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ABSTRKCT

( Earthquake engineers are often faced with the problem of

determining the temporal and spatial variation of near-surface seismic

motions in a site. This type of information is needed for the

evaluation of soil-structure interaction effects, liquefaction
potential and the effects of local site conditions on surface motions.

Actual ground motions are due to a complicated system of body

waves and surface waves. However, it is usually assumed that

near-surface motions consist only of vertically propagating waves. In

order to examine the validity of this assumption for engineering design

a theoretical investigation has been made into the nature of

near-surface motions produced by horizontally propagating waves. These

include inclined P-, SV-, and SH-waves, Rayleigh waves and Love waves

in horizontally layered sites over a visoelastic half space.

The research involved five phases; (1) review of current

knowledge, (2) development of new methods of site response analysis,

(3) application to site response analysis, (4) application to

soil-structure interaction analysis and (5) evaluation of the relative

importance of horizontally propagating waves in engineering design.,

The new method of site response analysis involves a finite element

type discretization of the site in the vertical direction. According

to this method the site is subdivided into thin sublayers and it is

assumed that displacements vary linearly between layer interfaces. The

method is essentially linear and works in the frequency domain.

Nonlinearities are handled by an equivalent linear method according to

which the stiffness and damping ratio within each layer are adjusted
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iteratively to be compatible with the strains developed in the layer.

Transient motions are handled by Fourier techniques.

The method is essentially the same for inclined body waves and

surface waves. However, the latter requires the solution of a special

eigenvalue problem and identification of the fundamental mode. The

procedures have been implemented in the two computer codes, SITE and

LOVE. These codes can produce the complete transient field of motion

from the knowledge of the motion at one point and the type of wave

field producing the motion. Any specified combination of inclined body

waves and surface waves can be considered.

The procedure has been applied to a number of sites (rock, sand,

and alluvium) assuming different types of wave fields and the motions

produced by these fields are compared with those produced by vertically

propagating waves. The results show that the realistic analysis of

incident body waves produce near-surface motions which vary with depth

in essentially the same manner as those produced by vertically

propagating body waves. The motions produced by surface waves are

somewhat different. However, the study shows that in soil sites

surface wave motions decay rapidly in the direction of wave propagation.

Within a few hundred feet of the control motion all components of

frequencies higher than I Hz are reduced to insignificant amplitudes.

The same phenomenon occurs in rock sites but at a much slower rate. It

is therefore questionable whether high frequency surface waves are

important for engineering design.

The study of soil-structure interaction effects show that only the

free-field motions within the body of soil replaced by the structure

are of importance for design. Thus, with a specified surface control
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motion, the spatial variation of free-field ground motions need to be

determined only within a shallow zone near the surface.

Examples of soil-structure interaction analyses are provided for a

structure on rock, a structure on sand, and a large retaining wall on

an alluvial site. The results show that for realistic wave fields the

motions of structures on soil site depends only slightly on the type of

wave field assumed. On rock sites surface waves may produce somewhat

larger motions than vertically propagating body waves.

The study also shows that, while the motions pioduced in

structures by different types of wave fields may not be too different,

the dynamic earth pressures on embedded structures depend strongly on

the nature of the seismic environment. In particular Rayleigh waves

may produce larger dynamic earth pressures than vertically propagating

shear waves.

The final conclusions of the study are that the current assumption

of vertically propagating waves is probably sufficient for many

practical purposes. However, surface waves may be important in rock

sites and in the determination of forces acting on structures.
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INTRODUCTION

Earthquake engineers are often faced with the problem of

determining the spatial and temporal variation of seismic motiors in a

soil profile from a motion specified at a single point. Solutions to

such problems, which are known as site response problems, are necessary

for liquefaction and soil-structure interaction analyses.

1.1 Current Methods of Site Response Analysis

Current engineering analyses of site response usually involve

three basic assumptions:

o Ground motions developed near the surface of a soil deposit may

be attribute only to the vertical propagation of shear waves,

Kanai (1950, 1952).

e The ground surface, the interfaces between layers, and the

bedrock are essentially horizontal.

* The material in each layer is homogeneous and linearly elastic

or viscoelastic.

Using these assumptions, many researchers have developed

computational site models and methods of analysis for site response

problems, including Idriss and Seed (1967), Tsai (1969), Roesset and

Whitman (1969), and Schnabel, Lysmer, and Seed (1972). The first two

assumptions above were found to be quite reasonable for many sites

involving sedimentary deposits with horizontal layering. The third

* assumption of linearity might be inappropriate for strong seismic

motion. However, the nonlinear behavior of soll can be practically

approximated by the equivalent linear method proposed by Seed and

1driss (1969).
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In general, the omputational methods for site response problems

can be separated into continuum or discrete methods. Continuum methods

involve either the analytical solution of boundary value problems

directly from differential equations, the method of characteristics, or

the finite-difference method. These solutions can be obtained either

in the frequency or the time domain. Discrete methods use lumped-mass

or consistent-mass finite element formulations, which give good results

if each layer in the model is thin enough to transmit the shortest

wavelength involved. Current discrete methods include the complex

response method, modal analysis, direct integration, and the method of

characteristics. Each method is briefly reviewed below.

Complex response analysis (linear frequency domain analysis) can

conveniently account for material damping through the introduction of

complex moduli into the equations of motion. This method can

incorporate equivalent linear techniques to approximate nonlinear soil

behavior. Furthermore, Fast Fourier Transform and interpolation

techniques in the frequency domain make this method effective and

economical.

Modal analysis can be performed on a lumped-mass model of a shear

beam representing the soil profile. Modal frequencies and mode shapes

may be obtained from the geometry and mass distribution of the system.

The response in each mode may then be determined, and the total

response is obtained by superposition. This technique, however, can

not properly account for the spatial variation of damping within the

soil mass or for radiation damping.

Direct integration (step-by-step time domain analysis) may also be

used. Experience has shown that for a large time step this method
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encounters stability and damping problems related to the numerical

algorithms. Although smaller time steps will overcome some of these

problems, computational costs increase dramatically. Problems may also

be encountered in constructing the proper damping matrix from given

material properties. Besides, unreliable responses might be obtained

in the high-frequency ranges.

The method of characteristics is a mathematical technique for

transforming partial differential equations into ordinary differential

equations that are then solved by some suitable technique. The method

is effective for linear analysis but encounters computational problems

for nonlinear analysis.

Recently, efforts have been directed toward the development of

better nonlinear analysis methods. Nonlinear total stress analyses of

site response problems using vertically propagating shear waves were

studied by Streeter et al. (1974), Constantopoulos (1973), Papadakis

(1973), Joyner and Chen (1975), Martin (1975), Idriss et al. (1976),

and Taylor and Larkin (1978). Several methods of nonlinear effective

stress analysis have been proposed by Finn et al. (1977), Liou et al.

(1977), and Ghaboussi and Dikmen (1978). These methods are important

for the study of liquefaction during earthquakes.

1.2 The Seismic Environment

The above methods assume a simple seismic environment consisting

of vertically propagating waves. However, as shown in Fig. 1.1 the

motions generated by a source in the Earth's crust are composed of many

wave types. The basic wave types are called shear waves (S-waves) and

compressional waves (P-waves). When the (perhaps curved) wave fronts

of these waves impinge on the ground surface or layer interfaces

MEOMNE dims,
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surface waves may be generated. These include Rayleigh waves (R-waves)

and Love waves (L-waves).

The different wave types can be classified as shown in Fig. 1.2.

S-waves involve motions perpendicular to the direction of wave

propagation. S-wave motions in the vertical plane are called SV-waves.

Horizontal S-wave motions are called SH-waves. P-waves involve motions

in the direction of wave propagation. Rayleigh wavee involve

horizontally propagating elliptical motions in the vertical plane and

Love waves consist of horizontal motions perpendicular to the

horizontal direction of wave propagating.

All of the above wave types can propagate independently. However,

at layer interfaces and other inhomogeneties refraction or reflection

may occur which not only may change the direction of wave propagation

but which may convert one wave type into another (mode conversion). As

a result actual seismic environments are much more complicated than the

vertically propagating wave field assumed in current engineering

analyses.

The main purpose of the research described herein was to

investigate the possibility of developing methods of site response

analysis which can consider more realistic, and thus more complicated,

seismic environments than that described in Section 1.1. Specifically,

the assumption of vertical wave propagation will be dropped.

1.3 Horizontally Propagating Waves

Five types of horizontally propagating wave fields in horizontally

layered soil and rock systems will be investigated:

" Inclined P-waves

" Inclined SV-waves
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* Inclined SB-waves

e Rayleigh waves

9 Love waves

Also, combinations of such wave systems will be considered.

The relative contributions of the different wave types to the

total ground motion and the corresponding arrival times for each type

of wave depend on the epicentral distance to the site, the focal depth

of the source, and the phenomena of multiple reflection, refraction, and

dispersion along the various paths. Realistically, it must be assumed

that all observed seismograms contain some components of all of the

above motions. However, the exact composition is not and probably

never will be known since the exact properties of the source and the

physical and geometric details of the geology cannot be determined.

There is today considerable observational evidence that all of the

above wave types exist. The existence of inclined body waves has been

confirmed by numerous investigators, e.g. Suzuki (1932) who reported a

mean angle of incidence of about 40 for the initial motion in about

fifty records from Hongo and Mitika, Japan.

The evidence for the existence of surface waves is even strmger.

More recent observations include; Shima (1970), Trifunac (197l., Bolt

(1972), Anderson (1974), Hanks (1975), Toki (1977), Swanger and Boore

(1978). However, the evidence seems to be limited to frequencies below

2 Hz. For example, the surface waves observed by Swanger and Boore

(1978) in the records from the 1968 El Centro earthquake occurred in

the range 0.1 - 1.0 Hz and the surface waves detected in the 197'. San

Fernando earthquake were in the range 0.1 - 2.0 Hz, Toki (1977). The

existence of significant surface wave components above 2 Hz, which is

h I
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the range of most interest to engineers, has therefore not been

confirmed.

In addition to the above evidence there is an overwhelming amount

of data which indicate phase differences between motions observed at

closely spaced points, e.g. Yamahara (1970) who observed significant

phase differences between stations spaced only about 100 feet apart.

In most of these cases the wave type was not identified. Nevertheless,

the evidence confirms the existence of horizontally propagating waves.

Although a few suggestions have been made, Nair and Emery (1975),

Liang and Duke (1978), as to the relative content of different wave

types, the literature has a dearth of data on this topic in the

frequency range of interest to engineers.

Several researchers have developed theories for the response of a

horizontally layered site to plane harmonic body waves arriving at a

specified incident angle from an underlying half space. Thomson (1950)

and Haskell (1960, 1962) developed a matrix formulation for computing

transmission coefficients in a layered continuum. Hannon (1964)

extended Haskell's formul4 ion to study transient incident P-waves.

Silva (1976) extended the Thomson-Haskell method to include damping in

soil layers.

The response of a horizontally layered site to harmonic surface

waves has been studied by Sezawa and Kanai (1935), Haskell (1953), and

Ewing et al. (1957), Mooney and Bolt (1966). Recently, Docheva (1977)

extended the method to study sucface wave amplification factors.

Swanger and Boore (1978) simulpted strong motion displacement using

surface wave modal superposition. Lysmer (1969a), Waas (1972), Lysmer

and Wass (1972), and Lysmer and Drake (1972) applied the finite element

method to problems involving Rayleigh and Love waves.
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Most of the above studies are restricted to linear analysis of

harmonic motion of a single type of wave field.

1.4 Purpose and Scope

The main purpose of the research described herein was:

e To develop analytical methods for site response analysis of

horizontally layered sites excited by horizontally propagating

seismic motions consisting of surface waves and inclined body

waves.

The main emphasis is on engineering applications. This means that

the geometric dimensions of the model considered are smaller than (and

the frequency range higher than) those usually considered by

seismologists (100 ft vs. 1 kin, 1-20 Hz vs 0.1 - 1 Hz). Also, while

the seismologist's problem usually is to determine motions from

estimated source parameters or source parameters from observed motions,

the engineering site response problem involves determining the spatial

and temporal variations of transient motions within a limited distance

from a specified motion (control motion) at or near the ground

surface. This process is called deconvolution in the engineering

profession.

The research involved the following items:

" Review of existing methods and available data on dynamic

material properties.

" Development of a finite element method for transient site

response analysis of problems involving inclined body waves in

a profile consisting of soil layers over a viscoelastic half

space.
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" Development of a finite element method for transient site

response analysis of problems involving Rayleigh waves and Love

waves in a profile consisting of soil layers over a

viscoelastic half space.

" Development of practical computer codes (SITE and LOVE) to

implement the above methods.

" Application of the above methods to realistic site response

problems.

* Application of site response solutions to soil-structure

inter action problems.

The presentation of the research is organized as follows:

The dynamic properties of soils and rock are described in

Chapter 2. The emphasis is on a material description which is suited

for the analytical procedures employed in later chapters.

Inclined body waves are discussed in Chapter 3 and surface waves

in Chapter 4. The treatment in these chapters involves only harmonic

waves. However, these chapters contain most of the theoretical

developments for the finite element codes SITE and LOVE.

The transition to transient cases through Fourier techniques is

made in Chapter 5 which also contains several case studies of site

response analysis.

In Chapter 6 the application of site response solutions to

soil-structure interaction problems is discussed and a number of case

studies are presented.

The results of the research are summarized in Chapter 7. As will

be shown in that chapter the research lead not only to the development

of a unified theory for inclined body waves and surface waves in
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layered systems and two associated computer programs but to a number of

significant conclusions regarding the importance of considering

horizontally propagating waves in design and, perhaps surprisingly, the

likely contribution of surface waves to near surface seismic motions.

a.



C&APTBR 2

DYNAMIC MATERIAL PROPERTIES

2.1 Introduction

The stress-strain characteristics of soils are strongly nonlinear

and may significantly influence the dynamic response of a site subjected

to a strong earthquake. A good site response analysis must therefore

consider these nonlinear effects.

Details of the dynamic stress-strain behavior of soils have recently

been reported in state-of-the-art papers by Hardin (1978) and Yoshimi

et al. (1977). It is clear from these reports that the transient

stress-strain behavior of soils is extremely complicated and that this

behavior can not as yet be fully described by constitutive laws. Most

of the data and models available refer to cyclic behavior of soils

subjected to constant strain amplitudes. Typical stress-strain

relationships of soils subjected to symmetric cyclic loading conditions

are curvilinear as shown in Fig. 2.1.

In choosing dynamic soil properties for site response analysis, one

should realize that such problems can only be solved by making certain

assumptions about the nature of the wave fields involved. Except for

the special case of vertically propagating waves, which is not the

major topic of this dissertation, appropriate wave fields can only be

constructed for linear layered systems. Therefore, it is essential to

choose representative linear dynamic properties for the actual analysis.

As will be shown, such properties can be determined from the available

data, and an approximation to nonlinear analysis can be 2chieved by the

equivalent linear method, which is discussed at the end of this chapter.
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2.2 Measurement of Dynamic Proverties

Considerable effort has been directed towards the determination of

soil properties in recent years. A complete review of the measurement

of dynamic properties was given in a state-of-the-art paper by Woods

(1978). The most coimonly used test procedures are described below.

Determination of Hysteresis Loops

Hysteretic stress-strain relationships of the type shown in

Fig. 2.1 can be determined by cyclic triaxial compression tests, cyclic

simple shear tests, or cyclic torsional shear tests. These tests are

applicable in the amplitude ranges shown in Fig. 2.2a and are usually

performed in the frequency range of 1-20 Hz. Test results have

indicated that the shape of the hysteresis loops is virtually

independent of frequency. From these loops the effective dynamic

moduli and fractions of critical damping can be determined. The

modulus is the slope of the secant betweeen the ends of the loop, and

the damping is proportional to the aspect ratio of the loop, i.e., the

ratio between the average width and the length of the loop.

Resonance Column Tests

The dynamic moduli can also be determined from longitudinal or

tortional resonance tests, in which a column of soil is excited at

different frequencies to determine the natural frequencies from which

the moduli can be computed. The damping ratio can be estimated from

the height of the resonance peaks or by measurement of the phase

difference between the displacement of the specimen and the exciting

force. These tests are usually performed at frequencies in the range

of 20-260 Hz and are applicable in the strain amplitude ranges shown in

Fig. 2.2a.
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Free Vibration Tests

In these tests cylindrical soil samples are set into longitudinal

or torsional vibrations, the power is switched off, and the decay of

the amplitudes is measured to determine the logarithmic decrement, from

which the damping ratio can be computed. These tests can be conducted

using a resonant column apparatus with either solid or hollow samples,

and good results can be obtained only at relatively low to moderately

h.gh strain levels.

Field Measurement of Wave Velocities

In-situ tests are conducted to determine the velocities of

propagation of P-, S- and Rayleigh waves. The most usual types of

field tests are

a. Geophysical tests: seismic refraction, seismic cross-hole, and

seismic down-hole methods.

b. Surface vibration tests: surface wave and resonant footing

techniques.

c. Other field techniques: frequency domain measurements;

cylindrical in-situ tests, see Woods (1978).

In general, these tests give soil moduli for low strain levels.

In-situ tests are inadequate to determine the volumetric characteristics

of saturated soil because the measured P-wave velocities are greatly

affected by the presence of water. The customary procedure in this

case is to conduct laboratory measurements of Poisson's ratio or bulk

modulus. Such laboratory tests are usually performed statically because

the measurement of lateral deformations and volumetric strains under

dynamic conditions is not practical, Shannon and Wilson (1971).

The ranges of shear strain amplitudes over which the field

techniques are applicable are shown in Fig. 2.2b.

* * *
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2.3 Sumary of Available Data

As can be seen from Fig. 2.1, the effective dynamic moduli of soils

subjected to cyclic excitation will usually decrease with the strain

amplitude, and the damping ratio will increase as the strain amplitude is

increased. Therefore, it is customary to present the data in the form of

7 curves which show the variation of modulus and damping with strain

amplitude, see Figs. 2.3-2.9.

Most available data only consider the variation of shear modulus and

damping ratio with shear strain amplitude. In principle, two moduli and

two damping ratios should be considered-one set corresponding to S-waves

(shear modulus, G, and the corresponding damping ratio, Bs ), and a
s

second set corresponding to P-waves (constrained modulus, M, and damping

ratio, p). Also, the variation of these parameters with the amplitude

of normal strain should, in principle, be considered. However, normal

strains are usually considered to have only small effects on the dynamic

properties and are neglected. Similarly, the two damping ratios Bs and

ap are often assumed to be the same, although data by McDonal (1958)

and Eisenburg (1972) indicate that the damping ratio for S-waves is

considerably higher than that for P-waves (see below). A detailed study

of the factors influencing the shear moduli and damping values of soils

has been carried out by Hardin and Drnevich (1972). Seed and Idriss

(1970) have proposed simplified practical relations which will be used in

this study. Some relationships for rock material were proposed by

Schnabel (1973).

Cohesionless Soils

Seed and Idriss (1970) have shown that the dynamic shear modulus of

cohesionless soil can be expressed by:

G - 1000 K 2 ( 0ma a (2.1)
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where K2 is a parameter that depends on the relative density and the

shear strain amplitude. Also, a is the mean effective stress, which

equals (a + 2 K0 Oh)/ 3 , where a and ah are the vertical and

horizontal effective pressures, respectively, and K0 is the at-rest

earth-pressure coefficient. The exponent, a, has been found to vary from

0.3 to 0.8 (Idriss and Seed, 1968; Carriveau, 1970; Drnevich et al.,

1966; and Silver and Seed, 1969). Seed and Idriss (1970) proposed the

use of a w 0.5 in the above expression. The term F is a coefficient

accounting for grain size and shape variation. It ranges from 0.6 for

silt to 2 for gravel.

The estimated average value for the combined effects of K2 and F

is about 61 at low shear strain levels (10 - 4 percent) for a wide range

of sandy soils at 75% relative density. The attenuations of the shear

modulus with increasing strain for sands of different densities are shown

in Fig. 2.3. The curves shown in this figure may be normalized to a

single attenuation curve as shown in Fig. 2.4.

Measured values of the damping ratio for cohesionless soils and

average values proposed by Seed and Idriss (1970) are shown in Fig. 2.5.

The average curve shown is adequate for most cohesionless soils up to a

confining pressure of 2500 psf. The damping ratio will be affected by

overburden pressure, relative density, degree of saturation and the

number of loading cycles. The effects of the number of loading cycles

and relative density are minor. It has been found that the damping

decreases with increasing effective overburden pressure and increases

with increasing degree of saturation. Schnabel (1973) suggested that the

variation of the damping factor with effective overburden pressure, am $
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may be expressed by

~1/425001/
S2500 Fs8 ave (2.2)

m

where Fs is 0.6 for dry sand or 1.0 for saturated sand.

Cohesive Soil

The shear modulus of saturated clays has been found to be

essentially proportional to the undrained shear strength Su, as follows:

G - X S (2.3)u

where K is a coefficient depending mainly on the shear strain amplitude.

Average values of the coefficient K obtained from various sources are

shown in Fig. 2.6, Seed and Idriss (1970). Some recent results by Stokoe

and Lodde (1978) are shown in Fig. 2.7. The shear modulus of clay can be

determined in the field for low strain levels and in the laboratory for

high strain ranges. Sample disturbance will significantly affect the

shear moduli obtained from laboratory tests. Hence, laboratory data must

be corrected for sample disturbance. Correction factors can be obtained

by comparison of low strain tests in both field and laboratory.

The damping ratio of clays is affected by shear strain amplitude,

effective overburden pressure, void ratio, number of loading cycles and

water content. Most available data cover only the effect of shear strain

amplitude. Measured values of the damping ratio and proposed average

values for saturated clay obtained from different sources of data are

shown in Fig. 2.8.

Rock

Values of shear modulus for rock are most often obtained from

seismic investigations, which yield values only at low strain levels.

Very few data are available for strain dependence, but it seems likely

that rock will exhibit some decrease of shear modulus with increasing
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shear strain. The curves shown in Fig. 2.9 were proposed by Schnabel

(1973) for site response analysis of sedimentary rock layers. Schnabel

also presented considerable data for low strain properties of different

rock types.

A literature survey by Knopoff (1964) provides values of damping

ratios for various rock types. These data were obtained from laboratory

tests and indicate that the damping ratio for rock varies from 0 to 1.4

percent. A literature survey by Jackson and Anderson (1970) of data

obtained from in-situ measurement in the shallow crust of the earth

indicates values for the S-wave damping ratio ranging from 2.5 x 10-2

to 0.5%, and values for the P-wave damping ratio ranging from 0.010 to

1.50. For surface earth materials, Knopoff's survey (1964) shows values

of the P-wave damping ratio ranging from 1% for magnetite hemotite to

7.21 for Pottsville sandstone and values of the S-wave damping ratio of

about 50 for Pierre Shale.

Damping for shear waves is higher than for P-waves by a factor of

1.8 to 2.6 (McDonal, 1958; Eisenberg, 1972). No data are available

regarding the variation of damping with strain in rock, although some

increase in damping ratios with increasing strain is to be expected. The

strain dependent damping curve shown in Fig. 2.9 was proposed by Schnabel

(1973) for sedimentary rock layers with shear wave velocities in the

range 2000-4000 fps at 100-3000 It depth. He also proposed the following

method for adjusting the damping values of rock having other shear wave

velocities.

a. All materials with V <3000 fps are treated as soil with the5-"

same nonlinear property characteristics as described for soils.

b. All materials with V >11,000 fps may be treated as linear

elastic materials.

bI
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c. A material vith 3000 fPs<V<llOOO fps is treated as a

transition material between soil and linear elastic rock. In

this case, linear interpolation can be employed between the two

extremes described above.

Dynamic Poisson's Ratio

The dynamic Poisson's ratio of soil during cyclic loading has

attracted very little attention. Fig. 2.10 shows some laboratory test

results for the dynamic Poisson's ratio of clayey soil tested at

different shear strain levels, Hara (1973). It can be seen that the

dynamic Poisson's ratio for a soft clay and a very stiff clay are

essentially independent of the shear strain levels and frequencies of

cyclic loading. A statistical analysis of recorded wave velocities of

various deposits obtained by seismic exploration was conducted by Ohsaki

and Iwasaki (1973). The evaluated dynamic Poisson's ratio versus shear

moduli and the total average values are shown in Fig. 2.11. The results

demonstrate that the dynamic Poisson's ratio does not change appreciably

with shear moduli for sandy soils. Using the experimental results given

by Hara (1973), they concluded that the dynamic Poisson's ratio for

cohesive soils is almost constant (approximately 0.48) and that for

cohesionless soil, the dynamic Poisson's ratio is a function of shear

modulus.

In fact, the dynamic Poisson's ratio will significantly affect

stress and strain computations as well as the wave propagation

characteristics of P-waves in a soil deposit during dynamic excitation.

2.4 Theoretical Models

Several theoretical constitutive models have been proposed which,

with cyclic excitation, produce hysteresis loops similar to those shown
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in Fig. 2.1. For the special case of the shear stress-shear strain

relationship the most relevant models for soil dynamics analysis are

those discussed below.

1. Viscoelastic Models

The general viscoelastic solid produces an elliptical hysteresis

loop, the shape and slope of which are rate dependent (i.e., the

effective modulus and damping ratio are frequency dependent). However,

numerous tests have shown that the shapes of the hysteresis loops for

soils are essentially independent of frequency within the frequency range

of interest in earthquake engineering. A viscoelastic material which

satisfies this condition, as used in this dissertation, can be defined by

the complex dynamic modulus:

G -G(l- 20 + 21S _=) (2.4)

G(I + 21o8) ; for small 8s

where G is the usual shear modulus and 8s is the fraction of critical

damping. With this definition the stress-strain law for harmonic

excitation becomes

T - G*Y

where T and X are the complex amplitudes of stress and strain. A more

complex model for two-dimensional stress states will be introduced in

Chapter 3.

The hysteresis loops inherent in the above model are independent of

the strain amplitude. However, this problem can be overcome by the

equivalent linear method discussed later in this chapter.

2. Ramberg-Osaood Generalized Model

A four-parameter model which can be used for nonlinear analysis was

proposed by Ramberg and Osgood (1943) and modified by Jennings (1964).
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In this model, the shear strain is a function of a given stress as

follows:

(y/y - (T/Tul ) + a(T/Tult ) r (2.5)

in which r is a positive constant greater than one, 0 is a real positive

parameter, which is a function of r, yy is a reference strain, and

T ult is the ultimate shear stress. The shear stress in this equation

can not be explicitly represented by the shear strain for a general value

of r (r - I gives a linear relationship between X and T, and r - gives

an elasto-plastic relationship).

The hysteretic damping, 8, can be evaluated as described by Ja( -en

(1960).

B ma 1 - z1 -1

max G 2r G (2.6)max max

where 8max  (r - 1)/(Trr), and G/Gmax can be evaluated from

G/Gma x = / Dl + ci(G r/Gmax YY r - 1] (2.7)

The model has been used by Constantopoulos and Christian (1973) and

Streeter et al. (1974) for site response analysis and lately by Idriss et

al. (1976) for the gradual degrading of clay when subjected to cyclic

loading.

3. Hardin-Drnevich Model

Hardin and Drnevich (1972b) proposed the following approximate

relationship between stress and strain

T aGmax y/(l + Yh)  (2.8)

Gma x can be measured by resonant column or seismic techniques and yh

is the hyperbolic strain defined as:

-by/yy I

y I- 1+ ae y (2.9)
h y

y¢
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in which "a" and "b" are empirical soil constants and "e" is the base of

natural logarithms. This model needs four parameters explicitly. The

damping ratio is given by

max Yh/(l + Yh) (2.10)

For sandy soil Bmax depends on the number of cycles of loading, and,

for clay soil, on the loading frequency and stress state. A similar

model--initially used by Kondner (1963) and lately also by Hardin and

Drnevich (1972b)--does not include the parameters a and b and defines

T h - y/y . This model is called the Hyperbolic Model, and only two

p-rameters are needed to determine the stress-strain relationship.

4. Martin-Davidenkov Model

Martin (1975) modified the generalized Davidenkov model by defining

a new function for shear strain, and he proposed the following

stress-strain law:

T = G 1 1 - H(Y)]Y (2.11)max

where H(y) is given by

H(y) - {(Y/Y y2B/ 11 + (y/yy)2B1 IA (2.12)
y y

in which A and B are constant parameters. Four parameters are required

for this model. The damping ratio can be evaluated by

- 2 { 2H(y) - 2 nH(n) -n/ { 2 _ 2 rlH(n) dn (2.13)

fo f0

By appropriate choices of the parameters involved all of the above

nonlinear models can be made to fit approximately the strain dependency

curves for cyclic loading published by Seed and Idriss (1970), see

Fig. 2.12 from Ragawa (1978). The Martin-Davidenkov model provides the

closest fit.
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2.5 The ftuivalent Linear Method

The nonlinear behavior of moil materials cannot be fully described

by constant elastic moduli and damping coefficients. However, a good

approximation of the effects of soil nonlinearities on the response can

be obtained by the use of constant strain compatible moduli and damping

ratios in a sequence of linear analyses. This method, which is known as

the equivalent linear method (Seed and Idriss, 1969), can be briefly

described in the following manner.

In a site response analysis the equivalent linear method starts with

a linear analysis using estimated soil properties in each layer of the

soil system. This analysis yields complete time histories of shear

strain, from which the effective shear strain amplitudes are calculated

in each layer. (The effective shear strain amplitude is usually taken as

65% of the maximum shear strain or as the RMS value of the shear strain

time history). Using the computed strain amplitudes, an improved set of

soil moduli and damping ratios are obtained from appropriate soil data

curves of the type shown in Figs. 2.4-2.9, and a new linear analysis is

performed with these properties. The process is repeated until the

properties from two consecutive analyses differ by less than a specified

tolerance, say 5 percent. This will usually require fewer than 5

iterations. The results of the last iteration are taken as the final

solution to approximate a true nonlinear solution. This technique has

been widely used in practice Lecause it is an efficient method and is

easy to implement in a computer program.

The linear equivalent method can also be used for two-dimensional

analysis by the finite element method, Idriss et al. (1973) and Lymer

et al. (1975). In such analyses, strain compatible properties are

determined by iteration for each soil element.
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The equivalent linear technique has been shown to give surprisingly

good approximations to motions computed by truly nonlinear techniques,

Martin (1975), although cases have been found where significant

differences occured, Martin (1975) and Finn et al. (1978). Good

agreement has also been found between observed ground motions and motions

computed by equivalent linear methods, Idriss and Seed (1968), Schnabel

and Seed (1971), and Valera et al. (1977).

2.6 Combined Loading Effect on Strain-Dependent Properties

The above discussion of shear modulus and S-wave damping is

basically for the case of a simplified one-dimensional S-wave analysis.

These strain dependent properties can be easily obtained from available

laboratory tests such as the resonant column test and the strain control

triaxial cyclic test. However, during an earthquake, the soil is excited

simultaneously by all kinds of seismic waves travelling in all

directions. An element of soil will be subjected to combined shear and

compressive strains. How these combined excitations affect the modulus

and damping characteristics is still not clear.

A research program to study these combined effects in different

soils is currently in progress at the University of California at

Berkeley. The research comprises different studies in order that a wide

range of loading conditions and strain amplitudes might be explored. For

the harmonic simultaneous loading condition, two components of loading

can be either out of phase (Rayleigh wave type excitation) or in phase

excitation (body waves at small angles of incidence). At low strains,

studies involve the cyclic excitation of a triaxial soil specimen in a

special resonant column device capable of simultaneous compression and

torsion excitation. At high strain ranges, studies involve the cyclic

loading of a hollow cylindrical specimen of soil with a special testing
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machine capable of reproducing earthquake level strains. While the study

is still continuing, the effect on both the shear and constrained moduli

and damping appears to be significant in some high strain ranges and some

particular loading conditions, Griffin (1979).

Because of a lack of experimental results on strain dependent

properties for simultaneous loading conditions, the site response

analysis for R-wave excitation is still restricted to linear analysis.

However, the developed computer program SITE can handle the approximate

nonlinear analysis for R-wave excitation whenever the strain dependent

properties are available.

In site response analyses with R-waves or inclined body waves, the

strain-4ependent property curves for both the shear and the constrained

moduli as well as both the S-and P-wave damping ratios will be used

simultaneously for the iteration process. The complex constrained

modulus, M , is defined in a similar way as the complex shear modulus

defined in section 2.4:

* 2
M1 - (128 p + 2il p - Bp) (2.14)

where M is the real constrained modulus and Bp is the damping ratio

due to P-waves. However, at this stage, because of a lack of data on

strain-dependent P-wave properties, one can assume a constant real

Poisson's ratio and follow the conventional iteration procedures by

iterating on shear modulus and S-wave damping. This approach implies

that the analysis is using the same rate of attenuation on both the shear

modulus and constrained modulus and also using the same value of damping

for S- and P-waves. On the other hand, as an extreme case one can assume

a constant constrained modulus and a constant P-wave damping together

with strain-dependent S-wave properties. Analyses iterating on these

iibm1.~-~___________
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Sets of property curves viii result in a complex Poisson's ratio. The

Poisson's ratio will be strain dependent and tend to be larger than that

obtained vhen both G* and M* are assumed to be shear strain dependent.
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CHAPTER 3

INCLINED BODY WAVES

3.1 Introduction

In this chapter a method is developed for the evaluation of the

seismic response of a horizontally layered site due to a system of plane

incident body waves. These waves arrive at an oblique angle at the base

of the layered soil system from an underlying uniform half space.

The fundamental equations of motion are presented and partially

solved in Section 3.2. The complete solution for the special case of a

half space with a free boundary is presented in Sections 3.3 and 3.4.

Additionally, an exact solution for a single uniform layer over a

viscoelastic half space is developed in Section 3.5. This solution will

be later used to verify the discretized method, as developed in Sections

3.6 and 3.7, for a general multi-layered system.

3.2 Governing Equations

The motions created by incident plane body waves will in general

involve three components of displacements, however, these components do

not vary in the horizontal direction, y, perpendicular to the direction

of wave propagation. Hence the problem involves only the space

coordinates x and Z. The coordinates of x and z are defined as shown in

Fig. 3.1.

For the special case of harmonic excitation the equations of motion

for an isotropic viscoelastic medium may be written:

I.a
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2
* ac a u

(M - G) + G-Vu aP ' (3.1.a)
-9 x at 2

TI Z z (3.1. b)
2G *V~u Ma u

GV 2 u - (3.1.c)S t 2

where

au au
C - + z (Dilation)

ax az

2 2 a2

, x2 +az2 (Laplace Operator)

and ux, u y, uz are the displacements in the x, y, z directions,
* *

respectively. p is the mass density and M* and G are the complex

moduli introduced earlier. Equations (3.1.a) and (3.1.b) are coupled.

They govern the motion in the vertical x-z plane while Eq. (3.1.c)

governs the motion perpendicular to the x-z plane. The waves described

by Eqs. (3.1.a) and (3.l.b) will be discussed first.

General Solutions

Using a method based on the work of Helmholtz, see Ewing et al.

(1957), Eqs. (3.1.a) and (3.1.b) can be solved by expressing the

displacements in terms of displacement potentials * and 4 as follows:

ux - _a - h- (3.2.a)

u- az 4-ax (3.2.b)

where *, 4 satisfy the wave equations:

V 2 - O (3.3.a)
VP

2 at
2

i.1
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V 2 * 1 2 (3.3.b)V2 at
2

The potential functions * and * are associated with P and SV wave

motions, respectively. The two types of waves propagate through the

medium with velocities Vp and Vs, respectively.

Since the motions are assumed to be harmonic at the frequency w,

the wave potentials must also be harmonic, and can be written:

* - * • (3.5.a)

- iWt (3.5.b)

where 0 and Y are complex potential amplitudes. Substitute of Eqs.

(3.5) into Eqs. (3.3) yields the time independent equations:

V2O + k2 - 0 (3.6.a)
p

V21 + k2 . 0 (3.6.a)
8

* *

where kp - w/Vp and ks a w/V s are complex P-wave and

S-wave numbers, respectively.

Particular solutions to Eqs. (3.6) corresponding to plane waves

propagating in the positive x-direction with the complex wave number

k - kr + iki (kr > 0, ki < 0) may be found by separation of

variables:

-ikx
Let 0 - f(z) e (3.7.a)

-ikx
- g(z) e (3.7.b)

Substitution of these expressions into Mqs. (3.6) leads to the following

ordinary differential equations:

2
af 2 2
+ (k~ k )f *0 (3.8.a)
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___ 22
2dz2  (k25 - k2) g - 0 (3.8.b)

The solutions to Eqs. (3.8) are:

V ik z -ik z
f(z) a A1 e + A2 e (3.9.a)

and

g(z) - B1 e i~z + B2 e (3.9.b)

where k and k are the solutions with positive real parts to the

equations.

k 2 -k 2 -k 2  (3.10.a)

k2 ,k 2 -k 2  (3.10.b)

Introducing the notation

k - k. sin e = k. sin f (3.11)

where e and f are (not necessarily real) angles which, as will be shown

in connection with Bq. (3.23), are related to the direction of wave

propagation, the wave numbers in Eqs. (3.10) may be written

k w k p cos e - k cot e (3.12.a)

k - k8 cos f a k cot f (3.12.b)

Substitution of Eqs. (3.9) and (3.10) into Eqs. (3.7) yields the

following solution to the original Helmholtz equations, Eqs. (3.6):

(A= 1( M• k + A 2 (w) e •i e - i k x  (3.13.a)

ik z -ik z
(B1 e * + B2 )0ei (3.13.b)

* ik4'z) + 2(w) • •z ek (3.13.b)

A further, complete expression for the displacement amplitudes may be

found below, Eq. (3.31). The surface amplitudes follow from Eq. (3.33).
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Equations (3.13.a) and (3.13.b) are obviously of the same form. Bence,

only solutions corresponding to the first equation will be discussed in

full detail. These solutions correspond to P-waves.

P-Waves

The potential function in Eq. (3.13.a) can be written on the form

0 - 01 + 02 (3.14)

where

-i(K or) -A or -iP or
0 - A n - A n e e ;n - 1,2 (3.15)

n n n

In this notation r is the location vector, r , xx + zz, where x and z

are unit vectors on the x- and z-axes, respectively, and K is the
n

vector

K n k2 + (-1)n k z - Pn - iAn , n - 1,2 (3.16)

The real vectors Pn - Re(r n) and An  -Zmn(E ) are called the

propagation vector and the attenuation vector, respectively.

The last form of Eq. (3.15) shows that 0 represents a plane

wave with the potential amplitude An (at the origin) which propagates

-- with the attenuation factor exp(-IAn1) perin the direction per

unit length in the direction of the attenuation vector A . Both ofn

these vectors lie in the xz-plane. A wave for which the propagation

vector and the attenuation vector do not coincide is called an

inhomogeneous wave. For such plane waves the amplitude will vary

exponentially along the wavef ront, see Borcherdt (1973).

The angle en from the z-axis to the propagation vector, Vn may

be determined by considering the vector product

x y zA - A

zXP n 0 0 1 *Relkly (3.17)

Rek) 0 (-1) Re(k

..................
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where y is a unit vector on the y-axis. This vector product also

satisfies

A, - sin e y - IPn sin e y (3.18)

thus,

sin e Re(k) > 0 (3.19)

4 2 1k ) + Re2 )(k)

Similarly, by considering the "dotw product tePn
nn

(-1) n Re(k)
cos e = (3.20)

n 2 2
Re (k) + Re (k

which, since Re(k@) > 0 and Re(k) > 0, shows that n 1 I corresponds

to a wave propagating generally upwards while n - 2 corresponds to a

wave propagating generally downwards, see Fig. 3.1.

The same procedure applied to the vector product F x nn n

yields the following expression for the angle, a n , from the

propagation vector to tbw attenuation vector

sin a - (-I) n _ Re(k)Im(k) - Im(k )Re(k) (3.21)s n r 2 2-)
n  

(3.21) +I

vLRe (k) + Re (k )[m(k) + m(Ic)]

This expression shows that a homogeneous wave (an * 0) occurs if
n

and only if

Im(k) I Im(k (3.22)
Re(k) Re(k

But this implies, by Eqs. (3.10) that arg(k) * arg(k , a

and also that the angle e in Eq. (3.11) is real for homogeneous waves.

Furthermore, for this case Eqs. (3.19) and (3.20) reduce to

sin e n sin e (3.23.&)n

co en (-1) n cos e (3.23.b)

kjib
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Thus* e is simply the angle, e2, which the downgoing wave forms with

the z-axis, and the corresponding angle for the upgoing wave is

-- e.

BV-aves

A similar vectorial study of the SV-vave solutions expressed by Sq.

(3.13.b) will show that all of the formulas, Eq. (3.14) to Sq. (3.23)

are also valid for this case provided k , kp, n, An and en

are replaced by k, ks T , B' *n and fn , respectively.

SH-Waves

The motions described by Sq. (3.1.c) are called SE-waves. They

involve displacements only in the y-direction. The solution for

harmonic notions propagating with the wave number k in the positive x-

direction is

u = U • ~ (3.26.a)
y y

where

,' ik z -kcz
Uy -C 1i * +C 2  e , i kx  (3.26.b)

The wave number k is as defined by q. (3.10.b), and C1 and C2

are to be considered arbitrary complex constants. As for the case of

the P- and SV-waves discussed above, the terms of this solution may be

written in a vector notation similar to Eq. (3.13) and (3.14). However,

homogeneous incident SI-waves do not give rise to inhamogeneous

reflected waves, and the simple notation of Sq. (3.2f) will suffice for

wave fields considered in this dissertation. The wave numbers for

homogeneous SI-waves satisfy the condition stated by 8q. (3.13), i.e.,

k a k a sin f, where f is the angle which the propagation vector forms

with the z-axis.
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3.3 The Viscoelastic Half Space

The following study of the solution for the case of a homogeneous

harmonic body wave obliquely incident on the free surface of a uniform,

viscoelastic half space will provide an insight into the nature of the

more complicated solutions for multi-layered systems to be discussed in

later sections. As shown in Fig. 3.1, an obliquely incident homogeneous

SV-wave will in general result in two reflected waves of different types

(mode conversion). Furthermore, in certain cases, depending on the

incident angle and the material properties, one of the reflected waves

may be inhomogeneous, Dorcherdt (1971) and Cooper (1967).

Incident SV-Waves

Only the specific case of an incident SV-wave will be discussed in

detail. However, the method presented is also applicable to the case

of an incident P-wave. Since no incident P-wave exists for the case

studied, the form of the solution is given by Eq. (3.13) with A1 - 0.

The incident SV wave is represented by the term B exp(ikz).

The incident angle, f - -fs, shown in Fig. 3.1, is real since

the wave is assumed to be homogeneous. The relations in Eqs. (3.23)

iuediately implies that the reflected SV-wave, represented by the term

B2 exp(ik *z) is homogeneous and forms the angle f 2 A f with the

z-axis. Inversion of Bq. (3.11) and multiplication by w yields the

complex form of Snell's Law

V - Vp/sin e - Vs/sin f (3.27)
a p 8

where Va w/k is the apparent complex phase velocity along the freea

surface. Hence,

s
V

sine - sin f (3.28)
V

S
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which shows that the reflected P-wave, corresponding to the lost term

in Eq. (3.13a), will always be inhomogeneous if B € B and that
a p

even if B * B a homogeneous reflected P-wave will only occur when
Sp

f is smaller than a certain critical angle, f , defined by
or

sin fcr 0 V /V (3.29)

since sin e > 1, for f > f

The amplitudes A2 and B2 of the reflected P- and S-waves,

respectively, can be computed from the condition that no stresses occur

at the free boundary. Introducing the notation

a - cot e; b a cot f (3.30)

where b is real while a could be complex, and remembering Eqs. (3.12),

the displacement amplitudes are by Bqs. (3.2), (3.5), (3.7), and (3.9)

U A 1

x i k e-ikXz] A 
(3.31)

B2

where

[-eiakz -b ibkz -iakz beibkz1
Z] - eiakz -eibkz _ -iakz -e -ibkz 1 (3.32)

Lae -e -a e -0

Thus at the surface (x - z a 0)t!I U b-
-ik 1- A (3.33)

za -1 -a -1 2

The strain field can be obtained by differentiation of Sq. (3.31) and

the stresses then follows on the basis of Hooke's Law. This leads to

the following expression for the normal stress, 0, and shear stress, r,

at z 0.
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SG 2 [2a (3.34)

S k -b 2 2b (1-b2  -2b ( A2
B 2

Since these stresses must vanish, A1 a 0, and B1 is known, this

immediately leads to a system of linear equations from which A2 and

B2 may be determined.

2a 2 21 

(1- b2 
)  - 2a B.2-2bJ B2 B-2(3.35)

The solution is:

A2 -4b(1-b) 2 (3.36)
4ab + (1-b2) 2

2 2
B a 4ab - (1-b2) B (3.37)

4&b + (1-b2 )

This solution has the properties:

A2 -0 andB 2  -l; for f-* 0

and

A2 0 0 and B 2* 1; for f - 450

Thus, no reflected P-waves occur at these angles of incidence.

Furthermore, by Bq. (3.33), no vertical displacement occurs at the

surface for f - 0; and no horizontal displacement occurs for f - 450.

Surface displacement amplitudes for other angles of incidence can be

computed from Eq. (3.33).

Solutions for the elastic case have been published by Knopoff

et al. (1957) and Neissner (1965) for both incidence SV- and P-waves.

Figs. 3.3 and 3.4 shows ratios between surface amplitudes and the

horizontal component of amplitude of a vertical incident SV-waves. The

corresponding particle motions are shown in Fig. 3.2. These figures,

which are actually valid for a damped half space as long as =
5 p

indicate several interesting features:



44

0 b
oo r

0

4.b

V2 0

a

4P cm

up U

-, 2

3GflLIdflV GazilyVON ~

0e

00 %

ow

C

2 4

(a.

r ig-~LC&t. 'l&. - p.



45

1. For angles of incidence less than the critical angle, see

Eq. (3.29), a is real and the horizontal and vertical

components are in phase. The particle motion is linear and

the horizontal component of motion is larger than the vertical

component for usual values of Poisson's ratio.

2. For incident angles larger than the critical an§gie, a is

complex.

The reflected P-wave is inhomogeneous and the reflected

(homogeneous) SV-wave is out of phase with the incident wave. The

horizontal and vertical motions are 900 out of phase. Thus, the

particle motion is elliptical (retrograde for f < 450 and prograde

for f > 450). The vertical component is generally larger than the

horizontal component.

The comparison between the induced vertical and horizontal

amplitudes of surface motion for an incident SV-wave at different

angles of incidence is shown in Fig. 3.7. The dotted lines show the

cases for all incident angles exceeding the critical angle. A

singularity is found at 45 degrees because the horizontal displacement

is 0 for all values of Poisson's ratio.

Incident P-Wave

The case of an incident P-wave can be treated by the technique

used above. Snell's law, Eq. (3.27) is also valid for this case, but
* *

since V is always larger than Vs no critical angle of incidence

exists. Surface amplitudes can also be computed from Eq. (3.33) by

setting B1 = 0 and assuming that A1 Is given. Figures 3.5 and 3.6

show the normalized vertical and horizontal amplitudes of P-wave at

different angles of incidence for a range of Poisson's ratio. Both

displacement amplitudes are normalized by the amplitude of the

A 1.|
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vertically incident P-wave. The features of the notion are summarized

as follows:

1. For a medium with Poisson's ratio greater than 0.2, no

significant difference is seen in the different amplitude

curves and an approximation through a function Uz/V°

- cos e is sufficient for most practical purposes, Heissner

(1965). V denotes the vertical amplitude of vertically

incident P-waves.

2. The induced horizontal components start from 0 at vertical

incidence, and increase practically linearly to 35 degrees

incidence. The maximum horizontal amplitude is about 52

percent of V at 52 degrees incidence for a medium with a0

Poisson's ratio of 0.4; and is about 93 percent of V at 650

degrees incidence for a medium with Poisson's ratio of 0.2.

The ratio of the horizontal to the vertikal amplitude of surface

motion due to incident P-wave is shown in Fig. 3.8. The angle of

incidence has a strong effect on the displacement ratio for materials

with a low Poisson's ratio, while for materials with a high Poisson's

ratio the effect is relatively small.

3.4 Single Layer over Half Space

In order to verify the algorithm of the computer programs SITE and

LOVE which will be described in Section 3.7, the boundary value problem

for a viscoelastic uniform layer overlying a viscoelastic half space is

solved analytically. The amplification of oblique SV- or P-waves

incident to the base with various incident angles were examined. The

effects of S-wave velocity ratios between the layer and the half space

on response were also studied.
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3.4.1. Solutions to Boundary Value Problem

The structural model shown in Fig. 3.9 consists of two uniform

isotropic viscoelastic media. A layer with the thickness H, and the

properties pG' , ', 'V V ' 8, and overlies a half space
6 p a

with the properties , G*, *,V , 8s, and

Let 9, Y, and ', I, be the displacement potentials of the P-and

SV-waves in the bottom half space and stratified layer. The general

expressions of 0, T, 0' and ' are denoted by

iakz e-iakz) -ikx
- (A1 e + A2 e )e (3.38.a)

ibkz e-ibkz) -ikx
I (B1 e + B2  e (3.38.b)

where

a a {V /V)2 _ 111/2 , b - {(V/V)? - 1 1/2 (3.39)

and

irkz -irkz) -ikx

V - (C e + D e- )e (3.40.a)

iskz -iskz) -ikx

w I= (E e + F e- ) e (3.40.b)

where

r - t(Va/Vp;) - ll/' , s - {(V/V)- 1 1(3.40.c)

in which A1, A2, I' B2, C, D, E, F are arbitrary constants to

be determined by the boundary condition. On the basis of assumptions

similar to those made in the previous section:

1. Only one incoming wave is incident to the base boundary

2. The incident angle is real

3. Va - V./sin f

it can be concluded that if only an SV-wave is incident to the base

boundary, the coefficient "b" will be the only real quantity and a, r,
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and s will be complex. If a P-wave is incident, then b, r, and a will

be complex in general and the coefficient "a" will be real.

The displacement components can be determined from Eq. (3.2) and

stresses can also be obtained from Hooke's Law by the substitution of

appropriate quav.:tties for the half space and the surfacial layer. The

boundary conditions are:
6 6

at z -O: Ux W U , Uz -Uz

I U

xz T , zz azz

I I

at z - -H: T - 0, a 22  0

Incident SV-Wave From the Base

By setting A1 a 0 and normalizing all coefficients by BI, a

set of linear equations may be formed in terms of the system geometry,

system properties, and normalized coefficients. The linear equation is:

f {Q5J .R. (3.41)

where

{QsI " <A21, B2 C', D', El,

RsI - <-b, 1, -(b 2-1)G , -2bG , O,

and EP -

1 -b -1 -1 -Ss

-a -1 -r r 1 1

-2aG (b2-1)G -2rG 2rG -(a 2-l)G*  -(s2-l)G *

-(b 2-l)G -2bG (a 2-1)G *  (a 2-1)G* '  -2sG 2sG

0 0 2re
- ikhr -2reihkr (a 2_-l) e-iksh ( 21) iksh

0 0 -(s2-)e ikh r  - (s2_ )eikhr 2se ik
sh -20 iksh

(3.42)
6 6

From this equation the normalized coefficients A2, B2, Co, D',

B', F' can be found in terms of given parameters in E3 and {Rs}.

. . . .. . . ....... '. ...................................... ' k-.... ,...., "
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Incident P-Wave Fro the base

Again, a real value of an angle of incidence may be specified,

then, by setting B1 a 0, and normalizing all coefficients by A1 :

IF] IQ pI R } (343)

in" which

1%} "<A' B,' C, D,, E., ,>T

and

I R .1 <-1, -a, -2aG*, (b 2 l)G , 00>

Displacements and Stresses

For any wave field expansion of Eq. (3.2) gives the normalized

displacements for the surface layer:

U' - U'ei(wt-kx)

(3.44)

w'= We i (wt-kx)

where

U' - -ik (C' •ikrz + D' e
-ikrz) + s(E' eiksz - PI e-iksz)

(3.45)

W' •ik {rlC' eikrz D' e- ikrz) - (E' •iksz + PI eikz)}

and the stress components

i (wt-kx)
T' - T e
XZ

(3.46)
i (wt-kx)C' -Ce

xz-

where

-- G*' 2 frkz -irkz 21) eskz -iskz)raG ki2r(C' eik - D' e )+ (s2-l)(E' e + F' • z)

(3.47)

a G k 2-ls2-l)(C' eIrkz + K' e-irkz)- 2s(E' eis kz - F' iskz)0

The displacements and stresses at the base boundary due to a specified

incident wave take the same forms as shown in Eqs. (3.33) and (3.34)
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3.4.2 Numerical Examples

A model consisting of a simple uniform layer overlying a half space

was used to investigate the characteristics of displacements at the free

surface and the base boundary for the case of SV- or P-waves incident

at different angles. The study also included a study of the effects of

the incident angle on amplification of both steady state and transient

motions. The influence of the variation of shear wave velocity,

Poisson's ratio, and damping ratio between surface layer and half space

were also studied.

The basic system is shown in Fig. 3.10. The parameters had the

values

Surface Layer Half Space

Thickness (ft) 128 infinite

Unit weight (pcf) 125 162.5

Shear wave velocity (fps) 1000 1200 - 8000

Poisson's ratio 0.1 - 0.45 0.1 - 0.45

Damping ratio 0.05 - 0.12 0.02 - 0.05
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The fundamental fixed base undamped frequencies of the layer were

1.95 Hz and 3.38 Hz for S- and P-waves, respectively. Computations

were performed at a frequency of 1 Hz. Thus, the shear wave length in

the surface layer was 1,000 ft. The ratio of wave length to the

thickness of the layer was about 7.8 and the ratio of densities between

half space and the surface layer was 1.3.

Displacements at Layer Surface and Layer Base

The horizontal displacements and vertical displacements at the free

surface due to a harmonic inclined SV-wave was computed for an elastic

system with Poisson's ratio 0.25. The results are shown in Fig. 3.10.

In order to see the influence of the incident angle, both components are

normalized by the displacement at ground surface due to a vertically

propagating shear wave. The results are very similar to those shown in

Section 3.3 for a viscoelastic half space. The horizontal component has

a sharp peak at the critical angle whereas the vertical component at

this point forms a downward sharp cusp. For most realistic choices of

system parameters, the horizontal emplitudes of inclined Sv-waves are

maller than those of vertically propagating shear waves except at a

very narrow range of angles of incidence around the critical angle.

The vertical amplitudes of SV-waves are zero at normal incidence and

linearly increase to 40 percent of the amplitudes of vertically

propagating shear waves at 30 degrees of incidence. The effects of the

shear wave velocity of the half space on the displacements are

insignificant, as can be seen from Fig. 3.10 which contains results for

four different values of the velocity ratio.

Figure 3.11 shows similar results for the case of incident P-waves.

Both components are normalized to the ground surface amplitude of a
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vertically incident P-wave. All the vertical components of the

inclined P-wave are smaller than those corresponding to vertical

incidence. No difference can be seen in the amplitude curves for the

four values of shear wave velocity ratios. This effect is probably due

to the relatively long wave length as compared to the thickness of the

surfacial layer. The horizontal components of the inclined P-wave are

more sensitive to the shear wave velocity of the half space. The

greater the stiffness of the elastic half space, the larger the

horizonal displacements due to inclined P-waves. The greatest

differences in horizontal amplitudes occur for angles of incidence

between 50 and 70 degrees.

Figure 3.12 illustrates similar studies of normalized

displacements at the top of the half space for the case of a shear wave

velocity ratio equal to 4. Both results indicate that if the angle of

incidence is less than 30 degrees, which should be the practical case;

the vertically propagating body waves produce larger motions than the

inclined body waves.

Amplification at Ground Surface

A study was made of the variation of amplification of a harmonic

SV-wave arriving at a wide range of incident angles. The frequency for

this harmonic SV-wave was arbitrarily chosen as 1 Hz. Site

amplification at ground surface versus angles of incidence have been

plotted for four different values of the S-wave velocity ratio as shown

in Fig. 3.13. For angles of incidence less than the critical angle,

the horizontal components at the ground surface are about 1.4 times the

horizontal amplitudes of Sv-wave at the base for the cases of an S-wave

velocity ratio greater than 2. The vertical components at the normal
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incidence are zero and increase linearly to about 70 percent of the

horizontal amplitude of the vertical shear wave at 30 degrees of

incidence. At the critical angle, vertical components show a very

sharp trough because an unusual amplitude spike appears at this angle

as seen in Fig. 3.12. The amplification at some particular angle of

incidence, say 43 degrees in this case, can not be defined since the

horizontal amplitude at the base approaches zero. Fortunately, this

case will not appear in practice because the angles of incidence are

normally less than the critical angle, and also this phenomenon does

not occur in damped systems. The amplifications for inclined P-waves

incident to the base are shown in Fig. 3.14. Both components are

normalized by the vertical amplitudes of the base at the corresponding

angles of incidence. For this case the shear wave velocity ratio is

not a significant factor if the angle of incidence is less than the

critical angle.

The variation of amplification with frequency for an undamped

system is shown in Fig. 3.15 and for angles of incidence of 0, 10, 20,

and 30 degrees. The case of normal incidence, shown as a solid curve,

is the well known case of a vertically propagating shear wave. Only

horizontal amplitudes occur in this case. The peak amplifications

occur at 1.95 Hz, 5.86 Hz, 9.77 Hz, 13.67 Hz etc., which are the

natural frequencies of the system. For inclined waves, coupling

effects occur, and vertical components are induced. Three other cases

were shown in the same plot. Some effects of coupled P wave motion may

be seen at frequencies near 3.4 Hz and 10.2 Hz, which are the first and

second natural frequency of P-waves of the site.



61

co

In S90

or

0

041
VC

2. i M cz

C1

coo

N~~ -Y C 1 -0 0 0 0Z

qA/ Tv-uozjoi - lic:I. iaw v



62

IMCIPINl APCLI

0 Ole.

* D(C.

to D(C.

------ -0 is (DE .

.AT CROUPO IUNFAC(

s5.g0 Noel. COMP. of 2V

..

S t. OO 4.1O 0. 00 0.60 I0.00 12.06

FR(OUENCY - HERTZ

lCIDENT AUCL( 6 0(6.

to DEC.

20 DEC.

IS. 00 30 DEC.
AT CROUNO SUNFACE

zV (T. COMP. UF S UAV(S

$.00

1.0o q.00 0 so 0 of 0 2.0 00.00

FRDU~ENCY HE.RTZ

ig. 3.15 Effect of Incident Agle on Site Amplification at
Ground Surface - Closea Form Solution



63

Computations were performed for the same system assuming a 2

percent damping in the half space, and 5 percent damping in the layer.

The results are shown in Fig. 3.16. The resonant peaks for all modes

are damped out significantly compared to the undamped cases. However,

while the effect of incident angles on the response is not important on

the horizontal component, it is quite significant on vertical component

of SV-waves as was found in the undamped case.

Effect of Damping Contrast

As shown above the effect of uniform damping is to reduce the

surface response significantly. In order to study the effect of a

contrast in damping ratio between the surface layer and the underlying

half-space surface amplification factors were computed for the special

case of an SV-wave with an incident angle of 10 degrees for the

following three choices of damping ratios.

Surface Layer Half Space

System (%) (I) (%) (1)

1 5 5 2 2

2 12 12 5 5

3 12 6 5 2

The result of these computations are shown in Fig. 3.17. As

expected the horizontal amplification functions were found to be

similar to those computed for vertically propagating shear waves,

compare Fig. 3.16. However, some effects were observed in the
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amplifications of vertical otions. In particular, it is interesting

to observe that Systems 3 (which B. a 12S, Op a 60 in the layer)

produced nearly as big vertical notions as System 1 (with 8 = p

a 5% in the layer). Thus, it appears that horizontal amplification is

governed by 8 while vertical amplification is governed by Bp

This observation is perhaps not too surprising if one observed that for

System 3 the peaks occur at the natural frequencies for vertically

propagating P-waves in the site.

Effect of Poisson's Ratio

Studies were also performed on the above undamped two-layer

systems to determine the influence of Poisson's ratio. Again, a SV

wave with an incident angle of L0 degrees was assumed.

Figure 3.18 shows the effect of varying Poisson's ratio in the

half-space (it was set to 0.25 in the layer) and Fig. 3.19 shows the

effect of varying Poisson's ratio on the surface layer (it was set to

0.25 in the half-space). As expected variations in Poisson's ratio has

only mali effects on the horizontal response while it significantly

influenced the vertical response. This of course is due to the strong

effect of Poisson's ratio on the P-wave velocity.

3.5 Multi-layered Half-space for SV and P Waves

The propagation of body waves in multi-layered systems is of

fundamental interest in seismology and has been studied by Thomson

(1950), Matsumoto (1953), Haskell (1960, 1962), Phinney (1964), Hannon

(1964), Teng (1967), and Bakun (1970). Their methods of analysis ware

essentially based on the Thomson-Haskell's matrix formulation. The

formulation uses the idea of displacement potential theory and only

considers harmonic wave propagation in an undamped elastic media.
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Silva (1976) extended Thomson-Haskell's formulation to include damping

in a layered system overlying an undamped elastic half space.

The above theories lead to a very complicated equation of motion

in which the wave number k, enters through transcendental functions in

a form similar to Eq. 3.41. As shown by Lymer (1969) and Waas (1972)

a much simpler equation of motion, see Eq. (3.50), can be obtained by a

discretized representation of the layered half space. In this method

it is assumed that displacements vary linearly between layer

interfaces. As will be discussed this assumption imposes certain

restrictions on how thick individual sublayers can be chosen. A major

advantage of the method is that it leads to a uniform treatment of

inclined body waves and surface waves and it will be used extensively

below. In the original applications of the method, Lysmer (1969) and

Waas (1972), the underlying half space was considered to be rigid.

This lead to a method for analyzing surface waves in layered systems as

will be discussed in Chapter 5.

Udaka (1975) used the same method with specified motions at the

half-space surface to simulate the effect of traveling waves. In this

method a control motion at the half-space surface was assumed to

propagate horizontally with a given constant phase velocity. Only one

component of motion was allowed at the control point. The method does

not consider interaction between the layered soil systems and the

underlying half space.

This interaction is properly considered in the present work on the

effects of inclined body waves arriving through a viscoelastic

half space. The study will show that except for the case of normal

incidence, there must be two components of motion at each layer

interface. The following cases will be considered:



70

I. SV-waves at oblique incidence

2. P-waves at oblique incidence

3. Pairs of SV-and P-waves at oblique incidence

3.5.1 Discretized Formulation for Layered System

The layered system considered is shown in Fig. 3.20. It consists

of n homogenous, isotropic layers over a half space. All material

properties may be undamped elastic or damped viscoelastic.

Assuming linear variation of displacements within each layer the

displacement of any point in the system for a plane harmonic wave

travelling in the horizontal x-direction at a given frequency, w, can be

written:

i (wt-kx)6x a ou (z) e (3.48.a)
6z - iaiU z) ei(wt-kx) (3.48.b)

in which, for z z < +1

Ux(z) a (Zj+l - z)/hj U2j-1 + (Z - z )/h U2j+l (3.49.a)

Uz(z) - (Zj+l - z)/hj U2j + (z - z )/h U2 j+2  (3.49.b)

and a is a mode participation factor that can be found from the given

control motion. The displacement functions U (z) and U (z) are

interconnected and can be normalized in any manner. The wave number K

may be complex expressing both the phase velocity, V a w/Re(k), anda

the attenuation factor, exp (-Im(k)x).

As shown by Udaka (1975) the equations of motion for the

discretized layered system is

W 2 wCJ) 1U) 0 (3.50.a)

where

Li - A k2 +EI k EG (3. 50.b)

In these equations all matrices are of the order (2n + 2) x (2n + 2)

and the last two terms, Pb' of the load vector are forces at the
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interface between the layered system and the half space. The vector U

contains (2n + 2) complex displacement amplitudes, U., j - 1, 2, .....

(2n + 2) for the (n+l) layer interfaces each having two degrees of

freedom Ux and U2 .

The banded, sylnmetric matrices [A], [I], EG], and EM], are assembled

from sublayer matrices as shown in Fig. 3.21. The submatrices, shown in

Eqs. (3.51) to (3.55), are formed using complex shear moduli Gi,

complex constrained moduli M., and layer thicknesses h. as follows:3 3

0 *

-0 G j 0 2Gj

o -M 0 0 0
[14i. 0 * (3.31)

i J

0 (G -. 0 G -M

- o - ) 0 (33*-MG) 
ii

" * * * --

Gi  0 -G ( 0 r
* *,

0 o-0 -(

-(G]4 0 (3(3.33)

h j -G 0 G 0

0 0 -M 0 M j

Z'j
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The layer mass matrix M can be chosen as consistent mass, or

lumped mass, or a combination of both. For consistent mass formulation:

1/3 0 1/6 0

0 1/3 0 1/6 (3.54)

c j j j 1/6 0 1/3 0

0 1/6 0 0

For lumped mass:

1/2 0 0 0

0 1/2 0 0

Z]j J J 0 0 1/2 0 (3.55)

o 0 0 1/2

For combination of consistent and lumped mass:

[rj [MJ.+ (3.56)

where a is a fraction between 0 and 1. It has been found that with
c

the finite element method, a - 0.5 gives good results compared withc

analytical closed form solutions.

The same investigation also showed that when the average mass

matrix is used the layer thicknesses, h., can be chosen as large as

hj = Xs/5 = 2 Vs/(5w), where X is the wavelength of shear

waves, without impairing the accuracy at the discretized method. This

compares with a maximum layer thickness of X /8 when either the5

lumped or consistent mass formulations is used.

When the wave number k becomes zero, i.e., the apparent wave

velocity approaches infinity, the equation of motion becomes

4 {E) -(13
2 M1}{U} {~}(3.57)

which is the case of vertical incidence of body waves. In this case
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the shear wave and P-wave are completely uncoupled and Eq. (3.57) can

be separated into two simpler matrix equations; one for each wave type.

For the purpose of developing the base boundary equation, it is

convenient to express Eq. (3.50a) in partitioned form:

( W = (3.58)

in which the suffix "to denotes quantities for the layered system, the

suffix "bo refers to the base boundary, and the suffix ac" to

interaction between the layered system and the half space. For a given

wave number k and frequency w, this set of linear equations can be

2further simplified by the notation w [KJ - C]M to:

or [R1] {UE} + [t] {Ub} " o1 (3.60)

[,c]T {Up + pt. ,Ub} a.t (3.61)

Equation (3.60) yields

(UI}- _[,,- [ic] 1b . 1, 2 ....... , 2n (3.62)

and substitution of this equation into Eq. (3.61) gives the relationship

between the displacements, {Ub}, and the forces, fpbl' at the interface

between the layered system and the half space (the base boundary)

EL {tub} - {Pb 1  (3. 63)

where

[L] __rKc]] [ [ ] [Kb] L21 22J

It should be noted that for a system with n layers, Kt is a 2n by 2n

matrix, Kb is a 2 by 2 matrix, and Kc is a 2n by 2 matrix.

b, 7
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3.5.2 Half Space

If the displacements and forces at a specified location on the

base boundary induced by the incident wave from a homogeneous

viscoelastic half space can be determined, then the complex

displacement functions {U,} at the interfaces between each layer in

the system can also be easily determined. It is thus necessary now to

find the displacements and forces at the base boundary due to a

specified incident plane wave striking at the base. It may be shown

that the boundary displacements and forces take the same forms as

Eqs. (3.33) and (3.34); after rearrangement, they are:

tub I i kik (3.64)

and

{ - G" k2[C1 {} + G" k 2 [B'] (3.65)

1t 21

where

2a 2

I CE [ 2a (b 2 _ 1] - a (b 2 1 )]1b2-1) 2b -(b 2-1) -2b

and A, B1, A2 , and B2 are complex coefficients representing

wave amplitudes of displacement potentials.

Elimination of boundary forces and displacements by substitution of

Eqs. (3.64) and (3.65) into Eq. (3.63), produces two linear equations

containing four unknown coefficients. As discussed earlier, some
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restrictions and assur-tions must be made in order to determine the

coefficients and to obtain normalized boundary displacements and

boundary forces at the base boundary. By specifying only one type of

body wave incident to the base by a given real incident angle and

normalizing two reflection coefficients by this incident coefficient,

the two unknown normalized reflection coefficients can be determined

from the following equations:

{:} - D) ' (3.66)
B 2 Q2

where

(D  - D1 2 ) (D1 3 " 014 )]
"/ (3.67)

-(D21 D2 2) (D23  D2 4 )J

in which Dll, D12, D13, D14, D21, D2 2, D23, and D24 are defined as:

D ii , i k L1 1

D12  k a L1 2 + 2 a G* k2

D13 -- k L12 + (b 1) G* k2

D1 4  i k b L1 1

D21 -i k L21 - (b -1) G k2

D22 k a L22

D23 k L23

024 u-i (k b L21 + 2b G* k
2)

where parameters a and b are complex parameters as defined earlier and

L 1 , L12 ,L21 , L22 , are elements of the layer stiffness matrix

defined in Eq. (3.63).

It should also be noted that the coefficients A2and B2 are

'Normalized reflection coefficients" which are different from the

||-
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coefficients A2 and B2 in Eqs. (3.64) and (3.65). They are related

to the reflection coefficients for the case of unit incident

coefficeint. It should also be noted that the quantities Q and Q2

will be redefined from case to case for different incident waves.

Only SV Wave Incidence

Assuming that the angle of incidence, f, is real and that the

angle, alf between the propagation vector and the attenuation vector

is equal to zero, one may obtain k a k sin f as shown in Eq. (3.11).

Thus, for a system having a common phase velocity and attenuation

factor along the boundary, the complex wave velocity, V ais

* -i6a/23
a= Wlk s sin f) a Vsin f V e (3.68)

in which

tan . 28 l 8 2/ (1 - 28S) 28 for mall 8

This assumption will force the complex parameter "b" to become real as

long as Va > Vs . If p W B the parameter "am is complex and

a ={(V /V )2  i(6 p 6) 1/2
a p

where

tan6 - -2$( - 22) 28 for small B
p pp p p

If 6s a 6p a 6, the solution is similar to the elastic case, i.e.,

both "a" and "b" are real but the wave attenuates in the direction of

propagation. For SV wave incidence, Al is set to 0 and A2 , B2

can be determined by defining Q1 and Q2 in Eq. (3.66) by

Q, - -(Dll + D14)

2 =-1D23 + D 24) (3.69a)

Once two normalized coefficients A2' B2 are found the normalized

displacements and boundary forces can be determined.
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Only P-Wave Incidence

In this case B1 is set to zero and the reflection coefficients

are normalized by A,. If a real incident angle, e, is specified we

have V a V /sin e and k = w/V a . From the complex Snell's law,

V a V l/in f = /VJ /sin e, the reflected angle f can be

determined. Generally, if damping due to the shear and P waves are not

equal, the reflection angle of the SV wave will be complex which is

different from the elastic case. For a viscoelastic half-space, a

phase shift at the boundary base will generally be expected regardless

of the type of wave incidence. The reflection coefficients can be

found by using Eq. (3.66) by replacing Q1 and Q2 as follows:

Q1 = -(D11 + D12)

Q2 = -(D21 + D22) (3.69.b)

SV-and P-Waves Obliquely Incident

It is assumed that the amplitude of the incident P wave AI is

given and that the ratio, n - B1 /Al , of the displacement

coefficients for the incident SV wave and the incident P wave is also

known. With these assumptions Q1 and Q2 in Eq. (3.66) will be

defined as:

(D -D 1  + D12 ) - n(D13 + D14 )

Q (D21 + D22) - r)(D 23 + D24 ) (3.69.c)

Thus, the normalized reflection coefficients can be determined. In

this case, the reflection angles can be either real or complex and will

depend on the damping ratio assumed fo: the half-space and the

specified angle of incidence.
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3.6 SB-Naves in Multi-layered Half Space

Harmonic motion under plane strain conditions in a semi-infinite

layered system due to an inclined SB-wave incident to the base is here

considered. The model for plane SV-and P-wave is used, and is

replotted for the case of incident SB-waves as shown in Fig. 3.22. All

displacements are perpendicular to the x-z plane and are described by

6y W C Uy z) i (z) 'kx )  (3.70)

in which w is the circular frequency, and CL is the mode participation

factor.

The equation of motion take the same form as Eq. (3.50a) but the

stiffness matrix CKJ is now defined as

[K] - [A] k2 + [63 (3.71)

where CA], and [G] are n by n tridiagonal, symmetric matrices, which

consist of the contributions from individual layers and which can be

conveniently assembled from the layer submatrices as shown in Fig. 3.23.

The submatrices for the layer j are:

* [l/3 1/6]

h G (3.72)IA~ji /6 1/3]
! o.Fl -11

[G] a Gj[ 1 (3.73)

The mass matrix (see Eq. 3.56) may be a combination of

1/3 1/6
(consistent) rclj % h / 3

L L1/6  l/3j

and

(lumped) [L] j Ij h 1 (3.75)
0 L 1/21

Following the procedures described in Section 3.5, through Eqs. (3.58)

to (3.63), the relationships between the boundary force and
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displacement may be established. On the other hand, the boundary force

and displacement induced by the incident SI-wave from the underlying

half space can be derived from sq. (3.26) in the way similar to the

case of SV-waves. The boundary force and the displacement are •

normalized by the amplitude of the incident wave and can be expressed

in term of wave number, shear modulus and and unknown reflection

coefficient. By elimination of the displacement and the boundary force

between the layered system and the half space, the normalized

reflection coefficient can be found and the boundary force and

displacement can be determined. Accordingly, the amplitudes of each

layer can be easily found from a set of simple linear equations for any

given wave number and frequency.

3.7 The Computer Programs SITE and LOVE

The above discretized procedures were implemented in two computer

codes, SITE and LOVE. The first program handles the cases of inclined

P- and SV-waves. It also handles the case of Rayleigh waves which will

be discussed in Chapter 4. The second program handles the cases of

inclined S-waves and Love waves (also to be discussed in Chapter 4).

Both computer codes were verified against the exact solutions

provided in Fig. 3.5, 3.6, 3.10 to 3.12 and 3.15 to 3.17 using a model

consisting of 18 sublayers to represent the surface layer. The

computed data points agreed with the exact solutions to within 3

significant digits and have not been plotted in the above figures.

The two codes can handle not only harmonic notion but also

transient motions by the Fourier techniques described in Chapter 5.

3.8 Summary

The fundamental theories of harmonic inclined body waves

propagating in a viscoelastic half space and a layered half space are
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presented in this chapter. Based on analytical solutions developed for

a model of a single layer over a half space, several numerical examples

were given to show the characteristic of amplitudes at the free surface

and the interface boundary for the case of SV- and P-wave incident at

different angle. The study of the effect of incident angle on the

amplication of both steady state and transient motion was also

included. The effect of damping and Poisson's ratio contrast (between

the layer and the half space) on site amplifications was also

investigated. Numerical examples for site response to inclined body

waves for a more complicated layered half-space system will be given in

Chapter 5.

r *
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CHAPTER 4

PLANE SURFACE WAVES

4.1 Introduction

The theory of plane Rayleigh and Love waves propagating in an

undamped elastic or damped viscoelastic half space, a layered rigid

base system, or a layered half space has been well developed.

Basically, the available theories can be classified into continuum

methods or discretized numerical methods. In principle, continuum

theories provide analytical solutions which are valid for any choice of

layer thicknesses. However, numerical difficulties are encountered in

the numerical evaluation of complete solutions especially for damped

systems. The discretized methods are based on finite element techniques

and offer easier and more convenient numerical solutions for viscoelastic

layered systems. However the accuracy of the solution is affected by the

choice of discretization scheme, especially in the high frequency range.

In this chapter, the general theory and characteristics of Rayleigh

waves in homogeneous elastic and viscoelastic half spaces are briefly

discussed in Section 4.2. In Section 4.3, the discretized method of

treating Rayleigh waves in a layered system with a rigid base is briefly

reviewed, and several methods are proposed to extend this method for the

approximate solution of layered systems resting on a viscoelastic half

space. The selection of the fundamental Rayleigh mode is also explained

in this section. The discretized method for Love waves in a layered

system with a rigid base is briefly presented in Section 4.4.

Several published solutions were used for verification of results

from the computer programs SITE and LOVE which were developed as part
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of the research described herein for site response analysis by the

discretized method. The comparative study, presented in Section 4.5,

confirms that the discretized method can be used for analyses of

surface wave propagation in a viscoelastic layered half space.

Additional analyses of the seismic response of multi-layered sites

excited by Rayleigh waves will be presented in Chapter 5.

4.2 Rayleigh Wave in a Viscoelastic Half Space

It is assumed that a simple harmonic wave train with motions in

the xz-plane only travels in the x-direction such that the motion is

independent of the y-coordinate and that the amplitude of this motion

decreases asymptotically with the distance z form the free surface.

Waves satisfying these conditions are called Rayleigh waves and were

first studied by Rayleigh (1885). A solution corresponding to this

definition may be derived from the general equations of motion for

two-dimensional waves presented in Chapter 3. Since the boundary

condition at z-- requires that the wave potentials approach zero as z

approaches infinity, the solutions for Rayleigh waves can be written:

- A e-qz •-ikx (4.1a)

T=B e - s Z e - i kx  (4.1b)

where

q = (k2 - k2p) 1/ 2 ; taking the principal value,

( -k2 )1/2 ; taking the principal value.

and A and B are unknown complex constants.

Equation (4.1), in connection with Eq. (3.2) defines the form of

the displacement and stress field in the half space. By introducing

the boundary condition that all stresses must vanish on the plane, z-0,

the following relationship between the wave numbers involved can be

obtained:
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2 2 1/2 2 2 1/2 2 2 2(.2
4 (1-k/k) (1- k/k) a (2 - ka/k2) (4.2)

By squaring each side of Eq. (4.2) and using the relationships

X (k /k) 2 (V * /V 2

s 2
Y- (k /k ) 2 (V/V*)

s p pa

the following equation is obtained:

X3 - 8 X2 + (24 - 16 Y) X + 16 (Y - 1) - 0 (4.3)

This is of exactly the same form as the equation developed by Rayleigh

for an undamped elastic medium except that real velocities are replaced

by complex velocities for a damped system. This equation is a cubic

polynomial with coefficients in the complex plane. It has three

complex roots, X, which may not be distinct. The root which satisfies

the original unsquared equation, Eq. (4.2), provides the fundamental

solution for the surface wave, Borcherdt (1971).

The solution may be found by Cardan techniques, as shown by Hall

(1964). The solution was also carried out by Borcherdt (1971), who

*2 *2
showed that if V r/V is a root of the complex Rayleigh equation such

2 2 *2 *2
that 0 <jV*j /IVjJ < 1 , then V /Vs  also satisfies Eq. (4.2).

r sr s

This restriction on the roots of Eq. (4.3) is the same for the damped

and the undamped case and is used for the selection of the root

corresponding to the Rayleigh wave. In the undamped case, the solution

will consist of three real roots for Poisson's ratio less than 0.26,

and there will be one real root plus a conjugate pair of complex roots

for Poisson's ratio larger than 0.26.
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Once the ratio# X, between the Rayleigh and shear wave velocities

has been determined, the normalized displacements, mode shape, of the

Rayleigh wave may be obtained by substituting Eqs. (4.1) into Eqs.

(3.2).

The mode shape or normalized amplitude distributions as a function

of dimensionless depth for four different values of Poisson's ratio are

shown in Fig. 4.1 for the case of undamped elastic media. The

dimensionless depth is defined as the actual depth divided by the wave

length which is inversely proportional to frequencies. The particle

motion at different depths is shown in the same plot. Since the

horizontal and vertical components of Rayleigh waves are out of phase

by the angle 1T/2, the trajectories of the particle motions are

ellipses. The magnitude and direction of the elliptical motion is

dependent on depth. The following characteritic may be summarized from

the plot shown.

1. The horizontal amplitude decays rapidly with depth near the

surface and becomes zero at a depth of approximately one fifth of the

wave length. The maximum negative amplitude occurs at a depth of

approximately two fifths to one half of the wave length and then

gradually decays to zero.

2. The vertical amplitude first increases slightly with depth and

reaches its maximum value at a depth of 0.05 to 0.15 times the wave

length below which it decays rapidly to zero, except for materials with

zero Poisson's ratio for which the maximum vertical displacement occurs

at the surface.

3. The major horizontal and vertical disturbances associated with

Rayleigh waves are concentrated within one wave length from the surface.

4
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4. The amplitudes at depth decrease as Poisson's ratio decreases.

5. For wave propagation in the positive x-direction, the

elliptical particle motion at the surface proceeds counterclockwise.

At the depth z m 0.2 X where the horizontal amplitude changes sign,r

the direction of rotation reverses. The minor axes of the ellipses are

perpendicular to the free surface of the half space; i.e. the vertical

motion is stronger than the horizontal motion at all depths.

The distribution of the stress components with depth is shown in

Fig. 4.2. The curves were calculated for Poisson's ratio equal to 0.25

(dashed line) and for Poisson's ratio equal to 0.34 (solid line). It

is apparent from the plot that axx changes sign at z-0.25Xr , whereas

6zz and Tzz reach their maxima at approximately z/Xr - 0.3 and then

falls off exponentially with depth.

Rayleigh waves in a viscoelastic half space have been studied by

Borcherdt(1971). Computed mode-shapes for the special case of

Poisson's ratio equal to 0.35 are shown in Fig. 4.3. It may be seen

from this figure that the effect of damping on the distribution of

motions with depth is insignificant for the magnitudes of damping

usually encountered in practice. Another small effect of damping is a

slight tilt of the elliptical orbits of particle motion. The major

effect of damping is that the waves will decay exponentially as they

propagate in the x-directions. The decay factor is approximately

exp (-2rB) per wavelength in the x-direction.

4.3 Rayleigh Waves in a Layered System

Rayleigh wave propagation in layered media is of great interest to

seismologists and has been treated in standard textbooks. A complete

theoretical summary may be found in Ewing et al. (1957) and a brief
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description of geophysics applications has been given by Grant and West

(1964). The equation of motion for a system of elastic layers

overlying an elastic half space was formulated in matrix algebra by

Thomson (1950) and improved by Haskell (1953). An equivalent

formulation which makes calculations possible for higher frequencies

was presented by Knopoff (1964), Dunkin (1965) and Thrower (1965). A

modification of the matrix formulation to give faster machine

computations for modal solutions to a layered half space was provided

by Watson (1970). Formulations which include damping were later

presented by Boncheva (1977) and Silva (1978). The fundamental

approach for all of these methods is based on continuum theory which

eventually leads to a complicated nonlinear eigenvalue problem.

Solution of this problem involves serious numerical difficulties in

many cases and is complicated by the fact that in layered systems

infinitely many Rayleigh waves (modes) can exist simultaneously.

A lumped mass finite element formulation for a multi-layered

system with rigid base was developed by Lysmer (1969). This method

leads to a simple quadratic eigenvalue problem which can be transformed

to a linear eigenvalue problem of the double dimension. This problem

can be solved completely by standard techniques. Lysmer's method was

extended by Waas (1972) to include a consistent mass formulation and

Love waves. This method, which will be briefly reviewed below, is the

basic numerical method employed in the research described herein. As

part of this research seversl methods will be introduced which

facilitate the use of the method for cases involving a layered system

supported on a viscoelastic half space. These methods will be

discussed in Section 4.3.2. Methods for identifying the fundamental
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mode among the many Rayleigh waves which can exist in a layered system

will be presented in Section 4.3.3.

4.3.1 Layered System With Rigid Base

Consider the semi-infinite layered system shown in Fig. 4.4a. All

motions occur in the xz-plane and any point in the system has two

degrees of freedom. The layered system is tueated as a continuum in

the horizontal direction but is discretized in the vertical direction

by assuming that the displacement is continuous at each interface and

varies linearly within each layer. As shown by Wass (1972), the

equation of motion for an n-layer system may be written as:

(CA] k2 + i W k + [G] - W2 CMI) {v} - {o} (4.6)

In this equation. {vf is a vector containing the 2n layer

interface displacements and CA], UBJ, [G], and [M] are the 2n by 2n

matrices, assembled by addition of layer submatrices as shown in Fig.

3.21 for the case of body waves except that the last two rows and

columns of each total matrix are not used because of the assumption of

a rigid base for which the displacements are zero. The submatrices CA3

and CG] for each layer may be expressed in terms of complex shear

moduli, constrained moduli, and the layer thicknesses as shown in Eqs.

(3.51) and (3.53) and the submatrix CB3 is redefined as follows:

0 (3G -14) 0 -(G -1)

CBj 1 -(3G.-M) 0 -(G. -1) 0(47
2Jj- 0 (G;- M*) 0 (G ) (4.7)

j M;

(G -14 0 (3G -14 0
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Each submatrix of [1] may be expressed in terms of consistent mass,

lumped mass or a combination of both as shown in Eq. (3.56). For a

given frequency J, it is convenient to introduce a matrix [CJ such that

[C] . [] - W [,,]. This reduces Eq. (4.6) to:

([A] k 2 + i][B]k [C]) (vl - {o} (4.8)

This is a quadratic eigenvalue problem which has a solution fv} if, and

only if, the determinant of the coefficient matrix vanishes. Hence,

for any given frequency the secular equation:

I[A]k 2 + i [B] k + [C]I -0 (4.9)

defines the possible wave numbers for Rayleigh waves in the layered

system. A numerical technique for finding the eigenvalues and the

corresponding eigenvectors in Eq. (4.8) has been presented by Waas

(1972). It can be shown that this equation gives 4n eigenvalues,

k s  - 1,2, ...4n and their corresponding eigenvectors, {V}.,

S - 1,2,....4n.

The case, k a 0. can occur only in an undamped system and when the

frequency is equal to one of the natural frequencies of the layered

systems. In this case the motion consists of vertically propagating

P- or S-waves. The particle motion is vertical or horizontal.

The case, k real, can occur only in an undamped system. The

motion is similar to Rayleigh's original surface wave in that it

propagates with constant amplitude in the x-direction with the phase

velocity c - w/k. The particle motion is generally elliptical but

may be linear at certain depths.

The case, k purely imaginary, may occur in both damped and

undamped systems. It corresponds to a motion which does not propagate

but simply decays in the x-direction. The particle motion is linear
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for undamped systems and generally elliptical for damped systems.

Notions are in phase at all points.

The case, k - k + iki , ki a 0, may occur in both damped and

undamped systems and is the case of most interest for applications.

The particle motions are generally elliptical and the motions propagate

in the x-direction with the apparent phase velocity V a w/k r and

it decays as exp (k ix). Generally, k and k. will be of

opposite sign, i.e. the motion decays in the direction in which it

propagates. However, the unusual case may occur that kr and k i

have the same sign, i.e. the motion decays in the opposite direction of

the phase velocity. This is not a contradiction since it can be shown

that for these cases the group velocity, see below, is negative, i.e.

energy transmission occurs in the opposite direction of the phase

velocity.

It can be shown, Waas (1972), that if k is a solution to the

eigenvalue problem in Eq. (4.8) and {v} is the corresponding

eigenvector (mode shape) then -k is also a solution and the

corresponding eigenvector !v) is the adjoint of 1v; i.e. the vector

obtained by simply changing the sign of all horizontal components of

{v}. The physical significance of this is that the same motion can

propagate in both the positive and negative x-direction. In the

applications only the modes which decay (propagate energy) in the

positive x-direction are of interest. Thus, in a damped system, only

the 2n modes with ki < 0 are of interest and the general solution to

the equation of motion may be expressed in the form:

2n

{ Ei a S{V}s e i(wt-ksX) (4.10)

Sol
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in which aQ in the mode participation factor for mode a. Undamped

systems are most conveniently handled by introducing a very mall

damping ratio and selecting the appropriate modes by the condition, k ( 0.

Stresses and Strains

Once the displacements at the interface of each layer are determined

the strains at the midpoint of the )-th layer-may be easily obtained. The

following expressions are for the case of a single mode; if several modes

are considered, then the total strain and stress can be found by

superposition. The strains are:

C - ik [(v 2 j-.1 + v 2j+l)/21 e ik

Cz {fv 2j+ 2 - v2j )/hj I e-ikx (4.11a)

Yz- ((V 2j.l v 2il )1hi -ik(v 2 j + ,2.42 )/21 e- k

Stresses may be obtained by the substitution of these strains into

Hooke's law:

K K -2C 0 e

K.M - 2G K 0 Cz(4.11b)

[Txz 0 0 G 1Tx:

Group velocity

For each mode Sq. (4.6) determines ki as a complex-valued function

of W~. A plot of this function is called a spectral (or dispersion)

curve, see Figs. 4.5 and 4.6. The slope of this curve, U, is called

the group velocity.

U Ad k c dc (4.12)

dk -. ,-
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where c is the complex phase velocity. The group velocity controls the

amount and direction of energy propagation, see Eq. (4.16), and can be

computed from Eq. (4.6) by first differentiating by parts and then

premultiplying by {}T

IT( (A] k 2 + i[B] k + [G] - w (J) djv} +

{V}T(( 2 k [A] + i[BJ) dk - 2 wdw [M]) {v) - 0 (4.13)

The first term must vanish since upon transposition and remembering

Tthat B]B = -CBJ and that the other matrices are symmetric, we obtain

I{dvIT(A] k2
- i[B]k + [G] - w2 [M]){}

which is zero since (-k, {-}) satisfies Eq. (4.6). The remaining term

gives

U w { .T(2 k
2 [A] + ik [BI) lv(

dk 
(4.14) Iv

This expression can be further reduced if the mode shapes are normalized

according to Waas (1972), i.e.

{ T(k 2 [A] - [C]) {v, - 2k 2

which by Eq. (4.8), multiplied by {VT implies that

I T 2 &
'T(2k CA] + ik(Bi) {v} - 2k' (4.15)

Thus the group velocity may be computed by

U ' kiw
I;}T[Mj IVi (4.16)

which was developed by Lysmer and Drake (1972) for real modes but is

actually valid for the general case.

Energy Transmission

Each of the Rayleigh modes in the general motion defined by

Eq. (4.10) can propagate independently: this would simply correspond

to the case when only one of the mode participation factors, Is, is

non-zero. However, if more than one, mode propagating energy is
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transmitted between the modes. Thus, the amount of energy transmitted

through a vertical plane, say of x*0, depends on the composition of the

mode participation factors, , sal,..., 2n.

This problem has been solved by Waas (1972) who showed that the

rate of energy transmission per unit width in the y-direction of x-O is:

E - I. [fu* CR] luJ] (4.17)

where w is the frequency, Im indicates the imaginary part and {ul is

the complex amplitudes at x-0. Hence, by Eq. (4.10)

2n

{u} - E a v} a [VS CV] 10LI (4.18)

s-1

where Cv] is a matrix which contains the mode shapes in its columns and

{t} is a vector containing the mode participation factors a ,

sal,...,2n.

The matrix CR] is the transmitting boundary matrix developed by

Waas (1972), i.e.

CR] - i [A] Cv] CK] Cv1- 1 + CD] (4.19)

where Cx] is a diagonal matrix which contains the waves numbers, kso

s-l,..., 2n, on the diagonal and CD] is a banded matrix assembled from

the layer submatrices

0 (M -2G) 0 -(M. -2 G)

* *

Gj -Qj

(14 * *(4.20)j 0 (M 2 G) 0 -(4 2 G)

G 0 -G;
L 0

J * I,..., n. this matrix is related to [8 through [8] - CDJ T - ED).

For the special case of an undamped layered system, it can be

shown that real modes transmit the following energy per time unit per
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unit width in the y-direction

Sk I  1 2 (4.21)

where the sign follows the sign of the group velocity, see Eq. (4.16).

In the undamped case complex and purely imaginary modes transmit no

energy.

Dispersion curves for the first few real modes of Rayleigh waves

in an undamped homogeneous layer over a rigid base are shown in

dimensionless form in Fig. 4.5. Since the group velocity is

proportional to the slope of these curves only points with positive

slope corresponds to waves which propagate energy in the positive

x-direction. A more complete picture of the variation of the wave

numbers with frequency can be obtained by plotting both the real and

imaginary parts of these. This has been done in Fig. 4.6 which

corresponds to the same case. In this graph only the spectral lines

show as full lines correspond to waves which propagate energy in the

positive x-direction. The broken lines correspond to motions which

decay in the positve x-direction but transmit no energy.

4.3.2 Layered System over Half Space

The theory summarized above is applicable only to a layered system

over a fixed rigid base. Actual sites are more similar to a layered

system over a viscoelastic half space. This problem can in principle

be overcome by using a very deep model with many sublayers. However,

such an approach will lead to very large matrices and thus expensive

calculations. Hence, some effective method for better approximating

the half-space condition is currently needed. Three methods have been

investigated in this research:
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Viscous Boundary

The first method investigated involved the use of Lysmer-

Kuhlemeyer (1969) viscous boundary condition (dashpots) at the bottom

of the layered system. According to this method the existence of the

lower half space can be simulated by adopting the following

relationship between the amplitudes of forces (stresses) and the

horizontal, U, and vertical, V, displacements at the interface with the

half space

[Rc1 U C, {xz} (4.22)
V z

where V 0]
[Hc] ip 0' V (4.23* *

and 0, V and V corresponds to the mass density, S-wave and P-waveS p

velocities of the half space, respectively. The above forces can be

added to the equation of motion for the n-layer systems. This results

in the equation

ICA] k2 - i[ B k + ([C] + [H]); jv} = jO} (4.24,

which is similar to Eq. (4.8) except that all matrices now have the

dimension (2n + 2) x (2n + 2). [H] is the expanded matrix0 o0
CH] =(4.29,

0 H
o I

For any given frequency, w, Eq. (4.24) has the same form as Eq. (4.8)

and the eigenvalue problem can be solved as for that equation.

The method is hard to justify theoretically since the Lysmer-

Kuhlemeyer boundary condition was originally developed for plane
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vertically propagating waves and thus implies energy propagation in the

vertical direction which does not occur within Rayleigh waves in

undamped systems. However, experience with the method has shown a

pronounced improvement in the ability of the discretized method to

simulate a uniform half space. Some results are shown in Fig. 4.5

which shows (in full lines) dispersion curves computed by Lysmer (1969)

for a uniform layer over a rigid base. The dotted line through the

origin is the exact solution for a complete half space and the circles

indicate points computed using the above viscous boundary condition.

The improvement is limited to the lower modes however. Eq. (4.24)

predicts higher modes which do not exist in a perfect half space.

Travelling Wave Boundary

When a plane wave travels in the x-direction through a viscoelastic

half space the boundary condition at the surface can be shown to be

f Txz -ikx(4.30)

where

(M'A- ik*) M I[Be] I G G* "0(B- ik)] 4.1
[He (431)

and T ,Z Oz' U and V are the stress and displacement amplitudes at x-O.

The constants

a kq (q - s)/(sq- k2)

B s (k2 - )/ (sq - k2)

- q (k2 _ s 2 )/(sq - 12)

-*sk (s - q)/(sq - k2) (4.32)
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hee 2 k2 
- o2 / 2 2 k2 2

where q 2 , s = k -2 2 /V are rather complicated functionS
p p

of k and the above boundary condition cannot be used directly in

connection with the discretized method discussed above. Howevcr, by

expanding the constants in Eq. (4.32) into Maclaurin series about k = 0,

the following approximation can be obtained

[H e] [H]a k 2 + i [11b] k + [Hc] (.3

where

(V + 2v G M

0 (V +i

0(i 1 ) Vs + pv

[Hb] = (4.35j

- l)V + iV;V - 2V 0
p s p s

and [H c] is the matrix given by Eq. (4.231. As for the case of the

viscous boundary discussed above the expanded forms of the matrices in

Eq. (4.33) can now be added to the expanded forms of the matrices [A',

[B] and [C] for the n-layer system. This results in the following

equation of motion

{([A] + [H a] ) k 2 _ i([B] - [Hbl k+ ([C] + [Hc])) {v} JOI (4.36)

This eigenvalue problem can, in principle, be solved and should

lead to better solutions for low values of k. However, the matrix

([A] + [Hl) is not symmetric and the matrix ([B] - [Hb. )is not

skew-symmetric. Hence, the solution of Eq. (4.36) is considerably more

difficult than the eigenvalue problems stated by Eqs. (4.8) or (4.24).

Further research needs to be performed to investigate the performance

of this approach.
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Variable Depth Method

As shown in Fig. 4.1 Rayleigh waves in a uniform half space

attenuate rapidly with depth. The table shown in the same figure

indicates that for most solids only small amplitudes occur at a depth

of 1.5 x the wavelength, Xr, and at a depth of 2 x the wavelength the

amplitudes are insignificant compared to the surface amplitudes. Thus

it is to be expected, that the fundamental Rayleigh mode computed from

a discretized model with a rigid base at a depth of B - 1.5X will ber

similar to the corresponding wave travelling in a complete half space.

This suspicion is confirmed by Fig. 4.5 which shows that for KH > 21r;

i.e. H > X the correct wave number is computed from a rigid baser

model. Further confirming evidence will be presented in Section 4.6.

In a typical layered soil system over a half space it can be

assumed that the shear wave velocity of the half space will be larger

than the velocity of the fundamental Rayleigh wave. Thus X in ther

above expression can be safely replaced Yi X for the half space, andS5

the half space can be simulated by a uniform layer of the thickness

H - 1.5 s a 1.5 V /V where v is the frequency in Hz. Subdividing

this layer into 9 sublayers the element height becomes 1/6 Vs/V which

as described in Chapter 3 is sufficiently small to ensure numerical

accuracy. Thus, no matter what the frequency the underlying half space

can be represented by 9 layers as shown in Fig. 4.4b. As will be

discussed in Saction 4.6, when the half space extends all the way to

the surface or if the surface layers are very soft compared to the

half space even better accuracy in the mode shape can be obtained by

subdividing the top layer into two equal sublayers as indicated by the

dotted line marked *optional" in Fig. 4.4b.
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The variable depth method is simple to implement and will be'used

in the remaining part of this dissertation and in the associated

computer programs, SITE and LOVE, which at each frequency automatically

adjust the depth of the computational model as indicated in Fig. 4.4b.

The method ensures the computation of good lower modes which, as will

be discussed below, are the modes of primary interest for the research

presented herein.

4.3.3 Mode Selection

Having adopted the variable depth method the motions of a layered

system over a uniform half space are given by Eq. (4.10) which

unfortunately contains 2n unknown mode participation factors. These

can, in principle, be determined by 2n boundary conditions; say by a

set of forces acting on the plane x - 0. This was the method used by

Waas (1972) to compute the transmitting boundary matrix CRJ in

Eq. (4.19). Alternatively, the mode participation factors could be

computed from 2n given displacement amplitudes at x - 0. This would

correspond to solving Eq. (4.18) for {}. However, in the usual site

response problem, only one control motion and thus only one

displacement amplitude is known at each frequency; say the horizontal

surface amplitude at x - 0. It is therefore not possible to determine

the general motion from a single control motion. A particular solution

can be obtained, however, if it is assumed that only the fundamental

mode produces the motion at the control point in which case Eq. (4.10)

reduces to

- Cf{Vf ei(wtkfX) (4.37)

where a f, {v}f and kf correspond to the fundamental mode. This

is a reasonable approach since it can be expected that, if Rayleigh
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waves exist at the site, the fundamental mode is the major contributor

to the motion.

Fundamental Mode

Adopting this idea, the remaining problem is to select the

fundamental mode from among the 2n solutions to the eigenvalue problem,

Eq. (4.8). For an undamped system the fundamental mode will be among

the real modes which are the only modes which transmit energy in the

x-direction. Among these modes the fundamental mode will be the one

with the largest wavenumber k (shortest wavelength, lowest phase

velocity). This definition coincides with that used by seismologists.

For a homogeneous half space it corresponds to Rayleigh's original wave

and the straight part of the dispersion curve P1 in Fig. 4.5.

The total number of real modes which can exist in a given system

depends on the frequency of excitations and the natural frequencies of

the system. The latter, which correspond to vertical wave propagation

between the free surface and the rigid base, can be determined by

solving the eigenvalue problem in w which results from setting k - 0 in

Rq. (4.9). For a homogeneous layer over a rigid base these frequencies

can be read off at k - 0 in Fig. 4.5. In general, at any given

frequency, w, the number of real modes which propagate energy in the

positive x-direction will be equal to the number of natural frequencies

below this frequency. Thus, for the special case of a homogeneous

layer over a rigid base with H - 1.5X a (/Va U 9.425) five real

modes will exist. This can be seen by counting the number of

dispersion curves which intersect the horizontal line W/HV a 9.475

in Fig. 4.5. This observation implies that real modes will always

exist when the variable depth method is used. Since the same line
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intersects the straight part of curve P1 in Fig. 4.5, a good

fundamental mode wini always be computed by this method.

Actual sites cannot be properly modeled by undamped materials.

Thus the cases of major interest involve damped layered systems. For

such systems the definition and selection of the fundamental mode is a

much more complicated matter. As discussed in Section 4.4 all modes

are complex, i.e. they have complex wave numbers with negative

imaginary parts corresponding to decay in the direction of wave

propagation. One can therefore not make a simple statement to the

effect that the fundamental mode is the real mode with the largest wave

number. On the other hand the introduction of damping does have some

simplifying effect on the computations. For example, as discussed in

Section 4.4, it does simplify the selection of the 2n appropriate wave

numbers (the ones with negative imaginary parts). Also, damping tends

to eliminate singularities in transfer functions and dispersion

curves. For example, all of the nondifferential points on the

dispersion curves shown in Fig. 4.6 will become differentiable points.

With the magnitude of damping which has to be introduce d in

practical problems the changes in numerical values of wave n umbers,

mode shapes, etc. from the corresponding values obtained by undamped

analysis are not large. This was already indicated by the results

presented in Fig. 4.3 which show that mode shapes are virtually

unchanged by the presence of damping. As a further illustration of

this point a 450 ft homogenous layer over a rigid base was subdivided

into 15 sublayers and analyzed by prcgram SITE at different frequencies

using four different damping values (S a 0%, 0.0019, 3% and 10%).

Computed wave numbers are shown in Table 4.1 which also show the values

--- -t--
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for the corresponding undamped half space. At each frequency the

number of modes included corresponds to the number of real modes for

the undamped systems, as can be seen from the natural undamped

frequencies of the system shown below the table. The number of real

modes is equal to the number of natural frequencies below the frequency

of excitation as discussed above.

The wave numbers shown for the damped cases are those

corresponding to low attenuation. These were selected by first

ordering all of the modes in order of the least magnitude of the

imaginary part of the wave number and then selecting as many as

indicated by the undamped case. The argument for this procedure is

that if it is true that damping has a small effect on the wave modes

then the damped mode corresponding to the fundamental mode in the

undamped case (which does not decay) should be among the low

attenuation modes for the damped case. That this is indeed so can be

seen by comparison of the wave numbers marked by an asterisk in

Table 4.1.

It can also be seen from Table 4.1 that among the modes selected

the fundamental mode is the one with the largestreal part of the wave

number. This of course is not surprising in view of the above

definition of the fundamental mode for the undamped case.

In view of the above considerations the following procedure, which

also serves herein, as the definition of the fundamental mode, has been

adopted for selection of the fundamental mode in a damped (or undamped)

system:

a) Compute the undamped natural frequencies of the system (by

setting k-O in Sq. 4.6).
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b) Determine m the number of natural modes below the frequency

of excitation.

c) Solve the eigenvalue problem, Eq. 4.8.

d) Sort the modes in order of magnitude of the imaginary part of

the wave number.

e) Select from among the first m modes the one with the largest

real part. This mode is the fundamental mode.

Experience with the above metho '  r a large range of site

conditions has shown that the above procedure and definition of the

fundamental mode leads to motions which have all the usual

characteristics of fundamental Rayleigh waves; decay with depth, simple

mode shape and low phase and group velocity. For the undamped case the

definition coincides with that used by seismologists.

Least-Decay Mode

Several other schemes were investigated for selecting the

fundamental mode of Rayleigh waves. Among these one method, herein

named the least-decay method, deserves some discussion. Consider a

typical Rayleigh wave with the wave number k - kr + iki, ki < 0.

According to the theory presented in Section 4.3 the wave has the

wave length 21r/k r and it attenuates as exp (kix) in the direction

of wave propagation. Hence the decay factor per wavelength is

exp (211ki/k r). The ratio (-ki/kr) is thus a measure for how

fast a wave decays.

It is to be expected that the fundamental mode, which does not

decay in the undamped case, will have a very mall attenuation for

damped cases. The idea thus arose to define, for damped cases, the

fundamental mode as the mode with the smallest value of the ratio

(-ki/k . This is the least-decay method.
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In order to test this method on the case discussed above the modes

were sorted according to increasing values of the above ratio. The

result of this scheme is shown in Table 4.2 which also shows values of

the ratio (-ki/(k r)). As can be seen from this table the least-

decay method works perfectly for this case.

Table 4.2 also illustrates the interesting fact that for all modes

the ratio (-ki/(k r)) is independent of the damping ratio and for

the fundamental mode this ratio is near unity. The reason for this

follows from the continuum theory for Rayleigh waves in a homogeneous

half space presented in Section 4.4. Suppose 8 B 8 a 8, thens p

simple substitution of complex wave velocities V * V (1-iB) and5 5

V * = V (1-i8) into Eq. 4.2 will show that k + ik. - k(l-i8),p pr 1

where k is the wave nmber for the undamped case. Thus, by separation

of the real and imaginary part and division, it follows that

-ki/(k r) = 1. The deviation of this ratio from unity in Table 4.2

is therefore a measure of the inaccuracy with which the discretized

models represent the half space.

In spite of the good results which the least-decay method achieved

in this case it was not adopted as the method for selecting the

fundamental mode. This is so because in cases involving a soft highly

damped layer over a stiff half space with low damping it does not

select a mode which agrees with the definition of the fundamental mode

used by seismologists. Rather, it tends to select a mode which

corresponds to the classic Rayleigh mode in the half space without the

surface layer. This mode may attenuate slower than the fundamental

mode but will have a longer wavelength. In fact, as will be explained

in Chapter 5, this least-decay mode may be of more interest to

engineers than the fundamental mode.
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4.4 Love Waves

Love waves which are of the form

u a U(z) exp i(wt-kx) (4.25)y

with ux = uz = 0 can exist only in layered systems. The simplest

case involving a layer of thickness H over an elastic half space has

been studied by Love (1927) and Bullen (1963). Continuum methods for

the evaluation of Love wave mode shapes and wave numbers in undamped

multi-layered systems over a half space have been presented by Haskell

(1953) and Ewing et al (1957).

As was the case for Rayleigh waves infinitely many generalized

(complex) Love modes can exist in a layered system. However, at any

given frequency real modes, which are the only ones usually considered

by seismologists, can exist only when the material properties satisfy

certain relations.

For multi-layered viscoelastic systems the mode shapes and wave

numbers are most conveniently evaluated by discretized methods similar

to that used for Rayleigh waves above. Such a method has been describei

by Lysmer and Waas (1970) and Waas (1972). As was the case for Rayleigh

waves this method assumes linear variation of displacements within

layers and the existance of a rigid base at some finite depth which can

be varied with frequency to ensure proper simulation of a half space.

For an n-layer system of the type shown in Fig. 4.7 the nethod

leads to the equation of motion

([A]k 2 + [G] - w2[1J){vI - {0} (4.26)

where (A], [G] and [M3 are symmetric n x n matrices which may be

assembled from sublayer matrices as shown in Fig. 3.23 for the case of

SH-waves, except that the last row and column of each total m. :rix are
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not used because of the rigid base assumption. The submatrices are

defined by Eqs. (3.72) to (3.75).

Equation (4.26) states an eigenvalue problem similar to, but

simpler than, Eq. (4.8) for Rayleigh waves. For any given frequency, W,

this problem can be solved by standard methods for the n eigenvalues

k2, s I,.... n and corresponding mode shapes, {vI5. Assuming
S

a small amount of damping each eigenvalue will lead to a pair of complex

wave numbers +k s . Since only waves which decay in the x-direction are

of interest, the wave numbers with negative imaginary parts are retained

and the complete solution can be written as a linear combination of the

remaining modes

n

1 E ( e i (wt-ksX) (4.27)

S=1

where {6} is a vector containing the displacements at the layer

interfaces and as, s = 1,..., n, are unknown mode participation

factors.

As was the case for Rayleigh waves these factors cannot be

determined from a single control motion. However, by assuming that

only the fundamental mode (selected as described above for Rayleigh

waves) exists Eq. (4.27) reduces to

{61 = aiv} e i (wt-kx) (4.28)

and the mode participation factor can be determined.

The non-vanishing strain amplitudes in the jth layer are

1 ikxy *-- ki (vj+ + v.) e
YXY 2 j~l * j

(4.29)

YZy a v j + l " vj eikx
h.
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These values, at x=0, may be used to evaluate the maximum shear

strain in each layer when iterating on the soil properties according to

the equivalent linear method.

The group velocity of Love waves may be computed from Eq. (4.16);

except that PIT in this formula should be replaced by {vT.

A computer program, LOVE, has been developed to perform the

required computations not just for a single frequency but for transient

motions as explained in Chapter 5.

4.5 Numerical Examples

In order to verify the Rayleigh wave and Love wave solutions

produced by programs SITE and LOVE, respectively, these programs have

been applied to several problems for which exact solutions have been

published. Numerical examples are also presented which illustrates the

sensitivity of the results to variations in material properties and

geometrical conditions.

4.5.1 Uniform Half Space

The exact solution for Rayleigh waves in an undamped uniform half

space is readily available and was presented in Section 4.2. The exact

mode shapes for Poisson's ratio equal tov 0.25 and 0.45 are shown as

solid lines in Fig. 4.8 which also shows several fundamental mode

solutions obtained by program SITE.

The first solution, dashed line, for Poisson's ratio equal to 0.25

was obtained from a model which consisted of nine sublayers of equal

thickness. The depth to the rigid base was 1.5 times the wavelength of

shear waves. The solution is generally good except near the free

surface where the piecewise linear approximation is too coarse to model

the curvature of the exact mode shape. This problem can be overcome by
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subdividing the top layer (s) as shown by the other two solutions for

the case of Poisson's ratio equal to 0.25.

As Poisson's ratio approaches 1/2 the discretized method tends to

overestimate the vertical displacements. As can be seen from Fig. 4.8

the error is about 15% for Poisson's ratio equal to 0.45. This error

can probably be reduced by further subdivision and the choice ot a

deeper rigid base. However, the error appears to be related to the

well-known problems associated with the use of the finite element

method for plane strain problems with high Poisson's ratio. In any

case the error has been judged acceptable for engineering applications.

The phase velocity predicted by program SITE is in excellent agreement

with the exact value for all the models used.

It is clear from the above results that as far as the fundamental

mode is concerned a ten-layer model with the fixed base at a depth of

1.5 x the wavelength of shear waves provides an excellent approximation

to an elastic half space.

4.5.2 Single Layer over Half Space

The characteristics of Rayleigh waves in an undamped system

consisting of a single layer over an elastic half space have been studied

by Mooney and Bolt (1966). The physical model with the notation used

for system properties is shown in Fig. 4.9. The curves shown in

Figs. 4.10-4.12 are the solutions produced by Mooney and Bolt for the

ratio between horizontal and vertical displacements at the ground

surface, phase velocity and group velocity, respectively. In these

graphs, T is the period of the motion and B2 /B1 (= V5 /V,) the shear wave

velocity contrast between the half space and the surface layer. The

solutions correspond to the special case: Y- Y' - 0.25, Y 162.5 pcf,

Y' 125 pcf (i.e. P/P' - 1.3).
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Discretized models were prepared for these values of the S-wave

velocity ratio, V s/V s  2.0, 3.0 and 4.0. In each case the surface

layer was modeled by 18 sublayers and the half space was handled by the

variable depth method. These models were then analyzed using program

SITE. The results obtained are indicated by dots in Figs. 4.10-4.12.

They are in excellent agreement with the exact solution and clearly

demonstrate the adequacy of the discrete method and the associated

variable depth method for layered systems over half spaces even for

modes beyond the fundamental mode.

The equivalent problem in terms of Love waves has been studied by

Stoneley (1955). His model is shown in Fig. 4.13 which also shows the

discretization for the surface layer used for the corresponding

discretized model. The half space was modeled by the variable depth

method with 10 sublayers. In Fig. 4.14 Stoneley's exact dispersion

curves for this case are compared with points obtained from the

discretized model using program LOVE. Again, excellent agreement was

obtained.

4.5.3 Two Layers over Half Space

Stoneley (1957) also studied the propagation of Rayleigh waves in

an undamped system consisting of two layers over a half space.

His model for Rayleigh waves is shown in Fig. 4.15 which also shows

the discretization used in the corresponding SITE model. The variable

depth method was used to simulate the half space. Figure 4.16 shows

computed amplitude ratios at the ground surface, phase velocities and

group velocities for the fundamental mode. The agreement between the

exact solution and the discretized solution produced by program SITE is

excellent.
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CHAPTER 5

EXAMPLE OF SITE RESPONSE ANALYSIS

5.1 Introduction

In this chapter, the steady state methods presented in Chapters 3

and 4 will be applied to solve a number of transient site response

problems of the general type shown in Fig. 5.0. The results presented

have been selected to illustrate the major effects of horizontal wave

propagation in the form of fundamental mode surface waves or inclined

body waves.

In all cases the site is assumed to be horizontally layered and to

be underlain by a homogeneous half space. For cases involving surface

waves this half space is modeled by the variable depth method, see

Section 4.4.2.

All materials are assumed to be isotropic and viscoelastic.

Nonlinearitics are approximated by the equivalent linear method, see

Section 2.5. This implies that the possibility of complete failure and

large permanent deformations of the site are not considered.

The sites investigated include a typical rock site, a cohesionless

(sand) site and a typical alluvial site with high ground water level and

alternating layers of sands, silts and clays. Some of these sites are

related to the soil-structure interaction problems discussed in

Chapter 6. Although horizontal wave propagation is the main theme of

this chapter, all sites have been analyzed, using standard deconvolution

procedures (Program FLUSH), for the special case of vertically Incident

body waves. Since these are well-known procedures, results will be

presented without futher comments in the following section whenever a

pi6O3DINaw
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comparlson Is warranted. Such results will be identified in graphs by

the notations 0S-waveU or OP-wavem whatever the case may be.

5.2 Transient Notions

All of the methods described in the previous chapters have been

limited to steady state harmonic notions. The remaining part of this

dissertation will be dealing with transient notion of finite duration

which better model earthquake notion. This transition is achieved

through the use of Fourier techniques which involve a discrete Fourier

transform, complex transfer function and interpolation on the latter in

the frequency domain. This technique, known as the complex response

method, has been used extensively in recent years and has previously

been described by Schnabel et al (1973), Lysmer et al (1974, 1975) and

Idriss et al. (1973).

5.2.1 The Fast Fourier Transform

The basic input to any seismic analysis is a digitized ccntrol

motion, y(t), which will be assumed to be given at N (even) prints at

the uniform time interval At. Under these conditions the control

motion can be written

Y(t) - Re Nf2 iYei St  (5.1)

where

2ws N
Ws 'a t ' ""' 2 (5.2)

The differentiable function defined by Eq. (5.1) may be thought of

as a mooth interpolation function between the given points of the

control motions.
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Equation (5.1) is a truncated Fourier series which implies that

the function Y(t) is periodic with the period T - N*At. Actual

earthquakes are not periodic. However, this problem can be handled by

adding a "quiet zone" consisting of a limited number of zeroes to the

given control motion, Schnabel (1972); thus increasing N (and T). If

the quiet zone is sufficiently long the strong motion occuring at the

beginning at each cycle will decay because of material dampihg before

the beginning of the next cycle. Thus the response within each cycle

is virtually identical to that of a single earthquake.

The complex coefficients, Ys, in q. (5.1) can be computed from

the given values, Yk a Y (k-At), k - 0,1,..., N-l, of the control

motion. By choosing the length of the quiet zone such that N is a

power of 2 this can be done extremely efficiently by the Fast Fourier

Transform algorithm developed by Cooley and Tukey (1965). The inverse

version of this algorithm can be used to convert from frequency domain

to time domain, i.e. to compute the Yk values from the Ys values.

In seismic applications it is usual to neglect the first term of

the sum in Eq. (5.1). This is equivalent to assuming that the control

motion has a zero mean value.

5.2.2 The Complex Response Method

According to the complex response method the response of any

linear system to the real excitation defined by Eq. (5.1) can be

determined as the real part of the response of the system to the

complex excitation

Y(t) -Y te(5.3)

s-1
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which simply states that the excitation is a finite sum of harmonic

excitations.

Using the methods developed in the previous chapters the response

of any point to each of these harmonics can be expressed in the form

us H(w)Y (5.4)

where Us is a complex amplitude and H(w s) are discrete values of a

smoother transfer function.

Since superposition is valid for linear systems the real response

in the time domain is

/2 ist

U(t) -Re Use (5.5)

s-l

which is similar to Eq.(5.1) and can be evaluated by the inverse Fast

Fourier Transform algorithm.

Since the number, N, of points in the time domain is typically

1024 or 2048, up to 1024 values are needed for the transfer functions

H(w5 ). However, since these functions are smooth only 30-40 points

need actually to be determined by the rather complicated methods

described in the previous chapters. The intermediate points can be

obtained by a special interpolation technique in the complex plane,

Lysmer et al (1975).

5.3 Linear Rock Site

The first site considered consists of a 50 feet layer of

well-cemented sandstone over harder bedrock. Typical properties for

such a site are shown in Table 5.1. These properties were assumed to

be independent of shear strain amplitude. Thus the analysis discussed

in this chapter is linear.
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5.3.1 Computational Model

In the computational model the upper 370 ft of the site were

represented by 13 sublayers as indicated in Table 5.1. The half space

below this depth was handled by the variable depth method as described

in Chapter 4. This resulted in a computational model with a total of

23 sublayers. Details of the discretization are shown in Fig. 5.3.

This discretization easily satisfies the requirements discussed in

Section 3.4.2 up to a frequency of 20 Hz which was the cut-off frequency

for all analyses discussed in this chapter.

Table 5.1 Properties of Linear Rock Site

Main Thickness No Vs VP Damping

Layer (ft) Sublayers (fps) (fps) Ratio

1 40 5 3600 2900 0.02

2 10 1 3900 6100 0.02

3 320 7 5600 6600 0.02

half
space varies 10 5600 8700 0.02

All unit weights are 150 pcf.

5.3.2 Control Motion

The control point is at the ground surface at x=0. The horizontal

control motion has a maximum acceleration equal to 0.75g. Its time

history of acceleration is shown in Fig. 5.1. As can be seen from the

upper part of this figure the motion has a broad-band spectrum which

fits approximately an NRC-type design spectrum. In the computations

discussed below a total of 4096 points (At-0.01) were used in the

Fast Fourier computations, and frequencies above 20 Hz were not

considered. As a result of this low-pass filtering, the computational

maximum acceleration was 0.76 g.
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5.3.3 Strain Compatibility

The above control motion is extremely strong. Hence, the

appropriativeness of a linear analysis for this case might be

questioned. Actually, the following comments will confirm that for

practical purposes the linear approach is quite appropriate.

While our current knowledge of the behavior of rock at large

strain amplitudes is sketchy, approximate relationships between

effective dynamic shear modulus, damping ratio and shear strain

amplitude have been established. Typical relationships of this type

are shown in Fig. 5.2 which also shows the effective shear strain range

computed for the linear rock site. It may be seen from this figure and

also from the strain compatible properties shown in Fig. 5.3 that the

maximum nonlinear effects amount to a 15% reduction in the effective

shear modulus and a 50% reduction in the damping ratio assumed for this

site. These effects are within the range of accuracy with which

engineers can currently determine these properties in the field.

Hence, it may be argued that a nonlinear analysis for this case would

be a purely academic exercise and that the likely changes in the

results from those obtained by a linear analysis would be small.

Nevertheless, an attempt to evaluate the maximum nonlinear effects for

this site will be made in Section 5.4.

5.3.4 Steady State Results

Before discussing the transient motion results it is interesting

to study the behavior of steady state fundamental Rayleigh waves on the

site.

The dispersion curves shown in Fig. 5.4 are nearly constant in the

frequency range of interest. This indicates that the site behaves
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essentially like a uniform half space with the properties of the

bedrock. This is not surprising since th wavelength of the shortest

Rayleigh wave is about five times the thickness of the weathered crust.

As expected the mode shapes of the Rayleigh waves, shown in

Fig. 5.5, are similar to those observed for a half space. Their depth

of penetration is inversely proportional to frequency and motions below

a depth of one wavelength are insignificant.

5.3.5 Transient Results

The computed variations of maxumum accelerations with depth below

the control point are shown in Fig. 5.3 for both the case of pure

Rayleigh wave excitation and the case of vertically incident shear

waves. The variation is typical for what would be expected for a half

space. The horizontal motions are lower than the vertical motions.

Also, they attenuate faster with depth than those determined from the

S-wave analysis.

The variation of frequency content with depth is illustrated by

the response spectra shodn in Fi-. 5.6. Within the upper part of the

site the frequency distributions of the Rayleigh wave motion do not

differ greatly from that determined from S-wave analysis. At greater

depth the vertical R-wave components predominate. They are longer than

those determined by S-wave analysis especially in the low frequency

range.

As discussed in Chapter 4 the Rayleigh wave field will attenuate

in the direction of wave propagation. For steady state waves the

approximate decay factor for the linear rock site is exp (-2wB)a 0.75

per wavelength. The effect over a traveling distance of 1000 ft is

clearly illustrated by the surface motion response spectra shown in
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Fig. 5.7. The rate of attenuation indicated for this site is hardly

Important for engineering design. However, it should be observed that

over a distance of several thousands of feet all the high frequency

components of the original control motion will vanish. This is a

strong indication that even on rock sites high frequency surface waves

cannot exist several miles from the epicenter of an earthquake.

5.4 Nonlinear Rock Site

As discussed above linear analysis of competent rock sites is

probably appropriate even for very strong motions. Eowever, in order

to investigate the maximum credible nonlinear effects on the above site

the following modifications were made regarding the properties of the

site. First it was assumed that the upper 15 feet of the site is

weathered to the point where its low-strain seismic wave velocities are

reduced to V -1500 fps and V n2900 fps and, second, it was assumeds p

that the sandstone, down to a depth of 370 ft, disintegrates during the

presumed earthquake to the point where it behaves like sand, i.e. its

modulus and damping ratio depends on strain amplitude as shown by the

curves marked "Sand" in Fig. 5.2. The above considerations lead to the

computational model defined in Table 5.2.

Table 5.2 Low-Strain Properties of Nonlinear Rock Site

Main Thickness Sublayers V5  VD Damping
Layer (ft) (No.) (fps) (fps) Ratio

1 15 2 1500* 2900* *

2 25 3 3600* 6100* *

3 10 1 3900* 6600* *

4 320 7 5600' 6700'

half
space varies 10 5600 6700 0.02

All unit weights are 150 pcf.

SComputational values vary according to Fig. 5.8.



139

e 6.1 PT.
S0 *2 S FT.

8.001 VIE?. tIfiP. or I-vAYIs at Ground Surface

FREQUENCY CI Soltoo$

hAA

hA 
t

rR2I1E C Cis

ig..7AtnainoRalihwvMoinwtTrvligDsnc

Rock Sit



140

N 0N

wl a o
o 8 A

J oc _ _ _ _ _ _ _ _ _ _ _ _ _

0 0



141

The model easily satisfies the discretization criteria described

in Chapter 3 up to the 20 Hz cut-off frequency of the analysis

5.4.1 Strain Compatibility

The above model was analyzed using the equivalent linear method

and the same control motion as for the linear rock site. This lead to

the strain-oompatible properties shown in Fig. 5.8. It is evident from

this figure that the nonlinear effects and thus the maximum stresses

produced by a Rayleigh wave field in this site are considerably larger

than those produced by the corresponding S-wave field. Incidentially,

the principal stress directions of the two fields are also completely

different. In an S-wave field maximum shear stresses occur on

horizontal planes while in an R-wave field they tend to occur on the

450 planes, at least within depths of interest to engineers.

It might at this point be argued that the strain-compatible soil

properties determined from the R-wave analysis should be used for all

futher R-wave calculations. However, it might also be argued that from

a practical standpoint it makes more sense to use the S-wave compatible

properties for R-wave calculations. This is so because actual near-

surface ground motions consist mainly of vertically or nearly

vertically propagating body waves and it is these waves, and especially

the shear waves, which produce the major part of the shear strains in

the ground. The additional strains produced by a weak superimposed

Rayleigh wave field are too small to influence the choice of strain-

compatible properties.

The latter approach has been used to produce most of the results

presented below. It has the futher advantage that it facilitates the
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superposition of different types of wave fields, an operation which

would not be valid if the fields were determined from different strain-

compatible models. Thus, in the following, unless otherwise mentioned,

it may be assmed that S-wave strain-compatible properties were used in

all computations involving transient motions.

5.4.2 Steady State Results

Fundamental Rayleigh wave mode shapes at selected frequencies in

the range of interest are shown in Fig. 5.9. The dependency of the mode

shapes on the choice of rock properties indicate two major effects of

increasing nonlinearity:

* A significant decrease in the ratio between the vertical and

horizontal motions.

9 A decrease in the motions at depth, especially in the high

frequency range.

The classic half space theory for Rayleigh waves would predict the

second observation. It also predicts that vertical surface motions are

always larger than the horizontal motions; a prediction which does not

agree with field observations. Thus the first of the above

observations about the effect of nonlinearities may be part of the

explanation for this discrepancy. In fact, it is only part of the

explanation. The imaller vertical motions observed in the field can

also be explained as an effect of stiffness contrasts between the

surface layers and the bedrock. Nonlinearities tend to increase this

contrast when strong motions occurs. Hence, the two explanations are

closely interconnected.

Another effect of nonlinearities (or layering if one prefers that

explanation) is to increase the dispersiveness of the site. This can
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be seen from the dispersion curves presented in Fig. 5.10. These curves

which were computed using S-wave compatible properties show that the

modes shown in Fig. 5.9 propagate with completely different

velocities. Generally the velocity decreases with frequency from a

high velocity corresponding to the velocity of the bedrock to a low

velocity corresponding to the velocity of the surface layer.

The rate of attenuation in the direction of wave propagation,

exp (-k 2 x), increases rapidly with frequency and increasing magnitude

of nonlinearity. This can be seen from the variation of wave numbers

shown in Fig. 5.11. The same graph shows that dispersion, which is

proportional to kI , increases with increasing nonlinearities.

5.4.3 Transient Results

Transient results for the variation of maximum accelerations with

depth are shown in Fig. 5.8. The horizontal motions are similar to

those computed for the linear rock site, see Fig. 5.3, independent of

the choice of strain-compatible rock properties. The vertical motions

are smaller that those computed for the linear rock site and they are

as expected smallest when R-wave compatible properties are used. Thus,

for this site, it may be considered conservative to use S-wave

compatible properties for engineering computations. For this reason,

and for the reasons given in the previous section, S-wave compatible

properties will be used in all further computations.

The variation of frequency content with depth is illustrated by

the response spectra shown in Figs. 5.12 to 5.14. The spectra are

quite similar to those computed for the linear rock site, Fig. 5.6,

except that for the nonlinear rock site the vertical accelerations

contain fewer high frequency components.
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The attenuation of the Rayleigh wave field in the direction of wave

propagation is illustrated by Figs. 5.15 and 5.16 which shows computed

response spectra at different distances from the control point. The

results are similar to those obtained for the linear rock site, Fig. 5.7,

except that the attenuation is considerably stronger.

5.4.4 Conclusions for Rock Sites

A rock site has been analyzed using two extreme models. The first

model assued linear behavior and the second extreme nonlinear

behavior. Except for some minor differences the two models, when

analyzed for the sane control motion at a surface control point, lead to

similar results within depths and distances of interest to foundation

engineers. The major conclusion of the above study must therefore be

that for engineering purposes nonlinear effects need not to be

considered in site response analyses of rock sites.

It was also found that within depths and horizontal distances from

the control point of normal interest to foundation engineers the

horizontal motions computed on the basis of the assumption of a

vertically incident S-wave field are very similar to those computed from

a pure R-wave field. This similarity does not extend to the phase

difference between distant points on a horizontal plane.

An opposed to vertically incident fields, Rayleigh wave fields

attenuate in the direction of wave porpagation. However, for rock sites

this attenuation is too mall to be of interest to engineers. It might,

however, explain why high frequency Rayleigh waves are not observed by

seismologists.

5.5 Cohesionless Site

As an example of a site for which nonlinear effects are important

it was decided to study a hypothetical site consisting of 12S ft of



151

0.83 .. .

DISTANC9 4. FT.

1,4.7s FT.
-,- -3-7 .o FT.

eee .......... $3ee.ee FT'.

I-4 *ARPIN6 N 2 IICIIT .F-I Ml609

w
4

oft

4 .0

| I-

s uo0  1 5 tel 2 4.0o
FVRCOUE(Y- C/S

.IITANCI 0. FT.

-- S-- F T.

-- .UI FT.

. .......... S9.89 FT.

AhPIIS t PttCCT.F-l MOOC

6.00

i •.

4

Id LI.0 I'
.9

oft

I•e

I1 1 5 11 2 4.00
FREOUENCY - C/S

Fig. 5.15 Response Spectra of HorizontA, Component of R-Wave
Notion at God Surace - Nonlinear Riock Zito



152

less

- 118TACt 6. FT.

.-- 111.7S FT.

-70.60 FT.

-....... 3Se.eo FT.

$"IInPgN 2PIUCiNT.IF-I rest

Id

4
4

•

............ o ... ....ee.....

too I S 301 2.66
fIECUENCY - CIS

11.99

-SSSIAIC( 6. FT.

-11.7S FT.

S.60 ......... 3$0.99 FT.

• DAMPlNS 2 P91CInT.F-1 nest

$0

I Jo It6s,46
bele

VSCOUCNCY -CI'S

Fig. 5.16 Response Spectra of Vertical Couponent of R-Wave
Notion at Ground Surface -Nonlinear Rock Site

S ___._ "



153

uniformly dense dry sand. This site will be analyzed for the effects of

Rayleigh waves, inclined body waves and a combination of such.

The sand was assumed to have the following properties:

Unit weight - 125 pcf

Relative density - 75%

Poisson's ratio - 0.3

Experimental data for the variation of the modulus and damping

ratio with effective dynamic shear strain amplitude and confining

pressure for such a material were presented in Chapter 2, Pig. 2.3.

This data will be used below in connection with the equivalent linear

method. The bedrock is considered as a half space with the strain-

independent properties: Unit weight 145 pcf; Poisson's ratio, 0.2;

V - 4000 fps, V - 6532 fps and damping ratio, 2%, for both S- ands p

P-waves.

5.5.1 Harmonic Rayleigh Wave

The site, discretized as shown in Pig. 5.21, was first studied for

the effect of a harmonic Rayleigh wave at the frequency 2.5 Hz. This

frequency corresponds to the predominant frequency of the transient

control motion to be discussed in Section 5.5.1. The wave was

normalized to produce a horizontal acceleration amplitude of 0.25 g at

the ground surface. This corresponds to the acceleration level of the

transient control motion to be used in the next section.

Two solutions are presented. The first solution, shown in Fig. 5.17,

involves what many may consider comon engineering approximations for

this type of problem: The sand layer, which actually increases in

stiffness with depth was replaced by a uniform layer with the constant

shear wave velocity, 1148 fps, and the constant damping ratio, 5%. The
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shear wave velocity corresponds to the average value within the profile

at small strains. The damping ratio, which turns out not to be

unimportant for the conclusions to be drawn later, is an engineering

estimate. Furthermore, in the analysis no attempt was made to adjust

the above values for strain compatibility, i.e. a linear analysis was

performed.

From the solution one may draw the conclusions that:

* Rayleigh waves produce larger vertical than horizontal motions.

* Horizontal Rayleigh wave motions decrease faster with depth than

shear wave motions.

Both of these conclusions are in perfect agreement with classic

half space theories for Rayleigh waves. The first is rarely in

agreement with field observations.

Now compare the above conclusions with the results of the more

complete solution shown in Fig. 5.18. In producing this solution the

sand profile was modeled as a layered system, see Fig. 5.21, which

increased in stiffness according to Sq. (2.1) and the equivalent linear

method was used with S-wave compatible properties to account for

nonlinearities. This procedure actually underestimates the nonlinear

effects for the R-wave results, since, as will be discussed in

Section 5.5.5, R-waves cause larger shear stresses in the upper part of

the profile then S-waves.

It is clear from the results shown in Fig. 5.18 that both of the

above conclusions made on the basis of the results from the simplified

model are wrong for this case. As they will be for some of the

transient cases to be presented below, details of layering and non-

linearities must be considered in site response analyses of soil

profiles.
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Perhaps the strongest effect is that of nonlinearity which in this

case change the average shear wave velocity of the sand layer from about

1148 fps to about 772 fps, a change which will have a pronounced effect

on the behavior of both R- and S-waves.

5.5.2 Transient Rayleigh Waves

The above study was repeated using a transient Rayleigh wave field

defined by the motion shown in Fig. 5.19. This motion was scaled to

0.25 g and used as the horizontal control motion at the ground surface.

1024 points (At=0.02 sec) were used in the Fast Fourier Transform

computations and frequencies above 20 Hz were neglected. Results

compatible with Figs. 5.17 and 5.18 are shown in Figs. 5.20 and 5.21.

They generally confirm the conclusion made in the previous section.

The response spectra for the motions at the control point,

Fig. 5.22, shows that, although the maximum acceleration of the

horizontal and vertical components are similar, the vertical component

contains higher frequencies. Fig. 5.23 shows the variation of frequency

with depth. As expected the major effect appears to be a reduction in

amplitude approximately proportional to frequency.

The average damping ratio in the sand layer is about 10% and it is

therefore to bn expected that the attenuation of the Rayleigh wave field

on the x-direction is very strong. This is confirmed by the results

presented in Fig. 5.24. Within only 250 feet from the control point all

motions above 5 Hz have attenuated to insignificant values. This

especially influences the vertical component which already at a distance

of about 200 ft becomes smaller than the horizontal component at the

ground surface. As discussed at the end of section 5.4 the high

attenuation computed is strong evidence that fundamental mode Rayleigh
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waves are not an important contributor of near-surface motions in

cohesionless sites, at least not at frequencies higher than about 1 Hz.

5.5.3 Rayleigh Wave Stress Field

Another factor which may impede the propagation of strong Rayleigh

waves in cohesionless sites is the characteristics of the near-surface

stress field produced by Rayleigh waves as opposed to that produced by

vertically propagating shear wave fields. These characteristics are:

* Shear wave fields produce no normal stresses on vertical and

horizontal planes while R-wave fields produce very large

stresses; especially on the vertical plane.

* In a shear wave field the maximum shear stresses occur on

horizontal and vertical planes while for R-wave fields these

stresses occur on the 450 planes near the ground surface and on

the horizontal and vertical planes of depth.

Both of these characteristics are confirmed by the data presented

in Fig. 5.25 which shows details of the stress field corresponding to

the above nonlinear transient solution for cohesionless site. Similar

data are shown in the right hand parts of Figs. 5.17, 5.18, 5.20 and

5.21. It should, however, be observed that the stresses shown in

Figs. 5.17 and 5.20 are maximum stresses normalized with respect to the

S-wave stress at the ground surface, while the stresses in Figs. 5.18

and 5.21 are maximum normal stresses on the horizontal plane. The data

is confused by the fact that S-wave strain-ompatible properties, see

Fig. 5.21, were used in the R-wave analysis. Hence, the stiffness of

the upper part of the sand layer is not compatible with the high maximu

shear stresses, Tm (R-wave) in Fig. 5.25, developed by the Rayleigh

wave field near the surface. Nevertheless, it is clear that these
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stresses cannot be sustained by the near surface sand which, due to the

low confining pressure, have very low strength. Thus a near failure

condition, which cannot be handled well by the equivalent linear method,

will develop in the top layers. This will further impede the

propagation of strong Rayleigh waves. Even if the top layer had some

strength due to cohesion, tension cracks would develop due to the high

normal stress on the vertical plane. Any Rayleigh wave motion in a

cohesionless site must therefore be relatively weak.

The high normal stress on vertical planes produced by Rayleigh wave

fields may, even for weak fields, induce high pressures on embedded

structures. The problem will be considered in Chapter 6.

5.5.4 Inclined Body Waves

Since it is unlikely that Rayleigh waves are of importance for

cohesionless sites the above site was analyzed, by the method described

in Section 3.5.1, with the same control point and motion, for the

effects of inclined SV-waves. As will be shown such waves produce

essentially the same motions and stresses on the site as vertically

propagating S-waves. For this reason all analysis were performed

linearly using the S-wave compatible model shown in Fig. 5.21.

The fixed base complex natural frequencies of the 18-layer model

are shown in Table 5.3. In this table the columns marked "S-wavesm and

"P-waves' corresponds to horizontal and vertical modes, respectively.

The inclined shear waves arrive at the base of the sand profile

through the underlying viscoelastic half space at the incident angles,

0, 5, 10 and 20 degrees from the vertical axis. Site transfer functions

(defined as the absolute ratio between the amplitude in question and the

horizontal amplitude at the top of bedrock) for horizontal and vertical
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Table 5.3 Fixed U.se Complex Natuzal Frequencies of Sand Site

?rq B.-waves (H) P-waves (Hz)
NO. Real Imag. Real Imag.

1 1.4803 0.1597 2.9387 0.3171

2 4.0958 0.4354 8.1312 0.8644

3 6.9444 0.7051 13.7863 1.3999

4 9.7657 0.9834 19.3872 1.9522

5 12.5171 1.2536 24.8494 2.4886

6 15.3489 1.5282 30.4712 3.0339

7 18.1037 1.7904 35.9402 3.5543

8 20.7286 2.0332 41.1513 4.0365

9 23.4591 2.3297 46.5719 4.6251

10 25.9610 2.4938 51.5388 4.9509

11 28.2083 2.8073 56.0003 5.5732

12 30.8749 3.0326 61.2941 6.0204

13 32.2445 3.1404 64.0131 6.2344

14 34.8634 3.6592 69.2123 7.2644

15 35.9375 3.3149 71.3446 6.5809

16 37.6328 3.9796 74.7102 3.9004

17 39.4701 3.9002 78.3577 7.7427

18 41.4184 2.5956 82.2255 5.1530
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motions at different depths are shown in Figs. 5.26 and 5.27,

respectively. The horizontal transfer functions are for practical

purposes independent of angle of incidence within the range investigated.

So are the shapes of the vertical transfer functions. However, the

vertical components increase with the angle of incidence. The horizontal

transfer functions exhibit peaks at the S-wave natural frequencies of

the sand layer and the vertical transter functions exhibit peaks at the

P-wave natural frequencies, see Table 5.3. Considering that the

approximate velocity ratio between the sand layer and bedrock is equal

to 5.5, these results are in excellent agreement with the transfer

functions presented in Chapter 3, Fig. 3.16, for a similar profile with

the velocity ratio 4.

The fact that the peaks of the vertical transfer functions tend to

occur at higher frequencies than the peaks for the horizontal transfer

functions means that, in nature, there will be a tendency for vertical

surface motions to contain higher frequencies than horizontal surface

motions. This, incidentially, is in general agreement with field

observations.

A transient analysis, using the same control notion as for the

Rayleigh wave case discussed in Section 5.2.2 but with the control point

at the top at the bedrock, produced the response spectra shown in

Figs. 5.28 and 5.29. As might be expected from the above amplification

study the horizontal motions are virtually independent of the angle of

incidence, see Fig. 5.28, while the vertical motions increase with

increasing angles of incidence, see Fig. 5.29.

A second transient analysis in which the control poin't was at the

ground surface gave similar results. Horizontal response spectra from

this analysis are shown in Fig. 5.30.
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At points below the ground water level, whenever the P-wave velocity

tmputd by the above procedure fell below 5000 fps it was increased to

this value. This modification was made to account for the fact that in

a saturated soil mass P-waves cannot propagate slower than the velocity

of P-waves in water. Physically this means that if the soil frame is

not stiff enough to carry the P-wave at this velocity the wave will

travel through the pore water rather than through the soil frame.

Mherimentally, this phenomenon is often observed when seismic

refraction tests for P-waves are carried out on a soft site with high

ground water level. In fact At is a comonly used method to establish

the location of the water table. Since the ground water level was

assumed to be located 12 ft below the surface the above procedure lead

to the strain-compatible P-wave velocity profile shown as a full line

In the third column of Fig. 5.34.

S.G.1 Steady State Results

Steady state Rayleigh wave computations were performed using the

discretized model and the strain-compatible soil properties shown in

fig. 5.34. The dispersion curves for fundamental-mode Rayleigh waves,

fig. 5.37, show that the site is highly dispersive.

The mode shapes shown in Fig. 5.38 indicates much higher vertical

than horizontal motions. This is probably true for this site in view

of the high Poisson's ratio induced by saturation. However, as

discussed in connection with Fig. 4.8, the procedure used probably

overestimates the vertical motions slightly for high values of Poisson's

ratio. Another effect of the high Poisson's ratio, but not an error,

is the unusual difference in smoothness between the horizontal and

vertical mode shapes at higher frequencies. Transfer functions for the
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horizontal nd vertical cmponents end diftf ent depths and distances

from the surface control point are shown in igs. 5.39 and S.40. They

indicate significant attenuation of all comonents above 2 3l withif a

few hundred feet fra the control point.

5.6.2 Transient Results

The transient S-wave analysis pcoduced the acceleration profile

shown in Fig. 5.34. The steady Lcrease below a depth oc :00 feet is

probably due to the fact that an unlikely control aotion wss used for

this analysis. As sham by Rayashi et &1. (19711 and Seed 9t al.

(1976) surface motions observed of deep alluvial sites do rot contain

as many high frequency components as indicated by the contrl motion

spectra in Fig. 5.36. In fact, due to the low velocities zhoct

wavelength) and high attenuation of shear waves in such *o high

frequency motions at depth are highly attenuated by the tir. they reoach

the ground surface. As a result, if a strong high-frequenm component

is specified at the ground surface, the deconvolved motion zt depth

becomes unrealistically strong in the high frequency range.

Consequently the accelerations at depth becomes unrealisti. l y high as

shown in Fig. 5.34.

The acceleration profile for the corresponding Rayleith wave

analysis is shown in Fig. 5.41. The response spectra of tl horizontal

and vertical component of R-wave motions at three different ;round

levels (at ground surface, at 44 ft and 332 ft below g:ound i.irface)

are shown in Figs. 5.42 and 5.43. otions wore couputtd di:ectly

under the control point and at a horizontal distance of 500 ft from

this point.
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ts&Wec functions shown in Figs. 5.48 and 5.49. As described before

It aMers unlikely that surface waves of frequencies higher than 2 Hz

can actually exist on the site.

S.7.2 Transient Results

The transient analysis produced the variation with depth of the

Maxiint accelerations and the S-wave compatible strains shown in

I19. S.45. The results are similar to those found for the deep

alluvial site. The response spectra of the horizontal and vertical

on lm et of Rayleigh wave motions computed at several different

traveling distances are shown in Figs. 5.50 and 5.51. Again, strong

decy characteristics of Rayleigh wave propagating in an alluvial site

clearly sh that the high frequency Rayleigh wave is not likely to

eto& in an alluvial site.

S.0 IMary for All Sites

What has been demonstrated in this chapter is that the numerical

metods developed in Chapters 3 and 4 can indeed be applied to actual

field problems. This demonstration will continue in the next chapter

*hete m of the results obtained will be applied to a number of soil-

sitacure interaction problems.

Perhaps even more important, some of the results obtained in this

cFpte provide important information on the likelihood of certain

tVpe of wave fields actually existing in nature and on the relative

imotatwce of horizontal wave propagation to engineering projects.

1ftu is mt strikingly demonstrated by the computed rapid attenuation

of fundmental mode Rayleigh waves in soil sites which seems to

Vlt e the existence of high frequency Rayleigh waves on such sites.

%is oervation does not preclude the possibility that higher-mode
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) WM Oal radiatiOn dmping effect. This technique is identical

go %am vea In the VLMN program, Lyamer (1975), and will not be

0ess4 fvtSwim. The rigid base at a depth of 370 feet has been shown

Same-Maee (19761, who cooperated in these calculations, to be

owtf emsly deep to simulate a half space for this model. It should

"e Sesemed %age that the site response analysis associated with this

es",s*W upll.y" the variable depth method for Rayleigh waves. Thus

SAP atem #9igd bow occuars only in the interaction model

1te eofelu @1 the CflM aalyses are presented in terms of 2%

wv..N.aci a epee spectra for the components of motion at key nodes

*0 *no #it eaial dl. In each case the results of the Rayleigh wave

opq4,t¢*_ a ipw emined body wave analysis are plotted together for

eey seep.. i..A

40 # 00 f tc Fiq. 6.4 the motions computed for Point G at

-No %4&e et too b slab are nearly identical for the two cases

,a s* v Apo! **ptpjislf sieg this point Is also the control point in

am f'w fjM Ceetally. the S * P-wave analysis is conservative for

vetetO eiem wile the 3-wave aalysis is conservative for

t% 4WM' &I MiWtIas alM the length of the base slab were all

-w *4w- tm at ftin C. wich is not surprising since the slab is very

.r, MM . itWi ilee4 *me variations in the vertical

9.t4m as kitiett ate io fig. G.S. As expected, the Rayleigh waves

@Rft9 ikq~til me tmoiq then the body wave excitation. The

#qtwM Omtvam at tft left ed of the slab Ifoint 1) is larger than at

te tv41t wi vti f l. Tis is because the Rayleigh waves travel

tk le loft to rijt a *ttenate in that direction.
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Due to the rocking of the base slab, the Rayleigh wave excitation

produces higher horizontal motions at higher points in the structure.

This is illustrated by the response spectra shown in Fig. 6.6. The

vertical notions at the same points are shown in Fig. 6.7. These

motions appear to follow the same trend as the motion of Point G on the

base slab, i.e. the Rayleigh wave field gives higher response in the

low frequency range (<5 Hz) and lower response in the high frequency

range than the body wave field. However, the differences are not large.

In the entire analysis the largest difference observed between

results obtained from the two seismic environments occured at Point C

at the top of the internal structure. The response spectra computed

far the motions at this point are shown in Fig. 6.8. For this one

point it appears that at frequencies higher than 8 Hz the spectrum for

the horizontal motion produced by the Rayleigh wave field is nearly

double as high as the corresponding spectrum for the body wave field.

In view of the above results it appears that Rayleigh wave motions

may be critical for the design of structures on rock. In making this

statement, it should, however, be remembered that no seismic

environment consists entirely of Rayleigh waves and that such waves may

not even exist in the high frequency range (>4 Hz) where the largest

differences were observed.

6.4 Structure on Sand Site

The analysis discussed above was repeated using the same

structural model but this time embedded into the sand site studied in

Section 5.5. The computational model used is shown in Fig. 6.9.

6.4.1 Free-Field Notions

Contrary to the analysis of the rock site previously studied, at

this site the location of the control point was found to be of crucial
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Since the purpose of this investigation was to determine the

behavior of the retaining wall, only results which relates to this

scope will be presented below.

6.5.1 Maximum Accelerations

The maximum accelerations along the retaining wall are shown in

Fig. 6.15 for the S-wave case and in Fig. 6.16 and 6.17 for the R-wave

cases. In each case the motions are compared with the corresponding

free-field motion. Except for the close-in Rayleigh wave case the

interaction effects appear to be insignificant (<10%). This was

generally true for all points in the structural system. In all cases

all points of the wall had essentially the same vertical acceleration

which is reasonable for such a stiff structure.

The horizontal accelerations induced by shear waves are generally

larger than those induced by Rayleigh waves. This observation does, as

will be shown below, not mean that the shear wave field is the critical

load case.

6.5.2 Shear Forces and Bending Moments

The computed maximum shear forces in the retaining wall are shown

in Figs. 6.16 and 6.19. As expected, the forces for the case of the

close-in Rayleigh wave field are somewhat larger than for the case when

the control point is located 500 ft from the wall. Much more

significant is the observatiom that the shear forces induced by the

Ryleigh wave field are several times larger than those induced by the

S-we" fields. This is so because, as discussed in Section 5.5.3, the

normal streses an vertical planes are much higher in Rayleigh wave

fields than they are in vertically propagating fields (even vertically

ptopgatinq P-waves will generate mallet stresses on vertical planes

thaw P-wow' within normal depths of emb**dnet).
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As shown in Figs. 6.20 and 6.21 the situation is similar for

bending moeents in the vall.

6.5.3 Desion Considerations

The high bonding mcments developed in the retaining wall turned

out to be the moat critical item in the design of the raft system. The

practical solution to the problem was to design the vail far a bending

ment which was omputed from a field consisting of 1/3 Rayleigh waves

and 2/3 vertically propagating shear waves. This decision was based on

the argiments presented in Section 5.5.3, according to which It Is

unlikely that a strong Rayleigh wave field can exist on the site. Oven

then the design maent turned out to be several times larger than the

mament computed by say a FLIED analysis which assumes, vertically

propagating waves.

More important than the design decision made, the above analysis

illustrates a case foe which even a msall content of Rayleigh waves in

a control motion may be critical, even though such waves create mallet

accelerations in the structure than vertically propagating waves.
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