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1 inch

1 foot

1 foot per second
1 knot

1 pound (force)

1 degree (angle)
1 horsepower

1 long ton

NOMENCLATURE

DESCRIPTION

Sectional area
Maximum Sectional Area
Beam

Block Coefficient

Residuary Resistance Coefficient
Wave - Cut Resistance Coefficient
Froude number

Ship or Model Length

Effective Power

Distance along the centerline from the forward

perpendicular, positive aft

Distance to the aftmost point of
(nondimensionalized by L)

Distance to the forward most point of the thin

ship (nondimensionalized by L)

Transverse distance from the model centerline to

the waveprobe

ENGLISH/S1 EQUIVALENTS

SI

25.400 millimetres [0.0254 m (metres]

0.3048 m (metres)

0.3048 m/sec (metres per second)
0.5144 m/sec (metres per second)
4.4480 N (Newtons)

0.01745 rad (radians)

0.7457 kW (kilowatts)

1.016 tomnes, 1.016 metric tons, or 1016 kilograms

the thin ship J
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N ABSTRACT

" 7 A series of resistance and longitudinal
wavecut experiments were performed on Model 5079
(AKA 113) to verify a theoretical-emperical
method developed by Baba for minimizing wave
resistance by adding an optimum thin ship to
an existing ship. The results indicate that the
model developed using Baba's method shows lower
resistance than the original model above the
optimization speed but greater resistance below the
optimization speed. A further improvement of Baba's
method is necessary to obtain a balanced reduction in
the resistance in the speed range of interest.
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18 INTRODUCTION

i A series of resistance and longitudinal wavecut experiments were

F performed in the deep water basin at DINSRDC on Model 5079-1 to experimentally
i verify a theoretical-empirical method developed by Babal*for reducing wave

resistance. Baba's method uses longitudinal wavecut information to find an k

; optimum thin ship that, when added to the original thin ship, will minimize
lé the wave-cut**.neaiatance.

An initial series of resistance and longitudinal wavecut experiments were
performed on Model 5079. Model 5079 represents the AKA 113, a fine single
screw ship with a slightly protruding 3% bulb. The information from the wavecuts
were input into a computer program based on Baba's method, HULIMPZ,’3 to develop
the optimum thin ship at the ship-scale speed of 22 knots (11.3 m/s). The
remaining wavecut data taken at other speeds were used to predict the off-
design performance of the "optimized" hull form.

Baba's method can optimize a given hull form by adding a thin ship along its
entire length. However, the effect of the thin ship along the afterbody is
overpredicted due to the thicker boundry layer at the stern. Because of this, the
optimization is here limited to the forebody. The thin ship extends from 2.5%L

forward of the forward perpendicular (to represent a bulb) to amidships. 4

* Numbers indicate references listed on page 10.
*Wavemaking resistance calculated from far-field waveheight measurements (wavecuts).

1
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Also, since the draft and displacement
are to remain constant, the net volume of the thin ship is set at zero.
A new forebody, developed by adding this thin ship to the existing forebody,
was then added to the existing afterbody to create Model 5079-1. Model 5079 is
referred to in this report as the original hull, and Model 5079-1 is referred
to as the optimized hull.
A final series of resistance and wavecut experiments were performed on Model
5079 and Model 5079-1. The experiments with the model with the new forebody

(5079-1) were to verify the earlier predictions, and the experiments with

the model with the original forebody (5079) were to check the repeatability
of the earlier predictions.
Presented in this report are the original and final predictions of the

change in wave resistance due to adding an optimized thin ship to the

existing ship with the original forebody. A comparison of the predicted

change in resistance to the actual change in resistance is included.

EXPERIMENTAL ARRANGEMENT

Model 5079 was constructed of wood to a scale ratio of 32.5. The
model was originally constructed in one piece, but later was cut apart at

amidships to connect the new "Baba" forebody to the afterbody (Model 5079-2). !

Table 1 contains the principal dimensions of the ship and models, and Figure
1 shows the lines drawings of the models. The sections were joined at
amidships using aluminum bulkheads.

The models were fully appended except for propellers during the
experiments. The models were ballasted to the full load draft of 0.244 m
(0.802 ft), and displacement of 554 kg (1221 1bs). This corresponds to a
full scale draft of 7.925 m (26 ft), and displacement of 18954 tonnes
(19257 tons).

The experiments were conducted in the deep water basin at DTNSRDC.

A resistance wire waveprobe was used cd obtain waveheight data. The

data was digitized and stored on magnetic tape for later analysis using

the Centers' CDC 6000 series computer system.




¢ ] DISCUSSION

Initial Experiments and Predictions

As an initial step to the hull optimization technique developed by Baba,
longitudinal wavecut experiments were performed on Model 5079, representing the
AKA 113. The wavecuts were taken at Froude numbers (Fn) of 0.203, 0.229, 0.254,
0.279, 0.305, and 0.330 (corresponding to the ship speeds of 8.23, 9.27, 10.30,
11.33, 12.36, 13.38 m/s; or 16, 18, 20, 22, 24, and 26 knots),

Figure 2 shows the wave - cut resistance coefficient (CW) curves for the
original model, the optimized model, and the predicted results for the optimized
model. The wave - cut resistance is calculated using waveheight data from
a longitudinal wavecut. Since Babas' method optimizes by minimizing wave - cut
4 resistance, the greatest benefits are gained when optimizing at a speed at which
. é the model has a large wave - cut resistance. At the ogiginal design speed of
Fn = 0.254, the original model Cw value is small compared to the Cw values at
the higher speeds. The speed selected to optimize at, Fn = 0.279, was chosen
because of the corresponding large Cw value while still being relatively close
to the original design speed. It should be noted that because it is necessary

to have a wavecut at the speed selected for the optimization, the choice of

the optimizing speed was limited to the speeds used in the initial wavecut

et

experiments.

The computer program based on Baba's method, HULIMP, allows certain

T S

constraints to be placed on the optimum thin ship. These constraints include
volume, beam at admidships, number of terms in the sine series used to find

and describe the thin ship, and the endpoints of the thin ship relative to the
hull. The net volume of the thin ship was set at zero to keep the displacement
of the optimized hull the same as that of the original hull. The thin ship beam

o SRR Ll 2

at amidships was also set at zero to keep the admidships section constant.

The number of terms in the sine series describing the thin ship was determined

by the equation2 N =20 x (Xe - Xs) x L.

P
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An analysis to determine the length of the optimizing thin ship was
performed. Two techniques were considered: the thin ship added to just the

s forebody, and the thin ship added along the entire length of the hull.
The predicted results showed that at Fn = 0.279 the Cw values decreased from
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1.019 x 107> with the original hull to 0.636 x 107> and 0.615 x 107> with the
forebody and full length optimum thin ships, respectively. Since the effects
due to a thin ship added to the forebody are more accurately predicted than the
effects due to a thin ship added along the afterbody, and the decrease in the
predicted Cw values for the two thin ships was comparable, the selected thin ¥
ship was limited in length to the forebody. The thin ship was also extended
slightly forward of the forward perpendicular (2.5% L) to simulate the effect
of adding a larger, more protruding bulb. R
During the initial phase of the project, the computer program HULIMP was
modified to allow the input of an arbitrary shaped thin ship3. This change makes
it possible to predict the wave - cut resistance of a hull and thin ship combina-
tion at speeds other than the thin ship design speed. The predicted Cw values for
the new optimized hull are shown in Figure 2. The predicted Cw values for the
optimum hull are lower than those for the original hull above Fn = 0.270.
The predicted Cw curve has a number of humps and hollows; this is not unexpected

since Baba's method uses Mitchell's equation.

Optimized Hull Design

To develop the optimized hull sectional area curve, the sectional area of the
thin ship was added to the original hull sectional area curve. Figure 3 shows
the sectional area curves of the original and optimized hulls. This new sectional
area curve was smoothed. The forebody stations were redrawn to match the new
sectional area curve. At the bow, there was an increase in the sectional area.‘
Part of the increase in volume at the bow was used to develop a larger bulb.

Aft of station 3, the new stations took the shape of sections of the original
forebody which had the same secticnal area.

The new forebody was crossfaired, with emphasis placed on keeping the
sectional areas constant. It should be noted that the final forebody stations
were fair, but the waterlines were not as fair as is usually acceptable by
normal naval grchitectural gtandards. However, the waterlines are smooth. The
waterlines were not faired further because it would have altered the sectional
areas significantly, which would have altered the shape of the actual thin ship
by an unacceptable amount. Since this project was to be a verification of
Baba's method, it was important to keep the optimum and the actual thin ship
shape as alike as possible.
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The bow profile shape was based on a combination of a shape consistent
with the stations and waterlines, and a bulb projection beyond the forward
perpendicular of X/L = -0.025.

Comparison of Predictions and Results

The predicted and actual Cw curves for the optimized hull (Model 5079-1) are
shown in Figure 2. The "predicted" Cw values are calculated by adding the thin ship
theoretical wave spectra to the wave spectra (derived from wavecut data) of an existing
hull. The actual Cw values come from wavecut data taken during the resistance experiments
with Model 5079-1 which represents a combination of the original hull and thin ship. If
the humps and hollows in the predicted Cw curve are flattened out, the predicted and
actual Cw curves would lie very close. The humps and hollows in the predicted Cw curve
probably are a result of the use of Mitchell's equation in Baba's method.

Because the design speed corresponds to a hollow in the predicted optimum

hull Cw curve, the predicted Cw value at the design speed is noticeably lower than

the actual optimum hull CW value,. i.e., Cw = 0.68 x 10—3, compared to 0.90 x 1073
Also, the predicted optimum hull Cw curve crosses the original hull CW curve at a lower
Fn than the actual optimum hull CW curve does; 1.e., Fn-0'271 compared to 0,275,
Again, most of the differences between the actual and predicted optimum hull
Cw curves are due to the humps and hollows in the predicted Cw curve.
The C_, curves for the original and optimized hulls are shown in Figure 4.

R

The CR curves follow the trend of the Cw curves, with the optimized hull showing
a decrease in CR values compared to the original hull at higher speeds.

However, while the optimized hull had a lower Cw value than the original hull

at the optimization speed of Fn = 0,279, the optimized hull had a higher C_ value

than the original hull at the design gpeed; 1.e., c, = 1.90 x 15~ comparejito
1.79 x 10_3. This is due to the CR curves crossinzhat a higher speed (Fn = 0.283)
than the optimization speed.

The effective power (PE) curves for the original and optimized hulls are
shown in Figure 5. Since the wetted surface and displacements of the two
hulls are virtually the same, the differences between the original and optimum
hull PE curves are due to changes in the residuary resistance alone, The
optimized hull has a higher PE value than the original hull at the design speed
(Fn = 0.279), 13540 KW (18150 hp) compared to 13090 KW (17550 hp), respectively.
At slightly higher speeds (above Fn = (0.283), the P
hull are lower than those for the original hull.

E values for the optimized

5
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It is not surprising that the speed at which the optimum hull has a i
lower wave - cut resistance than the original hull differs from the speed at .
which the optimum hull has lower PE and CR values than the original hull.

The reason is that an optimized hull form solely based on the wave - cut resistance
could result in changes in the other components of the resistance, which in turn,
could cause achange in the characteristics of the overall residuary resistance.

Figure 6 shows the predicted Cw curves for a thin ship and hull combination
optimized at various speeds. The thin ship and hull combinations optimized at
Fn = 0,203, 0.228, 0.254, 0.279, 0.305, and 0.330 are denoted as Hulls A to F,
respectively. The thin ships are shown in Figure 7. The lines for Hulls A to
F were never generated. It should be noted that, while Hull D is optimized at the
same Fn as the optimized hull, Fn = 0.279, the predicted Cw curves and thin ship
shapes differ from the optimized hull. This is a result of the fact that the
optimized hull was developed by using the data from the initial wavecut experiments
while the optimizing thin ships for Hulls A to F are derived using data from the
final series of wavecut experiments.* :

The Cw curves for Hulls D to F are somewhat similar in shape, with their |
peaks and troughs occurring at apprcximately the same speeds. The corresponding
thin ships also have strong similarities. The thin ships have a large amount of

positive volume at the bow, and a large decrease in volume in the middle of

the forebody. Since the thin ship for Hull C (Fn = 0.254) has a negative volume
at the bow, it is not surprising that its Cw curve differs greatly from those
of the optimized hulls at the higher speeds.

Both the thin ships and the Cw curves for Hulls A and B (Fn = 0.203 and
0.228) are somewhat similar in shape. Both of the thin ships have positive !
volume at the bow and negative volume at the middle of the forebody. Their
lower Cw values (compared with Hulls D to F) at the lower speeds are probably
due to the smaller alteration of forebodv volume from the original hull form.

Since the optimizing thin ship at Fn = 0.254 differs greatly in shape from
the other thin ships, care should be exercised in selecting a hull optimized at
this speed. It may be desirable to obtain more wavecut information at nearby
speeds (say Fn = (0.268 or Fn = 0.265) to examine the trend in thin ship shape

near this speed.

*The final series of wavecut experiments were conducted to confirm the previous
results, and were believed to be slightly more reliable for the purpose of comparing

the resistance characteristics at different speeds of optimization.
6
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The results of the wavecut experiments with the optimized hull indicate

that the predicted Cw curve is similar in shape to the actual Cw curve if the
humps and hollows in the predicted Cw curve were smoothed. A similar smoothing,
done by hand, was applied to the Cw curves shown in Figure 6 to see how the Cw

curves could be affected. These "smoothed" Cw curves for Hulls A to F are shown

in Figure 8.

The predicted Cw curve for hull B (Fn = (0,228) is much lower than the
predicted Cw curve for Hull D (Fn = 0.279) up to Fn = 0.280, and is just
slightly higher above that Froude number. On the basis of the curves shown
in Figure 8, the original hull should be optimized using the optimizing thin
ship at Fn = 0.228. Further, the predicted Cw curves for Hulls C and F v
(Fn = 0.254 and Fn = 0.330) indicate that no hull should be optimized at

thr e speeds since these curves never have the lowest C_. values compared to the

other Cw curves at any speed. "
The above indicates that if the Cw curve smoothing assumption is
correct, the most desirable thin ship shape to optimize a hull can be
different from what is indicated by the original (unsmoothed) predicted
Cw curves. A much larger data base will be needed to validate the smoothing
assumption.
Repeatability
Since wavecut experiments were performed on thé original hull (Model 5079)

during the initial and final series of experiments, it is possible to examine the

repeatability of Baba's method. This is a function of the repeatability of the
wavecuts themselves. However, instead of analyzing the wavecuts for their
differences, the changes in the optimum thin ships for various speeds from the
initial to the final experiments will be examined.

Figures 8 to 13 show the thin ships optimized at various speeds using 1
wavecut data from both the initial and final series of experiments. Two wavecuts

were analyzed from both the initial and final experiments for each speed. 1In

most cases, the differences between the thin ships from each series of experiments

are about the same size as the differences between the shapes of the thin ships

from the initial and final experiments. The thin ships optimized at Fn = 0.207

and 0.279 did not show as good agreement in shape as did the other thin ships.

The differences in thin ship shape and size at Fn = 0.203 are not surprising since
7
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it is difficult to measure the model wave system at low speeds due to the
small wave amplitudes. The difference between the shapes of two sets of thin
ships optimized at Fn = 0.279 are surprising since they are larger than the .
differences observed in the thin ship shapes at other neighboring speeds. These ]
differences are probably not due to either calibration problems or errors in the .:
measurements of the waveprobe position relative to the model, since these would 'b
have affected the other wavecuts similarly. ‘
The effects on thin ship shape due to different wave probe transverse

positions were examined. Figure 15 shows the optimum thin ships at Fn = 0.279

with transverse position (measured from the model centerline) to beam ratios (Y/B) P
of 2.25, 3.0, and 4.0. The difference in optimum thin ship shapes for different

Y/B values are similar in size to the differences between the optimum thin ship

shapes developed from repeated wavecuts. Therefore, it seems that the effects

on thin ship shape due to different waveprobe transverse positions are negligible.




CONCLUSIONS

1) The optimized hull had lower Cw values than did the original hull at Froude
numbers higher than Fn = 0.275. The optimized hull had a lower Cw value at

the design Fn of 0.279, as predicted.

2) Even though the optimized hull CR and PE values were higher than the original
hull values at the design Fn’ at slightly higher values of Fn (above Fn = (.283)
the optimum hull performed better than the original hull. Because Baba's method
only minimizes one component of residuary resistance, wave - cut, and that

the effects on the other components of residuary resistance due to altering

the hull are not accounted for in the predictions, it is not to be expected that
the residuary resistance and PE values would only reflect the changes in the
wave - cut resistance.

3) The predicted and actual Cw curves for the optimized hull were similar, if
" the humps and hollows in the predicted Cw curves were smoothed. Further work
is needed to examine whether the smoothing of the predicted Cw curve is a valid
approach in the optimization procedure.

4) Generally, the computed thin shapes based on the initial and final series of
wavecuts showed good repeatability. Further, the effects on thin ship shape due to
changing the transverse position of the waveprobe relative to the model seem to
be negligible.

5) Baba's method seems to have potential for optimum hull-form search, but more

experience will be required to be able to use it as an effective design tool.

—| d
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DTNSRDC ISSUES THREE TYPES OF REPORTS

1. DTNSRDC REPORTS, A FORMAL SERIES, CONTAIN INFORMATION OF PERMANENT TECH-
NICAL VALUE. THEY CARRY A CONSECUTIVE NUMERICAL IDENTIFICATION REGARDLESS OF
THEIR CLASSIFICATION OR THE ORIGINATING DEPARTMENT.

3 2. DEPARTMENTAL REPORTS, A SEMIFORMAL SERIES, CONTAIN INFORMATION OF A PRELIM-
‘ INARY, TEMPORARY, OR PROPRIETARY NATURE OR OF LIMITED INTEREST OR SIGNIFICANCE.
THEY CARRY A DEPARTMENTAL ALPHANUMERICAL IDENTIFICATION.

L 3. TECHNICAL MEMORANDA, AN INFORMAL SERIES, CONTAIN TECHNICAL DOCUMENTATION 4
78 OF LIMITED USE AND INTEREST. THEY ARE PRIMARILY WORKING PAPERS INTENDED FOR IN-
‘. TERNAL USE. THEY CARRY AN IDENTIFYING NUMBER WHICH INDICATES THEIR TYPE AND THE
NUMERICAL CODE OF THE ORIGINATING DEPARTMENT. ANY DISTRIBUTION OUTSIDE DTNSRDC
MUST BE APPROVED BY THE HEAD OF THE ORIGINATING DEPARTMENT ON A CASE-BY-CASE

BASIS.
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