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I. INTRODUCTION

STATEMENT OF THE PROBLEM

This final report is concerned with the problem of demodulating

multiple frequency-shift-keyed (FSK) signals corrupted by a combination of

multiplicative and additive noise. The multiplicative noisy operator .4(O),

which is illustrated in Figure 1, is of such a nature that transmitted

sinusoidal signals si(t), i = I.... , are converted to zero mean Gaussian

random processes li(t), with peak spectral densities at the transmitted

frequencies. The received signal ri (t) is the sum of ji i (t) and

independent white Gaussian noise n(t). In terms of hypothesis testing

the alternatives are:

jV : r.(t) = s(t,O) + n(t,O ) , O<t<T, i = I .... M (l)

where n(t) is an additive white noise process and i (t) is a segment

of a zero mean stationary Gaussian random process. A decision must be

made by analysis of r(t), as to which J is correct in a givenI

observation interval [0,T]. The parameters 0s and On are the

unknown statistics of the random processes vi.(t) and n(t), respectively.

....) Ili(t )  + ri(t)

+

n(t)

Figure 1. Combined multiplicative and additive noise.
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For purposes of mathematical modeling, these parameters are con-

sidered to be fixed. In fact, they will change slowly enough with respect

to hundreds of observation intervals T, that they may be modeled as constant.

In statistical terms, this problem is called "multiple alternative

composite hypothesis testing."' The term composite refers to the condition

that each hypothesis Je(O) is actually a family of hypotheses over the
1 -I

range of (0, n). Given knowledge of 0, it is possible to partition the

space 0 of observed processes ri(t), O.t:T into decision regions, 2,,

each associated with an hypothesis JVi, in a manner which leads to the

minimum probability of misclassification. Without prior knowledge of 0,

there are several alternative approaches all of which attempt to obtain the

best partitioning on the average by incorporating the available knowledge

about 0.

In some cases, the optimal partitioning of the space Q, which is

the union of decision regions Qi' is independent of 0 entirely, or at

least independent of some degree of the dimension of 0. In these cases,

there is a "uniformly most powerful" test. 2  Unfortunately, this is not the

case for the problem at hand.

When a probability distribution is postulated for 0 (that is, if

0 is considered to be a random variable of known distribution rather than

an unknown constant), one may obtain the best partition of the space Q on

the average over that probability distribution. In this approach, which is

known as "Bayesian," the a priori distribution p(e) is updated by the in-

corporation of data obtained from r(t) over prior signaling intervals

through the repeated use of Bayes' rule.

A "Bayesian" approach is strictly not applicable to the case of an

unknown but constant 0. To derive an adaptive receiver from the Bayesian

point of view would require the assumption of a priori distributions for the
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signal-to-noise ratio and frequency dispersion parameters of the channel.

This is not consistent with the rational criteria for evaluating receivers.

We are interested in obtaining the best possible performance at each S

rather than the best performance over some distribution of 0.

A third approach, which is more consistent with the nonrandom a

case, is to estimate the value of G and to treat that estimate 6 as if

it were, in fact, the actual unknown parameter. An example of this approach

is to use the maximum likelihood estimate L  in place of 3 Maximum=4ML inpaeo 0 aiu
likelihood estimates require knowledge of the structure of the distribution

of ri (t) and the corresponding sampling statistic, but do not require an

a priori distribution for 0. The parameter may be considered to be a fixed

but unknown value. However, the use of a maximum likelihood estimate does

not provide any guarantee that it will yield the minimum probability of

misclassification on the average. In that sense, it is merely a heuristic

technique.

The emphasis here is to obtain an adaptive partitioning of 2

based on information from prior observation intervals through an estimate

of the power spectrum of ri(t) optimized for receiver performance. The

technique is similar to that using maximum likelihood estimates in that an

estimate is used in place of an actual statistic in an algorithm derived for

known statistics; but it is on more firm theoretical ground since the esti-

mator is optimized with respect to the receiver performance (misclassification

probability).

The criterion of optimality for the estimator of the power spectrum

is derived by a method related to confidence intervals in the theory of non-

random parameter estimation. The optimality of the adaptive receiver is

limited in two ways. First, consideration is given only to a receiver struc-

tured after the optimal (known statistics) receiver with a spectral estimate
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replacing the a priori known spectral statistic. Second, the probability of

misclassification, as a function of the correct spectrum and an erroneous

estimate, is assumed to reach its minimum at the true spectrum, to be a

symmetric function about the true value of the spectrum, increasing as a

function of the error, and to approximately translate as a function of the

true spectral value. For reasons that will later become evident, the

symmetry and translation properties are for estimation costs as a function

of the inverse of the spectrum.

An additional objective is to achieve near optimal (known 3) per-

formance with as small a collection of prior observations as possible. The

degree and nature of the nonstationarity of the multiplicative noisy operator

is unknown except that it may be assumed to change slowly with respect to

hundreds of modulation intervals. Thus, the objective of a short prior

memory is to permit the estimation of the time varying parameter and

parenthetically to obtain the most rapid convergence consistent with near-

optimal performance by having the wide tracking bandwidth which is made

possible by a short prior observation interval. These objectives are not

incorporated in the optimization criterion, but appear as a constraint on

the design of the estimator. The estimator is arbitrarily constrained to

operate on a single pole filtered version of the prior (raw) spectra and

the time constraint is manipulated informally to achieve the desired

trade-off between accuracy and tracking bandwidth.

In a more rigorous but less practically realizable approach one

would have to characterize the nonstationarity beyond noting that it is slow

with respect to many observation intervals T, assign and evaluate the cost

associated with the length of the prior observation interval, and design

the dynamics of the estimator accordingly. The approach taken here is

considerably "freer'! with regard to knowledge about the evolution of the

parameter 0. For estimator design purposes, the parameter is assumed to

be constant within the "window" of the estimator, and no formal consideration

is given to the nonstationarity of the channel disturbance.
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The estimator of the power spectrum of the received signal ri(t),

referred to above, is not an estimator of (analog) power spectral density

(PSD) but of the magnitude-squared discrete Fourier transform of the

process with N samples taken over an observation interval of T seconds

coincident with the transmitted signal. This is referred to loosely here

as the "estimate of the power spectrum" to avoid any confusion between

continuous spectra and finite spectra.

Since the full dimensional estimator is computationally unwieldy,

techniques of parametric spectral estimation are investigated which allow

the spectrum to be estimated with the use of a small number of storage

registers and associated arithmetic operations. The parametric spectral

estimators are designed to produce reduced dimensional estimates with the

least possible degradation in receiver performance.

Novel aspects of this study are in its nonBayesian approach to the

adaptive demodulation problem and in the area of linear data reduction

with negligible loss in receiver performance. Additionally, a detailed

analysis of the misclassification error in the M-ary zero mean Gaussian

frequency shift keying (FSK) case is presented which does not appear

elsewhere.

In the remainder of this section, the physical channel to which

the adaptive demodulation technique is directed is described; the history

of the "Gaussian signal" (known statistics) problem and of the adaptive

receiver problem is outlined. Section II deals with the optimum known

statistics receiver and with a closely related efficient suboptimal (known

statistics) receiver. In Section III the optimality of the spectral estimator

is demonstrated and Section IV presents the adaptive receiver with the optimal

estimator for the M-ary FSK Gaussian zero mean signal, in white Gaussian

noise with no data reduction of the required spectrum estimate. Section \
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introduces two techniques for reducing the dimension of the spectral estimate

with negligible loss in the receiver performance. Section VI gives simulation

results for the receivers.

THE PHYSICAL CHANNEL

The physical channels are wideband satellite uplinks and downlinks

for data communications in the UHF band. Problems of severe fading associated

with undesirable random phase and amplitude modulation occur during conditions

of unusually high levels of ionization in the ionosphere. These conditions

occur naturally near the equatorial zones and at the North and South Poles,

but may also be caused by man in any region of the Earth by the introduction

of radioactive materials in the atmosphere.

Figure 2 illustrates the problem. The ionized cloud acts as a

kind of random lens, focusing and defocusing the downlink signal from the

satellite. If satellite, cloud, and ground station were stationary with

respect to each other, then the signal received on the ground would be

steady but attenuated according to the geometry of the ionized cloud. Rela-

tive motion of the satellite, cloud, or receiver brings about the undesired

modulation.

The signal path is not direct from the source to the receiver, but

is made up of many reflection paths which add infinitesimal contributions

at the receiving antenna. This type of propagation problem was studied

originally by an analytic technique for a single phase screen by J. A.

Ratcliffe.4 Subsequent work by Tatarskii, s and Knepp and Valley, 6 have dealt

with the physical assumptions necessary to derive signal statistics, and

current practice in this area is to estimate the signal spatial autocor-

relation via a multiple phase screen (MPS) calculation through the compu-

tationally efficient two-dimensional Fast Fourier Transform (FFT). MPS
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Figure 2. The physical channel.
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routines allow the computation of signal amplitude and phase realizations at

the receiver for several phase screens in tandem. A considerable amount of

experimentation has been done with these routines and computational results

have evolved over the last few years to the specification of two extreme

conditions for the statistical structure of the received signal ii(t). At

the two extremes are a Gaussian signal autocorrelation at the receiver, and a

cubic roll-off spectrum. 7  In either case the first order statistic is

Gaussian. Results are given in Section VI for the performance of the optimal

and conventional receivers with each of these conditions at various signal-

to-noise ratios. The adaptive receivers are all evaluated for the cubic

roll-off spectrum only, since it is a worst case of the two alternatives.

Either of these power spectral densities for i.(t) may be

categorized by one parameter which is typically given in the time domain
-I

as the e point on the autocorrelation function. This parameter is To,

the signal decorrelation time. Only one other parameter enters the specifi-

cation of the power spectral density of ri (t): the noise power spectral

density. Due to an invariance property of the receivers under study to

overall rescaling of the received signal ri(t) =ji(t) +n(t), only the

signal-to-noise ratio will be used as an indicator of this second

parameter. The signal-to-noise ratio is given by the ratio of the auto-

correlation of pi(t) at t =O, to the power spectral density of n(t) in

watts per Hz.

GAUSSIAN SIGNAL IN GAUSSIAN NOISE RECEIVERS

The study of optimal receivers for the demodulation or detection

of Gaussian signals corrupted by additive Gaussian noise has been carried

out for over twenty years. Early discussions were given by Price8'9 and

Middleton!0 and the problem was later revived by Kailath.1 Stratonovich and

Sosulin 2 and Schweppe! 3 Kennedy' produced a small volume on the subject.

12
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These treatments all deal with cases of known statistical structure

of the signal and noise processes. The algorithms process the continuous-

valued time waveform ri(t), or a sampled version of it, rather than operate

upon a frequency domain representation as considered here in Section II, but

the distinction is of little consequence. In either case the optimal (known

statistics) receiver yields the same demodulation decision on a given sample

of ri (t). Discrete Fourier transform (DFT) coefficients of a sampled ri(t)

are used here rather than time samples as a computational convenience.

Several communication texts have discussions of the "noise in noise"

demodulation and detection problem. Pertinent chapters and sections can be

found in Van Trees!' Helstrom,6 Whalen.17 and Hancock and Wintz 1" The latter

text includes material on adaptive hypothesis testing from the Bayesian

point of view.

The optimal receiver of Price and Kailath was interpreted by them

and several succeeding authors as an extension of the classical matched

filter for deterministic signals. In a matched filter demodulator the

received waveform is crosscorrelated with local replicas of the several

possible transmitted signals, and the most highly correlated of these is

selected as the demodulation decision. Kailath'' showed that the optimal

receiver for detecting a Gaussian random process could be interpreted as a

matched filter where the local replicas are given by minimum variance esti-

mates of the same incoming waveform. These estimates are done under the

assumption of different hypotheses for the spectrum of the received signal,

so that only on the correct hypothesis is a minimum variance estimate actually

obtained. This interpretation of the optimal receiver has led to its

designation as the "estimator-correlator" receiver, and from this point of

view the study of the receiver has been extended with particular emphasis to

the nature of the estimator under wider classes of signal statistics.
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Esposito19'20 showed that the estimator, in an on-off detection

problem, is minimum variance only if the signal is Gaussian, and proceeded

to give general expressions which show the type of estimate that is required

in the non-Gaussian case. His expressions, which were based on the general

likelihood ratio formula of Kailath 2
1 involving Ito stochastic integrals,

apply to random signals of arbitrary distribution in additive Gaussian noise.

The class of signal statistics was specialized to the exponential family by

Schwartz 22'2 3 who was then able to use estimators based on sufficient sta-

tistics and give more explicit expressions for the estimator in the estimator-

correlator receiver. This work has been extended to the incorporation of

information from prior observation intervals using a Bayesian approach by

Birdsall and Gobien.4 Gobien2 5 and Lee, Nolte, and Hatsell? 6

More fundamental discussions of the Bayesian approach to parameter

estimation are given by Keehn2 7 and Spragins e who include a table of repro-

ducing densities. These apply where the sampling density for the unknown

parameter has a sufficient statistic. Spragins proves that there is an

appropriate choice of the form of the a priori density for the unknown

parameter so that the a posteriori density (after updating by Bayes' rule)

retains its functional form. The significance for Bayesian compound

hypothesis testing is that it allows the sufficient statistic to be updated

in a fixed algorithm. Otherwise the algorithm would tend to grow in complexity

as more prior information is introduced. Chien and Fu2 9 have interpreted

the Bayesian updating procedure in terms of stochastic approximation algorithms

and have proven the convergence of such algorithms in mean square and with

probability one.

A problem with parameter estimation from prior observation intervals

is that the detector or demodulator will have necessarily made some errors in

classifying the prior samples. These errors in turn cause errors in esti-

mating the required signal parameters. One may choose to ignore this problem,

live with the errors, and derive the properties of the estimator under the

14



assumption that the priors are correctly classified. This is the approach

taken here with a successful result. The data of Section VI indicate that

there was very little effect on receiver performance from misclassified priors.

A rigorous treatment of the problem of misclassified priors can be found in

a monograph by Patrick and Costello 30 with a review of the literature in

the area.

A quite different approach to hypothesis testing of Gaussian

random processes was suggested by Miller and Rochwager 1'32'3 '34 This

diverges from the Price-Kailath algorithm in that no knowledge of the signal

spectrum is required. The center frequency of the spectrum of 11 (t) is

estimated through the proportional relationship of the first moment of the

power spectral density about the origin and the derivative of the correspond-

ing autocorrelation at its origin-a property of the Fourier transform. The

autocorrelation is estimated from products of uncorrelated pairs of samples

of ri (t), and a separate noise level estimate is required to remove the

effects of n(t) from the computation. If the power spectral density of

the received signal is known, the technique is clearly suboptimal; and where

good estimates are available it is likely to perform poorly in comparison to

a receiver with an estimator. However, there are situations where spectral

estimation is impossible. For instance, if frequency band hopping techniques

are used and the signal fading characteristics are significantly different

among bands, there may be no other rational method to demodulate the signal

other than that suggested by Miller and Rochwager.

Adaptive techniques for the filtering of signals without specific

reference to applications in hypothesis testing have an interesting parallel

development to adaptive communication systems. The fundamental problem is

very much the same. Optimal minimum mean square estimators have been

derived for known signal and noise statistics but these must often be

estimated in practice. There are two stages of estimation involved. An

15



auxiliary estimator is applied to the unknown statistics and the resulting

estimate is used in the primary filtering operation. Heuristic techniques

were first introduced without consideration of the quality of the combined

process. Weaver3 5 gives several such examples for adaptive Wiener filtering.

Later authors, Balkrishnan 36 and Davisson! 7 dealt with estimates of the

estimation error and the problems of convergence. In the area of adaptive

Kalman filtering, Mehra 38 introduced an adaptive algorithm which also has

guarantees of convergence. Magil1 39 improved upon the consideration of the

quality of the estimator by restricting the unknown parameters to a finite

set. His algorithm is optimal in the transient period as well as convergent

to the correct statistics. A similar technique was used by Lainiotis40 in

the context of adaptive pattern recognition. Like Magill he postulated a

finite collection of possible values for the unknown statistics with given

a priori probabilities. These approaches are both Bayesian in the sense

that they assign a priori probabilities to the unknown statistics.

Fundamental to this problem is the fact that the estimation cost

is a function of the true value of the unknown parameter and is therefore

itself an uncertain value. The Bayesian methods assume a probability dis-

tribution for the unknown parameter and average over it therefore making the

criterion a nonrandom average cost. Without a prior distribution one must

deal with an ensemble of cost functions to reflect the uncertainty in the

true value of the unknown parameter. The approach taken here is to limit

this ensemble to a confidence region for the parameter and to require that

the estimator minimize the worst case over that ensemble of cost functions.
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II. THE OPTIMAL RECEIVER FOR GAUSSIAN SIGNALS IN AWGN

BACKGROUND

The receiver derived here is an obvious extension of the development

in the communications literature, complicated somewhat by the use of the DFT

rather than analog signal processing. It differs from the receiver intro-

duced by Kaliath in that the DFT coefficients of the received process r.i(t),

rather than time samples, are used as the raw data. In this section, the

joint probability density of the DFT coefficients of the received signal-

plus-noise ri(t) is used in the derivation of a maximum a posteriori proba-

bility (MAP) receiver, rather than the corresponding density of time samples

as done by Kaliath. The performance is demonstrably identical whether time

samples or DFT coefficients are used, but efficient suboptimal techniques

are expected to be more closely related to the receiver operating on DFT

coefficients than upon time samples.

A few comments on terminology are necessary. The term AWGN stands

for additive white Gaussian noise. The term optimal WE refers to that

receiver which yields a minimum probability of error for equally alternative

signals. The MPE criterion reduces to the MAP criterion1 which is used to

derive the receiver. In the derivation of the MAP receiver, the joint

probability density of the received DFT coefficients is viewed as a function

of the index of which signal was transmitted, for a given sample z of

received data. z is an N-dimensional block of complex numbers which cor-

responds to the DFT of a sample of ri (t) over the demodulation observa-

tion interval T. The index which maximizes the a posteriori probability
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is selected as the receiver's decision. Thus, the optimal MPE receiver

must have prior knowledge of the joint density of z under each hypothesis

of transmitted signal. This means that the signal dispersion and noise level

are precisely known in advance; where these quantities are estimated, the

receiver is no longer optimal MPE.

RECEIVER DERIVATION

A concise development of the optimal MPE M-ary receiver for

Gaussian signals in Gaussian noise is presented here. The preliminaries

appear in Appendices A and B where it is demonstrated that the DFT coeffi-

cients of the received signal-plus-noise are jointly distributed according

to*
T ~L7*-pi:i)  NIi "  - 1 = N C

N= e - L ,* (2)

where z is the vector of DFT coefficients defined by Equation B.3

and the matrix L is given byt

[Li]k,t = E2. kzZ*} on the ith  hypothesis .(3)

It is convenient to deal with the log-likelihood function:

Zn p(zli) =-N Zn(-r) - Zn!L.1 - TZL_ Z* (4)

The first term of the log-likelihood function may be discarded in maximizing

Equation 4 since it is neither a function of the data z nor the index

i. The second term is a function of the index i but not of the data. Its

practical function is to impart a bias in favor of those signals which are

received with a reduced signal power; a situation which may be expected to

occur in the extreme channels of deviation frequency. In this analysis

the term is not used since its effects have proven to be insignificant

* The notation z e CN means "z is an N-dimensional complex valued vector."

t The notation (L Jik, should read "the k,Zth element of the matrix LI.'."
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for many performance cases of interest. The third term is a quadratic form

in the data z and inverse covariance matrix L 1. The receiver which

uses this term only makes its decision according to

min T l*, TL- I*
decision = p, where k e _ 9 ( L z L (5)

Note that L. is the covariance matrix of the signal-olus-noise DFT coeffi-

cients rather than that of the signal alone. An adaptive receiver must

estimate the signal-to-noise ratio, unlike a conventional noncoherent FSK

receiver which does not incorporate the signal-to-noise ratio and is never-

theless optimal (in an undisturbed channel) at each noise level.

PERFORMANCE ANALYSIS

An analytical solution to the probability of error for the optimal

NIPE receiver does not seem possible* since the integrals involved are not con-

veniently expressed in terms of known tabulated functions. When available,

analytic expressions are advantageous as an efficient means to the evaluation

of receiver performance, as the foundation for sensitivity studies, and as a

convenient tool to optimize receiver parameters. A discussion of the ana-

lytical approach, to the extent that it may be carried out, is given here.

Familiarity with the Jacobian method for transformation of multidimensional

random variables is assumed.

A receiver performance evaluation typically proceeds from the

joint density of the received signal-plus-noise to the joint density of the

receiver statistics where the error probability may be formulated as an

integral in a simplified form. The received data vector : is shown in

Appendix B to be distributed according to the complex normal distribution:

Z :TL . -i* :*

P(:li) = IT I i I-I e - cN (b)

* Exponentially tight bounds were obtained for the nonoverlapping signal

spectra case by Viterbi.1
7
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and the receiver statistics are given by

q M (7)
qk T-lz* '

Let the index set of hyvpotheses be

2M -8

and designate the joint distribution of statistics

SM = [qlq2 .... qMT (9)

by fML(qli) on the ith  hypothesis. Then the probability of a correct
modulation decision is

J/ ff "'" fM ~(- .Ii)dqldq,...dqdq. (10)
0qi qi q,

A correct decision is made when qi is smaller than all of the other q,'s.

The transformation from p(:Ii) to f M( M1i) is at least a twofold

reduction in dimension. The data : is an N-dimensional complex-valued

vector where N is the number of complex samples per observation interval.

Thus z has 2N real numbers in its description whereas _ is NI-dimen-

sional and real-valued with

M r N (11)

The number of transmitted frequencies is at most equal to the DFT dimension

N for a conventional DFT-implemented M-ary FSK receiver. This change in

dimension is significant to the application of a Jacobian technique. One

must first transform the variables to a space of the same dimension and

then integrate over the extra variables.
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We start with Equation 6 and undertake several successive changes

of variable. First, a representation of the distribution of z in polar

form is useful to avoid problems in differentiating the complex distribution.

Define the vectors

T
r [ro,r 1, .. .\ 1  (12)

S11 (13)

where

kz k = r ke , k=O,.....N-1

rk > 0 for all k (14)

A transformation from the distribution in z to the correspond-

ing distribution in r and e is most readily accomplished if z is

written in terms of its real and imaginary parts. Let

Re 4 - [Re{:o} ,Re{z}.. ,Re{zN 'I]T (15)

I'D z [Im{: Im{z}.. .Im{ " I]T0- =. . N - I 1 ( 1 6 )

then the complex normal distribution may be rewritten in terms of Re

Im z :

p (Re(z)+jIm(::) i)

= Ni exp (-Re T Re + Im 
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and the corresponding distribution in terms of r and 3 is

N-I -rT r

g (r,9pi) -N LI 91rk)e -7 (r-- k -O k riZO (18)
k=0 .. ., -

where [j()]] ek-) k=0 ...... N-1

[i(' k, ~ 1kl. ~ 9 -e

the phase angles associated with z are imbedded in the matrix of the

quadratic form in the exponent. The substitution of r, and (9) in the

exponent of Equation 17 is straightforward. It remains only to show that

the Jacobian of the transformation form p (:ji) to g (r,91i) is

given by

N-I
!J Jr_](Re :,Ira :)I TI C r (r -

.k=0 (19)

It is convenient to approach this from the inverse transformation

N-I
[Rez,Im (r,8) ,1 (r k) (20)

--e :--- k-O

Using the relation

rk cos k = Re {zk}

rk sin k =Im {zk}N

The nonzero elements of the 2N x 2N Jacobian matrix are

z,Im zRezk 
=0 .... N-I

k,Z+N arg =O .... N-1

= cos Ok  P k=Z (22)
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;Imz

:,m:1(1e] - lzk k=O ... N-I 1

[Re k,Z 3r , =N . 2N-1

sin , Z (23)

Re: k  kN , ,2N-1
[[Re :,Im z) (r'-- ) N,k -6 0... -

e= ...... N-1

-rk sin e k' k=z (24)

31mz k k=N .... 2N- I

[JRe z,Im z](r'-)]k+N,Z+N - Z Z=N ... 2N-l

= rk cos 9kJ k=Z (25)

It may be demonstrated that the determinant of the Jacobian is

N=l 2 2
1i [Re z,em ) I = k (Cosek +sin2k) (26)

- k=0

which establishes Equation 19.

It is desired to transform the joint distribution g (r,91i) to

a distribution of 2N statistics

q k (r,9) .Tk (9)r k=0,1,...N-I

ek = ek k=O,1,... ,N-1

where the set of M hypotheses has been augmented by N-M dummy variables

and the N phase angles are retained in the new density to allow the use of
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a Jacobian technique in the transformation. The new distribution is given

by

P ,_(28)pl

0, where no inverse image exists

where the transformation Q, defined by

Q : (E' 8_) -(jN'_.

is nonlinear but has a single-valued inverse for all but pathological

choices of the set of 4(B). The new density is zero in the region where,

for a given ( N,9 ), no corresponding image (r,_) exists. Since the

statistics are coupled through the covariance matrices of Equation 27

not all (1N,G) are possible as images of (r,e) under the transforma-

tion Q.

At this stage, the analytic approach begins to break down.

There is no convenient expression for the Jacobian of this transformation

except that which follows from the definition of a determinant. The

Jacobian matrix J ei(r,6) has the following elements:

-=2r s2.(eI~~r[~ k 0 ...N -

aq k 2 r r 1 (2)1 nk(29)

36k k=0,...,N-1
-=0
r, N ... 2N- I
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rk rn sin (8 -3N)][L Z

n#Z

k=N,...,2N-l

Z =0O.. N-I

(30)
ae k  k=N,... N-

36£ dki , =N,... 2N-

The determinant of the Jacobian matrix involves terms from only the first

of these four expressions, due to the property of determinants"

" = JAI D- 1 BJ (31)

which holds for square matrices with A #O. Since _=0 and D=I, the

right hand side of Equation 31 reduces to JAI. However, the remaining

matrix has generally all nonzero terms which makes the expression in

Equation 28 for the transformation not useful for an analytical evalua-

tion of the channel performance.

There is a related integral which may be useful either as an

approximation to the optimal channel performance, as an approximation to

the performance of the suboptimal receiver introduced in Section 111, or as

a bounding integral for either of these. Without further reference to its

ultimate use, let us just consider it a related integral which appears to

be more tractable.

If the off-diagonal elements of C are zero, the probability
-i

density of Equation 18 has no dependence on phase angles since they occur
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only in off-diagonal elements. Then, upon integrating over the phase

angles, the distribution of envelopes r becomes

-I N-1 T -1
g(r/i) = 2NIL i I T (rk)e--Li (32)

k=O

which is a joint Rayleigh density (that could be factored into independent

marginal densities under the assumption that L; is diagonal.) The

Jacobian of the transformation from r to * involves elements from

Equation 29 which under the simplifying assumption are

3q k  2r [-L1  
k=O .... N-I (33)

Tr-e
A matrix may be formed from the diagonal elements of the N matrices,

including the N-M dummy statistics introduced earlier:

k=o,.....N-1
[t-k, = LLklez Z=O,...,N-l (34)

then the Jacobian of the transformation from r to UN is

N-1
IJq(r)l = 2N  (rk) (3)

k=O

and the distribution of statistics becomes:

I L. t-llt-le - q i q (36)

fq/i) - o , q

where

.Ya { -_ Lx I xi> o, i=l ,...,N} (37)
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The Xi's correspond to Izi 2 or channel received power and are always

positive. Y is the set of statistics which are images of some data
vector z and is limited to a region within the positive orthant of N-

space by the positive matrix 1 acting on the vector of positive elements

Now the channel performance may be expressed, for the special

case of diagonal covariance matrices:

Pc/i = fZ"" "- 1- Iff}-le-qidql dq2 ".. dqN (39)

where 1' 6 {ajqiqk, kv (40)

The matrix r completely describes the optimal receiver which is identi-
cal to the SPLOT receiver* for diagonal covariance matrices. The rows of

7 generate the statistics _N through the relationship

(41)

and F is perfectly matched to the diagonal covariance matrices via

Equation 34. If an invertible matrix other than r is used in genera-

ting the statistics, say

AN L (42)

*

Stationary process-long observation time receiver.
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the channel performance integral becomes

L.edq 1 d4d...d (43)

where ri  is a row vector consisting of the i th row of T.

The performance integrals given by Equations 39 and 43 apply to the SPLOT

approximation to the optimal (known statistics) receiver which is introduced

in Section III. They are not tractable integrals and are used only in a formal

manner in the sequel. Equation 37, for a correct receiver matrix P, is

evaluated by numerical methods explained in the remainder of this section.

RECEIVER PERFORMANCE - NUMERICAL METHODS

A Monte Carlo technique was developed to evaluate the performance

of the optimal MPE 8-ary FSK receiver with Gaussian zero-mean signals in

AWGN. A sampled-data receiver, employing an ideal (impulse) sampler was

used in the analysis. The discussion here is divided into three parts. The

first part deals with the incorporation of signal-to-noise ratio (SNR) in-

cluding a derivation of the autocorrelation function of the continuous-tine

baseband waveform in terms of the radio-frequency signal spectrum and white

noise level at the receiver. The second part treats the calculation of DFT

covariance matrices based on sampled versions of the baseband autocorrelation

functions, and the third part explains the use of these matrices in obtaining

system performance.

BASEBAND AUTOCORRELATION FUNCTIONS AND SNR

The received signal power spectral density (PSD) will be repre-

sented by ,(f), with the prime designating a waveform that exists prior
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to any filtering at the receiver. irf} is a two-sided spectrum with the

units of watts/hertz (W/Hz). The corresponding white noise density will be

designated N /2 W/Hz. The appropriate definition of signal-to-noise ratio,

where the signal is a segment of a stationary Gaussian process, is given by

T fo,(f)df

SNR = (44)No/2

where the numerator is the signal energy received during a modulation

interval T, and the denominator is the white noise density. The first

step is to evaluate the autocorrelation function of the baseband analog

signal x(t) +jy(t), defined below, in terms of 'r,) and No .

In considering the effect of the baseband filter on the received

signal spectrum, it is convenient to manipulate the block diagram of the

receiver to produce the effect of the baseband filter in front of the mixer.

This artifice helps to avoid some notational complexity. Figure 3 shows the

baseband block diagram for the transformation of the received signal-plus-

noise r'(t) to the complex-valued baseband waveform x(t) + jy(t).

CO cc t  
x(t) + jy(t)

sin ct+

Figure 3. Baseband block diagram.
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The two baseband analog filters are denoted by their identical impulse

responses b(t). This block diagram is expressed analytically by the

convolution integral:

x(t) Y y(t) = fb(T)r' (t-r) coSw c (t -T) - j sinw C (t--)]dr

0

= ejct fb(r)e" JWc rr(t-r)dT (45)

0

The rearrangement of the convolution integral given by Equation 45 suggests

an alternative form for the block diagram with a filter in front of the mixer

as shown in Figure 4.

r t)b b•~ 'j t rt X (t) +jy(t)

e jWc

Figure 4. Alternative block diagram.

Here the post-filter received waveform is identified as

rot) =fb( e jc 7% r' t--7)dr (46)

0

The properties of the Fourier transform:

.srb(t)} f b[- e j 27r ft fb(t)e - d

-# (47)
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give the the result that the transfer function of the filter in Figure 4 is

-rbt~-jWc (Ffc) (48)

where w = 2rf , In this report we consider an ideal filter with the

magnitude transfer function:

iI1 , - B<f£< B

J3(f) I= 1 (49)

(a , otherwise

so that l.ja(f -f ) becomes

1 -B -f£ <f< B -

;6(f f )'-(50)
c )

0 , otherwise

The relationship of R (f)( and +,( f ) is illustrated by Figure S.
c

f

-BB

. (f+f )I

-f~~B
- f c °  

a"- f - f C + B i i i , f

Figure 5. Magnitude transfer functions for ,V(f) and .8(f+f c).
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Now the effect of the baseband filter is confined to the transfer function

from r'(t) to r(t). Make the following definition for the statistics of

the post-filter received signal-plus-noise r(t):

r(t) = s(t) + n(t) (51)

E{r*(t)r(t +)} AL Rr(-n) (52)
=r

E{s*(t)s(t +T)} A R (T) (53)

E{n*(t)n(t +r)} 6 R (T) (54)

where s(t) and n(t) are the signal and noise terms of r(t). By the

linearity of the expectation operator,

Rr(T) = Rs(T) + Rn(-) (SS)

where

R() = f ) T2e 2 fdf (56)

Rn(T) = N l(f+ f -lej2 "frdf (57)

.0

It remains only to "demodulate" these autocorrelation functions by the

complex mixing operation illustrated in Figure 4 to obtain the corresponding

signal and noise statistics for x(t) +jy(t):

-j t JW (t+T)

= Rs(t) e c

rf j2,(f f c)rR * e c df

"fB t(f f)ej2TTfTdf (58)

-B
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and _jW t j Wc (t+T)l
E n*(t)e c n(t+T)e

SR (T)en

f eJ2-df (29)

-B

These are the required baseband statistics for the waveform prior to the

sampler. In the next section the method of approximation to sample values

of Equations S8 and 59 are discussed.

SAMPLE AUTOCORRELATION AND DFT COVARIANCE MATRIX

The details of the technique for calculating the DFT covariance

matrix from the time sample autocorrelation function are discussed in

Appendix C. Here the approximation used to obtain the time-sample auto-

correlation function from the signal PSD Vr,(ff is treated.

The signal and noise terms (Equations 56 and 57) are handled

separately for computational efficiency-for each signal PSD several noise

levels are considered. In Appendix C it is indicated that 2N-1 samples,

evenly spaced in the interval -T. t T are required from the continuous,

time autocorrelation function, where T is the modulation interval and

N is the number of samples per modulation interval in the receiver. To

approximate the integral of Equation 56 a DFT of much greater dimension

than 2N is used and the result is undersampled to the desired 2N-I samples.

The approximation to the integral is

B

f'r' (f - fc)eJ 2 trf' df
B B P2-rkT

-B BTP r k [f ' f e '_ - (60)

2TP k =2BTP' r  " T c]
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where the PSD .,(f f) is sampled at intervals of 1/(2TP) Hz and a

rectangular approximation is used. The integral is evaluated for N' points

of r where N' = 2TP/%t is the dimension of the PFT used, resulting in

the expression

BTP 27,kn

Rs,x+jy~n = TP- :-T -, - e "'(61)

k = -2 BTP

where R sXjy(n) is used to denote the approximate time-sample autocor-

relation function of the sample sequence x(nat) + jy(nt). Equation 61

is a form of inverse DFT of dimension N' with elements of the sample

sequence set to zero where they fall outside the bandwidth of the baseband

filter. The use of the FFT algorithm will result in N' values of the auto-

correlation function. Of these only 2N-1 points are used where N=N'/2P is

the number of samples per observation interval T in the sampled-data re-

ceiver. These are the 2N-1 points surrounding the origin.

The corresponding noise autocorrelation function (Equation 57)

is approximated by

R n, x + jy(n) = NoB S(n) (62)

where we have chosen to ignore the contribution of noise autocorrelation at

values other than n= 0. This approximation will be valid where the base-

band filter cutoff is in the neighborhood of the folding frequency N/27T Hz,

which is the cutoff frequency used in this report.

The numerical method of obtaining signal-to-noise ratio normaliza-

tion makes use of the fact that arbitrary rescaling of Equations 56 and 57
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will not affect the resulting performance. The signal power is

normalized by establishing the equality

WrB[ kP fj = 2TP (b3)

via a numerical technique and then setting the noise variance accordingly.

The appropriate value of N is obtained by solving Equation 44 for given

values of SNR and T with the signal power set to one watz.

The signal autocorrelation function obtained by Equation 61 is

arranged in a signal time-sample covariance matrix:

S s

R s(-l) R s(0)
R s=(64)

As shown in Appendix C, the two dimensional DFT (with some rearrangements)

of the array R is the signal-term of the DFT covariance matrix:

'41 N-I -Tkn 2 .m NB
E F, ,R- n -n)e N 0 koZ

N- n=O m=O N

The noise term affects only the elements on the main diagonal of the DFT

covariance matrix L. defined by
-3.

[ i k kZ E{ : Z*} (6b)

The DFT covariance matrix on the ith hypothesis of signal transmitted, is

defined by having the element in row k and column Z equal to the expected

value of the product of coefficients zk and _-.
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MONTE CARLO PROCEDURE

Using the method described above a set of M DFT covariance

matrices is computed for each level of signal frequency dispersion and for

each signal-to-noise ratio. The different DFT covariance matrices correspond

to different transmitted deviation frequencies. it is assumed that the

envelope of the received signal spectrum is the same for each transmitted

frequency, that the spectra are symmetrical about the transmitted frequency,

and that they have the detailed functional forms discussed in Section VI.

The DFT covariance matrices are all that is necessary to determine system

performance by the statistical sampling method.

In Appendices D and E the technique to obtain sample vectors

distributed according to the complex normal distribution with covariance matrix

L. is developed. The technique involves the computation of a square root

matrix for each L which is used to produce the appropriate degree of cor-

relation by matrix-vector multiplication with an uncorrelated random complex

normal vector. For each one of many trials a sample vector is obtained.

The sample vector corresponds to a particular hypothesis i of signal

transmitted, level of frequency dispersion, and white noise level.

The sample vectors are tested with decision rules for the conven-

tional receiver equation, for the optimal MPE receiver equation, and for a

particular suboptimal receiver which is described in Section III. The number

of correct decisions obtained and total number of trials for each hypothesis

are tallied and cumulative results are computed over an equal number of

trials of all M hypotheses. Results are given in Section VI.
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III. ESTIMATION

The previous section dealt with a known statistics optimal receiver

quite similar to the one developed by Kailath. It differs only in that the

DFT coefficients of r.(t) at a given sample rate over the observation

interval (0,T) are considered the raw data rather than time samples. As

previously mentioned, the receiver's decision is identical in either formu-

lation. The analysis of the misclassification error in Section II concludes

with the derivation of an intractable integral-even for the simplified

case where the off diagonal elements of the covariance matrix L. are set

to zero. The receiver performance for rapid fading conditions is available

only through numerical evaluations which are _mpractical for more than a

small number of points due to the large dimension of the domain space of the

integration (which is sixteen in the case of interest). This situation makes

the derivation of an optimal spectral estimation keyed to the exact receiver

performance impossible or at least impractical. In this section an optimal

estimator is derived under some simplifying assumptions about the receiver

performance integral.

The complete matrix L will not have to be estimated but rather

only the elements on the main diagonal. These points are mean values of

magnitude-squared DFT coefficients whereas the off diagonal elements of

L. are covariances between different DFT coefficients. The levels of-1

frequency dispersion, length of the observation interval, and sample rate

of the particular system under consideration are in a realm where an approxi-

mation of the matrix L i, in the receiver algorithm, by another matrix with

the same main diagonal, but set to zero on the off-diagonal, yields approxi-

mately the same receiver performance.
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This approximation to the optimal receiver is known as the stationary process

long observation time (SPLOT) algorithm. In Section VI it is experimentally

verified that the SPLOT algorithm yields a receiver performance indistinguish-

able by Monte Carlo integration from the optimal (known statistics) receiver

in all cases of interest.

ESTIMATION COST FUNCTION

Two equations are given in Section II for the probability of a

correct decision of the SPLOT algorithm as a function of the true statistics

L of the received signal and of the receiver matrix F. Equation 39 pertains

to the performance when a correct receiver matrix r is used and Equation 43

gives the performance when an erroneous matrix P is used. In either case

the integrals describing the performance are not evidently tractable. The

receiver matrix 7 is made up of rows which are the inverse of power

spectrum values for the received signal ri(t). Actually, only one row of

r needs to be estimated. The signal frequency dispersion is narrow enough,

in the practical case of interest, and the sampling rate rapid enough that

the M rows of F which are used in the receiver algorithm can be generated

as rotational shifts of one row. Thus, to implement a SPLOT adaptive receiver

one may consider the estimation of a centered power spectrum of N elements

-2 -2 .. 2 T
o =[ 1  aN-I

(67)

[(E{1z0 2})-I (E{Izl 1 2})- ... (E{lzN_ 2})-I]T

where E{ zoj 2} is the power at the center of the spectrum of the received

signal, and E{1lz1
2 } and E{IZNl 12 } are the two points on either side,

etc. It is important to note that the receiver requires an estimate of the

inverse of the mean-square magnitude of DFT coefficients rather than the

mean of the inverse which would be quite a different problem.
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The cost function for determining the quality of the estimate a

is defined by the degradation in the probability of a correct decision on

the average over M hypotheses

2 2 (1 - ' F'(8
C (Cy-, '-2) = 4 ' [Pc/i - Pc/i r}]  (68)

where Pc/i and Pc/i are the probabilities of correct decisions, defined

by Equations 39 and 43 of Section II, for the receivers incorporating correct

statistics and erroneous statistics respectively.

Of course C(a-2, 52 is not known since it cannot be practically

evaluated. The objective here is to investigate what assumptions are neces-

sary regarding this cost function that an optimal adaptive receiver may be

obtained. From another point of view: If an estimator is specified for

CT - what properties of C(a 2, _ ) must hold for it to be optimal? All

that can be said about the cost function without evaluating it numerically

is that it goes to zero when the correct spectrum is used and that it is

positive for all other values-this statement derives from the optimality

of the known statistics receiver. A primary question to ask is whether

this property can be extended to the individual spectral elements ak -1

k=0,..., N-1, since it will greatly simplify the analysis if the estimators

of individual spectral elements can be considered separately.

In general it is not true that the cost function is minimized at

the correct spectral value for an individual spectral estimate ak ' If

all of the other spectral estimates were simultaneously too large or too
-2

small the best estimate of ak would be correspondingly above or below the

true value. This is evident since the receiver decision is insensitive to

overall rescaling of the received signal ri(t). If all of the estimates

used in the receiver matrix F are off by the same factor, the receiver

decision is still optimal. This fact derives from Equations 38 through 41

39



of Section II which show that the SPLOT receiver makes it decision by

selecting the minimum element of the vector

N X (69)

where v is the vector of magnitude-squared DFT coefficients computed for a

particular observation interval. If either r or I is rescaled by a

factor, the minimum element of _N is unchanged.

It is, however, reasonable to assume that if the data used in

estimating each element ak are statistically independent, the estimation

errors will be randomly scattered above and below the correct values so that

the best estimate of a particular ak will occur near its true value with

a high probability. Therefore, the first ad hoc assumption regarding

C( ) will be that the individual costs in estimating particular

spectral values achieve a minimum at the true value. This allcws us to

consider these estimators independently but restricts the estimators to be

based upon statistically independent data.

There is a slight correlation between DFT coefficients of different

frequencies given by the off-diagonal elements of the L matrix. These

terms were neglected in making the SPLOT approximation to the optimal receiver

since they had little effect on the receiver decision for the particular

channel conditions considered. Sample L. matrices which have been cal-

culated to evaluate the optimal receiver performance show a small correlation

between coefficients which decreases as the frequency separation increases.

The level of correlation is small enough that it does not warrant considera-

tion in terms of the argument put forth that the estimation costs for indi-

vidual spectral elements be considered to achieve a minimum at the true value.
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CRITERION OF OPTIMALITY

With the foregoing assumption it is appropriate to consider the

estimation of one spectral element ak independent of all of the others.

What follows is a short discussion of the Bayesian approach to optimal

estimation showing why it cannot readily be developed into a nonBayesian

criterion. An alternative criterion is introduced which is based on suffi-

cient statistics and the theory of confidence intervals for estimating non-

random parameters.

The criterion of estimation quality in a Bayesian approach to

combined parameter estimation and demodulation is the expected value of the

cost function C[a' 2 "(7k)]. The average cost or "risk" function is

minimized with respect to the choice of the function ak (k) mapping the

available data 4 into the estimate. The expected value is taken with
-2 *

respect to the joint density of the random parameter ak and data Zk:

ffC[o c (Z))p(Z, a )dZd (70)

-0 -00

This, of course, requires that a probability density be specified for

Where it is not appropriate to assume a probability density for the unknown

parameter one might consider a risk function similar to Equation 70 which

varies with the parameter value

=- ,CF f O (Z)]p(Z/(Y )dZ (71)

* The k subscript is dropped in most of the remainder of this discussion.

There should be no confusion since the entire discussion deals with the
estimation of the kth element of the spectrum.

41



but with such a formulation the estimator which minimizes this risk is

inevitably

a -Z) = a -2 (72)

since the cost function achieves a minimum where the true parameter is used.

This result is mathematically correct but useless since it calls

for an estimator which incorporates knowledge of the unknown parameter. The
-2

fundamental source of the problem seems to be that a appears as a constant

in the right-hand side of Equation 71. In order to mathematically express
-2

the fact that ak is unknown it should appear as a variable.

We propose a criterion which will allow a to be a variable

based on the theory of confidence limits and sufficient statistics. If a

sufficient statistic exists for the probability density p(Z/a 2) then

it is possible to base parameter estimates of a-2 on that statistic without

losing any relevant information. In other words, any statistical inferences

on the data Z may equivalently be made on the statistic rather than the

complete data set Z. One of several criteria of the sufficiency of a

statistic is that the probability density for Z conditioned on the

knowledge of the statistic be independent of the parameter a Here we

mean functionally independent rather than statistically independent in
-2

keeping with the point of view that a is not specified by a probability

density. This implies that the statistic incorporates all of the available

information regarding the unknown parameter.

Sufficiency can be established using the functional form of the

joint density for Z and the form of the sampling statistic. A discussion

of the statistic

Z bn Izkn12  (73)
n=l

E{Zk} = E{Izkn 2} = a (74)

42



-2
which is used here to estimate the unknown parameter ak  is deferred to

the last part of this section. z is an approximation to a sufficient

statistic for the unknown parameter.

The theory of confidence limits allows probabilistic statements-2
to be made about the location of the parameter G given the value of the

statistic z. These statements are derived from analysis of the probability

density p(z/a-)* for a fixed parameter and are then "turned around"

logically to make an inference about the value of a given a sample z.

With knowledge of the form of the sampling statistic p(-z/Ga ) one may

compute the probability, for a given E, whether z falls in the interval

2  2] = f P(z/&2)dz
(l-[)<-

(75)

The probability density p(/a 2) sets up a relationship between

E and a such that as e goes to zero o. goes to I and as 6 goes to

infinity a goes to zero. Confidence limits are typically based on the

normal density through an invocation of the central limit theorem. Such an

asymptotic approximation is neither necessary or desirable in this case.

We wish to consider cases where z k will be computed by a weighting

sequence (b n) which is too short for a normal approximation to the

density p(z/a-2).

Since the parameter a2  is a scale parameter for the density in

the sense that
2 P- / -(/2)

P'F 2 /E / p (/a ) (76)

*Notice that -2
iet hat z/ 2'h P/2(z/ ) and that these notations are used

interchangeably with the subscripts deleted.
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the relationship between a and E given by Equation 75 does not change
2

as a function of a. This can be seen by making the change of variable

from z to y= a 2z in the integral:

22

f P 2 (z/ 2)dz= f Ps/ 2(a2Y/C 2)a dy
(I-EO -£ (77)

+ E
( P- P/2 (y / l ) d y

Ez/a

The confidence coefficient I - % expresses the probability that a sample

- is within a factor 1- E to I + : of the mean value G regardless
2of the magnitude of a according to this formulation.

The probabilistic statement regarding z for a given a may

be conveniently converted to a corresponding statement regarding a given
2a sample of z. Note that z and a are both positive.

(I-s)a < z < (l+)c 2  (78)

then

- -2C < z a < I + C (79)

or

< a- < I +__ (80)
T

and the confidence interval may be used to put an upper bound on the cost

given a sample of the statistic z and a confidence coefficient I - a.

The upper bound is derived in the following manner: Once a-2

is confined to a symmetric interval about z the cost is upper bounded by

max 2 -- I
BF(a) = -2 E ) (81)

T s[-((I+))] (82)
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-2

where i is the set of values for a prescribed by the confidence

coefficient I- a, and F(.) is an instantaneous function mapping the
--1 -2

(inverse) sufficient statistic z into an estimate of a . With this
-2 -- 1definition an equivalence is set up between the events (C[a ,F(Z ) I <.F()}

and {a 2 E3()} both conditioned on T so that the confidence limit applies
-2

equally to the event that a is on the interval J(a) and the event that

the cost is upper bounded by BF(a) given a specific value for the statistic.

The object of optimization then is to find the function F(z- )

which yields the smallest upper bound BF(c() for a given confidence

coefficient in the equation

P(C[a-2,F( )] < BF(F)) = I - a (83)

Figure 6 shows a mapping from z to F(z -) to C( -2,F(z- I.

The two cost curves for a 2= (I-E)z-1 and a-= (I+C)Z are indicated,

and the figure illustrates that an upper bounding cost BF(a) will be

achieved on one of the two extreme cost curves of the interval.

The conclusion that one of the two extreme curves on the interval

will set the maximum cost for a given F(z ) on the family of curves over

the interval is justified on the assumption that the cost is monotonically--

2

increasing as a function of the distance of a from F(z ), and that-2
the individual cost curves in the family of curves with a on the

interval [(I-E)z ,(I+E)z ] are properly "nested" in the sense that

-2 -1--1 -2

< 0 for F(z ) a

for any fixed F(z-). This is a fairly loose regularity condition which

merely implies that the estimation cost does not reach a particularly extreme
-2

condition for some a on the interval.
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z

Figure 6. Mapping from - to F(z - ) to cost functions at the
extremes of the confidence interval.

Under this regularity assumption the optimal function F(z)

mapping the sufficient statistic would be somewhat above or below a linear

function F(z- ) = z and would occur at the crossover of the extreme

curves to yield the minimum B(a) as illustrated in Figure 6. Furthermore,

the optimal F(z- ) would vary with the interval used and therefore with

the confidence coefficient. Therefore it is evident that in order to

specify an optimal F(z- ) additional assumptions regarding C[a ,F(z- )

are required. Figure 7 illustrates the more restricted condition.

-2 -- 2If C[aCF(z--)] is a symmetric function about a-

C[a-2,a - + 6] = C[O-2,o - 2 - 6 ]  (85)I

and if the cost function "translates" over the interval

-2 -- 1 -2 -- 12C[d ,F(z ] = C( - + ,F(z +6] for a "E CL) (86)

and a-
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C[o-2,F(z- )]

BF(L) -1

-Z( -E) F( 1 z )1

-- I

z .z (I ....

Figure 7. Mapping from (z-1) to F(z1l) to cost functions at the
extremes of the confidence interval for symmetric,
translating cost functions.

then the cost curves originating at the extremes of the interval will always

cross over in the center and F(z ) =- is the optimal estimator of

G for the specified criterion in that it yields the lowest bound on tile

estimation cost for a given confidence coefficient.

A criterion of optimality suitable for the case of an unknown but

nonrandom variable has been stated and showkto apply under the following

assumptions about the cost function C(a- 9 ):

1. The cost for estimating individual elements of the vector

c", 2  achieve the minimum at the true value.-- I
2. The cost function C[a - 2 ,F(Z I )] for estimating individual

elements of the vector are symmetric about the true value and

invariant in shape, that is C[a -2 ,F(z-> C(Ic- 1F(-  ]

over a suitable range of possible values of a to apply

a confidence limit criterion.
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3. The cost function increases monotonically as a function of
I -2 _ F(z-) I.

Under these assumptions F(z : - that is, the inverse of the average
-2

of square magnitude DFT coefficients is an optimal estimator of c in

that it yields the smallest upper bound on the cost for any confidence

interval of a - for which the above two assumptions hold.

The conditions on the cost function under which F(-) = - is

optimized are not precisely satisfied by C(a , ) but will be a good

engineering approximation if a large enough DFT dimension is used and if

the confidence interval is small enough.

THE STATISTIC z

The statistic E defined by Equation 73 is a weighted average of

prior samples of magnitude squared DFT coefficients of the received signal

ri (t) at a fixed frequency. It is not a sufficient statistic for the priors

since it is a weighted average rather than a true average.

That an unweighted average of iZkn 12 terms is a sufficient sta-

tistic for a finite length sample Zk may be determined by an application
-k 2

of the Neyman-Fisher factorization theorem. The factorization theorem is a

necessary and sufficient condition for the sufficiency of a statistic. The

essence of the criterion is that the joint density of the data , be factor-

able into two nonnegative functions, one of which does not depend on the un-

known parameter, and the other which may involve the unknown parameter, but

which depends on Z only through the sufficient statistic. The priors Z

are distributed according to a joint complex normal distribution

p(Z) = 7N N 1le- z T D_ Z  (87

where the elements of the covariance matrix D are

[D]ij = Elziz j*1 (88)
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The DFT coefficients from different sampling intervals are statis-

tically independent if frequency band hopping is used from one observation

interval to the next. They are approximately independent, depending on the

signal fading rate, in a system where no hopping is used. If they are as-

sumed to be independent and identically distributed, D is a diagonal matrix

with identical elements on the main diagonal

D = dl (89)

and -dI L 2

p( ) 1 -Nd-N n=l n

p- d(90)

The statistic
L

T,2n, (91)n=ln

is sufficient since p(Z) satisfies the factorization theorem for T. It

depends on the data Z only through T. By the factorization theorem it

is allowed to have two factors, one of which may depend on d but depends

on Z only through T. The other factor may depend on Z in any way but

does not depend on d. This latter factor may be taken as

g(Z) = 1 (92)

in this case.

The statistic z is not sufficient since the weights b aren
unequal, and the factorization criterion does not hold. The reason for using

unequal weights is that our confidence that the parameter d remain con-

stant diminishes with time over the sample of priors. Thus the weighted

average z is as close as we are willing to come to a sufficient statistic.
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IV. THE ADAPTIVE M-ARY FSK RECEIVER

The adaptive M-ary FSK receiver patterned after the SPLOT algorithm

is discussed with emphasis on deviations from the ideal algorithm which make

the receiver computationally practical. A receiver with a full dimension

estimator is considered here. There is no admixture of estimates among

different DFT coefficients. Data reduction techniques which further improve

upon the computational efficiency of the receiver are taken up in Section 5.

ESTIMATING FILTERS

A detailed algorithm for the adaptive receiver incorporating data

reduction techniques is given in Appendix F. Here is a discussion of a

receiver without such data reduction with emphasis on some features that

are common to receivers with and without data reduction. The receiver with-

out data reduction has been experimentally verified to be equal or inferior

in performance to those which incorporate some smoothing across DFT coeffi-

cients. The full dimensional estimation algorithm given here is significant

as a step in the evolution of a practical adaptive receiver.

Figure 8 is a block diagram of the adaptive receiver which traces

the flow of computations from the sample DFT coefficients

15 -2lTkn
Zkm n=_(Xn,m+J nm)e k=O, 15 (93)

to the receiver's decision variable Z. (min). In the double index notation

(k,m) the index of frequency is k and the index of the observation inter-

val (chip index) is m. The index of time samples within an observation
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interval is n. The complex-valued combination of in-phase and quadrature

haseband waveforms x +jy are defined by Equation 45 of Section II.*basban waefoms n,m Yn,m

A receiver with specific dimensions of N=16 complex samples per observation

interval and M=8 alternative signals is used for illustration.

The first operation on the complex-valued samples Zk, m  from

the mth observation interval is to convert them to magnitude-squaredI

coefficients These are used in connection with the current esti-:->m

mate a k,m-l of the inverse spectrum to determine the receiver's modula-

tion decision by computation of M inner products

p (m) l z_ ,mm.l , Z : Z-4,-3 .... ,3} (94)

and the selection of the index of the minimum of these

2) = {-4,-3. .... } (95)

min

as the modulation decision Zmin" The notation Ik-Z4 is a modulo addition

which means that the estimates are shifted in a circular or wraparound

sense to form the M different inner products. The second index is m-1

rather than m since the estimate must necessarily be based upon the ob-

servations leading up to but not including the current interval,

In the range of rapid signal fading for which the optimal (known

statistics) receiver will operate, signal energy is effectively spread no

more than three DFT coefficients from the center of the spectrum. There

is a guard band of four DFT coefficients on either side of the eight

possible center frequencies so that all of the signal energy is always within

the baseband in the useful range of the receiver. This circumstance allows

the use of circular shifts of the estimated inverse spectrum a-- since

only the flat inverse noise level is wrapped from one end of the baseband

to the other by that operation. Theoretically a 23 element estimate of

the spectrum would be required, 16 elements for the signal and noise

* An impulse sampler is assumed.
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spectrum at an extreme deviation frequency and 7 additional elements for

spectral points shifted into the baseband as the center of the spectrum

occupies the seven remaining locations. Since the additional elements

required are estimates of noise levels only, these are conveniently taken

from the opposite end of the spectrum by the circular shift operation.

The same circumstances allow the estimates of the signal spectrum

to be based upon spectra centered by a circular shift operation. Using

the modulation decision at the mth observation interval, the samples

Zk,m; 2  are realigned by the operation

I Z'k m ;2 =  'z k Z mi t'mi (96)

ien the modulation decision is correct, the center of the signal spectrum

is shifted to the first entry of the realigned set ;ZI om. The next

higher frequency is shifted to the k=l location and the next lower frequency

to the k=15 location, etc. A fraction of the raw samples are incorrectly

aligned when modulation level errors occur. These errors have proven to be

inconsequential to the receiver performance.

At this stage, the algorithms incorporating data reduction differ

with that currently being described. The aligned samples are subjected to

a data reduction operation before insertion into averaging filters. For the

full dimensional estimate at hand, each of the sixteen DFT coefficients is

input to a single-pole recursive filter:

lZk,ml = zk,m-11 + (1-K) Iz k , m  (97)

where K<l is the pole location of the filter. The average coefficients

IZkmI are inverted to form the estimate of the inverse spectrum

2 2 (98)
k,m = 53
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The block diagram shows a time delay T following the inversion. This is

a convention which allows a computational sequence to be represented in a

block diagram. The time delay is implicit in the order of computations.

Since the current demodulation decision kmin (m) is used to realign the

current samples IZk m12 the estimate of the spectrum used to demodulate

the mth sample is necessarily based only on prior samples up to the m-ith.
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V. DATA REDUCTION

Several stages of investigation have led up to this final expository

section in which a useful receiver is introduced. Let us review these

briefly to put the work reported here in perspective.

The objective of all of this research is to achieve a practical

receiver with near optimal performance for rapid signal fading conditions.

The first object of study was the optimal receiver for demodulating an M-ary

FSK signal in rapid signal fading and additive white noise. Although it

cannot be practically implemented due to the incorporation of a priori

knowledge of the received signal and noise spectrum, the performance of the

optimal receiver, in terms of probability of misclassification error, is

useful as a benchmark for the evaluation of practical adaptive receivers.

The optimal performance, along with the conventional M-ary FSK receiver's

performance (in rapid signal fading), provide a band of acceptable performance

for the proposed receiver. Candidate adaptive receivers should significantly

outperform the conventional receiver, or the simpler conventional algorithm

would be preferred. On the other extreme, the proposed adaptive receiver

will necessarily not perform as well as the optimal receiver but should

fall near the optimal extreme of the acceptable band of performance. These

two bounds are used for evaluating adaptive receiver performance in Section VT

where experimental results are discussed.

As an offshoot of the optimal receiver algorithm, a more efficient

suboptimal algorithm was discussed. The so called SPLOT algorithm eliminates

the need for certain matrix inversions of the optimal receiver by using the
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approximation that off-diagonal terms of the L. matrix may be set to zero

without noticeable effect on the receiver performance. This result has been

experimentally established for the channel conditions of interest and is

documented in Section VI. The SPLOT receiver is also not a practical receiver.

It incorporates a priori information about the received signal and noise

random processes in the same way as the optimal algorithm.

One candidate technique for an adaptive receiver was introduced

in Section IV. That receiver substitutes a spectral estimate for the a priori

known spectrum of the SPLOT receiver. The spectral estimate is formed by

averaging the spectra over prior observation intervals with the use of single

pole recursive filters. It is implemented with a decision feedback technique.

The current modulation decision is used to determine which sample is averaged

with the center of the spectrum, next higher and lower frequency, etc.

Results in Section VI show that it performs near optimally with an averaging

time constant of about 40 prior observation intervals. Some drawbacks of

this first cut adaptive receiver are explained here and two improved receivers

are introduced which use a reduced dimensional representation of the received

spectrum.

REPARAMETERIZATION OF THE SPECTRAL ESTIMATE

The spectral estimate incorporated in the first proposed adaptive

receiver (which is referred to here as a 16-parameter estimate since the

dimension of the raw spectral estimate is 16 in our simulations), is

cumbersome from a computational point of view. Sixteen independent estimates

are formed in the receiver, and each of these requires its own storage

register and associated arithmetic operations. A means of reducing this

computational load while not further degrading the receiver performance is

discussed here. A reduced dimensional parametric spectral representation

is used, where the parameters of the representation are estimated rather

than the raw spectral density itself. Depending on the signal-to-noise ratio,
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experimental results have shown either an improved receiver performance or

an identical performance for parametric spectral estimates of four or five

dimensions versus the original 16-dimensional estimate.

Only two parameters enter the description of the received random

process which is input to the simulations of receivers evaluated in Section VI.

Thus, a reduction to two dimensions is the best that can be expected from

reparameterization. One of these parameters describes the fading rate of

the process and the other gives the signal-to-noise ratio. Although these

two parameters are certainly the most efficient representation of the

spectrum in terms of dimension, since they come from physically independent

sources, they are not useful for the parametric spectral estimate. One of

the two enters the functional description of the spectrum in a nonlinear manner.

To analyze the data in terms of these parameters requires the solution of

nonlinear equations (an iterative solution) which is impractical in a real-

time receiver.

The original motivation to reduce the dimension of the spectral

estimate was not just to improve computational efficiency but to obtain

improved receiver performance from a more accurate s'>_ctral estimate. The

raw spectra are made up of essentially independent random variables, and

by averaging over these independent samples one expects to reduce the varia-

bility of the estimate. It is shown in this section that an improvement in

receiver performance with reduced dimensional estimates versus the 16-param-

eter estimate is not guaranteed on an analytical basis. However, experi-

mental results reported in Section VI show a slight improvement due to

parametric spectral estimation at lower signal-to-noise ratios.

Computational savings are brought about with parametric spectral

estimation when the numerical conversion from raw spectra to the reduced

dimensional representation is efficient, and when the conversion can precede

averaging over prior observation intervals. If the parameter conversion
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is a linear operation it may be exchanged in order with the average over

priors. In addition, if the data reduction process is a projection operator,

it can be accomplished efficiently. The investigation of data reduction

algorithms is therefore confined to linear projection operators in the

following discussion.

Parametric spectral estimation implies that the spectrum will be

represented in a functional form with variable parameters. The parameters

of the spectrum become the object of estimation rather than the spectral

density itself over frequency. If the functional form is linear in the

parameters, that is if the spectral estimate is expressed as

a" ix. (99)
i=I

where the set of c. are the estimated parameters and x. are a set of1 -I

standard functions, the parameterization is linear. For a computationally

efficient analysis, the vectors x., i= 1,...P should form an orthonormal

set. When the x. are orthonormal, the coefficients c. may be computed
1 - 1

from the raw estimate, designated a", by forming P inner products
-s

ci = Xi - , 1 = 1,... ,P (100)

and then computing the estimate by Equation 99.

Thecomposite operation of computing the c 's and reconstructing

a spectrum a is

P T7= i T (101)
i=l1
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which may be expressed in vector-matrix notation as

= Ka (102)

where
E (103)

i~l

By construction, K is a linear projection operator. The term projection

derives from the fact that K projects any N-vector into the subspace spanned

by the set of x.. Our next concern is with the design of an appropriate set

of x. vectors to use for data reduction.

The approach followed here to the design of this orthonormal set

is necessarily less than ideal since the sensitivity function of the

receiver performance to errors in the spectral estimate is an intractable

integral (see Equation 43). The receiver performance is only available

through a Monte Carlo integration over an N-dimensional space requiring

several hundred trials per integral. To design an optimal orthonormal set

of x.'s would require the evaluation of the second cross partial deriva-

tives of the receiver performance as a function of deviations in the spectral

estimate about the true spectrum. The number of computations involved to

obtain these sensitivities to a useful degree of accuracy would be astronomical

by a Monte Carlo procedure.

In lieu of obtaining an optimal solution, the analysis is carried

out formally as if the sensitivity function were available and a deviation

is made from the ideal approach which leads to suboptimal solutions that do

not involve the unavailable sensitivity functions. In the course of the

formal analysis it is found that the performance cost can be broken down

into two components: one is due to the covariance of the estimate and the

other is due to bias error in the reparameterization. An orthonormal set

of x. are determined that are guaranteed to result in almost zero bias
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error, with a considerably reduced dimension, and which are not a function

of the unknown sensitivity. However, the resulting projection operator K

is not necessarily optimal in terms of the total covariance and modeling

(bias) error. The practical advantage of this suboptimal solution is

demonstrated experimentally in Section VI.

OPTIMIZATION CRITERION

The probability of error in the receiver as a function of the

actual statistics and the incorrectly estimated statistics of the received

random process is used as a cost function in a straightforward optimization.

The problem is stated formally even though the optimal K cannot be

determined since the practical methods of data reduction are derived as an

offshoot of the ideal approach. The following development flows from the

definition of cost in terms of misclassification of samples using a particular

spectral estimate, to the derivation of an approximate average cost or risk

over an ensemble of spectral estimates. A Taylor series expansion of the

cost function about the actual statistics is used in developing the risk,

and terms of greater than third order are neglected.

In Section II an expression for the probability of error in terms

of an arbitrary receiver matrix P and the optimal receiver matrix r was

introduced. It gives the probability of a correct decision on the i

hypothesis of transmitted signal

c/,i JJ L.1J117.I 1 e 1dqldq2...dq~ (104)

1

The reader is referred to Section II for the definitions of the various

symbols in Equation 104. It suffices here to note that the expression

relates both the r and ' matrices to the receiver performance.
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Analysis upon this expression is only carried out formally since it is an

intractable integral.

The average error over M hypotheses is

M

_(~r _/ _ _r (105)

i=l

A loss function may be defined as the difference in the probability of a

correct decision when using ri versus r in the receiver

Y~" = p' (rr - FIL-E (106)

and the risk function is the expected value of the loss over the ensemble

of random estimates P: .

R_ E{(, (K))} (107)

The risk function is dependent on the way that the estimate is formed. Here

the risk is symbolically given as a function of K the projection operator

used, where P(K) is the random estimate derived through a given projection

K.

The loss function V(F,I) is expanded in a Taylor series about

F=r' reflecting an interest in the behavior of the receiver only in the

neighborhood of the optimal point r. The elements of r and ' are

inverse spectra but, in the interests of linearity, the spectral estimates

will be made on noninverted spectra and the resulting estimates will be

inverted for use in the receiver. The partial derivatives are, accordingly,
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taken with respect to the inverses of elements of I' (noninverted spectral

points). Expanding the loss function:

£e(r,r) = ?'(r,r) - '(r, f)

P

2-
_______ . -- I

1 ~ (r j ri'j) (Fkj r k,)i j k,t ar.-1.ar 1 ~k'Z

(1081

Since f=7 is optimal, the first partial terms must go to :ero.

Terms of third and higher order are neglected. Then the risk function is

approximately equal to the expectation of the second order term with F

replaced by F.

*(P,K) - c E{(-1 - '  1 _-1- - i, 3  k,I arE a -1  
, 3 ,

j,j k,Z -
F r (109)

With this approximation the risk is formulated as the sum of

covariance terms for the estimate F weighted by coefficients from the

second partial derivative of the channel performance function P (7,,).

There are some practical considerations related to the particulars

of sample rate, number of transmitted frequencies, tone separation, and

consequent degree of frequency dispersion over which the receiver can be

expected to operate, which allow the spectral estimate to be made on an

N-dimensional spectrum where N is the number of samples per observation

interval. This is not necessarily true in general. There are, in our
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simulations, N= 16 spectral points in each sample spectrum, but modulation

of the center of the spectrum over M=8 locations brings the total number

of spectral points that the receiver must estimate up to 23. Only ten of

these spectral points are always available to sample, the ethers are some-

times modulated outside the skirts of the baseband filter. It happens that

the signal portion of the received spectrum is always within these ten points

if the fading rate is less than the cutoff rate for the optimal receiver.

These circumstances allow the receiver's internal estimate of the spectrum

to be conveniently made on an N 16 dimensional basis with the M= 8

alternative spectra generated by rotational shifts of one spectral estimate.

(There is no problem of wrap-around of the signal portion of the spectrum

with these dimensions. Only the flat noise portion of the spectrum is

wrapped around by the rotational shift.)

In terms of the 7 matrix these 16 points may be considered to

come from either of its two centermost rows. It is convenient to use a

vector notation for the spectrum with

-- 20

1 = , 1 0, ... N-1 (110)

and
[0 2

1 1Y .. O

then the risk may be expressed as the trace of the product of two N IN

matrices

K tr{C G (112)

where

2F i 1.. N
[a]ij : ' .2 (113)

j -2 2 jI I_ I.,N
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and i N

[M]. = E{(0i - )(a. -o )} (114)
" j I . . N

or, in vector notation

N1 = E{( - _C7 ( '_ _2) }

where cy is the true spectrum and o is the spectral estimate used in

the receiver. The full dimensional estimate (K= I) will be designated

a to distinguish it from reduced dimensional estimate . U- results
-s -s
from a point-by-point single pole recursive average over prior spectra and

ig (to within a negligible adjustment factor) an unbiased estimate. The

reduced dimensional estimates generally will introduce some bias.

Notationally,

E(G) u-0 (115)
5 -"

E = o" (116)

a 2

With these practical considerations introduced and various

notations established, we proceed with the analysis.

PROJECTION OPERATOR

In a practical receiver it will be necessary to reduce the dimension

of the spectral estimate (from N= 16 in our simulations) to a much smaller

number, say three to five parameters, in the interest of computational

efficiency. An improved performance may also be achieved but it is not

the primary objective of data reduction. A linear projection operator

represented by the NxN matrix K, such that

K = xX T (117)
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where X is a PxN matrix with P<N, will serve this purpose. The

columns of X are orthonormal and act as a type of linear transform with

only P transform coefficients computed. The projection equation is

where a is the raw spectral estimate and o' is the reduced dimensional
-s

estimate.

Using the projection operator the matrix M can be expressed

in terms of the statistics of the raw spectral estimate

2 > T
M = Ef(a-2)(a-) }

= E{(K G (K 7 - 2T (119)

- - T T 2 2T T_ 2T 2 2T
= K E{a a - K a - K + a a

The raw spectral estimate has an approximately diagonal covariance

matrix

7> 2 2 T
E(- a ) _(a-a) : D D is diagonal (120)

- -s -

so that Equation 119 becomes

M = KDKT + (K- 1) a2a2T(K- I)T (121)

These two terms can be interpreted as covariance error and bias error. The

first term is the covariance of the reduced data estimate ;2

22 2T 2 2T T
E{(a -Efa})(a -E~c }) = EfK(a -a )(C 5-a) K I

= KDK T (122)
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and the remaining term is the contribution to the error from bias introduced

in reparameterization. Note that for K= 1, corresponding to no data re-

duction, this term goes to zero. The linearized risk can also be separated

into these two terms

T 2T(a-K) Z tr{C K D } + tr{C (K- I)a a (K- I)} (123)

Note that the risk is a function of the particular fading rate and signal-

to-noise ratio imbedded in a2 . To minimize the risk as it stands would

result in a K which is a function of the unknown statistic, a useless
2

result. One would have to find the average risk over an ensemble of a

2
to obtain the optimal K. Since C is unavailable at any, a , it is not
possible to carry out this optimization. However, Equation 123 is useful in

delineating the two sources of degradation in receiver performance, and

in showing the linear nature of the mixture to a second order approximation

of the Taylor series expansion of the cost function about the actual

spectrum.

As an alternative to computing the optimal K, two approaches

to derive a suboptimal K are suggested. In each of these methods, only

the modeling error term is used in the selection of K. That is, reduced

dimension estimates are found for which the spectra are very accurately
2represented over an ensemble of a . There is no guarantee that the reduction

in the modeling term will not be compensated by increases in the covariance

term, but experimental results show that the receiver performance is either

improved or maintained at the same level as the K= I case.

One of these techniques uses independent estimates of spectral

points in the neighborhood of the center of the signal portion of the

received spectrum. The more remote points are averaged together under the

assumption that they are drawn from the same noise-only distribution. The

symmetry of the spectrum about its center is also exploited by averaging
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the conjugate points on each side of the center within the expected band of
2

signal spreading. This technique does not involve any assumptions about a

other than the band-limited nature of the received signal power, symmetry

about the center point, and the presence of additive white noise. It is

referred to in the sequel as the band-limited-symmetric-spectrum [BLSS] data

reduction algorithm.

The other technique is based upon a more analytical foundation.

It makes the selection of K through the use of a set of specific examples

of a2. These spectra have the particular functional forms and range of

parameters over which the receiver is expected to operate. This latter

technique which is called the spectral eigenvector [SEV] algorithm is

developed next. Results for both methods are given in Section VI.

SPECTRAL EIGENVECTOR ALGORITHM

The BLSS algorithm is an obvious technique for accurately curve

fitting the spectrum. It makes use of the most salient features of the

received data, and these features are not dependent on detailed predictions

of the ionospheric channel. This simple expedient is shown in Section VI to

perform equally well as the K: I case for high signal-to-noise ratio and

slightly better for low ratios with a projection from sixteen to five

dimensions. The success of this heuristic technique motivated further

investigation of the potential of a spectral eigenvector method which

involves more detailed knowledge of the received spectrum.

To this end we focus our attention on the modeling error portion

of the risk

m (a2 ,K) = tr{C a(K- I)a 2a 2 T(K - 1) } (124)
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2
A projection matrix K is sought which is of low rank and causes ?m (a ,K)

to be close to zero over the predicted ensemble of a2 independent of C .

Then K-I must be effectively in the null space of a 22T over the range

of a2. In the following discussion it is shown that such a K- I can be

obtained by a numerical evaluation of eigenvectors and eigenvalues of the

matrix

J a 2 T (125)

i=l1

which is simply a sum of dyads made up from samples of predicted a 2,s over

the predicted operating range of the receiver. The matrix S has been

experimentally shown to have a rank of four for the conditions of interest,

and that rank corresponds to the rank of K which will drive the m3deling

error to zero.

These results follow from the fact that vectors in the null space
2 2T

of S are necessarily also in the null space of each of the a. a. . To
__ - -1

show this let us make the following definitions. The N×N matrix K is

symmetric since it can be written as a sum of dyads (Equation 103). If K

is of rank P it may be factored into the product

K = X xT (126)

where X is an NxP matrix. The columns of X are the orthonormal set

of x referred to earlier. If the orthonormal set is augmented to a

complete N-dimensional set by a set of vectors yi, the columns of Y, then

XX T. YYT = 1 (127)

and yyT is a projection operator with a range space orthogonal to that

of XXT  and which fills out the N-dimensional space. Now the expression

for the modeling error can be rewritten

2 2T T T 2 2TyT 28)

( I) YY a. a. YY (I
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Consider the sum of J such terms y ysY Y . If the columns of

Y are in the null space of S, the trace of this expression is zero.

tr{yYTsYY T = 0 (129)

By the properties of the trace and the orthogonality of the columns of Y

tr{yYT SYY T tr{Y TSy}

N-P

1=1 S L (130)

=0

But, by expanding S it is evident that each term is nonnegative.

N-P J=~ T 2~a 2Tx.

i=l j=l -- J -

(131)
N-P J

P-1 = _(~~

Then each of the component terms must be zero

2T 1 ..

a. Zi = 0 , (132)
--J i = .... N-P

which establishes the fact that the columns of Y are in the null space

of each of the . 2T
-J -1

An expanded discussion of this data reduction technique is given

in Appendix G. The relationship to principal component analysis in sta-

tistics is explored, and the case where S is full rank is discussed.
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VI. EXPERIMENTAL RESULTS

Receiver performance curves for all of the receivers under study

are presented in this section. Included are the performance of the optimal

receiver, the SPLOT algorithm, the conventional receiver, 16-parameter

adaptive receiver, and the adaptive receivers using the BLSS and SEV data

reduction techniques introduced in Section V.

CONVENTIONAL AND OPTIMAL RECEIVERS

All of the results presented here are for an uncoded 8-ary FSK

system with the following parameters:

Modulation Interval T = 5 ms

Frequency Separation Af = 200 Hz

Sample Rate N/T = 3200/s

Number of Complex Samples Per T N = 16

Baseband Width B = 1600 Hz

The performance of a conventional 8-ary FSK receiver in rapid signal fading

is given for several degrees of fading rapidity along with the corresponding

optimal performance and that for the SPLOT algorithm (which are indistinguish-

able in all of the cases considered). Two types of functional form of the

signal portion of the received random process are used. These are the

Gaussian signal spectrum

-1 (f+Af)T 0]
2

4r'(f-f ) = C e (133)
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and the cubic roll-off spectrum

1r '(f-f c = 2 ,23/2 (134)
[a+[(f+Af) 0o -]

2.54

(27r) 2

-l
In each case, the decorrelation time r0  is the e point on the autocor-

relation function associated with the signal power spectral density (f-f

The cubic roll-off spectrum is used since it is characteristic of the results

obtained with multiple phase screen numerical models of a highly ionized

ionosphere. The Gaussian spectrum is included primarily as an indicator of

the validity of decorrelation time as a measure of the difficulty to de-

modulate the signal, although it also represents the ionospheric channel under

some extreme conditions. Graphs of the two spectra are shown in Figures 9

and 10 to illustrate the degree of overlap expected within the useful

operating range of the optimal receiver. Curves are shown for a range of

decorrelation times from about twice the observation interval, where there

is essentially no overlap of the spectra, to one-fifth of the observation

interval where the signal spectra are spread well into the adjacent channels.

Degradation in the receiver performance comes from additional errors due to

the spreading of signal energy into nearby channels. Thus, the degree of

overlap shown in the figures is illustrative of the difficulty in demodulating

signals in a frequency dispersive channel. It is not intended, by the in-

troduction of these curves, to embark upon a discussion of comparative per-

formance for the two spectral shapes. Comparison of the receiver performance

for the two spectra at a given decorrelation time is not justified, since

decorrelation time is an arbitrary measure of dispersion for the spectrum,

which does not necessarily reflect the difficulty presented to the receiver

by a particular functional form. The Gaussian spectrum is somewhat more

compact than the cubic roll-off spectrum at the same decorrelation time, and

therefore the performance characteristics are correspondingly better; but

this does not imply that a Gaussian spectrum presents less difficulty to
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Figure 9. Gaussian signal power spectral density - various decorrelation

times, normalized signal power, Af=I/T Hz.
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the receiver. One should rather look at the similarity of the response

curves as an indicator that decorrelation time is a useful standard measure

of signal dispersion.

Figures 11 and 12 are the receiver operating characteristic curves

for the conventional and optimal receivers in terms of normalized error

(with 0.5 representing random performance) as a function of the mean bit

energy-to-noise density. The ratio shown is 1/3 of the SNR defined by

Equation 44 of Section 2 to reflect the fact that three uncoded bits are

transmitted during each observation interval T.

Receiver operating characteristic curves are shown for the same

five decorrelation times illustrated in Figures 9 and 10. In addition, the

curve of the slow fading limit, which was determined analytically, is given

as a means of comparison of rapid fading performance to the corresponding

performance with independent Rayleigh fading.

The slow fading limit is derived under the assumption that the

signal is constant across each observation interval with the variation from

interval to interval described by a Rayleigh distribution. The signal

envelopes are considered to vary independently from one observation interval

to another in the slow fading derivation.

The convergence of the Monte Carlo sampling procedure, used to

obtain the data points in these figures, depends upon the probability of

error. To account for this more samples are used at the higher signal-to-

noise ratios where the error probability is lower. For data points falling

above a binary probability of error of seven percent, 800 trials were used,

that is an average of 100 trials per channel with random selection of channels.

To estimate lower probabilities 2400 trials were used, or an average of 300

trials per channel.
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Figure 11. 8-ary frequency shift keying performance in fast Rayleigh

fading channel (Gaussian signal spectrum).
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Figure 12. 8-ary frequency shift keying performance in fast Rayleigh fading

channel (cubic roll-off signal spectrum).
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Results show a marked improvement for the performance of the

optimal receiver over the conventional receiver. At the two shorter decor-

relation times T = 1.10 ms and T = 1.60 ms the conventional receiver makes
0 0

an error in about one out of every three trials, while the optimal receiver

is in error only one out of ten to twenty trials in the mid range of signal-

to-noise ratio. The performance of the two receivers converges at lower

signal-to-noise ratios and at longer decorrelation times.

In every case shown in these figures the SPLOT algorithm was sta-

tistically indistinguishable from the optimal performance, and is therefore

not given in a separate set of curves. The significant improvement in per-

formance of the SPLOT algorithm over the conventional receiver was the moti-

vation to pursue the design of adaptive receivers patterned after it.

An alternative way of viewing the data which highlights the degree

of operation into a rapidly fading environment is given by Figure 13.

Here the signal-to-noise ratio required to obtain a given binary

probability of error is graphed as a function of T for the cubic roll-off

spectrum only. At a criterion of ten percent binary errors the optimal (and

SPLOT) receiver are functioning at fading rates two to three times more

rapid than the conventional receiver. At three percent binary errors the

cutoff fading rates are slower but the ratio remains about the same.

ADAPTIVE RECEIVERS

All of the results shown for adaptive receivers have been computed

for spectral estimates using single pole recursive averaging filters and

decision feedback. In Appendix F the algorithms used in these receivers are

recorded and a discussion of decision feedback is given. Only the results

are discussed here.
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The first adaptive receiver to be considered is one using a full

dimensional estimate-the so-called sixteen parameter adaptive receiver.

Figure 14 shows the receiver operating characteristic for this receiver versus

the optimal and conventional receiver at T = 3.20 ms, an intermediate level

of signal fading. A time constant of 40 prior observation intervals is used

in the estimator. The adaptive receiver stays within 20 percent of the

optimal performance over the entire range of signal-to-noise ratio and is

clearly near optimal in comparison to the conventional receiver except at

the lower ratios. Results for a five-parameter BLSS algorithm operating

on the same data are included. The BLSS receiver performance coincides

with the sixteen parameter receiver at high signal-to-noise ratios but shows

a slight improvement at lower levels. Subsequent data indicate that the

coincidence at high signal levels is due to a compensation of performance

degradation from modeling error and improved estimation accuracy from smoothing

in the frequency dimension. It is significant that the reduced dimensional

estimate maintains the performance of the raw estimate at a considerable

computational savings. Improvements in the performance are slight.

Next, we consider performance of the two competing algorithms for

data reduction of the spectral estimates. To put these on an equal footing,

four dimensional spectral estimates are used in each case. The set of

used in computing the S matrix for the SEV algorithm are listed in Table 1.

The criterion to select these was based upon a desire to maintain the per-

formance most carefully at higher error rates. The decorrelation times and

signal-to-noise ratios are from a slice across Figure 12 at a binary proba-

bility of error of ten percent. This level of errors is considered about

the greatest that may practically be handled with error correction codes

for this system. The best possible fit is desired in the region of the

worst tolerable case of error probability since degraded performance due to

modeling error, in lower regions of the operating characteristics will pre-

sumably be well within the capabilities of the error correction code.

* Differences in conventional and optimal receiver performance curves

among Figures 11 through 20 are due to statistical variation. All
curves on each figure are based on the same statistical sample.
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Figure 14. 8-ary FSK receiver performance. Adaptive vs. optimal and
conventional receivers.
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Table 1. Parameters of a2 used in constructinq the matrix S.

T0 (ms) Eb/No (dB)

9.1 5

7.5 6

6.0 7

4.9 8

4.0 9

3.2 10

1.6 15

1.1 23

Figure 15 shows the four eigenvectors of S with nonzero eigen-

values arranged in the order of descending eigenvalue. For comparison, the

four basic functions of a four-dimensional BLSS algorithm are also shown.

Note that the SEV eigenvectors seem to mimic the BLSS vectors. One vector

accentuates the center of the spectrum, Two others focus on the next to

center and second from center values, and one is evidently arranged to

compute the noise level. The performance associated with the two algorithms

is, however, remarkably different.

Figure 16 gives the receiver operating characteristic for the four-

dimensional BLSS and SEV algorithms along with the conventional and SPLOT

receiver. The integrating time constant for averaging over priors is 40

observation intervals for each of the adaptive receivers. The performance

of the SEV algorithm is right at the optimal level, but the BLSS receiver

has about 20 percent more errors in the mid range of signal-to-noise ratio.

Notice that even though the S matrix was made up from spectra along the

ten percent error line, performance of the SEV algorithm is on the optimal

characteristic throughout the range of signal-to-noise ratio including much

lower error probabilities.
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Figure 15. Normalized basis vectors for four-parameter SEV and

BLSS data reduction algorithms.
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Figure 16. 8-ary frequency shift keying performance in fast Rayleigh
fading channel (cubic roll-off signal spectrum). Four-
parameter SEV receiver vs. four-parameter BLSS receiver
at To  3.2 ms.
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With the addition of one more parameter the BLSS algorithm can be

made to perform almost as well as the SEV algorithm. Figure 17 shows a

comparison of a five-parameter BLSS algorithm with a four-parameter SEV

algorithm under the same conditions of Figure 16. Figures 18 and 19 show that

there is no problem with curve fitting at longer decorrelatior times which

might be suspected due to poor curve fitting there. The perforiance of both

adaptive receivers converges, along with the SPLOT receiver, to the slow

fading limit of the conventional 8-ary FSK receiver.

The integrating time constant of 40 prior observation intervals was

selected arbitrarily, but it is evidently sufficient for convergence in terms

of receiver performance. The excellent results obtained with the EV algorithm,

at that time constant, is ample evidence of this. To see how short an obser-

vation interval could be used, several runs were made with succeedingly shorter

intervals until the performance curve started to break upwards. Figure 20

is a graph of the BLSS performance at integrating time constants of 40 T

and 4T. There were only about ten percent more errors for an order of

magnitude less smoothing. Without introducing any further channel disturbances

such as jamming interference, it would be possible to use quite short inte-

grating times in the spectral estimate. However, jamming considerations are

likely to prohibit the use of very short prior averaging times, or otherwise

to dictate the dynamics of the spectral estimator.

CONCLUSIONS

Adaptive M-ary FSK demodulation with nearly optimal performance

is feasible for rapid signal fading conditions. Spectral estimates which

use decision feedback and single pole averaging filters with time constants

of less than 40 prior observation intervals have been demonstrated to achieve

optimal or nearly optimal performance. The advantage over the conventional

8-ary FSK receiver is that the adaptive receiver can operate at a factor

of two to three more rapid signal fading.
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Figure 17. 8-ary frequency shift keying performance in fast Rayleigh
fading channel (cubic roll-off signal spectrum). Four-
parameter SEV receiver vs. five-parameter BLSS receiver
at To=3.2 ms.
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Figure 18. 8-ary FSK frequency shift keying performance in fast Raleigh
fading channel (cubic roll-off signal spectrum). Four-parameter
SEV receiver vs. five-parameter BLSS receiver at TO =4.90 ms.
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Figure 19. 8-ary FSK frequency shift keying performance in fast Rayleigh
fading channel (cubic roll-off signal spectrum). Four-parameter
SEV receiver vs. five-parameter BSS receiver at To 

= 9.10 Ms.
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Figure 20. Comparative performance of BLSS algorithm at long and
short prior integrating times.
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The spectral estimate can be linearly parameterized to four or five

parameters without any significant degradation in performance. Two techniques

of data reduction were investigated. One of these, the band limited sym-

metric spectrum (BLSS) algorithm uses no detailed knowledge of the signal

portion of the spectrum except that it is limited to a few DFT coefficients

and is symmetric. The other technique, which is called the spectral eigen-

vector (SEV) algorithm, uses an ensemble of predicted spectra for the received

random process to derive basis vectors for the spectral estimate. The SEV

algorithm with four basis vectors and the BLSS algorithm with five basis

vectors achieve nearly optimal performance. If the spectral functional

form can be reliably predicted, the SEV algorithm would be preferred, whereas

the BLSS method is applicable to a larger family of spectra which do not have

to be predicted in detail.

The introduction of a spectral estimator to the receiver may make

it more vulnerable to other sources of channel disturbance. For instance,

an intentional jamming signal may be directed toward upsetting the spectral

estimate as well as the demodulation decision. Incorporation of deliberate

jamming threats in the channel is a primary direction for further research

in this area. The jamming source should be considered a part of the channel

as is the scintillation source, and the fundamental receiver algorithm for

minimum probability of error should be rederived for a channel with rapid

signal fading and deliberate interference. If the combined threat problem

could be put on as firm a theoretical foundation as the rapid signal fading

case, the adaptive receiver would be firmly established as the preferred

system for the rapidly fading channel. As it is today, there remains a

need to evaluate the performance of the adaptive receiver against the

combined scintillation and jamming threat.
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APPENDIX A

PROPERTIES OF THE IN-PHASE AND QUADRATURE
COMPONENTS OF A NARROWBAND GAUSSIAN PROCESS

The received signal-plus-noise may be expressed as a narrow-

band random process referred to the carrier frequency wc:

r(t) s(t) + n(t)

x(t) cos wct - y(t) sin wct A.1

In Section II it is shown how the in-phase and quadrature

signals x(t) and y(t) may be extracted from r(t) through a zombinatijn

of mixing and filtering. In order that there be an efficient representa-

tion of the probability density of the DFT components of the sampled ver-

sion of the preenvelope signal x(t) + jy(t), the following two properties

must hold for x(t) and y(t)

E{x(t)x(t-r) } E{y(t)y(t-T) } A.2

E{x(t)y(t-T)} -Ely(t)x(t-t) } ,A.3

That these properties hold for the narrowband Gaussian Process r(t) is a

standard result in communication theory, which is repeated here for the

convenience of the reader. The derivation shown here follows that in

Whalen 17 rather closely.

The Hilbert Transform of r(t) is

?(t) = x(t) sin wc(t) + y(t) cos wct A.4
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Solving Equations A.1 and A.4 for x(t) and y(t) results in

x(t) = r(t) cos wct + (t) sin wct

y(t) = (t) cos wct - r(t) sin wct

Using the properties of the Hilbert Transform:*

Rr (T) = - (r) A.6

rr r

R?(T) = Rr(T) A.7

the autocorrelation of x(t) may be expressed

R (T) E{x(t)x(t-T)} = E{r(t)r(t-T)l cos W t COS W (t-,

+E{i(t)r(t-T)} sin w t sin w (t-T)

+E{r(t)r(t-T)} cos W t sin w (t-r)

+E{(t)?(t-T)} sin wt sin WC(t-T)

R r(T) cos W Ct cos W C(t-T).+ Rr (T) sin w ct cos w CCt-T)

+R T) cos w t sin w (t-T) + R.(T) sin w t sin Wc(t-T)
rr r

Using Equations A.5, A.6, and A.7,

R () = Rr (r)cos WctCOS c (t-T) + Rr (T) sin w c cos w c(t-T)

-R (T) cOS w ctsin w c(t-) + R r(T) sin w ct sin w C(t-r )

= R r(T)(cOS Wi t cos W c(t-T) + sin w ct sin w c(t-") j

-Rr (r) [cos c Ct sin wC t-T) - sin wb t cos W c(t-T))

Rx(T) = Rr(T) cos W T Rr (r) sin WcT A.8

* The Hilbert transform is g(t) = i-l=fg(t-T)TIdr. Note that it

exists for sample functions of a stationary random process unlike
the Fourier transform, and is also well defined for auto- and cross
correlation functions.
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It may be shown by a similar development that

Ry (T) Rr(T) COS WC(T) + R (T) sin woct A.9

so that

Rx(T) R R(T)A. 10

which is the property stated in Equation A.2.

Next

R xyr) = E{x(t) y (t-T)}

- E{r(t) r (t-T)} cos Wct COS Lc(t-T)

E{C(t) (t-T)} sin wct cos W Ct-f)

-E{r(t) r (t-T)} COS , ct sin wck-

-E{e(t) r (t-)l} sin Wct sin Oc (t-T)

R r^(T) cos W t cos W (t-r)

+Rf(T) sin ct cos W c(t-r)

-R Cr) cos W t sin W (t-f)
r C

-R-r sin w t sin w (t-r)
rr C C

Using Equations A.5, A.6, and A.7

R xy() R (r) [sin w ct cos wc Ct-T) - cos WCt sin W c(t-T)]

-R r() [COS W ct COS c(t-r) + sin w sin w C(t-r)l]

or

R(r) = R(r) sinw wt - R^() cos W t A.11
xy rC r c

A parallel analysis results in

RxyCr) =-Ry Cr) A. 12
xy () yx()

which is the property stated in Equation A.3.
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If the noise term n(t) in Equation A.1 is white (uncorrelated) then Equation

A.8 may be rewritten

NB
R (T) = R (T) Cos W r +R (r) sin r 62(')
x 5 c S C 2

NB
= R (T) + 0 6(T)

x  A. 13
S

where N0  is the noise power spectral density of n(t) in watts/Hz, B

is the noise bandwidth of the baseband analog filter, and RXs(T) is the

signal component of the baseband autocorrelation R x(T). Also from A.11

R xC) = Rs~ r) sinW cT - R (T) cos WcT A.14

The white noise does not contribute to the crosscorrelation of the baseband

waveforms x(t) and y(t).
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APPENDIX B

THE PROBABILITY DISTRIBUTION OF THE OFT
OF A SAMPLED COMPLEX GAUSSIAN PROCESS

The development of Appendix A shows that the baseband in-phase

and quadrature waveforms have certain statistical regularities given by

Equations A.2 and A.3. If an impulse sampler is assumed, the corresponding

properties of the sampled waveforms are

E x x E y y B.1Il n ml I I l

E Ix v -E Y x I B.2
in'm In mI

In order to express the probability distribution of the DFT coefficients of

Xn + jyn in an efficient manner, it is necessary that a similar property

hold in the frequency domain. Let

N-i 2-kn
Zk N + j'Yk Z (Xyn + N kn.) -1 B.3

n0O

with xk  and Yk real valued, be the set of DFT coefficients of the

sequence

x n jyn  n -0,,2,...,N-In

Then the desired properties are

E I I . E ly B.4

E = -E i I B.5
yz ~k ',e
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Proceeding directly from Equation B.3,

N-1ij2Tk

==

= N1 x cs -rn- y s rkni B.6
n=0 Ok N

N-i N-Irk

I n=Om0 x 0 ()cs()

N-N)

+, si 2Txk y4Cos(.27rk ) B.73~)

N-I N-i1o(1k-m

" E y xzl sin(21rk n )) B.8(-,t
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N-1 N-I

whc pr:e EqEto BE xandsn 27

0 Z n=O mNO n

+ 2rkn 2,tZm

+E yn Y (i N )Cos(

E x (2rkn) sin (2-m)

-E )n '14 1 k-f -N I

2-rkn C 272kMn\

N-1 N-1.

2 F E~x Cm os (27T(- -

n-O=n0 N1

+E V x sifln 2r(nZ) B.
I n Z N

which proves Equation B.4, and

1N-1 N 
2hnI 7t

E 2irkn sin t
kN N

E y. -xm sin27Tkn si it-

N N
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N-I N-I x s 2r(kn-Zm)

n=O m=0

S Cos(2(kn-m)-)] B. 10
n m N

N-1 N-i

127 kn5  i (21TrZa

-E n x }' s C (os )

n-O 0=

+ E Y .m os(2,rkn sin/ 2I B.11ln -.N cs2tk - ,N

which proves Equation B. 5.

These properties allow the covariance matrix of combined real

and imaginary parts of the DFT coefficients to be written in the form
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_ = B. 12

where

( TyT) = (0, .. ,N-I'Y ..... YN-) B.13

and

A = AT B.14a
T

B = - BT B. 14b

Wooding 4 3 has shown that if the covariance matrix of a collection of :ero

mean Gaussian random variables o. and y can be wriztin in this form, then

the probability density of the complex variates z = + jf may be expressed

as

p) .- N I - 1  -Z T* L- 1

p(z) = TNI e -nB.

where L is a Hermetian covariance matrix for z.

His development follows from the decomposition

-T -l -1iT-I
AAB Bt + AI - B A B.16

1B A0A+BA B -B Al A

+ B + BA _ B--(AB - B. 17

oA- BA'-) -- 1. ( 4 J
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which is of the same form as Equation B.12 since

(A IBA 1' B) = ( AT +B T A-T BTl

- (A + BA-IB B.18

and

= A- I B (A- +. BA_ 
1 B )-

= + BAlB) Bii -

A IB(- + BA -'B)

A+ BA 1 B)' BA-1 .B.19

Then one may write

where

P -(A+ BA'B) B.21a

2 +_ I 0 BA
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with

p=pT

B.22

It may be readily demonstrated that

P ± j_ = (A : jB) I B.23

The combination of Equations B.21a, B.21b, and B.23 will result in a simple

expression for the probability density of the complex variates z.

The probability density for the real and imaginary parts of is

The exponent may be rewritten

1 (,aT T)A-I(1 )  1( T (a j 25
- 7 _ _ = - - _ (P- Q) + jY) 2.

and the determinant of A may be expressed in terms of A j_

through the decomposition

T I] = [ j - J B.26

P - 521 Lf. 1 21

= _ - JQ_ I (P JQ)T 1  
B.27

= j - *QJ2 = A ± jBj -2
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or

IA- t ji l-j B.28

Then the distribution of Equation B.24 may be rewritten

1/2 _ jy)T(A - 1 (a
f(j) ( 27r)N IA_- jBI-' e

B.29
but

T-_ = Tj -jT T

2 E I -j _ 2YC B.30

=2 [A -j N

then

_ E) , = 2 NjA B B.31

and the probability density becomes

f( = -N.L e-z T*LIz B.32

or equivalently as T -I*

f ( z ) Tr N I L I - e -

which is occasionally used in this report.

106



APPENDIX C

COMPUTATION OF THE COVARIANCE MATRICES Li  FROM THE
SIGNAL AUTOCORRELATION FUNCTION AND WHITE NOISE DENSITY

The covariance of the complex variates zk  and z. is

21rkn 2rmN- N- 1 -x -xR eJ .

E ~ k z IN n=O m=0 n Y )(X - JM) eeC i

- iN-i N-i

1: E "xx + vv + vx - n m.
N n=O m=O n" m nm nnI

C.2

27rkn 2,rim
" . N

e e

Using Equations A.10 and A.12 in sampled versions,

N-i N-ij 2ikn 2,'rLm

E NZ- Y = ( + jRyx(n-m)) e N e -N C.3
N n=O m0O

and by Equation A.13

N- N-2rkn 2Trim
T- , 2(Rx (n-m) + jR (n-m)) e 4 e NN2  =0 0F yx n

N n=O M=O s/
C.3b

NB
- 6 (k,t)
N
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where B is the noise bandwidth of the baseband analog filter preceding

the sampler. (It is assumed here that the white noise term n(t) affects

only the zero-lag point of the discrete-time autocorrelation.)

Equation C.3 may be implemented using a two dimensional DFT with

a rearrangement of terms to accommodate the two different signs on the

exponents. The two dimensional DFT has the form

27rkn 2TrrmN-I N-I -J IN "J TN
N n=O m=O

To obtain Equation C.3 the columns of X(k,Z) between Z = I and Z = N-I

are reversed in order, giving

2,kn 2n (N-.).

X(k,N-Z) i , x(n,m) e N e NC.S

Nn= mO

The integer rotation j27rN/N may be dropped from the expression and

Equation C.3 results.

Under the assumption that the signal autocorrelation function has

the same envelope for any hypothesis of signal transmitted, or equivalently

that the signal PSD's are simple translations of one another

N
r f(r) COSi + 0(r) , C.6

where wi is the transmitted frequency on the ith hypothesis, the

various Li are closely related and may be calculated with one operation

of the two dimensional DFT. It is equivalent to assume that the spectrum

of n(t) is symmetric about the frequency wi(t), and that the baseband

lowpass filter is wide enough to pass the entire signal spectrum. The
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assumption C.6 is highly restrictive and does not hold where the signal

doppler spreading is a significant portion of the width of the baseband

analog filter. The technique described here to obtain all of the covariance

matrices L. as a rotationally related set is not actually used in perfor--1

mance calculations for the receiver, but is merely recorded here for its

theoretical value as an aid to understanding the relationships among the

covariance matrices.

With the signal autocorrelation of the form C.6, using

Equation A.9,

N0Rx(T ) = f(z) cosw i cos C T + f(T) sin~i(T) sinwcT + - (-) C.7

where f(r) sini (T) is the Hilbert transform of f(r) coswi(z). Similarly,

using Equation A.12

R yx(T) - f(-r) cosW.ir sinw cT f(T) sin ir cosw CT C.8

and the autocorrelation required in Equation C.3 is

2(RX(T) + jRyx (r)) = 2[f(r) cos( i-oWC )T jf(r) sin(wi-W c)T

j(Wi-w.)T N C19

= 2f(T) e 1 + " 6(r)

with the corresponding sampled version

.2Trsnj - N B
2(R (n) + jR (n)) = 2f(n) e n + 05(n) C.10

where 6 is the frequency deviation assumed to be a multiple of the

sampling frequency
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= 21r t =,i,t2,... C.1l

Then Equation C.3 may be rewritten

27rS (n-m) 2irkn 2,r m
N-i N-1 N " J N

Ez -L F 1 2f(n-m) e e j2r e N 2' + N k2 B
2 n= m=O 2

C.12

N-1 N-I j 27r(k-d)n 27r(Z-S)m N B

S 2f(n-m) e N e N 6(k,)

N n=O m=O 
2

so that

N-i N-I -j j J r NB

E z z* = - ', 2f(n-m) e N 0:6(k,Z) C.13
N" n=O m=O

and all of the Li may be obtained from one DFT operation which uses only

the envelope f(n) of the autocorrelation of the signal s(t) and the

noise spectral density. The alternate L's are obtained by a rotating

shift along the main diagonal.
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APPENDIX 0

THE GENERATION OF COMPLEX RANDOM VARIATES
WITH THE CORRELATION MATRIX L

Starting with a set of independent Complex Normal Variates S

with the distribution,

f~s. 7r - -z - D.1

it will be straightforward to obtain a set of variates with the desired

covariance L. L may be factored

L = 1/2(A - jB) = 1/2CC - jD)CC + jD) , D.2

and that C and D matrices exist to satisfy D.2 follows from the

relationship

A = C2 + D2  D.3

B = DC - CD D.4

which may be expressed in the form

= 1).5
C -D C -D B T  A

or [2 2] l/Z D.6
C -D



The square root of A exists since, as the covariance matrix of Gaussian

real variables it is positive definite. Then, given a set of variables

S, they are transformed by

z= I- jDS D.7

The resulting variables z have the density

T* -1 -1(~z) 7= j-N e D -I e 1T 2[ + PJD_- (2 ji'i

T- -'L D.8

where JLI is the Jacobian of the transformation from S to -.
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APPENDIX E

PROPERTIES OF THE COVARIANCE MATRIX WHICH ARE
USEFUL IN OBTAINING INVERSES AND SQUARE ROOTS

The covariance matrices Li are complex valued in general and

Hermetian. To obtain the optimal receiver's statistics it is necessary

to invert these matrices, and to obtain sample variates it is necessary

to square root one of them. The phase angles of the elements of

these matrices are unrelated to the received signal spectrum and are

an artifact of the sampling process. They occur in an orderly fashion

that enables a simple procedure to compute inverses and square roots

based upon the corresponding inverses and square roots of the magnitude

matrices. The phase property is obtained via the complex conjugate

of Equation C.3b (the noise term is deleted here since it is always

real and affects only the main diagonal of the covariance matrix)

21Tkn 2 rZm

E*{% zz N- I R~(n-)e e E.1

n=0 m=0

Rzz (n-m) = 2(Rx (n-m) + jRzx (n-m)) E .2

S S

Since R z* is an autocorrelation function of a complex Gaussian baseband

signal, it is Hermetian, so that the argument (n-m) may be reversed and

the conjugate sign removed:

N-1 N-i 27kn 2iTZm

E*{z. .*1 NL 1: . Rz(m-n)e E.3
k Z. N2 n=O m-O s
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Now by changing variables to

n= N- i- n
m' -Ni-rnE.4ml N N- 1 - mE.

the expression may be rewritten as

N 2 rk(N-l-n') -. 2r9(N-l-m')V'E R, (nl-m')e e
n'=O m'=O s E.5

27r (Z-k)S N
E*{z.} = e E{z q1

This is a simple relationship between the elements of the covariance matrix

and the corresponding complex conjugates. From this expression one may obtain

the result that the phase angle of each element of the covariance matrix is

= 7,(k-k) ± Tr £ 0,..., N-l E.6k'Z N
k 0,...,N-1

which prescribes the phase angle structure of any of the covariance matrices

L.. The angles are zero on the main diagonal, and the matrix can be arranged-.

in polar form so that angles decrease in steps of 2Tr/N for elements to the

right of the main diagonal and increase by the same increments for elements

to the left of the main diagonal. In this form, the phase angles in any row

or column range over a phase difference of 1T.

Then for matrices of the form

. r(k-2.)

N E.7

where o ,. may be a positive or negative real number, if the inverse of the
matrix of elements 'k,k is known and has elements ykJ such that
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" kn' 'nk. 'k, Z E. 8
n=O

Then the inverse of L has elements

l T (k-Z.) N|

YkZ e

since
N-! IT (k -n) T (n -Z)
E N J N E.9

J Ne E kYn e

n=O

= 5k,Z

A similar result holds for the square root. If the square root of

matrix of elements 'k,Z is known, with elements 8,, such that

n kn n. YkZ E.l0

then the square root of L (if it exists) is a matrix of elements

ST(k- Z)
N

since T (k-n) T i(n-Z)N N
e Nkn 

8 n9ne

n
E.11

=e , Bkn nz

n

= yk,Z e NE.12I ll5



APPENDIX F

ALGORITHM FOR THE ADAPTIVE RECEIVER
WITH DATA REDUCTION

The adaptive receiver algorithm is presented here in detail for

the reader who is interested in constructing a simulation or a real-time

receiver. To avoid the notational complexity that may occur with arbitrary

receiver dimensions, the equations are given in terms of an 8-ary system

with N= 16 complex samples per observation interval.

A double index notation is used to keep track of the observation

intervals and functions of frequency within each observation interval. The

index of observation intervals is m and the frequency index is k. Where

a time sample index is required, for time samples within an observation

interval, the variable n is the index of time samples.

Figure F-1 is a block diagram of an adaptive M-ary FSK receiver. It

illustrates the flow of computations from the time samples to the modulation

decision. The following equations give the explicit operations represented

by each block of the diagram. Scalar notation, as opposed to matrix-vector

notation is used wherever it is possible, for the convenience of the

programmer.

During each observation interval N = 16 complex valued DFT coef-

ficients are computed from time samples of the in-phase and quadrature

waveforms xn and yn'" These are formed into the complex valued function:

xnm + jy n = 0,..., 15 F.1
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for a given observation interval m and transformed to DFT coefficients:

is _ j2irkn

k,m E (Xn,m jyn,m)e  16 k = 0,..., 15 F.2

n=0

The first operation on these coefficients is to compute the square

of the magnitude of each Zk'mI 2 , k= 0,... 15. These values are tested

against %1= 8 different inverse spectra derived from the estimates a
k,m-l

in the operation labeled "decision logic" in the block diagram. The estimates

a k,m-l are arranged so that k = 0 corresponds to the center of the signal

portion of the spectrum. k= 1 is the next higher frequency estimate; k= 15

is the next to center on the lower frequency side, and so forth. (The index

m-l indicates that the estimate is based on modulation intervals prior to
th th.

the m and not including the m interval.) The modulation decision is

the index Z (m) of the smallest inner product of the two vectors whose
min

elements are Izkm2 and circularly shifted versions of a k o . These

inner products are:

N-i
PZ(m) =o {k-}m- , Z={-4,-3,...,3} F.3

k=O

and Zmin is given by

SWn~m :r pz~m W Z = {-4, - 3... _31 F.4

where {k-tj is a modulo 16 addition, indicating that the inverse spectrum

is wrapped around by the shift operation. The range of Z indicated will

shift the center point of the spectrum into the eight possible locations

where the center frequency of 2 is expected.

The modulation decision Zm. is used to align the IZkm 12  for

insertion into the estimator of the signal spectrum. This operation is
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labeled "shift" on the block diagram. The realigned version of the spectrum

is designated IzmV where

F.5

m Z{k+z. },mi I

When the modulation decision is correct, the center of the signal spectrum

is shifted to the first entry of the realigned set Jz m . The next higher

frequency is shifted to the k= 1 location; the next lower frequency is

shifted to the k= 15 location etc. A certain fraction of the spectra will

be incorrectly aligned when demodulation errors occur. These errors have

proven to be inconsequential to the receiver performance in the useful

operating region of the receiver operating characteristic curves.

The realigned data Jz' m are subjected to the data reduction

algorithm which allows the average over prior observation intervals to be

made with only a few storage registers-four or five for the receiver

dimensions and conditions of interest here. Some discussion of the coef-

ficients of the data reduction algorithm precedes the introduction of the

data reduction equations.

The two techniques for data reduction which were investigated in

Sections V and VI do not differ in terms of the algorithm, hut only in a

certain set of coefficients. These are 16 xP in number and are most

naturally organized as the coordinates of P 16 dimensional vectors,

where P=4 or P= 5. A set of four vectors for the BLSS algorithm is

xl = [10 0...oT

x2 = 2 [0100...01]
T

I F.6

x3 = 2 [00100...010]
T

1

x4 = 11 2[000111.. .1100]
T
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They are normalized so that

Is

2 kF.7
k=0

The first three vectors are arranged to make independent estimates of the

center of the spectrum, the pair of adjacent points, and the pair of next-

to-adjacent points. The fourth vector is structured to obtain a noise

level estimate by averaging over the remaining points.

A similar set of vectors are used in the SEV algorithm. These

are computed through an eigenvector-eigenvalue numerical analysis of a 16 x 16

matrix S. The eigenvector of S corresponding to nonzero eigenvalues are

the x vectors in the algorithm. The matrix S is a sum of dyads of

spectra from the predicted operating range of the receiver. In matrix-

vector notation:

J
S = a o2 2 T

Si=l- i  F.8
2

where the vectors a.2 are defined by Equation 67 of Section III. In scalar

notation, the elements of S are

J -i- - n= 0,..., 15
n = a a.Z F.9
i~l i,n ig = 0,. .. , 15

Since S is symmetric, n may be considered the index of rows and Z the

index of columns or vice versa. Each of the vectors a. is a sixteen-
dimensional discrete power spectral density (expectation or mean value of

the magnitude-square DFT coefficients of the received signal-plus-noise

random process). For the results given in Section 6, eight a2 were
-

selected along the line of 10 percent error probability from the receiver

operating characteristic curve of the optimal receiver (Figure 12). This
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set gave excellent performance, very close to optimal, throughout the useful

operating range of the (optimal) receiver. The data reduction equation is

i5
c E x. H' 2 i = 1, ... , P F.1O

n=O ,n n,m

The c. are averaged over prior observation intervals by a set of single

pole digital filters

c. K c. 1 (l-K)ci F.11
:m i'n-1 i'm

where K<1 is the pole location of each of the filters. The appropriate

value of K for a given time constant of Q observation intervals is given

by

K = e-1 /Q  F.12

The averaged coefficients c. are expanded into a sixteen

dimensional spectral estimate by the expression

k' i=l i,m xi,k k , ...= , 15 F.13

This operation is referred to as an expander in the block diagram. These

estimates are subsequently inverted

-k2 ]-1 k=O, ... , 15 F.14k k,m =  ,ml

to obtain the inverse spectrum required by the receiver.

The time delay T shown in the diagram does not actually occur

as a final step in the sequence of operations. It is inserted to show
th

that the estimate used in the decision logic at the m modulation interval

will not include data from the mth step which is not available until the

m th decision has been made.
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APPENDIX G

PRINCIPAL COMPONENTS AND THE REDUCED
DIMENSION SPECTRAL ESTIMATE

The connection between the data reduction technique incorporated

in the SEV algorithm and principal component analysis in statistics is

explored. It is shown that whereas principal components are designed to

retain as much as possible of the covariance structure of a random vector

in a reduced dimensional representation, the coefficients of the SEV algorithm

are designed to minimize the combined covariance and squared bias of the re-

duced dimension spectral estimate.

PRINCIPAL COMPONENT ANALYSIS

Principal component analysis was introduced by H. Hotelling44 in 1933.

It is a technique of deriving a linear transformation of a random vector which

results in a lower dimension vector while preserving as much of the variance

of the original vector as possible. Given a random N-vector x with co-

variance matrix Z, it is desired to construct a P-vector

y= H Tx G.1

where H is an N x p matrix with orthonormal columns (H TH = I) so that the

total variation of y, defined as the sum of variances of the components, is

maximized. The solution is given by a matrix H whose columns are the

eigenvectors of E associated with the P greatest eigenvalues.
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The optimality of principal components may also be viewed in terms

of maximizing the trace of the covariance matrix (maximizing the total varia-

tion) of an approximation to x in its same coordinates. Consider recon-

structing an N-dimensional variable x from the principal component vector

V

x = Hy G.-

= H Hx

The covariance matrix of x is

Efxx } = H HT H HT G.3

which has rank P<N. The vector x has a singular covariance matrix since

it has less than N degrees of freedom. If the columns of H are taken

as the eigenvectors of E associated with the largest eigenvalues then the

tr{HH T HH T= tr{H TZH G.4

is maximized over the class of N× P matrices H for which H TH = I. It

may also be demonstrated45 that the

Norm{-H H T H } G.5

is minimized by the same H where the Euclidean norm

Norm{A} 1/2 G.6
.1J

is used. Thus the covariance matrix of x is the best approximation to

in a mean square sense, by a rank P matrix.

DATA REDUCED SPECTRAL ESTIMATE

In reducing the dimension of the power spectrum estimate used in

the adaptive FSK receiver we are confronted with a similar problem to that

123



of principal components. Here it is desired to derive an Nx N linear

projection operator K= XXT of rank P <N so that the raw spectral

estimate as may be replaced with a reduced estimate

-ssa= Ka G.7

in such a way that the least additional cost, in terms of increased proba-

bility of misclassification, is incurred. In Section V it is shown that a

formal Taylor expansion of the cost, about its value at the correct spectrum,

with truncation at the quadratic term yields the risk function

e(o ,K) = tr{C EIK a 2 G2 T KT G.8
;--a - --s-5 -

The expansion is referred to as formal since the weight matrix C cannot-<
be practically evaluated. Each component of the matrix

- ---- s -s

which may be referred to as the total squared deviation, is weighted by the

corresponding entry of C to assign the relative importance of deviations

of the estimate a from the true spectrum a-. Equation G.9 can be broken

down into two terms

M = K D KT + (K-) a2a 2T(K-I) T  G.10

which represent the covariance of the reduced spectral estimate and squared

bias respectively. This breakdown of the error, from which the term "total

squared deviation" derives, is familiar from the literature of power spectral

density estimation as a measure of the quality of window functions.

It is necessary to average the risk function over an ensemble of

power spectra ca that are predicted for the receiver. Otherwise the

optimal K would depend on the particular spectrum 2 and would change
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with the spectrum rather than be fixed for the entire range of fading rates

and signal-to-noise ratios. In performing this average it is desired to

retain the form of the risk function as the trace of the product of two

matrices.

I L
- , = i G.11

=tric~
LL

L
A weighted average C as indicated by Equation G.11 will exist as long as Z M

is nonsingular i= a i

]CCL G.12

It is expected that the desired inverse will exist since each component in

the sum is invertible and there is no reason to believe that the terms will

combine in such a way that the rank of the total will be reduced. It is

therefore possible to consider the cost function

tr{fC = tr{C[K D K T + (K- I)S(K- I) T]} G.13

where

1 L
L D. G.14

and 1 L 2T

0=1

In Section V, the approach taken to deriving the best projection operator K

was to minimize the second term in Equation G.13, that corresponding to

squared bias, while ignoring the covariance term. It was discovered experi-

mentally that the matrix S was of considerably low rank compared to its

dimension and therefore (K-I)T  was chosen so that

(K- I) = Y .16
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where the N x (N-P) matrix Y is made up of orthogonal columns which lie in

the null space of S. The particular circumstances of the problem allowed

the spectrum estimate to be reduced in dimension without paying for the data

reduction in the bias term of the cost. Here we have used essentially the

same approach to deriving a projection operator as that given by principal

components. The problem is to minimize tr{C Y YTS Y Y T rather than maxi-

mize an unweighted tr{H H Z H H T. The eigenvectors of S associated with

the minimum eigenvalues (all approximately zero) were selected. In both

cases the extreme values of the criterion function are achieved by using a

set of eigenvectors (though the null space eigenvectors of S are not

unique). Furthermore, S is not a covariance matrix like Z in the

principal component analysis, but rather a squared mean of the raw statistic

os. The fact that S is not full rank is fortunate, since otherwise the
-s
solution would depend on C which is practically unavailable. This leaves

open the question of the minimization of Equation G.13 where S may not be

of sufficiently reduced rank and C is available or an appropriate C could

be hypothesized. In the remainder of this appendix the equations are given for

for the general case.

OPTIMAL PROJECTION OPERATOR

Equation G.13 may be expanded to

tr{C -M} = tr{C KD K+C K S K-C S K-C K S+C S1

= tr{C K(D+S)K- (C S+S CK+C S} G.17

Here, the property of the trace that

tr{A B) = tr{B Al G.18

along with the additional assumption K= KT have been used. Now sub-

stituting K = X XT  and making further use of the trace property and the

assumption that xTx= I yields

tr{C 9} = tr{X TC X X T(D+S)X- XT(C S S C)X} + tr{C S} G.19
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V - .. .. .. ...- , v i

Now the object is to find the Nx P matrix X of orthonormal

columns which minimizes tr{C -M. The extreme points of this function may

be found by the usual gradient techniques with the addition of Lagrange

multipliers. The equations describing the column vectors of X at these

exteme points are

S[r{C M1 + FX (X ix.- 1 0 G.,20
~j=l --

[taP 1,.=,0
a

[tr{cf + 2 x (X.x -1) 0 G.213 b It -- )-

b: l,..,P

where the Xb are Lagrange multipliers arranged to constrain the lengths of

the column vectors of X to unity length. It is not necessary to constrain

these column vectors to be orthogonal since any rank P solution to Equation

G.20 is an X with orthogonal columns without suchaconstraint. In carrying

out the first of these partial derivatives it is convenient to write out

tr{C M} P P T -

ill x x.x (D+S)x. G.22
-- i=l -- - _ _ - - - - -

PV T
4-. 4(C S S C)x k + tr{C S}
k=l

P P

L xTC L x. (D+S) x
i=l j=l -- -

i#a j#a

" p xTC 2xT(D+S)x.

iPa P

+ Tc C x.x.(D*S)x
- j=1l- -- a

j5a
T T-
"xaCx ax a(D.S)xa

T _ (C SS C)x + tr{C S)
k=l
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The second and third terms of this expression are equal. The first term does

not enter the partial derivative since it is not a function of x nor does

the last term, proceeding:

[tr{C M + X T G.23
x --- a -a-aj
-a

[.L2xTc ) x.x. Tff+S)x
T _-S -3- -- aa j=a

+ x aC x axTaD + S -x a]

-a a -a a ITa

T- T

-~~. x~ G.24x aX

= 2C . xjxJ(D+S)xa + 2(D-+S) F xJxC -aX
i=l j=l
i~a j~a

+ 2C xxT(+S)x + 2(D+S)x xTC x
a -aa - - -a - -aa

- 2(C S+S C a + 2X x 0
----a a-a

= 2C X XT(D+S)x + 2(D+S)X xTc x
-a 2

- 2(C S+S C)x + 2X x = 0
_ a=-a

a

From Equation G.24 one may deduce that, if P linearly independent solutions

exist, they will form an orthogonal set (or can be arranged to do so) since

they are eigenvectors of a real symmetric matrix. Each of the matrices D,

S, and C are themselves symmetric and XX T  is symmetric regardless of

whether the columns of X are orthogonal. The matrix operating on x is

in the form of one matrix plus its transpose which sum is always symmetric.

The fact that the variable matrix X is imbedded in the symmetric matrix

does not alter the conclusion about the orthogonality of a given set of P

vectors x which satisfy the equation. It is convenient to arrange all of-a

the P equations into one matrix equation

[C X X T('D+S) + (DS)X XCC S-S CIX = ., G.2S
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where A is a diagonal matrix with diagonal elements consisting of the

Lagrange multipliers Xb along the diagonal. The second of the two partial

derivative equations, Equation G.21, yields the constraint

Tx C. = 1 l,...,P G.26
xix. =1

These two equations do not generally have a solution of rank P, although

there is always a rank one solution. If X is of rank one then

XX T = Px xT  and Equation G.24 becomes

[P C x a xa+S) + P(+S)x ac - (C S.S CQx x X-- -- -- - a a

then if x is an eigenvector of

--a

where

=t P x T(Df+S) x

a2 :P r Tc-a

The matrix X made up of P columns all equal to x will satisfy the-a
extremal equations.

Placing additional constraints that the columns of X be ortho-

gonal yields the same Equation G.25 with the exception that the PxP matrix

A be a general real symmetric matrix rather than a diagonal matrix. Such

a matrix may be written in the form G A' GT  where G is an orthogonal

matrix and A: is diagonal:

[C c X T(+S) + (DS)X xTc - C S - S C]X = X G AGT

This equation still requires that the columns of X define an invariant

subspace of the matrix in brackets- a condition which is evidently not

possible to satisfy. It also indicates that X G is a solution to the

original equation.
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One may conclude tentatively from this result that the appropriate

partial derivatives of the trace (Equation G.17) do not go to zero at any
T Tpoints X 'X of rank P >l, for which X X is a linear projection operator.

Thus it is possible that the Lagrangian techniques will not be useful to

determine the minimizing linear projection operator.

The means to minimize Equation G.24 by either analytical or

numerical methods are still under investigation. The difficulty with this

problem seems to arise from the fact that one is searching for a subspace-

that spanned by the columns of X- rather than for a unique vector as in

the usual problem of the minimization of a functional. The solution appears

to be of fundamental interest as a means to improve multidiriensional estima-

tors by data reduction.
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