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1. INTRODUCTION

In recent years, much progress (1-4, 6-8, 17-19, 33, 34, 36-39, 50,
52-3, 58-71) has bean made towards one goal of this (19, 33, 37-9, 50/'
53, 61-6) and other (17, 18, 34, 36, 52, 59, 60) research: to survey
heterogeneous fluorine reactions in different families of materials. The
present work hastndplaced s-S.aeer emphasis on n:..a;. p.C.; -

atthe detailed kinetic and mechanistic study of selected fluorine/
ceramic reactions. The results of our program include work on fluorine
reaction with Al'jO (38, 39), 3VC (33,37), Re (61, 64). od (61, 65),
LaB6 (37, 50, 61, 63) and LaB6 -6, LaB6-MoSi 2 composites (61, 63).",.

Ohe application of materials resistant to fluorine attack at high
temperature is the HF chemical laser. Nickel and nickel alloys are
useful in fluorine to ca. 1000K, but higher temperatures are required in
CW HP lasers. Since the number of candidate materials decrease and fluorine
corrosion rates increase with temperature it is useful to set upper bounds
on the temperatures required for this application. Our analysis of this
problem (61, 66) is presented~f.-Seen--U-b-eiwr-'

Given the temperature range of interest, the mechanisms by which fluor-
ine gasilies solids limit the number of possible fluorine resistant materials.A
These are discussed also in Seation 11.

In Sections III - IX we summarize the 'experimental results of this program.
These results have already been presented (19, 37-9, bU, 4,9', 61-2). Here
we present a brisf discussion of the essential results, along with abstrants
of the papers that have been prepared for publication.

The list of references included haze is a bibliography of work in the area
of heterogeneous fluorine gas/solid reaction kinetics along with the additional
references used in preparing this and provious reports. Titles are included
to assist tne interested reviewer of this subject.

II. TDGERATURE REQUIREMENTS AND CORROSION RATES IN EFFICIENT HF SUPERSONIC
DIFFUSION LASERS (66)

Abstract - Design parameters for a (D + F ) combustion driven HF supersonic
,diffusion 3aser include the temperatuhes aid pressures in the laser cavity (T,P)
and the combustor (T0 , P ), the choked half width, wk, of the supersonic expan-
sion nozzle, and the fluorine stream half width, w, and F, DF mole fractions,

, ýk* These eight quantities are constrained by i) an optimal cavity perform-
ce0 iterion, ii) the continuity equation, and iii)-v) combustor equilibrium,

mass and energy balances. Also, vi) the characteristic temperature for cavity
flow is determined mainly by XY.. Maximum power occurs at minimum w*.

........ , - 0.1, we. 0.01' =. and mixing by laminr diffusion between H19 and F
(dilute in He) streams, the maximum raqufread combustor temperature would be
about 1240K. Much larger F-atom mole fractions would produce thermal choking
("thermal blockage") in the supersoni,. flow, but To < 1300 K at X, 0.20

- -- .-----....... ..~-..-- .- . ~ ~ -..- . - -~ ----
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may be of interest. Corrosion of uncooled laser nozzles may be prevented
if the construction material forms an involatile passivating fluoride coat-
ing. Due to rapid convective mass transfer at the nozzle throat, evaporation
of a passivating fluoride would occur at nearly its vacuum sublimation rate.
Evaporation from a nozzle passivated by the least volatile fluorides (CaF ,
SrT and rare-earth trifluorides) would yield a 10% increase in w* (initially
O.O cam) in about 1 hour at 1300K.

Discussion - This paper shows that materials resistant to fluorine at
temperatures up to ca. 1300K are of primary importance in the development
of HPSDL's and that useful fluorine resistance at the throat of a laser
nozzle will not be found with passivating metal fluorides unless the vacuum
evaporation..coefficient, a, of the fluoride is small. For LaF3 , ? * 1.0;
most other candidate fluorides have not been studied.

The conclusion that a passivating fluoride would evaporate from a laser
nozzle throat at nearly its vacuum sublimation rate is based on the rates of
transport of F-atoms to the surface of a coolad/laser nozzle computed by
Farrell, Kendall, and Tong (16).

Figure 1 shows our calculation of the combustor temperature - pressure
relation, assuming adiabatic combustion of a D' - excess F mixture whose
initial temperature is 298K. The lines indicais the Po (Ti) relations for
different X, at which the eraction of total fluorine present as atomic fluorine
equals 95% bf its maximum possible value. This slight derating of combustor
P-atom yield permits a substantial reduction in combustor temperature (ca. 100K).

Research to date has been guided by the belief that much higher tempera-
tures would be of interest. Thus, a number of interesting candidate materials
for HISDL's have heen rejected, but may yet find useful applications. Some
of these are i) the heavier rare earth metals, whose melting points exceed
1500K and whose fluorides melt above 1400K. (However, see Section VIII for
the F/Gd reaction kinetics; ii) yttrium metal or yttrium compounds, whose
fluoride shatters when cooled through its phase transition temperature (14)
(1350K); iii) MgO, which forms a MgO/MgF2 eutectic at 1485K and exhibits
fluoride film protection (61) to *_a. 1360K.

Table I presents the vapor pressures of the least volatile fluorides. In
many cases, these data were obtained by extrapolating measured results outside
the range of measurement, and are, therefore, somewhat uncertain.

The melting points of the rare-earth metals and their trifluorides are
illustrated in Fig. 2. The melting points of the heavier rare earth mtals

are sufficient for use as HI laser construction mattals However, we find
(see Section VIII) that the fluorination of Gd to form solid GdF 3 is not a
passivated process.

M~ J
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i11. AERODYNAMIC LEVITATION OF LASER HEATED SOLIDS IN GAS JETS (62)

Abstract - Solid spheres were aerodynamically levitated in gas jets and laser

heated to temperatures above 2000 K. Stable levitation in a supersonic jet
from a 0.081 cm nozzle was demonstrated with 0.03 to 0.20 gram, 0.24 - 0.47 cm
diameter specimens at a height hetween 0.7 - 2.0 cm above the nozzle and ambient
pressures between 1.1 - 19 torr. An empirical model of supersonic jet levitation

. accurately predicts height Ls. pressure over the full range of conditions that
were investigated. The efficiency with which jet momentum is converted into
levitation force decreases with the jetispecimen diameter ratio and the jet
Reynolds number. The rate of jet spreading with distance from the nozzle
deduced from levitation experiments agrees with that measured by pitot tube
traverses of the jet. Pitot tube pressure measurements also reveal a transi-
tion from laminar to turbulent supersonic jet flow at a jet Reynolds number
rca, 1300) just above the maximum value at which stable levitation is observed.
LiiEer heating reduces the jet momentum required for levitation at a given height
and increases levitation stability. In experiments with subsonic jets, the
required jet momentum flow rate exceeds the specimen weight by sa 2/C where
C is the specimen drag coefficient at its terminal free fall speed uRder the
aRtbent conditions. Exploratory studies of laser heated liquid levitation were
unsuc.cessful.

Discusaion - This technique waseusad for the F/LaB6 kinetic study (See Section
IX). Specimen mass measurements before and after reaction with fluorine or
fluorj e colting _yaporation yield the flux of molecules produced by reaction to
c10 cm ' sec or the effective thickness of a passivating coating to
,a.10 ca. The.. apparatus is illustrated in Fig. 3. A

IV. KINETICS OF THE F/ALUMINA GASIFICATION REACTION (38)

Abstract - Intrinsic kinetics for the F/alumina gasification reaction were meas-
ured using a low pressure, transonic microwave discharge flow reactor technique,
at p - 2,4 Pa and 1100 < T < 2000K. Rate measurements were obtained on poly-
crys~allint alumina tubes or-single crystal sapphire rods which were heated with
a CW CO laser and on alumina tubes heated internally by a tungsten filament
electrilal heating element.

Impurities greatly influence the rate of reaction, which is negligible ...

below 1500K for uniformly heated specimens contaiping less than 1%.ra. The
impurities diffuse from higher to lower temperature regiond of specimens that
are not uniformly heated. The F-atom reaction probability on pure alumina or
sapphire at T > 1100K exceeds 0.5.

V. SPECTRAL EMITTANCZ OF POLYCRYSTALLINE ALUMINA (39)

Abstract - The spectral esmittance of Polvcrystalline.alumina was measured at

T.- 1660. 1830K, for 0.37.s. X 4 O.85us..and,. at X - 0.6 between 1400-2100K._-
Themeby measr-- -y-o--la' - - tainedneon 0.15cm diameter rods whichI-were. heated, in -

. a W C02 laser. Emittances were obtained by alternately focusing an image of

I __I __I II__II__ ' '



the rod and of a black body hole in the rod onto the entrance aperture of a
monochrometer or by measuring the surface and black body temperatures with
an optical pyrometer. The spectral emittance of alumina increases with tam-_
perature and is given, at 0.66p, to ca. ±5% by the expression co 0 -3.6 x 10 T.
At constant temperature t decreases with an increase of wavelendA between 0.374.4, and in nearly constint between 0.6-0.8511. These and other data show the i

omittauce of polycrystalline alumina is larger and the transmittance smaller
than values estimated from specimen grain size and the absorbance, transmit-
tance of sapphire crystal. A (weak) surface absorption process is suggested
to explain this difference in the optical properties of single crystal and poly-
crystalline aluminum oxide.

V7. KINETICS OF THE F,F2/B4C REACTION

Abstract - Intrinsic kinetics for the F op/B C reactions were measured using a
low pressure, duct flow reactor technique. i-atom reaction was studied by use
of a microwave discharge to dissociate F, Rate measurements were obtained
from mass loss of a short B C duct through which the reactant flowed. The
P/B C reaction probabiliZit P(F) 4.6 - 14 Pa depends only on temperature
and Lncreases from 2 x 10 at 578K to 0.35 at 100OK. The /Ba C increases

from 4x1O at 740K to 0.07 at 1000K.

Discussion - This study presents the kinetics of fluorine reaction with one of
two phases in the La - B - C system (32) that can coexist with a mixture of
LaB6 and carbon (see Fig. 4). Reaction of fluorine with the second phase,
LaB Cia has not been investigated but the F/carbon reaction has been studied
(2# 5 ) in much detail'. The kinetic data..for F/B C ,eAction are presented

in Fig. 5. The reaction probability is the fracton'of F-atoms or F -molecules
striking the B4C surface which react to form BF3 and CF4 product molicules.

VII. KINETICS OF THE F/Re GASIFICATION REACTION

The F/Re gasification kinetics have been measured by methods described
elsewhere (1, 7) to obtain the results illustrated in Figure 6. The figure
plots the logarithm of the rhenium gasification probability, defined as the
rhenium removal a fluorine atom impingement flux ratio versus reciprocal
temperature. Since the product of reaction is ReF4 (58), the F-atom reaction
probability is 4 times greatsr than the rhenium gasification probability and
the rat*e of reaction in the high temperature range where rate decreases with
temperature is expected to increase with the 4-th power of the F-atom partial
pressure. Rate measurements at P - 0.0023, 0.0048, and 0.0086 torr confirm
this conclusion. It is apparent Ehat rhenium displays no useful fluorine
resistance at high temperature, except above ca. 1600K when the fluorine
pressure is very small. These results agree w71th the expected kinetic behavior
suggested by the trends among other third-row transition metal fluorine reactions
(1), which are illustrated in Figure 7.

VIII. HIGH TEMPERATURE KINETICS OF THE F/Gd REACTION

Gadolinium metal melts above 1600K (26), and its fluoride is involatile
(11) and melts above 1500K (15). If it formed a passivating fluoride coat,
gadolinium metal would be an interesting fluorine resistant material, especially

S, .. ........., ... .. ......... .N O.......
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since it is stable in the atmosphere, easy to fabricate, and relatively inex-
pensive. A second reason for investigating the Gd/F reaction is to evaluate
the effect of a large substrate metal activity on the passivating nature of
rare-earth metal fluoride coatings.

The Gd/F reaction rate wan studied by measuring the electrical resist-
ance vi time of electrically heated Gd ribbon in atomic fluorine at tempera-
tures ca. 1100-1500K. The rate of reaction is rapid, proportional to fluorine

* pressure, nearly independent of temperature, and independent of time, even afver
a fluoride coat, greater than 50 micron thick has formed. Thus, Gd metal is not
a good fluorine resistant material because the fluoride coat formed on it is
not passivating. The fluoride coat has a grey-black color, unlike Gd? , suggest-

*ing that the solubility of Gd in GdF is substantial at high temperatues and
r unit metal activity. These observations imply that high metal activities are

not conducive to formation of thin passivating fluoride coats, because rapid
metal diffusion through the coating produces rapid reaction with fluorine at
the fluoride-fluorine interface.

I IX. HIGH TEMPERATURE KINETICS OF FLUORINE REACTION WITH LaB6

LaB6 reacts with atomic fluorine to form a pasuivating, white LaF oating.
Further reaction 'then proceeds at the coating evaporation rate which cag be calcu-
lited from the vapor pressure of LaF3 (35, 40) and the prevailing gas phase mass
transfer coefficient. Rate data at p(F) = 0.12 torr are given in Fig. 8.

The La? 3 coating thickness required to passivate F/LaB reaction is lurge
for i) porous LaBs specin•ej, ii) sampleLaB -2, of low porolity (0.72) and
dens.ty equal to 4.68 /cam (99.3% of theorAical density), or2iii) La& /C andLaB /MeSi comosite hin LaFP coatings .(luss than 3 mg/cm , or aboat
5 m crond3 at p(F) - 0.12 torr) occur on sample Lae-4, of low porosity (0.7%) and4.59 /cam density (97.5% of theoretical density). _

The LaB phase exists over a considekable composition range (21, 22) as
a result of LI vacancy formation. The lattice parameter is essentially in 4endant
of composition. Therefore, the density measurements on TaB samples which frm
a thin passivating LaF 3 coating in fluorine imply that f'1e gompositiom is actually
La a 0 B6  (or LaB ). The lanthanum activity in this matsrial would then be
smiW r by several".ders of magnitude than it is in the move dense nearly
stoichiometric substance (23).

The Pacts that thick Lap3 coatings occur on nearly stoichiometric LaB 6

(a 10 ) and on. adolinium metal (a, - 1), but not on La deftcient LaB
i4 ty that the coating growth process oflurs by diffusion of dissolved La tArough
the coating. Then LaF 3 coating thickness should not increase much with fluorine
pressure.

La? coating thickness has been measurad on La! specimens e.posed to
atmospheric pressure fluorine-rich HJ/P flames (17, i8, 34, 36, 52, j 9 , 60).
The material which gave thicker coatnj (sa. 30 microns, or 18 mg/cm ) at p (F)
* 0.12 torrprodiced a 100 micron thick coating in the flame tests (34), This
relatively small change over a thousana-fold change in the F-atom pressure
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3upports the postulate that coating thickness depends on substrate lanthanum
activity. However, flame test results are not available on the 4pecimen. that
are pssivated by thin LaP3 coatings.

Figure 9 reports our coating mais measurements, which may ýe converted to
an effective coating thickness via the density of LaF , 5.9 5/cm . The figure
presents coating mass per unit area as a measure of ciating thickness. Specimen
area is taken as the area of a sphere of equal mass and does not include correc-
tions for surface roughness. The results of three experiments with sample
LaB6 -2 (open symbols) and two experiments with sample LaB -4 (filled symbols)
are given. The figure plots L'F (a) mass per unit area atter rtaction for
20-50 minutes at the indicated timpeatures, and P, P 1.6 x 10 atm. The
abaissa is the number of time. that the coating has been formed on the specimen.

, Evaporation of the coating at T a 1500K was carried out between each run.

Further detail. of our F/LaB6 work are gien in Reference 61.

g1.
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• aluminum nozzle; E-Aorodynamically levitated specimen; F- CW CO laser beam;
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K- Water-cooled nozzle support; L- O-Rin$ coupling; M-,Pyrex vitidows for optical
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