -
d'(x, Y)=min [[A(t)e? O _Rt)yPdt=
¢ -

= mi T 2 7 H3dt —
nlm{_iA O+ JIRO]

—2Re § ARG dt}.
-0

Or vari~d phas: ¥ d2pends only lat*=r/last compor~nt/>-rm/addsnd,
and we com2 *0o th> maximizaticr cf valu~, analcgcus tc th=
coefficient of the proximity
-] - -]
C=Re _Y AR e ™™V dr= j AR (t)cos P (¢)dt =max,
- —c0

(4.13)

Her= i+t is consid=sr=4 +ha+ in acccrdanc: with (4.9) *hr ccrralatien

functior R(*) is real.

Farther, from (4.13) we havs, taking into zccoun= pesi*iv-ress

A(®),

o«

c< [am|r@lat. (4.14)

-
The right side 5f the latter/last inequality dozs not 3zpezd on
vari~d phass ¥(!), thzrefcre ~hz ackizvemzn® of :zquality in (4.14)
provides the grsatss* pcssible value C. From (4. 13) 2and (4,14) is
eviden+* that this is achieved by satisfaction of thz condi<iosn

cos ¢(t) == 1=sign R(¢).

Oor, which is equivalent,

Page 107.
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Fity=A(t)ye* " = A(t)signR(1). (4.15)

After det2rmining functicr F&) , which realizss “ha shortast
distarcs bsztwz2=n szl~ct=2d R(t) ard sz¢ Y, i% is possibla ¢ swiich
over to the sacond stage ir which variation it und=czgess hy R(*).

o k- - ]
d,,.=min [|A@)sigaR(O) —R(t)}dt=

=mis [(1FO1= ROy | /

Lattar/last =2xprassicrn ccincides wi+h “he ini%ial condi*ion for brst
approximaticn (4.5) . Consequently, the crit2rion of proximity, b=ing

applied *o the examined task, gives its foll solu%ionl,

FOOTNOTE t, Let us note that, after foragoing condizion (4.9) 2nd
assuming/s2+t4ing R(%¢) by compesite functicz, we weuld arrive at
condition V(O =argR() dinstecad cf (4, 15)., With sa-isfactiorn 5% <«hisz
more g2naral condition *he critericn of proxisisy (4.12) alse
coincides with (4.5). Other limitations for the permissibl: fanc+ions
R(t) in th: prvious corclusicr,cutput ar= re* usa2d, Ther:zfor: fer

se* Y, de*tarminsd accordirg tc (4,11, “h2 cris=zrion of proximi+y is

applicable with *he arbitrary set X. ENOPNOTNCT®.

4,3, Methed cf "cu=+ting",

bt R e e .
h . R
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In th= majority of locatirg us~s/aoplica*ions

a

he desire?d

F
(3}

1

structure of th2 correlation furcticn of signal is charact2rized by
two reguirements R(t) must have sharpsacutz central p22k nzar t=0 ard
low zemainders/r:sidues ovt cof *he assigned cer*ral rsgior. In
accordarce with such requirements 12t us assume tha% assigrn-=d
modulus/module |F(/)| is detzrmined som=how in inzarval (-1.1), whiza

corr=spcnds *o c2ntral peak, ard is equal “o zzr¢c cut =2f *his

intarval,

Since intorcval (-1,1) must re* cv=rlap with th»s rogicn rof *Fk-
remaindnrs/residurs (mircr lobes) of cecrr=zla*tinan function, le*: us
requir2 so that synthesized R{(*) wculd satisfy -he conilitior

R(h>0 with |t|<I. (4.16)
But uniar *hes® assump*ions fecroula (4.15) giwves
F(Hy=A(H (417)

and, thrr2feor>, cp=fmum F{*) dces nc+ deperd o2 R(t).

Pag~ 108,

h
1 4

'y
<

Furctior (4,17) balcngs tc the degir-d 52+ Y, i: is ens ¢

e

1 a

44
-
T

el=mzrvs/c2lls, morzover precisely *this el=m=n=/c=11 is plzr

o

a= -~
-

-

smallest distance from arbitrary R(t), which s2<isfiizs -h- stiou

ERE T
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m

conditions, froa any el=pment/cell of th> parmissibl» s=t ¥, This &
rare special feature/peculiarity - the presenc2 of only element/czll
yop:éY, cf *h: nsariys* o all thcse permit*ed *EX— substantially
simplifiss furthzr soluticn, As 3t 3s nct difficult *o compr=hard,
*his special fzature/peculiarity is caused by “ha s=<ructure o€ s2* Y

(6.%1), and also by further limitations (4.9) and (4.16),

superimpesad *o sat X,

Now, being th:y ar=2 confident in tha Zact ~ha%t functicn F( ¢),
which corr=2spenis (8.17), is lccat=d at th? shortest distancs fronm

set X, we bring the task c¢f synthesis to the siapl:zr task of

n

appreximation, It is coencretay/specific/actual, fixiag/recerdiny P(t)

indicated, we thoy mus* find R(*), which sa*isfiss “hs condision

d*= T!F(t)——R(t)[‘ df =

—

= [{A(—R() dt=min.

-0

Corrz=spondirg R(t) is optimum, nearast z0 324 Y.

Af+er de=sigrating through ?Rs) “he spectrum cf “h: assign24d
func-ion A(*), on th= basis of ¢he equality of Pars=mval we will

ob*ain

-~

C=f=g [{A@ -z} do=min (4.18

 pa—

moresvar the unknown sopsc*rum g (w) wust saz2isfy <hz czquic=m-n*es -~
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the f2asibility of cerrrlation furcticr, i.¢., 20 cocnditiors (4.3),

(4.4) and (4.6).

Most limiting from thase requircments is condi<ior (4.8), which
corrasponds “o the stardardiza+ion c€ ena2ryy of siqnal. Bu: we will
first ob*ajin ¢h> solutien without +aking into account this
standardization, i.e,, bty subcrdina*ing g(w) to th: condi<icrs:

€/ Z
glm) >0 np‘ o] <Q; g(w)=0 n% o] >Q.
Kay: (1). with,

Page 109.

j4

Since luring such limi*tatiors +he urknown sp~ctrum g(w car *ak-
achitzrary pesitive valuess, we “c ths gr-a<-s+ dz2gree decrease
diz%ance (4.18), if for all freguencies a+ which E(u);o, 1=% us plzc>
q(u)=i(u) {in the interval (-4, Q)). Th= onrresvoniing fraqusancy
4emains in *his case will not make any contritution to int=gral
(4.18). Thus, wnerﬂ'x(u)<0, shculd b= taksn g (w) =0, In *his cas= *h"
medulus/mcdule of 1ifference |(w)—g(w)| will b= minimal.

Cons=quently, the minimum *o furcticnal (4. 18) givas fcllewing

functiont: ~ (1) - -
glo— ] A0 it A@>0' <0,

lO apH A(w) <0 uin o >0,

(4.19)

K=2y: (1). with, (2) . and.

YR ‘ - - IR "ade Sl -~y T
%* " &0 B . o4 _ L
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appropriate the "cutting" of the negativs values of th: assign:?

spectrun.

FOOTNOTE !, In th=s wecrk {7, pp 169-170] thara was propcsed anothar
sclution of analogous preblem during *h: samz limi*aticns. Bu+ *his
solutionr dc=s ndt give th= bas* apprcxima*ion, zrnd, stric+ly
speaking, it should be recognized error=ous. Th= vzrifica*ioen “ast
shewed tha* relationship/ratic (4.19) leads to the best results.

ENDFOOTNOTE.

As a r2sul*, w: com= tc ths fcllewing proc=dur2 of synthesis (Fig.

4.1 :
1., Prom assign=d A(t) is ccmpu*~d spﬁctrum'X(u).
2, Sp2c*trum 3 (w) is €fcrmed by path "cu«tings"™ cf n-garive vali-s

~n e 2 : s . .
A(w) and limitation in assigned freguency interval,

3, By ipvsrsz “ransfcrmaticn cf Pouri-nr from g(w) is lcce--43

unknown R (%) .

As an example let us consider synthssis R(%), n=arest to th:

cac*arngulars furcsli-c
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i c1)
b l l.
’ A(t)={0 ";g llttll;!' (4.20)
~ K2y: (1). with, ’
| Sprctrum cf this function ‘s of al=srpating sign

2(0)=?=in ©
©

~f +hi

1]
[{7]

Aftsrward the "cuttings" cf ke negativs valu= sprctrum wi+sh

invers2 transforma*icn of Fourier were fourd *4> psarasst corrala*isn ]

function. They are shown in Pig. 4.2 for th:= valuss Q=2; 4 and 100. L
{
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}
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- Page 110.
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Fig. 4.1,

Page 111,

{

L~% us rot2: +that

Alt) |
(e}

.45H =m0

R=4

Q Alt)
I 1
(7]

g5t
3 ¢ 0

: = [
n *th: irn*egral of Zcrom w:frﬂmnhu the nagariv-

N 1} . I3 v a
valuss A(w) par:ially ccmrensa*te pcsitive onss, Wizh

’; formaticn/2ducation g(w) these negative values cut themselves.
F ¥y
4 Tharzfore beginaning Q=2 value
, @
R (0)=g g (wi dw
L —‘2

i+ excs~ds A(0)=1, ard

Q=>e valus R(0) infindis

.,,- ) y
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*his ~xcess ie the graat-r, “ha mer- Q (witt

2ly grows) . A
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approximaticr/appraach tc *he assigrzd Surcticn, ths: grza*=sr “h:
required energy c¢f the signal, cb*ained with this approximation

method.
4.4. Accourn+t cf tha limitasion ¢f ~n~zgvy. Simplex method.

Wa vill now minimize functiocnal (4.18) upen consideration »f all
limitatiens *tc pzraissible R(t), in o*h:r wecrds, we will 3=<k P (%), {
nearest to optimum F(t)=A(t), assuming condition (4.4) perform=3,

i.e., normalizing energy of signal.

L2t us first of all note that quadratic functional (4.18)

convex, sircc for ary r of *he int~zval c£ (0.1 cccurs =h: inaqualixy

fixgitw) + (1—1) g2(0) 1<

< tflgi(0) ]+ (1—1) flga(w))
If w2 assume in (4.18) Qq(w)=rgy (w)+( 1-7)gs (w), i%t is possiblz -9 h:
convinced of thas validi+y of this in2quali+ty., As i: was reozed in
§4.1, the permissibls set the X, which includes unknown spa2c%run
g(w), is also convax. Censequsntly, “ask cornsiszs sf 4he minimization

of cenvex functional on the convex set.

In crdrr £5 us=a krcewn iteretive mr*hods, 1'% us r~duce “ha “a=g
in ques%ion %o *h? orecbler of squaze p-egramminy, For =his, ass-v¢

decemposing the assigned freguency interval into the arbi<tcarily low

- - Tt g T TR e e e e P —i s o v e s e
iy S8 Al - . . - LY K . . -t o RIS
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strips by width Aw, let us switch over to the discrzte/digi+al
rapresentation of the spectra

g=(g g2 .- &n)»
whers & — roadirgs of functicn g{w), und2ritak-n with *h- in+sr-yal
Aw.

Page 112,

Af+>r replacing furthar in%eograls with sums, w2 com=2 =¢ *+h:

€0llowing “ask:

it is necessary to find the mipimue of “he functional

n
Ho=Y (A~ g 3 (4.21)
during the limicza“icns =t
n N
Ao
Ve 32 =1, (4.22)
- A
g:=0;i=1, 2 ..n. 14.23)

fFer *h2 soluticn ¢f +his prcblem we will use simplex method [ 31, 82],
convenien+ during the linear limitations, in pac%icular (4.22) ard
(4.23). Th=z usz/applicaticn of *he simplex methnd is ccnnac+ed wisrn
~he consecutiv: z2poreximation cf assign:=d func-ional (4.21) with
lir~2r, Af*er s:l-z4ing car*ain ini%ial) aporoximaticn/apprcach

gm=X, we assumz/sz*

S e T m Te e e s e

Btesis Baneis

oy

[Py
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' Fe)=FHeg +e g ~e")+e (g, — g+ ...+
+Cnlgn— g0 =C,+ .8, +C.. 4 oo Cngm, (4.24)
wvhers ¢;(i>0) thars are partial derivatives at point gcx:

(e

. O __ 7., A
c' dgl g= g(‘) = (g A‘)

For *h=2 d=%=rminaticn of +th=2 pcint ¢f *a22 miaimum cf lirsar
furctioral (4.24%) Aucing limita+icn (4.22) shculd bz szlec%=d one 5°F

the variable/alternating, for example g: 2s that rssolving", af¢=r [

assuming

2n . .
g:=A—,——ng: ik, (4.25)

. and to carry out minimization thrcugh the remaining n-1

variablesalternating., Aft=2r substity+in {8.25) ip (4.28), w2 will

-

ob*ain i
He) =i+ 2<c¢—c,)gf. i (4.26)
=1 :
Pages 113,
‘* *rz=sclving® variablz/al*ernatirg £ shculd be -ak-n sz tha* *th=
g ~
- cne€ficiants with all unknowns would provs %to b2 non-nzga+ive., For
= : . s , S :
H 1 this, cbviously, it is necessary *c¢ selzc% *he ~ambzir /, which
o.q’ .
; corraspends %o smallast ¢, 1.3, }
. - E
3 q—mmkd———mmfm A 4.27)
! 4
_i During *his selaction nex* apprcxima*ion/apnrezch will sa*d=sfv ]
94
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cornditicn (4.23) and, “herefore, i%t:rations will ne* d:duce? €for =h-
psrmissible set X, Actually/really, the minimum to func+iocnal (4.26)
under the conditions (4.22) and (4.27), givss v=ctor g, whick has
only one nenzero ccerdinat~s:

g=-2(0,0..0 10,.. O (4.28)

mor20var 1 is loca4%~1 on j-+h pesition.

Vectors g% and g are given the simplex direction, in whizh is
r2alizad *he spac:z ¢f valus a,
gV=g"+a(g—g"),; 0<La 1. (4.29)

As can easily bz s==n, with any a of s~gm~a1% (0.1) all compen=nts ~f

vac*cr &Y ar- noan-negativ~. The c¢p*imum leng*<h of space @t is found

"

rcm the conditicn ¢f€ *he minimum of initial func+ioral (4.21) ¢n *¢h-

n
D

lacted direction., After subs+titu*ing (4.29) ZIn (4.217 and

differentiating on a, we come tc the condition

n
- (4 g‘l*')’('lu) ')

{=)

aop( = P

Y @ -

=}

ct, =aking ir+ts acccurt (4.28),

2
—2 A =™ 8® + o (T — g™

Qopt == .

2 @) +( o _ )’
 (¢[

Pag=2 114,

Puctnsz fast:ad of g9 is *ak:r gV ard it wakisrs are Iopra*t:in,

* il s —— - e A S Tt N et e
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1]

FOOTNOTE 1, If at cecrtair spacm @ prcevad $0 b moz+ than 1 cor 1les

than 0, shculd bz *aken 1 or 0 r=sp2activaly. ENDFOOTNOTE.

Sirct value aopr corresponds %o the miniaum of functional in the
s=Yactad dirmction, *=h=s c¢ct+tainrd s~quence 5§

approximatiors/approachas gives the morotcne decreasa 9£ *h=z valu-

ul
-

of functional - the distance between by X and Y. This s=qusnc2
unaveidably 1=3ds %2 *h~ c¢nly shor*t=2st distanc:, siaca functicnel

(4.21) ard permissible se* ¥ are ccnvax, and i%=ra«ions ars t=aliz-4

in the limits 2f this s2t. The pajor advantage of “h2 simplsx mzthad

-
{~de

nze

"

! f that consis*s, that *ha2 mediat~> snlutions a: =ach spac=s

0

ca*tisfy conditicns (4.22), (4.23), i,e., bzlong “c *hz permissihl-

convex set,

Fig, 4,3 sacws +he correla*icn functisr, neares< to rectangulac

funceion (4.20), ob%ainzd by a sirpuleks-mz%thcd, and also +h~

-
L scluticr, fcound in *he preovious pacagraph with “he methed "custirg=z",
b,’ “ha%¢ no* considering the standardizatior of ena-gy.

1
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, Aft); A
Rt

15

a5
o —
; t
1
1 /
¢/ ‘
Havanswoe npubnumenue
T AT T a—
F i g L 2 u * 3 .
t
b K2y: (1) . Initial a2pproximaticn/approach. &

32th soluticerns corresspord ¢ 0=100. As is :vid=n:, =th=

standardiza+ion of eneragy of signal significan=ly changzs <h=

- s+truc*ure cf +<n> so2lutien. We ottained “h: bell-shzozd fcrm ¢€
functinn R(%t), clos~ “¢ idrally-sph-cical functinn ve(f), wkich was
revealesd 4n §2,5 as *h= solutiern ¢f a similar probl-m urdes a

sem-what distinzs normalizaticr ccends4iornt,

PP U PP ST

¢
N
a
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FOOTNOTE 1. In §2.5 cp*imum au*ccerr:la*iesn func4inas w-r=- congidzr-13
as *he gonzralizaticn cf signals wi*h *h~- maximum selectivi“y. For
th2 quadratic crit=ricn the correspondirg standardization =<akes 4t~

form

1 o
5n Sg'(m)dm=|.
—cn

which is clocss %0 corditicn (4.4), but i% is nc- id3:n*ical wish -,

ENDFOOTNOTE,

Similar %o sph=aroiial func=icn, +hs cb=3in>d au*ccczrelaricn Surnccic-
R(%~) has *he limi+e2d on ths extent spectrum (sz: low=ar graok in Fijg,
4.3), al*hough in “his cass were allcwed/assumed the values w(100,
sprctrum g(w) it pzoved to be limi®~d fn +ths trand, which dces re=
exce2d w». Virtually spectrum g(«) complately "cnts itself", b>3ginnin:
from tha* frequency where “he assigned spectrum A (w) for the firs+

timz takas z:ro valu-.

1t

Lat us rct2 tha* was here¢ used *h: i*arativ: p-oecss rne* Soro »b
minimiza<ion of thz distance Letwesn “wec sa*s as in §1.,8, bu% Zor
approxmation known %c functier Yopr on set X. A< the same %ime, the
2l:m nt/cell ¢f d2sized S-* Yopt. Nearest 42 =h~= brtmissibl: s+ X, -
was possible <o find ocut "analy*ically", withcu= rsserting *c any

iterations. In S4.6 it is showr that th= task 0¢ synth:si

n
] e

[N
n
(9}
fu

qu-3=f9r adpits alsec *h: comprrhensive analys S u-<en, ro

r~a
- e

< m——— - e m e = ey - - -
. ; T .
o W A, . . N . .
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connected with iterations. Tha2 given rzsults will bz thzrz ob%ainz?l

by arother me+had.
4,5. Synthasis of *h: mul4ipeak ccrrela-iecn functicn.

As it was nc*:d, for the majcrity of lcca*ing usas/applica*i~ng
are required singls-peak corrslation functions., Signals with *h-
mul“*ipaak ccrralaticr functicns (Fig. 4.4) are of intarzs+ in scma
special cases, Without stcpping during the possibl-
applications/appendices, le* us ccnsidsr qu=stions of “he syr*i:sis
of such signals, by assuming that assigned F(%) has ssav-ral
aquidis+ant identical vsaks, anrd, in vizw of condition (4.10), a
number of peaks is odd (it is ecqual 2¥+1) . B=2ing 1limit=2d, as z2arli=-,
by the real cecrrelation func*ions R(t), we will assume/se= F(4% cf

real, see (4.15),
Page 116,

Let us first of all note that if F(t) is assign=2d compl=*aly, ==
ke modulus/modul: ard the sign, th~ %ask 2f sy~=h-3is in =~ras of a
lit+le differs from ¢ha* examined. Aftsr compu4ing F(w), iz is

possible to use the simplex methed, or ths method 2f §4.6 in criaz *»

[&N

at-zcmire +he ns:ar:is* p-roissibls spsctcum g(«) . AT zarli=c, pa*se:

is r=duc2@ %c *ha minimfza<ien cf furctcrnal (4.21) Aducing
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limitations (4.22)-(4.23), and the soluticn of this problzm is
singular, But for ths sipgle~peak ccrrzla*ion functicn ve could

he

ot

previously establish that with posi+tiv~ F(L),
approximation/approach will te best, Now *this i% is no% possitl: :»
do. The peaks, shown in Fig. 4.4, can have diffzrens signs, ani

dapendirg on thair rctation will ts cbtair=d I3=“2r or wecrse gunali-y

o€ approximation,.
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Pag= 119.

Th=arafore in gan=ral shculd be %c *ry 2" the virsions cf functicns
F(*), “he charactarized by rota*icn signs, and sslzcted <¢ha+, fzr
which the error is minimum. This completely ccrrect, the methcl of

syrthesist,

FOOTNOTF t, With 2 small number of praks N *his method is compl:=t=ly

acc=ptabla virtuyally. Morzever, sinc? 1 “his case is de*ermined *h:z

spectrum of pow-r 3 (w), but rct cne cf tht oralizing signals s(*), =
should be prefarred *he mestraight/dic cct" method, s=% Zor+h t=low.

ENDFOOTNOTE.

Let us ceoansidar alsc another m3theil (53], L2% us cewrita the

B}

nitial critzrion 2f aporeximaticnszapnr-ach (4.53) “r th- form

po.

n . Vé t 7 :f 1y ?
\' Fu;—é{-"’f'ﬁ-v\f‘\t—? dr';‘ 4t (4.30)
v l v \ < -, J
For tha minimizasicn of this funciicnal accszding “¢ func*ierns s (*)
i+ is pessibl: o us- a projective-gradien:t m3tand., Thr limi*ing
ceondi*icn is only “h=s stardardiza*icn 2f %h~ en- gy
Isita | |#(0)|2dt=1, (4.3

sirct any furth:r limitations en thr structurz of signal v~ d¢ nof

herz se+, Thus, ths permissible se* is =h¢ singls spher> S in 3nac

. P A it e -—.—.ivw‘—"«-,»—.-.— ey = e s
tutn, alhoin Sl m e M G Y . teute W s b aalimie. -
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The algorithm of minimization is comparativzly simple, Using
gen=ral/commen/total de<ermina*ion (1.32), i% is possible “c show
that the gradi3nt of functional (u.30) is equal to

fr(s) = S (IR ()] —|F(t") Y e! MERE Y g (¢ gy dr'.  (4.3D)
D2sign “o *he single spher~ S ccerrespords *o *h- szandardéization ef
signal on “he energy. Therefore the ruls of the censtruction of

approxima*ions/apprcachas (1.,34) *akes <“he form

SN e a1 (500)
S = T e f

(4.33)

Fig. 4.5 shows cseveral sigrals and corresponding correlation
functions, cbtaired by this setkcd. The assign=d mcdulus/mrdul- F(*)
included thres or five peaks with Aiffzrent dis<ances betwezp “henm,
Was vari=d also th~ cecmplets duratien 2f “h> syn<h~siz=4d sigral, Por
the threa-peak correlaticn fupcticn the lsvel of latzral peeks in 2all
cases composes approximately/exemrlarily 0.7, £~r thsz £ivz-p=3ak - 9.9
and 0.5 respectively., Althcugh wi+h %Lhis m.%hecl of synthesis *h-
quali+y of approxima-icns/approaches depends en <he ini<ial sitrnal
sb¥+) (functional (4.30) has rany lccal extrema), thsrz arz
fcunjations fcr assuming *hat *he cttained level of peaks is close *»o

maximally pcssible.

4.6, Useapplication ¢f Gibbs's lenra.

t—

*s or syrthesie »f cecr-laticn €functien-s

(b}

Ths pr:vinsus =-su

m

sh=air=d by num:riczl, itera%ive me+hods, bux, % prov-s =2 bs3,

=4
)
7]

L}

TE L FTIWT . e g e g «‘v.q‘r--—-—wq.rf%.——-w‘--

. .

- . v ” ‘ ;
Sedadh L ammd o o - oaadaiag o T N e ..
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importart cf %h2 tasks =xamined admit also analy<ical sclu*‘cn,

Page 120.

This solu*icn is bas=d on Gibbs's fcllcwing l2maa [90]:

L2t vacter g={g, &,

F=XF(gn
i

under furthsr conditions g«=0 and Y gi= const, mrreavae
- {

compcrnants/terms/addends fi(gi)

constant number A, such, that
Q )
==1Lﬂ‘gﬂ>0

‘il 4.34
f: .gt')> Tipu g,-=0. ( )
K2y: (7). with,
I* is rot 1ifficul4 %0 nc*2 tha*t in

th: *ask of synzhszsis in

condi“ions of lzmma, in this case

Fo(g=(A— gi* '%:-

Thsrefore, applying (4.34), we ckttain
~ a0 =2 ipag, >0

f(‘gt)———(gi"Ai)T)z 2 gi—=0
Kay: (1). with.
or, which is squival=nt,

cen i ..) minimizs the Zuncticn A

are diff=ren+iatzd.

gu=sticn cempl=t

-1y corraspenrds o 4h-

"

Th

n *h=rr~ arc=s =

WD

frzmulatzinz

(U, 21 -(u, 23) :
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Z-—J.U)xuz-—l,>0
g,:{ ¢ =2, tpu A (4.35)
0 Oﬂ')ﬂ A,'—l,<0.

Key: (1) . with.

whers A; - certain new constant.

Rela*iconship/ratio (4.23) gives th? unknecwn soluticn, It 3hows
that thes optimum spectrum g{w), which minimizes functicnal (4.21), ‘=
ob*ained from the assigned spectrum Jiw) by certain of its
displacemernt on th: vertical lire with zhe sute2juen% "cutting" of
negative valuss (F 3, 4.,6), The arour* ~f distlaczm~nt s geclantad se¢
as *7 sa*isfy normaliza*icn cornditicn (4.22). Fz-om £ig 4.3 i+ is
possible %o see that the iterations according t» th: mzthod of
simplzx dirzc«icns 124 ea2rlier %tc *h~ same casul: (of cruzs= in “h-
lzes common forma%). In crder tc find unknown (%), r2mairs “n 2nly

fulfill inverse transformaticn Fourier.
Page 121,

As it was not2d, the desired unrealizable autocorr=la“ion
functior usually is zssign~d ir +ha fin

al+

[

rnating sp2ctrum A(w) ¢f this funct‘crn decr-as-s with <k~ lara:
on2s w. PFrom Fig. 4.6 i+t is clear that “he op*imum spec=rum g (4),

which Tealizes bes: apprcximaticn, is in all such cases limit=z?! or

- - B IR L s S it s S Soteal et -
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the band, sinc: “h2 high-frequency compon=n*s "cut <hemselvas", Thiv,
the b2s% approximaticn/approach fecz the func*ticns, limited ir &the

“ims, provas *¢ be limited on the frequancy band. This again cornficws

the expedience of conditicn (4.6).

In this chapter We examined cnly ~he gquadratic
aporcximaticns/approaches of the ccrrrlz+ion fanctiosns and “h=i- '

spectra. Heowevar, Gibbs's lempa leads also to thz more genzral/mor->

W

common/mors total results. Actually/really, pvassirg to =h

B
n
W

i
[
L2
)
ih

appreximatiorns/apprcaches in svace L?, 1~% us ccnsizd:r

13
14

! (4.21) +he functional of the form

Und2r condi+ions (u.22)—(u.23) “c “~his task is alsc applicabla

___mm.

m

Gibbs's l-mma, 2rd, 2s it is nec+ difficult -0 shew, *h- scluticn

*+he same= as in -he gnadra*ic cace. I.=s., spzc*ram g(w), cors*rictz?

according to (4.35), provides best approximation in Lr» with all pd>1.

“~ This represents to very rerarkabls. Varyiny p, w2 includ=q is
o “h= broad class ¢f m-trics and cecrrsepending co-iteria »f¢
aporoximaticn/approdach, includirg minimax ccitzrien, which is

obtained in the limit, with p=—>e=,

- . - — — e — -..--.-v—--~1-—«'.-<a A ey s eem s e
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Wich some stipulatiors it is pessihls “c considi:c *het ars consid-z-43

all commonly uszd metrics of the furction spacss. In entirs +his

. class of criteria solu*ion (4.35) proved to be universal. So compla+*a

Ao

an Invariance cf ¢h= sclu*ion with r-sp-c* %0 4:ff~rent crirtoria ¢f

[
»

apocoximation/apprsach is “he rare special feaziurzs/psculiarity of

+his task.

w2 speks h:z: a2bcut +«h=z apercxime*icr/apgrnhachk of the specrrca,
: bu* ne* quitz correlatiecr func*icns, *hat, con tht whels, nt* en: ant?
) *h= same, Only for “he guadra+tic critaricn, with p=2, is known **%-

lirect connection/communication between th: arpproximaticns/aporoach=as

»

cf spsc*+ra ard ccrr:esponding furncticns cf *ime, Sp:cifically, *his

.

ko). . . a e

connectior/cemmunicaticn (2quality Bars=val) pe:mittzd us =c pass

from initial criterion (4.5) for 5{(*) *to criterion (4.18) and (4.21)

.

-~ -

A

. ——— e —— e A e eyt v ———— .-
¢ s MR :
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for g w).

Applyipg thz 3= neralizaticn cf +h= l-:mma 0f Gibbs (s-== §6.9), %=

!s pcssibls “¢c show, hecwever, “ha*t ~he approxima:ion/apprcach i L»

corr=la*tion functions lzads tc the sam~ selntion (4.35) . Thiz a2ga‘s

+he ob*ained solution.

indicates *he rare univarsali+y of

T v —e e

e * .
A s et (L
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Ghapter S.
Synthesis of tha furcticns of wrecerswim~y/indeterminancy.

In joirn+ cangirngs and target speed of apparatus function of B%LS

{g 4he function of Weodward's uncer+tairty/ind<t - rsinarcy, roprigeon: -4
by *h=2 following formulas:
\ +o '/ ¢ ', : .t
Xt Q)= js’\t'—!——f—)s’\t'——g—) ar,  (5.0) j
-0

+@®

(¢, Q)—_~.-_2-’%-E- K;(a——g-);'(c—{-%)d”dm- (5.2)

Th~ *~ask of *k: syn*hesis 2% signal accoxédi=zg Zr th2 furc*icrn of

uncertainty/indz-erminancy consists, in genceral t2:oms, in “he fzct

. -

that is found out signal s(*), for which x(f Q) has +hs d-~sirzi

s*ructur=s, This - cr: ~f the central pznblams c¢? ths syath-sies nf

ra2d2r signals. |

The furction 2f urcer*ainty/irdr=--minancy (f, ¥) is calibze=z-1

a

~ €o that
f‘“’ . %(0, 0) =1. (5.3)
Pags 123. 1

YT

NP Yoy SR VP ATCUUNE

pacs 0% <hs hedy £

[

Furth=rmor=, oczcurs thes invariarce ¢f <hs=

o
- T

g

7
<

”
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uncsrtainsy/indst=roinancy r~lativr ¢ wav-form, i,-.
: +00 +0
=5 | fpae orado=1. (0.4)
—00 =30
The latter/last property, called th:s uncertainty principl= in %hs
radar, subs*tanzially limits thr class ¢cf *h~ c-alizabl: furctinrs ¢f
uncsrtainty/indztecminancy, sc¢ +ka* in any way not always it is

possible to find signal with that desir:d x%(, Q).
Limitation (5.4) indicates, in particular, that, s:l=c*ing
wvav=ferm, i% is not pessible %o efpsure “he achi:racily high aconracy

of join* rangings and ratst,

FOOTNOTE ', Let us z2mphasize that the accuracy t-f m-asurea~rn+ts

w
'h
th

1]
(]
"

d=2p=2nds alsc cr nois= level, bu* hers w- sp=zak cnly abzut ths

2f wavaform., ENDFOOTNOTE,

Nermalization cernditions (%.3) ard (5,4) a-= providad hy fact-~ro
1/E in (5.1) and (5.2). Hcwever, assuming/s:t*iag signals by *hcs=z
calibrated on %“he energy, i.e., afggr taking th> fur%hsr conditian
. .

E=s*= S st dt =1 (5.5)

—c0

i« is oossibl~, cbviously, not %c wIi«: cu+ *“his factor.

S.1, Gacm=tric “r:2tmen% ~f *arck,
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We will examine Hilbert space H!', =l:zmsnts/cells ¢f whick ara
arbitrary functions “wo the variaktlesal“ernating P(%, )., In *his
spac~ *her: is a regior Q, which corresponds to many all functions of
uncar+ainty/ind>t=rminancy X4 Q). Te *his ~=2gicn of space H' spiratc:

(5.1) maps entire space cf signals H (Fig. 5. Y.

L2t b= assign=zad c¢-rtain furc*ier F(%, ), which is )

adequate/avprocach from +the pecint ¢f vi=w of rangying and rats. For
{ txampl2, F({*, Q) has sharr’/acute central peak with t=0=0 and is egqual

o zerop everywhere ou* of this peak. This function of

uncertainty/irdztarmirarcy is ret realized, Cers-quintly, F(*, Q)

do2s not besleng to QO regicn.

Pag2 124,

. I+ is pcssible, how:ver, “o ch4ain bwss* apprexima*ion 2 %h~= assign-

~ function, if wa det2rmine projecticr F on Q. Thus
s - -

aopreximation/approach o function F(t, Q), assigned completely of

“h> modulus/modul: and *he phase, is reduced *o0 :he approximat*tion in

- S DY VRPN XV L‘hl-

soac~ H', If in th> space ¢f sigrals H assigned c=r+<ain subses A% :h-
pzrmissiblas signals X, then matter Is rzducad to approxima%*ion P ra=

on Q, but *o subset Y', wholly included withip ). This suhss*%

Bl

g
b ad

N
/.

;]
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cortains *hz functiens of uncertajnty/indeterminancy x( Q) »f all
. p2rmissible signals x(/)eX. It ie furthsr n3cessary o find th-
realizing sigpa2l, i.=,, tc return from space H' in =hs initZal space

of signals H.

The phase o5f the function ¢f uncertainty/inde==rmirancy do=s =%
play in the ralar 5f %4he significant rcla. Therxfor:> d2sigretiag |F(,
Ql=A(t, Q), it is possiltle to replace original function FP(%, Q) with
any function of the foram

[ Fit. Qy=Aft Qe ? (5.6}
wker: (. ) - s arbitrary. This i% means, i%* is obvious, that in
! spac? H' is nct an ¢nly desired #lem=nt/c2ll F, bu- mary such
el=m2n*s/czlls, which we will designatz Y'. Func+ions Fg)” hav? 2on:
and the same modulus/moduls A(t, @), but arbitrary phases ¢(. Q). and
eny of thzsa functions can be selec+ed as -“he "sample/specimen" with

th: aporoximation,

“
a Cf;Zt is obvious, we zome tc the situation, charactaristic fer applying
*he hypo*hesis of proximity, Task is reduc:zd %o th2 detz2rmina+ina ¢

shortest distance in space H' betwean r:gions Y' ard Q =r, in *hs

.

presence of further limitations tc¢ the permissible signa2ls, batwean

r2gions Y' and ¥' (morecver x'<—Q).

C oW
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Page 125,

This task is illustrated in Pig. 5.2 1,

PCOTNOTE t. In contrast to Pig, 5.1 we represant now s:%* Q in %he

€crm ¢f on=2=-dim-~nsicral cucve cn th» plan=. This mc-e ccrresctonds to

*ha cenéditions of ~ask, sirce sect Q has l:ss

dsjcezs of freedom thar

spac? H', Fig. 5.1 this se% depic*s in ~“h=z form ¢f Zlav/plar= r=qgiz:n

in ordar to simplify the image c¢f set X', which is par:t of Q. Nf

course all these geometric ccnstructions ars

ENDFOOTNOTE.

vary condi+*ional,

L»t us =stablish, firs* cf all, th= coandizicn cf cptimum

character which satisfies

Zope(l, Q)=Q, realizing shertest distancs dmin.

U
o . v,

&

.l'.

*he fonction of uncar+aiatysirdz<arcminancy

- __,_—-.vq_‘._m.—.ﬂ_f..q._. ———— e wns
- g b AN e e St .
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L2t in spacs H' be intrcduced *hn quadratic metric, i.e., “he

distance batwean functicns P, ard ¥, is determina2d in the fornm
| o

d* (F,, F,)m-- 5’ (iF.¢. @)= F.¢. Qfau0. (57)

—0 —e0
If ar=s c<xaairad functions c¢cn *he single sph2rs ot spacs H',

th
)
t

-
IEf =5 S \F(t. QI dtdQ =1, (5.8)
—QD

b

th2n, as it is rot difficult to ncte

4*(F,. F)=2{1 —C(F,, F.).
whar2 © ©
C(F, Fo=Reg | At QiF* .t Oidid 5.9

- th> coefficient of proximity.

O

This relationship/ratio generalizas <h= conc

1]
[{o]
ot
[o]
rh
)
(32
N

th

ceefficiant of preximity during +he functisn o

-

=
o]

variable/alternating, and, as earlisr, the minimiza*iorn of distanc-

s equivalent to +the maximizaticr of *h- ccefficient ¢

th
o}
)
)
»

2
9
'J
r
~

.
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y=x'

dmin

X N
@

Fig. 5.2.

Page 126,

Set Q, which includes the functions of th=2

urncaertainty/indatscminancy cf arbitrary signals, 2lso is plac3d cn a
uni+ soherz. This £fo0llows from rela*ionship/ratio (5.4}, which

expresses the uncertainty principle in the radar.

Let us fix the now arbitrary function of

uncartainty/indat=cmfrancy x=Q and we will sezk she

-~ aa

from *his func=ion %o set Y', Ry cthar owls, lz% us det=zrmin= %h-:

coefficient of thza proximity )

x
C(y. Y')y=maxC (¢, Fj=max -,;T 5. yFrdtdQ.

Fer FEv

b

Dasignating y(t, Qy=iz(t, Qi*""® and taking intec account

datermiration (5.6), w2 ot+-ain

v - PN T e ey . ,
5 o v o X —
bt inind daihhe *s LT s LR e e

P e yme = ———— . e
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) @
Clx. ¥')=mas -:-,';Re s S 7l 1F| e % dtdQ =
€ o

i+ |F] cos (¢ — ¢)dtdQ.

be—s

\ <

=103X 5= S
Y e

- 0

0f the conditions the tasks ¢f function |y|, |F| ard ¢ ace
fix~d/recorded, maximizatior is produc:d according “o phase functions
w(t, Q), which diff:zr one sigral ¢f s> Y' f-cm 2no*h~r. Bu%, as it V
follpws from latter/las* relaticnship, maximum r=aches in thet ani @
only when »
Y&, Q=e(t, Q). (5.10)

W2 com= to +th: follcwing thecrer:

The sher*test distance between the function of
uaxcar+adntysinistzcminancy 4(t, Q) and s>* Y' rzalizes func:ion FeV’,
phas2 of which coincides with the phase of the func:ion of

uncertaintysindstermirancy (/. Q =argy(t. Qi

By others by cwls, design % %o set Y' is reduced to the adding

of the Phase: P, (Z):EF(!. Ql e!argy (£, 2) )

If condition (5.10) is satisfied, then, as it follows (5.7), tt=

distance betwesn selacted functicr y and set Y' comprises

®
d*(y. Y’)=mind°q’z, F)=.0]__ j
F=y! 2z

- —

(5] = 1)) dtdQ.

8~—.8
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Paga 127. ‘

In order to obtain minimum distanc2 dmin betwasn sets Q ard Y°',
it is necessary, varying functic¢n % to be moved on set Q. Thus, tha
optimum function of uncertaintysirdeterminancy gy, realiz2s +¢ha

shortest distance

dim_;nexg—- s S(|F(t, Q) — Iy (¢. QW*ddQ. (5.11)

This rezlationship/ratio determines ths ccrditicn of op“imunm ;

character to which it leads the criterion of groximity.

The use/application ¢f a criterion of prcximity in space H' with
metric (5.7) makes it possible tc oktain bast approximaticn on the
modulus/medula to assigred furcticn in the sens2 ¢f laast squares

criteriont,

FOOTNOTE !, From previous it is easy to nota that in the preccf wer=

.

r.ot used the properties cf set ¢. The formulatad th2orzm is valid fer
ary Q, not orly multitude of the function of

uncertainty/indeterminancy. ENDFCCTNGTE.

=
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complicated case. The minimization cof distance vas produced nct
directly in tha space of signals H, but in spaca H!', which is

' conrected with # by nonhomeomcrthic ccnversion. This complica*ion is
connected with the fact that precisely in this spac2 it is pessible
to determins s3ts Q and Y, the distance ba2twean which charactarizes
+he proximity of the unkrcwn furcticn of uncertainty/indetersinancy 1
to the desired sample/specimen. But the hypothesis of proximity lel
to the complstzly "r2ascnable" criterion cf approximationsapgtoack [

(5.11), which corresponds to the essence cf assigned mission.

5.2, Approximationsavproach to the arbitrary function, assignad cf

th2 mcdulus/module and tte phase.

Wa will now produce the minimization of distance in ancthar

ordar.

Let us fix cervair function F(t, @), which belongs to s=2t Y°¢,

2.

and we will sesk shortest distarce from this function to set (.

by
= page 128.
1
.."
] s
¥ FPor this it is necassary “c maximize the ccafficisnt of th2 proxipicy
X ;o2
r -’i C\F. ‘/):.‘?e:-_.— \ }F.: Qw/"s(; 0 10 D00
2 e
&
.
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by sala2cting signal s(*), i.e., by varying the Zunction of

uncertainty/indeterminancy x.=Q. Taking into account the conditicn

for standardization (5.5), we must find the maximum of the functional
f(s)=C(x, F)—AE=max, (5.13)

where A - Lagrange's indefinite factor.

L2t us compute the darivative cf furctioral (5.12) . Substitutirg
s(t) by s(t) +rh(t) (where h(t) is arbitrary, and v - low paramster)
and using detarminaticn of the furction of uncartainty/indetermirnarncy

(5.1 , it is ro* difficult tc cttair

Flmrk fJfre o x
Xs*(t’ + -;—) A (t’ — —’2—) didrdQ -+
+Re o ﬁ F it Q)e~®" x

Xs’( ¢ — %) K* (t' +%) dtdt'dQ.

In the first integral let us replace the integrand of tha:
compositely conjugated/combined. This is admissibls, since further :is
computéed *the r=zal part., let us ther replac2 variables/alternating
intzgrations for the formulas

u=t'—-—t§-; v=t'+'7; 0=-0,
Ir tha second int=gral le¢ us replace variablasaltarrnatirng

according to %ha fcormulas:

’ ’
u=td—; 9=t -1 Q=0

|
|
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As a result it is cbtained

JdC |

+00 +o0
=Re-L (4 -
L Re o _ih () du E[F(u 0. Q)+

i

+ F*(v—u, —Q)]exp (— jO“i’"} s (v)dQdo.

Page 129,

Somevwhat mor2 simply is computad a variation ia functicral (%, 5)

+%
1’5-‘ =2Re Sh‘(u}é(u)du.
e {x=0 -3

Therefore in accordance with (5.13)

a | =91 _ ;2]
g t=U o =0 o !1:0

b - - -+~

=Re Sh*(u) ‘l—_,l—_-S‘S[F(u—v: Qy— Frio—u. —Q)) K
- - —c0
X exp [~ iQ ”—:_,—u\) s (o) dQdo - QlS(u!: du.

i
N\
In accordance with (1.32) the exprzssion in th: curly traces is

derivative c¢f the functicnal

i
fris)=o= ﬁ'[! Weo M —Frir—u — Q)
--0

Xexp (—— ;Q"—t—,'—> s dQfv — s .

Purcticnal £(s) reaches maximum, il £' (s)=0, i.e.
- 00
(Gl ovsimzo=ss ., (5.14)

-

wher? karmsl G(u, v) depends on the assignsd tunction F(%, Q) ard is

datarmined in the Zfocrm

- o . o U
G, 0)=—m SF‘”“"- P e—e =2 TP 4,

-

(5.13)

e
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As it is not difficult tc¢c note that kernel hermitian:

G, v)=C*(z, a).
Page 130.

Thus, approximations/apprcach tc¢ function F(t, Q), assigned of
the modulus/modulée and the phase, is readuced to the solution cf

homcgenscus equation (5.74) with kermitian kernz:l (5.15) 1,

' FOOTNOTE 1. This equaticn is fcr the first tise found by V. I.

i Dobrokhotov, ENDFOOTNOTE.

Let us explain the sense of eigenvalue A. Let s5ignal s (u)

<0 s*(u) and intzgrating fpiecemeal, we obtain takinj intc acccunt

(5.5) :
lSls(u)l’ du= 2= ”G(u. v)s(v) s* (k) dudv.

0or, usizg (5.13),
1 @®
A= = L”F(u —o Qis(os* ) X
~%
Kexp — jQ L:,-‘) dudodd -+

]
+ﬁ%\‘jFﬂv—u.~QNwauqx

X exy (— fro k= ;' U) dudvd(Q.

—— - A‘h_“- 1--‘.:..._ ‘.q.‘... -
R 2 »

satisfy equatior (5.14). Tnen, multiplying lef:t and right side (5.14)

waE

e il dins e 0tk i

- ——
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Being returned in these integrals to to the variable/alternating
t and t*, i.¢., iopleomenting the replacsmsnt c¢f variable/alternating,
reversesinverse by that used abcve, it is not difficulﬁ tc cttain
2=Re o TF(:. Q) 7%, (1, Q)dtdQ =C(F. 7).
Thus, eigenvalu= x-;; numerically a2qual to the cozfficient cf

proximity. Since the task ccnsists in the maximization of the

' coefficient of proximity, soluticr gives sigenfunction of aquation
(5.14), which corrasponds *o paxizum eigenvalug *max=hin To thesa w2

d=2monstrated also that eigsnvalves cf kernel G(1, V) w=zre limitsd:
jait

Frem (S.1) it is clear that the func*ion o3

:

S
o uncesrtaintysird:starminancy x(t, Q) Fcssesses the preparty of the
5,J symmatry
3
’-% k(8 Q) =1%(—1, —Q). (5.16)
L
. Page 131.
e |
i
-
; Let us present assiqgned furcticr F(t, Q) in the Zcza of th: sunm

Ft, Qy=Fi{t, Q) = Fagt, O,

R L aad e
Yok adl

3
7
v

g

""’“‘"'“.“Z‘*"" Srravs o s - e
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whers
Fit, Q= [F(t. @+ F*(~t. —Q\]=F* (=1, -0,

Fyit, Qy=—-[F(t. Q)= F (~1, Q)] =~ F*, (—1. —Q.

If we substitute this sum in (5.12) and to taks into account symmet:
(5.16), it is not difficult tc escertain that t+hs ccefficient of

proximity depends only cn first term F, (%, Q) ; valu2 Fp(t, Q) does !
not affect value of C. Therefcre assigned F(t, Q) =xpedient tc

subject tc the condition

) ’ F(t, Q) =F*(—t, —9Q), (5.17)

with which expr2ssion fcr kernel (5.15) is simplifiad
4+ ‘ , .

! ' Glu. 0)= SF(u—v. Q)exp (\—jﬂ‘i—;;-i)dn. (5.13a)
p—_-)

Let us consider also the degenerate case whan assignad F(t, Q) is «h-=
czalizable function of urcsrtairtysinde*erminancy. It is possible to
shew that for any realizatle furcticn of uncertaintysindetzrminancy

is correct the identity (sce §7.1).

- H + 0
o —21; ‘gz,(u—v.ﬂ)exp ! —j"—’;?(l\dﬂzs(uls'w\.
—Q0 N g .
\ 13.18) ‘
) 5
" ;
" Therefore, if P(%, @) -~ the realizakle functicn of
¢ .
i uncertainty/indeterminancy, then kernel G(u, v) is degenerated: {
- Gu, vy =sturs iy,
9
A |
" 9 3
P 3
_ i
" *

- . < g - ’ ‘ ——— — —n - —— - . i et e e g e S G N Samiai e el S . -
» . s ., . R . . . Lo . . Y . . .
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equation (5.14) takes the fcrm

- ) )
» As(u) =5 (u) S]s(a)ﬁ’dv:s(u).
—30
It is obvious, it is satisfied only with A=1. Ccansequently, %h=
coefficiant of proximity attains cne in that and only in such a case,

when F(t, ) -~ realizatle functior ¢f uncartainty/indetarminancy.
Page 132, /

5.3. Apprcximation/apprcach to ¢ke arbitrary function, assignad on

the modulus/module.

‘ As it was shown ir §5.1, approximation/approach to the functicr,
assigned only on modulc, is eguivalent to finding minimum dis%ance
dmn b®tween se:s Y' and ¢ in srace H*. Th? crti<erion cf
approximation/approach ccecrresgponds in this case (S5.11). If we fix
funczion f(1. Q)eY’, +<hen, by usinc the zethod of *the previous

paragraph, it is possible zo fird the distance betwien this functior

“ and se+ Q. This distance is characterized by th2 coefficient of
fj proximity (S5S.12) and solution gives eig2nfunction of integral
;% equacion (5.14), which ccrresgeords *¢c graatast 2iganvalue Ag. In
f ordar tc arrive at minimum distance dmin, it 1s necessary <o further
l 1 lecad minimization on the elements/cells 0f set Y', This i* means ¢tha+ ;;
.;} necessary to replace function F(t, ) by function Aqt, Q) et ® wher =
j:‘ phasz Q}Lsn is acbitrary, and ¢¢ select this thase in order tc¢ arrive
(I

-
oy, -

PR —— o — g — - S
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at the minimum of distance. Since the coefficient of prcximity is
2qual tc eigenvalue Ay, we come tc the fcllowing task: it is

necessary to datermine phase W(LSU: maximizing “he greatest

eigenvalue of kernel (5.1%).

The straight/direct analytical methods of the soluticn of this
problem are not krown, ard in §5.5 let us consider the appropriate
iterative methods, and in §S.7 - cne approximation method of the /
solution. But ther: is an impcrtapt for ths practice class of
signals, for which the prcbles sukstantially is simplified. As shecw=?

Stutt [70]), if signal s (t) is either the even or odd function of tima

({but not the arbitrary furctice, which has svenr and odd parts), ther
the function of uncertainty/ircdeterwminancy %(t. Q) was real, Is

corract reverss/inverse: if the function of
uncertainty/indaterminarcy is real, th=n signal 6 is =ither the 2var c=

0dd function cf time.

L2t it be the approximation/approach to tha function, assigned

e
L A

on modulo, must be obtained cn the subset o0f ev2an and odd sigrals. «:

R}

must ascribe to thas assigned real function A(t, Q) phase (/. Q) so

that the approximation/apprcach wculd prcve tc¢ pe best.

Pag> 133,
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This occurs if (! Q)m0. actually/recally, let thz function
Fop(t. Q)= A(t, Q)e™on
be arranged/located on the shortest distance f-om s<t Q. Acccrding *c¢
presented in §5.1, it has the same phase, as the function of
uncertainty/indeterminancy Zopel!, €). But th2 latt2r is real as the
function ¢f th2 uncertairty/indsterminancy of signal from the
assigna2d class, that alsc prcves tle expressed confirmaticn. Thus, in
the class of even and odd signals synthesis or critarion (5.11) is
reduced to the singls sclution c¢f integral equation (5.14), in whickh
Fit, Q)=A(, Q)

- real function.

In chapter 6 we will consider closs task on this class of

signalst,
FCOTNOTE !, In chapter 4, axawmirirg the synthesis o0f correlation
functions, we obtained analogcus simplificaticn by somewhat a broaler
class of sigrals. ENDFOCTNCTE.
S.4, Mothed of Sussmar,

Sussman propes2d the method cf the synthesis of signals

according o th2 functicns of urcertairtys/indet2rminancy, baszd cr

clcse prerequisites/premises [72]. It will be snown Ltelow that <his

“

e .. —. . - — e e e e ——e o
Jp— ——— T T e T -~ .W,. R N e
. -~ ) - ) RN « .
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method is aquivalent presented.
. Let us give the first one impcrtant relationship/ratio, which

alsoc belongs to Sussman. Let there Lte two arbitrary signals s (t) aagd
h(t)., Wwe form the cross functicn ¢f *the uncertainty/indetarminancy

these signals

®

1 : .

y {, D= — (R -t et ’

fen (b, Q)= e 5s(t 2 Rt — Q) e dt
-

s&~n

(5.19)

The relationship/ratio cf Susspan de*erminas twc-dimensional
Fourier transform from the prcduct cf two cross functions of tha

uncertainty/indeterminarcy:

[- -
3',; f .ngh t, Qyy*qit. Qe =" g =
—0 -~

= Zqn(t Qn)f’n(t NSNS 9.2%

Its proof is in {7, 72].

Page 134, |

[

PO YO YU

~

Now 12t us pass to thz presentaticn ¢f the methcd of Sussmar.

L2* there be function F(t, Q), assigred completsly on modulo and

hd

phase, and it is nacessary to f£iné signal S (%), function cf i
uncer-ainty/indatacminarcy of which %t Q) gives best appreximation

=2 P(t, QA), in thw s2ns=2 cf least squara>s cri%=cien, In c¢ther werods,

b

2 4
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i
)
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it is necessary to minimize value

@ o
3‘; j SIF (t, Q) — 2t Q) dtdQ = min.

—0 —W

This is equivalent tc the maximization of the coefficient cf

proximity C(F, x), expressed by fcrrula (5.12).

Let us decompose the unkrcwn signal s(t) along th: arbitrary

system of orthonormalized functicrs fa(t):

s(t)y= i:os,,f,. (). (5.21)

The function of uncertaintysindeterminancy xJﬂAQL can be
gxpressed through the ccefficierts cf expansicn Sn- For this 13t us
substitute (5.21) in (5.1) and will intsgrate piacemeal. W& will

obtain
76t Q)=2 SuS*mKum (¢, Q). (5.22)
wher? -
Kamlt, Q)= {Fnlt' 62 [*m (' —1'2) e*ar. (5.23)
"

As it is clear from (5.23), functicns Kan(f, Q) ars cross functiors c?
the uncer%ainty/indetersirancy ¢f sigmals f[.(f) and f[m{!). Thesa

functions form orthonormal set in *the entir2 plane (t, ), i.e.,

o o

- j [ K 1. DK 500, QidtdQ =

- —x )
flmy n=i m=j;

15.24)

=41 . (¥
iuj—s OCTAIBHBIG CAVHARX.

Key: (1) . withs (2). in remaining cases.

- - e it
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Therefors functicns A,n(r, 0) call derived base functions,
Page 135,

For the proef ¢f orthcgcnality (S.24) w: will use relatiornships/ratic

(5.20), after assuming ir it t,=G,=0. W= have

l [- - - -]
by S j"‘ amit, D K*i it Q)dtdQ =
-0 —0

=Kjm(0. 0)K*,(0, 0).

But according to definiticr (S.23)

A
1\,”‘(0 O)— Sh Im(t)dt' {
Kays: (1. thh.

174 m=],

&%mam—*;

whera is taken into considaraticn the c-thogonality cf bas2 functicrs
[ iy and fm(f). Analogous relaticrstip/ratic cccurs for Kia(0,0). This

prcves 2quality (5.24).

Sussman indicated also that the system of derived base functions
is ccmplatat; this makes it pessitle to decomposc assigred furcticr

F(, Q@) along tha systen

Fit, =Y FonKpmtr. Q, (5.25)
nm
indicated wher-
Fam= o= SF(‘ Q) K% (1. DV dtdQ. (525,
—x —
FCOTNOTE t, Ths completzpress cf€ sys*<a K..(m M #ill bz confirmsd in
j e e STy S = CTWETIWIS TUT T T >
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chapter 6 (sce not2 cn page 155). ENDFOOTNOTE.

Coefficierts Fam ' form the square matrix/dis, which depends orly
on the assigned function F(t. Q). Aralogous matrix/die forms ¢the
coefficients of expansion (5.22), which are deteraining the functiorn

0f uncertaintysind2tarminancy x:(, Q).

Baing returnzd to the task cf approximation/approach to =he
arbitrary urrealizable functicn F(t, @), l2t us substituts expansiosrn
(5.22) and (5.25) into formula (S5.12), which is detarmining tha
coefficient cf prcximity, Taking into acccunt orthogcmality (S.24),
we find

) | , o
CiF. y\=— A} FamS* S — —};- v FH e Sl =
T -

nom

- ‘ s'j_,u‘,x‘_‘«:',,, 07
it
b

whera Gum= (anﬂ"'F‘mn),‘l

Page 136,

If ths assignad function F(t, ) possasses syanezzy ({(5.17),

then, as is rot difficult tc¢ check Gam=Fum=F*mn

Task is reducsd, thus, tc the raximizatvicn ¢t guadra<ic fornm

e 2. )
(5¢27) und>r fur+h>r cendizien S, -‘X:S" =!. exoressing

. — — - ame g
eIt e B SIS W Pl
o . - M L T B



PPV DU VO SN

v e

DOC = 80206706 pace 439

standardization on energy (5.%). It is well krown that this problem
solvas the eigenvector, which satisfies tha hcmogernscus matrix
equation
Gs=@s (5.28)
at maximum eigenvalue Amex=h. This e2igenvalue is squal to th2
maximum cf gquadratic fcre (5.27) i.e. to th2 raximum valuse ¢f the
coefficient of proximity and
C(F, 1) =k (5.29)

From that prssented it is clear that integral equaticn (5.14)
gives the soluticn of the same prc¢tlem, that matrix equation (5.28).
This task consists in the maximization of functional (5.12) under

further condition (5.5) and has urigue solutical,

FCCTINOTE 1!, Since functicral (5.12) quadratic rzlative to the urkrown

signal s(t), see also (S.<7). ENDFCCTNOTE.

Therefore equations (S. 14) and (S.2€) are aquivalent. Using gsomestcic
analogy, it is possible tc interpret the differance betwesn th2

method of Sussman and our methcd as fcllows.

The introduction of crthcgcnal pas: functions falt) is equival-tr=
to the use of certain cccrdirate system in the srac2 of sigrals H.
Each signal s(t) is zepresented as i“s projections Sr on the

szlscted axcs, Simultanscusly is dn4ccducsd ttk2 systzm ¢f ozthecgoral

i o e et et 9 -q—.—q-.—...‘.—?:-t.—:-».—u_._.,_. ———— -
toe | YR ‘

il
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cooriinates in space H', matched with the referznce system in spacs i
and expressed by derived tase functions Ka.m(f, Q). The assigned
function F(t, Q) is mapped thrcugh froj:ctions fnm!on the axis of %
this system. Matrix equation (5.2f) establishes the necessary
cenformity betwsarn ccordinates Sa cf the unkrown vacter s and
coordinatss Fam of the assigned function, the 2asuring bes+ ‘
apprcximation in the sanse of 4he selected critzariorn. Integral '
equatiorn ‘5.1u)>gives the same ccnfcrmity without the use of

coordinate representaticn.

Page 137.

Here the same difference as during r2cording cf£f one and ths sam2

gecmztric corfirmationr in the vector arnd in thk: coccdiratz: fcza.

The mathecd of Sussman extends alsc to the approximations/apprcach
20 the function, assigned cnly c¢cn the modulus/moduls, For this is
proposed the iterative rrccess, which makes it possible to increase
step by st3p maximum eigenvalue M. ¢f 2quation (5.28). Weé will shew
fuzthar ¢hat this process is equivalent to iterations according to

“he method of successive desicn fer the task, formulatsd in §5. 3.

Howevsr, usirg with *he cocrdinats reporessnta=ions, it is re*

possible %o indica*s explicit deperndenc2 cf matzixsdie F o

3

~”
S
o
/)]
1]

!
!
{
l
i




o DOC = 80206706 eace Sl
I
|
l,
¢ ——In this raspect the "vecter" form of recording is preferable,

which will be used in §§5.5-5.7. Cn the other hand, reducing cf task
to matrix form makes it pcssikle tc use numerical methods for solvirg
level (5.28). Thus, twc fcrms of the method in question mutually

suprlement each other,
5.5. Iterative methcds. :
Lzt us consider first the methcd of successive design in

[ connsction with the %task ¢f synthesis, f£ormulated in §5.3, when tha+

' desired functicn F(t, Q) is assigned by its mcdulus/module

[F@, Q) =4, Q).
It vas no*ed that this tesk was ctaracteristic for applying tkte
hypothesis of proximity. The desired sst Y' ircludes functioas F (t,
1) with the given modulus,/module, and the perrmissibla s2t X'=Q - all
realizable functions of uncertaintys/indeterminancy. Th2 follcwing

it2rative method completely ccrresgcnds tc the overall diagranm,

f presented in §1.8.
¥ | . . . ;
1 Let us select cartair furcticn of uncartaianty/znd=terminancy ]
.} x(t, 2)€Q and let us determine shtcrtest distance frem this functics '
3 0 s=t Y,. Let this distance be d,. As it was shown an §5.1, functicn

‘

i Fi(f, =Y. neaczst to xlf, Q). will be fcrmed, if we to the assigned

\ modulus/modulz A(t, 1) ascrike the phase ¢f th: function of ¢th:

vy — - hadeie B e - Win SubiBR SRR SUNCIUL S - -
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uncertainty/indatermirancy
Fi(t, Qy=Py(x) =

=A(t, Q) exp (jargylt, Q)).
Page 138. ’

Now let us fix F,(t, 9) and we will sec<k the function c¢f
uncertainty/indaterminancy u(f Q), arranged/locazed on the shortest
distance of D, ard F,;. In accoﬁdance with §5.2 *his task is reduced /
*o the sclution of int2gral equaticn (5.14), with kernel G(u, v),
which d=2p2nd on F,(t, Q). The ccrraspordirg ccefficient of preximity
is the grea~est eigenvalue of ecuaticn Ag. Equivalent result gives

tha sclution ¢f the matrix equaticn of Sussman (5.28).

Then, fixing/rececrding the function of
uncertainty/irdatsrminancy u(f, Q). is scught functicn Faui, Q)&Y’,
arranged/located on the mircimum distance of dz from ¥ . For this o
modulus/mcdule A(t, Q) is assigped phass argx(: Q). Than, on obtain=1
F, is datermined the function of uncertainty/indeterminancy
nearast to F, and, etc. As usuval, this process leads to descending }

saquence of +ha distances

dipd: p>d3 2> ..., (5.30)

siprce at =2ach spacz is det=2armired ¢the shortast distancc bzatweaen
certain of functions and correstording set, This sequence is limic:d
from belcw and, therefore, descends. Thus, 2ach spacz 0f itera<iors

givzs ar improvzment in thk=2 apprcxiration/approach aand, aftar makirg

. — — - - . -y . - -- i — e - - — T g — > Ane amm e e b Sny—
- g- : s - ‘*—Wi‘ i . ] . h 4 - ‘ by § N X -—
. 5 M . i ) . . do N i3 s 3
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a sufficient number of spaces, it is possible to approach maximunm
distancz (5.11), which characterizes best approximaticn to function

F(t, Q), assigrned only cr the mcdulus/module.

Usually thare are several local minimums of the distarce betwacn
sats Y' and Q and during the unsuccessful selection of initial
approximatior/approach it is gcssible to arrive nct at the smalles<
cf them. In that case it is pcssitle to only tsgin a naw seriss of
i+terations, being transwitted from ancther initial

approximation/approach.

It is rot difficult to ascertain that this iterative process
completely ccincides with that frcrcsed by Sussman {72]. Thus, arnd
this part of ths method ¢f Susswmar will be cocrdina4ed with t¢h?

criterion of proximity.

The resolution of integral egquation (5.14) or equivalent matrix
gequation (5.28), ccnnected with the determination of e2igenfunctions
and eigenvalues, is one c¢f the gcst labor-consuming (by the spac= of
calculaticns) calculating prcblems. Sirce such solu*icr is
implamerted at each srace of iteraticns, has sease %0 use
substantially simpler gradient methcd for the direc® maximization =32

th2 co2fficient cf proximity (5.12) undzr condizion (5.%), cr, which

&

is the same thing, for the maximization of furctiornal f (s),

R SRR G




DOC = 80206706 pace W
determined by formula (5.13).
Pages 139,

The derivativa (gradient) cf 4+he functional indicated is
calculated in §5.2:

f(sy=2{ Gu, v)s(x)de—2ns(u), ;

vhere kernel G(u, v) co:r;;ponds (5.15), and eigenvalu2 X is

numsrically equal to the value cf tte coefficient cf proximity (5.12)

L=C(s).

Thus,
f’(s)=2{§ Gu, v)s(v)duv—C(s)s(u)].
According to the general/commcn,tctal algorithm of gradient method

{1.33) the maximizing sequence takes the form

SR ([) = SR (1) " () =

=s‘»“‘(t)+2a;[f0(t. wysEeyde—Cistysn] (33D
It is not difficult to ncte that functioral (5.13) being

investigatzd quadratic relative tc s(t).

Sequencs (5.31) ccnverge tc optimum signal in the varsicn of
simple iteration frcm any initiel agproximaticn/apprcach s™(f) [33].
Simultaneously the value ¢f the ccefficient of proximity C ccavarg:

to greatest its own numkter 4.

Rathia S caad ) (b Suith - aee s -

B,
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FOOTNOTE 1. If only <" for the crthcgorally unknown sigral;
probability to selsct this sigral as tha initial has a measur~ zero.

ENDFOOTNOTE.

As a result ws ccme to the fcllowing proc2durs cf "dcukle"

iterations:

1. Prom ths iritial signal s¢(%t) is computed ths furcticn of

uncertainty/indaterminancy x(f Q).

2. Tc assigred modulus/mcdule A(t, ?) is assigned phase cf this
functicn
Fo(t, Q) =4t D expljargm(, Dk
3. Prcem functicr F,(t, G) is ccmputed karm2l G, (t, Q) according

z¢ (5.15).

4. Is chosen space ay frcm arbitrary initial signal s%() it is
corstructed maximizing secuence (f£,31). These iterations are
implzmented, until the ccefficient cf proximity (S5.12) no*iceably

increases.

Page 140.

dhen the rate of ircrz2ase C fescends “¢ *h2 assigyned limic,
9

- - — o ———— . P - ——y - — e - -.—.Xy—vr‘.-’:--:-.—-“- R e L
& . . - . Y - :
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"iptarnal" iteraticns ceas2, the latter/last member of maximizing
sequance sa+n(y) is accepted for the signal of first approximation
; shHi(t) =5,(f) and is produced the rext (sccond) cycle of "extzrnal"

iteraticns, beginning with p. 1.

I

(% 4

is possible to prcpese elso “he "singlav itarative prec-ss,
based on the gradient methods. For this we will minimize directly
error (5.11), expressed through the modulus/mcdule of the unknown
function of uncartaintysindeterwirancy. We hava

E=di(y, y')=2%ﬁm (t, Q) — ly(t. Q)f dtdQ=
=2(1 — C) = min,

i the assignzd modulus/module is sutcrdinated tc zhe normalizaticn

conditiorn
A= o 5 S A, Q)dtdQ =1, (5.32)

and the cecefficient of prcximity Pas a value

C=Cl)=o j S Alt, Qily(t, Q) didQ.  (5.33)

Y —Q

~
“ This coefficisnt must be maximized, varying signal s(%) and
fj satisfying further conditior (5.5).
-

"3

¢ Let us compute +he dzrivative (gradiant) cf fuacticral (5. 33).
'{ On signal s(%) heres deperés crly the functicn of
13 urncirtainty/ird2cecmipancy yu, Q). Tharefors af=az ra2writing (5.33)

It is here assumed (not to the detriment of th2 generality)thaz

-

"
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the form

4
C(s)=1,'; HA(L )V 7t Q)% Q)ddQ
-

and after replacing s(t) by s(t)¢*rh(t), w2 obtain

_dx
vy d‘: +X a
rat I T ardQ =

=Re —HA A% aan (5.34)

Page 141,

Intrcducing a dasignaticen NEZV-QF=?U.QL we have further

Lo daex__ v oe,
W = T = '
dy® __ d (fs oy 1 A
= U skt L
) d jl \ T -’)+ v /|X
| \ 2

=j'si(t'_1'_.‘l)_: h (t' __:_) _—jm-dt, ,

+f5( ——)”* (£ T a0,

Let us substitute this value ir (S.34) and let us assume »=0,

4
d=

=0

="Re._,—l___\~\.§.-h1, Q) 1R TR

x s* (i +)h = 0+

\

+Re .gg‘ 1 Q)ep(! Y —j2r- »\,»

Xs(t — )t draun.

-

thzn

We will considar that the assigrec¢ wodulus/mcdule A(t, 2) possssses

<he symmetry

A, Dy=4(—t. —Q)

v g e v e pge—— - g—— - ———— et e o o et
D nd v ~ ———— M . . v . 3 . ‘ . . - i
LS R 3, \ v N o & - | : ’
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In §5.2 it vwas shown that this assumptior is justified, s22
(5.17). In view of property (5.16) the phase ¢f the function of
uncertainty/indeterminancy 4(t, ) has a2 syametry of the fora

G, Qi =—q(—t, =i,
Therefore if we replace irtegrard ir the secord integral with “hat
compositely conjugated/ccosbined, and then to change
variable/alterrating integrations fcr formulas #=-t,, Q=-9Q,, aftar

simple cenversions it is cbtained

ac) ! Jodt, ) =it .,
= L,rm"'ﬁg,f Alt, ekt B—ia

‘ A s* (t' -+ -g-" A (t' - g) drdtan.

b ]

L

E o » W
LI U d&lm-«,‘h-.‘—-—‘\.\‘im_} .

N
/.

P .

.. v-.:
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Page 142,

Finally, after doing the appropriate replacement of

variablesalternating,

dC

ra

‘=O=Re%‘”jrﬂl' -t Q)exp(ja:(t’ —t. Q)—

-0+ ’)s* (YO dQdrde.

In accordance with general/ccmamon/total determination (1.32) the

derivative C'(s) has a value

, V(04 :
C (s)=— “.A(t'—z. Q) exp (j?(t’—t. 0)—

— Q) sit)diag, (5.35)

that it is possible tc register alsc in the fcrm of the scalar

product o
C'(s)={(s, z(s)), (5.36)

whare operator z(s) is determined bty the re2lationship/ratio

z(s)=%SA(t' -1, Q)exp (—j?(t’ -t Q)+
+iatfhen (5.36a)

and he depends on the phase ¢f the functicn of

uncertainty/indeterminarcy ¢(t, Q =argy(s, Q) ©£f signal s(t), and also on

Al s
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the assigned modulus/module A(t, €).

Now, haviny a value ¢f the derivative of the functional taing
investigated, it is not difficult tc construct maximizing sequencs.
Permissible in our problenm are all signals s(t) with the singla
energy, se2 (5.5), those the permissible set is the single sph2re S:
seS,if lsj=1. Therefore, applying frcjectiva-gradient methed (1.34), }i
we come toc the maximizing sequerce

sh+O() = Pels™(¢) +ﬂC:'($"")]- (5.37)
[ The cperator of design tc¢ single sphere Ps is reduced to the
' standardization of signal on the energy, (5.37) 4indicates the

following algorithm of approximaticns/approach:

. -

1. Por initial signal so() is computed the function of

indefiniteness x(f, Q) and its phase .¢9( Q).

_ Page 143,
S
¥1 2. In accordance with (5.3%), (5.36) is computasd gradient
" 3 c'(sby.
"3
q
i { 3., Fcr selected space a is ccmputed correctaed signal
-.1 sty =s""=aqlC (s™.
.j 4, This siznal is ncrmalized cn 2nergy, af*er which it is
.3
";

& }

— e —— - R SR . b e e e = g omm . wn
v ' . . Mw—m.. - - 5
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accepted for signal of following (first) apprcximation/apprcach
sbkt). Then it is implemented next (second iterative lcop, fecr which
the process is rapazated, teginning with p. 1, but already with signal

s((t), but not sO(t).

By the space of calcuvlations the latter/last metkod, which
switches on one, but not two iterative locps, apparently, it is more
sconomical than pravious. However, toth methods are comparativaly
unwieldy, and, as they was ncted tkey bring, in general, to the
local, but not to the glokal sirimum of distarce. Necessarily good
initial approximation sc that these mathods of synthesis would be

efficient.

S.6. Evaluation/estimate cf greatest eigenvalue through the traces of

kernel.

As it was shown, synthesis acccrding <o function F(t, 2), given
completely, on the modulus/module ard the phase, consists of finding
of eiganfunction s, (t) homogenecus aquation (5. 14), that correspornis
to greatest eigenvalue Mg. Value ¢f Ag is equal to *he coefficient of
proximity and characterizes, therefcre; the guality of the obtainai
appreximaticr/approach. In this ccnnection it is interesting to
consider even before fipding cf eigenfuncticns, what degree of

approximation can be obtained fc¢r assigned F(t, Q). This is usaful,

R PR o "

R i e T S T T T s e e o
PRI VR W I P B r T YT
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in the first place, in order to rationally assign F(t, 9), beginning
the synthesis, and, in the secord place, in crder to control the
results of synthesis, obtained, fcr exampls, by iterative methods.
Purthermore, the results c¢f this and follcwing paragraphs have the
general/comaon/total value for the synthesis ¢f signals according to

the functions of uncertainty/indeterminancy.

The necessary evaluation/estimate of the guality of
approximation/approach is reduced tc the evaluvation/estimate of the

greatest eigenvalue of A\, according to the kernel of equation (5.14)

and can be carried out on the base of the known positions of the

theory of integral equaticns [UE].

The iteratszd kernels of equaticn (5.14) are formed according to h

tke recurrert rule

Gmla. ) =-=~YG(a. $)Gnm-, (E.V v ds = \‘G(u, §)G*m., (v. 8) k.
' R )
moreovar G, (u, v)=G(u, v). The m-trace of kernel G(u, v) is the

integral , =
‘%=Smewm (5.39) L

Page 144,

Traces are connactad with its eigenvaluas:

\

Pm =

A

Lod
A= RN AT 4 (5 40)

i=0

Gt e g —p— - - -— :
S AT RATES: ‘T 0 S el o ~;;l
_ . ! . y MR 2

I T T PP U D
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The grsater ths order of trace m, the less contribution introduce
into value pw all components/tersmss/addends of series/row (5.40),
except the fi. , the greatest. Therefore as the approximate estimate
for greatest eigenvalue c¢f Ay it is possible to take value

Ao = (o)™ (5.41)
Approximation/approach here is cbtained with th2s excess and “hs more
precisely, the jreater the order m. Furthermorzs, the
evaluation/estimate the wcre precise, the mcre rapidly decreas2 the

eigenvalues .

Let us refine an error in aprrcximation formula (5.41):
o Iim
Bx-_—(?_.}l/mz)\..u{xg'+2 17'} —~Ae- (5.42)
i=1
Us it will further interest the case when kerrel G(u, v) is
calibrated, i.e.,

nGi? = ('.'\ 1G (w. 02 dado = 1. (5.43)

Assuaing/setting m=2, froms (5.3f8) and (5.39) we nave

)

o= Gyt u)du= \{ G (e &) G* (. &) dbdu =
= \"}'la (u, D)* dado = 1. (5.432)

It is clear that avai-uaticn/estimate through the trace p, gives only
trivial results /.<! Therefore let us construct higher
approximations/approach, using a trace of the fourth crder p,.

Respactively, ir formula (5.42) we should consider t+he value cf tks
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sun

il 3s

As a rule, for sufficient "gccd" kernels eigenvalues decrease very
rapidly. Therefors, prcviding certain "ressrve strength", ve will
assume that i dJdecrease with the speed of gecretric fprograssion
Msi=ghi g<l.. Value q can te counted, after assuming in (5.40) =2 and

using (S.43a):
Ther2fore 4, =1-12,4,
Page 145,

Further we find

»
4 .
. Ayt A -
Zlﬁd@ﬂf¢+w+w=;-w=Jq >
= A

and fermula (5.42) gives with m=U4:

Vi,
= ———

=2 —},.
y2—il

The value of error 6\ as functicn of Ay is refresented in Fig. 5. 3.
It is obvious, the calculaticn cf greatest eigenvalue of XAy according
to approximaticn formula (S.41) is admissible with m=4 in the nost
important ranga of values 0.8€X.§1. Specifically, in this region is
provided the high accuracy c¢f synthssis, and error in approximation
fapmula (5,41 Aces nnt excaed =7,

Let us mMnve on “n calculation o° the anure nf erunstian (8.7 ")

tn which recard aseumine grmmet»r (5,17), we w11 yne +the

Y e e . e o
I P A T L T D - .
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simplified representaticn of kernel (5,15a) :

I -
G v)=137 S.F(r. Q) e~V yo (5.44)

whera
n+
t=ny—p U'=——.

In integral (5.43), which is determining th2 norm of kernelllGilit is
possible to pass to tc the variablesalternatirg ¢t and t*' ins*tead of u

and v (jacobian of this ccnversicn is a2qual tc unity). This it gives

BG = \ \ GG* ddt’ = /i
v |

= -,}; SS |F (£, Qi dedQ.

! Conditicn (5.32) is shown further, then tha standardizaticn ¢f karnsl

(5.43) actually/really is ioplezerted.
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f
40,
a2
a1
. ' ] - X
. 0 . 92 0% 0,6 0,8 1 Ag
Fig. 5.3.
Page 146.

The second iterated kernel G,(u, v) we will find from (5.38)

(5. 152) :

Grw = 0w 6w va=

1
g [ fFe—s o re—z ax

e
28 jo0..
/

-

-

NPT

Taking into account symmetry (5.17), this expression can bpe

ccenvert2d o tha fecrn

i
G v) = X_f La—ov. Qexp (—1'9 = ”) 40,

where

. 17 /

“ L, Q)= Y L "—Q_\
: =g ) )P T 2 X

’ t Q ot —Qt
=5 &— T) exp (j 5 ) dt'dg.

e}

-~

Fanction L(%, Q) plays subseguently noticsable role.

and

particular,

|
*,
{
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it makes it possible to compute the fourth tracs of kernel p,.

Actually/really, from (5.38) and (S.39) it is possible to oktain

”~

h=5ymwwwmm

Therefore

1 .
74 =(27t)2 jjjf’-(a"‘v- Q)L¥(w—0v Q) X

X exp (j (2 —9) ‘-‘—2-*:’) d9,dQududy =

1

- &7 m Lt o)L (e, Qg)exp(j—;—&,—e,))x

X exp (jv (Q — Q,)) dvdQ,dQ,dt = _T'_‘- ﬁ IL(t, Q)2 dtdQ. (5.47)

Relationships/ratics (S.46), (S.47), (S.41) make it possible, in
the principle, to obtain the necessary evaluation/astimate of

!
L greatest eigenvalue thrcugh the fcurth trace cf kernel.
5.7. Equation of optimum phase.

When is assigned only mcdulus/module A(t, @), syrthesis is

produced accoriiag tec the functicn

ﬁ{ Fit. Q) =A(t. Q)ed 0.9
k“: vhere phase y(. 0) is arbitrary. Cnly itzrative mothods permitted fc:
:i us to thus far find the "adequate,safpproaching® phase for which the
. approximation/approach is gocg.

(]
4

i

- Page 147,

1
'l
r
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However, the revealed analytical cconection/ccmaunication of greatest
eigenvalue of Ay (coefficient of prcximity) fcr assigned function
F(t, 2 permits to additicnally trace this questicn. The fourth trace

of kernel p,, determined according to (5.47), depends on phase yu @

It determines, in turn, the greatest eigenvalue of A, (hovwever,

approximat2ly). Tharefore fcr optimization of phase it is necessary

e

to find maximum p, frcm functions yvi, 2. Substituting for this v o {
on ¢, Qy-m o) let us ccopute the derivative dp./dr. From (5.46) and

(5.47) we obtain

do, 1 dL* dL
. ﬁ’ﬁ;qf(l. 7’-+L )dlfQ_

= °ReﬂL(f Q) ——mg =

: =sre e ([{{uemr (e do
, ( -7

X

w! (g

XF(('—.—.Q———\C X
!
X (.‘x (t’ — 5 9 — —?T-)—'h (!' <~ =L ’.Q—\] JQa 1.

-

or, after the simple ccnversicns, which consider that in acccrdanc?

with (5.46) L(t, Q)=L*(-t, -0Q),

" do,
- 7%-= ,Sf.m Feoqt,. Q)({Lu —f Q=8 ¥

(X Q
XFU:Qﬂﬂp[< ot :h)]ﬂﬂgdh( Q) dt, Q..
(5.4%/

1t is clear that the trace p, reaches maximum only with

satisfaction of thz2 ccndition
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' ;Sq

Im {F' (t,. Q;)S.ILU, —t, 9,9, F(ty, 2 evp l-j {Q'_,’"_ .
AN
£
_—9’1_')] ‘”21"92} =0,

which, as it is not difficult tc shcw, equivalent to the following

equation
!ijLU,—Q_QP—QgFU,QQ .
tﬂ'(’.- QI) = - ‘
Re(SLU,—Q,Qp—&)FU,Qg j
\ i
¢ Q,/ i
R exp [j(—é—’-——;—'—)] dt,dQ, ;
a7 : (5.49) ;
o [ (B [ |
l Page 148.

J This equation (containing unknown phase ¥ both to the left and to
the right) is dstermined, ir the frinciple, ortimum phase vy, Q), which
gives maximum to greatest eigenvalue cf Ay with the assigned

modulus/medule A(t, Q) 1.

. FOOTNOTE !, 1Is strict tltis ccrrectly for the trace p,, whkich is only
N

~ approximately connected with eicenvalue of Ag. ENCFOOTNOTE,
b

,% Apparently, a similar equation is cbtained for ths first time, but
f the efficient methods of its soluticn proposed could not be.

|
§
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5.8. Necessary and sufficient ccndiiion of realizability of th2

furction of urcertainty/indetersinancr,

Known sevaral conditions of the feasibility of the function of
uncertainty/indaterminancy {7, 72] cne of which will be by us
obtained in §7.1., For these ccnditicns it is characteristic that
testing the realizability of the assign24 function F(t, 2) as the 1
fupnctions of uncertainty/indeterminancy is reduced tc finding of the /
realizing signal s(t). Hcwever, using the previous results, it is
possible to formulate the ccnditicr cf "lccked" type fsasibility,
vhich does nct require the determinaticn of the realizing signal, but

which sets only certain ipvariance, characteristic realizable to

functions.

As it wi)l be shown, for the feasibility of function F(t, Q) of
the functior of uncertainty/indeterminancy, is necessary and

sufficient the satisfacticn of the condition

Fqt. Q):—'-SSF(’+—‘—~.Q’+ —.Q-\x

x F‘;/." — 5 ¥ —-) exp [-—J (______2'_'_)] di'd,  (3.50)
\

which, taking into accourt (5.46), can be ragistared also in the fora
Fit, Q)=L(t, Q). {3.508)
The nacessity of cepditicen (S.50) f£ollows frem the known

property cf ths cross furcticns c¢f uncertainty/indaterminancy,

s FTIRT T e e TITTTTY e —~——
: - w-v.v-w.‘- A N s ---'.-_ P
prer—— ol gty - o N aaa Ay L, W S Lt g, o
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; established/installed by Titlebaun [76]:
1 fr
B Ux,» (+ 8, X +Q)x%q(t'—t, ¥—Q))el ("8~ ypqgr o
= Xor (et Q+ Q')x.lq (ty —t,, 23— 8Q)).
Assuming/setting all signals ky identical sS()=h(t)=r(t)=q(t), ard

alsc t,=t,=t/2, Q,=0,=0/2, we ottain, that the realizable function of

uncertainty/indeterminancy . @ satisfies condition (5.50).

Sufficiency escapes/ensues frcm the following. Let F(t, Q)
satisfy condition (5.50). We will seek signal s(t), the function of

uncertainty/indatermirancy of whkich r(.' o) realizes a best

U Voo, . S

' approximation to P(t, Q). According to presentsd, this signal is tke :
' solution of equation (5.14) with kernel G(u, v), connected with F(t,

] {1) by ccndition (5. 15a}.

Page 149,

The seccnd iterated kernel cf this equation G,(u, v) is expressed as

L(t, Q) according to (5.45) From {S5.15a) and (5.45) it follows that

A with satisfaction of condition (5.50a) kernel G(u, v) coincides with

. Ga(u, v): : _ -
i Giu, ) =GCyiu v). 330 §
: k
; Prca the thscry of integral equaticns it is known that the iterataid

3 kernzl of 2quation allcwssassumes the followirg zigenfuncticn
4

i expansion:

A

R o »w’ﬂw-v‘-p.«..“._—v_‘.—.‘.—w-,,. .-
ot - TR S YRR N N YR P

Ly
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y i

' oc
Gmlu, v)= S As, () s®, (2,
i=n
moreover G(w,v)=G,(u, v). Therefcre taking into account to the
orthcgonality of eigenfurctions eguality (5.51 can te fulfilled, ;
only if
A=2i=0 12
but this is possible c¢nly for i.=1 c¢r 2=0. Thus, from conditicn A
(550) it follows that the greatest eigenva lue of egquation (5.14) ]

Pl (552
This eigenvalue is a coefficient c¢f proximity, (5.52) it indicates
therefore that the distance ir space L2 between F(t, ) and nearest

realized by function uncertainties/indeterminancies 'x.(t. @ are =gual

i to zero. Consaguently, F(t, 0) is realized as the functicn cf

uncertainty/indsterminaccy.

-

-
.
b
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Chapter 6.

. MAXIMUM AND MINIMUM OF THE PARTIAL SPACE OF THE BODY OF

INDETERMINANCY,
6.1. Maximization of partial space.

In this chapter are examined the signals the functions cf
uncertainty/indeterminancy of wkich in a sense can be considerad

optimunm.

As it was noted, fcr jocint rangings and rate wvas desirable the

"highly directional" furction of uncertainty/indeterminancy, which
has narrow central peak and it was equal to zeroc out of this p2ak.
This functior is impracticakle, since the comfplete space c¢f tha bedy
of uncertaiaty/indeterminancy dces not depend on the structure of
signal and is equal to unity, see (5.4). However, let us attempt to

obtain scme approximaticnsapprceck to this ideal fcrm,

Page 150.

VTS DU TP VTR

Let us fix in the central rlane (t, 2 the regicn ¢ (Fig. 6.1),

which pcssesses central symmetry, i.e., if point (/ Ql=¢. then

ey
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(—. —Q)eo, and ve will seek the signal the function of
uncertainty/inisterminancy of which is maximally concentrated in the
region ¢, i.e., let us require sc that the partial spac2 of th2 body
of uncertainty/indeterminancy. included in this field, would b2
maxiamun , -
"a")=§ﬁll(ﬂ Q)* dtdQ = max., (6.1)

Let us clarify this condition. In €hapter 2, examining sigrals
with the maximum selectivity cn tte time, we attempted to bouni
signpal by the assigned duration. When making these assumptions this
proved +0 be impracticable, but cpe ¢of the methods of
approximation/approach was reduced to the maximization of the part of
the energy, included in the assigned duration. Analogous property
possess tha optimum autocerrelaticn functions, 2xamined intc §2.5.
Here, dealing in by the tw-dimensicnal fuanction of
uncertaintysiniaterminancy, we use a similar conditicn and we
approach that so that the body c¢f vurcertainty/indeterminancy would be
completely included withinp the regicn o¢. Is accurate this
impracticably, but *he rmaximizaticn of partial space (6.1) provides
certain approximation/apgproach tc this ideal. Since the complete
space of the body of uncertainty/indeterminancy is fixed/recorded,
autcmatically is provided the minimum of "energy" of

remainders/residuss out ¢f the regicn ¢ 1,

FOOTNOTE !. Let us emphasize that *he formulated criterion of optimunm

e e e e 3
o o 4

X

e
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character assumes that within the region o the targets can nct be
permittad, but is provided possible fully persission/rasoluticn for

two targets, which do nct fall into one regionm s. ENDFOOTNOTE.

The formulated prctlem tcrders on also fcllowing. In certain
cases it is pessible to indicate in the plane (t, @) the regicn o, in
vhich should ba 2xpected the intersae mixing reflections. For exanmple,
if the radar systam, estatlished/installed on the satellite, is

intended for the detecticr of ancther satellite, then mixing will be

reflections from suppress surfaces.
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Fig. 6.1,

A ( Page 151,

. —

Knowing trajectory and rate of a satellite-carrier, it is possible to
indicate in th2 plane (t, G) the region o, which corresponds to ths

Doppler rates and the ranges cf different s2ctions suppress surfacsas.
Logical under these conditions tc select signal so as t0 minimize the

' partial of the space of the bcdy cf uncertainty/indaterminancy in ths

..

region e:

4

Vilz) = SS iz, Q) dtdQ = min.

.
N

?j One of the problems cf this kind is examined in the seccnd part
] of this chapter (§56.5~6.10).

¥

-

o 6.2. Quasi~optimal signals.

5

-

x|

2 |

o~

oY .

st - s
ek e TP T 'Y YA

FTOET T e wpemre e g -
. ) n‘w———.wzr?rﬁ'—.-.A_‘-_._*___‘ e e
P M T



L
- Lt

[y

DOC = 80206707 PAGE <49

267

Unfortunately, it is impossitle to propose the straight/direct
method of maximization (6.1). In this ccnnsction lat us intrcduce
further limitation to the class c¢f the permissible signals and let us

first somewhat change the formulaticn of the gproblem.

We will consider that signal s(t) can be either the even or odd
functicn of time., As was ncted, fer such sigrnals the functicns of
uncertainty/indeterminancy are real [70]. Maximum value ix(0, 0)=1,
and, because of continuity, in certain vicinity of the central point
t=0=0 the function of uncertainty /indeterminarcy is positive. We will
seek signal s{t), which pmaximizes value

v, (=)=%SS-/_‘ (t, Q) dtdQ = max. (6.2)

Logical to assume that t;e function of
uncertainty/ind2terminancy, which satisfies ccnditicn (6.2), is
positive for all interral poirts ¢f region ¢ {further «his is
confirmed based on example). Therefore the maximization of intagral
{6.2) is connected with the achievement of the nighest possikle
positive values 2.(f Q)f within the region and, thereforz, with an

increase in partial space V,(si, ©f that detsrminad by formula (6.1). '

Thes2 considerations show that the signals, which satisfy condition
(6.2), we will call their quasi-cptimal - they are close to th2

cptimum signals from the class cf those permittz2d (sven and odd).

T ———
. M G st RO
IS Y VETURAEE - W DT S - - R



e

JPVYTS DI PP N

|
v 4
. rl

DOC = 80206707 PAGE €~
YA

Page 152,

Important for future reference generalization is obtained, if we
introduce real weight furcticro g(t, ) and to examine instead of
(6.2) value

t

W.(g. 9= 5 S glt, Qy,(t, Q)dtdQ. 6.3)

The signals, which maximize this valua, we will also call

guasi-optimal, they depend not c¢nly on region o but also on weight

function g(t, Q).

Before passing to the determination of ofptimum and quasi-coptimal
signals, let us note that during some strains of regicn ¢ the

structure of the signals indicated is changed in an cbvious manner.

Lat us introduce instead of t and Q@ the dimensionless

cocrdinates

n=t/t u =0,
where r - arbitrary scale time unit., It is easy to sse that pi to
this replacemeat of variatla/altermating all gravious
relationships/ratios retain their fcrm. Let in new coordinates (. §).

be selected the region o and for it is detarmined signal sa(y). the




DOC = 80206707 PAGE 27

269

giving maximum to value
W,ig 3= —':Hg (%. 875 (7, & d728 = max.
If wve return %o éocrdinates t and 2, then it is cbvious, a
: change in the scale r will lead tc¢ the arbitrary extension of region
along the axis of time arnrd its ccrrespording ccapressicn alcrg the
axis of frequency. Quasi-optimal signals are characterized by during
this strain only scale ard are given by the exprassion
&U)=%U;L
Therefore the soluticn ¢of assigned missicn, for example, fcr the

circle (this example is examinped telow) is =2asy *c¢ spread to the

elliptical region, equivalent with the initial circle, if the

pripcipal axes of =21llipse coincide with axes t and Q.

Page 153.

Moreover, applying kacwn thecrem ¢f Klauder [7, 38], it is possibls
to turn *his =llipse to the arbitrary angls 9 (Fig. 6.2), after
determining new quasi-optimal sigral according to the formula

———

[ cos ¢
s:m=-,’—y soec? Vsn (—:; I

—cc

15 2 4 N
exp {j d ,_,:‘ ctgh — -,_f—i—,—cosegﬂ : di’. (6.4

Thus, after determining cptirum or quasi-optimal signals for
som2 "basc" rsyicns, i+ is pessible 2o consideradly waden

uses/aprplications due %¢ the strairs indicated,

R S R IRaiedh, e Sas R

I L 0. S

C e = e
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Let us switch over to the determination of the quasi-optimal
signal, which maximizes value (€.3). In viaw cf the done assumptions
weight function g(t, @) and functicr uncertainties/indeterminancies
v:{z. Q) are real. Being ccngruent/eguating (5.12) and (6.3) we sze
that in these assumptions value W.g o) is nothing ¢lse but the
coefficient of proximity for furcticning the
uncertainty/indsterminancy x.t/, Q) of the function

!gﬂ‘ﬂ)ﬁ%(ﬂ Q1=

Fit, Q)= (6.5)
( ) (. e

{ Key: (1). with.

Consequently, in acccrdance with the hypcthesis of proximity the
task of determining the guasi-optimal signal, which maximizes
W.(t, Q), is equivalant to apprcximaticn/approach to function F(t, 2},
assigned in th2 form (6.5). It is pcssible 4o uss the results of the

previous chapter for the soluticn ¢f this protll 2am. -

- TTON T TS 5 st e e e L
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Fige 6.2,
Pags 154,

In this case it is cocnvenient to use the methcd of Sussman,
which uses coordinate rergresentaticrs, As it was shown, soclution
gives eigenvector of matrix G whose elements/cells are detarmined in

the fcrm
| .
Gm,;=z_nﬁg(t. Q) K* o (f, Q)dldQ, (6.6)

and the maximum value W (g, ¢), attained at the juasi-optimal signal,

is Jreatest eigenvalue 4,,, of this matrix/die.

4are K.. - Jarived rase functicns, connacted with the selected
reee3 cf tasa functions /,(;) with relaticenship/ratio (5.23). It is

ci~e! alsc zwna* functicr g(t, G) fcssasses symmetry (5.17).
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As is knewn, findino eigenvalues and eigenvectors of matrix is

connacted with the diagcnalization. Thera is th2 unitary conversion

f::) (f) = : anfﬂln U)'

m

with which a base system [,(/) it is converted into this new systenm

ffWO. that the matrix/die G tecowses diagonal, i.e., |

0 o
G [0 18 M
in K m=n,

Key: (1) . with.

The elements/cells cf principal diagonal ar: eigenvalues 4. and
nevw base functicns (4 are eigenvectors of matrix G. This mathod
of finding of eigenvectcrs and eicenvalues not only and always not

best, but in the task in gquesticn it leads to the necessary rasulis.
6.3. Circular region.

Let the region be a circle of radius R !:

£4-Q2< rP<R2

FOOTNOTE !, Hars and thrcughcut t and Q@ - dimensionless quantities,

Such dasigrations are used for sircrlification ia the recording, it

e ——
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would be it is more apply coordinates n=yr and §=Qr. ENDFOOTNOTE.

. Page 155.

Let us select as the base functions in the space of the signals

of the function of Hermite
1 13
= ey € Hn 1),
where Hnﬂy=(—1we"iﬁ_54; - Hermite's polynomial. /
Then, for the derived base functions we cbtain acctording to

( (5.23):

> -]
Kamlt, Q= (azrematmy™ (i, (4 5) X

" ><Hm “/tl_tT> eXp{ . ("+t"2)='21,‘“’—f 2\2 +JQ['} dtr
\

or, after simplz conversicans,

oo
a— (14aM 4 o

Kam(t, Q)= 2~ 5 e X

(2= m gt myli=
—®

- taiQ .—9
~ +_J'-_‘_'> mk ’ J )d.\.
t~§ The value of latter/last integral is known ({21], page 852). Aftar
- _
n% using polar coordinates (r, ¢) in the plane (t, Q), firally we £ind:
4
4 Kom(r, 9)==ppm (r)el =™ T
i where
a i

R e w-...‘-_._w-.- LTS DR S —
N . Ve .
Y W 3 .
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\

Here Lfon:%rvx"f;u"tw'ﬂ Laguerre's polyncrialtl,

FOOTNOTE !, Thzsas results are of interest alsc in the following
sense. As is known, the functicrs cf Laguerre e %\*“L*(x; forn
comglete crthogonal system in interval (0, ~). Taking into account
the complateness of the system c¢f harmcnic functions e in the
interval (0, 2») it is nct difficult to note that functions (6.7)
form complete system in thte entire plana. Any other system of derived
base functions is connected with functions (6.7) with unitary
conversion., This proves the ccmrleteness of the system of derived
bases, by any generated ccmplete system of orthogonal functions in

the space of signals. ENCFCCTACTE.
Page 156,

Lat us now count matrix elements G, by assuming that weight
function possesses the circular syrmetry: g(t, 2 =g(r). Passing in

integral (6.6) to the pclar ccordinates, we find

R ox
G""";T’l.?j g (P onm () rdr j eI Y o, (6.8)
b 0
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Is obvious, G,,=0 with m#n an¢

. R R
Gpn=an= j g(r)pan(r) rdr= S g e"""[.,,(%) rdr =
v

WV
RYy2

=5 g(V'2x) e Ly (x)dx. (6.9)

0

Consequently, G ~ diagonal matrix/die. This means that aftef
selecting for the functicn of Hersite, we "guessed" that cnly system
cf base functions in the space c¢f signals, for which matrix/die G was

diagonal, this occurring¢ fcr any weight function, symmetrical on ¢.

From previous it fcllows that the base functions of this systenm

- the function of Hermite

‘ e H (t) (6.10)

-s"“)==(VEé"un”‘

are the signals for which the partial spaca W(g, ¢) takes outer

limits.

OQuter limits themselves are equal to esigenvalues 4., and they are
expressed by integral (6.9), and, although eiogsnvalues depend on
weight fupction, extreme signals - eigenvectors of matrix - the same

fer weight functions, which pcssess circular symmetry.,

In crder to firnd the quasi-cptimal signal, which maximizes W,(g. o).

it suffices to now select greatest cf the 2xtrsma, ygreatest

R el R e thiE i S aane B oo v N e et > S e s
N .. . . P /PO . A
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eigenvalue 7, As it is clear frcm (€.9), values ., are coefficients

of the exransion of the function

] : . Q) Re -
: /5 ’g(V2x)npu < 5
- F(Y2x)= ]
| RPN
Key: (1) . with.
according to the functicns of Laguerre. A

Page 157.

( From the character of the latter it is clear that if functicn g(r) is

positive and monc-tone decreases (it does not grow) with incrzase in

. -

r, then maximum in is obtained for n=0. Therefore'for any decrzasing

weight function guasi-optimal is the Gaussian signal

s,(y=="""e"7 6.11)

for which
7stt. Q)=e“"""” fe™ (6.12)

Consequently,lsetting g=1, we have from (6.9)

‘R
mmWJﬂ=%={e"‘MP—ml—eRH

u

L ‘ .

DT JVS I VPG NV O

Por waight functions of ancther type, whica have an oscillatory
rature, quasi-optimal signal car e another function of Hermite, but

these cases us further interest will not b2
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6.4, Optimum signals,

; Let us return to the task abcut the optimum signal, which
maximizes partial space V.(s). deterrined by formula (6.1). Without
having the capability to propcse the direct method of deterwmining
this signal, 1=t us construct tike iterative process, which leads, in
the limit, to the soluticr, Beirg limited to the again real functions
of uncertainty/indeterminancy (even and odd signals), let us /

intrcduce intc the examination value

‘ | Va@=g{{neoni o0, ©1
vhere . and - functicns cf the uncertainty/indeterminancy of

| signals s(t) and h(t) resrectively, and we will increase this value

as follows.

Let us assign first certainp signal SO(t) and after defining

cunctior /7 (t. Q), maximize value W,,(s) by selecting signal KO(% and

= by considering function x”(,Q) as weight H

~ =g Q. i

" Page 158. ' 1

’3, i
f As wa saw, for this it is necessary to det2raine from formula (6.6)

. ? natrix/die G/ and o find its eigenvector, vhich corrsspornds %o

ii maximum eigenvalue 2!  Maxigum valve W,(c) is 2gual to this

Lo B W
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eigenvalue max W(gy i5=a
h L] mam

Then, fixing/recording the ottained signal H@Xt) and the
function of uncartaintysindetersinancy x”(#. Q) it is determined the
quasi-optimal signal st\(t), maximizing integral (6.13), in which now

weight function is xf’«.QL.Apprcpriate eigenvalus lat us designate

(n
A ..

The following approximationssapproaches ar= obtained
analogously: with fixed/recorded éﬁtt) is determined the
gquasi-optimal sigral HWi(t), and then, on *the contrary, on signal
h@\t) is determined the signal cf the second approximation/apgroach
2)(t) and so forth. It is easy to see that this process leads to the
ascending series of eigenvalues

<l < | (6.14)

This sequance is bcunded atcve, Actually, rsally, as it is clear

from (6.13), W,(s) is a ccefficiert of the precximity of functiors

w(t, Q) and x(f Q). Conseguently, *max<<l

The aforesaid means that sequence (6.14) converge to certain
limit, As a result are determined two saturation signals s.(f) and
hope(t), for which value W,,(¢) takes createst (limiting) value. Let us

demcnstrate that without taking intc account unessential phase factor

thess saturaticn signals coincide fep(f)=s..(¢) "and, therefere,
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iterations lead to the maximum value

Vi) =W, (s)= ;—1 Sj/f (t, Q)dt dQ.

Let for the selected region ¢ there be one or sevaral optimum

functiors of uncertainty/indeterminancy n(t, Q). for each of which

partial space Vdoj it has the greatest possible value of Vg:
5 . 1 2 -~a
max V' (5) = max Tj j 7, diaQ = L .f S 7 dtdQ =V,
Page 159. y
Then, applying to (6.13) Schwarz-Buniakowski's inequality, we

can register

| - -‘i7f, (3)<§j'j'zf(t.o)dtdn><

1 2 g '
' Xzfj.j Y. DdidQ=V sV, 5) < Vis). (6.15)

Q&f will ke achieved/reached equality in both ¢f these inequalities,

value W.(g) will take greatest fpcesible valus. But in the
relationship/ratio of a Schwarz- Euniakowski equality is reached only

in such a case, whan facters are prcportional. Taking intc account

'“' standardization, this means tbat the functions of

T uncertainty/indsterminancy must ccincide. As a result in crder to

g: s3nsure equality also in the latter frem relationships/ratics (6.195),
L it is necessary to satisfy tke ccrditior |
-’ 7o =7, (6. Q= 7t Q). (h.16) }
_i The function of uncertainty/indeterﬁinancy uriquely deteraines

R

(T |
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the realizing signal, if we dc not consider the arbitrary irnitial
phase (see §7.1) . Therefore witlcut taking into account this phase
condition (6.16) is equivalent to the following:
Sopt = hopt () =Sa (t),
vhere s(f) the signal, which realizes the optimum function of

uncertainty/indeterminancy 7 (£ Q).

Thus, when itarations actually/really give global maximum to
value W,(o), they lead tc twc idertical signals which are determined

as a result of approximations/apprcaches.

Relative to the usesyapplicaticns of this method it is possible
to note the following. It is sulkstantial, what signal éa(t) is
salected as th2 initial on first stage. Th2 nearer this sigral to the
optinum, the more rapid the iteration they lead to the targest,
Purthermore, the unsuccessful selection of initial
approximation/approach can lead t¢ the arronecus result: will be
found the maximum of value Wa(o), but not greatest, global.

Iterations one should begin from the signal, close to the optimum, ¢

and as similar it is expedient tc select the guasi-optimal signal, £ ]
which maximizes value (6.Z). As it was notad, the guasi-optimal

signals ar2 close and optimunm.

Page 160,

e T & .,
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The method examined creatly easily leads to the result fcr the
circular region ¢. After selecting as zero apfroximation the
quasi-optimal Gaussian signal (6.11) with the function of
uncertainty/indeterminancy (6.12), it is necessary durirng the first

stage to determine signal Ho)(t) , that maximizes value
iy 2= R "
W (s)= 2—ﬂjj‘e ' x:‘"(r. ¢) rdrde.
09 -

Since weight function g(r.3)=e¢""/* depends only on r and mcnotcnically
it decreases, as shown ir §6.3, signal WO(t) will be Gaussian -
RO (1) == =114 o= 42
It is obvious, furthker approximations/approaches will also give
Gaussian signals in each stage., Thus, for the circular regicn w2
again" guessed"” optimum signal - this is the Gaussian signal, whick

coincidas with the quasi-cptiral.

Knowing optimum signal, it is easy to count the maximum fpartial
space of the body cf uncertaintysindeterminancy for the circular

region: .
max Vits)y= '-"—"'.Y_S.Zi" (. Q) didQ =

2z R
=id: (e rdr=1—e""%  517)

Hlem

0
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If, using the formula of Klauvder (6.4) tc deform circular region
into the elliptical with the artitrary inclination/slope, ther
ot optimum will b3 in general ChM impulses/momentz/pulses with 2 linsar

e change in the frequency and gaussijar envelope [7]: ]

SIl)=—=ex! ‘~ /1 PO &
sy E.\,)‘ (\?—]Y,?}
Page 161. g

But in accordance with that presented the value of partial sgpace
during this strain is nct charged ard it is as before given by
formula (6.17), which is convenieptly register=sd in the fornm

| maxVy(z)=1 e (6.18)

where S - area of ellipse in the plane (t, ) . This result can be

used for the evaluaticn/estimate c¢f maximum partial space in cther,
not 211iptical ragicns., It is easy to show that if certain regicn ¢,
is wholly included within o,, then Viax(01)<Vwm,:to). Thersfore, if the
assign2d arbitrary region o is described by certain ellipse with an

area of S, and is inscribed in it another ellipse with an area of S,,

then on thes basis (6.18) we ottain |

-5 . e
l—e™  >max\ (n>1 —e™ 7

H

(6.19)

[

Apparently, this relationship/ratic sufficiently fully considers

R NS

maximum partial space for the regiorns, which acre of practical

e b

interest,

;‘.&_l_.‘.‘. |V RO

As showed Klauder [38) herritiar signals (6.10) are caly, Zfeor

'
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wvhich the functions of uncertainty/indeterminancy possess circular
synmetry. It is logical tc assume that the maximization of the
partial space of the body of uncertainty/indeterminancy in the
circular region requires a similar symmetry. A strict proof of %his

pcsitior is givan abcve [S].

The global maximum of partial space gives Gaussian signal - zero
function of Hermite., For this signal the contraction coefficient is
of the order of one. One c¢f the ways cf transition/juncticn to the
signals with the large ccrpression is connected with the straia of
region into tha elliptical. In this case is olttained LFM
impulse/momentum/pulse'uith gaussiap envelope. Ancther possitility
consists in the fact that after preserving circular region we are
givern ccntraction coefficient, but we seek glcbal, but one cf local
of the maximums of partial space. As can be sesn frcm that presented,
in this case should be selected the function cf Hermite of high

order, morsover order must be matched with the assigned ccmpressior.

Subsequently will be showr that this path it leads tc the
signals whose satisfactcry apprcxisation give signals with the phase
manipulation. Thus, the task abcut the maximur of the partial space
of the body cf uncertaintys/indeterminancy leads to twc most widsly

used classes of serrated signals - ChY and FM.

i
i
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Page 162.

The maximum partial space cf the body of
uncertainty/indeterminancy was traced also in the wcrk of Price and
Hofstetter [55]. In this work are cttained useful
evaluations/sstimates for the maximum partial spaces, bu:t are not

revealed the signals, which realize this space.
6.5. Minimization of partial space in the assigned interference zone.

To the minimizaticn cf the partial space of the body of
uncertainty/indaterminancy leads the task about tha decrease (or
complete suppression) of the mixing reflections from the distributed
in the space wmultiplz reflectcrs - dipole cloud, the urderlying

terrostrial or sea surface, etc.

L=t in the plane (t, Q) bke assigned the interference zcn:z o,
i.e., the region, in which are concentrated the aixing reflections,
and with t=0=0 is located the olserved pinpoint target. Signal
amplitude from this tarcet is prcpcrtional to the value of the
furction cf uncartairtysindetermirancy [x(0,0)|, and the average/mean
power of passivs jamming - to value of the partial spac2 V(e). If wa
take intoc acccunt alsc the interert nciss of rzceivser, thz ra<in

"signal/(interfarence + ncise)" cttains expression (with an accuracy

R B i aaihts S Sull -
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to unessential for us constant factcr)
c U
M= Ve 55" U={x(0.0)}. (6.20) .
where B - constant, vhich depends cn the r=2lationship/ratio of thz

noise density and specific jamming¢ intensity.

Therefore the maximizaticn of ths axcess of the signal atove the
interferences is reduced to the task about the mirpimum of the
functional _ S
- @=V(0) — pU=min, (6.21) ,

vher2 uy - indefinite factcr of lagrange. This task has great
A0
p:actica} value, and by it is given much attention (58, 62,A71, 89,

91, 92, etc.].

Not always th2 maximum ¢f the excess of tha signal above the
interferences is achieved by the agreement of the sounding signal arnd
filter. Therefore into the space the case it is necessary to examin2
the cross function of uncertaintysindetarminancy x«(4Q) and the
partial space

Ve @)= 5[ fin .0 dran,
Page 163.

In this connection ar2 studied three tasks:
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1) the optimization cf filter (receiver) h{t) with the assigned

signal s(t), i.e., the task aktout the optimum mismatched processing;

2) optimization c¢f the pair signal-filter, i.z., determination
s (t) and h(t), with which functional (6.21) reaches the global
pinimum;
.
3) the optimization c¢f sigral s(t) during the matched A

proecessing, i.2., with s(t)=h(t).

- Let us not2 that in the latter case U=|x(0,0)|]=! and

ninimization (6.21) is reduced to the "pure/clean™ task atout the

J minimum of partial space.

It is not difficult .0 ncte also that in the casz ¢of the

mismatched processing the partial srace is a guadratic functional

relative to h(t) and rslative tc s(t), and duriag the matched

.. procassing V thare is a functicnal ¢f the fourta dagree relative to

~ s(t). Therefore the first c¢f the tasks indicated are substantially

4

¢

simpler than the others. But even this task is reduced in the spaca

V.

:“.IJA_-. . e Boa e’

the case, +c tha problem cf eigenvaluss, and findirg of the

.

corresponding eigenfuncticn (cptitunm characteristic cf filter) it

requires bulky calculaticnst.
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FOOTNOTE !. Let us note the close analogy of this task with the
mnaximization of the partial space where we succeeded in only"
guessing" the solution in the particular cas=2, and also with the

synthesis of the functicns of uncertainty/indeterminancy, examined ia

€bagter 5. ENDFOOTNOTE.

The synthesis of optimum pair signal-filter ard task about the ﬂ
cptimum matched processing is even wrore complicated. The general

efficient methods of their scluticn apparently there does not exist.,

So is matter, if interfererce zone ¢ is arbitrary., We will
examine interference zoré in the fcrm of infirite Doppler band (Fig.
6.3). This zone is of practical interest for the Doppler systems and
in some analogous cases. The zore of this form wvas tracsd in (92],
but the work indicated ccrtains faster the fcrmulaticn of the

problem, than its soluticr.
Page 164. {

Meanwhile as it will be shcwp, for the zcna of this form it is 1

possible to obtain the ccmprehersive analytical solutions of all
thres tasks - about the crtisum sissatched prccessing, about the
optimum pair signal-filter indicated and about the optimum of signal

with matched filter, We will see also, that “has2 tasks, althcugh

[ - - - - - o e e = a— e e
. ) o~ L .. . e ey g £ Qe
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they examine tha functicn of uncertainty/indeterminancy, are close to
the synthesis of correlation furcticns, traced in €hapter 4. In
particular, the solution significantly uses Gibbs's lemma (see §4.6)

and its generalization, given belcw.

Let us note also that after using the theorem of Klauder (6.4),
it is pcssible to place interference band at arbitrary angle ian the A

plane (t, 2) and by the fact to scmevwhat widen the field of |

applicaticn of our results.
{ 6.6 Interferenca zone in the fcre» of infinite Doppler band.

For the interference zone in question “he partial space of the

body of uncertainty/indeterminarcy has a value

v-a v+a

- -]
S . J
Ve j do S,y,,,.(:,n,rdt:%“ 5 v(Q)dQ, (6.22)
[ 1 a4

-00

vher2 v(2) - "spacs on lines",

- : i Q -

~ (v'
- N omexolar sova
o Ay, 3 oyt

4

q

|

j Fig. 6.3.

-
'y
.’ Key: (1). Interfara2nce zona.
J-l

Page 165,
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B Using a representaticn of the function of the
uncertainty/indeterminancy througt the spectra, we obtain

© . - * 4
0( Q)= 5| Xon (8. Q) 1t =

(M'SS (0——)"'("*' ) (+ - T)X

®
Xh(‘“ b)’ Se ==="dide’ do=
‘o

1 i~ QN IBfg s 2 1\i?
=G s - 5 zo":: : el do=
2 js(m 0T -)!
( —
| =5 5a‘(m)b’(m-rﬂ\dm (6.23)
-0

g
) vhere a(w) and b(w) - the amplitude spectra, vhich correspond to

sigral and filter.

As with th2 synthesis of ccrrelation functions, we will L2

bounded to the class of tle ever arplitude spectra a(w and b(s) (sse i.

~" §4.1) . Then from (6.23) we have
;. 4 .

; j . < <
ol - )= ja’lmlh i — OV dw =

01 ® had

¢ =?‘ﬂ- a* (— @) b (— 0 — Q) dw =

P —%

{ ©

3 =5 |F@setado=o @)

' =

. 1

SN
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Prom this relationship/ratio it is clear that, without changing
the value of partial space, it is pcssible to supplement to the
interference zone in questicn tke symmetrical band, shown in Fig.

6.3. Therefcre we will use instead of (6.22) the expression

@ [ -3
V=;—“SSQ(Q)]x(t,Q)}’dtdQ==7‘“— SQ(Q)v(Q)dﬂ'
—a0 -0
where Q(Q) - even weight functicn cf the form
=;|/:.>(£B| v—A< Q] <v+A; 24)
Q) 10 OCTaNbHHX CAyvyasXx. (624)

Key: (1). with., (2). in remainirg cases.

Page 166,

Taking into account (6.23), is easy to lead the expressicn of
particular space to the cancnical bilinear fcrm relative to a2(w) and

b2 (w) :

L ’ -
V= P-IT j SQ (0 — ') 2* (@) b (o) dodw’.  (6.25)
- -] -
In view of Q(Q) tha kernel c¢f this form is symmetricall.

FOOTNOTE !, The symmetry cf kerrel 3is caused Lty the fact that we
examine only the even amplitude spectra. But this simplifying

limitaticn does not have fundamental value. Purther rasul4s ara valigd

and in general. ENDFOOTNOTE.
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We see that the particular sgpace in the tand does not depend orn
the phase spectra of signal and filter. This leads in the final
analysis to the generality with the task of the synthesis of

correlaticn functions. On the other hand, value

U=|7 (. 0)l={—:,‘; J’E(«»)E*(m)dml,

it is obvious, it depends on phase spectra. Hcwever, with any

assigned a(w) and b(w) maximum U takes the place when phase srectra

are matched, i.e., when

arg § (@) —arg ki (w), (6.26)
| U= %- Sa (@) b(®) dw. (6.27)
! -0

Therefore the maximization of relation signal/noise (6.20) is

reduced for our zone to variaticral problem (6.21), moreover V and U
are determined according to (€.25) and (6.27). In this case th2
function of uncertainty,s/indeterripancy must, ¢f course, be

normalized, which indicates the stardardizaticn of anergy of signal

and filter:

" = s‘a’(m)dul:?l:- Sb’(m)do:l, (6.28)

-0

In the case of the assigned signal (task 1) tha amplitude i
spectrumr a(w) is fixed/recorded ard should be sought only %the i

characteristic of filter t(w). During the optimization of the pair

signal-filter (task 2) are fcund cut both functions a(w) and b(w).

S
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Finally, for ths optimization cf signal with the matchad filter (task
3) should be to place b (uw)=a (w) a:d‘U=1 and minimized space V,

selecting a (w).
Page 167, i

In all tasks the phase spectra remain arkitrary (with the
fulfillment of agreement (6.2€¢)). This means that there are many
\
optimum signals, which are characterized ty by phase spectra, and it ,

is pcssibla in the latter/last stage of synathesis to select ttle

signal, most convenient fcr the practical realizaticn.

It is not difficult to be copvinced however that without the
further conditions the formulated task has a series/row of trivial
solutions and is not ¢f interest., Actually/rzally, as vwe nowvw will
show, retairing maximally pcssikle value of U=1, always it is
possible to obtain arbitrarily lcw partial space, including V=0,

moreovar even in this case the scluticr is not singular,

As it follows of (6.27) and (€.28), value U=1 is always achievad
by the ma*ched processing, i.e., with a(w)=b(e). Assuming this
condition carried out, let us ccneider first the case of narrow

interfa2rence band, i.e., 2A=>0. Then V is space on the line and

acccrding to (6.23)
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== %— a* (o) a* (@ — v) do.
Fig. 6.42 shows the spectrum c¢f tha pericdic structurs with
wvhich this spaca is equal to zerc, since a(w) and a(w—v) nowhers
overlap. In genaral, with tke £fjpnal width of zone A, it is necessary

to only respectively widen zerc regions in the spectrum, as shown in §

Piq. 6.4b, l

. am—
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l Page 168,

Then for each valu2 0 from the interference zcnz space on the line is

PP

equal to z2ro. Let us ncte alsc ttat in the ncnzero regions of the
spectrum can have arbitrary fcrwm, provided thess regyions did not h
cverlap with ths apprcpriate shifts/shears. Furthermcre, it is
possible, of course, to vary the sran of the spactrum, changing a
number of nonzero zones. let us ncte thét the particular spectra of
i this form correspoad to the sigrals, characteristic for Dcppler RLS,

to monochromatic oscillaticn/vitraticn and to coherant packet.
So that our task wculd beccme meaningful, it is necessary to

]

b

4

.j superimposa further limitaticn cr amplitude spectra a(w) and b(w)

4
- and, therefore, for the ccrrelaticn function

Rt R s i S e

‘e &
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i L4

a (o) b (w) ™ do.

-0

R(t) =y (t0) =

Sy,

But 2v2n limitation of the duraticn of correlation functicn

(parameter of permission/rescluticr according to Woodward) is here |
insufficient, since this duraticn depends in essence cn the overall

width of the spectrum which, as we saw, was arpitrary.

The practical limitaticn of necessary form is obtained from the f
following consideraticn. The rpericdic spectra of the type Fig. 6.4
give the multipeak correlation functions R(t) (cf. the case of
coherent packet). From previous it is clear that with this
correlation function it is pcssible tc obtain zero interferenca level
' : (1f only interference zcne does nct switch on axis 2=0). But in
aultipeak R(t) is 2ssential the amrbiguity of the measurement cf the
time ¢f arrival. Therefcre shculd be sought a compromiss betwzan the

interference level and the desired form R(t). For this we will bourd

amount of deflection

. - -]

~ W= f}R(t;——F(t”’dt:

& -1

S =g (le@b@ ~ Flofdo=const. (629

1 . . . .

1] wher? F(t) - the desired (single~peak) is corralation function, ard
¢ F(w) - its spectrum.,
¥
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Page 169.

Let us notz that F (t) can te unrealizable and with respect to

P
F(w) can take negative values

Taking into account (6.29) we ccme to the minimizaticn cf ~he
functional
O=V —ul—cW, {6.30)
where ¢ - new arbitrary factor. In the casz of the matched processirng
U=1 and ccrresponding ccmpcnent/term/addend in (6.30) must Le

excluded.,
6.7, Optimization is filter with the assigned sigral.

Lat us pass to the sclutior cf the first of the tasks in
question, problém about the optimum mismatched processing. We will
cersider that the spectrum of signal a(w) is assigned, and we
pinimize (6.30), selecting the spectrum of filter b (w). After

rawriting (6.25) in the ferm

Ir

<o
=L SK(M b o) dw,
-

where

] - -]
K (w) = 2_5' (@ —~ @)@ (') do’, (6.31)
—a0
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, taking into account (6.27) and (6.29) l=t us present the functional

being investigated in the forno

; o= J(K (o) g () —uaioll T —
-0

—c[a(w)} g@) —F (@} do =mia,

moreover the unknown function g (w)=b2(w) it is subordinzted to the

limitat: s

g©)>0n o Sg(u) do=1. (6.32) :

The seccnd cf these limitaticns ccrresponds tc starndardizaticn

( {6.28) .
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In view of Gibbs's leama (see §6.9) optimum g(w) it satisfizs
the condition
- I
K (@) — ca* (o) — (p'2 — ¢F () 2L _=Amug (@) >0,

Vg (w).hnphg(w) =0,

Key:s (1). with.

whares A\ - certain constart. Therefore

(/2 — cF(u)) a(w)

b(w)=] (g (w)= R(w) —cat(w)— A

>0,  (6.33)

moreover for those w, whers the latter/last inequality is rnct

£ulfilled, shculd be Fflaced L (w)=C.

The parameter XA in (6.33) must be fitted so as to satisfy
standardization {6.32), and the parameters p and ¢ so as to fuliill
assigned U and W. The determinaticn of these parameters is ccmnectad
with some difficulties., But, teing givern p and ¢ (and selec*ing A
frem stardardization ceondition), i%* is possibla to construct
biparametric family of curves b(w)=t(w; p, ¢), which mirimize partial

spact with diffxzznt U and W. Acccrding “*c (6.33) with the actitrary
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signal optimua filter with it is not matchad (b(w)fa(w) ). Aftsr
assuaing in (6.33) c=0, we come tc the decisicn of task (6.21)
withcut further conditicn (6.29). In *h2 case of the assigned sigral

+his task makes sens=,
6.8. Optimization vapors signal - filter,

Let us consider first the task, reverse/inverse of previous. Lst
the spectrum c¢f filter b(«) be assigned and is resquired to £i¢ the
optimum spectrum of signal a(w) in crder tc mirimize functional
(6.30). In view of the ccaplete symmetry of these tasks not difficult

comgrehending that unkncwn spectrum is datarmin:d from £he sane

formulas (6.31) and (6.33), if we in thsnm interchanje the pcsition

a{(w) and t(w), i1.2.,

(22 = cF (@) b (@)
K@) —-rb? () — A >0. (6.34)

adilw) =

whe

(2 )
(1]

8

Sy

K@= (Q@—o)bt(e)de,

4

the parameters A, p and ¢ are deéfined, as it is earlier. It is her:

“aken intc consideration, that kernel Q(w-w') is syammetrical.

Page 171.
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Using these results let us show that the optimization of the
pair signal-filter leads in cur case to ths matched prccessing.
Actually/really, bzing *ransmitted from th2 suitable iritial
approximation/approach ag{w), it is possible to ccnstruct the
following iterative process. First through the spectrum of signal
ag(w) we find, using formuvla (6.33), optimum for this signal sp=2cirum
of filter bg(w). Then thrcugh bg(«) we find through fermula (6. 34)
optimum for this filter spectrus c¢f signal a, (w), and, contiruing, ws

dstermine b» on ¢. and an::r c¢n ba.

Sirce at 2ach spac? {(durirg the definiticn of signal frcm the
filter cr filter on the signal) is vsed, iIn 2ssa2nce, one and the s=ans

formula, the process in questior can ke treated as the prccess of

detarmining not two fupctions a{w) and b(w), tu+s on2 func*ion z(w),

+he algorithm of successive apprcximations taking the fora

Zg’+| ((D) =

(w2 —cF ) =, (o -
oz t9) 5 0. (6.35)

How) —exf @y — &

~ Vvalues 2; with +he even rugsbeérs i=2n give succsssive

approximations 4., and witbh *he cdd i=2n+1 - value b,

If ¢his process descends, values :; and <-4 will cenverga and

W

in ¢he limit they will ccincide, We will arrive, ther2fore, at ti

agreement of signal and filter: a(us)=b(w). Howevar, the cervergance=

;‘.‘J‘ P Y L O,

cf precess (6.35) is rct preved. Therefcre we will use ancther

r adh
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consideration.

I1f pair signal-filter is ortimum, then signal is cptimal fcr tk2
filt=r, and filter - for the signal, In other words, a(w) and b(w)
simultanecusly satisfy ccnditicrs (€.33) and (6.34). From (6.33) it
is evident that if with certain w spectrum a(«) =0, then alsc t(w)=0,
whila from (6.34) fcllows reversesinverse confirmation. Therefore the
frequency dcmains, in which a (w)#C ard b (w) $0 coincide. W2 will
further examine only this freguency region, i.=s., <o assume/s2t

a(w)>0 and b(w)>0. Let us intrcduce the desigration

L(g) ='2—1.‘le (0 —ow')g(0')do’ —cg ().

Page 172,

Then, cosbirning (6.33) and (6.34), it is no* difficult “o okttair

Li@)—A __ LY =2 _
al - bl - P'

where #=¢#(w) - certain unknown function. Thus, a2 (w) and b2 (w) arz
the decisions of the linear integral equation
L(g) —9g = 7; (Qm—o') g (o) da'—2 () g(o) — cg (a}=1.
(6.36)
which is not difficult tc reduce tc +“he equation cf PFrzdhclm cf tha
saccnéd crderc in tht standard fcrm., L-t us sote zha* tha ccenstanit A\

can be Aiffer:nt fcr a? (w) ana for t2( w), but function ¢ (w) and

Pric, SN
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operrator L the saunme,

In viaw of Pradholm*'s alternative with any functicn ¢(w) the
decisior c¢f eaguatior (6.3€) is sinrqular, if it exists (excluding,
perhaps, certain multitude of values ¢ o0f zerc mzasure)., If dzcisiorn
exists, it linearly dererds on A (since the equaticn is linear).

Consequently, spectra a(w) and k{«) are propcrtional %o each oth=rc:

a (@) __ b* (w)

A, A

¢r, considering standardizaticn (€.28),
a(w) =b(w). (6.37)

We coemz %o ths conclusicn that for th2 inta:rforence zone ia
gquestior *he “ask of synthesis ¢f thke pair signal-filter doszs not
have independent value., After sclving this *ask, we will not ob*tain
“he best results how durirg the matched processing, i.=., by

:xamining cernditicen (6.37)as furtler limitaticn.

6.9. Genaralizaction of Gibbs's leoma.

Passing to th2 task about the cptimum matcz2d «reatmeant, vs

assume/se* a? (w)=b2 (w)=g(w) arnd U=1, Than £undamental functicnal

(6.30) takes the fora

1 3 -~
b= g{l\’ (01 g (m) —¢[g (0} — F (0]} do = min. (6.38)
-—00

e st
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Page 173.

The unknown function g(w) is as beforz subordinated to

limitaticns (6.32), but in contrast to the previous tasks now K(w) it

dzpsnds on g (w):
K@= -21_- SQ (0 —w') g(0')do’. (6.39)
-0

This fact doss net p2rmit us tc use £or the minimiza*icn Gibbs's
lemma, formulated in §4.6 and used above, but, as it will be shown,
decision can be constructed or the tasis of the follcwirng

generalization of Gibbs's lewmra.

Let vector g={g, g. ... gn), Satisfying the limitaticns

g0 and. ¥ g;=const, (6.40)

it minimize the function

Q@)=Y ilgr Ky

i=)
where K, =~ linear form

m
Ky =2 Q:ogp.

=1

moreovar function fi(g. K) <they are differentiated ¢f g and of K., Ths:

ther= are a constant A\, such, %“tat

E.
]
.
¥
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e

o N =1 ,
Hg‘ii(gi-Kf)'?'EQm‘%fi(giv Koo ;gt?, i“i%. (6.41)

p=!
Key: (1). with.

Let us demonstrats this ccnfirmaticn., L2t &->0. Let us take similar

€0, that gn—e>»0. Then the vectc:r

ol

. g mpy (Fnj,
g ={g'}={g,—e P i=n,
gitotpni=|

Key: (1) . with

it satisfies limitations (6.4C) . Therefore, in view of condition,
o(g)So(g'). icg-n

Sh(gu KO<E [o(ge K'd+falgn—e. K0+
4 wa, | .
+f3(gs+e K’

Wwhere
K‘t“-—}: Qip8'p= S Qipgp — ¢ (Qin —Qij)=
'] 14
= Kt —e (Qt‘n —ij)-
Page 17“0

Latt2r/last inaquality can ke rewritter in the form

2 [filge KV —[iige Ki —e1Q — Q)| <

qiﬂ'g'l-"K'ﬂ)—%-f)(gj‘g_.v K,)"-fu(gn. K’,‘) —
—[i1g; K'y).
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After dividing both parts on ¢ ard after passing to limit —, ]

aftar simple conversicns we will clktain

d
(;an (”u- Kn) + EQM -OLK.i' (g;, Kl)<

< 'a%"i:'(gi- K:‘H"EQ:‘,’ %f{ (g: Ki). 6.42) }’
i

I1f also &>0, then ~n the same fcundations corractly reversesinvars-

inequality. Coiseguently, wher gn 8>0 i (6. 42) cccurs equal sign,
‘ i.e., *here is a =onstant A\, which satisfies upper line (6.41). If
€=0, is correct inequality (€.42), which corresponds to lower line

! (6.47) . Ccnfirmation is froved.,
When functions fi dc nct depend on Ki it is obtained Gitls's
usual lemma [90 ], Th2 previcus frccf also, in the mair thing, is

repeated [90],

It is nct difficult to ses tha% cccurs alsc the analcgcus

confirmation in the cecntinucus version.

L2t function g (w), satisfyinc¢ the limitations i
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]
g(@)=02and [g(o)do= const,

minimize the functional

14
®(g)= (i (v, g (a). K (w)) do,

vhere K - lirear operatcr -

b
K (@)= (Q(e.0") g () dw",

a

moreover f(w, 3, K) it is differentiat2é on g and cn K. Their thers

are a ccnstant A, suck, ttat

(o)

—Q—- ¢ ? d ’ /=A 0‘
% f(m.g.K)f}-yQ(m o) gt @ g Kyda' 75 10 i%ic.

(6.43)

Key: (1). with.

Page 175.

For the proof it suffices to decompos2 intzrval (a, b) in *hs
arbitrarily low sections and to replac: integrals with sums, aad

<hen, after using (6.41), to return to the integral form.

Specifically, the ccntinucus versicn of Gibbs's lsmma was usad
in §6.7 for ths conclusicr/cutcit ¢f conditicr (6.33). In <Lis case

cf £ dofs nct depernd c¢n K and or ¢he left side (6.43) there remains

hlig B -
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! only first component/termsaddend.

; Let us note also that the frcved nscassary condition of minimunm
(6.43) can be interpreted ctherwise. As usual, the normalization
conditicn

»

E(g) = (g (w)dw=const

v P

can be taken into account with the help of Lagrange's factor i, i.z., {
+*ask consists of the minimizaticn cf thz n2v functional
D, (g) =0 (g)—AE(g)

( during limitation g30. In this treatment (6.43) has the form !

f .0 (" >-0
’ =V npg g .
Q‘(g);-o opi g'=0,

,

Key: (1). with

whers @',=grad®, - derivative cf the functicnal (see §1.9).

- This result is natural. Limitaticn g(w))C detzrmines many

permissibla furcticns, the ccnditicn g(w) =0 indicating its

L.

"bcundary".
Page 176.

If the minimum of functicnal cccurs at any intsrnal goint of sa+,

v

oo ki) aata. e foa e

>

BN

amndtingbonn. acnickscamaclubinnton, 't mauie ’ 2

c. - FE T T e e g~ e g e - g ———— & e
N - . . - ;.,.~‘. v"v‘ . . a
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*hen, naturally, in it derivative is equal to zzro. But if the
ainimum (is more precise the lowver tound) it is reached on <h:

boundary, derivative at the apprcpriate point can be pecsitive.

Thess considerations prcompt that the resul:, clcse to (6.43),
must occur, also, with the more cemmen format of functioral P, but

this gereralization by us will rct te necessary.

6.10., Optimization of signal duriprg the matched procsssing.

Bzing returned tc minimizaticn (6.38), let us note that in this

case

/A F of

,,g—K‘{"?CF-—?cg. oK =&
Therefore, applying £6.43) and takirng into account the syamatry of
kernel Q(w~w'), we come tc ccnditicr (6. 44)

® P t¢)
g @) — 3 (Qlo—a)gioda =IF (o) ~ 2 npg (@0,
3 <c{F (o) — 2] nph g(w)=0,

Key: (1). with 1

moreover “he constant A is determined and th2 condi<ion fer

standardizaticn (6.32).
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The metnod of deciding the integral equation, which corresponds
to upper line (6.44) is well known. However, the presence of
inequality in the lowe line doesnot make it possible to directly
use this methoa, and is required thinner consideration.

Let us assume that the correlation function R(t), connected with
g(w) with Fourier transform

-
g (w)= SR (e at, (6.45)

decreases rather rapidly wigg large t, 1i.e., belongs to L2. With

this, we virtually do not reduce generality: smez R(t) are possessed,

for example, s all signals of finite energy whose spectrum is con-
tained in an arbitrarily wide finite band. Then we can select such a
large time interval (-T, T), first having limited the area of integration
in (6.45) by it, we obtain an air arbitrarily small distortion gyw)-

In other words, takling a sufficienﬁiy large T, we can accept

g (w)= ,SR ()™ ™ dt.

We substitute the last expression-in the left side of (6.4L4) and
consider that Q(e) 1s determined in_accordarce with (6. 24),

This provides cg (@) — o= jQ(w—wm )dw' =

J R(t) ! c —sin m cos vt) el gy,

We see that the left side of (6 44&,15 an analytical function of .
(0), which stands in the right side
is analytical, i.e., for example, uhat a given F(t) has finite duration.

Further, assume that in some fwequency interval glw) >0 and, con-
segquently, the equality which corresponds to the upper line of (6. 44)
is satisfied. Since the functions of both sides of (6.44) are
analytical, this equality will be formally satisfied with all w.

and not only in the indicated interval. This means that where giw)
1s positive, it agrees with the solution of the equation

, -
gie) — 5 5‘2(«:—«»') g (@) dw' =Fw)j—2, (6.46)

-0
which is obtalned from (6.44) without consideration of the lower
line. Using the normal procedure, (see [93], sec. 11.1) we take the
Fouriler transform from both parts (6.46) and after simple facings
we will obtain

~----—-~‘»~‘--- . — e ———
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-]
g((.l))-———'-" S‘ F(t)—ké(l\ e-—-]wfdt=

<in td ,
—x =: VO Wi
[« -]
F{t)e™"his i e
= S sin 15 T ==x=" (0.47)
—x —TCOS ¥l

where P(t) the assigned functior, see (6.29).

Page 178.

mﬁt us emphasize again that this formula is accuratz, only if
obtained g(w) is positive, If rigkt sid2 giva2s nagative valus, on2
should according to lower line (6.44) to place 3J(w) =0, i.e., prcduc=

the "cutting" of negative valves as in §4.6.

Pormula (6.47) gives the urigus in L2 sclution of equaticn
(6.46) [93), From other sids the cpsraticn cuttings" is alsc

i1rplzmartsd by conly ferm, since the urkrnown censtare A is unijualy

Ao 4 o
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o determined from the condition fcr the standardization (see below).

Thus, if the soluticn of our problem exists in L2, it is

singular.

However, decision z2xists nc*t a+ all valuss of parame*zr c. Prcnm
(6.u47) it is evident that with scne c the dencminator of integrand

can become zero, then integral diverges, and g(w) cannot be

det srmined. i

( At the arbitrary medium frequency of zone V the dzcisicn

¢ exists, only if c>a/r t,

FOOINOTE ', This limitaticn cf a2allcwed values o9f ¢ is substarntial

during attempts at the nurmsrical sclution of task. Lt is neressary *o
chcese ¢ from the permissible regicn, otherwiss 22s5ult can ke 2bsurd. §
But without having analytical decision, this fi2ld tc virtually |
detarmine dAifficultly; arrarently, “here is nc¢ indicaticns cf

> physical character, corcerning the appropriate s<lesction cf

[

Lagrange's ¢ - indefinite factcr ir functional (6.30). At least, ocur

attempts to fulfill numerically mipimization (6.30) proved ¢o be \

unsuccessful Tor this reascn. This is cne example where the numerical

RN
" ) .
. ol

mz+hods arc barely aifectivz, ENCFCCTNOTE.

-_an ).

« T
k.

Ios -

L 2

T

TS e ey L. L




DOC = 80206708 pace I

Let us considar thes isportant practical case, We will a¢t<3mp* <c
obtain high the practical case. We will attempt to obtain high
rescluticn in the time. Than desired FP(%) has short duratior », such
tha* rA<<1 and wvrgl!l, ‘i.e. the interzfarancsz zen: is placed ip Tha
cent2r section of §pectruw ?ﬁu). Then integral (6.47) has £inal
limits, morecver denominatcr little is changed in the range of

integraticn. Therafore

SF(() e~lot g1

gl ==

e =6 F@ -1,

The construction cf ths spectrum is shown in Fig. 6.5. Af-ar
~t
assigning certain ¢;>1, we must ircrease spectrum F(w) in c, *imas,
and ther displace in the vertical line by A; and "to cut" negative

values,

Page 179,

The amcunt of displacemert ics selected 50 as to satisfy
standardization (6.32), i.s., sc that the arsa of positive sa2gmen* of

a curve would be equal tc unity.

Is th: morz ¢,, th2 greater ths: displacement X,, and by the fact

in <hs smaller bané is ircluded sgictrun Jg(w) . Chocsing sufficizntly

lazg? ¢, i< is pessible ¢¢ nactzcw dcwr g (w) so, that “he spaca ot
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the bedy of uncartaintysindeterrinancy in the interference zene will

be equal to zero, But irterfererce zcne is arranged/located in %h=

; center section of spectruns ?%u), therefore in order to cbtain zzre
space in the zone, it is necessary to take g(«), therefore in order
to cbtain zerc space in ttes zcre, it is necessary to take y (w)
substantially narrcwer than ?%u). The gquality of ths
approximation/approach ¢f correlaticn function to assigned F(t), k
raturally, will bs in this case pccr., On %he cther hand, =xpanding
g(w), we will obtain Lbetter approxiration/approach tc F(t), Lut spaca
in the interference zcne sharply will incrsase. We sag that tha

( conditicns of low partial space in the band and good

approximations/approaches to a rarrcw single-geak correlaticn

function substantially ccntradict each other. Duringj the stringent
raquirements for the value cf partial space tc €ind a satisfactory

practical compromise hardly pcssitly.

Ps

PP ST NS PPN SO

v ek

<
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()
Eduwuvwan d
naoyads

Fig. 6.5.

Key: (1) . Single area.

Page 180.

Let us not: also that case c¢,;=1 leads to the task about the best
; approximation of autocorrslaticn function to assign2d unrealizable
*§ F(t) (cf §4.6). From the results cf chapter 4 it is clesar that a+%
least in many instances, we will cktain the single-peak correlaticn
functions, similar to tha%* shcwn in Fig. 4.3, This rasult {

cortradicts, for example, the assuspticas of work [92] §

However, 2during ancther lccatfcn cf interf:rsence zone er2

{

---—-‘-—--—“‘—**- e e e et o R
. a‘.lm.!_.“ S M Srs el sm e -
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obtained multipeak correlation furctiors. Irn this coanection 13t us
consider anothar example. Let ke svfficiently narrow interfer:nca

zone be arranged/lccated c¢cn certain removal/dis*ancs from the center

~

section of spectrum F(w). Then (€.47) accepts tha form

F(t)

g (@)= j'—_A——- el at—a,.
. l_gc;s vt

-t

Af+ter using further next by Fourier

5 (e

n=-—x

1 !
1 —acos vt aV’l — at

we obtain

"glo) = i('———"/l‘—“ ) Fle—m—1>0;

n=—=0n

A
a=—;<!.

It is clear that g (w) is censtruct:d similarly to previous, bu«
Pand
inst2ad of the sirgle sgpectrum F(«) is used the sum cf suck spect:ca,

=5 =+ Dy

frequency~displaced on . and so forta and undertaken with th:

decreasing ccerfficients., If v 3is sufficientl reat, these scactra
. Y =

ars considerably spread,

end afterward cuttings will remain not ara,
but several lobes/lugs cf the spectrum. As a result of g(w) it
approacktes the periodic structure, shewn iz Fig. 6.4, and R (%)

beccmas mulitipeak.
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Page 181,

' Chapter 7.

APPROXIMATION OF THE REALIZABIE FUNCTIONS OF INDETERMINANCY AND

AUTCCORFRELATION FUNCTIONS.

Examining in the previous chapters ths synthesis of the
functions of uncertaintysindeterminarcy and avtocorrelaticn
functions, we did no+ assign any limitaticns ¢n the permissitla
signals. With this apgrcach are revsaled/detected the maximunm
po§sibilities cf approxisaticn/eprrcach, at best arz determinsd the
! optimum signals, which realize these possihilitizs, but all this it
is dens withcut taking into acccurt that, how tz2chnically ar=
difficult to achieve these or cther sigrals., Ia particular, *he
sigrals, examined in chapter 6, maximize the partial space of the
body of uncertainty/indstermirancy, but they ar= complicatsd for *h-

realization, since is required a deep amplituds modulation at <hs

L

high power level.

"‘j“AA | VIR A

Therefors, beginning *the synthesis, i: is expedient to bcuand
many psrmissibla signals ty kncwingly r:zalizatl: in the predici-4d

equipmart. Irn particular for the radar of mair in%terast arr sigrals

- .

7on s
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with the frequancy modulaticn cr th¢ phase mapipulation with

rectangular envelops.

A similar limitaticp of mary permissible signals narrcws the
possibilities of selecticn, and tte quality of approximations/apprcach
frequently provses to be consideraltly worse, than with the signals of
arbitrary form. Therefore it is pcsesible to ccnsider "ideal"™ the
results, obtained with the arkitrary signals and, without =2xamining
mere gereral problom, o te bcurded tc approximaticn/apprcach to the
realizable function of uncartairtysindetesrminancy cr autocorrslatiorn

function, optimum on many all ptysically realizable signals.

It is obvious, we ccme t¢ the fundamental task of synthesis in
the space of signals. The realizatle functidn c:
anczrtainty/indatecmirancy (auvtccerrelation functicn),
approximation/approach tc¢c which ie found, determines many desired
signals Y. Each signal - y=Y fossesses similar functions of
indafiniteness or autcccrralaticn function., Finding out the minimum
of the distance between Y and many rermissible signals X, it is

possible to determine the signal, nearest to ths desired se+,
Page 182,

In accordance with the hytothesis cf proximity this parmissitla

e P -—— - ¢ e -
v S - w...‘—.-——.“—‘r:.»_..«.. — ey e

. . . N . .
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signal provides bost appreximaticn to ¢he desir2d property, i.3., to
the assigned realizable functicr ¢f uncertainty/ircd=sterminancy or

autccerrelaticr function.

However, it is impcrtart tc establish, as
approximaticns/approaches in the space of sigrals they are ccnnect2d
with the approximationss/agproactes cf the functions of
uncartainty/indatermirancy and autccorr=lation functions, what
conditicn of optimum character satisfy “he latt=sr, if signals satisfy
the criterion of proximity. Ip cther words, it is n:cessary to
2xplain, is applicable the hypothesis of proximity to the tasks ir
juestion. Twc theorems cf presert chapter pesitively answer tbhis

question.

7.1. Synthesis accerding to the functicn cof

uncertainty/indstermirancy.

Le+ therz bs the furction ¢f uncertaintysindeterminancy x(/. Q),
cealizad by certain signral s(t). 1ot us explain first c¢f all, is %k
zealizing signal only, are there cther signals and what they rFust be
so that the funciion of vuncertairtys/ind2terminancy would coincide

with given ore 4t Q).

Lat us turn t0 ths de+terpiraticn ¢f +he function of

S ——— —— g - naae - = —— 1~
. A . Re
. . ; - . R . - N
%

it
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uncertainty/indeterminancy (S.1). This relaticnship/ratio can bz,
obviously, considered as Fourier transform on variable t'., Therefors
or the basis of inverse trarnsformation of Fourier we have

s(r4 ) (rmt)=£ Tuwop™an

or assuming/setting

3
’ ! t
Ctg=u t'—g=o

-]
s(u)s‘(v):z—i j.x, (u—rv.Qyexp (—- j‘#ﬂ) dQ. (7.1)

This r2lationship/ratic is the cecndition cf ghe feasibiiity cf che
function of the uncertairty/indetersinancy: function X(4 Q) is
realized as the function ¢f uncertainty/indeterminancy in that and
only in such a case, when irtegral is %5 “he right “he prcduct cf %wc

iden*ical compositely harressed factcrst,

FOOTNOTE 1, From previcus follcws crly the need Zczt conditiorn (7.1):
sufficiency it is easy tc shcw, isglementing th2 rsvsrses/invarIsc
replacement cf variablesalterna*tirg and Pourier transfcrm. This

brings to (5.1). ENDFCOINCTE.

Page 183.

Further, after assuming hare v=0 and again changyirg desigra<icas, w-

£ind
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s
$()$*(0) = o= frote. o 740. (7.2)
-—C0

Here we did not write out value E, after taking the normalization
ccndition

E={lsirat=1. (7.3)
Prem (7.2) it is clear that the function of
uncertainty/indsterminancy x(/ ) Jdetermines the realizing signal
s(t) with an accuracy tc the factcer

" Si(o)_=.'s(0)ie;"'¢' U =]|s(0)! ¢} 9;_
Amplitude |s(0)]. is uniquely determined further by the conditicn fer
standardization (7.3), but ipnitial rhase ¢, remains arbitrary.
Conséquﬁntly, +*we signrals, realizing one and the same functicn
uncertainties/indeterminancies, can be characterized by only initial
phase. It is not difficult tc ncte that this condition is alsc
sufficient: if signals are charectarized by orly initial phase, thsrn

they have the identical functicns cf uncertairty/irndeterminancy.

Actually/rz2ally, prcduct s[t'+(t/2) Js*[t'-(t/2) ], okvicusly,
doss rot depend cn initial phase, tut the function of
uncertainty/indeterminancy (5.1) ccrrains signmal only in the foram c €

the product indicated.

Thus, lst ther=s be the functicn of uncertainty/indeterminancy

I
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%(t, Q), realized by signal s(t). Rccording to proved the sanme
function of uncertainty/indetereinancy have all signals of the fo:onm
yu)=s(t)e'™, (7.4) -

. and any signal, different from (7.4), it has anothszr func<ion of

uncertainty/indetarmirancy. Therefcre, 2xamining the task of
synthesis according to the realizatle functior of
uncertainty/indetarainancy (L Q). we “hey must include/ccnnect in
the dosired set Y the signals of form (7.4), which differ only in

teras of initial phase frem eacl ctter.

Purther, let there ke an arbitrary multitudz of the p:rmissibl:

‘ signals X.

. -

Page 184.

——————

Let us explain, what condition cf cptimum character satisfizs

-

W
.D

[ 3

[}

I
Xorts pearest +0 set Y. Fcr this let us fix firs+< c:zctain rmissit

'.4

el
»

signal YEYX let us find shtcrtest distance from this signal to sa+ Y.
As usual, it is necessary *o determine the coefficient of the

proximity

i @
i Cix.Y)y=maxC(x.y)=maxRe fx(t)y'(t;dt.
!’ = UEY _a:
‘ Taking into account (7.4) we have furthe:
3

slsiingnciosmai

- N od T — _.4”.. - PO e ee— '-,.__ —'-v~-—-‘—.---71——7".:.-— R S
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-
C(x,Y)=maxRee !* j'.t (Hys*(f)dt =
. o -

=maxRe e ™ (x,sj.
- .

; It is her2 taken into censideraticn, that the signals of set Y ar~
characterized by only initial phtase; thersfcre maximizaticn is

produced cn ¢,., Value (x, s) designates scalar prcduct. Aftsr usirn:
the iderntity

(x,5)=]|(x.5)|e*® &S, !

ve have further

C (x.Y)=|(x.s}|max cos[arg (x.5) —&,].
L]

‘ Maximum ¢n ¢4, obviously, reaches a*t ¢,=arg (x, s); :therafore

. C(x. Y)=1(x, s)|.

~

In order to cbtain shor%est distarce dmin between sets X and Y, it is
necessary to maximize the coefficient of proximity also irn sigrals

x(t), iaenl
- CiX.Yy=maxCx, Yy=max (x5,

=X =Y
.anad . .
4 =2l =CiX. =211 —maxj(x.sy]. (7.3,
. =X ’
S Thus, th2 shortest distance ketwecn s:ts X and Y realizes signal

Xop» dhich maximizes the mcdulus/scdule of scalar product (x, s) .

<

Page 185,
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Let us now show that the same condition satisfies the signal
which minimizes a quadratic difference in the functions of
uncertainty/indeterminarcy, i.e.,

@
&\ 70 = 5= 3 Hy (8 Q) — 75 (t, Q) di dQ —=min.
e )

3¢_,.-,3

(7.6)

Actually/r=2ally, taking irto acccunt conditior (5.4), it is not

difficult to cbtair

d* (1e 1) =2[1 —C (% 7)) (7.7)

® ™ '
C (/a 7.) =Re 5= g X/ it Q) 7*<(t, Q) dt 4O
- —®

- coefficiant of +he preximity cf the functions cf
urcertainty/iadztaraminancy. For calculating “he latcer we will usa

+he conversion of Sussmar (5.20). This it jives

x

S/.(t. Q) y* it QdtdQ =
A

0 7.*:: (0 0) = /\, (0 0)® =

=,(.\'.su':. (7.8

)
jc(t)s (t) dt

Is nar2 taken intec considsraticr also tha deteramination o0f ¢h~ cress
function of uncaertaintysirdsterrirarcy (5.19). Thus,
By =21="1x o |=2{1 =Cix. 1. (7.9

Comparison (7.5) and (7.9) leads =o the £cllewiag ¢h~cr:za:

. - . i ——— - - R N — — e -.—."F-T“"T RN it
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'Ih order to obtain the best quadratic apfproximation cf th2
furctions of uncartaintysindeterminancy, it suffices o find th=a
signal, which realizes the shcrtest distance tecwesn sats ¥ and Y in

the space of signals H.

We obtained the convincing cenfirmation of the hypothesis of
prcximity. In th2 task in questicn gquadratic
approximations/approaches in the stace of sigrals prcvsd to t=
completely equivalent tc the sage approximaticns/approaches in

furction space of uncertainty/irdeterminancy.
Page 186.

Lzt us rct: that a spscial case ¢f this th=crzm is proved by
Sussman. In [72] it is sltcwn that if set X is a linear variety of =
finit2 number of msasursments (hygerplans), then ths
approximation/approach cf the functicns of unce-tainty/indeterainarcy
As aﬁd ix '(in the sense cf criterion (7.6)) it is reduced tc¢ the

dasign ¢f signal s(t) tc sat X. It is c¢cbvious, undsr given cecndition

(4]

this is aquivalent *0 the minimizaticn of the dis*tance bastween s arné

X 1.

-
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FOCTNOTE !, Phase ¢4 in this case role does not play, since sat ¥
contairs signals with the arbitrary initial phases. A change in th:
' phase of signal y leads cnly tc a changs in the phase cf signal %o

without affecting the valuz c¢f distance. ENDFCOTNOTE.

our proof is applicatle to any set X, In this £crm the ¢hzorem
can be used, in particular, witl the synthesis of signals with the

frequency modulation c¢r th2 phase renipulation. [

7.2. Syrthasis according to the autccorcala%icn functice.
L2t us consider the analogcus task when it is nacessary to £ind
¢ :
'{ approximation/approach tc the realizabls autocorrelation furctiorn,

but not to the function c¢f uncertairty/indeterminancy.

(42
o
M

In this case set Y must include all signals, which pcssess
assignzd autccorrela*ticn functicr. Eu* autoccrrslazicn furcsicn

- uniquely determines “he spectrunm c¢f the pcwar of th2 signal

a* (o) =|§ (@) = ?R (tye™'* 4t, (7.10)

{
1 | .
"1 ~harzfore signals y(t)e¥ have cne and “he sar2 amplitude spactoum
; a(w), dzpending on assicned R(%):

y@)=a(e)e ™, (7.11)

-
. , . os .
'y Phasz spectrum a (w) is artitrery, in ¢ecms of this diffe¢rs cn? signel




-
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cf s2t Y frca ancther.

Let there be the artitrary permissible signal x(t) with ths

spectrua
X (@) = b, (0) e~ P () (7.12)

As with ths synthesis acceréing to thsz function of
uncertainty/indeterminancy, let us determine the first shortest

distance tetween signal x and set Y.
Page 187.
Let us show the following thecrem:

a). Best approximaticn to signal x(t) with spectrun (7.12) gives
cr. s:% Y signal y(t)whose spectrur is detarmined bty the cecndition

Y(@)=alw)e™' % (713

for all values w, a%* which b,(0)=0

b). If amplituds sgectrunm bxhﬂ is differ=2nt frcm zero in any
interval w cf £inal measure, sicnal of best agproximations/apprsachk cu

set Y crly.

C). Minimua distance between signal x(t) and set Y and

corzzspending coefficient of preximity compriss




DOC = 30206708 pace 387

x

d(x, }')=% f[a(m)—b.‘(w)]’dw, L (T4
—0
2

Clx.V =+ [ (@1 b (@) do. (.15
=

For prcof we will use the regressentation of tha coefficient of

proximity through the spectra otf sicrals, see (1.21),

- ]
Clx.y)=Re - S X0} (o) dw.
-

Substituting the valus cf'§]c) and ?1u) from (7.11) and (7.12),
w2 g=t

o
C(ap =g Ia (@) b, () cos [2 (@) — 3, (@) dw. (7.16)

-0k

According to theorems conditicns the amplitude spectra a (w) }0
and be(w) ;0 ar? here assioned. Is assigned also phase specttur Brtw)
cf sigral x(%). Wwe shculd maximize the coefficiant of proxdmi<«y C(x,

Y), selecting signal y(t), i.€., varying phase spsctrum a (w).
Page 188,

But, as it is clear from (7.1€),
-~ et
CLe s paoechyw e

—~00

23quality is c=ach?d in thka+ ard cnly ir such a cas?, whan a(w) =b(w)"

-t Adeled o Shae B3t e

Heee >
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for all values w, at which a(w) =0 be(w)s0 8.

PCOTINOTE !, With excepticn of ar arbitrary multitude of zero ma2asur-=,
The signals, which differ on the rull set, in space H are not
distirguishedG. Such sigrals have identical autocorr:zlaticn functiecas,
functions of uncertaintys/indetermirancy and, worecvar, give idsnticzl
output potential of any realizakle receiver. ENDFCOTINOTE.

Since with a(w)=0 the phase\épectrum of signal y(t) is not
determined, this serves as proof to the first two confirmaticns of
theorem. The third confirraticn directly follcws from formulas
(7.12); (7.13) and from the deterwzirations of distance and

coefficient c¢f proximity (1.7) and (1.21). Theoram is precved.

Lat us epphasize, that for tie uniguenass of <he best

approximation it is significarpt ttat amplitude spactrum b&:(w) is

different from zero in any fipite frequancy ranye. If for certain

intzrval (w,, wp;) spactrunm 5Aé)aﬂl <hen, as it follows frcm (7.16),
phase spectrum a(w) can te arkitrary in this interval: ths value cof
the coefficient of proximity (but, ther2fore, and distance) does nat

depz2rd cn a(w). Thus, best appreximatior is ambigucus.

Tha €oramulatad theorz2m it is nct difficult +o interprat. Sirnca

the sigrals, which belcrg ic set Y, hav2 arbi<racy phase sp=c+%ra
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a(w), and the amplitude spectrup a(w) is fixed/recorded, finding out
approximation/approach to certain signal x(t), logical to aScribe
a{w) the phase spectrum cf signal x(t). the differsnces Letween th:
signals, the distance Ltetween tlem will then depend only on tha2
unvariable amplitude spectra, that also is exfrsssed by fcrmulas

o (7.14), (7.15).
This *heor2m will ke further used with th2 syathesis of Ch¥ aad
FM signals. We will now clttain with its aid the condition of optimum

[ character which satisfies signal xop: nearast %o sat Y.

In order tc cbtain shortest distance dmin, it is necessary to

. ————

minimize right side (7. 14) alsc c¢r s€igrals x(t), i.=2.,

2 . PO | -
d_m=rgd=(x. Y)=rxlgll"g [@a(®)—bs (@) de (7.17)

-0
or, which is equivalent, )
I x
CXN=max 7 (a(o)b.(o)dm, (7.18)

Page 139. {

Thus, the optimum fermissiltle signal r=X, | realizing distancs
. dmin, givzs the bcst quadratic aprrcximation of amplitude spoectrunm

bz{) =0 %he assigred arplitude spectrum a(w) .

P P

- —- -r—— : ¥
e T T VIR e A .
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As it was noted, the amplitude spectrum c¢f signal is mutually
. unambiguously connacted with its ccrrelation function. Therefcre th=

approximation/approach cf the amplitude spectra, a“tained at ths

‘ usasapplication of a criterion ¢f proximity, provides the specific
apprcximation/approach of the cecrrelation function of sigral <o the

given one. In particular, from ({7.10) fcllows the identity

. «® o = ! '
\ f]R(t)—R,(t) fdt=o- j[a’(m)—bi(co)]'dw. (7.19)

showing that the best quadratic afpproximation of correlation
l functions is achiaved by the analcgcus approximaticnsapprcach cf th-

spectra of power - squares c¢f ttre anplitude sgactra.

Moreover, the value standard deviation of correlation functions
can be approximately connected with the distarce betwesn the sigrnals.

Fcr this 12¢t us do some ccmpletely acceptable assumpticrs.

L=¢t us assume *“ha*t signals }U)EXZ have ¢tbhe firnal duratica T.

This correspcnds, in particular, t¢ examined/cornsidsred furthsr FM

and ChM signals. Th2n, autocorrelation functicn R, is differant

'% from zero in tha interval (-T, T). Assuming also that this in%*acval i
¢ contains the most 2ssertial par% c¢f tha assigned furnction R (%), le= {
§

' { us determine root-mean-square errcr 6 by the relaticaskip/ratio i
_‘1‘ - a\

*} %%q%jmm-RmWa (7.2

) 2 .

2 Y

KN

vt TGS T, Y oy
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Takirg into account (7.19) we have fucther

Page 190.

v= S[a (@) + bx (®)]! (G (®) = b, (@)]'dw. (7.21)

Using the law of mean, let us tak2 out tha first facrtor f£ar the

integral, after taking it at certain midpoint cf thke axis of

fraquencies. Taking intc acccunt (7.14), we ottain

s Lo - ’
Y=arla@tb@)]d ), (7.22)

Aftor prsserving acceptatle for ocur avaluation/estimate

accuracy, it is possible to ccnsiderably simplify tkis

rzlationship/ratio. Pirst, we will count %he appreximation/approach

cf the spectra sufficiently tc gccd ones, so that for the interesting

us mediym frequancy

br(w) xalw) z_aop(u)) ..

In the second place, let us determine the 2ffective bandwidshk 1,

occupied by the assigned sgectrum a(w), being based c¢n the

standardization on the energy:

- -]
= j‘“:("’) do ~ - a’, (w)-20.
-

Therefore }a:,(m)_—.—a'o.

As a r&sul-

formula (7,2Z) tak=s the foro

et e e

e ol s
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. o, .
P=grd V=1, (7.23) |
vhers - #

o . m=QT/x (7.24)
- centraction coefficient of signal x(%). This valus is dzfined as

the product of th2 duraticn of signal T tc the 2ffactive bandwidth ¢f H

the desired signal y(t). /;

For optimum signal Xopr. 0f that r2alizing shortsst distance dmin

( from (7.23) we obtain respectively

. bmia = VTR dmiwe.  (1.25)

This result has tasic value.

First, establishing the direct depsndence between the
approximaticrnssapprcaches in the space of sigrals and the standazd
deviation ¢f autocorrelation furcticns, we ccnfirm the applicabili-y

of the hypothesis of proximity to the task in question.

Page 191, 1

In the second place, forsula (7.2%) givas the diract msthecd of ¢ha q

evaluaticn/estimats ¢f ¢th2 minipur divargence of autccorrelatiorn

functiors of distancz dmin FcI tte signrals of some <yras, in

*

. —————— .
e IR T U L e

e ey —— TP T T
o
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particular for phase-keyed, this rakes it possible ¢ come tc
light s/d2tect /expos? the ispertant laws, which characterize thé

maximum possibilities of the apircximation/apfroach (see Chapt*ter 9).

One should emphasize that *the cbtained evalua:icn/=stimat2 is
approximate. The minimizaticr cf the distance betwesn X and Y,
providing the best aprroyimation ¢f the amplitude spectra,
nevartheless does not guarantee tke best apprcximaticn of corralatica
functions. Said relates as to guacdratic criterion (7.20)), sc, and
with the ever large fcundaticp, tc¢ the minimax criterion, frequently
utilized with “he synthesis ¢f sicnals. Therefore, the solution of
this task, okbtained on the base cf the criterion of proximity, front
is cnly iritial approximationsarprcach, and it must ke furtter mada
more precise with the help of tle iterative minimizations. This

method we will apply with the synthesis of Ch¥ and FM signals.
7.3. A change in the space metrics.

The results of the previcus paragraph leave certain
dissatisfacticn because the apprcximations/apgroachsas in the spacs cf
signals proved to be ccapiitely pct equivalent o
approximaticns/approachas in the space of autccorrslaticn functiocns.
It fact we hava tws differernt criteria of optimum characters (7.17)

ard (7.20), which weakly ¢iffer frcrs cach other. But would ka2 %o
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pref=rably previously assign the criterion of approximeticn/agproach
for the autocorrelation functiors, for example, the minimum cf error
{(7.20) , and seek the decision, which strictly corresponds to %his

critericn.

As it was notad in ehapter 1, it is possibls “o change tha spaca
metrics of signals so that the mirnimization of tha distance Lbetween
sats X and Y would provide best approximation in tha sense cf “he

assignad criterion.

In the case in question it is =asy to indicate such metric (i%
is mor2 precise, quasi-metric). Let ths distarcs between sigrals

S;(t) and s, (t) be is detarmined in the form

(s, s9 =5 {1

Ccamtmy

@ -3 (wfde.  (7.2)

s

I i e N ey - a—— -
. [ e s ;‘-f"". - .
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Page 192,

After assigning, as earlier, many permissible signals X
(arbitrary) aend many dssired signals Y, which possess the assigned
autocorrelation functior R(t), we use a criterion of proximity for

finding the optimum signal Xopt

If we fix cartain signal x=X, then, after repeatirg the
considerations of previcus secticr, it is possible tc show that shor+*

distance to set Y comprises
) =

d(x,Y)=—7mr j[a’(-)—b:(m)rdm, (7.27)
—o0

the nearest to x signal yeY tavire the same thasz spsctrum, i.:.,

a (.(l)) =Br((l)) .

Comparison (7.27) and (7.19) shows that wminimization of the
distance between X and Y in the sgace in question is equivalent %o
the bes+ quadratic apprcximaticn cf autoccrrelation furctiorns. Thus,
after selecting special metric, we actually/really arrived at the
complete agre=2mznt with the assigped criterior. Hcwaver, meiric

(7.26) we will not in practice tse for +h2 syrthesis ¢ signals, This

e 1o

=,

VST A YU XV

r ~d

A
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is connected with thes fact that with this m2tric th2 ccndi4icn of
single energy of signal dces nct ccincide with the condition cf
single recrm. Th2 correspending cepmplicatiens, generally speaking, are
surmounted, for example, with the help cf “he simplex method (s&2 3

Chapter 4, where we met with a similar difficulty), but for +his zask

are preferable other iterative zethcds.

7.4. Special features/peculiarities of the synthesis of

comgesite/ccmpound signals.

. Many sigrals, which have practical us=2/applicatior in the radar,
are coherént bursts of rulses - wcrds, which consist of the
repsating, elemantary ispulses/rorenta/pulses (discretes) cf *h=
assigr=d form, Such signals we will call compcsi*e/compcurd. Th=y q

include, in particular, the guartified M sigrals, in d=stail

examined/considered further.

ﬁ Pagn 193.

5

'3 In general composite/conspcund sigral can b2 registerad in the fora
‘ xO=F xuy(t =t 1 (728

g j i= I -: £ ‘
1 .

i wheres . =- composite amplitudes ¢f samplas, and t, = *h=ic

|

displacement in ths %time, As a rul:, s:paratz saaplass dc¢ ro*t overlap.

C ad

‘—W"‘ . e B —— ".._... o *-—-.‘-'—..-71-—7'7- PR R L S

vy e 8 el .. et oo e
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In order conveniently to reflect ttis special fzature/peculiarity, w2

will assume th2 follcwing.

The durazticn of th2 single elementary sigral ug(t) 1lst us placrc

40 & —tje<t<;
4y (f)
=0 o>+

@
£=y: (1). with, and we ncrmalize, furthermore, -ts znergy:

El=fu = | |u@)fdt=1, (7.29)

!
-
)

=77
Moments/torques ‘f. which characterize the crder cf 3lsmentary

sanples in the tim2, ve will assume/s2% by whcl: nuabarcs. By this is
zxcluded, obviously, the cverlap ¢f samplss ir <he tims. Firally, w-

normalizs also 2nergy of ccmpcsitescompound signal as a whol2a, Takiry

into account what has been said we come to the condition

fxpr= =1 (7.30)

=1

In accordance with (7.28) the srectrum of compositsz/compound signel

has *he expression

A Y

s@=u0) L ne =@ Hw, (73]
wh:rs - 12 =
(@)= [ u,(t)e Mt (7.32)
~ir2

- - ———

ma K. T Y T2 N i . maa P
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- sp=2ctrum of elemantary impulse/scmantunm/pulse.

Page 194,
Value
. . —tot
=3
ve will call +he spectrum of the ccde. Since ; - whole rumters,
H{(w) - the periodic function:

| H(o) =H(0+2n).

Let us note also that in accordance with {(7.32) Ko(u) is a Fourier
transform from the functicn, finite in intarval (-1/2, 1/2) Therefors
TWo(w) is the intsgral function cf degr=e of 1,2 [83]. Scme propsr4i:s

cf <he in%egral functicns cf firal cdegree are usz=c balow.

The syn+thesis cf cemrosite /cempcund sijnal is resduced to tha
raticnal selection c¢f ccopecsite anplitudes % and crder cf
impulses/momenza/pulses in the ¢time, characterizsd by values . Iz
this case they strive, mainly, nct to distczt tha autccerrelation
function o0f single sample, wkict, ir particular, indica<tes the low
level of the remainders/residues c¢f the obtaip2d correlatiorn

functior., Exemining this +task ¢f synthrsis, we will ccrnsider tha*t «h»

——m ——— I T T s e s

P PSR O P
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desired set Y includes the signals, which possass the correlation

furction ¢f singlc the sanmple
e
Rit)= 5 [li(e)l edm.
-0

i.e., signals with the applitude spectrunm
[9(®) [=a (o) =7, ().
The permissible set X includes cowmpcsite/compcund signals (7.28),

vhich setisfy the enumerated abcve ccnditions.

2prlying ip this case the Lhypcthesis of proximity taking inte
account (7.31), in the ccaplete acreement with “he theorem cf §7.2 we
come to the minimization c¢f the value (see (7.14))
T a
Y=g (lL@P0 10 @ de (734

-0
mecreover varied are heres raraseters «x, and (4 which are determirirng

the spectrum of code H{w).
Page 195,

I+ will bz shown b2elcw that ¢the *ask 121 quisiion allcwss/assumss
zquivalen+ fcrmulation in the space, 2l:mentssc=1lls c¢f which ar:
complex amplitudes x;. This formulation substantially simplifies th=

syrnthesis of ccapositesccrpcund sigrals,

TR TR T T v
“ N . N . .
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Let us przliminarily establish onc usaful propa2rty of “h=

integrals, which contain integral fupctions [ 10, 11].

La* f(w)=f (w+¢2w) - periodic furction allcwing rescluticn intc
svenly ccnvergent Fourier series
[- -]
fl@y= Y e {7.351
'k=-ao
and g(w) - ths whole anmalytic functicn of final dagree o, which

satisfics one of the follcwing ccnditions:

a) or o<1i,

b) or =1 and (g(w){ decreases with w—P»+-= nmcrz rapid than l/]e|.

Then is cecrrect the ideptisy

jg(ﬂ)f(‘v)d°=-2—z_; fg(m)dm fi(w)dc-. {7.36)

-

—

For the proof of this identity let us substitutz saries/row (7.3%)

intec la2ft side (7.36) and will intagrats piecemzal:

x -] u; - ] -~
Sg(o)f(u)a’o:: Y a \g(m)e"""d = 3 oaglk).
-0 k=00 00
17.37)
Value
-~ =
g:= \gmn‘“"'”'dtn

- 3%
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is a Fourier transform from integral function J(w). In view of tha
thecrem cf Wiensr-Paley [ 1, 83] function g(») is finite in the
intarval (-o, o), i.2., E\r)zo wvhen |t] >5. The second of corditzons

(b) irdicates, besides the fact ttat J(r) is continuous,

Page 196.

Therefore with satisfacticn cf ccrnditions a) cr b)
Zt)=m0 with k=1 132,

As a r2sult in serisas/rcv (7.37) there -emains only *he
component /term/addend with k=0, wtich, as can easily be seer, and

correspends to right side (7.36). Identity (7.36) is proved.

We convert with the help of this identity intsygral (7.34), which
is determining the distarce be“ween the composits/coapound signal
x (t) and the desired set Y. Fcr this let us nc+t2, in the first placy,
that function f(w)={l—|H(0)|F has a period 2», sinca this is correc:
fcr H(w)es In the sccond place, 2s al-sady aentioned, spect-ua ﬁo(u)

there is the integral functicn cf degree of 1,2. #with multigplication

f intsgral func+icns the degree ¢f prcduc: dces nct exceed thy sunm

~¥F
-’ -

(¢

the degrees of factcrs., Therefcre <he function

8@ == |,y (w) lu =:‘o (‘).:.o (@)
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has a degree not more than 1. Tkis function, furthermore,
sufficiently rapidly it decreases with w=>+-=, which follows from tha

limitedress c¢f epergy (7.29):

= Tg(w)dw=7‘,,— [ 18 (@) Pdo=1.

T
—o

-Thus, g( w) satisfies +te conditicrs c¢f tha previcus theor=za, ]

Applying (7.36) to (7.34), we fingd /

& (x,Y) = - ." [l —|H @) de. (7.38)

In the cecmplets agreement with tha critaericn cf proximity this

value should be minimized, selecting the parmissible compound sigrals
x(t), i.2., varying x; and ¢ Ccnsaqusntly, the task of *he
synthesis of composite/ccrpourd sigral in guestion is reduced =c
finding % and ¢, with which the spectrum cf cod= H(w) lsas*®

deviatzs ¢n the modulus/mcdule frem unity.

N We will 2xamine furthar space I2(-w, ») *he functions of

fraquency (spectra), assigned ir the interval (-», w).

4
"4 Page 197.
]
-
§
- The distance betvezn twc such spectra x{w) and y(w) is determined in
?i <~he fcrm
. - 2 i ¢ - -~
X S =g [1%@)=folda.

1
<
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Let us show that the task cf synthesis (7.38) corresponds toc the
use rapplicaticn of a critericn c¢f proximity in this space. L=2% the
parmissible set X turn cff/disccrrect the spectra of code (7. 33)

i#(0)=H(0),
and the desired set Y - srectra of single amplituds with arbitrcary

—fa(w)

phases yw=e Then

& (X y) = o S | e~ _ H (@) [‘dm. (7.39)

The minimization of distance cf d(x, y) corresponds, as usual, t¢ thz

maximization cf the coefficient cf the proximity
Clrp=Retx.y)=Reo ["H (@)do. (7.40)

this maximizatiorn can be rroduced ir any order. In par=icular,
fixing/recording czrtaip alloweé¢ spactzum X (w)=H(w), w2 will maximiz:

valunz C, stlecting phase spectrum a(w). Maximum rceaches a=

a(w) =—arg A (v). (7. 41)
Substituting this value ir (7.39), vwe come to thz shortzst distance

between the selected with x and desired set Y

d'(x,Y)= —2!? 5 [ eRH) _H o) 'de =2l_ j‘[l ~|H(w)|]' d,
- B (7.42)
which must be further mirimized c¢r all permissible spectra cf ccéd=

d{#). The samz result will be cttaired, if we maximize the
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coefficient of the preoximity

Ca V)= ) |H (a)] dw. (7.43)

Relationship/ratio (7.42) coincides with (7.38).

Page 198,

This proves the admissikility of the use/applicatior of a critsrioa
of prcximity (in the version in questiorn) for the solution cf our

pretlem of synthesis,

Let us give one zdditional useful represen<ation for the

co2fficient of proximity (7.40). Taking into account (7.33), we €£ing

n ) T
Cix,y)=Re 2 X .._21"_ j‘eh(-)e—!"cdm-

=1

Lzt us designate thrcugh y (k) Fourier coefficicnsts furctior

e assigned in the irterval (-», #):

Y=g (e Cekgg g0 1,22 .

According to th: conditicn, values 'n’ ars whel? numbers: thezafore

.- )
Cix.yy=Re ¥ Xy* (L4). (7.44)
=

Applying <he critorien cf prexirity, this valus should be maximizad

or all x, ard {, <hat characterize compcsite/compound signal, ani

andhoncani i

.
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alsc cn the arbitrary phase spectra a(w) the desired signal.

The task of th2 synthesis cf ccmposites/ccmpcocund signals in
question is reduced, thus, tc the usesapplication of a criterion cof
proximity in +he finite-dimensicnal (Buclidiar) space. The
elamsrts/cells cf this srace are ir gen=2ral the Fourier cc2fficients
of the corresponding spectra. Fcr tle composita/compound sigral har=
ve have in mind the spectrum ¢f ccde (7.33), Fourier coefficients

which are simply the amplitudes cf samples.

As one additional example fcr the use/application of identity
(7.36) we will obtain ispcrtant rerresentaticn for functioning the
uncertainty/indeterminancy of tte ccmposite/écmpound signal through

the spactrun of code [13].
Pagz 199.

Ic acccrdance with (7.31) wa have

-

- :
71t Q)=—2-ln— f;{.— %);‘ (0-{-— -g—) R

4

o
{ ~
= -5 Sl.(w— _g‘.’_\u.o:/m'}'_g)H(Q—%"X
N .

Functions'ﬁo(u-Q/Z) aad 33°(u+0/2) - wholz degraes of 1,2, and
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{
H(w-Q2/2) and H(w+f/2) - fperiodic with the period 2». We will bs
interested in the values c¢f the function of
uncertainty/indzterminarcy with the whecles t=0, ¢~-1, -2, ,... Then

e alsc has period 2v, and acccrding to (7.3€) is cktainazd

- (7.45)

‘Hera x(f, Q) - function cf the urcertainty/indet=2rminancy cf single

samgle cn axis t=0.

¥4
o > i ;. * - . of i . M -
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Chapter 8.

SYNTHESIS OF PREQUENCY~MCUDULATEL SIGNALS,

The methods of the synthesis cf signals with the frequency

sodulaticn are worked out comparatively fully. This type cf serratad

signals fourd use in the radar cf earlier that others [39]), and *o

ques+ions of the optimization of Ch¥® signals ars devotad many wcrks.
Let us point out, in particular, the article c¢f Kay, etc. [36]), wh=zra
is for the first time published tte asymptotic method of synthesis
according to the assigned autcccrrelation function. This method later
was mada mors precisa anrd vas develcped with 2 numbsr of the authcrs
{7, 29). I+ is possible tc¢ ncte alsc the work of Cock and Paclillo
[18]), of the indicat=d the need fer refirnzmant asymptetic decisions
and proposzd th2 m=2tkod cf cbtaining meres accucrat2 rzsults. Csarzaia

special forms of ChM sigprels were *raced in wcrks [13, 5713.

Pag2 200,

Primary task cf prasent chapter liss in th2 fact that, after

czthinking tha known methcds ¢f syrthesis of ChM signals, tc shov ﬁ

that in fact tha2se methcds are Ltased on the hypothesis of proximity. 4

This will mak:z it possiltle tc¢ iptrcducs ths serias/ccw of

T e ey oy ——— e
1 ' i -w“-*— .- -
*, - -
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refinements, and, which is mc¢re ispcrtant, to work out further

analcgous mathods for the signals cf cther typaes.
8.1, Apprecximations/approaches ¢n the s=2¢ ChM of sigrals.

Furthsr by many permissitle signals X w2 understard mary signals
with the frequency modulation, wkich bhave the final duration T,
XO=BO™: t<Tr2. @y
It is assumed that amplituce envelope B(t) is fixed/r=2cordcd,

for example, it has square form!

- )
B(ty={1V/VT npa |t|<T/2;
o0 {0V w s Ta 82
Key: O widh. ’

FOOTNOTE 1, Amplitude 3V/VT provides standardizaticn cn the ena2rgy.

ENDFOCTNOTE.

The law of phase mcdulation ¢(t) is arbitrary, arbitrary also

th: law ¢f a change in the instantaneous freguency

. (f)=-2".
One sigral of s2t Y differs frcm another in terms of the
structure of frequency (rhase) changes., in certain cases we will
consider arbitrary also duratior c¢f ChM signal T (retaining th2 shape
cf the envalcps of the givsr cne), We will respeczively distirguish
se- ¢f ChM signals of fixed pericd cf time Xr £rcm the sst cf ChiY

signals of arbitrary duration X. Is otvious, YrcX Let thers b2 in

R e i IRt -—--.-‘-1-'- B
N . . STl . .
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th2 space of sijnals H certain desired signal

y(t)=A(t)*". (8.3)
Lat us find ChM sigral x(t) ¢f duration T, which 2nsures bes=
approximation to assigned y(t), i.e., will solvz tha task of

apprcximation on set X

Page 201.

As usual, this task is reduced tc £finding of th2 coa2fficiant c¢f

proximity between set X; and sigral y

- X -= o . . .
CX;.y) ‘xéx;x:Re_ix(t)y (tydt.! (8.4)

Lat us demonstrate the fcllcwing theorenm:

5) Best gquadratic aprreximatica tc signal y (%) is provided on
set Xﬂ with the coincidence cf tle phase functions of th2 unkaowr
ané approximat=d signals

e =0(); (8.5)

b) If signal y(t) is differert f£-cm z2r0 in any time irnterval of

£inal measure with |t|<7/2, sigpal ¢f best apprcximation on Set:fonly:

c) Shortest distance d(Xr,y) and coefficiesnt of proximi+y

C (Xr,y) dep?né only on amplitude crvelopss and are given by the

sxcrrassions
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X = [AO— B (8.6) |
—
T2
X C X, )= SA(t)B(t)dt. (8.7)
-T2

For the proof l2t us subtstitut2 valuas (8.1) and (8.3) in (8.4)

T2
C(X;.yy=maxRe (14 B(t)e PI—SWlg _
v ' ’

~#12
m 1‘
= max J AW)Bit)cos[p(t) — o)) de. 4
-r/2 ’

0f thaorem conditicns are bere assigned tha positive furctioars i

A(t) and B(t), and also phkase Q(¢) ct signal y(t). Maximizaticn is
prcduced according to the functicrs #(t), which differ one signal »of

‘ set Xy from another. It is ctvious, maximum reaches when @(f)=0()

; for all values cf f at which A(t)#0 and B(t)#C 1.

FOCTNOTE !, With excepticrn of ar arbitrary mul:titude of the zzro

measure (€=« nocta on rpage 18€f). ENCFOCTNOTE.
Page 202.
Case B(t)=0 is not of interest, since in this case the phase c£

sigrnal x(*) is not datermined. The aforzsaid proves all cenfirmatiors |

of theoren, i

focus at+tenticn cn the similaczity of %ais
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~hecrem of §7.2. In fact are examined completely analogous tasks, but
cne cf them is treated in the frequency domain (is determined the

; cptimum phase spactrum cf signal with “he assignasd amplitude), ard
othar - in the temporarys/time (is determined thz cptimum law of phacsz

wmodulation with assigned amplitude envelope).

If duration of ChM sigral previously is no~ assigned, btut it is
detarmined with ths synthesis sc¢ that would be cbtained the Lest
approximation on set X, additiorally is produc2d maximizaticrn on T.
Taking into account (8.7), in this case we obtain

e ‘ o
G — »
. (X.y)= m;?x-i]/z A(t) B(t) at. (8.8)

§ 8.2, Synthesis ChM of signals acce¢rding tc the function of

uncertainty/indeternminparcy.

L=t us use these results fcr tte synthesis of ChM sigral
acccrding 4c th: assigned realizakle function of

uncertainty/indeterminancy. In §7.1 it was shcwn that for this it is

o necessary to determine signal <%opsr, nearest to many dasirsd signmils Y,
- moTteovar ths latter is detsrmined in ths form: yev, if
» .
,’ y(O)=s(t)e™,
4 where s(t) - th2? sigral, which realizes 4h: assigned functicn 2%
J
' uncartaintysiniacsrmirancy (4 Q), and ¢4 - ackitrary initial fhass=,
,; Ore sijnal ¢f szt Y differs frcr ancthzc only ia terms of %this
. ¢
oo
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initial phase.

After fixing certair signal yeY, possible, using the previous
theorem, tc detarmine the nearest to it signal of set X, and *harn,
varying initial phase ¢, (beirg zcved on s=2t Y¥), to cbtain the

shortest distance dpi, .

FCCTNOTE . Let us note that this crder of the minimiza*ticn of

distance reverse used in §7.1. ENODPCOTNOTE.

But, as it is clear from (8.€), distance from signal y to set X do=s

not depend orn initial phase ¢4.
Page 203,

This means tha*t many desirad signals Y aquidistantly in this zask
with thg set of ChM signals Xr all signals ysY th2y are placad a:
aquidistarces fzcm Xr. Therefcre jinitial phase ¢, can be selected
arbitrary, fcr sxample, tc assure ¢,=0, and this will not influence

<he quality cf approximaticn/apgrecach.

L=t us consider furtber a specific example. As it was shcwn in

Ghapt?r 6, cns of +h: signals of crtimum cnes £rca the peint ¢ vi:w

o€ «he corcer=ration of the tcdy ¢f unczrtainty/indatecmirancy, is
b
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LFM signal with gaussiarn envelofe

st _npe

—farr .
yit)y= o2 € e ) (8.9)

Here the first factor provides standardization on the 2nergy. This
signal is difficult tc achieve, since is requir:d a deep amfplitude
rodulation. Therefore let us syrtkesize ChM signal with rectangulac
envelope (38.2), which gives best arrroximaticr to a function of tha

uncsrtaintysindatecminancy of sigral (8.9).

In acccrdance with tha previcus thioram ths unknown signal mus*
have with rectangular envelore c¢f B(t) the same law of phase

s

modulation, i.e.,

x(t)=—yl7e"”,|t|<7r- (8.10)

If dura=ior T i1s assigned previously, then on this synthzsis is
finish=2d, But if i*% i1s necassary tc dat=rmine tna optimum valus cf T,

e cocme to the maximizaticn cf value (8.8):

it .
n —t2ugr —f = \V4 D (2)
C(.X'y)——ﬁ S e d‘—(7> V; =max. (8.11)
-T2

-

- 2
Hare 2z=T/2y2: and o(z)=72=.5e—=‘dx - errcr function.
r
0
Pags 204,

Differentiating (8.11), we ccme to ths

W
Vo]
(=
[+Y
fad
[
(o]
te |

-

®(s) = 27,
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which is satisfied for 2z~~1. Thus, the optimumr valua T comprises
T2V T (8.12)

With such a 7T tﬁ?.ccefficiecf cf proximity attains possitle

maximum. This maximum it is nct difficult to compute accordirng %o

foroula (8.11), after assuming z=1:

Cix N=maxC (X = (5" 0(1) ~ 095, y

Fig. 8.1 shows the dependerce cf the coefficient of proxiamity of
the duration ¢f ths agpprcximating signal T: along the axis cf
abscissas is daposited/pcstpcned dimensionlsss juantity z=T2V 92r . Is

there dapicted bell-shafged envelcge of the assigned signal and

cptimum rectanguiar env2lcpe cf duration 7opr- Th: instantanecus
frequency of thzse sigrals is ctanged equally, according <o the

lirzar law.

The distance between the given cn2 ani that approximating by
signrnals it compcses

4 =2[1-C(X Yj=2[1- 0.951;_—0.1.

The standard deviaticn c¢f the cerrasponding functions of

uncertainty/irdz2terminancy is e€asy to count according to formula

{(7.9) :
&y ya=2[1 =C-(X "] =2{l —095"=0.2.

min

-~y - - —— - - < e - - S — i
, ——— Y TN T T e e s e e . :]
D S T N0y S R A VO S .
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Fig. 8.1.

Page 20S5.

As is known, the functiors c¢f the uncartaiaty/irdzterminancy of
LFM sigrals with gaussiar ard rectargular envelope, are sufficiently
close., For thas? signals the body cf uncertainty/indet:zrminancy has
“he s2longated, =1lliptic fcrm., The iaclina*icn/slope of “hs axis of
21llipse deperds on rate cf chance ir the frequsncy and with thz don=z

approximaticr is identical. Scme differ=ncas ar< in the firnse

. structure of thz body ¢f uncartairty/indstarminancy, in particular, ﬁ
S in the fact that the secticns alcrg the axis ¢f frequency are
«'.
N represented as diffsrent functicns. Por ractangular emvalcpe this
;,J section has the fornm . ;
‘ inQ7T/2
¥ 709) = Sg7—,
¢ .
i while for gaussian envelcge
]

710, Q) ==e~™,

akan .,

C e ad
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The cptimum selecticn of duration T provides, in particular, the

possible approximaticn/aprroach c¢f these sactions.

-Taking incto account as a whcle the general/commcn/tc<al
structure of +h2 body of uncertainty/indet:2rminarncy, i* is pessibla
to say that the character cf frequency modulation has the prevailing

valuz., The method c¢f sypthesis examined leads to the idantical i

fraquency modulation fer the assioned and appreximating signals and /
thus provides the proxiwmity ¢f the functicns cf
uncsrtainty/ind=terminancy. Is retained only th2 differsncz in the

anvelopes, causad by the structure cf the permi-ted ChM signals.

Althocugh the cbtained results are comparatively trivial, one
should emphasize tha* we fcund the ccrpletz2ly strict method of
synthesis ¢f ChM sigrals from tle assigned realizable futcticn of
uncertainty/indeterminaﬁcy. Metkcd provides the mipimum of guadra-ic
errcr for the arbitrary given ervelcpe shape and is realizad vary

simply. This simplicity cf decisicr is caused, obvicusly, by the fac=

k.

that w2 realize synthesis acccrdirg to “he realizable functicn of
uncertainty/indeterminancy, which is found preliminarily without %a:
limitaticns to many permissirle signals, For finding this functicn cf
uncertainty/ind2tarminarcy it is pcssible t¢ us: th2 metheds,

presented in ehapter 5.
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But is fesasibla arother, generally spaaking, more correct mathcd
of synthesis. With this ChkM sigral x(t) it is selected so that its
function of uncertainty/indeterasirancy xx@.Qi would implemsnt best

approximaticn to the arti%rary desired functicn F(=, 0.
Pags 206.

The latter is not realized as the function of

uncertainty/indsterminancy and it is usually assignéed cnly con tha
' modulus/module. In particular, in wecrk [85] is used thz follcwing

. critericn: :

| N E j‘nr(t.n)r-ly,,.u.o)mwdo—_-min.

Th2 functicr of urcertaintysindetercinancy g.(s,Q) complicat-=dly
depends on phase ¢(t), detsrmininc (with assignzd =nvelcp2) ChM
signal x(t). The minimizaticn of functional & according to th-=
’ functions #(t) is the tarcet cf calculaticz. The aralytical
ui minimizations of so complicated a functional, it is understocd thzre
dczs not axist, In [85] is used iterative gradizn*t method.
calcula“icen is characteriz2d ty the large spaca2 of calculaticas.

Fucthermore *he nonlirear functioral being invastigated has local

q
[]
q
- =x“r=ma, and als¢c characteristic "ravina?" structurs. Apparerntly, !
1
3 simpler mc+hed 2xamired akcve c¢f synthesis is advisable, az lsas+,

Scr nsbtaining <he initial apprexisa+ticn/approach, which ¢hzn can b:

e . Praake AREE RS ——— e g ~~.---‘-~'.TVV"’<'--"""" - ———
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made more precise with the help c¢f the iteratioas.

8.3. Syrthesis Chd of signals acccrding to the autccorrelaticn

function.

The known mstkods cf synthesis of Ch¥ signals have by main
targst an approximaticns/apprcaclt to the assigrad autocorrelation
function. This is ccnrected with the fact that ChM signals frequently
are used for m=asuring only the range cf the targets when the
axpected Doppler effects are lcw, The signals with linear Ch¥ (and
close to them) possess also that special featur2/peculiarity, tha*
the secticns of thz bedy cf urncertainty/indeterminancy at tha
different values Q are similar tc each other. This provides
permissicn/resolution in the range even when Coppler rates are
relatively great, During this use main rel: again plays cnly +*h2 fcrn

cf autocorrelation furcticn.

As shown in §7.2, synthesis according to the realizablz
autccorrelation funrnction R(t) is reduced *to the minimization c¢f the
distarce bt2tween many permissible signals ¥ and mary desired signals
Y, the lattsr haviag the assigred auvtocorralaticn function R (%),
i.e., tha assigned amplitude spectrum a(w):

y(@) =a(@e " (8.13)
Pagz 207.
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Phase spectrum «(w) is arbitrary, this differs one signal of sz%
Y £rom ancther. Here we examine the task of synthesis in space L2, so
that apprcximation/apprcach is understood in the sense of cri“=zrion

(7.17) .

Let us giv:s two formvlaticns cf tha *ask iandicatad. Lzt us £ix
first certain permissible ChM sigral
x(t) = Bt) ™" S 14
and it is determined distance fros this signal to szt Y. The
corrasponding theorem was by us proved in §7.2. According to this
theorem, to ths assigned amplitvude spectrum a(w} it is necessary *o

ascribe the phase spectrue of sigral (8.14), i.e., t¢c place

a(w) =B:(0),
wher? Pe(w) is 3z2tesrmined from ttke expression

(5]
-

B T
=)
-F

Xiw)=by(a)e Bit)e™ =g (8.15

12
The corresponding coefficient cf greximity C(x, Y) depends crly or
anplitude spectirum b:(w) and it is given by formula (7.15). Then in
ordsr to obtain shortest distarce dmin it is necsssary to wmaxiaiz2 “hs

co2fficient of proximity alsc ip signals x(%t).

As a resul: we ccme *c the fcllewing variaticn probl:m. I- is

ST
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necassary tc datermine the furcticn @ (%), which givas maximum tc¢

valus o -

C(x,Y)=.2+__ Sa(w)b,(«n)dw=max. (8.16)

uhere,bﬂy) is determined in the fcra

T2
be(w)={ | B(fyelr" ==ty i8.17)

}
~¥/2
The function ¥4 (t), which satisfies these conditions, and is thr

unknown law of phase modulaticn.

Page 208.

We will now obtain tle same distance &ﬁQ'functioning in cther
order, Let us fix arbtitrary sigral y(f)eY ard i« is det=rmired
distance from i< %o set ¥. Accordirc to thecrem of §8.1 for this w=
must ascribe to assigned envelofe c¢f B(t) phass function dun.of

sigral y, i.,e,, to assupe

() =0(1).

Here function QRO is determined in accordance with (8.13):

yOH=4()*" = L j a(wje keI 4, (8.18)

The coefficient of proximity C(X, y) depends oaly on amplitud:

:nvelopr A(t)- and it is givep Lty fcrmula (3.7) or (3.8). In crder *c

ob*ain further 2istancs dmi it is nacessazy ¢c¢ laad minimizatior also

LT R S 1 b A e e R
[ TP D SRRV
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on signals y. As a result we core tc th2 maximization of valu2

7/2

C(X.y= §B(t)A(t)dt=max. (8.19)
-¥/2

ars
where 8

A(t)= x-zln- Sa(m) e‘"“'”“d.Z). (8.20)

-—Cn

Unknewn is here function a(w) - th2 phase spec<rum of cp%imun
generating signal yop(¢) (see §1.€). If is determired phase spectrunm
@ope(w), which satisfies ccnditiors (8.19), (8.20), then further i
located mcst g:nerating signal, fcr which is used 4he Fourier
transform (8.18) . Obtaineé phase function-(bunq) is assigned finally
by assigned by amplitude envelofre, that also gives the unknown ChM

sigral:

Xope (1) = B(1) exp {jd);,,,(t)].-

In the latter/las%* trarsitior it =s *takan intc cecrsideration,
that signal »x,,, is the elemert cf set X, nearest to Yopr. Therefors w=
applied theorem of §1.8 tc determination of Xopr with resgect to
Yop:. Let us remambsr that in §1.8 *his methecd ¢f synthasis was ramed
the synthesis of the cptiosum generating signal wi+th the subsequant

approximation.
Page 209,

Frem that prasented it is clear that botl app-cach2s “c %ha
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synthesis lead to the similar variational protlams. Corditions
(8.16), (8.17) and (8.15) (8.20) are characterizad by cnly tha fact

that the temporary/time and frequency dependences vary by rolsst,

FOOTNOTE 1, Thus it was cttained tecausz s2ts X and Y wers detarminesl
in this task analogously, besides cne of them is assigned ir the
frequency dcmain, ard ancther - in ths temporary/time. With th=
synthesis of FM signals we will meet with the larger difference in
tha structures of the sets indicated and then these methods cf

synthesis will be essentially distirquished. ENDFCOTNOTE.

Unfortunately, does not succéed in propesing the direct method
of daciding ths variaticpal prcllems indicatsd. Main cbstructicn li-s
in the fact that condi+icrs (8.17) and (8.20) contain the
moduli/modules of integrals. Tc cperate with such 2xprassiors is
difficult. Will be sxamined belcw *Fke corraspcnding appreximatiorn
mathcd, suitable for ChM signale with high compression when intagrals
indicated can be computed with the help of the principle of steady

stat2.,

Howaver, is anct difficult *c cecrnstruct ¢ha itarative precadur-,
wvhich makes it possible tc reduce step by stet the distance tatwaren

examined/considarea by sets X and Y. This procsdure complezely

corrzspcnds to the methcd c¢f the successiv: desiga (set §1.3 and

P T
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§1.10) .

Being transmitted from certain initial signal xe&X, let us firse
determine nearest to it signal #'=Py(x)=Y. Let the distance betwaan
these signals be d,. Then let us find signal n&X, closest to y, ari
locat=d at a distarcs of dz fror it. Let us further Jdetermine signal
&Y, pearest x,, then - signal xeX, nearest y, and sc ferth. It is
obvious, this procass leads toc descending sequence of the distances

d=d:>ds>= ... (8.21)-
Since this sequence is btcunded below (d>d..,), it convarge to

certain limit.

Does coincide this limit with a smallest distance of d-;. i+
deoends on the form of the curves X and Y. If th2 minimum of distancs
is unique, ther as a result cf the fact that segusnce (8.21) convacge

to the minimum, process unavoidably leads “c¢ tha shortcst dis*ance,
Page 210.

But if ¢*he curves X and Y have ccoplicated charactzz, theze ar2
saveral local minimums cf distarce, then process leads %to son?
minimum, tut, perhaps, nct smallest of base. Succsss of decision
depends ¢n hew cleosely %c xop i€ s3lacted the signal ¢f the inisial

approximations/approach xg. Further the methed of cb%aining <+h2

- pe s N - - - C. P A e s ol et e b 4 -.—..T"_—-:':.-_ t»ﬂ‘-.a :4..-«--‘ v-..-.vf—. - -
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initial apprecximationsapproach in questicen prcevidas (at lzast, in

some important cases) prcximity tc the glcbal minimum of distance.

The procass presented is reduced to the consecutive fulfillmen<z
of two Lasic operations: to findiro ChM signals x.=X, closest to scme
signals 4, and to finding desired sigrals ‘yieY, nearest to ChM
signals x». Both these cresraticrs we knrow how to make. The £irst of ]

them is determined by ttecrem cf €8.1: in order to obtain xi(?),

nearest tc¢ y(f), it is necessary fcr assigned amplitude envelcpz B(t)

to ascribe phass ®(!) of signal ¥Yi(!). The sacond cpeoraticn is
determined by theorem of §7.2: in crder tc obtain signal 'y n2acest

. to x, necessary to determine ptase spectrum B«(®w) of signal x; ani

'to ascribe this phase spectrum tc the assigned amplituda spectrunm
a(w). As a result will re formecé¢ spectrum j:(w) of the unknown sigral,
and further it suffices tc fulfill Fourier transforam in orxder <o

switch cver to the functicn of tige.

u{ Thus, the precass in questicn is raduced t¢ the successiva
adding of phase functions in the terporary/time and in frequency
dcmains respectively. This addirg cf phase is a design to the

appropriate ssts X and Y.

Wwe arrivad at cne ¢f the krcwn methods of synthzsis. This mezhed

was proposau ia 1953 by Tartakovskiy fer the egquivalsn:t task <f «h-»
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syrthesis of antenras [73]. In the application/appendix tc the
synthesis of ChM signals the methcd was modifiazd in [7]. This mathod,
*herefore, is nothing else rut the sethod of successivz d=sign,

based, in turn, on the critericr ¢f proximity.

In §1.10 were tracedé questions of the ccrvergence of the m=thod
of successive d=sign. It was estatlished/installed, in particular, ’
that an in ques+ticrc in this task mnlti*uda of the parmittcd by ChHM
signals X Is not convex. For analcgcus reasons convaxly and d=sired

set Y.
Page 211,

Tharefore the itsrative me*hed in questior, altaough gives mcno*crnic
decroase cf the distarces betweer “he sets, can, generally sp=2aking,
Lot converje in the sense that the cbtained succsssive approximaciorns
Xg(t), X3 (t), xX2(*) ... dCc nct eapprcachk tha spzcific limi*. As shecvr
in §1.10, fcr the cenvergence of iterations it is necessary that
cbtained ChM signals x(f) too wculd rot differ from nearest to “henm
dcsired sigrals yi(f)=Py(r,) " (S€e ccnditicns (1.49), (1.50)). Im cta=r
words, it is raquiced sc that tte initial approximation/approach
would provide sufficiently low céistance between the sets, proxinmits

“¢ thz cp*imum. This agaip irndicates ¢h: re:sd of obreaining gced

ini«ial approxirza+*ions/apgrcachest,

- — - - - - -y - —- .- v it albndh . e St - - -
- - . t.
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FOOTNOTE . Below we will see, that the asymptotic decision (utilizel
2as the initial approximation/aprrcach) makss it poessible to obtain
for ChM sigrals with the large ccrpression *the arbitrarily lcw
distance betwean X and Y. This frcvides ths ccnvergance of method.
Convergence was confirmed alsc lased on spacific examples by th=2

calculaticns of L. B., Tartakcvskiy [74]. ENDPCOTNOTE.

The proved above thecrems gmake it possible to establish also
that ducing th: complet=aly accepteltle limitations cccurs the
unigqueness of approximaticns/agpfrcaches in each stage of iteratiors.,
Let in the course of iteraticns ke cbtained certain signal x(f).
Becauss of theorem cf §7.2Z, the tramsition frem »xr, tc u it is
raalized by anr only forwm, if spectrum Zi(w) is different frcr zerc in
sach firite frsquency rangs. Eut ChF signal xi(i) has th2 firal
duration T. Consequently, spectrur (o) is the whole analytic
function which can “ake zero values conly at th2 isclated points of
«hz axis c¢f frequencies (cn tke null set), and the cendition cf
uniqueness is satisfied. L2t us ccnsider now <¢ransiticn from ui(f) =c¢
followirng ChM sigral xu(f). By tle fcrce c¢f theorem of §8.1 this «L-
transition is unique, if signal g is diffsrznt f£rem zere in any
firite time intzrval with -T,/2<t<1/2, This cordition is satis®iz:24 :ia

many instances. For exawmpl2, it is possibls ¢¢ assums tha<t =hsz

e it S Sl
-

s T
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A

assigned amplituds spectrum a(w) is limit=d by “he arbitrarily larg-,

but final frequancy band:

ale)=0  Vith .50 (8. 22)

Then any signal y=Y 1is a whcle aralytic function, and the conditiorn
of uniquaness again is satisfied,

On= should howsaver emphasize that for the practical use cf a
m2thcd questions of ccenvergence ard uniqueness of iterations have

nevartheless secondary value.
Pag=a 212,

In §7.2 it was showrn that precisely distarncz di=lx, —y is *hn
satisfactory measuce for ¢he apprceximation/apfroach of
autocorrelation functions, see fcrmula (7.23) . Thersfore “hke monoton-
decrease cf distances d, - the ccnvergence cf process on the
furc<ional, which does nct require any conditions, alrsady provides

“h2 practical applicability of iterations.

If we “ake into acccunt this Ctservation, one should ceceqrize
that the frincipal value has a guesticn nct altour <hat, dzscend

w=:r2ticns ¢r they diverge, bu* crly abcocut “hat, they de lead te

- - -- g — ey ..-..\v._.-T‘.‘Tr:- B ot
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shortest distance ‘¢M1 cr the maximum distance d® is more than dmin._
In the lat%sr case signal x@ fcund as a result of iteraticns,’vill
not beé cptimus from the pcint of view of th2 approximation/apgrceoach
of autocorrelation functicns., As it was not2d4, a similar situazior

was possibkle, since there are several local minimums of distarcs,

Consequently, the furdamental condition, which 2nsures the
affici2ncy of methed, is *he selection of initial signal, it is
sufficient clecse one to tlte crtimur; are necessary the special
methods, which make it possible tc¢ find rough approximation, and it

subszquently it is possikle tc rake mor2 precis2 via iteraticnus.

One of such apprcximaticn metheds is zxamined further. This
m2thod, bassd on the asymp*otic scluticn cf th? fcrmulated prchblem cf
synthesis, is us=d for the mcs* igpcrtant vir+ually case of ChM

sigrals with +h2 lacge ccrvressicn has also ipd-pendert value.
8.4, ChM sigrnals and the methcd c¢f steady stata.

Furthez ths method cf syntlesis ir questicn is Fkased on thoe
aporeximation calculus ¢f integrals of the rapidly oscillating
functiors - poinciple 0f s*cady statz. Let us consiier ths irtegral

4
I={(Fix)e™ gy
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Punctions F(x) and f(x) are assume€d to b3 thosz slowly varying, i.=2.,
functions themsalves and their derivatives are of the crder cf ona.

If parameter m is sufficiently creat (m>>1), th2n the functicn
e — cos mf (x) 4 | sin mf (x)

is rapidly oscillating.
Page 213.

The integracd can be likened tc the high-f;eqaency oscillaticn,
modulated on th2 amplitude a2nd the phas2, Irntegral J gives th=a
"constant component"™ cf this c¢scillation and the less, the greater m.
This it is possible to exrlain ty thke fact that neighboring
half-waves of oscillaticn - positive and nagative - almost ccmpenszt-
2ach other ard is made a very lc¢w cen*ribution to valus J. Howaver,
“hs compensaticn for adjacent half-saves stops ineffectivs near tha
points steady state, determined by the conlition

[ (x5) =0. (8.23)

At such points "instantanecus frequency" it becomes aqual to
zerc and cscillating prccess ceases (it is morm precise, it stops).
As a result the main contrituticn tc¢ the integral in+*roducc pracis-»ly
the points of steady state, if they exist in th2 interval (a, b). Fcr
calculating tha contribution frcm the staticnary pcint it suffices =2

~ak

n

into acccunt behavicz P (x) and f(x) in its vicirity. This l<zds

to dependence [6]:
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b

. Imf(x) - 2= o

) IF(x)e dx= rml’(x,)x
a

Xexp { [mf () £ ]} +00/m. (820

It is here assumed that ip the interval (e, b) is cnly one statiorarcy

pointl, which satisfies ccnditicr (6.23), for which |mf"(xo){>1.

FOOTNOTE ', If there are s2veral stationary pcecints, it is necessary
to tike the sum of correspendin¢ ccrporents/termssaddends.

ENDFOOTNOTE.

In the index is taken plus sign with €%(x5)>0 and minus sign is -

with £°(xg)<0.

Correction term 0 (1/m) gives the 2s*imation of error ir this

formula: error consicders, in particular, contribution from other

secticns cf rarge cf irtegraticn in which theras arz no staticinary
points, Therefore evaluaticn/estivate 0 (1/m) is valid also for

entire integral, if there are nc¢ pcints of steady state.




r‘ DOC = 80206710 PAGE

Page 214,

Let us compute on this base the spectrum of Ch" signal (8. 1)
- T ]
x{®) = (’ B(t ell.(f)—*"ldt.
~f12
Let the instantanecus frequercy be changzd for time T within the
limits - Q<w(!)<Q, so that the deviation of fraquency comprisss 22.

‘ Since the irnstantaneocus frequency is derivative of phase, it is

pcssible to register

é

1 t .
?0=[=0d=a {04 =ar i) dn = =, (a).

Here "=f/T - dimensicnless time, Y(n) and @ (n) - the function of

+he order of cn2 and m=GT/m» - ccantraction coefficient.

As a result it is ckttained

F
ettty

LS

12

.

E’~ B x (=T By el mietn=ralgy
1 —in
?.
”% whera +=0/Q - dimansionless trequency. Aftaer using to this integral
! fecrmula (8.24) and baing raturned after this to initial to the
- 4
: 4 variablesalternating t anj w, we fird:
r. 3
.t‘. -
v
3
A
i
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e e A e e i - .
— e R S —— . - -3
o . . . MR TT W = e v

o Y s e .
USSR ¥ V- N S ROMPP AR ROV SR SRS S




DOC = 80206710 . pAGE 37%

x(.)._} TAGIE U)I ——— B(t,) X
><exp»l [?(!,)—-ot,i T]}-{-O(l’m). (8.25)

Here moment/torque ¢ty is defined ty equation (8.23), which, as can
gasily be seen, has a fcrn
9’ (t) —0=0

or, which is squivalent,

wc(t) =o. (8. 26)
This relationship/ratio makes simple physical senss. It tcgether with
{8. 25) shows that in acccrdance with the principle of steady state
the spectrum of ChM signal at the frequancy w is determined, in
essence, by the behavior ¢f sigral at the mcment (or moments/torques)

of tim2 t,, wh2n instantaneous fregquency passes value w.
Page 215.

This will be coordinated ty the kncwn approximaticn methods, utilized
in the radio engineering calculaticrs,

Formula (8.25) assumes that there is only oneé stationary poirt
in the interval of integration; tlerefore it is applicable for the
signals whcse instartanecus frequency vary mcrotonically - it grows

or d2creasss, With a chacg? in the frequency « 2juation (8, 2€) is

. R e w-.‘..—.-w..mﬁ s o ——r - o
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satisfied at different values of tgy, stationary point is moved in the
duration of signal. Thus far frequency o is selected in the limits of
band +-0, spectral functicn x(w) is determined by the moment/torque
of time tg=tg(w). In other words, in this frequency domain the
spectrum is approximately detersjjned not by signal as a whole, but it
is local, by th2 moment/torque cf time t,, which depends c¢r w. This
connection/communication tetweer the instantarneous values of

frequency and time is the base c¢f furthsr calculation.

" If spectral frequency w is selected out c¢f the band +-Q,
equation (8.26) is satisfied rot with what t in the interval (-T/2,
T/2), i.e., staticnary pcints are aksent. Pormula (8.25) in this case
becomes meaninglzss. However, spectral functicn in this regicn is
low, it is estimated at value c¢cf 0 (1/m) and can in the first
approximation, be disregarded fcr the signals with the large
compressicn, Ths fundamental porticn cf enzrgy of such signals is

concentrated in the band +-0Q, i.e€., frequency domain, by the running

instantaneous frequency.

Let us consider in pcre detail the structurs of spectral

function in the fundamental regior (-9, Q). Pcr the amplitude

]
spectrum we have from (8.25)

-~ /
bslw) = | (0} =}/ m_z(ﬂz,T. B(t)+0(1'm. 827
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2

This relationship/ratio shows tlat the amplitude spectrum depends on

the sigral amplitude at mcment/torque t, and cn rate of change in the
frequency for this moment/torque. The greater the rate of modulation

"@'ctfo), the less the level c¢f spectral function. This dependence is

confirmed by known physical ccnsiderations [6 .

For the phase spectrum we lave respectively
() =—{g () —otex /4] (8.28)
Page 216.

Let us show that derivative fx{w) is a monotonic function of

frequency. Actually/really, taking intc account (8.26), it is not

difficult to obtain

e _ b d P~
ST w = T P =T g

) 1
= — (@ (f,) — @ (1,) — @' (8)] TR =1,
Consequently, again applying (€.26), we find

s _.dt 1
B z(')——;j.= AR

For the signal with the morctcnically changying frequency value
w’c(ty) does not change sign ¢r the entire duration T. Therefore
B”:(w) alsc dces nect reverse the sign, that also proves the express2d

cenfirmatiorn.
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Let us focus attenticn on the following rroperty of symmetry.
According to tha2 conditicn, the law ¢f a change in the phase ¢(t) is
such, that its derivative ¢’(/)=w.(f) is monotone. Phase spectruna Bx(0),
proves to be, possesses the similar property: d=arivative B! (w) is
monotonic, hesides has the same cltaracter of ths change (it grows at
the increasing instantanecus frequercy or decreases - with that
decreasing). So stand matters, a2t least, in the
approximation/approach cf the metkcd of steady state, i.e., with the

high contraction coefficients mn 1!,

FCOTNOTE !, On the base cf the methcd of steady state it is possible
to compute the spectrum ¢f ChM-cscillation/vilration also in the more
complicated casas, in particular, when there ar2 several stationary
points [5, 6]« But the clktained expressicns are not used with the

synthesis of signals due to the unwieldiness. ENDFUOTNOTE.

Let us nov consider inverse precblem - recovery of signal on its
spectrum. We have

]
y(t)= 5 S a(m)e~ /"1~ gq, (8.29)
J .

It is assumed that the amplitude spectrunm a(w) is limited by the

final band of fraquencies - (Kwgll (howevar this assumption is not
$ E
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essential). The derivative of the phase spectrum
Jo (@)

e % (») . : 8.30) .

has a dimensionality of time.
Pagyes 217,

Thkis value pcssasses the physical centent. If, for example, signal
y(t) is formed at the output cf the corresponding forming filter,
then a(w) is the phase response c¢f filter r (w) - group delay time for
the frequency w. Analogyous treatment is valid for the signals, which
extend in *he delay lines, in tle dispersive media, etc. Let in the
frequency intarval (-Q, G) in question th2a grcup delay time vary

within the limits - T/2<»<T/2 %,

FOOTNOTE !, The selecticn of the 2¢ézo time raference is arbitcarcy.
Thereforae, without enterirg intc ccntradiction with the physical
sons2, it is parmitted the negative values of iz2lay time.

ENDFOOTNOTE.

Then it is possibla tc register

a(®) = (i(.u.:_r E1,(¢)dm=07' ft,(v)dv=
. X A

] 0
= ama, (V\.

v=w - dinensicrless frequercy twiv) and a(v) - the
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dimensionless functions cf the crder of unity, m=0T/». Value m is

great, if in the fresquency interval of the variation in gquestion of

the phase a(w) occurs to a large pumber of periods. After doing this
assumption, we come to the integrai of typ2 (8.24) and find

y(f)=7$——27—”exp{—j[a(o,)—oot:—:-]}+ _ \

+0 (7:.‘) (8.31)
¢ii is here assumed that tha delay time v (w) varies monctonically with
the fraquency, so that the staticnary point is unigue. This point is
determined by the equaticr
{ @ (w) =T(w0) =1, (8.32)

! i.e., it depends can the current time t., Thus, ths value of signal at

moment/torque t is determined, ir essence, by the structure ¢f the

. -

spectrum at that frequency wg,, fecr which group delay time coincides
with ¢t. !
For the signal amplitude we cbtaired, c¢bviously,
" Aly=[yt)}= 28 __ 4 0
R [y(t}] m,—ﬁ- (1/m). (8.33)
. 4
41 Page 218.
3
q Discussing analogous with frevious, it is possiblsz to show that {
i |
f when making thas3 assumpticns +he instantansous signal frequency |
i coincides for the current mcment/tcrgu2 t with the freguency wg:
3
e o €
.1 3
o~ X

P s
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and it vary monotonically in the interval (-T7,2, T/2). Coansequantly,
in the approximation/aprrcach of the method of steady state ChM
signals with a monogonic change ir the frequency fpossess the phase
spectrum whose derivative is monotone, and, vice versa, this spectrun

can be realized only by mcnotcric ChM signal,

L2t us nota one additional fact. As can Lke seen from (8.33),
signal amplituda is low at values cf t for which equaticn (8.32) doces
not have a solution. This means ttat fundamental enerqgy is
concentratad in the interval (-17/42, T/2), determined by ths racge of
changes in the group delay r(«) . Consequently, valune T, whick depends
on the structure of phase spectrunm, is close to the pulse duratior,
and parameter m=QT/» is a ccntracticr coefficient. We see that the
calculaticn of spectrum of ChM signal and the restoration/reduction
of signal accerding tc the spectrum can be carried out on the basis
of the principle of steady state c¢nly for the high contracticn

coefficients.

8.5, Asymptctic syrthesis of ChM signals.

P P PR SIS S
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In §8.3 were proposed two methcds of synthesis of ChM signals,
escape/ensuirg from the hypothesis froximity. The first of thenm
(formula (8.16)-(8.17)) is reduced to the maximization the

coefficient ¢f closeness

5"
P

(- -]
C(x. Y)-_—_-l—— S(z(m)bxiw)dw=max.
e

vhere 0;(w) - amplitude spectrum of the unknown signal x(t). If we are
bounded to signals with 2 monctcne change in ths frequency and large
compressicn, it is possitle tc¢ use aprroximation formula (8.27) for

spectrum b:(0).
Page 219.

As a result it is obtained

']
Clx Ve AL B (1) .
(x. =<t j’ ate) ol do 4 0(1/m.  (8.34)

Are here undertaken final integqgration limits, since the dcminant t=rm
of formula (8.27) is suitable orly in the band (-9, Q). Out cf this
spectrum band available estimete 0(1/m), that alsc gives the
appropriate correction in (8.34). Let us racall that the
moment/torque of time %, is scnctenic function w. This dependence is
determired by equation (6.26). Since ty, and w are connected, it is
pcssible to pass in integral (8.34) to the variablesalternating tg.

Accepting fcr corcreteness w.'>0, i.c. instantanacus frequency i<
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jrows, from (8.34) and (8.26) it is not difficult to obtain:

. T2
I dag (D12 |
. C(x.Y):—V?_.—i?B(t)a{ocm}[“’“ J” t+0(1,m),
=11

(8.35)

moreover in tha lattar/last expressicn is omitt=d index in the
variable/alternating cf integraticn t. Pcr the rasearch of th=
obtained expression fcr thke rmaximur we will use Schwarz—
Buniakowski. Disregarding the ccrrection term, we have

Tl2 Ti?

' 1 . dw,
Cx. V)< j B(f)dt. Tj @ (0e) S dt =
-T2 -T2
T2 2
\ B'(t)a'r 5= j a* (w) dw,
' —12

.

g The first intagral is enercy of signal x(t) and it is equal tc
unity by standardization strength. The second integral =xists,
strictly speaking, the part cf the enzrgy of sijgnal y(t), irncluded in
the band (-2, Q), but it also it is very close to unity, since

residual energy decreases during the expansion of band, at least as

. 0(1/m2).
\
; J Consaquently, without intrcducing the further 2rror (by crder cf
1 cL . . . .
. value), it is possible *c consider that th2 right side of the
1 latter/last inequality gives face side of the coafiicient cf
- 4

proximity C(x, Y).
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! Page 220.

This face sid2 is reached, if in the relationship/ratio of
Schwarz - Buniakowski cccurs equal sign, i.e., when the factors of
irtegrarnd in (8.35) are proporticnal

sy=1%2 )"

So it is easy to check by straight/direct substitution, factor

of propcrtiocnality y in the crtimum case is equal to one. As a result
we come to the differential equaticr!?
¢ B (t)dt = ——a* (w,) g, (8.36)
l being datermining the optimum lawv ¢f the fresquency modulation of the

' unknown ChM signal.

FOO'INOTE 1, If instantaneocus frequency oc(t) decrzas2s, and it does

- not grow, the right side ¢f the egquation rzverses the sign. This does

not lead to th2 essential differences. ENLFQQINOTE.

Equation (8.36) is the base ¢f calculaticn in the series/rovw of

works according to the syrthesis ¢f ChM signals [7, 29, 36, 39]. Our H

conclusion/output shows that this wost important method of synthesis

s b A et

is based, in fact, to the critericn of proximity and directly it

follcws from the appropriate task cf the wminimization cf distance.

L2t us ncw cornsider the saccrd method, indicat=d in §8.2.

.- — - —— —— e b g A oA s en
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According to (8.19), (8.20) we rust maximize the: comefficient c¢f tha
proximity

1

2
C(X.y)= ) A(t)B(tydt,

(}]

salectirg A(t) - amplitude envelcre of the generating signal. For

approximation calculus A(t) we will use formula (8.33).

This it gives

T2
CX.yy=—= | B(t)-22_ g L 0(1/m),
Vo _22 V¥ (wy)

Pae 221.

Here frequsncy wg is connected with the current time « with

equation (8.32), which makes it pc¢ssible te switch over in the

integral to variable/alternating wg. Then it is obtained

CXoyy=55 faeiBize) (| dm+0u/m.

This integral can be traced to the paximum, aftar using, as earlisr,
Schwarz _ = Buriakowski. As a result it is clarified, that

the coefficient of proximity C(X, y) is maximum with satisfaction >f
the condition

JJ , ok e
T—'..’_: a\®,)= B {T(®y)y [:-Im—'- '

B \yydi= 7'7- a* (w,) dw,. 18.37)

-pr
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. S IR .
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§e arrived at the'equaticn, which coincides with (8.36).
Strictly, otherwvise and te it cculd not, since both methods of the
minimization of distance, examired in {8.3, must lzad to cne and the
same optimum signal Xop(?). This ccrclusion/outfut is of interest for
future reference. For ChM signals bcth those examined of the method
of synthesis are squivalent. As ncted, they are charactsrized by only
the fact that the time ané¢ frequercy vary by roles. In the asymptotic
approximation/approach se cculd cttain the soluticns by each of the

methods and clsarly demcnstrate their identity.

It is possibls to estimate the ©rror in th2 asymptotic sclution

examined. If instantanecus frequercy satisfies equation (8.36), i.e.,

do, _ o_ Bt
ar T a (ae)

then formula (8.35) gives

~T12

CXYVy=ma.Cw V)= | Bydt+0(l m=
=X —)/2
=1 +0(l;m). (8.38)

Therefore for the distance tetween sets X and Y is obtained the

evaluation/estimate

dl =2{l —C(X. V)| =0(l/m).

Page 222,
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We saw in §7.2 that a roct-mean-squars error in the
autocorrelation functions 6 depends on distance 4min. This dependence

is given by foraula (7.:2%):
sml'u = ’ % dnu‘n

a,,,,,,:'/-%O(llV?n'):O(l/m. }

i.2, an error in the aprrcximaticn/approach of autocorrelaticn

therefore

function dacreases as 1/m. O

t O0f course these evaluvaticns/estimates are insufficient in ordar

! A to determine numerical ragnitude c¢f error in this or another specific |
case. From further examples it is clear that tha quality of ‘

) approximation/approach derends cn the form of tha assigned spectrun }
a(w) and the envelope B(t). This ccrnecticn/ccanmunication is easily
explained - indeed the task c¢f sypthesis lies in the fact that with

assigned snvelope to ensure the necessary amplitude of assignped i

. anvelope to ensure the necessary arflitude spectrum. Is accuratse this
possible not always. There is a series/row of the conditions with

nonfulfillment of which it camnct te combinad assigned B(t) and a(w).

L4

o e ou

For example, it is not prcssible t¢ fulfill the rectangular spectrum

with ractangular envelore, since cne of these functicns must be

analytical:!.

Vv ca . aht)n . &
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POOTNOTE 1. The kncwn conditicns c¢f the "compatibility" a(w) and B(t)

are indicated by Fowle [Z29). ENDFCCINOTE.

In our treatment of synthesis the discussion does not deal with
a precise fulfillment of the assioned spsctrum. We realize a test
approximation to it, but the degree of this approximation/apgroach

depends it goes without saying ¢n structure assigned B(t) and a (w).

However, obtained estimates shcw that with synthesis of CchM
signals the error can be arbitrarily decreased, increasing the
compressicn coafficient. This ccrresponds to tas fact that,
increasing duration of ChM signzl, it is possibla to fulfill the
given spectrum with the lcw tc artitrarily fulfill the assigned

spectrum with the arbitrarily lcw final error (has in mind the arror

on the average).

Of this consists one of the special features/peculiarities of

the set of ChM signals in question, We will see further, that with

the synthesis of FM¥ sigrals cccurs diffsrent picture., Thers thare is

a final limit of distance.dmm, g&c tbat, evan increasing comprassiorn,
is not possibla to arbitrarily imprcve “he degras of approximation cf

signals.

. e . P el -’T”L’—""v. Aw.“.‘,—*.‘m!—:<-....'_4<w.. e -
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Page 2213.

Correspondingly, an error in the correlation functions decreasss for
FM signals nct as 1/m, but as I/} m. Howevar, a similar positicr is
characteristic also for ChM sigrals under some further conditions

(see §8.7).
8.6. Examples.

We will use saveral simple exagples in ordzr to illustrats tha
efficiency of asymptotic synthesis. These axamplas are borrowed from

vorks (7, 29, 36, 39].

Example 1. L2t us ccnsider first the case when they are assigned
rectangular envaloping

~ (10 Ti
VT npu —5 <<+ 2L.

f
B(t)="
0 q%ﬂkn>%:

Key: (1)« with.

and the bell-shaped amplitude spectrum of the form

. vis
a(w) = W——ﬁ_’— = oLe L +ow,

Substituting th2se values in (8.46), we obtain
dw,/Q

dt
T == i 8:(-1:'_-'- ;'rgz) (]
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whers the signs =+ correspend tc rising or falling instantaneous
frequency. Solution of this equaticn gives the raquired law cf the
frequency modulation -
%w=i°wr%- (8.39)
Assuming/setting fbe frequency of fhat falling, for the
instantaneous phase we cbtain resgpectively ' h

, t
?m=5%ﬂ=thﬂ74wu

whera ¢, - arbitrary initial fghase.

‘ Let us further detersine plase spectrum g,(w). For this ve wvill

use formula (8.28) and derendence of t on o. (or, which is the same

. -

thing, %4 frem w), expressed Lty relationship/ratic (8.32). As a

rasult, after simple conversicns it is obtained

8 () =m [—;—ln‘(l + %)—%.rag %] + be.
whars 3, is also arbitrary.

s Page 224,

b
1 In accordance with the thecrem of §7.2 3.(v) there is the phase #
N
; spectrum not only of signal =z.,.(f). tut also signal ¥»(fl = the‘rneares* .
|
' { signal cf set Y, i.e., 1
A
B
5
v 4
-

.

IRl o can st et SUN *..‘Q..-.-.‘—.‘T ‘,,:<....-._—...,... -..... e =
. - - ba . W 3 . .
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; VI
O = e X

-; Xexp :lm [% In (1 +-g:— -%amg%“‘

; An error in asymfptotic scluticn can be ccnsidered now, being
congruent/2quating fcund ChM sigpnel z., () with ganerating signal

Yore(t) The latter is detercined by nuvmerical method, by Pourier
transform from §.»«(0) The necessary calculations are cacried out in
[29]). Fig. 8.2 shcws the values of instantanecus fregquency and signal
amplitude e2nvalope x.,.(n and vor:(1) (;atter are notad by poisats).

Calculatiocn is carried cut for ccmraratively low contraction

coefficients »=5/» and w=50/r. As can be seen from figure, even for
such values of m asymptctic soluticn gave very good

approximation/approach.

Example 2. Now let us assume that both functions - envelcping

and the amplitude spectrum - are assigned ractangular:

LYY ot =T 2Kt <+ T2;

0 @npn fl>T'2;

a () =] Vel -0 <l +0;
10 Jopn jwf™>8.

B =}{

Key: ‘1) o with,
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#!

3
I
fem
N
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N~y

Pigo 8.2.

! Page 225,

It is obvious, equation (8.36) has in this case a form

q? Wy

T = 9
and it leads to the linear law ¢f mcdulation
. A
@ (1) = —5—1. *

We obtain2d, therefcrs, LFF signal with rectangular envelcpe.

-~ His spectrun

s

it 4is nect 4ifficult tc expiess thrcugh Fresnel's integral. In

pazticular, ve Lave

'.ldxl,-h-g.)u‘iu-—‘

. B
s e -
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Here

5
C{2) +JS(2)='l/*;— &% 4o,

It is possible to consider the quality of approximation/approach,

being ccngruent/sgquating the assicned spectrum with that obtained.
The corresponding graphs, carried cut for ccmparatively high

ccntracticn coafficients, are depicted in Fig. 8.3 [39].

As can be seen from figures, a difference in the spectra is
exhibited, mainly, near tke tanc¢ edces, with w=+-Q, To the flat/plane
part of the spactrum surerimposed oscillations whose amplitude weakly
is reduced with an increase ir thke cospressior, However, the ragiorn,
cccupisad by these coscillations/vitrations, with increase of B is ;
reduced, oscillations/vikraticne "™are wrung out" to the assigrped

boundaries +-Q. These oscillaticns/vibrations call Fresnel

pulsations, since they are ccnnected with the structure of Fresnel's

integrals. We s=2e alsc that cutsiée the boundary of the assign2d band

RS PO SN,

is a ccmparativaly slow decay in the spactral function on which alsc
are present Fresrel pulsations, Tle grsater the compression, the

steeper this decay. As a result, with an increase in the compression

Ak A . aeih e dmasen.
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the spectrum approaches.the given one, but, in the first place, this
occurs slowly, and they are necessary very more than value of a so
-t that the distortions would be insignificanrt, and, in the second
place, improvement occurs nct due tc the decrease of maximunm
divergences, but as a result c¢f the contracticr of the sections, in

which thLese divergences are essential.
Page 22¢.

One way or another, but was cbtainad considarably worse
approximation/approach, thtan in tte previocus example, and it is
. necessary tc b2 dismantled/selected at the rsasons for this

‘ diffarerce.

Using & mathod cf stesady state for calculazing thke spsctrum, we
assumed the envelope B(t) of that cf slowly varying. In the case of

rectangular B(t) this, of course, it is erroneous near the pulse i

edges vhere th2 envelcpe endures aktrupt changes. Therefore, wkian the

I-;! e

ot

PIVETS DI VPG XU

stationary point t, is mcved to tke pulse edge, the utilized

formulas, are incorrect. Put the pocint of steady state ccincides with

-

one of the fronts ¢n tha tand edges of frequencias, with wz¢-G, ]

Logically, in this regicn were cktained the greatest errors.

Therefore it is possible to ccnclude that an ercor in the

L

apprcximationsapproach is substeantially ccernaected with irregularity

L

o




- - -0 TwTrm =TT = — “mmm B ﬁ

N DOC = 80206710 PAGE 39
} B(t) near the frontst.

* FOOTNOTE '. If envelope has steady character, errors are obtained
still smaller than in exanmple 1. This case is examined in [29 ).

ENDPOOTNOIE.

However, in example 1 also was 2xamina2d ractangular envelope, J
and errors provad to te very low €ven during the small compression.
This forces in greater detail it will dwell on the ccncept of the

slowly varying functioen.

Let there be certain 2nvelcpe B(t), which is thus far assum=2d to
be continuous. After selecting artitrarily moment/torque 4, it is

possible to register variaticn AB in ths fornm

Ang(t°+At)—B(fo) =B'(ts) At

Other conditions beirqg equal, the variation AB is the greater,

) the greater the interval At.

4

#We saw that during the use c¢cf a methcd of steady state intagral

‘

.
wlh. e o loa e

value depends, mainly, ¢pn certair lew vicinity of stationary point.

T

lae ).
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Fig. 8.3.
Page 227.

The extent of this vicinity is characterizad Lty the so-called radius
of effect and dspands on “%e fecrm cf phas= function [28]. In
particular, for the integral
1
i V«)’. (ty) )

+a—gqueaestion. NlConsequently,
Ba B e

".“"c (WY

Thus, inconstancy ct enveicpe 215 manifestad the more weakly, *h2

greater the rats of mecdulaticr at the appropriate nmoment ¢f time.

Taking into account (8.27), we car register also
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Here w - current frequency, which coincidass with the }

instantaneous signal frequency at mcment/torque tg,.

Now it is possible tc clarify *he difference between axamples 1
and 2. In both cases the envelctie is id=eantical, so that factor §

B* (t) /B(t) is retained ccrstantsirvariablel,

FOOTNOTE 1, Let us recall that for simplification in th=
considerations is assumed the fipal duration ¢f fronts, so that the

derivative B{t) is limited. ENDECCTNOTE.

ot e Mt AT AT

But the laws of fraquency modulation essentially are distinguished.
In the first example the rate cf modulaticr grows with the
approximation/approach tc pulse edges, reachirg infipite value with
t=+-T/2. By this is provided the tell-shapad form of the spectrunm

with the attenuaticr at the higt frequsanciss. The previous

2,

K relationships/ratios shcw that sisultansously is weakened/attenuated
{f the effect of the irregularity cf envelope on the cdges. In exampls 2
43 rata of mcdulation and level ¢f tlke spectrum are constant; therefore
"7 the "edge 2ffoct", connected wisth the pulsz2 edges, it is exhitited *o
] ; the greatest dagree?,

1
3
X
;. Y
2
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! FOOTNOTE 2, In a recent work Millet expsrimentally confirmed that the
distortions, caused by Fresnel fulsations, they are manifested more
strongly for the rectangular spectrim than for that rounded off [49].

The theoretical explanaticn tc this was not given. ENDFOOTNOTE.

From the aforasaid it is clear that the cases examined are in 2
certain sense, maximum fcr rectancular envelofe. Signal with the
linear ChM (example 2), which realizes approximation/approach to the
ractanjular spsctrum, shcws the maximum divergences, connected with

rectangular envelope - FPresnel fulsations.

' When the assigned spectrum is rounded off, occurs a relative
4 increase in the rate of wrcdulaticr ¢n the edges, and means, an
improvement in the gquality ¢f apprcximatiocn/approach. Fresral

pulsations are weakened/attenuated tc the Jreatast degr2e fcr +he

signals of the type of example 1, Here the rate of mcdulation on the
edges is infinitely great and, furthermore, tlte regicn of the

greatest distortions is extrudeds/excludzd for the infiritely high

frequencies. These facts provide a ¢cod agproximation/approach.

Example 3. Ir the previous exasples the form of autocorrelaticn

function (amplitude spectrum) was chosen arbitrarily.

Paga 228,

1

1
i
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However, in Chaptec 2 and 4 we cape to light/detected/exposed the
optimum structure of the autoccrrelation function, maximally
concentrated in the assigned duraticn with the fixed/recorded width
of the spectrum. In the case c¢f tte minimax criterion, optimum is
Dolph-Chebyshev type function, ané the cor-esronding form of the
amnplitude spectrum takes the form, see (2.26) : A

. az(u)={kl‘ (c‘/y_l;__;.:%:m , Qw0 49,

Here ¢=QT/2=wn/2 - value, proporticnal to contraction coefficient.
The scale factor k must te selected so that wculd be satvisfied the

condition of normalizaticn on energies. This it gives [7)]

c, @
c¢che—1"°

D kman
Let us recall that the léval of the remainders/residues of optimum
autocorrelation functicn is determined by the relaticaship/ratio
M=ch c=ch am/2,

which corrasponds to the exponential decrease of remainders/residuas

in an increase in the ccntracticn ccefficiznt.

1f, as in the previcus examples, amplitude signal amplitude

envelope assigned to rectangular, equatior (8.36) takes the form

&t ¢ (e V1 —? 9 du,
T = - - O .
che -1 Vl—wg o Q

Ther=fora the da2pendence c¢f instantanecus fIaquzncy on the tim is i
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given by the relationship/ratio

/8 -
t ¢ 1 (e VI=xy) d 8.40
j = (640

This dependence is shown in Pig, €.4. The parameter is value M - the
lavel of ths ramainders/residues c¢f the assigred autocorrelation
function. A decrease in the remairders/residues is providsd due tc an
increase in the rate of modulaticr in pulse edges. As it follcws from

previous, this raises alsc the accuracy of the asymptotic sclution.

A good apprcximaticnsapproach to Dolph-Chebyshev type
autoccrrelation function gives, as is known, tha function of Heaming,
for which the form of the spectrus takes form [75]:

'1"‘“":\‘_;;("*{' 'os-'-—:—:‘. —Q<¢.:<4-Q.

This spectrum morotcnically drcps to the edges of band and has
jumps on the edges, The value cf “Fusp derpends on rarameter g. With
g=0 the form of the spectrum rectangular, the jumps ars maximua, with
g=1 is obtained the cosine-squared form withcut %<he jumps, in the

intermediate cases 0<g<?1 the value c¢f jump comprises »(1-g).
Page 229.
Changing g, it is possible +c olktair approximation/approach to

cptimum curves for varicus levels cf rsmainders/residuss. The

paramet2rs cf tnhas corresponding autccerrelaticrn functions are given
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in (7, 751

The approximation of the optimum form of the spectrum by the
functicn of Hemming makes it possible to simplify calculaticn.

Actually, equation (8.36) take in tlhis case the form
at |

L BN
=5 L #geos =g ) dw.

As a result it is obtained
/ oW
T;T\ Q—+—:—.<m:—9-/- [REE
Pig. 8.5 compares the optirums law of modulation (8.40) with

approximation/approach (8.41). Calculaticn is carried out for level

of lobes/lugs M=40 dB, rarameter g‘in this case is =squal to 0.85.
Aq ta aviden%, the curves are kather close, ™his confirms the
axpediencr 0° usin~ the Hemninr anneneeiraSian, qy;aedzaémadZébz

T« »nuld he a2 missalze %o assume that ~iven the ecnrresnondin~
fMmation nf the Inlnh=Chebvshev t'me (ar an annernsiration to *%), e
w211 ac%uallr obtain mo lov a level o° remadnders, As
it was showr, used asymptctic sclution has an 2rror cf the level cf
the remainders/residues cf the autcccrrelatior functior of ordasr
6(1/m) . This error can prcve tc be considerably the assigned lavel,

sO0 the latter more than decreases expcnantially with increase of m.

LSS
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page 230,

In this ceonnecticn is of interest the refirnsment ¢of the
asymptotic solution. One ¢f the metkcds of refinsment gives the
iterative procedure, examined in §€.3. By using the asymptotic
solution as zero approximation, it is pcessible to obtair more precise

results via consecutive jteraticrs.

Another method is Fased on mcre precise asymptotic
evaluations/estimates of integral (€.24). As we saw, th2 neglect cf
"adgs 2ffect", allowved ir formula (8.24), leads to the fact that %h=

form of the spectrum cnly approxirately cerraspornds to the givan one.

- e ey o $op L = o
I i 2 ———— T YT - ‘ ;
- . Y ) . . A
IR -
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The spectrum holds the Fresnel fpulsaticts, rot taken into

consideration in the calcuiaticn, ¢r some other inaccuracies. It is
possible to compensate (at least, partially) Frssnel pulsations,
cutside sgpecial oscillatcry addition into the law of Ch¥. Such
"predistortions" of the structure ¢f sigpal mak2 it possible to
decrease the remainders/residues. Cne of the methcds of calculation A
of predistortions (by tle way very approximated) is propcsed ty Cook

and Paolille (18],

( Tke introduction of correcticrs into the law of ChM (designed on

| any of the methods indicated) is conjugated/ccmbined with the known
\ technical difficulties., Is required tc satisfy complicated the lavw of
modulation, which contains fluctuating component of changing of
amplitude, Her2 we will nct in detail tracz thz necassary structurs

of corrections.

8.7+ Signals with the symmetrical frequency amcdulaticn.

In the pravious examination the law of a change of the
instantaneous frequency it was assuged <o be monotonic. This ,

limitation made it possible ¢c use the simplest version of the method

of the steady state when there is cnly one stationary poinrnt,

PPV DI VPO EPCIR
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T. v ~dd

L tdfanad s W Cks 4 n




a; .
T

A\ S~ e -« V-0
.".- r oamdd :‘&J.AA | VP NP :

.

$ .

DOC = 80206710 PAGE W

E

7T

R
08 ]_!

06 (1)

: AonbajI;er/wed /
: : Xe»gzuzfe
04— ;

| -

|

0,2

Q
)
N
K~
-+
N
o
»
[+
~N
s

FPig. 8.5.

Key: (1). Dolph-Chebyshev. (2). Hewmming.

Page 231.

Limited application find alsoc mcre complicatad ChM signals with ths

nonmonotonic law of modulaticn. The use of similar signals

expediently during the sirultanects permission/resolution in the
range and speed since their functicns of uncertainty/indeterminancy
hava the not slongated, elliptic fcrm, but they possess mcre or less
expressed central peak [13]. In tkis raspect the signals in guestion

are close to phase-keyed.

As shown below, analcgy with F¥ signals extends somewhat

et et i —— g p——— ———— e e e = S e o
e . ] . ‘ o T N
. - > 2 . - -, WOTTP
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further. We will s22, that the methcds of synthesis of FM¥ signals and
the examined signals with the frequency modulation have much in

common.

W2 will bs bounded to the cases wh2n instantaneous fresyguancy is
changed symmetrically relative tc the middle cf
ispuls2/mcmentum/pulse and, furthermore, it is monctone in each half
of signal. A similar signal is used, for examrla in tha systen,

described in work [56 ].

If the envalope B(t) is alsc symmetrical, the spectrum cf the

signal being investigated has ar expressioh

- +T/2 , 712
@)= { B dt= 2{ Biticosfo(t — wi]dt.
-T2 0
For calculation ¥(w) we will use the principle of steady state. W2
can use formula (8.24), after taking real part from Lkoth its rarts.

As a ra2sult it is obtained

ot 2 : A 2 B
.r(m)=2fg:% B(to)cos{?(toy—mt,‘.;_.:_] — 0l m.
(8.42:

Here, as earlier, t, - stationary pcint, determined by equation
{8.26), but now t, must be placed in half of the duration:
02T 2
Instancaneous frequercy .. ) is assumed to be that increasing

this half of impulse/momentum/pulse (otharwise formula (8.&2).15
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insignificantly changed). let us pcint out alsoc that
relationship/ratio (8.42) is ﬁnsuitable with to->0, when rate of
change in instantaneous frequency o/(ri=q”(i.i tecomes low.

Page 232.

Fer this ragicn is necessary mere general method (asymptotic J

approximation/approach c¢f the ttird order - see [6]), but here we

will not concern this refinement.

Spectrum X(«) is real functicn, i.2., phase spsctrum B:(w) takes
only twec values - 0 or w». There are here also an analogy with FM
signals which possass a similar prcperty, but in the temporary/time,

but not in the frequency rerresentation.

Functicning accerdirg to tre methodology accsptad, let us fix
arbitrary ChM signal x(t) frce the class in guestion and is
i determined the first nearest tc it signal of set Y. According to the

theorem of §7.2, for this it is necessary to equate phase spectra

s

a(w) and B:«(w), s> that spectrum J(«) will prova =0 be real and

VPV DN VR NWCI

coinciding in sign X(w) . Then, varying signal x(t), we will obtain q

shortes* distance dmin Letween sets X and Y. This consideraticn
complately ccrraspsnds to tne derijvaticr of £crmula (8.16), and we

coms tO0 the maximization c¢f value
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| +
Clx.Y)=5 5a(_«n)b,(o)dm.
-3

wvhere in accordance with aprroximation formula (8.42)

bx(0)=2]/;%3(t.) cos [?(t,) — of, + —:—]!-{-O(l/m).

As a result, passing in the integral to thz variables/alternating
to [in this case is used equaticn (8.26) ], vwe obtain the conditior of

optimum character for the unkpown signal in the form, analogcus

(8.39) 2 _ o
/2
Cxn=) = [ Blaw[S=]" x
0
Xicos {?(t')—-mt-i,—-:—]idt::max. (8.43)

Here thers is a cofactor jcos[-. ]l. caused by the more complicated
structure of the amplitude spectrur with symmetrical ChM. Howavar,
after using the expansicn

(- i

427 |

+ <=

:||u

eS8 7 = cos 2.

1 L

it is not difficult *«c ncte tbat the main centribution %o integral

(8.43) intrcduces first term, nct containing rapidly-oscillating

factcr.

Page 233,
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Being limited to this ccorcnent/term/addend (rola of tha cthers lat

DOC

us consider later, in ccnpection with FM signals), we obtain

'

Clx. V)=~ (-g l)a(wd da ]”edn (8.44)

c.____‘ﬂ

As earlier, for tha research for the maximum it is possible tc use
Schwarz - Buniakowski, Irtegral (8.44) is maximum, if the

factors of the integrand are rrcpcrtional, i.e.,

a(oe)[ dw, Jw =yB). (8.45)
By satisfaction of this ccnditicn is achieved the shortest distance
between X and Y, therefcre, fror (8.44) is ortained

T2 —_—
C(X, Y)=Y(—:‘:—>3"5 B'(ndt:%;/—;’—- (8.46)

y
In order to determine ccefficiert y let us raise equation (8.45) into

the square let us integrate from zerc to T/2. Taking into acccunt

standardizaticn, wa £ingd

T! 172
v B =2 = oo 22 ar

Let us switch over in the integral to the right to

variable/alternating ». This i* gives
© (7/2)
=2 | a‘(a)de.
. (0

Here integration limits ccrrespcnd to total variation in the

instantaneous fraquency ¢f the unkncwn signal. As usual, w: assum?

«hat this frequancy regicr ccrtairs “he range in which is containecd
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basic part of the energy of the assignsd spsctrum. Thersfore taking
into account standardization it is cbtained
+00
e 2 S a’ (o,) do, = 4.
p—

Page 234,

As a result formula (8.46) gives!

CX =22 Lo m)=09+0("Ym). (84T

n

FOOTINOTE !, Correction term g(yym considers an errcr in the previcus
calculation. We will refine this ccrrectiocn in €hapter 9.

ENDFOOTNOTE.,

Simultaneously equation (8.4%), which is d=termining ths
requirad law cf frazquency mcdulaticn, cbtains tne form
' B(t)dt = = 0* (0,) da. (8.48)

It is obvious, ve obfained the results, close to previcus.
Equation (8.48) is similar (tc '8.36). Difference in the ccefficiants
is connected with the fact that ncw total variation irn the
instantanecus £requency cccurs fcr balf of the pulssz duraticr.

However, the compariscn ¢f %¢he ccefficients ¢f proximity (8.38) and

(8.47) indicates the essential difference.

It is earlier, for the sigrals with a2 monotone change in th2

YT T T TTY D O o e
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frequency the coefficient of rrcxisity was approximately/exemplarily
equal to unity, more precise value C(X, Y) how conveniently differed
little from unity during sufficiently large ccmpression m. This means
that, increasing compressiocn, we cculd arbitrarily reduce distance

dmin, Obtainirg hew converiently high degrea of approximatiocn.

For the signals with sympmetrical ChM the coefficient of
proximity does not attain-bne even within the limit with m—>e, There
is a final distance between sets ¥ and Y

4 =2[1 —C(X,V)|=2(1 — 09] =02,
characterizing ¢the limit cf errcr in the apprcximation/approach to

the assigned amplitude sfpectrunm.

This is clarified in Pig. 8.6, wher=2 they are depicted ths
assigned spectrum a(w) and amplittde spectrum bp.(w) ©of sigral with
symmatrical ChM. In accordance w»ith (8.42) the latter has a chiracter
of the "rectifia2d sinuscid", since contains factcr kqﬂ..JL Selsacting
the law cf modulation, it is pcssible 40 apprcach the spectra
indicated "on the average", as shcvr in figure, out the available
dips/troughs in the points where b.(w)=0, limit the quali+y of

approximation/approach,

Page 235.
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There is no this limitaticn for the signals with the monotone law of
modulations whose amplitude spectra have steady character and are
distorted only due to ccmraratively small Fresna2l pulsaticns. This
difference reflact the ckttained values of the coefficients of

proximity.

Let us point out a2lsc a differencs in the procedural nature. Fcr
ChM signals with the moncteone law c¢f modulaticn it is possible to
arrive at results presenrted atove scmewhat siepler. It suffices %o
require so that the amplitude spectrum 6,(w), expressed by
approximaticn formula (68.27), wculd coincida with the assigned
spectrum a(w). This methcd is used, fcr example, in [7]. Howevaer,
from previous it is clear that this consideration is correct only
because without th2 account tc an error in *h: asymptotic
appreximations/approaches it is pessible to ottain a precise
conformity between the given cne and that unkrown by the spectra
(coefficient of proximity C(X, Y) it is equal to uaity). For ¢ths
signals with symmetrical ChM this nct *hus, We will not obtain the
solution, if we will attempt to egquate assigned and unknown th?
spectra. Here it is possible to cnly carry out approximation/approach
o0f these spsctra with f£inal errcr, Cur approach, Lased on the
critericn of proximity, ccntains tcth cases, while the utilized

previously methods are suitable crly for thz £izst task.

——— v—-ﬁ‘_’.r-mﬁ,.‘. e e —— .
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The task 2xaminad abcut the signals with symmetrical ChM is of
special interest also because it ltas very clcocse analogy with the

synthesis of signals with the pltase maripulation. This questicn is in

detail examined further.
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Page 236.
Chapter 9.
SYNTHESIS OF FM SIGNALS.
9.1. Quantized and not quantizéd FM sigrals.
Signals with the phase manipulation are cscillations with

constant amplitude and constarnt frequency of filling, whose initial

' carrier frequency is changed with jumps at scme mcaents/torques

ty, Is, . . .t ... and it can take fixed values 4t ¢z - ... .

ko). . o Mra

2 A'
[
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page 237.

A fundamental use £

ind tirary F¥ signals, which allow/assume only the

ty

two values of initial phase ¢,=0 and ¢,=w». Only such signals are
examined below. Composite envelcpe of binary FM signal 1s sterp

functicn - square wave - with the ccmmutaticas of sigr at

B bt Seauirts ‘NSRS
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roments/torques /4 (Fig. 9.1). The key advaatagz of such signals cver
the signals of another tyre lies ir the fact that is not required a
steady change in the parameter; the intcrmittent character of
modulation of phasa2 (manipulaticr) makes it possible to ensurs

recessary accuracy with a comparatively simple 2guipmert.

Let us give the determinaticn ¢f binary FM signal. Let the
function A (t) be equal tc +-1 fcr all values of t, except certain
multitude of values /& of zerc measure; at the points of last sat ¢he
function X\(t) endures intermittent sign changes. Functions X (t) ars
the envelopes of FM signals of single amplitude and infinite
duration., FM signals of final duraticn are obtained frcm A (%) by
limitation in time. Furthermore, we normalize signal amplitude so
that its energy would be €qual tc unity. Fipally we have

= "
VVTait gpp —T'2<t<T 2 9.1)

x(t\={ 0 (,)ﬂpn fti>TI2.

Kay: (1). with.

Frcm Pig, 9.1 it is clear that FM signal i% is pcssible to
depict also as the impcsiticr of the functicns of
inclusicn/connecticn. The amplitudes of jumps have single valua in
the beginning and at th2 end cf the signal and the dcubled value - a%
intermedia%te points. Therefore, after designating total numter of
jumps through N, w2 oktain anctler fcrm of racerding, equivalent

(9. 1) ¢
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Vel
x(t)=—V2?[] ditld + Y=t -+
k=)

+ (—2|)~ 1{t—t,) } .(9.2)
Page 238. '

Since the spectrum c¢f functicn 1(t) is 1/jw, for the spectrum of

FM signal it is easy to cttain expression?

9

~ Ie""’o Vet —jut pe i l
=TT +2(_”ke t= 1
k=

2 ]

(9.3)

FOOTNOTE 3, Here is not taken intc consideration deltoid compona2nt in
the spectrun of the function cf the inclusion, it does not play in

this case any role. ENDFCCTNCTE.

Aere ¢ +%the moments/torques c¢f the commutaticn cf phase, to=-1/z,
In=T/2. _

It was abova assumed that the mcments/tcrquas of commutation can
be placed arbitrarily ¢n duraticnr T. However, fundamental
use/application find FM signals, ccmprised of the samples of fixed

period cf time, Not to the detriment of th2 generality vwe will

sl 7 b rasloN - g e AR Sl T
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further assume/set this duration cf single. The moments/torques of
ccmmutation for such signals are rultiple the duraticn indicated,
i.e., th=vy - whole numbers., We will call these signals those

quantified (KFM), keeping in mind quantization on the tinme.

It is not difficult to give the determination of KFM signal,
analogous (9.1). Lzt numbers * take values of +-1. Then KFM signal,

which consists of the n samples, can be prssented in the fors

Here, as earlier, factor 1/}Vn provides standardization on the energy,
since under ths stipulated conditices the duration of sigpal T is
equal *o a number of sawmplas r; ug(t) is a square pulse of the single
duration o
zgﬂ,—{' nm — 212
iOnmqﬂ >172

Key: (1). with.
value x;=4,]1"n - the amplitude cf sanmpless.

From (9.4) it is clear that KFM signals relate to the

ccemposite/ccmpound, examired in §7.4.

Pags 239.
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po¥ > 2
The spectrum of KFM signal can ke presented in the form (sz- (7.31))

Fw) =ulw)H(w). (9.5)
where
E. (w)=s-‘:,—‘%—3 9.5,

- sractrum sample, and

n n
H(o)= 2 xie ™ = %}-’7— 21.-6”” (9.7,
=1

=1

- spectrum of the code.

Formulas (9.4)-(9.7) do not contradict pravious, since KP4
sigrals belcng to the total set of FM signals with the artitrary
arrangement/position of ccmmutatic¢ns, The isolation/liberation of KPM
signals into the independent class is sxplained, mainly, by ths fact
that durirg their formaticn and precessing intar tc use
elements/cells of digital computer technology - shift rzgisters, the
puls? ccunters, etc. This it sipplifies to apparatus. Mcreover, by
the metheds of the synthesis ¢f KFM signals are characteristic sonms2
special features/peculiarities, which consider their discrete/digital

time structure.
9,2. Brief survay/coverage cf best KFM signals.

It is cbvious, tha*t KFM signal, which cortains n c€ samplas is

comptletely determined ty the sequence of coefficients %. ejual to +1,

e e r—— --———-‘WTW:","T"

.
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or -1. Therefore to each such signal it is possible to supply in the
ccenformity the binary numerical sequence, which is determining its
structure., For the analysis of the sequences indicated are appliad
the methods of the theory cf nusbers, the algebra of binary
polynomials, combinational anelysis cr ancther discretesdigital
apparatus. These m2thcds are the lasis of the ovarwhelming majorit*y
of works on th2 synthesis of FPM sigrals., Althcugh the precisely
discrete/digital matheds made it pcssible to cbtain the majority cf
krncwn KFM signals with gccd rroperties, tc us it is represented by
that not substantiated tc be limited only to such methods of
syrthesis. Keeping in mind to clarify the aforesaid, let us ccnsidar

briefly fundamental KFM signals.

Special positior occupy EBarker's signals, proposed in 1653 g
[3]. These signals have srmallest pcssible ramainders/residues of :he
autocorralation function, which dc not axc22d4 l/n. I*t is pcssible to
show [7] that the spectrun cf ccde H(w) fcr Barker's signals least
daviates on modulus (in the sense cf quadratic
approximation/approach) frem unity. Consequently, according to

presented in 37.4, Barker's signals provide best square apprcximation

to the spectrum of single sample - square impulse/momentum/pulsa,
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Page 240.

By Barker were indicated thte ccdes with th= remainders/residuss
/a2 cnly for ng{13. Thess codes 2are cbtained by the s2lscticn: after /
the calculaticn of corresponding ccrrelation functions wers
szlected/taken those signals, fc¢r which ths remaindars/residuss do
l not exceed 1/n. Were done the repeated attampts to £ird Barker cod:s
f for n>13, In particular, are indications *ha%t w=2re tried all tinary

sequences for ng31 (4] t.

. -

- FCCTNOTE !. Let us note that c¢nly with n=31 “hers is 231x2¢10°

drfferert signals. ENDFCCTINOTE.

Nowever, after research c¢f a number of the authors it is pcssible <o

. considsr it established/installed that Barkar codas for n>13 thera ]

dces net exist [32, 77].

e aan

Because of the need to apply KFM sigrals with a lacrge number cf

samgples, were r:vealed scme cthir ccdes with th- remaindars/rasidu-s,

lazge than 1/n, bu*t by revertheless sufficizsntly low. H2r: should b~

. v e b} ba. -
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not2d M-sequenca2s and signals, shich us2 the given residue classaes.
The particular form cf the latter are the ccdes of Legendre's

symbols, called also Pell —=Plctkin's codzs.

The synthasis of the sigrals indicatcd is raduced ¢ “rLe
followirg. First, is applied certair algorithe (selected a priori,
without the proof of its cptimuo character) fcr the construction c¢f
~he infinite pariodic sequence cf binary syabecls (+1 and -1 cr 0 ang

1)

In the case of M-sequences is assigned ona of the irraducibl-
binary polynomials of *he corrssgcnding degrae q; There is a
comparatively complete tatle cf such polynomials [51], and sequenc:
is constructed according to the ccefficients ¢f pclynomial bty

comfletely regular form [ 13, E4° 2,

FOCTNOTE 2. Ars known also other equivalent algorithas, which l2ad 4o

d-saquerces [44, 81]. ENLCFCOTNOIE.

The period of sequence corprises

n=m29—_},

where q - whole number.

For each q are several irreducible pclyncmials. Thus, for j=6
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(number of signs in pericd n=63) it is known 6 irrzducible
poclynomials, for g=7 (numker cf signs n=127) - 18 polynomials.
Chocsing cne or another pclyncmial, it is possible to obtain signal
with cne or the other properties, and ther:z is no gsneral rule for

this selaction 3,

FOOTNOTE 3, With the selectior cf pclyncmial freguently is ccnsidsred i
the larger cr smaller ccoplexity ¢f signal shaper [81], but this

question here is rot examined. ENCFCCTNOTE.

Signal in the form of periodic infinite sequencs usually is no+%
applied in the radar, it is necessary to still select the appropriatz:
segment of this sequence, ard here alsoc is certain arbitrariness (g2«

pelcw).

For the constructicn of the sequence of tho given residusz
classes is used the algerithm cf ancther kind [4 ). dere the paricd of
saequance n is assignad equal to tle prime numkar P and is chcsen cn:
of the primitive roots ¢£ this rurker g. The fproperty cf primitive
rocts ccnsists ic cthe fact that, raisiny roo* cf g *c the d=gra? fren
0 to P-1, we obtain the numbers wlcse deduc+icns, undartakan on
modulus/module P, take all values from O to P-1 inclusively. Thzss
deduzticnas can be dscempestd intc scme Jivsan rosidut classss. Furshe:s

20 cre group of residue classes is assignzd symool +1, and %c¢

———————— ———— — = — -
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remaining classes - symltol - 1.
Page 241,

Finally, computing consecutive indeces of a radical g, is ccnstructed
sequzsrca from +1 and -1, sign ir this cass is chosen ir accordance
with the fact, to which residue class belongs “he naxt degres of

primitive rcot,

Although the rules indicated assumz2 %“hz sorting c¢f a
sufficiently large number of versicns, they provide the synthesis of
gcod KPM sigrals with the perwmissjikle space of calculatiorns. It is
sstablished/installed, that the seguences indicated possess tha
mirimum remairders/resicdues cf autccorrelaticr func+ion. Bu*t hzre
have in mind the autocorrelaticr furctions of infinits periodic

Se4uencae.

In crder to use the sequerces indicat=d ian %the radar (and aiso
in some comnunicating systems), it is necessary to b2 bounded to *ha2
segm2nt ¢f finits longth, which leads tc a furthisr detericration in

the correlartion properties,

I+ is proved that *he autcccrralacion furc.icr cf on: pericd =2

s2juancs (aperisdic au4cccrrelaticn function) is connected with <h»
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corre laticr propsrties c¢f infinite sequencsz. The low
remainders/residues of the autoccrrelaticn furction of aperiodic
signal can be obtained cnly wvhen the remainders/residues of tha
autccorrelation function c¢f the irfinit2 sezgquence, formed by its
repstition, ars also lcw [4]. Tterefore, synthesizing aperiodic
signal, it is sxpedient tc¢ use cne period cf a gocd periocdic sz2guernca
of the number of those iréicatec¢ atcve. Hcwever, beginning signal
frcem different 2lements/cells of sequence, we Wwill obtain ncncyclic
signals with *hs worse cr bes¢ prepertiszs., In othesr words, the cyclic
permutation of the elemerts/cells cf sequence in ths limits cf one
period leads to the different value of remainders/residues. Usually
it is necessarcy +to sort cut all n cf signals and tc select/taks tths

best of them on the level ¢f regsainders/residues.

Eaploying high speed calculating msans, it is possible <«¢
surmount the appearing difficulties. During +the latier/last decade
were obtained much KFM signals with gocd correlation functicns. Ir
¥able 9.1 are generalized the resuvlts, indicated in works [ 4, 45,
50], moreover are here given sic¢nals with the smallest known level of
corpainirs/residues, In th2 table are accaptad tha followvwirng
desigrnations. Signals are assumed tc be those no%t s+tandardizzd, so
£hat the main pzak of ccrzelaticr function is ajual to a numbes cf
samples n, The greates*t remainder/cesidue is exorsssad by whsl:

runber pw. In the previous desiagraticns the leval c¢f thz grza%sist

v -« . . - v e e g e e
T e S
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remaind2r/residus comprises ps/n. In the fourth column cf taklz is
indicated the type of sigral, ir this case the latter cf "M%
designates M-sequence, "B"™ - secuence of the civ2an residue classes
(ameng cther things of legerdre's symbcls), letter "Cr" mean that *bh=2

signal does nro% -elate tc the types indicated.

I+ is known that the level cf saximum remainder/residue for KFM
signals is close to valuve |, y7 (tesides Barker's signals). This is
illustrated by data in tke third cclumn ¥able 9.1. Is here indicatad
value k, equal to thes relaticn c¢f ths maximum ramainder/residus to Va.
For the npormalized autoccrrelaticr functicen (frincipal maximum of
which is equal to unity) «2 have .

Raww=k/Vn. (9.8

In the region in question we clttained

k=06+038.

I e & — T g T P e ad
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1
Page 242.
Table 9.1.
1(r) ! | f i} | | &
n “ I mu ‘ n " I [ ‘ Tan I‘ n 1 " & } Tun
: [ :
! i i | |
15 3 0,77 Mol g3 7 066 | B !' 383 15 ! 07T R
16 2 N3 Jp | 127 7 0,62 B { 397 1 18 0,80 B
17 2 0,49 B 1 g7 8 0,71 M 0 o400 15 | 07a M
19 3 0,69 B {139 B ¢.68 | B 1 a0 o 15 | oTa B |
23 3 0,63 B 151 8 0,65 I B | 414 L 0,73, B /1
28 2 0,38 dp 157 8 0,64 B 4 431 | 15 1 272 1 B
29 3 0,56 dp 163 9 0,70 B |} 443 ; 15 0,71 | B
29 4 0,75 B 167 8 n.62 B 4§ 449 ' 15 | 071 R
31 3 0,53 B 179 9 0,69 B 4 47 | 15 | 070 | B
A 4 0,71 M| 19 9 0,65 B | 48 .. 15 | 008 | B
87 4 0,66 B ] 193 10 f 0,72 | B 491 116 t N7 { B
41 4 .63 B 1 199 10 ;051 ¢ B | 499 17 0o bR
43 4 0,61 B 21 0 . 06 | B j 3503 1&g | ogn R
47 4 0,59 B { 22 0 f o067 ; B 1 &1 . 47T 1 075 0 B
53 5 0’59 B | 227 0 oowes ;B ] o7 | o8 e Doy
59 5 0,65 B 1 233 1 0,72 , B , 53 | I8 07 . B
Al 5 0.64 B | 2 12| o7 B | 5 7 | on B
63 6 0,76 M - Y T 0,70 B i 587 . 19 078 B
7 5 .51 8 b5 ¢ 3 R M j se9 0 10 ' 0,78 ' R
71 5 0,50 B 1 257 2, 07 1 B 607 119 077 | B
7 6 070 ¢ B | 28 12 0,72 B ule | 19 ¢ 0%, B
79 6 0,68 ‘ B i 203 3 1 o7 ! B 631 18 ’ 0o B
83 A 0,66 B | 31 I3 ! 0,74 ! B l] 643 119 0 1B
89 6 064 | B 1 37 12 0.8 ' B 673 0 | 08 B
o7 707t b B A 14 | 0T B | 39 19 ! oty 0B
101 6 | 060 | B 347 1 14 i 073 B ¢ 861 i 20 ' a7 ! B
103 8 a0 LB | 33 ; 15 | n&0 . B | &4 | 20 o0& B
107 7 N +8 l B 389 4 . 074 , B | 83 [ S 1 VS
109 8 n.77 I B v+t R U N 2 A S BT S B R AR R
K2y: (1). Type.
Page 243. :
{
In other words, for the sicnals with larg2 n the maximum lavsl i
cf remaindars/r2siduess is clcse tc Vi
L2t us empnasiz? agair thrat a-¢ h*re used the best achlizvzaan:is i
‘i
3
4
-1
|
g
B!
ﬁ
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of latters/last time. In particular, from the data of Wabls 9.1 it is
evident that M-sequances are ret cptimum: value X for thes scmawhat

higher than for other signals.
3,3, On the methods of synthesis FP of signals.

One should assume that many authcrs' intens? searches tc a
consideratle degree drained thke pcessibility of the synthesis of KFNM
signals. It is difficult to expect from oth=2r m2thods of
substantially bast results., But apprcach itself to the syathesis

causes, in our opinion, certain dissatisfacticn.

In fact, for PM signals there are no regular, variational
methods of synthesis. Different nmetlcds use differernt a priori
algcrithms fcr the cernstructicn ¢of infinit2 segquenca. Furthsrmors,

. necassary is selection during the determina<icn of the best cyclic

pernutation, which gives the zirisuam of remairdzrs/cesiduss. With

S

‘ this aprrcach ons cannot, cf course, ke confident that was cttained
'i the sigral with the best (in the assigned senss) propercises. Y
Y

‘ 1
g Wish a largsz number ¢f samples the scrting varsiors preves tc tn»

i very bulky and can prcve t¢ te frctlem aven fc¢r ccntesmporary TsVM.
X
A | Moarwhile <hers is a clear terdency *o apply FM signals with all by a

lazg? numb:r ¢f samples, anéd this justifizs ¢h2 seacch f£cr cthar
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methods of synthesis, nct connected with similar difficultiss.

Pocuses attention also a gqualitative difference in the mathods

cf synthesis of Ch4 and FM signals, As we saw, synthesis ¢f Chu

ignals is produced by recular rethcds, withcut the selecticn, and
asymptotic decision provides the nrecessary accuracy pracisaly duriag
th2 large comprzssicn, i.e., in that region whace the synthesis cf F¥
sigrals is most hindered/lampered. The methcds of synthesis cf ChM
signals possess physical clarity., There is a sufficiently obvious
connaction/communication tetween instan-ansous speeé ¢f mcdulation
and level of th2 spectrur, tha*t rakes it rossible tc come *%¢
light/d2%ect/2xpose the structure ¢f <h: unkncwa law ChM accoréding to
ths 2ssign2d autoccrrelatior furcticn. The kanewn methods ¢f synthesis

of FM signals completely disreqger¢ similar physical consid=ra%ions.

Wwe will show furthar <hat the crit:rion ¢£f proximity peraits zc¢
woTk out substantially ancther gethcd of synthasis - methcd, whickh
dces not rz2quirs sslacticn and which reveals/detacts generality, “he

inheren+t in ChM and FM for coscillations. The fpropos:d below

‘ F
n

asymptotic decision allcws/assuwnes prhysical intarpratation ard i«
useful for FM signals with the large ccampra=ssion. Althcugh duzing the
uses of this mcthod are nct cbtained ths best sigrnals, *han givar

higher, it has advantages in the scrse of simplicity and claczi=y,

W e T e e e

|3
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As it follows from that fpresented, with th: synthasis of KFM
; signals it is accepted to use a minimax criterion cf the
apprcximation/approach: cptirum ccnsidaers sigral the smallest level
of the greatest remainder/residue. This criterion answers the azsseace
cf croblem, Remainders/residues (minor lok=s) mask signals frem the
weak close targets, and it is desirable tc bound the level cof

remaind2rs/residues by the permissitle low value. W2 will, hcwever, }

apply the hypcthesis cf proximity in space L2, which correspcnds tc
the guadratic approximaticns/apgrcaches, which characterize scamehcw

' +hs averags/mean, but nct maximum level of r3mainders/residuszs.
i Page 244,
0f course this is ccrnnected, first c¢f all, with $the fact that th=
Juadratic criterion simplifies cecisicen, but th=ra are other

consideratiors in favor c¢f this critezisn.

“ The level of the greatest repainder/residu: unccnditiorally

characterizes resoluticn, if discuvssion deals with resoluticn of twc .

targets. Cemparing signal frcm c¢ne *targ:2%t with “he maxiaun
r2mainder/residue from ancther target, we obtain th: evaluaticn of
peraission/resolution urder tke wcrst conditicns. But, if is <*racszd

rzscluticn with th: multiple chactically arrang.d/locatsd mixing

VS DU PP NVOOUE

t2flections whzn sigrnal a* cach rement 2f time s formed duzing %h:

¢
.
rl
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impcsiticn of many elementary resgonses, position substantially

varies, Under thesa conditions the *ask of permission/rasclution has
{ a static character and a gquality ¢f signal it is characterized by “n»
root-mean-square level c¢f remainders/residuss, but minimax. This will

be cocrdinated with the critericr, utilized below, sz2e alsc [ 15).

In this chaptsr further is examined the synthesis of thke not
quantized by PM signals with the artitrary arrangement/positicn of {
ccmgutaticns. Such sigrals fcrm wider set than KFM, tut on the set in ‘
juestior ars rstained the fundarental special f:atures/peculiarities
of phase manipulation - intermittert character and the constancy of
amplitude. These special features/peculiarities charcacterize main
technical advantages of FM signels cver the signals cf other types
and, as it is clear fror the fcllcwing, precisely, they are
determining in the prcbles of synthesis. We will show tha< th2
impertant prcparctizs of F¥ sigrnals which, urntil ncw, could te only
assumed on the base of availatle experiment, ars revealad/dstec+ed

completely naturally with the helg ¢f the prorosesd method. In

[

particular, asymptotic decisicr will coms to light/detsct/expcse %hs

maximum lzvel of romainders/residves, which is apprcximately 1

;‘.‘,!..AA | VP NV

coordinated during the large corsrression with tne given rasulss,

But nevertheless lercar rrectical intsras® represent XF4

signals. The correspondin¢ methcds ¢f synthesis ars examined in ¢h=

L

s —r e .vv-- - »woﬂ—'-~..‘-—‘vr--<.~—.~~»——--—-- -—— - -
. - : o N . 'Y . -
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following chapter. These mathcds ar< th2 straight/direct dzvelcpm=an+«

of the methods, set forth belcw.
9.4. Approximations/approaches ¢n the set FPM cf signals.

Let us switch over tc synthesis of PM signals. As we usually
assunme that in the space ¢f sigrals H are many X permissible signrals
and many Y desired signals, Set X ccntains all FM signals with fhe
arbitrary arrangement/pc¢siticrn ¢f ccmmutations, i.e., satisfying
corditicns (9.1)~-(9.3). The structure of set Y depends on specific
problem, If synthesis of FM signal is produced acccrding to thz
function of uncertaintys/irdeterusirarcy o,(f, Q), by realizable cectain,
in general, by the continuous sigral s(t), then set Y contains all
signals, which possess this functicn cf uncertaiatys/indaterminancy.
As it was shown in chapter 7, tlkese signals are characterized by cnly
initial phase, i.e.

yit=s(t)c™. (9.9)
Page 245,

We will trace also synthesis cf FM signals according <c¢ <he
assigned realizablz autcccrrelaticn function F(:t). IR “his case sot Y
contains all sigrnals witlk assigred R(t), i.e., with the assignzd
aaplitude spectrum a(w), connected in a known mannsr with R (%),

B (910

gio=a(w e
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where a(w) - arbitrary phase spectrum.

Let us designate thrcugh Xr tte set of PN signals of the
assigned duration T. Let there ke the arbitrary signal-y(t). I2¢t us
£ind FM signal x(t), which belongs to sat ir. ensuring b=st
approximation to y(t), i.e., will sclve the task cf approximation orn

the set of FM signals. Result gives the following thesoren.

a) Best approximaticm to signal y(t) gives on set Yr signal
x(t), expressed by fcrmula (9.1), fe¢r which tla function X(%t) is

detarmined with -T/2<t<T/Z by the condition

1“)={—i—l A7 Beex ¢. nou KoTopmx Rey (f) > 0; 9.11)

— 1 234 Be=x< ¢, npH Kotopwx Rey (£)< 0,
Key: (1). for all ¢+ with which.

or otherwise A(t)=sign Rey(t), where sign - function of sigr. Th2

moments/terques of commutation ;. c¢f signal x (t) coincide with z2ro

Rey (£), L1.2.
Re y(t.)=0
b) 1€ with -T/2<t<T/Z real part Rey(t) is diffarent frcm zarc in
any 3intzrval of t of final measure, the signal o0f the bes+

approximation on set Xr e¢rnly.

c) The coefficient cf preximity bezwezn signal y(t) anéd s2+ \;
comprises

CiX.. _t/l:_-TL? S ‘Re w1ty dt. 19,13

-7 .
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[ Actually/really, as usual, the task of approximation is raducz4
to the maximization of the ccefficient of precximity which tzking into

acccunt (9.1) obtains the expressicr

@ .. . ‘T2
Clx, y)=Re jx(t)y'(t)dl.—.:#i A(t)Rey(1)dt.
) =¥

Pags 246.

Acccrding to %*h2 conditicn X (t)=21, therefcra,

' T2 T
1 . I \

Cx. y><-ﬁ§ fA\t)R:ylh\dt:-ﬁ,S \Re (1)) dt.
-T2 -T2

Is here achlisved equality cnly by satisfact=ion of condition
(9. 1)y which, as can easily ke seer, provas all ccnfirmaticns c¢f

+*heoren.

For the uniguirsss cf the test approximation i% is significan+
that function Ray(t) is differert frcm zero inp any finite interval {
with -T/2<t<T/2. Actuallysreally, if in certain section T<T functio:z
Reyi1)=20, then, as it is claar frcem tha formula for tha coefficient cf {
preximity, its value does nct deperd cn what function A (t) is i

selected in this section. Consequently, unier these conditicrs bast j

apprcximation is rnct unamtigucus, ]
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The proved thsorem has fundasental value for the synthesis of FM
signals. It determines Lest apprcxivation on sat Xr for any
continucus signal y(t). The fundamertal contaent of theorem is reduced
to the very simpl:s rule: for cbtaining the best approximaticn on s~*
of FM signals it is necessary ard it suffices to produce the idesal
limitation of the assigned signal (are mors pracise, its real parts),

SO as to the given one and aprrcximating signals would coincide irn

the sign (Fig. 9.2).

e g e e - —— = st e = ————
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Pig. 9.2.

9.5. Synthesis according to the function cf

uncertainty/indeterminancy.

Lzt us uss the proved in the previous paragraph thecorem for the

| syntkesis of PM signal accordinc¢ t¢ the realizable functicen c¢f

' uncertainty/ind=terminancy. As it was noted, set Y contains in this

case the signals, which are characterized by cnly iaitial phasz ard {

determined by relationshig/catic (9.9).
Page 241.

In cornection with this task we ccnfirmed the hypothesis of preximity i

in chapter 8, after showirg that test quadratic approximaticn to the

assigned function of uncertainty/indeterminancy givas signal Xep(!),

nearest tc the szt Y indicated,

For firding this sigral let us use the fcllowing ordasr ¢€ <hk»

minimizatior of distance. First, fixing/recording arbitrary signal

'.IA.AJ PR VNP VIO
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yesY, it is detarmined the nearest tc it signal of s2t Y. If the
latter contains FM signals cf prescribed duration T, then result is
determined by the previcus theores and distance 4 (X, y) 1is
characterized by tha coefficient ¢f proximity (9.,13), It is possibl-=
to consider, hovwever, the mcre ceteral case when duration of ¥4
signal T is not assigned greviously, but it must ke determined in th2
prccess of synthesis, Then it is necessary :to maximize the
coefficient of proximity 2lso ir value T, i.e., taking into account

(9.13):

C(X, y)= maxC(X, yy= zrl

T:.
S Resityc|d
-T2

Then we will maximize the ccefficient of proximity alsc in sc~
Y. In the task in gquesticr the sigrals of set Y satisfy ccndition
(9.93) ard diffz: frcm 2ach cther cnly in «coms of initial plkas2 e,.

The-zfore

T

[Res(n M dt.

1
L, Y)= C(X. = MaX —=
C M=o gi=pryy |

LX

Separating/libera*irg¢ in sigral s(+) aaplitude and phase factors

s@)=A(He*" we finally oktain

T2
C(X. Y)=t;1'ai71=7._ LAWY cos (@1 = 3] dl (9.14)

—T2
L2t us considzr a sgecific exarpla, As it was shewn in chapter
6, oop“imum function uncertaintiessirdeterminarcias in ~he s=rs2 of

its concentra%iosn in certain central circle give the functicn of

ad
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Hermite. We will seek apfproximaticnsapproach to this function of

uncertainty/indeterminancy of FM signal.
Page 248,

The function of zero-crder Hermite - Gaussian signal ~ has a
comgpression of the ordar c¢f ore. 2ttempting tc obtain FM signal witk
the large compression, lcogical as the "sample/specima2n" to take the
function of Hermite of higher crder. Let us fglace

siy=A@t)y='2q) =)™ PH ). (9.15)
where H, - Hermite':s polynomial.

W2 examinz tha real signal fc¢r which ®¢)=0. Therefore fronm

(9.18) it is obtained

T2

leosge] ,

CiX. Yy=max —T° t) L.

{ s T jIS(l‘L!
=

2

Obvicusly, maximum ¢n ¢5 occurs with #,=0. Th2s ccnditicn

determipes signal Yepr, nearest to set X. Consequently,

-

!
‘

CiX, h::mmul—

1 VT“\r [sit)idt. (9.16)

2
123
Fig. 9.3 show the assigned sigral, the functicn of Hermisa of
the 10th crder. Stepped line refresents unknown 2nvzlcpe of FM
signal, ccnstoucted in accordance with the previcus “hecrem (%.2. 3¢
=hat <hs momsrts/*orq = cf ccmruta*icn fall o zarec s{=)). Th~
optimum duraticn T is determined according to conditior (9.16).

Brcken line showed the depsrdence c¢f intagral (9.16) c¢f ths: éduraticr,

S T T WP TS T — e e -

e - ~ — —- - PR SR P ——
; » ~ . .
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Fig. 9.3.

Page 249,

Maximum cccurs with T/2=5, that alsc determines the unknowr duratior.
In this case

me=C(X, ) ) 30.87.
As usual, the value of the maxisum coefficient of proximity

determines th: shcro4%es* distarce tetween s2ts X and Y:

d. =2{i —CiX. })]=2(1 —0.87)=0,26.

min

Iz § 7.1 2+t was showr that the smallest quadratic difference in

ot

he corraspording furcticns c¢f uncertainty/indeterminancy also is

2xprassed as the coefficient cf tre proximity:

o0
. N . | n - .
d, Uz 1) =mgﬂr - U VLt =y Q) FdidQ =
At ‘_'__m

=2{1 —C*X. "N]=2(1 — 0,875 =-01.49
The comparison of the two-disensional functions of

urcertainty/inds=tarminancy, represented in the Zorm cf thz surfaces
acov2 the plane (%, 1), présente kncwn difficul=y. 4e will L& bourd.a
tC “w4c sacticns, shown ir Fig. 9.4, The function of th=

unczrtainty/iadeterminancy of hersitian signal is a bedy of

revclution.
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pPage 250.
Its secticn along th2 time axis (autoccrrelation functicn) has an f
exprzssion

Zalt, )= Rity=e "L, (52,

where Lan - Laguarre's pclyncmial.

Analcgcusly occurs secticn alcng the axis of the frequerncies
750, Q=" (0Q2).
This dependence is shown ir Fig, 9.4 by dotted lins. sSclil lirrs

represent the appropriate secticns ¢f the function »of

uncertainty/indesterminancy (4, Q) £cr the approexisazing FM signal,
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We obtainad satisfactory approximation/approach. For the
autocorrelation functior, which derends on the code, broken line,
vhich ccrresronds to FM signal sufficisntly fully describes even fine
structure of the functicre c¢f lacuerre, approximataly rspeating the
form of main surge and all remainders/residues. Sections x(0, Q)
approach to a lessser degrea. Here satisfactory coincidence takss
place for the main surge and pear lateral ones. Further curves
diverge. This is explained Lty tke fact that fcr FM signal with
rectangular envalope section %x(0,Q) it dces not dep:nd cn the code, it

is descrited by the functicn

sin Q7 2
12 (0, @) =—gr5—

which is complately deterwmined Ly cne parameter T. Logically, the

possibilities of apprcaching this section are very limited.

L=t us notz, however, that the dectted curv:, which ccrrespends
in Fig. 9.4 to continruous herwitiar signal, is placed in the
considerable section between the sclid linas. This makss it possitlsz
to assume that the apprecximaticry/approach of *h3 same order giva all
cther sections. In any case, we clttained best guadratic apprcxima¢ion

to the assigred function ¢f urcertainty/indeterainancy.

One shoull emphasize that the quality of approximaticns/agppcoact

. [ . ’

-y hande S ol . S dndin R S
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depends substantially or what furcticn ¢f uncertaintysindetsrminancy
is assigned. We considered the case when the realizing signal s (t)
real. This sets known limitation cn the structure of the function of

uncertainty /ind=t2rminancy 1.

FOOTNOTE !. The latter fpcssesses syrmetry relative to the axes of ﬁ

coordinates t and Q. ENDFCOTNCTE.

Page 251,

It is obvious, the real generating sigral to approach with the help
cf FM signal (which alsc real) is pcssible better than the signal of
general view, which has iwaginary ccmpcnent. In parsicular, an
attempt at the approximaticn/aprrcach to ChM signal (in which real
imaginary the parts are ccmmensurated on tha en2rgy) gives

considarably worse results, Fespec*ively, is cbtainad worsa

approximation/approach ¢f the furctions of uncartainty/indaterminancy

(81.

3.6. syrthasis according to the autccorrelaticn function. g

W3 pass to the ccmplax protlem - synthesis of FM sigrals
accerding ¢ thz autccorrelaticr functizn, As 14 is clear frca %h-

pravious survey/coverage, precisely, this prcrlza is thes basis o0f -1~

oy - v— - — ‘_-... v - _..'—A.T ‘..7:..‘ .-
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ma jerity ¢f the kncown methods ¢f synthesis FN.

The goreral/common/tctal treatment of a quastion remains
previcus. If R(t) - the assigneé¢ realizable auvtoccrrelaticn func+izr,
then many desirsd signals Y include the signals, which satisfy
condition (9.10) and which are characterizad ty only phase spectrum;
ths amplitude spectrum is uniquely determined by the assigred A

autccorrelation functiorn:

m -
|9 (@) =a’(e)= j‘ Ritye ™ d1.
0
After selacting certain desired signal yEY. we we can detsrmine
FM signal xeX. ncarest tc it. Ir zccordance with “hs theorem § 9.4

for this it is nacszssary and it svffices <o fcrm PM signal x (%) sc

that the given one and approximating signals would ceincide ir the

sign. The corresponding ccefficiert ¢f prcximity givas

rzlationship/ratio (9.13) 1

. bt e

T

e : . L -
CiX. ph=—= ( Re gl 4

FOOTNOTE 1. Here and thrcughout is examined set of PM signals of
fixed period cf time T. This dces nct lead to the loss of generalicy,

if compressicn is sufficiently great (see belcw). ENDFOOTNOTE.,

In order <5 £ind sigral #.. reaces~ <0 se: X, it is rnecessary,

varying sigral y tc olt+air +he maximum of this valus,
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Page 252.

Satisfying this condition signal /.- is gen2rating for unknown by P%
signal ‘orv in order to de*2rmine the lattzr, i+t suffices to further

again use theor=2m of § 9.4,

Thus, the criterion ¢f prcxisity lsads tc th2 following *“ask:

it is necsssary to find phase spectirum acu.(wi, the maximizing
coefficient of proximity (9.17) when signal y(t) is connected with
a {(w) the relationship/ratio

x
y=g [awe™ "o s,
-0

where 31 (w) ~ the assigned amplitude s ,:trun.'The moments/-crquas >¢€
commutatica /» of the unkrown FP! signal x(t) ars detarminad fuz4khk-r
from the ccendition

Reyaope(ta) =0. (9.19)

Signal xop¢ satisfies the criterion of preximity, i.e., r2alizss
the minimum c¢f distarce cf set Y. After using ancther order of the
pinimization of distance, we decocnstrated in § 7.2 that this signel
provides best quadratic apprcxipaticn <o th2 assignad amplitude
spectrum a(w) (s<¢e €fcrmula (7.17)), and it also givas the

autocorrelation function, clcse t¢ the optimur (in the sers2 of ]
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quadratic approximaticn/agpprcach - see formulas (7.20), (7.29)).

The grcposed method cf synthesis is reduced to finding c¢f
gensrating signal y., (), and not directly not unknown FM signal
Xopr (¢). This leads to the variatioral groblsm, where unknown is
continucvs function - phase spectrur a(w). Failure of the dirsct
synthesis discrate/digital FPM cf signals allows, as we will see, to 1
vork cut the rsgular methcd which, at least, in the asymptotic

approximaticnsapproach gives decisicn without any selecticn.

' As for ChM signals, is here pcssible the iterative proceduras of
} decision by the method cf successive design., Itsraticns make it
pcssible ¢ cbtain more exact sclution, being transmitted frceoe
cartain signal 2f zero approximaticn. Such iterations comple%ely

correspond to the overall diagram, pres2nted in § 1.8 and which was

being regpeatedly applied Lty us earlier.

" After assigning FM signal ¢f the zzro aprroximaticn x4, vw=
4
,} detarmine signal y,, which belorgs to set Y, rtearest to x,. 4
Y )
oq' i
< Page 253.
4 !
- 4
) :
3 i2 +hen seek signal =\ rearest tc y,. Rsp2atiag this process, w-
’ obtaia descendirg sequence of tlte distances ’
9 |
) d‘;!ll';‘}d,‘.;) e
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Let us dismantle/select in greater detail than these iterations.
After assigning FM signal of the zero approximaticn x4, We can
dsteraine its spectrum, using relaticnship/ratio (9.3). If we

separate/liberate the real and imaginary parts of =~he spectrum, i*t is

obtainad
y U V(o)
X (@) = —>= ) == jV .
(w) Sy e iy
V=1
oy = 2(— l)"sinmr:“ —-—[)— [1 ¢ - h)¥sin 31— {9.20)
k=1 )
v~
. H ‘ N M mT
Vv 1wr=2(—l)*cosw'L ——:\—[lf—c—IrICr)sT-

k=t

Here !’ - mom2nts/tcrques cf ccammutation for signal xo. In
acccrdance with the thecrem of § 7.2 in order to dstermine signal
yeY., rearsst to xg, it is necessary fcr th: assigned amplitude
spectrtum a(w) td> ascribe the phase spectrum of signal xg. In cther

wcrds, spectrum y(w) shculd be registered in the fora

Ty (W) —
| Zg (@}

Ui+~ V()
Vite) =1 (@)
Signal y,(t) as the functicn cf *ine is determined furthar by

;(uﬂ=alw)

=a () signw.

invaerss transformaticn of Fourier:

<
) - o
Gl T e ( o - Jw =
) L J
e

: Ol es @8 — @i S @
Jio) t A do .20

—s

Ve Vi
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It is hera assumed thkat the amplitude spectrum a(w) cccupias che
; final band (-2, 2) and is even furcticn.

Page 254,

Finally, it is necassary *c fulfill “<ransition from signal y, %o
the nearest signal x; of set X. This transiticn gives theorem of §
9.4: the moments/torques of ccmputaticn of FM signal x, correspond to
zero rzal parts of the aprroximated signal y, ( t). Since signal y, (%)
( rzal, finally is obtained the equation

Y1 () =0; —T2<EHWLT/2 (9.22)

for detormining the moments/tcrgues of commutation of FM signal cf
first approximation. Purther stages of iterations are produced

analogously.

In chapter 1 it was shcwn that this iterative process

corresponds to projective-gradient sethod. Is minimized hare distancsa
between X and Y. Was considered alsc the convergence of iterations.
In accordance with the thecreass cf § 7.2 and § 9.4 when making *hese
assumpticns occurs the uniqueress of approximations/apprcaches in
each stage, and itszraticns lead tc certain minimum of the distanca
beswaen sets X and Y. Hcwever, ¢his sinimum can prova to be lccal. So
~“hat the itcrations would lead “c *he shortest distance (glctal

minimum), ths signal cf zsrzc aprrcximation must ba selcctsd
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sufficiently closely to Xop.

The determination c¢f zerc aprreximation is thz independent
problem, which is reduced to the straight/direc+ resoluticn th2
ferrulated earlier variational prctlem, see relaticnships/ratios
(9. 17)-(9.,19), We will ccnsider tle asymptotic method of its
decision, suitable for the high centraction ccefficients. This
decision has much in commen witt the appropriate methods syrnthesis

ChM and is cf independent interest.
9.7. Asymptctic synthesis FM c¢f signals.

Above established/installed, *hat tha synthesis of optimum FHN
signal v, is reduced *c findin¢ ¢f optimum ger2rating sigmnal «...
nearsst tc set X, and this, in turn, r2guires *hs dztermiraticans c¢f
optimum phase spectrum uolw). with which ®h2 cosfficient c¢f proeximis
(9.17) it reaches maximum. On tte cther hand, signal #.. is lcca+:=d
at the shortest distance from FM cf signal v,. In accordance with k=2
thecrem of § 7.2 its phase spectrum is phase spactrum of FM sigral,

i.e., the odd function ¢f frequency, s2s (9.3) and (9.21).

Page 255.

Wz can thercfcr2 bz beurded +c¢ %the axamiratiopr of odd phase swctirz,
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after assumirng

u(—w) =—u(n); «() =
Furthermore, th2 amplitude spectrum a(w) makes sense to assign only
by even function of frequency, since the amplitude spectrum of any F“
signal is aven and the ccefficient cf proximity in the form (7.195)
does not depend on o0dd ccrponent in a(w). Under these conditions the
generating signal y(t) is real. As a result, froposing also that a(w)

is finite in the interval (-0, G), we cbtain instead of (9.17) and

(9.18)

( Cle

ﬂ.l

\ ¥ ()| df = max, (.23,
-T2

1 Q

y) L:{-Sa(m)cos[a(m) wl] do 19.24

-

Task consists c¢f the deterwmination of function a(w), that
realizas maximum C(X, y). Por tle appreximaticn calculus ¢f integral
(9.24) it is possible +c use the rethod of steady s-ate, This is i

connectad with one more assumpticr: cne should consider that the

derivative of tha unkncwe phase spectrum af (w) variss monctcnically

S in interval (0, Q). The aforesaid means that we will se=2k optimua FNM

[

signal frcm the subset, sutordirated to further condition. We aust

also explain, how this a limitaticn is dangercus from -“he pcint c¢f

:4‘_1‘.-& | VRPN NI

view of *he loss of the test sicnals, which ersure high degree of

approximation.

Thus, ccunting for the cencre+snass, -“hat :tha fuac-icn a'(w)

|
by
»




l’_. 9 -‘. "‘ALA.<; | R SV

C e

DOC = 80206711 PAGE l-f'*b

mcnotonically grows !, we can use the formula of the methcd of stszéy
state (8.20) exactly so, as this vas done during the

conclusion/output of relaticnships/ratios (8.31) and (8.42).

FOOTNOTE !, It is possitle to *ake that decreasing a'(w), this leads
only to the inversion of the cttained signal, the opposite refarernce

direction of time. ENDFCCTINOTE.

As a result it is obtained

/2 & (Wat -
—_ L~ cosfaiw,) —wl - 4l v 25
~ Vz”(u)u [21w,)

mnoreovar frequancy wg is connected with the cur-ent %ima t with

y (=

stability ccndition of the phase:

' (=t 0<wn<Q. (9. 26)
Page 256.

Formula (9.23) leads further tc th2 rs2lationship/ratio
C(X, y)%l/,, S ',"‘,j“(" [ cos [2 (@) — wt -+ ='4] ! dt.

Hera the sign of arrroximaticns/approach indicates the errer,
connec+ed with the methcd of steady state. It is belcw,
allcwing/assuming also scme cther errors, we we will not first write
out th2 agprepriatz ccrrectiors., The evaluaticn/asstimate cf th=s:

aporoximaticns/approaches is dcre mcre lazely.

R . - - . e - . - A Dbt i SR SHE
AR o — e ,"". ] R TN &
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Using dependence of t on we, by 2xpressed formula (9.26), let us
switch over in the latter/last integral to variable/alternating wg.

Prca (9.26) we have dt/dwg=a" (eg); thereforse

p—
C(X, y= Vz—gfj.a(“’”' a' (@)l cos{a(w) —

2
— @2’ (0) 4-x/4} | dw. (9.27)
Is here omitted index in veriatlss/al<arnating w, and irtegration

limits 9, and 1, correspond tc¢ the toundaries of the signal: i
a' () =—T/2, o' (Q;) =T/2. (9.28)
Furthermore, taking inte¢ acccurt (9.26), is assumed to be that

parformed condition 0g%,, Q,¢G.

As a rule, the assigned amrlitude spectrum a(w) is ths pesi+tive
flat function, which slcwly varies in interval (0, Q). A similar
character can bz assumad, alsc, ir o" (w) . However, latter/last

factcr under irtegral (9.2z7) has c¢scillatory structure.

Using the expansion

s [ Lo
COS S == e ™ 9 2
< " - ; T CO>2uz 19.29
[=_}

duf =

wz Wwe can isolate fros this factcr "constant coampenant" 2/w,

Page 257.

On> should expzct that ¢his ccmpener* makes a main con*ributicn <~
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integral (9.27), while rapidly fluctuating additions give small
correction. Therefore, reing lirited thus far to the first term of
series/rovw (9.29), ve ottain :

N
C(X, y) z—;—‘/;'-'fga(mll_z”m;du 19.30)

¥,

It is ncw not difficult tc £ind the functicn a" (w), with which ]
the coefficient of proximity C(X, y) has a maximum. Applying
Schwarz-Buniakowski's inequality, we obtain, taking into acccunt

(9.28) and standardizaticp conditicn:
Sy €y
C'(X <3 (a7 (w)deaw;dm:

£, 2,
8 2,
=72 (Q) — 2 Q) Sa’(«ndm=
2,

2, 2
8 . )
=—1‘TSI'(m)dm<%Saz((ﬂ)dm=f—z. (9.31)
2, [}

Here there are two irequalities, The Zirst of them is ccavert:d

into the equality, if factcrs urder int=gral (9.30) are propcrtional,

Y

a” (w) =y2a* (o). (9. 32)

The saconi inzquality beccmes =quali‘y, cnly if integratior
linits comprise

Qg=0. Q:=O

L+

So that the coefficient ¢f prcximizy would achieve maximum, it

y to *tak? kcth these ccaditions. Fec=or cf proper+ticnalicy

is n

“w

caegsa

"

y it is y to detzrazine further, if we integrate aquaticn (3.32).

'}

a

]

This it qgives
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oS e
5 2" (o)do=a' (D — 2" (O)=T =7 \1512 (o) dw ="z,
§ o
Moreover here are again taken into consideration

r2lationships/ratios (9.28). Corsequently, y=}Tr=.

Paga 258.

Thus, optimum phase spectrum satisfies the aquation /

'’ (w) =—:—a= (w) (9.33)

under tha initial corditicns a' (0) =-T/2 and a(0)=0 1,

' POCTNOTE !, Latter/last ccnditicn fcllows frcn the odd parity of

-

i optiaum phase spectrum a(«) and its continuity. ENDFQOTNOTE.

Direct substizution in (9.27) shtcws that value C actually/r=ally

reaches in this case a maximally pcssible value, det2rmined ty

inequality {9.31):

2
) i ry
CX,Y; =—;—]/—‘-T~ '/lfa"(m)dw=2—l—l. (9.34y
5

' =T = =
~§ Fig. 9.5 illustrates these results. In the uppar part cof ths
. |
| figure is shown tha assignad spectrum of pcwer a2 (w).
(3]
L
4 4
1
Y
¢
>, i
u

-
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a‘(u){\

T
' Fig. 9.5.
Page 259,

In the lower part is given odd furction a” (w)waclss csach half is

- prcportional to this spectrum in accordance wizh (9.33). Is there

14

shown functicr «! (w) and are ncted intcgration limits Q, and G5,

]

PSPV DU VU N

whichk satisfy conditicn (S.28). Tha value of the coafficisnt cf

prexinmity is proporticnal to integral of a2 (w) 4ithin ¢he limits

- EY

indicat=d and reaches marimum with €;=0 ard Qz=Q.1gbviously, ae
arcived at the relaticnships/ratics, very close to the case cf ChM

signals. Fgquatior (9.33) is similar (tc 8.37) for czctergqular

4
q

i = T — —— - e -
. v, T i S e

[PV NP AY I AR SN
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envelope. FPurthermore ChM signals with sysmztrical modulaticn,
examined in § 8.6, they gave accurately the same value of the maximunm
ccefficient ¢f ths preximity (see (8.47)). Ther2 is suggested the
assumption that there are certair internal coonnection batween ChM ard
FM¥ oscillations. This ccrrecticry/cermunicaticr will be

actually/really revealed subsequently.

L3t us now point out only that a structure of ChM oscillation i
has ths cptimum generating signal, which satisfias the previcus
conditicns. Actually/really, with |tiLT/2 this signal is dztermin=d by
relationship/ratio (9.25), which taking into account (9.33) and
(9.26) acquires the fcro

Yo~ Y Scos[0(e) -4 (9.35)

fdarca

® (a)=t(0) — @a’ (a) =2 (0) — { @2’ (o) do =
5

=—_£_ (n a?(o) Jo, (9.36)
)

buz frequency w is connectad with time ¢ with rzlationship/ratio

(9.26), which can ba registered alsc in the fcra

t=12'(@) =12’ (”)-%—[2" (@) Jo —

(]
-—-—L-{-—':—ly{l’(m\dm. (@37)
0

Page 260.
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Oscillaticns of type (9.35), which have *hea structure

y{(8) =A(}) cos z(1).
we will furthar call real ChM sigrals (in contrast tc usual ChM
oscillaticns for which is characteristic the reoresentation c¢f ths

form A(tyeky 1,

POCTNOTE . However, ther it is pcssible to name also FM signals cf
variable amplitude, since the phase takas values ¢f 0 or » depending
on the sign of cosina. let us recezll alsc that ws everywhere deal
concarning composite envelcpe, tut not with stric*tly thea sigral.

ENDFOOTNOTE.

Instantaneous frequency c¢f this exists z'(t). FOor g=znerating sigral
(9.35) instantaneous frequency vary mcnotcnically. Actually/really,

taking into accourt the previcus relationships/ratios, we obtain

dd d® do
*O=F 7o at—
T T
= —;;-ma’(m)/-;-a’(m):—m

formula (9.37) it shows further tkat ©c(f) is a monotcnic furc+ion.
Thus, which generates f£¢cr the cptimum FM signal is real ChN
signal of constant amplitude with the monotone law of a change in “tha:

frequency.

In Fig. 9.6 is clarifisd thke methcdolocgy ¢f synthzsis, which

S emger——
R o T
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directly escape/ensues frcs the ottained r2lationshigs/ratios.
Optimum PM signal «x,+ 1= nearest ¢c¢ yo.pr. Its moments/tcrques cf
computation correspond tc zerc yoptl(!). i.2.

Yopt () = ;/7Tr cos [4’ (o) 4 —’-4‘-] =0.
Thecefcre, after constructing of the assigned amplitude spectrun
function ®(w), in accordance witth ($.36), we must determine values s
with which it is implemented latters/last condition. These valuas
determine, in turn, moments/tcrques f according to squation (9.37),
and alsc the unkncwn FM signal, stcwn in the right sids of the
figure. Charact2ristically mcnctcre? condensation of the
noments/torques of commutaticn tcward the end of the signal,

-

conpected with the assuppticp akcut the monotcnicity af (w).

L2t us explain ncw, what degree cf approximaticn gives this
methcd of syrthesis., The distance between sigrals %op: and y,, is

detsrminad by ths cbtained coefficient of proximity (9.34):

=2[1 —C(X, V)]=2(1 —0,9)=0,2. (9.38)

noan

Page 261.

The method examined has as a gcal to approach autocorrelatior
functicns, ard it is impcrtant tc ccrsider, hew this is reached, 1I:
7.2 was obtainsd ralaticoship/ratic (7.25), which <stablishes th2
approxima+te depandence ltetweer a rcct-mean~square arcror in th~»

autccorr2laticn functiore and with a distance 0% dmia.

—— - e e ———— ke ey —— ;e .
L. , ;' -s_..',.». . . N

3
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This relationship/ratio takes the form

am!'n = l"2./—m dm.‘n.

Thersfora, takirg into account (9.328), we obtain
Smin=1 0,4m=~063} m (9.39)
This result has furdamental value., We can claim that during %he«
large compression the remainders/residuss of autocorrelation function
in the optimum case are cf the crder j/ym. Until nowv, this ccnclusicn

followed cnly from the analysis cf known signels 1!,

FCOTNOTE ?!. puring the ccrclusicn/cutput of relatiomship/ratio (7.25)
ware assumed som2 averagesmean ccpditicns. Por the best signals the
roct-mean-squar:z lzvel ¢f remainders/residues can b2 less (9.39), but

it has the szmz order relative tc valuz m.
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9.8, AncCther trzatment ¢f method.

;f As it vas mentioned, the generality of tha mathcds of syathasis
'3 makes it possible to assure certain ccnnection/communication Lbe4weer
'1 ChM and PM oscillations. This ccnnection/coamunication lies in the
] ; fact that any FM signal i1t is pecssitle, it prcvss =0 be, %0 rspras-zs
3 in the form of the impositicn cf the correspording ChM signals.
1

S g o o

i [ NENPI T
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In order to show this, let us begin from formula (9.3) for ths

spactrum FM of the oscillaticen
Ne=|

-~ 2 oty _
/ x(o)ajWT— {e 5 +2 (—1)re J"‘l-l—

k=1

. ety
e
+ (- = }

(9.40)

Let us introduce inst=sad of the irdex ¢f summation k ccntinuous
the variable/alternating 2z and we will consider that there is a
continucus function t(z), which takes valuas n a* pcints z=k=0, 1,
eees No. Than it is pcssible tc use the summation fcermula of Pcisscn

(see for example [1])

O s;+0+ek—0) W [
2 7( + )'*2'?( - ) =2 jy(z)e‘g"'dz (9‘4”
=—m vE—C0 —Q

for converting expressicn (9.40). Actually/really, if we determine

furcticn #(z) by the relaticnskip/ratio

exp {—j [w (2) — 2]} é’g‘s o<z N
0 npu z<0(f}z>N,
K2y: (1) with. (2). and.

9m={

that, as carn casily te seen, left side (9.41) is ccrvarted in%to the
expression, included in the tkrackets in fermula (9.40), and we obtain
on the basis of Poissont's forsula:

a0 v
-~ Q2 "
X (W) = —J-W 2 j exp {—j [wt (2) — (2v 4 1) =2} d2.

yx—0 U

Sincz % (z) - monotoric furcticr, it is possible tc pass irn the

lat<sr/last iat=:gral ¢o Lty the variable/alt=rrating t. As a rasult
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after the series/row of the ccnversions (is used integration in

parts, the terms outside the integrzl vanish with the summaticn) is

obtainad
T2

- 2 9 |
x(0)=.-T‘7?- 2 mEl 5 exp (3 [(2v + 1) =z (£) — oot] }1dt.
=—Q0 —-f]2
(9.42)
Page 263.

Finally, bankirg in pairs the memters of this sum, it is =asy to

‘ obtain

, ) Ti2
-~ 4 ! ;
*o="T7 22v+z § siollzy 4+ w2 (0 €7 4.2 (9.45)
=0

-

. -

It is new clear that in the interval (-T/2, T/2) of PM sigral x(t)

can be presented in the fcrm cf the infinite sum of real ChM signals:

4 1
x(t)=n———r stin [(2v 4 1} =z (1)), (9.44)
vaxy)

This result it is not difficult to interpr2t. Let us considar

2.

the segment c¢f rectangular oscillaticn (meander), shewn in Fig. 9.7a.

¢

As arqumen* hers serves value z and jumps occur at the whols values

s

IOV DU D TV

of z=0, 1, 2, «ee, No In the interval 0<2z<N this oscillation can b2

G

deccmposed ir the usual Fcurier series on the sines. The fundem=zntal
harsonic c¢f this rescluticn is alsc depictad in £igurs. I% is rnot

difficult to ascertain ¢that the ccefficients ¢ this seriss/rovw th:

same as in fcrmula (9.44). Sirce the variablesalternating 2z

B 2N

-
-~

ronlinaarly dzpicds on %ims, ther ¢cn scal: & Jumps occur %hrcugh =he

LY

B ol
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unequal gaps/intervals and is ottained PM signmal, shown in Fig, 9.7L.
On the cthar hand, the nonlinear dependa2nca of z on t leads tc¢ the
fact that each harmonic cf Fcurier ssries is converted in ChM
oscillation, but this ccmglicatice, obviously, in any vay doss no*

affect the ccefficients cf series/rew,

Lat us examine in more detail the first tharmonic" (maximum in A

the amplitude)

x4 (1) 3’%?5"1 =z (1).

a)

P':\: Pig' 907.

S e

o} . . h.d,..‘\h'.‘&ﬁ—.t .

0

RN p «
Vv la.
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Page 264,

Of the condition, functicn z (t) takes the whole values of z=k=0,
1 2, eeee N at the mcments of the commutation of phase & ChM
oscillation/vibration x,(t) passes at these mcmeants/torques through
zaro. Ccnsequently, we obtained ncthing else tut ancther form of the
recording of gsnerating signal {(9.3%5). In acccrdance with the rule cof
standardization it is necessary tc ¢nly change the amplitude of this
signal so that its energy would be egual to unity. If ve
disragard/neglact integral of rapidly-vibrating component, this

standardization gives
y(t)= }/ —%— sinxz (f). (9.45)

This complately will be coordinated with (9.35).

In light of this new represertation mathcd 2xamin2d above of
synthesis obtains the fcllowing treatment. Intending to find ¢tha FM
signal which approaches the assigned amplitude spscizum a (w), we
selact its the f£irst "harmonic"” (S.45) and we assume that ia c2rtain
approximation/approach the spectrum of entire signal corresponis to

th2 spac*trum ¢f this "harmonic"., It is further na2cessary to determiro

R
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phases z(t) so as to fulfill the assigned amplitude spactrun.
Lcgically, we com2 to the prctlem ¢f synthesis of ChM
oscillation/vibration and we use a gethod of st=ady state, In
accordance with the results of ﬂhapter 8 is sel=cted the law of a
change in the instantanecus frequency sco that tha daviaticn ccincides
with the width of the assigned spectrum, and a change in the rate of
modulation provides the necessary structurs2 of the latter. This
explains the similarity c¢f the rethcds of synthesis of ChM and FY.
Certain differeonce is ccnnected with the fact that signal (9.45) real

and ccnsists of two ChM usual type c¢scillations/vibrations:

1 I
£) = == e (0 — foz (1)
0= 57 ' Vars .

If instantaneous frequency we{)}=nz’(/j vary within the range of 0
to @, then in the approxiraticnsagpgroaca of the rethed of steady
state first component/term/addend describes the form of the sra2ctrun
in the band from 0 to @, and the second - Zrce 0 to -0, This will be

in complete agr2ement with that presented earlier (see Fig. 9.5).

This trsatment makes it rossible to come to light/detect/expose
the series/rcw of important pesitions., In particulas, we car cornsidar
the minimum interval Lketwesn the ccrsmutations. If the assigred
spectrum has higher frequency 0, then the great2st instantareous
frequency of ChM signal (9.4%) is also equal to Q@ (in accordance with

ths principls of st2ady state), and “he smallest half-period cf

l +AG R m-—. - - - . -, - S g
-!MI g R A ; — e g e —— e
"""" — G- T . x TR e e e
N - 2 ‘e -

i ol A e

Y. Y N _
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oscillation/vibration ccamfrrises w»/U. The moments/torgques of
commutaticn n are deterwmined ty zero "sinuscids™ (9.45); therefore
Almin=x/Q 1,
FOOTNOTE !. The given evaluatior/estimte is cf certain interest for
the iterative process, descrited in §9.6. It is not difficult to
comprehend that a number c¢£ ccmeputations N cap be changed frco one
space to the next and agprears thke fear that number ¥ will with the
iterations unlimited grow. Then tc¢ te obtained the unrsalizablz
virtually signal, On the basis ¢f that presentad it is pessitla,
however, to claim that this jt will nct happern, since the miniaum

interval betwean the commutaticons is limitad ty the higher frejuency

of the spectrum. ENDFOOINCTE.

The average value of the intervel tetween Zhe commutaticns
approximately/a2xemplarily correspcends to averag:z rapid of the
spectrun /2, i.e., Aep~2n/Q.

Page 265,

Conseaquently, total numker of c¢mmutations on duration T obtains

(44
o
D

evaluation/estimate N=T/At,=QT21=m2. This will be coordinated with
kncwn proparty of "gcod" FY sagrals: a number 5£ alternaticns in thre

sign is approximately half cf samgples,
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We can in a new way throw light also assumption about the
monotonicity of derived a'(w). 2s it was noted, this assumptica is
equivalent so that the irstantarecus signal frequency (9.45)
mcnctonically depends or time. This limitation is substantial only
during the detarminaticn cf law ChM, which ensures the assigned
amplitude spectrum. Simply we dc rct know ancther locked methecd of
synthesis of ChM signals, besides the mzthod cf steady state, but the
lattar gives the forseealbls scluticn cnly witl this restric*icn.
Resolution ¢f FY signal into the "harmonics" (9,44) is useful during
any arrangement/position cf ccmsutations, and, if we co>uld construct
nonmonoctonic ChM sigral with the essigned spectrum, thzn would be

obtained the corresponding ncrmcrctenic FM signal.

The main error in the apprcximaticn/apprcach, which lsads to the
final distance between sets ¥ ard Y, is ccnnected wvith the
replacanent cf "sipusocidal" oscillation (9.45) by sguare wave (FM
signal); in cth2r words, with the neglact ¢f all tzrms of serias/row
(9.44), except the f£irst. But this approximation/aprroach does not
depend on mcnotonicity cr nonmcrctcny of tas law cf mclulation.
Therefore cne should extect that recpmorctonic FM signals must not

give sutstantially best apprcxisaticns/approach to the assigned

spectrum, than aonotone cres, exarined higher.
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L2t us show this more strictly. Any real signal can ke prasented

in the form
- y(t)y=A(f) cos &(1). {9.46)

Assuming this sigral to be rapidly vibrating, it is isolated the
slowly varying snvalcping A(t)>0 and carry rapidly-vibrating
structure tc th2 s2ccnd factor. Then the coefficient cf proximity

{9«23) obtains the form
T2

1
-Cm:wav? (Amnmdma
—72

1f we again use expansion (9.29), then without taking into
acccunt integrals o5f rapidly-vitrating components/t2ras/addends the

ccz2fficient of proximity will depernd only on amplitude envslcrpa

Ti?

9
C(X. y):s;—‘:-f—rt { A (1) dt.
=72

In order to obtain maximupm, it is necessary tc tit optimum A(%t). For
this purpcse lzet u3s again use Schwarz insquality - Burnrakewski:

T/2 T2

4
Cr (X, V< g dt {A’(f)df:
. - ~T12  ~1s2
T2

4
=— | Ar(at.

~T2
7a3e 266,

e
L}
o
)
"
~
'J
(Y]
n
!

in%2gral can be expresssd througjh the energy of
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signal y(t). If we disregard/neclect integral of the

rapidly-vibrating functicn, tbern it is obtained

12 12 :
[ wma=2 [ yopa=e :
=72 ~r2 ‘

Thus, C*X y)<8=x* and, as usuval, uppsr bourd reaches at the
proportionality of factors, i.e., under th2 ccndition
A =const-..
This means that the real cgenerating signal with rectangular envelove
makas it rossibls to ckttain better approximation/approcach by F¥

signal in comparison with all other signals of type (9.46).

Any amplituds changes make the quality wcerse c¢f approximation.
However, if envelope is rectangular, then, independert of the
character of phase modulation, attains the lioiting value of the
coefficient ¢f proximity C(X. yy=2y 21 The aforesaid means that

nonmonotonic FY signals cannot c¢ive the bes< approximation/aprreocach

to the assigned spectrum, than asorctonic cnes cxanmined abovel.

FOOTNOTE !. This conclusicn/outrput is valid with that degree of
accuracy that is accepted above., If we taks into acccunt corrections
to the asymptotic soluticr, mcnctcne signals can prove to be

non-optimal. ENDFOOTNOTE.

It is nevertiheless interesting to 2xplain, #hat structur?2 have
"good" FM signals, obtaired by cther methcds; arce <nccuntered 120ng

them monotone. Analysis shows that ths mondotoricity actually/r2ally *

occurs for mary such signals.
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Pig. 9.8.

Page 267.

In Fig. 9.8a according tc discretesdigital values & 1is
constructed the plotted functior t(2z) for Barker's 13-digit signal.
Is there depictsd the smccthed curve, in which is absent certain
superimposed fluctuation. This curve is ccavex, it does not change
the sign of curvature. Mcre clearly this structure 1s visible in Fig.
9,8b, whera arz shown the same curves minus linzar ccmponent, i.s.,

is constructed functicr O =az()—aNT4+r..and Lts "averaging".

I+ is obvious, in certain epgrcximation/approach P (t) there is
the symmetrical convex furcticn, clcse ¢c the guadratic paratola.

This means that sach terr c¢f series/row (9.42) corresponds to the

spectrum ¢£ ChY signal with the mecnotorn2 (in thz cass of paratola -

fpton
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1aw of a change in the freguency. in Fig. 9.9 analogously

linear)
(t) for a gi~-digit M signal, based On

constructed function ¢
It is obvious, *he general/common/t

otal structure

Lagandre’'s symbols.

ame as in the greceding cas2.

of curve here the s
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9.9. Estimation of error in the asymptotic solution.

From previous is clear the nature of the 2rrors for the method
of synthesis examined. These errcis are ccnnected, in the first
place, with an error in the method cf steady state, used for the
determinaticn of the generating ChM signal, and, in ths second place,

with the neglect o0f all terms of series/rcew (9.29), except the first.

The first reason to equal measure relates to the synthasis of ChHM
sigpals, it is a2xhibited, in particular, in the Fresnel pulsations,
examined in §8.5. The seccnd reascn is specific feor FM. As we saw,
she was eguivalent to the replacenent of the stapped structure of

that shecwn in Pig. 9.7, smocthly curva.

It is possible to consider an error in the

approximation/approach, if we detersine mcre accurately th2 value oF

- ———— - -y - - -y — —— ey ——
; . ; -y — .—T—-'.*-“...
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the coefficient of proximity, whkich is in our methcd the measure of
the gquality of approximation, Here it is possible to discuss as

follovws.
Page 268.

The examinad method c¢f synthesis 124 o the generating signal

Y=Y 7 cu(@O++/4); —T/2<t<T/2. (9.47)

where the function ¢ (t) was deterpined in the paramatric form of
relationship/ratio (9.36)-( 9.37). In accordance with precise formula
(9.13) the coefficient of proximity for this signal and set of FN

signals X comprises

vr'
CX. y)=— Sl cos [Nt)-{-—’:-]

-2

'dt.

[

If we agaia use expansion (9.29), then the first term
immediately will lead tc cbtained fpreviously value C=2)/2/«, and %the

others will give the correspcnding correction., As a result

V? (]
cx. n=2+4Yec,
)

c,=tr o

where 5 el T
VT (= icos2p.[0(t)+—:—-]dt.

12

Using depeadenc2 (9.37), it is pcssible to switch cver in this

it e
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integral to variable/alternating «. This it gives:

Vo (~
C,= 4,, (4»:):‘1 Ja (-)cos2;sf®(c)+ ]d.. (9.48)

Moreovar function ¢ (w) is defined by specific relatiomnship (9.36).

Por calculating the inteqgrel let us use the method of steady

state. Stationary point wg is deterwmined by ccndition
@’ (wg) = —woa?(wo) =0.

Page 269,

Consequently, wy=0, and the method of steady state leads to the

expression (ars here cmitted scme intermediate conversions)

2V_§-a(0) (;_'1)»—1 ’ .
Co="= Vf(4»*:~;l)VE{°°’(2“_”‘%“H‘(UVE)}::-

"

. 2V Vi
= ﬂVﬁ(ﬂA‘ l)V2p {t + 0“/ m)}
. a()y 1 L='l‘
wvhere it is also considered ttiat -—V7~_V7' e =7

Further ve have

! 1 /1 1 1 -
2 @t~V _'?(_3'+ v T V3‘+"') =028

and it is final

C(X, y\_—{l+7—+0(1’m)} (9.49)

Faasie Bl —— evgmm— -.—-———- e ad *v—ﬁwmr—v«-jn-.-—‘—-— Rt
) ) " R . - R St Y . N '3
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Thus, ar 2rror in the asymfptctic solution is of the order |/Vm
and the less, the greater the ccntraction coefficient. Let us
emphasize, however, that bere has ip mind the quadratic
approximation/approach ¢o the assigned amplituds spactrum, evaluated
by the value of the ccefficiert c¢f proximity. With this criterion of
synthesis the asymptotic soluticn can b2, apparaently, consider=d
satisfactory, baginnipg with m~~50, when relative error dces nct
exceed 5%. Por the minimax criterion, and especially for the

quantified FM signals, this scluticn requires further refinements.

9,10. fhe refinement of asymptotic approximation/approach by

successive design.

One c¢f the nmetheds of refirirg the asymptotic
approximation/approach are iteraticrs by aethcd of the successive
design, which in connecticn with the task of synthesis of FM signals
being investigated are in detail examined in §3.6. Are giver Lalow

some ra2sults, obtained ty this rnethcd.

The desirsd spectrum of fower a2(w), to which was prcduced the
approximation/approack, was assigred in the fcrm of the Hemming
function

2wl =]+ 7005w ~aAZWC. (9.5M

As it was notacd in §8.5, this fcrm of the specirum gives




DOC = 80206712 PAGE Ao
( Y7/

satisfactcry approxima*ticnsapprcach to an optimum and it does not
lead to the excessive ccoplicaticr. Upper bound of the spectrum is

; here accepted equal to ». This does not break generality, if the
duration of sigpal is numerically equal to contraction coefficient
(T=m) . Parameter g it is expedient to select in such a way that on
its average part spectrum (9.f0) was close to the spectrum of the
ideal comfressad impulse/momentum/pulse - rectangular the samfple of

single duration., This leads to values of g~~0,25-0.5. }

Page 270.

For the spectrum of the form in question the general formulas of

V ———

asymptotic method (9.35)-(9.37) give

2 w?
yy= /—m-cos {% [-2—?+'g'(mslnm+cosa—— l)]——}-}'
<ol

moreover w is connected with tine ¢ with the depend=nce
m
. l=T(0+gsIn0).
" In the latt2r/last relationsbirs/ratic is not taken into

consideration the unessential shift/shear of entire signal in time to

value T/2, cm (9.37). Acccrding tc these formulas wer2 calculated
noments/torques . In which the cenerating signal y(t) it is
converted into zero. Values & Jdetermine the sigynal of zero

approximation. These values ccrresgcnd to th2 roots of the squation

S

o?
—2—+g(ms1nu+cos m—-l)-—:l— (kﬂ-——:“); k=12 ..,

PP DI TP T

|
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whichk was sclved by the method of fpolecat during the division of
interval 0w into 512 parts. The rext step raduced to the
determination of amplitude spectrum ‘[#(w)! of the found FM signal and
ccefficient cf proximity C(x, Y), which characterizss degree cf
approximation to the assiocned spectrum. Amplitude spectrum |z(o)! was
calculated from formulas (9.2C) . In accordance with the theorem of
§7.2, see formula (7.15), the ccefficient of proximity has a value

s N= - [ e(@ i @ae.

]

This integral was computed frcm Simpson's rule, also with the
division of interval intc 512 parts. Prsliminary check showved the

accuracy of this calculation cn the order of 4-5 signs after comnma.

After the calculation of the signal of zero approeximation aad
its characteristics was isplemented the first space of iterations.
The generating signal of first.apgrcximation y, (t) was determined by
integral of Fourier (9.2z1). Calculation was ccnducted through
Simpscn's rule into 8 m the pcints cf interval (0, m). Purther by the
method of polecat were determined values n® in which y, (t) it is
converted intc zero. These values are momentsstorgues of comautation
cf FM signal of first approximaticn. As earlier, was calculated the

spectrum, the coefficient c¢f jreximity and the correlation function
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of ths obtained signal. Then all calculations were rapeated in ordar
to determine tha signal of the seccnd approximationsapproach and its

characteristic, etc.

Table 9.1 dspicts the results cf these calculations. Are here

for scme m given the values of tke coefficient of proximity C,

obtained with the consecutive iterations. Furthermore, are indicated

O .

the maximum remainders/residues c¢f the normalized autocorralation
function u, ard also the value cf ccefficiant of k which was used in

l §9.2 for the evaluaticn/estimate ¢£ the level of remainders/residues

(vith respect to Va).
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page 271,

1,0

a,9

) St

2,8
o7+
0,6}

a5

T

o4}

0,3

Fig. 9.10a.

Key: (1). Zero approximatiorn.
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Fig. 9.10b.
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Page 273,
. Lot
09 m=103 C=0,915
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N
Y
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Fige. 9.10c.

Page 274,
<
- The analysis of the data indicated confirms fundamental
;4 theoretical results. The coefficiept cf proximity monotonically
“i increases with the iterations. The theoretical evaluation/sstimates of
f this value C=2) =090 is completely satisfactcrv,
3

Maximum razainder/residue is changed with “ha iteratiors
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irreqularly, it can both le reduced and increase. Of coursa this
occurs because the method of syrthesis uses quadratic
approximations/approaches, and the level of the greatest
remainder/residue is only indirectly connected with the utiliza2d
critsaricn. But as a whole the level of maximur remainder/residue
comprises (06+07) ¥ m. which corresgpcnds to the btest known signals,
given in §9.2. However, one shculd emphasize that we here synthesize
the not quantized PM signals ané ccompariscn with those quantified,
examined in §9.2, it is nct completely justifiable/legitimate. The
correspending methecds of the synthesis of XFM signals are given in

€hapter 10.

Pig. 9.10 shows the cbtained nct quantized FM signals, and also

their autocorrelation furcticrs.
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¥able 9.2.
Hyaesce Hrepanm( 2/
puB.TH-
. xese n I 2 , 32 l 48 I 5
i C | 0,897 | 0,906 | 0,908 | 0,909 | 0,910 | 0,91
m=2 1 w | 0,124 | 0133 | 0,129 | 0,126 | 0.114 | 0,116
k| 055 {059 (05 {05 {05 |0.52
C | 0,93 | 0,99 [ 0,910 { 0,911
m=4l | @w { 0,100 | 0,093 | 0,008 | 0,089
& | 065 | 059 | 0,63 | 0,57
c | 0,94+ | 090} 0,914 | 0,918
m=>5 | » | 0,089 | 0,088 | 0.087 | 0,081
k| 065 |06+ | 063 | 0.5
c | 0,908 | 0,915
m=73 | » | 0079 | 0,079
& | 0,67 | 0,68 j
C {0,909 | 0,915
* m=103{ w | 0,071 | 0 064
&) 079 | 0,65

“ Key: (1). Zero approximation. (2). Iteration.

9.11., Other itarative m;thods.

, em—

The method of successive design (projective-gradient) this is it 1
goes withcut saying nct tha only iterative method, suitabls fecr

refining the obtained approximaticns/approaches. Furthermore, in the

version examined this method is used only for the synthesis on the

v

Mﬁ critericn of the proximity when is pinimized the distance betwsen X

L: and Y and is provided argroxisaticansapproach to the assigned

? ; amplitude spectrum in sense (7.17). Other iterative methods make it !
”1 possible to solve more general grctlems of synthesis of FM signals,

to in particular find approximaticnssapproaches tc the unrealizable

correlation functions.
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Page 275.

Por example, it is possible tc sinimize the functional
»

Chm = JUFun— IRy . (9.51)
-0

where P (t) the arbitrary assigned (cr the modulus/module) £unction, }
1

and R(t) - the autocorrelation furction of *he unknown PM signal. Are

possible also other versicns, when functional f(x) is connected in

ancther adeguata/approaching manner with the unknowr signal. The
characteristic feature ¢f probler is tha fact that the minimization
must be produced on the set of FM signals, characterized for each
! moment cf time only by sian G¢-1 or =ly¥T), 1.e8. the permissible

signals are rigidly limited:.

FOOTNOTE !. Analogous tasks are erccuntared ir the thecory of cotimum
centrel [25]. To the not guantized FM signals correspcnd in this case

=, the so-called ralay steering functicns. ENDFOCTNOTE.

#hen selecting of the method of synthesis should be considered thz

limitaticn indicated. {

-°

DTS DS OO O XY Uun

However, Krupitskiy and Sergeyenke [34] ra2cently showed that it
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is possible to bridge this difficulty and to construct iterations on
the base of the usual gradient methed, which does not aSsume the
limjtation of the permissible set. Their methed is based on tha fact
that in accordance with (S.2) any FM signal is unambiguously assigned
by its moments/torques of commuteticn +« (see Fig. 9.1). Considering
values un as the independent arguments, it is easy tc note that tha
minimized fuuctionél £(x) is a furction of a finite number of
variable/alternating

. ;&)=fa;tt..”ru;o (9.52)

the latter can take any values in the intsrval (-1/2, T/2). Gradient
method is used furthsr for the rinimizaticn of this functiorn of many

variables/alternating.

On the bas2 of this methcd were obtained tha sclutions c¢
several problems of synthesis cf FM signals fcr ccmparatively small
compressicn (m<25S). Among other things were ccnducted the iteratiors
from the asymptotic initial approximations/approaches, examirned above
{61)s These calculations show, in particular, that asymptctic
solution gives a comparatively g¢ocd approximationsapproach, it can ba

only a little improved.

But one should indicate certain nonoptimality of method, which
2scaped, apparently, frcm aunthors' at%4en+ion. The recocding ¢f the

functional being investigated irn the fora (9.52) leads in a2 number cf
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cases to the appearance of the local extrema which no during cther
represantation of the unknown sigral, Let us assumse, for exanmple, is
i required to find FM signal x(t), shich ensures best approximation to

the assigned real signal y(t). Ir this case tha functional being

investigatad is a coefficient cf the proximity
T2

F(x)= Cix. y) = 5 y () x(t) at (9.53)
~f2

and it must be maximized cn all x(ex. We know (see §9.4) that unique
solution of this task gives FM sicnal of the form

} ‘(‘)=#ﬂgny(l).
. Page 276,

It is possible to show that if FM signals are representad not through
the moments/torgques of ccrmutaticr, but in the form (9.1), at %this
solution it is possible tc arrive, for sxample, by a

projective-gradien* method, functicpal (9.53) having sole maximum,

and it is possible tc begin fror any initial signal. On the cther F
~§ hand, introducing the designaticn
) e
. *(l)adfy(r)ax q
."’
, .
} and usirg (9.2) w2 come to the € xpression
‘ ‘ Al r T -
i [0 =¥ (=) =)+t + ot
q
_ . ] ~ T
. + (=0 el + 5 (=) (—-
k YT g + 3 w'z)
N vhich corresponds to form (9.%52). In th2 particular case ©of y(t)=cosyt
b Y
x

b s T VIS T T T AT T T e ey eI o T
T b b 18 4 _ .. o L . o Y, TP . ik s . -
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(see Pig., 9.11a) gradient £'(x) is a vector with the componeants

V Fam (==t o costy; k=1, 2,0 N1,

VT
: The maximization of'fuﬁctidnAl (9;53) according to the method of

operation [34] is reduced to chances « in the direction of

gradient, i.e., & increases, if >0  and vice2 versa. It is not

difficult to see that the result c¢f this mximization depends on
ipnitial signal. At the initial signal, shewn in Fig. 9.11b, reaches
the glotal maximum, which corresgcnds to Fig., 9.11c, but with tha
initial signal of the fecrr FPig. 9.114, method leads to the local

( paxioum Fig, 9.11e,

g Purther the iterative methcds ir question use the represantation

of PM signals in the form (9.1) apd, appar2ntly, they do not have

. this deficiency/lack.

W2 will minimize functicmal (9.51) by a projective-gradient

method, examinad in §1.,10. In tkis case the signal of next

Ry

~ﬁ approximations/approach sx=*+v¢) 4is formed from th2 signal of previous
;f approximation/approach '«  according to the rule

3 x"'"’=P:(X""—a.f’(x“':')]. 19.54}

'1 Hera ,, - operator design to tte set of FM signals X. In accordance

with the theorem of §9.4 this design (approximation) is reduced tc

the ideal limitation (see Fig. S.Z), so that

l
Pyly (lh'“T-T-sign {Rey()}. 19.33)

.
.

e
Vv ca . aat)uiiba. o

o
A A

. c
$ . T

SR TN VT _WEEEEe el e - T T




. . TUe
b

I .-.‘""

ol . -

.
o

80206712 +AGE 26—

+#§3

It is possible to show that the gradient of functional (9.51) has a

DOC

value I
I (x)=2 } LRy () — |F ()] sign Ry (1) x (t — £) dt’,  (9.56)
~F2 R
where R.() - correlaticn functior ¢f signal x(t).

Page 277,

Thus, construction of the miripmizing sequence consists cf the

following operations:

1. Is taken initial PM sigpal xou).

*

2, Is computed direction ¢f gradient acccrding to (9.56).

3. Is chosen length ¢f stace a and is imrlemented space on
antigradient .
5:»=-=.\'""—af'(x"“)
u._signal v undergoes ideal limita%4ion according to (9.55) for !

obtaining signal "

Further process is repesated, beginning with p. 1. This process
realizes approximations/apgrroach tc¢ an arbitrary (unrealizable)

autocorrelation functior.
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Analogous results can be ottained, applying the
conditicnally-gradient method, prcgcsed by Dem'’yanov [25]. During the
usesapplication of this method for the synthesis of FM signals the

minimizing sequence is ccrstructed as follouws.

et [P T S .
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If signal +* and gradient fM«m(f)] dc not coincide in the sign, then
XM (1) gty (f).

I1f for certain interval of time p<t<q, signs r™() and /T« n] ara

identical, the signal of the follcwing approximaticn/apprcach is

constructed according *c¢ the rule

[ sign x"‘ (1 gp)' p;<t<’r L@ =phT -
— 7
| —sign P {xm (] 0 2 (a1 = py < T 5D

sig rx't+t)y=

KBY: (1)0 with,

vhere a - space of iterationes (0<o<1).
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! 1. Is taken initial FM sigral ).

2. Is computed gradient ’(x) according tc¢ (9.56).
3. Obtained gradient undergces ideal limitation (Fig. 9.12¢c).

4. Ara potsd intervals of time, for which signs<gyn /(x») and

signs» do not coincide (Fig. 9.124).

5. On part of these sagments, corrasponding to (9.57), sign cof
l signal vary by reversesinverse (Fig. 9.12e is carried out for a=1/2),

! Purther process is repeated, teginning with p. 1 1,

. —-—

FOOTNOTE '. A conditicrally-gracient methcd let us use in general, on
we rresented its version, suitatle for FM sigrals (two-positicn

controls) . ENDFOOTNOTE.

Both methods (design-~gradient and conditionally-gradiert) can be

“ used, in the principle, for the minimization c¢f any functioral, not

w

fi only foram (9.51) . Is chanced in this case only formula for gradient
'g (9.56) . The major advantage of these methods cvar synthesis on the ?
]
< critericn of proximity ccnsists, as already mentionsd, in the fact
1
{ that it is pcssible tc find aprrexizations/agpfiroaches o the
53 unrealizatle properties, in particular, to the unrealizable
F‘» ’
B
X
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( o/ {8
correlation functions. It is pc¢ssible for this purpose to use also

the method of coordinate-by-coordinate descent, but this wvethcd is

. more convenient for the quantified FM signals and it will be examined |

below.

r'\
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Chapter 10.

SYNTHESIS OF QUANTIFIED FM SIGNALS WITH GOOD CORRELATION PROPERTIES.
10.1. Usesapplication of a critericn of proxinmizy.

In §9.1 i+ was estaklished thtat KFM signals relate to the /

corposite/compcund ores, The spectrum of the code of KFM signal has a

value ' , j

Here n - number of samples; valve ), characterize their sigmns and
allcws/assume values of +-1, The latter is a main difference of KFHM

signals from th® composite/compcund signals of other types.
Page 280,

S We sav also that acst impcrtant problem is finding KFM sigrals
with the low remainders/residues ¢f ccrrelaticn function, i.e.,
approximation/approach tc a ccrrelation function of single th2

sample. Specifically, +his task is examined in this chapter?, ,?

FOOTNOTE 1. The fundamantal resuvlts of this wer2 main publishad by
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the authors in article [10). The asymptotic sclution, clcse tc our,

previously obtained by L. Ye. Varakin [14 ). ENDFOOTNOTE.

The method ¢f its soluticn, applied to the artitrary
composite/compound signals, is fcrruvlated in §7.4. Method assumes the
best quadratic approximation cf the amplitude spectra: the spectrunm
of the unknown KPM signal and the spectrum of single sample - in
accordanca with general/common/total criterion (7.17). As usual,
matter is reduced to the gaximizaticn of the coefficient of proximity
C(x, y) morecver in accordance with (7.44) for KPM signals we have

C(x, y):_-_Vl;l—.E Leyy. (10.2) -

i=1
Here values y; depend c¢n the phtase spectrum ¢£ the generating signeal

o= % Se-—lu eI g — -}'-J'cos[z(w) — i) dw. (10.3)
0

Phase spectrum a(w) is arbitrary, but, as for tan= not quantized FHM
signals, should be been bcunded the odd phase spectra

a(—w)=—a(w); a(0)=0. (10. 4)
This odd parity is taken into ccnsideration ir (10.2) arnd (10.3).

The task in questicn is, thue, of finding of phase spectrum a(w)
and values A (equal to +-1), with which the coofficiant of
proximity (10.2) attains maximum, This corrasronds to the overall

diagram of the uss/applicaticn ¢f a hypothesis of the proximity:

i g ey - B R e N e
' . DT By .

g TN T P
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changes 7 4indicate displacement/mcvement over a parmissible
pultitude of KPM signals, and changes a(w) - ¢cn a desired multitude
of signals with the assigned ccrrelaticn function (corresponding to

single sanmple).

As in other similar tasks, the maximization of +he ccefficient
of proximity can be fulfilled ir ary order. We will function as

follows.

Page 281,

Pirst, fixing/ra2cording phase spectrum a{(«w) and, therafore, value
Y4 let us find signs A, with which the coefficient of proximity
(10.2) it is maximum, and then let vs fulfill maximization also on

a(w). The first stage is the task c¢f approximation (design) on a
permissible multitude of KFM signals, analogous of that examined in
§9.4.

1f vaiues Th allow/assume crly values of +-1, and Y. are

fixed/recorded, then, as it is clear from (10.2),
] n
Clx. W‘ﬁ!}lyr{-
i=1

Here is reached equality, only if

ho=sign ., 0 35

i.e. when signs , and y, ccircide., This determianzs optinmum values
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pocC

‘khensuring bast approximaticn obn the permissible set X, moreover

- C(X., y)=maxC (x, y)=% ’;y,!. (10.6)
' zgX Va

i)
This result is completely analogous to theorem of §%.4. It is
new necessary te find the phase spectrum a(w), for which +he
coefficient of proximity (10.6) is maximum. The signs of the samples

of coptimum KFM signal are deternmined then accerding to (10.5).

10.2. Asymptotic soluticn.

The optimization cf rhase spectrum we will fulfill under the
assumption of a large nuerter cf sasgples n, when tc integral (1.3) it
is possible tc use the method of steady state (8.24). Analogous with

that presented in §9.7 we obtair

( ¥ S , Q)
'/T(@.)- cos [Q(“’")"':_J mu 0w, <=

l

Y = { t ./ SR
| TV ey €0 [¢!m.~)+%} n(% w; =0;
l

0 ".Q“ 0>°g‘>t.
(10.7)
Key: (1) . with.
1
‘l
Page 282. i 3
Here w, = the point of steady state, deaterain2d from the zquation

alwi)={; i=1:2.. .. n, (10.8)
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and function ¢ (w) has a value

O (@) =2 (®) ~ wa’ (0) =2 (0) — fm” (w) do= — fm"(u)do.
0 9

o (10.9)
Let us note that the approxisation/approach of steady state has

an error in crdar H}ﬁi Its use/application is limited alsc ty the
cases vhen derivative a'(w) vary scrotonically in the interval of
integration (0, w). It is concrete/specificactual, in (10.7) vwe
assume a' (w) increasing, so that o" (w)>0. This limitation re;tricts
the class 5£ the signals in questicr, and we already indicated that
it can, generally speaking, lead to the loss ¢f the Lkest signals.

This question additionally is discussed below.

But use/application of a method of stesady state gives diract
analytical dependence 4y, c¢n a(«), and this makss it possible to
fulfill research f£or the maximunm to “he end/lead. Substituting (10.7)
in (10.6), it is possible witk an error in the ordsr 1/n (smaller
than an error in the methcd cf steady stats) to replace sum with

integral. As a result it is ctteaired

C(X. y) =;/;_2—3.S'1f’m’cos [<n m)+_§_] !id.-;-

i '*'0(7}‘77‘)' (10.10)

Is here carriel out also the rerlacement of *he variabla/alternating

of integra<tion in accordarce sith (10.8). Correction term corsiders

an error in the method c¢f s*eady state.
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The cbtainad relaticnship/ratic is coapletely analogous (with
9.27) and furthar rasearch repeats conclusionoutput of §9.7. After
using 2xpansion (9.29), we negligible rapidly-vibrating
componants/terms/adiands under the inteqgral (as was shcwn in §9.9,

this is connected with the further error, which is also of the ordar

1/V'n) and we come as a result tc the maximization of value }

CX, U)%—V jl 7" (oidw.

( Page 283.

i The latter is implamesnted with the help of the Schwarz-Buniakcwski

inequality upon consideration of condition (1C.8):

. U
2 8 ' R .
CcHX. y)<—n-"—'51 (m|¢1w‘dm._r—[:z W) —

on—1 w,—uw, Ronm—

—1'('”!)]["’7!—“’!]: = Tp = <.-.. "

Here is reached equality, crly if

R

»

PO . m|=0,—;n,‘—_—u H
) " n—~1 m
;j auw=ﬁ7=wmmmm0<m<m (10.11)
b 1 Key: (1). with.
|
1
4
{ These relationships/ratios determine optimum phase spectrum in the !
3 asymptotic approximationsapprcach ¢f a large number of satples.
; ¢
XK ?
. N
N
§'1
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Coefficients , are found further fron (10.7)-(10.9)

Finally, the signs of the sasples of the unknown KFM sigpal are

determined according te (10.6)

1,-=-signcos[—f_;—'—i——":< Zisicn 1042

The maximum coefficient c¢f proximity, attained in the asymptotic

approximaticns/approach, it comprises

v —_ " PN 2 T .
T 3 xR T

= no b m. = \\I'F','

‘!0.!31

vhich completely vill be coordipated with the results of the previous

chagter.
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10.3. Iterative refinements by cocrdinate-by-coordinate descent.
The approximate, asymptotic solution, found above, can be mads A

more precise, applyirg iterative methods. For axample, with the hslp
of the successive design it is rossible, analcgous with the case of
the nonquantized signals, to take into account the error in the

met hod éf steady state (Fresnel pulsations), and also other
inaccuracies in the previcus calculation. Algcritha of thesa
refinements even somewhat simpler than in $9.€. But, apparently, to a

gquestion about the refinemerts rere one should apgroach from soaewhat 1
i
different positions.

- \
. The previous soluticn, based cn tk2 criterion of proximity,
< assumes approximation/aprroach to the amplitude spectrum of single

sample, namely: w2 seek the KFM signal whosa amplitude spectrum

b:(w) Satisfies conditicr, see (7.17)

Al

o i&.. ;

sin @, 2 l — by (0) ]'du=min.

l -3
45 (x, Y)=?;H —
—ad

This critsrion, although it is ccnnéctsd somehow with the appropria*e

L

e )
J.» * oaddh - “‘L-A‘LA.A

L S
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correlation functions, nevertheless does not guarantee their bast
approximation, in particular, the low lavel of rsmainders/residues.
This confiram concrate/sgecific/actual calculations. The
remainders/residues of ccrrelaticr functions for thz KFM sigrals,
found fream feormula (10. 1Z), ncticeatly exce?d minimally kaown ones

and during the larye compressicn they rsach approximately/sxamplarily

1,5/Vn.

POOTNOTE t, For n=13 formvia (1%7.12) gives Barkar's signal with the

smallest possible remaind+s: 3, residues. ENDFOOINOTE.

To preferably frl1lfil.: refinement, using the more straight/mor2
direct criteria, connected directly with the remaindars/residues of
correla*ion function, We will use as a measure of the guality of
signal the maximum remainder/residue of th2 ccrrelation function

p=max|R:|, <k <n. (10. 14

the sum of the squares of all remainders/residu3s

4=IR, (10.13).
k=1

and also the sum of their fcurtk gcwers

A, =YR. (10.16)
k=

Page 285,
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Two first criteria extensively are used with the synthesis, the role

of the latter is clarified furtter.

All criteria indicated are some functionals (cor functicns) from
the parameters of signal 7. Shculd be selected the
adequate/approaching iterative gethcd for their minimization. Duriag
this selaction it i{s necessary tc take into account that, in tha
first place, the arquments A\ allow/assume only values of +1 and -1,
and, in ths second place, method must bes sufficiamt to ecencwmical
ones so that tha calculations wculd prove to be virtually feasibls
:;th a largs number of samples. We used undar thesa conditions thse

met hod of the coordinate-ty-ccordinate descent which, in gansral,

consists c¢f tha follcwing.

Lat us assume it is nacessery to minimize functicn . 2. .. i),
depending on the & arguments (cccrdinates). Being transmitted fronm
certain initial approxisationsafgprcach

rr =", 2",
we We atteampt to> change the value, for example, of the first
argqument, after assuming
« (1) —_—

MO
A, —A-' -+ 2.

wkars a - sglactsd previcusly srace of it:rations. I this givas *he

oy *’" . - - adhe I it et .-.r-.‘..-——.—.wr-v.-.-... s e - ————
Lage ™. ., st T R - . N - PN e - . .
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decraase of the function b2ing investigated, is accapted new value,
i.e.y My® it is substituted on X2 Otherwise is done the attempt to
be shifted in the opposite directicn, after assuming X\, 1:

WM ="

Even if this atzemp*t is ursuccessful, is leaved previous value \,0,

Then is implemented analcgcus displacemernt on another

cccriinate, for exampla, XA;.

Page 286.

Having select23l all coordinates and aftar changing them in the

directions, which lead tc the desired decrzase of function, we obhtain

the first approximation
A=,

Then prccass is repeated.

Aftsr such sevaral stages the approximatioas/approaches cease,
since changes in each of the cocrdinates do nct give the desirad
decrease of function. This can cccur not only the uaknown mininunm,
but 2lso due 4o th2 high value ¢f spac2 a. Therzfcre after tha stop
cf iterations the space tley reduce, for example doubly, and they
agair attain imprcvement, changing all cocrdinates alternately.

Pinally i%zrations cease, when *here is nc improvemant avan with %h=
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sufficiently low pitch.

The method of coordipate-by-coordinata descent does not reguire
the calculation 2f dsrivatives, ir cennsction with whichk it is lass
labor-consuming than gradient. This method ensures also ths higher
speed of convergence and is insensitive to r;vining of functional
[52]. Mcreover, the presence ¢f "ravines®™ can be usad, if tc use the ’
appropriate mecdification cf cocrdinate-by-coordinata method, which
ensures increasing moticr in the direction, which
approximately/exemplarily correspcnds o *he low place of raviae

[78].

A deficiency/lack in the ccordinate-by-ccordinate descent lies
in the fact that aft2r catching accurately into the "bottcm" cf
ravine, it is possible nct to ke shifted on the low place, if
displacement orn each of the ccordinate directions is connectad with
the 1ift to the "slopes" [78]. In cther words, are possible th3 fezlse
points of stop, which dc rct coincide with the minimum of function,
Besides this, the point ipto which it gives ccordinate-by-cooriinate
desc2nt, gorerally speaking, depends on the crdar of sorting
coordinates. Finally, as with other similar methods, we come in

general, to the local, Ltut not glcbal amainimum of functiocn.

In the problem of the synthesis of KFM sijnals the me“hod of
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sol
coordinate~-by-coordinate descent additionally is simplified because
the parameters (coordinates) 2 allow/assume.only values of +1 and
-1. Therefore each ccordinate can be changsd in the unique direc+ion
so that the sign j, would vary fcr the rsverss/inverse, Is assign=zd

also the langth of space {al=2,.

As a result, coordinate-ty-ccecrdinats descent is reduced in our
problem to the rollowing. After taking ons ¢f the coordinates i, we

ve attempt to change its value with +1 to -1 cr vic2 versa,

Page 287.

If this gives the decrease of the functional (u, 4, or A,) being
investigated, is accepted new value, otherwise is leaved old. In each

s+tag3 this is mad2 with all cccrdinates ., from i=1 to i=r t,

FOOTNOTE !. In order to decrease the effec: of the order of sortiny,
w2 in =2ach case implemanted dascent twice - in “he ascending crder
and with dacreasz2 c¢f number i, Usually tha results were identical,

ENDFOOTNOTE.

It=rations cease, when change in any of tha cocordinates does not give

the desired decrease ¢f functicral.

—
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With the fulfillment of iterations on criteria (10.14)-(10.16)
it is necessary to rapeatedly ccmpute the values of correlaticen
function?

*

Arhgapy k=12, n—1. (10.17)

n

Rr =

il

POOTNOTFE 2, As in §9.2, we use the further nonstandardized /

corralaticn functions fcr which R =F(0)=n. ENCFOOTNOTE.

With a lazge numbar cf samples straight/dizsct calculatior accordiag

! to this formula is very labor-ccnsuming: it is required order n of

-

operations in ordetv to find one value R.. and order n2 of operatioas

-

in crdar to cbtain all valuss of ccrralation function. However, with
sign change cne sample it is possible not to computs anew corralation
function, but to supplement tc its frevious values of the

ceorr=zctions, computed £frco the formula

' . -2.1,"().m+.-i,—1m_u;('r?m m—i =1, m—k<n—1L
.\: Asz—leim“ @“p“ m__k<l' m—‘L”\‘g”— l:
b . 21"‘;”"_. U?H m_k‘.;ll m—-—k>"—|.
:~4 Key: (1) . with. $
s
1
"
¢ Here M - o0ld value of that varied sampls. Th2 use of this
‘ { corrzction significantly reduces calculations aad considerably widens
_; vractical possibilities. It is rcw required orly crdsr n of
| _
oparations for obtaining all values R.. As a risult ths machin= tiae, |
-
‘3 3
9 }

- . —— - —— - R — ege——— e ey
d > . R X

T IWETE TS Tt s s -
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axpendad on thz iteration, is stortened approximately/sexemplarily

PO SR IPY T T Y 1

proportional to a number cf discretes of signal.

10.4. Results of synthesis.

The rasults of the synthesis cf KFM signals with a number of
samples n £rom 13 to 901 are given in ¥abls 1C.1. In the first column )

is indicat=d a number of samples,

“

s . )i e o Bin e

.
“"u
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Table 10.1.
:_4()” (2)_ o l35 (qj Isj ‘(‘\ {9 ayex c1y-
e b o Cayex . ksagpatave. | Cavcx na Mwwumaxce | Cnycx no coeawectemen- | i3secrmu unfimoro
ancw o Himatiee a0 o/ xewne CEMY KITEIHIO HOMY K HTepHIO HOMY RpHTEPHIO cnruan HAUAIBHOC O
T nMéaKwe-
— 2
., 3 o 3, | » 4, f u A, i » B | n
13 ‘ 6 l H | {
19 97 N 44 3 49 3 41 3 3 3
23 H7 5 59 3 59 3 67 4 3 3
31 119 35 1 9 147 4 132 4 3 3
37 138 v 138 8 218 3 154 ] 4
41 Jn8 9 116 5 388 5 280 6 4
43 463 13 o9 6 281 5 301 5 4 4
7 h 199 7 K11 7 183 ‘4 4
53 362 n 286 6 366 7 315 5 5
’ 59 693 1 413 9 717 7 550 8
61 44b 11 338 7 806 7 199 7 5 5
63 431 a 343 7 Hil 6 495 7 6 6
i 67 1009 13 305 7 1121 8 685 7 5
71 755 9 483 7 1159 8 707 9 5
7 636 1 538 8 1088 8 604 7 6
} 7 1079 13 715 7 1531 9 976 8
+ 91 2333 15 1237 10 1517 8 {313 9
1B 88s i T2 13 1694 9 870 8 6—8
95 1255 17 371 9 1935 9 1227 8
97 2392 19 13h4 9 9 1277 10 7 7
- 99 1217 i3 1033 13 2041 9 1065 92 |
101 1378 [FRE 3 1599 9 I
103 1947 13 N 1 ) 9 9 6—8 |
105 1876 13 1235 13 2056 10 1508 9 |
107 1965 17 171 11 1 1405 9 !
1
]
N
o
i 4
; |
3
..q‘
4
4
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S
A
R
. 1
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K2y: (1). Numbsr of samples. (2). Initial approximaticn/apprcach.

(3) . Descent alonyg guadratic criterion., (4). [sscent according %o
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minimax criterion. (5). Descent along mean-exfponential criterion.

. (6) . Kncwn signal. (7). Lescent of random initial

appreximation/approach.
Page 290,

In th2 followiny two ccluaxs are given the valuss A, ard u for the /
iritial approximation/approach, ottained according to asymptctic .
formula (10.12). Further are respectively arrangyed/lccated thae
results of desc:znt alcrg the rms (10,15), the minimax (10.14) and
mean-exponential (10.16) to criteria. The tenth cclumn shows the
H maximum r-mairdsrs/residues cf the best known signals, fourd with

other methods (sae §9.2).,

The comparison of data of tatl? makes it possikle tc censidsrc
that the method of synthesis examined gives sufficisntly good

rasults. On th: lavel ¢f maximusr remainrder/residus the obtained

= signals ar2 only a little infericr tc *he best codss, krown earlier,
Li and by the obtained path cf vast scriting.
]
1 Is focused attention, that with the dascent along the
? root-mean-squars critericr value p noticeably grows with an increase
i in the rpumber ¢of samples and for r=501 it ceaches 1.5} n. This can be

|
o d
Y

»xplained by <h® fact that with large n the guadratic criterico
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weakly reacts to the separate large overshoots. With the descant
along the minimax criterion the picture is reverse/inverss -
critarion reacts to> th2 maximum surges u, and valu= A, sharply grcvs

(€able 10.1).

The analysis of the Ltest cnes cf the obtained by us codes shous
that with the lov maximum remainder/residue they possess a
comparatively low sum of squares 4. Thz 2xamination of dstecticn
preblem shows, besides the fact that they are important both the
maxinum remainders/residues ard rss level, Degpending on situation, in
particular from the relationship/ratio of the useful and interfericg
signals, *he dcminant rcle plays either that cr another critericn
[15). Therefore it was desirakbly use this criterion of the synthasis
which wculd react not only to ¢tte maximum -emainders/residues, but
also to their total level. Thias led us to mean-2xponential criterior
(10.16) , which corresgonds to aprrcximations/approaches in space L¢.,
As cat be seen from table, such apgroximaticns/approaches lead
usually tc the bast results, ain particular, the value cf maximum

remainder/residue comprises (C.7-0.9) YW i,

FOOTNOTE t, It is possitle tc assume that for even larger n an
expedi2ntly further increase in the degree, fcr example

approximaticn/apprcach ir spaces 16 or L8, ENLFOOTNOTE.
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(1), Code of signal.

Key

Page 293,

Asymptctic initial approximaticn/approach (10.12) detsrwmines ths

ency of

fregqu

the

which possess the prcperty of monotcnicity,

signals,

commutations gradually increases tcward the 2nd of +ths signal. This

monctonicity, causz2¢é by the limitations of the previous

insufficiently
al approximaticn/apprcach did

3
-
-

one way or ancther is ratained also after

It was possible tc assuse that this,
gensral/ccocmmon/total structure cf init
rot permit us to ob*ain spallest pcssibls ramainders/residues.

conclusion/cutput,

iterations.
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For explaining this questicr was made the following calculatior.

Was implemented descent aleng regs criterien (10.15), but as th2
initial approximation/approach were used the racdom codes, ok*tained
via the equiprobable selection ¢f signs. Initial
appreximation/approach repeatedly was chnanged for each n. Results are
given in the lattar/last¢ column cf tabl:, In many instancss

actually/really were obtained minimum kncvn remainders/residues. In

Table 10.2 gives the best foupd by us signals.,
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Appendix 1,
PROPERTIES OF SPHEROIDAI FUNCTICNS.

Spheroidal furctions «¢.(f) are the eigenfunctions of the

integral equation

1
(@16 0 =1 b M
=

with the karnel

l |
o6 = TEig=g [ am @ \
-(

They possess the series, row of the properties, which are of interest
for the theczy ¢f£ signals., Let us pcint out briofly “hese prcparties,
relying on the series/rcw of sources [43, 65-€7, 80]. Tkte
translaticns/conversicns ¢f£ fundarmental works on sphercidal functiors

are in [95].

1. System of spheroidal functicns. As it follcws from (2.9), the

quadratic fera

1 1
f {s@swoe vaa
-] -1

T ey e qye v o

e e S —
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is partial eneryy cf sigral s(&), included in the band (-c, c¢). This
value is positiv2 for any functicn s (&) . The aforesaid means that the
syometrical kernel G(&, £€') is determined positively. From the theory
of integral egquations it is knpown that under thsse conditions
eigenfurcticns ¢.() form complete crthogc¢nal system in irnterval (-1,

1).

Equaticn (1) determines furcticns v.(8) with an accuracy %o the
arbitrary normalizing factor., Therefore it is possible to carry out

such standardization that!t 5

o>
.f O npu m £ n;
='l| H m==n.

1
FRCPRCP: @

Key: (1). with,

FOCINOTE !, In the works cn sghercidal fuzcticns frqguently arz uszd

standardizaticn. Standardizaticn (3) is used, in

ih

othz2r rulas o¢

particular, i

=]

©65, 68]. ENDFCCTNCTE.

Ary function w(€), integrakle sguared, can be in interval (-1,

1) expanded iz tha convergent (¢n the average) Fourier series

w(€)=

by (E), (4)

i 18

0

wher2 coefficiznts 9. are deterwinzd in th2 form

s FTURT T T e rms g e e e g T T S e s -
.t . SRR [y Yy Aer’ . .
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Since kern2l (2) is r=2al, spharoidal function .} is also real;
therefore the sign of cecmposite ccupling in formulas (3) and (5) it

is possible not to write cut.

I+t is not difficult %*c¢ show also (see for =xample [&5]), what

function ¢.(%) is even feor even r and is odd - for odd n.

2. Fcurier transform from ¢.(}). Let us compute Fourier integral

of «.(3). vhich lat us register ip the fornm
[}

a () = S b (§) €TGE, 6)

-1

Taking into account (1) and (2), we firnd:

1
1
ekt dE;T; J"b,(ﬁ') G &dY =

-1

u(n) =
]

=L for

le—. Lo

1
ba (§) 8 a3 S“" AR PR
—i

|
1
o I?. (M) G (. 1) dv’;

here
sine (n— 1)

!
c ’
G (v nr)ag Sek‘(’l—'l)idia op—
-1

AL | - uieiay. vt S A atns ST S e
: ) , s .

1 e it o el
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This result maans that the FPcuriar transform ¢.(n) satisfies the

same integral 2gquation

1
5?.('1') G(n. ) dy =kea (7).
e |

as function itself «.(¢). Consequently, sphercidal function and its
Fourier transform are characterized by only scale factecr. In cther

words, we come to the relaticnstip/ratio

1
[ e ® et it = o (), ™
-

which is alsc the ir+tegral equaticn, which ars detarmining sgkeroidal

functions.
Page 296.

Eigenvalues as ¢€%£ *this zquaticn can be connectad with sigenvalues
A« of initial eguation (1) . Actually/r=zally, taking into account

that va(3) is real, we oltain via the iteratior

1
1
i =5 [t eta=
=

1 1
l ’
=— eyt = S‘#. () e~ g’ =
= ]

|
I 2=
’TQF'7'jﬁdﬁ)Gm.ﬂ)mﬁ

o, YOO
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Thus, equation (1) can be c¢cnsidarsd as first iteration (7), if

Ve assume . |t=2mc.

It is not difficult to show also that value e« is real, if

¥a2) is evern, and imaginary, i .3 - is odd [66].

Thesa consideraticns lead to the dependence
2rA,

2y =2 j® _—-—c ’

. |
. 2
! (@t a=ry Z=wmo. ®)
=1

Inverse transformaticn cf Fcurier gives

2 AL I )
[4anetran = {’ Vgt 9 Mo gi<e @
— 0 npu Bl >c.

Kzy: (1) . with.

) W2 initially w=2re interested in thz bzhavior cf spkeroidal

ﬂ func-ions in limited interval (-1, 1. Butf formulas (8), (9),

o I

obviously, determine these functicns on the entire axis (-=-, =). Fro

(9) it £0llcws that function 4¥.(n). examined/ccnsidec-ed c¢cn the entire

LN\

axis, has 2 Fouri2c *ransform c¢f the 1limitsd extort. In that ra2gicr
this conversion is excellent frcm zero, it repeats (without

taking ip%to accoun* cons%*ant facter) function itself. This it

]
"
4
ﬁ whers
;
X

indicates cectain jenerali<«y cf

n

phiroidal fupczicns ard funciions ¢

I N S e
L 3

taking into acccunt to which formula (7) can te revwritten in the fora

—— - v—-~-T‘-:’-.~‘ R e e

m

i 2

-
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Hermite (in particular, Gaussian signal) . The latter possess a
similar duality and are close tc the spheroidal functions witbh c—d=,
This mcre fully qu2stion is traced in conraction with asymptotic

expansicns of spheroidal functicns [65].
Page 297.

3. Dcuble ortheogonality. Atove it was shcwn that the set of
functions ¥~ was orthogecnal in irterval (-1, 1) . This is the direct
consequence of that fact that the spheroidal functions are the
solutions of homoganeous equaticn (1) with the positively det<rained

symmetrical kernel, The rare specjal feature/reculiarity of

spheroidal functions consists in the fact that, besides orthogcnality

ir the firpite intarval, thsse functions are orthcgonal also in the
interval (--~, =) . Actually/really, taking intc account (9), on the

basis of equality Parseval we can register

= s
flantnman= o= fneovaen s
-0 ~ =

The obvious rzplacepent of variablec/alternating lesads right sida

to form (3), and is oktaired

7 o &
H
f*.(n)*'..(n)dn=‘ B+ (16
¢ l l/}\” T m=1,
-0

Kav: (1). with,

——— . L= — —y —— -—— e hadta e astad  ate Jeai i TR s o
" e . . , v W LT

TP '+ P S P LI JUR SN T VU S
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The doubla orthogorality of spheroidal functions makes from with
ideal apparatus with the scluticn c¢f such prcblems of the thecry of
signals as the approximation c¢f artitrary sigral with the help of the
function whose spectrum is lirited by extent, or the extrapolation of
the signals of the limited band cut of ths given onc time intarval

{7, 67].

Lat us emphasize, howvever, that if ip interval (-1, 1) the
systam of spheroidal furctiocns is ccmplete, thea for the infinite
interval this rot then. Actually/really, since functions vy.(n) have a
spectrum of the limited extent (this is clsar from (9), thair
superposition cannot form the arbitrary signal whose spectrunr falls

outsid=2 band (-¢c, ¢).

Howev2r, it is easy to shcw that in the class of signals with
the spectrum, limited by the tard ircdicated, th2 system o0f spheroiijal
functions is ccmplate, so that any sigral of this type can be

deconposed according to functions ., and this resolutiorn is useful

for entire axis —oo<n<om.
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Appendix 2.

Determination of the concepts of amplitudws, phass and instantansous

signal frequency.

As it was notad in input chapter, one of basic corcepts of the

thecry c¢f signals is the analytical signal s(t), formed from tha real

signal u(t) during the additicn by its imajinary componant,
$() =u(l) +jo (), n

moreover the lattar is fcund frcm the conversion of Gilberz:

o«
"“”‘%‘f 7y ar. @

-0

Page 298,

This selaction of imaginary ccmpon2nt is connacted with
determining of the fundamental characteristics of signal - i
amplitude snvelope, phase and irstantaneous frsjuancy. It wi
shown below that only during the vse ¢f ccnversion of Gilber
charactazistics njica*ed will te ccordinated with the compl
obvious physical requirempents, sc that any ancther salection

imaginary cecmponent in (1) is excluded [ 94].
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It is rot 1ifficult to comprehend that tha observed ((fer
example on the oscilleograph) real signal u(t) it is possible more or
less arbitrarily to disengage tc the amplitude and fluctuating
factors, i.e., to present in the fcrm

u(ty=A(t) cosq (1) =A(f) cos [wot +B(N). h(m

In cther words, only the left side of eogquality (3), sigral u(t), is
ths physically observed value, and for the concrete definition of
right side, for detsrmining the arplitude A(t) and phase o(%) it is
requirad certain "conjecture®™, speculative interpretation of the
cbserved phercomanoa. This means tha+t are possible different
definitions of amplitude and phase, and, as it will be shown, this

ambiguity is connected with the selection of cne or the other

imaginary part v(t) in (1).

1, Connection/communication with composita repressantaticn of
signal. Let us consider ccumposite signal (1) with +he arbitrary
imaginary part of v(t). After rewriting (1) in the form

s (t) = V¥t ({) + oF (7) exp {1 arctg Z—-((%} = A () ¥, 4)

where

u()=A(t) cosp(t) and o()=A() sine(t),

ot

i¢ is not difficult tc ncte that separacion u(t) %tc the interestiry

us factors acsually/really it is pcssible tc fulfill diffarsntly,




o). . o Mra e

..' ‘
o
»

DoC

80206713 PAGE -2t~
gal

but, when v(t) with any form is selected, amplitude and phase are
determined unambiguously:

A=Y Fo (), ,(t)=-rctz',’,—‘{-,’3- (5)
It is easy to be convinced alsc cf the reverse/iaverse: any
separaticn u(t) +to the factors of fcrm (3) indica%tes certain
concrete/sspecific/actual selection cf the imaginary component v (t).
Actually/really, if A(t) and ¢(t) are undertaken so that u=A cos ¢,

then, after placing v=A sin #, s%e ccme to the composita signal s (t)

in the form (4).

Thus, with the assigned reel signal u(t) is one-to-one
conformity between its amplitude and phase, on one anand, and
imaginary component v(t) cf ccmposite signmal - on the other hard. In
ordar t¢ unambiguously de+ermire amplitude and phase (and alsc
instantaneous frequency w.(i)=deuds), it is necessary and it suffices %o
indicate the rule of the éelection cf the imaginary compcrent v (:) on
the real sigral u(t). In cther wcrds, it is necussary to indicats
cperator L, which -ealizes the ccrversion

o(t) =Llu(t)), (6)
sach operator gsnrerating cne c¢f the pcssible determinations cf
amplitude, pkhase and frequency, ard their comfplsete sat corresgonds %o

all possible dzterminaticrs.

2. Physical condi*icprs fcr sel:zction of cp:ratosr.

Sl Al e tae S eaned W et
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Page 299,

However, not with any operator L(u) the dgenerated by it concepts of

amplituda and phase will Lte cccrdinated with ths physicél.
engineering represzntaticrs, nct any oparator can be therefore
reccgnized as satisfactery. let us formulate conditions tc the
amplitude and phase of signal, Ftased only on rhysical considerations,

but such, that the need fcr their fulfillment occurs sufficiently

( cbvicus.

1) . L2t us raquire sc that t¢ +he small changes in the initial

. ——

signal u(t) would correspcnd srall changes in its amplitude A (t) arnd

- phases @ (t) (latter, if A (t)#C).

Since ccenversions (5) atre contirucus, for this is required tha

continuity of operator (6). Further, in th2 space of continuous

o
)

operators are diffarentiated operatcrs they fcrm everywhere denssa

Y e

.

set, Using this, it is pcssible t¢ consider that operator (6) is

. 4

» 3 differentiated, i.e.,
.’ L{u+du)ml(n)+ L' (n)du+0Aur, M
q
= . .
- 4 Transition/junction frem tke centinucus cperator tc +hat
)
{4 difforantiat=d irndicatés, straictly spéaking that we changs values cf
:
-
" o
;‘-» ]
-y
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A(t) and o(t), but so that for any sigral thess values are changed

arbitzarily little. It is obvious, this replacement is permitted.

In general, L' (u) is derivative of th: unknown operator, and we

requirs, thus, the existence cf this derivative for any signal u(t).

2) « Let us require sc that the phase (and, ther=fore,
instantaneous Zraquency) would nct depend on th2 power (ncrm) of

signal with its constant/invariakle form,

This maans that with ary positive ccnstant k raplaczament u(t) on
ku(t) @must nct lead to tte chancge #(t), i.e., taking into account (5)
Low) L
ka a °
H2nce it follows that operatcr L gsust be unifcra cf the first dagree:
Liku) mbLia), +>0. (8
3) . There is 3 unique class of the signals for which amplitudsz,
phase and frequency they are kncwr ccmpletely accurately. These ars
*he strictly harmonic, monochroeatic oscillations/vitrations
uit) =4, cos twel ~Das, 1y
in which Ajg anad P - constant. Ary atieampe to de<sraire amplitude
and phasa for other signals is a generalization of the corresponding

concepts, known for the harmonic case.

Therefcre let us require sc that for ¢he narmonic sigrals ¢hs
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introduced conczpts of amplitude and phase becoms knowns.

I.c., for sigrnal (9) we must cbtain

A (4] -Ao, @(f) -w.H-Ou

Page 300.

From (5) it follows that for this the harmonic signal must be

transformed by tha completely specific form, ramsly

Licos (0ot + @) | =sin (wof + Do) . (10)

W2 will show further that the operator of Gilbart (2) is to all

only satisfying conditicns indicated, and therafore the corresponding

concepts of amplitude, phase and frequency are singularly

permissibls,

3. Proof of unijueness. The vnigue linear (additive) operator,
which sa%tisfies conditicn (10) at any fraquency wg, is ths oparcater
of Gilbert [93, paye 159-161)]. Therefore we will demcnstrate th2
uniqueness of psrmissible conversicn (2), if we estaklish that from

conditicns (7) and (8) fcllows alsc the linearity of oparator L (u).

After introducing in the srac? of signals certain base, it is
possible t¢c reducz the rrcebles tc the analysis of tha “ransformatisr

cf ths multiéim=znsional vacter C=(u,, ¥ U ..} into
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multidimensional vactor v={v,vs...v, ..} Compomnsats % and ¢« are
coefficients of tha exparsion of signals in terms of the selected
base system; strictly speaking, a number of such components
infinitely, but virtually always it is possible %o be bounded to

finite expansions.

In general, the transformaticn of the vectors indica*sd is }
assignad by system of ecguaticrs
vimfi(uy, uy, ..., 4q, ..); jml, 2 ...
wvhersz [, - arbitrary functions of many variabl2/alternating. Wea
should shcw that with satisfacticn ¢f conditicns (7), (8) these
functions are linzar, The approgria%a proof we will lsad for
functioning twoc variablesalternating, generalization to the

multidimensicral case is cbhvicus.

Lat function £ (x, y) be unifcrwm the first degr3e and has boxh ]

particular derived at all values c¢f x and y (th2se conditions

< correspond (7) (8)). Th2np, in view cf diffarantiability at pciat
x=y=0, ve have

fx, y)=f(0, 0) +ax+by+e(x, y). §3))
Here a and b - corresponding partial dezrivativas, and functicn 1

e(x,¥y) on any cay/bsam y=yx vanishes more rapidly than x, i.e.,

e(x, yx) R
Iim -—xL— =, (12)

x=0)

But f(x, y) is alsc unifcra and, in view of tha krewn Eular
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formula,

HE y)mxfe(x, y)+yF(x y).

Therafore £ (0, 0)=0. Further, from (11) we have

e(r,y) 1s a difference in twc unifcrm functicns and, therefors,

e(x, y)=f(x, y)—(ax+by).

itsalf is uniform. Therefcre cn the ray/bean

e(x, yx)=xe(l, v). ) (13)

in question.

Page 301,

Since (1. y) does nct depend cn x, on (12) and (13) it follows
that —eix.vr) is equal tc zerc with all x, on entire ray/bean,
Pinally, in viaw of the arbitrariness of selected ray/beam =«six.m 1it
is equal to zero ilentically and, according tc (11, £(x, y) is

linear. This completas prcoftl.

POCTNOTE 1!, We wer2 based higher by differantiability £(x, y) at the
unique zero point. This can cause the doubt of the correctness of the
formulation cf th2 problem, since the point indicatad corzespcnds te
the signal of zero pcint enzrcgy, which is nct of intersst. But from

previous it follows also that tbe uniform function, not
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diffarentiated somevwhere, is rot differentiated also ir z=ro
(otherwise it is linear, i.e., it is differentiated everywhere).

Thercfora the noted contradicticr cnly seeming. ENDPOOTNOTE.

Thus, the conditions of differentiability (7) and uniformity (8)
lead to th2 linzarity cf cperatcr L(u), and then condition fcr
harmonic signals (10) prcves the uniqueness of Gilbert's operator

(2) .

4. Discussion of results. The use/application of transfcraatisn
of Gilbert in the tbecry c¢f sigrals is well known, and in many works
of his property thoroughly was stuvdied frcm that pcint of view in
ordzr to be convinced of the suitability of the corresponding

concepts of amplitude, trhase and frequency (fcr 2xanmple, ses, [30)) .

In ccnnection with pasrow-tand, quasi-harmonic signals all
prcceads happily. But when the frand of signal is ccmmensurated with
the medium frequency, the demcnstrative charactar of envelope is
lost. In particular, if u(t) - *he rectangular radio pulse of
sufficiently short duration, the envelope A(t) diffar from
rectangular and contair the "tails" cf infinite extent. These "tails"
are reduced uitﬁ an increase in the carrier fragquency when signal
approaches harm:nic, but this structure of envalore does not give

demonstrative representaticn in tte non-narros-band cass.

- ——v-\-v——v'?‘-.—w:-—_—-«---- T e
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In connection with similar contradicticns frequently they are
voiced about th2 fact ttat fc¢r the trocadband signals the
ccrrzsponding concepts of amplitude and phase have only fcrmal
character. Thus, analyzing one characteristic axample, Cramer and
Leadbetter writs [96, page 307] that obtained with the help of the
transformaticn 9f Gilbert the ervelcps "has nc s2nse from the point
of view of the physical ccntent ¢f concept.... Although the
mathematical determinaticn of envelope unambiguously, it is necessary
to bz fecr careful ones with the physical interpraetations, which

Telate to *he broadband signals".

Hardly it is possible tc agree with similar propositions. In
fact, here it is pcssitle only tc say that in th2 broadband casae the
tzansformaticr of Gilbect deces nct lzad to the demonstrative
description of the signal thrcuch the amplitude and the phasa. But
for this signal, substantially diffsrent froam the harmonic,
damcnstrative dascripticn thrcugh the amplitude and the phaée it can
and not exist: indeed during the ccrstructicn of this description ws
always attempt tOo preserve the rarrcw-band mod2l, inadeguate t> ths2

cass in guestion.

The assonc: 9£f this prcblea in any way is not reduced to

Py S
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obtaining of demonstrative representations. Prom a physical poiat of
view is wmcre important not to break the accepted by us ccndition, i
; which are reduced to the continuity cf the determined concepts, to
the independence of phase cf frequency from the amplitude (scale) of
sigral and tc the agreement with the known detarminations fcr the
harmonic oscillations. Ir the cenfirmation let us consider some known

methods cf measurement, in which these conditions are disrupted.

5" O

Page 302.

l 1) The spread method of measurement of fraquency is based on the

calculaticn ¢f number of 2zeros, zerc-level intz2rsections pser unii

f time2, In this cass the measured valua of frequancy, obviously, does

. not depend on signal amplitude. Fer the harmonic oscillation of <*he
measurament metal *o be carried out correctly aad it is very
accurate, This m2ans that the seccnd and ths third cf tha accaeptzd by
us conditions are implemented. EBut continuity condition hers is no*

satisfied: it is not difficult to indicate such signals and such

= slight disturbances, that a numlter of intersections will ke changed

fj with jump, several zero will be surplemented <¢r will vanish. For thg
;3 quasi-harmonic signals these jurps are usually unessential. Eut for

€ «hs brcadbanéd signals with a small number cf z2ro such methcds of
-

measur2aent does lz2ad t¢ the uncentrollable errors arcd *he S=riss/row

=; virtually is suitable.
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2) Bven gross2r discentinuity is allowed in the methcd cf
measur2ment of frequency, based cr the so-called structural
properties ¢f signals. Cne cf tlese propertiss gives the known
differential squaticn u't (%) +w2r{t) =0, valid for the harmornic
oscillations. Based on this equaticr, in [97] it is proposed to

measure the instantaneous frequency, using the ralationship/ratio

wmy/ T8 "

Always it is possibls tc fit this slightAdisturbance of signal, which
at certain moment/torque will be cbtainsd by u(t)=0 at the finite
value of second derivative u''(t). At this moment the value of
frequency according to formula (14) goes to infinity, i.e.,

continuity is aot cbserved.

The absurdity of this methecd of measur2meéent is almost ckvious,
since it is unsuitable nct tfor what signals, except strictly
sinusoidal ones. Actuallysreally, if sigral is acdulated in the

asplitude, u(t)=A(t) CcOS wyt, subtstituting in (14), wve cbtain

ST A A0
®, = ]/ Wy — .A.(”' + Qu, .—4—‘(1) 12 Wyl

Analogously, for ChM signal wifi=costmi<®ny, W have

= Vi = Fa® 0t o = D20

T ey ey e e e e o e
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With any, aow conveniently slcw changes in the amplitude or

frequency this result is deprived c¢f any sense: in each period of the

carrier frequency the radicand varies from += to -=, and it is not

possible to extract rcot simply. Cnly with the harmonic sigral, for

which correctly initial equation, result of measurement is ccrrect.

3) . Tikhonov proposed the determination of signal amglitula
envelope cn the base cf operatcr [98) /
cty=L{y=u'{1) o «l.’u_\

For th2 harmcnic oscillation cf frequsrcy wg this copezator gives %he
same as the transformaticn of Gilktert. Purt hermore, linear operator

(15) satisfies the continuity ccnditions and unifcoraity. But for ths

harmonic oscillation of any other frequency, differant from wq, H
conditicn (10) is broken, and ttis leads to the explicit

cortradiction.

Page 303,

Por 3xampla, sijnal amplitude ecvelcpe u (%) =c¢s w;t obtains

axprassion

: )
A = ‘/ oty + 5 sintey =
)

Ly @ g ow
= l+.—»,(-?—l - '——I)coﬁ'w,r.
2w I R
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Rapid changes ia the envelope (with the frequency 2w,) here cccur

even for the harmonic sigrals, what, obvicusly, must not be.

4) ., Lat us point out also the example when is broken the
condition of uniformity, indererdence of frequency and phase from the
sigpal anmplitude. This example cives ths mesasurement of frequency or
phass by the corresponding discriminator withcut tha préiiminary
amplitude limitation., Then the result of measurement depends
substantially on the amplitude that it does not make it possible t>

apply such metars,

L2t us rot3, hcwever, “hat with the brcadband signals +he
limiters conduct to the ncticealtle distortions of phasz2 and

frequency, in connaction with which it is expedient to pass tc other

methods of measurement [94].

These :xamples chow that the distucbance/brecakdcwn at least cf

ona of cur requiramants can lead to esstntial contradicticns., Rasults
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are either clearly absurd or they will not be coordinated with those
expected even for the narrcw-tand signals., On the othsr hand, the
transformaticn of Gilbert, satisfying all requirements indicated, in
fact doess not lead to the contradictions, since certain inadequacy of
the concepts of amplitude and phase for broadband signals is caus2d
by their nature itself., Finally, since only ths transformaticn of
Gilbert satisfies all ccrditicns accepted, w2 come to the /

single-valued detecraminaticn of amglitude and fhase, and we also

iptroduce naturally the concert of analytical signal.
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