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ABSTRACT

{ Barthquake engineers are often faced with the problem of
determining the temporal and spatial variation of near-surface seismic
motions in a site. This type of information is needed for the
evaluation of soil-structure interaction effects, liquefaction

potential and the effects of local site conditions on surface motions.

Actual ground motions are due to a complicated system of body
waves and surface waves. However, it is usually assumed that
near-surface motions consist only of vertically propagating waves, 1In
order to examine the validity of this assumption for engineering design
a theoretical investigation has been made into the nature of
near-surface motions produced by horizontally propagating waves. These
include inclined P-~, SV-, and SH-waves, Rayleigh waves and Love waves
in horizontally layered sites over a viscoelastic half space.

The research involved five phases; (1) review of current
knowledge, (2) development of new methods of site response analysis,
(3) application to site response analysis, (4) application to
soil-structure 1ntetacti\on analysis and (5) evaluation of the relative
importance of horizontally propagating waves in engineering design.

The new method of site response analysis involves a finite element
type discretization of the site in the vertical direction. According

to this method the site is subdivided into thin sublayers and it is

assumed that displacements vary linearly between layer interfaces. The
method is essentially linear and works in the frequency domain.

Nonlinearities are handled by an equivalent linear method according to

which the stiffness and damping ratio within each layer are adjusted
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iteratively to be compatible with the strains developed in the layer.
Transient motions are handled by Fourier techniques.

The method is essentially the same for inclined body waves and
surface waves. However, the latter requires the solution of a special
eigenvalue problem and identification of the fundamental mode. The
procedures have been implemented in the two computer codes, SITE and
LOVE. These codes can produce the complete transient field of motion
from the knowledge of the motion at one point and the type of wave
field producing the motion. Any specified combination of inclined body
waves and surface waves can be considered.

The procedure has been applied to a number of sites (rock, sand,
and alluvium) assuming different types of wave fields and the motions
produced by these fields are compared with those produced by vertically
propagating waves. The results show that the realistic analysis of
incident body waves produce near-surface motions which vary with depth
in essentially the same manner as those produced by vertically
propagating body waves. The motions produced by surface waves are
somewhat different. However, the study shows that in soil sites
surface wave motions decay rapidly in the direction of wave propagation.
Within a few hundred feet of the control motion all components of
frequencies higher than 1 Hz are reduéed to insignificant amplitudes.
The same phenomenon occurs in rock sites but at a much slower rate. It
is therefore questionable whether high frequency surface waves are
important for engineering design.

The study of soil-structure interaction effects show that only the
free~field motions within the body of soil replaced by the structure

are of importance for design. Thus, with a specified surface control
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motion, the spatial variation of free-field ground motions need to be
determined only within a shallow zone near the surface.

Examples of soil-structure interaction analyses are provided for a
structure on rock, a structure on sand, and a large retaining wall on
an alluvial site. The results show that for realistic wave fields the
motions of structures on soil site depends only slightly on the type of
wave field assumed. On rock sites surface waves may produce somewhat
larger motions than vertically propagating body waves.

The study also shows that, while the motions produced in
structures by different types of wave fields may not be too different,
the dynamic earth pressures on embedded structures depend strongly on
the nature of the seismic environment. In particular Rayleigh waves
may produce larger dynamic earth pressures than vertically propagating
shear waves.

The final conclusions of the study are that the current assumption
of vertically propagating waves is probably sufficient for many
practical purposes. However, surface waves may be important in rock

sites and in the determination of forces acting on structures.
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INTRODUCTION

Earthquake engineers are often faced with the problem of
determining the spatial and temporal variation of seismic motio:s in a
soil profile fram a motion specified at a single point. Solutions to
such problems, which are known as site response problems, are necessary
for liquefaction and soil-structure interaction analyses.

1.1 Current Methods of Site Response Analysis

Current engineering analyses of site response usually involve
three basic assumptions:

e Ground motions developed near the surface of a soil deposit may

be attribute only to the vertical propagation of shear waves,
Kanai (1950, 1952).

e The ground surface, the interfaces between layers, and the

bedrock are essentially horizontal.

e The material in each layer is homogeneous and linearly elastic

or viscoelastic.

Using these assumptions, many researchers have developed
computational site models and methods of analysis for site response
problems, including Idriss and Seed (1967), Tsai (1969), Roesset and
Whitman (1969), and Schnabel, Lysmer, and Seed (1972). The first two
assumptions above were found to be quite reasonable for many sites
involving sedimentary deposits with horizontal layering. The third
assumption of linearity might be inappropriate for strong seismic
motion. However, the nonlinear behavior of soll can be practically
approximated by the equivalent linear methwd proposed by Seed and

Idriss (1969).




directly from differential equations, the method of characteristics, or

In general, the computational methods for site response problems
can be separated into continuum or discrete methods. Continuum methods

involve either the analytical solution of boundary value problems

the finite-difference method. These solutions can be obtained either
in the frequency or the time damain, Discrete methods use lumped-mass
or consistent-mass finite element formulations, which give good results
if each layer in the model is thin enough to transmit the shortest
wavelength involved. Current discrete methods include the complex E

response method, modal analysis, direct integration, and the method of

characteristics. Each method is briefly reviewed below.
Complex response analysis (linear frequency domain analysis) can
conveniently account for material damping through the introduction of
complex moduli into the equations of motion. This method can .
incorporate equivalent linear techniques to approximate nonlinear soil
behavior. Furthermore, Fast Fourier Transform and interpolation
techniques in the frequency domain make this method effective and
economical.
Modal analysis can be performed on a lumped-mass model of a shear
beam representing the soil profile. Modal frequencies and mode shapes
may be obtained from the geometry and mass distribution of the system.
The response in each mode may then be determined, and the total
response is obtained by superposition. This technique, however, can
not properly account for the spatial variation of damping within the
soil mass or for radiation damping. -
Direct integration (step~by-step time domain analysis) may also be

used. Experience has shown that for a large time step this method N




algorithms. Although mmaller time steps will overcome some of these

i
i
encounters stability and damping problems related to the numerical %
i

problems, computational costs increase dramatically. Problems may also l:

be encountered in constructing the proper damping matrix from given

material properties. Besides, unreliable responses might be obtained .

in the high-frequency ranges. J
The method of characteristics is a mathematical technique for
transforming partial differential equations into ordinary differential
equations that are then solved by some suitable technique. The method

is effective for linear analysis but encounters computational problems
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for nonlinear analysis.

o

Recently, efforts have been directed toward the development of

better nonlinear analysis methods. Nonlinear total stress analyses of
site response problems using vertically propagating shear waves were
studied by Streeter et al. (1974), Constantopoulos (1973), Papadakis
(1973), Joyner and Chen (1975), Martin (1975), Idriss et al. (1976),

and Taylor and Larkin (1978). Several methods of nonlinear effective
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stress analysis have been proposed by Finn et al. (1977), Liou et al.

(1977), and Ghaboussi and Dikmen (1978). These methods are important
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for the study of liquefaction during earthquakes.

1.2 The Seismic Environment

The above methods assume a simple seismic environment consisting
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of vertically propagating waves. However, as shown in Fig. 1.1 the
motions generated by a source in the Earth's crust are composed of many
wave types. The basic wave types are called shear waves (S-waves) and

compressional waves (P-waves). When the (perhaps curved) wave fronts

' of these waves impinge on the ground surface or layer interfaces




surface waves may be generated. These include Rayleigh waves (R-waves)
and Love waves (L-waves).

The different wave types can be classified as shown in Pig. 1.2.
S-waves involve motions perpendicular to the direction of wave
propagation. S-wave motions in the vertical plane are called SV-waves.
Horizontal S-wave motions are called SH-waves., P-waves involve motions
in the direction of wave propagation. Rayleigh waves involve
horizontally propagating elliptical motions in the vertical plane and
Love waves consist of horizontal motions perpendicular to the
horizontal direction of wave propagating.

All of the above wave types can propagate independently. However,
at layer interfaces and other inhomogeneties refraction or reflection
may occur which not only may change the direction of wave propagation
but which may convert one wave type into another (mode conversion). As
a result actual seismic environments are much more complicated than the
vertically propagating wave field assumed in current engineering
analyses.

The main purpose of the research described herein was to
investigate the possibility of developing methods of site response
analysis which can consider more realistic, and thus more complicated,
seismic environments than that described in Section 1.1. Specifically,
the assumption of vertical wave propagation will be dropped.

1.3 Horizontally Propagating Waves

Five types of horizontally propagating wave fields in horizontally
layered soil and rock systems will be investigated:

e Inclined P-waves

e Inclined SV-waves




5
L d
SHEAR WAVES AND SHEAR
SHEAR WAVES AND FEW SURFACE WAVES WAVES
. SIGN:FICANT SURFACE waves Sy ) S
A f\ — A ’P\‘

E
-
R
L.

’
SCURSE | -%o

Fig. 1.1 Idealized Relation Among Earthquaks Source, Wave Paths
and Site (after Tsal, 1969; Nair, 1975)

Longitudina v, 1
rP-Waves Dilational ,I‘,'P
(Primary) ; Irrotationa
(Compression ‘a\ ‘ When
BODY p " Mfm l'/ (R can 3
HAVES_J satisfy 's"y leigh
boundary aves
sV condition ,
Transverse Wave
lS—'daves Distortiona #SURFACE
(secondary) Rotational VAVE
(Shear) ] [Uncoupling,
V = —G_ can
s ' ¢ i:tisfy Love
lcondizicn daves |
1>y itseif

Fiz. 1.2 Seismic Waves - Types, Characteristics ard Rela‘liornships

’
A




® Inclined SH-waves

® Rayleigh waves

o Love waves

Also, combinations of such wave systems will be considered.

The relative contributions of the different wave types to the

total ground motion and the corresponding arrival times for each type
of wave depend on the epicentral distance to the site, the focal depth
of the source, and the phenomena of multiple reflection, refraction, and
dispersion along the various paths. Realistically, it must be assumed
that all observed seismograms contain some components of all of the
above motions. However, the exact composition is not and probably
never will be known since the exact properties of the source and the
physical and geametric details of the geology cannot be determined.
There is today considerable observational evidence that all of the
above wave types exist. The existence of inclined body waves has been
confirmed by numerous investigators, e.g. Suzuki (1932) who reported a
mean angle of incidence of about 4° for the initial motion in about
fifty records from Hongo and Mitika, Japan.

The evidence for the existence of surface waves is even stronger.
More recent observations include; Shima (1970), Trifunac (197%;, Bolt
(1972), Anderson (1974), Hanks (1975), Toki (1977), Swanger and Boore
(1978). However, the evidence seems to be limited to freguencies below
2 Hz. For example, the surface waves observed by Swanger and Boore
(1978) in the records from the 1968 E1l Centro earthquake occurred in
the range 0.1 - 1.0 Hz and the surface waves detected in the 197). San
Fernando earthquake were in the range 0.1 - 2,0 Hz, Toki (1977). The

existence of significant surface wave components above 2 Hz, which is

e e e - - . - e ———————— e x .




the range of most interest to engineers, has therefore not been
oonfirmed.

In addition to the above evidence there is an overwhelming amount
of data which indicate phase differences between motions observed at
closely spaced points, e.g. Yamahara (1970) who observed significant
phase differences between stations spaced only about 100 feet apart.
In most of these cases the wave type was not identified. Nevertheless,
the evidence confirms the existence of horizontally propagating waves.

Although a few suggestions have been made, Nair and Emery (1975),
Liang and Duke (1978), as to the relative content of different wave
types, the literature has a dearth of data on this topic in the
frequency range of interest to engineers,

Several researchers have developed theories for the response of a
horizontally layered site to plane harmonic body waves arriving at a
specified incident angle from an underlying half space. Thomson (1950)
and Haskell (1960, 1962) developed a matrix formulation for computing
transmission coefficients in a layered continuum. Hannon (1964)
extended Haskell's formuls: ion to study transient incident P-waves,
Silva (1976) extended the Thomson-Haskell method to include damping in
soil layers.

The response of a horizontally layered site to harmonic surface
waves has been studied by Sezawa and Kanai (1935), Haskell (1953), and
Ewing et al. (1957), Mooney and Bolt (1966). Recently, Bocheva (1977)
extended the method to study surface wave amplification factors.
Swanger and Boore (1978) simulated strong motion displacement using
surface wave modal superposition. Lysmer (1969a), Waas (1972), Lysmer
and Waas (1972), and Lysmer and Drake (1972) applied the finite element

method to problems involving Rayleigh and Love waves,
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Most of the above studies are restricted to linear analysis of
harmonic motion of a single type of wave field.

1.4 Purpose and Scope

The main purpose of the research described herein was:

e To develop analytical methods for site response analysis of
horizontally layered sites excited by horizontally propagating
seismic motions consisting of surface waves and inclined body
waves,

The main emphasis is on engineering applications. This means that
the geametric dimensions of the model considered are smaller than (and
the frequency range higher than) those usually considered by
seismologists (100 ft vs. 1 km, 1-20 Hz vs 0.1 ~ 1 Hz). Also, while
the seismologist's problem usually is to determine motions from
estimated source parameters or source parameters from observed motions,
the engineering site response problem involves determining the spatial
and temporal variations of transient motions within a limited distance
from a specified motion (control motion) at or near the ground
surface. This process is called deconvolution in the engineering
profession.

The research involved the following items:

® Review of existing methods and available data on dynamic
material properties.

® Development of a finite element method for transient site
response analysis of problems involving inclined body waves in

a profile consisting of soil layers over a viscoelastic half

space.




o Development of a finite element method for transient site
response analysis of problems involving Rayleigh waves and Love
waves in a profile consisting of soil layers over a
viscoelastic half space.

e Development of practical computer codes (SITE and LOVE) to
implement the above methods.

e Application of the above methods to realistic site response

problems.

e Application of site response solutions to soil-structure

interaction problems.

The presentation of the research is organized as follows:

The dynamic properties of soils and rock are described in
Chapter 2. The emphasis is on a material description which is suited
for the analytical procedures employed in later chapters.

Inclined body waves are discussed in Chapter 3 and surface waves
in Chapter 4. The treatment in these chapters involves only harmonic
waves. However, these chapters contain most of the theoretical
developments for the finite element codes SITE and LOVE.

The transition to transient cases through Fourier techniques is
made in Chapter 5 which also contains several case studies of site
response analysis.

In Chapter 6 the application of site response solutions to
soil-structure interaction problems is discussed and a number of case
studies are presented.

The results of the research are summarized in Chapter 7. As will
be shown in that chapter the research lead not only to the development

of a unified theory for inclined body waves and surface waves in




layered systems and two associated computer programs but to a number of
significant conclusions regarding the importance of considering

horizontally propagating waves in design and, perhaps surprisingly, the

likely contribution of surface waves to near surface seismic motions.
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i CHAPTER 2

DYNAMIC MATERIAL PROPERTIES

2.1 1Introduction

The stress-strain characteristics of soils are strongly nonlinear
and may significantly influence the dynamic response of a site subjected
to a strong earthquake. A good site response analysis must therefore
consider these nonlinear effects.

Details of the dynamic stress-strain behavior of soils have recently
been reported in state-of-the-art papers by Bardin (1978) and Yoshimi
et al. (1977). 1It is clear from these reports that the transient

stress-strain behavior of soils is extremely complicated and that this

behavior can not as yet be fully described by constitutive laws. Most
of the data and models available refer to cyclic behavior of soils
subjected to constant strain amplitudes. Typical stress-strain
relationships of soils subjected to symmetric cyclic loading conditions
are curvilinear as shown in Fig. 2.1.

In choosing dynamic soil properties for site response analysis, one
should realize that such problems can only be solved by making certain
assumptions about the nature of the wave fields involved. Except for
the special case of vertically propagating waves, which is not the
major topic of this dissertation, appropriate wave fields can only be

constructed for linear layered systems. Therefore, it is essential to

choose representative linear dynamic properties for the actual analysis.

As will be shown, such properties can be determined from the available
data, and an approximation to nonlinear analysis can be achieved by the

equivalent linear method, which is discussed at the end of this chapter.
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2,2 Measurement of Dynamic Properties
Considerable effort has been directed towards the determination of

soil properties in recent years. A complete review of the measurement
of dynamic properties was given in a state-of-the-art paper by Woods
(1978). The most commonly used test procedures are described below.
Determination of Hysteresis Loops

Hysteretic stress-strain relationships of the type shown in
Fig. 2.1 can be determined by cyclic triaxial compression tests, cyclic
simple shear tests, or cyclic torsional shear tests. These tests are
applicable in the amplitude ranges shown in Fig. 2.2a and are usually
performed in the frequency range of 1-20 Hz. Test results have
indicated that the shape of the hysteresis loops is virtually
independent of frequency. From these loops the effective dynamic
moduli and fractions of critical damping can be determined. The
modulus is the slope of the secant betweeen the ends of the loop, and
the damping is proportional to the aspect ratio of the loop, i.e., the
ratio between the average width and the length of the loop.

Resonance Column Tests

The dynamic moduli can also be determined from longitudinal or
tortional resonance tests, in which a column of soil is excited at
different frequencies to determine the natural frequencies from which
the moduli can be computed. The damping ratio can be estimated from
the height of the resonance peaks or by measurement of the phase
difference between the displacement of the specimen and the exciting
force. These tests are usually performed at frequencies in the range
of 20~260 Hz and are applicable in the strain amplitude ranges shown in

FPig. 2.2a.
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Pree Vibration Tests

In these tests cylindrical soil samples are set into longitudinal
or torsional vibrations, the power is switched off, and the decay of
the amplitudes is measured to determine the logarithmic decrement, from
which the damping ratio can be computed. These tests can be conducted
using a resonant column apparatus with either solid or hollow samples,
and good results can be obtained only at relatively low to moderately
high strain levels.

Field Measurement of Wave Velocities

In-situ tests are conducted to determine the velocities of
propagation of P-, S- and Rayleigh waves. The most usual types of
field tests are

a. Geophysical tests: seismic refraction, seismic cross-hole, and

seismic down-hole methods.

b. Surface vibration tests: surface wave and resonant footing

techniques.

c. Other field techniques: frequency domain measurements;

cylindrical in-situ tests, see Woods (1978).

In general, these tests give soil moduli for low strain levels.
In-situ tests are inadequate to determine the volumetric characteristics
of saturated soil because the measured P-wave velocities are greatly
affected by the presence of water. The customary procedure in this
case is to conduct laboratory measurements of Poisson's ratio or bulk
modulus. Such laboratory tests are usually performed statically because
the measurement of lateral deformations and volumetric strains under
dynamic conditions is not practical, Shannon and Wilson (1%971).

The ranges of shear strain amplitudes over which the field

techniques are applicable are shown in Fig. 2.2b.
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2.3 Summary of Available Data
As can be seen from Fig. 2.1, the effective dynamic moduli of soils

subjected to cyclic excitation will usually decrease with the strain
amplitude, and the damping ratio will increase as the strain amplitude is
increased. Therefore, it is customary to present the data in the form of

curves which show the variation of modulus and damping with strain

amplitude, see Figs. 2.3-2.9.

Most available data only consider the variation of shear modulus and
damping ratio with shear strain amplitude. 1In principle, two moduli and
two damping ratios should be considered--one set corresponding to S-waves
(shear modulus, G, and the corresponding damping ratio, Bs). and a
second set corresponding to P-waves (constrained modulus, M, and damping
ratio, Bp). Also, the variation of these parameters with the amplitude
of normal strain should, in principle, be considered. However, normal
strains are usually considered to have only small effects on the dynamic
properties and are neglected. Similarly, the two damping ratios Bs and
Bp are often assumed to be the same, although data by McDonal (1958)
and Eisenburg (1972) indicate that the damping ratio for S-waves is
considerably higher than that for P~waves (see below). A detailed study
of the factors influencing the shear moduli and damping values of soils
has been carried out by Hardin and Drnevich (1972). Seed and ldriss
(1970) have proposed simplified practical relations which will be used in
this study. Some relationships for rock material were proposed by
Schnabel (1973).

Cohesionless Soils

Seed and Idriss (1970) have shown that the dynamic shear modulus of
cohesionless soil can be expressed by:

a
G = 1000 K, (Om) F (2.1)




where Kz is a parameter that depends on the relative density and the
shear strain amplitude. Also, Om is the mean effective stress, which
equals (0v + 2xo oh)/3, where ov and oh are the vertical and

horizontal effective pressures, respectively, and Ko is the at-rest
earth-pressure coefficient. The exponent, a, has been found to vary from
0.3 to 0.8 (Idriss and Seed, 1968; Carriveau, 1970; Drnevich et al.,
1966; and Silver and Seed, 1969). Seed and Idriss (1970) proposed the
use of a = 0.5 in the above expression. The term F is a coefficient
accounting for grain size and shape variation. It ranges from 0.6 for
silt to 2 for gravel.

The estimated average value for the combined effects of Kz and F
is about 61 at low shear strain levels (10-4 percent) for a wide range
of sandy soils at 75% relative density. The attenuations of the shear
modulus with increasing strain for sands of different densities are shown
in Pig. 2.3. The curves shown in this figure may be normalized to a
single attenuation curve as shown in Pig. 2.4.

Measured values of the damping ratio for cohesionless soils and
average values proposed by Seed and ldriss (1970) are shown in Fig. 2.S.
The average curve shown is adequate for most cohesionless soils up to a
confining pressure of 2500 psf. The damping ratio will be affected by
overburden pressure, relative density, degree of saturation and the
number of loading cycles. The effects of the number of loading cycles
and relative density are minor. It has been found that the damping
decreases with increasing effective overburden pressure and increases
with increasing degree of saturation. Schnabel (1973) suggested that the

variation of the damping factor with effective overburden pressure, cm,
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may be expressed by

1/4
g - 2500

g
m

P, Bave (2.2)

where Fg is 0.6 for dry sand or 1.0 for saturated sand.

Cohesive Soil

The shear modulus of saturated clays has been found to be
essentially proportional to the undrained shear strength Su, as follows:

G=KS, (2.3)
where K is a coefficient depending mainly on the shear strain amplitude.
Average values of the coefficient K obtained from various sources are
shown in Pig. 2.6, Seed and Idriss (1970). Some recent results by Stokoe
and Lodde (1978) are shown in Fig. 2.7. The shear modulus of clay can be
determined in the field for low strain levels and in the laboratory for
high strain ranges. Sample disturbance will significantly affect the
shear moduli obtained from laboratory tests. Hence, laboratory data must
be corrected for sample disturbance. Correction factors can be obtained
by comparison of low strain tests in both field and laboratory.

The damping ratio of clays is affected by shear strain amplitude,
effective overburden pressure, void ratio, number of loading cycles and
water content. Most available data cover only the effect of shear strain
amplitude. Measured values of the damping ratio and proposed average
values for saturated clay obtained from different sources of data are
shown in Fig. 2.8.

Rock

Values of shear modulus for rock are most often obtained from

seismic investigations, which yield values only at low strain levels.

Very few data are available for strain dependence, but it seems likely

that rock will exhibit some decrease of shear modulus with increasing




20

1.0 ~T . gty v
* ,~Average * one
H i \\ N Stancard -
£ Deviation
Q 08}
© Stokoe-Lodde
; s - (1978)
! k-]
| \
i Seed-]Jdriss
: ] i (19;%5
G 0.4t
h -
: b
3
E .21 122 deys of confinement
2 at each o,
o.o " 1 " 2 e aaal Y 2 ds gt
0.000! 0.C0i 0.0 0. 0.3

Single-Amgphitude Sheaning Stran, Y, percent

Fig. 2.7 Normalized Shear Modulus with Shear Strain for
Saturated Clays (from Stokoe and Lodde, 1978)

40
|
VU Teyier ong Meanres (9631
Q Tayier end megres (1963}
33— @ 1enss 19682

@ Amves ong Froman i194T)
© Therm one Zoee 11940)

A Sgvece (1949)

& Dersven (V4

Q Tayer ong Sectown {198M
* Teyar eng Beccrus (19891
O nereie ond Drnguich 1.970)

8
{

']

Dompng Reties - percent
3

}.]

g ’

3 !

0 L

0 ° T3 VR o - "

Sheer Steain - percent

Fig. 2.8 Damping Ratios for Clays (Seed and ldriss)




21

shear strain. The curves shown in Pig. 2.9 were proposed by Schnabel
(1973) for site response analysis of sedimentary rock layers. Schnabel
also presented considerable data for low strain properties of different
rock types.

A literature survey by Knopoff (1964) provides values of damping
ratios for various rock types. These data were obtained from laboratory
tests and indicate that the damping ratio for rock varies from 0 to 1.4
percent. A literature survey by Jackson and Anderson (1970) of data
obtained from in-situ measurement in the shallow crust of the earth
indicates values for the S-wave damping ratio ranging from 2.5 x 10-20
to 0.5%, and values for the P-wave damping ratio ranging from 0.0l$ to
1.58%. Por surface earth materials, Knopoff's survey (1964) shows values
of the P-wave damping ratio ranging from 1% for magnetite hemotite to
7.2% for Pottsville sandstone and values of the S-wave damping ratio of
about 58 for Pierre Shale.

Damping for shear waves is higher than for P-waves by a factor of
1.8 to 2.6 (McDonal, 1958; Eisenberg, 1972). No data are available
regarding the variation of damping with strain in rock, although some
increase in damping ratios with increasing strain is to be expected. The
strain dependent damping curve shown in Fig. 2.9 was proposed by Schnabel
(1973) for sedimentary rock layers with shear wave velocities in the
range 2000-4000 fps at 100-3000 3: depth. BHe also proposed the following
method for adjusting the &mpi‘ng values of rock having other shear wave
velocities.

a. All materials with v;§3000 fps are treated as s0il with the

same nonlinear property characteristics as described for soils.
b. All materials with Vs>11,000 fps may be treated as linear

elastic materials.
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c. A material with 3000 fps<V,<11,000 fps is treated as a
transition material between soil and linear elastic rock. In
this case, linear interpolation can be employed between the two
extremes described above.

Dynamic Poisson's Ratio

The dynamic Poisson's ratio of soil during cyclic loading has
attracted very little attention. Fig. 2.10 shows some laboratory test
results for the dynamic Poisson's ratio of clayey soil tested at
different shear strain levels, Bara (1973). It can be seen that the
dynamic Poisson's ratio for a soft clay and a very stiff clay are
essentially independent of the shear strain levels and frequencigs of
cyclic loading., A statistical analysis of recorded wave velocities of
various deposits obtained by seismic exploration was conducted by Ohsaki
and Iwasaki (1973). The evaluated dynamic Poisson's ratio versus shear
moduli and the total average values are shown in Fig. 2.11. The results
demonstrate that the dynamic Poisson's ratio does not change appreciably
with shear moduli for sandy soils. Using the experimental results given
by Hara (1973), they concluded that the dynamic Poisson's ratio for
cohesive soils is almost constant (approximately 0.48) and that for
cohesionless soil, the dynamic Poisson's ratio is a function of shear
modulus.

In fact, the dynamic Poisson's ratio will significantly affect
stress and strain computations as well as the wave propagation
characteristics of P-waves in a soil deposit during dynamic excitation.

2.4 Theoretical Models

Several theoretical constitutive models have been proposed which,

with cyclic excitation, produce hysteresis loops similar to those shown
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in Pig. 2.1. Por the special case of the shear stress-shear strain
relationship the most relevant models for soil dynamics analysis are
those discussed below.

l. Viscoelastic Models

The general viscoelastic solid produces an elliptical hysteresis
loop, the shape and slope of which are rate dependent (i.e., the
effective modulus and damping ratio are frequency dependent). BHowever,
numerous tests have shown that the shapes of the hysteresis loops for
soils are essentially independent of frequency within the fregquency range
of interest in earthquake engineering. A viscoelastic material which
satisfies this condition, as used in this dissertation, can be defined by

the complex dynamic modulus:
* 2
G =G(1 - 28s + 2iBs 1 - Bs) (2.4)
= G(l + 2iBs) ; for small Bs

where G is the usual shear modulus and Bs is the fraction of critical
damping. With this definition the stress-strain law for harmonic
excitation becomes

T =G
where T and A are the complex amplitudes of stress and strain. A more
complex model for two-dimensional stress states will be introduced in
Chapter 3.

The hysteresis loops inherent in the above model are independent of
the strain amplitude. However, this problem can be overcome by the
equivalent linear method discussed later in this chapter.

2. Ramberq-0sqood Generalized Model

A four-parameter model which can be used for nonlinear analysis was

proposed by Ramberg and Osgood (1943) and modified by Jennings (1964).

e

=~y

o
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In this model, the shear strain is a function of a given stress as

follows:

(Y/v,) = (t/t,,) +alt/t )t (2.5)

ult ult
in which r is a positive constant greater than one, G is a real positive
parameter, which is a function of r, Yy is a reference strain, and
Tult is the ultimate shear stress. The shear stress in this equation
can not be explicitly represented by the shear strain for a general value
of r (r = 1 gives a linear relationship between A and T, and r = ® gives
an elasto~plastic relationship).

The hysteretic damping, B, can be evaluated as described by Jac sen
(1960) .

r~-1 G

1 O —
/=507 (2.6)

max max

B‘emax(l-c

where Bmax = (r - 1)/(nr), and G/Gmax can be evaluated from

6/G ., =1/ [1 + a6 r/Gy,, yy;"lj (2.7)
The model has been used by Constantopoulos and Christian (1973) and
Streeter et al. (1974) for site response analysis and lately by Idriss et
al, (1976) for the gradual degrading of clay when subjected to cyclic
loading.

3. Hardin-Drnevich Model

Hardin and Drnevich (1972b) proposed the following approximate

relationship between stress and strain

T = Cpax Y/(1 + vp) (2.8)

Gmax can be measured by resonant column or seismic techniques and Yh

is the hyperbolic strain defined as:

-by/y

‘Y = L ]1 + ae
h Yy l

YJ' (2.9)




in which "a" and "b" are empirical soil constants and "e" is the base of

natural logarithms. This model needs four parameters explicitly. The
damping ratio is given by

B = Bpax Y/ (2 *+ Y (2.10)
For sandy soil Bmax depends on the number of cycles of loading, and,
for clay soil, on the loading frequency and stress state. A similar
model--initially used by Kondner (1963) and lately also by Hardin and
Drnevich (1972b)--does not include the parameters a and b and defines
Y = Y/Yy- This model is called the Hyperbolic Model, and only two
psrameters are needed to determine the stress-strain relationship.
4. Martin-Davidenkov Model

Martin (1975) modified the generalized Davidenkov model by defining
a new function for shear strain, and he proposed the following
stress-strain law:

T =G l1-HMIY (2.11)
where H(Y) is given by

H(y) = {(Y/YY)ZB/II + ‘Y/Yy’ (2.12)

ZBJ]A
J
in which A and B are constant parameters. Four parameters are required

for this model. The damping ratio can be evaluated by

Y Y
8 -% {y2uey) - 2[ ni(m) an}/ {y? - 2[ nH(n) dn} (2.13)
0 0

By appropriate choices of the parameters involved all of the above
nonlinear models can be made to fit approximately the strain dependency
curves for cyclic loading published by Seed and Idriss (1970), see

Pig. 2.12 from Kagawa (1978). The Martin-Davidenkov model provides the

closest fit.
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Parameters Used for Soil Models

Hyperbolic Model

Ramberg-Osgood Model
Hardin-Drnevich Model
Martin-Davidenkov Model Yy = 3,16 x 1074,

Yy = 3.16 x 107,

Y, = 3.6 x 107, B

.22‘
AX=w2,5, r=2

Yy = 316 x 107, By, = 27 %, a = -0.5, b = 0.16

A=0,9, B=20.413
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2.5 The Bquivalent Linear Method
The nonlinear behavior of soil materials cannot be fully described

by constant elastic moduli and damping coefiicients. However, a good
approximation of the effects of s0il nonlinearities on the response can
be obtained by the use of constant strain compatible moduli and damping
ratios in a sequence of linear analyses. This method, which is known as
the equivalent linear method (Seed and Idriss, 1969), can be briefly
described in the following manner.

In a site response analysis the equivalent linear method starts with
a linear analysis using estimated soil properties in each layer of the
soil system. This analysis yields complete time histories of shear
strain, from which the effective shear strain amplitudes are calculated
in each layer. (The effective shear strain amplitude is usually taken as
658 of the maximum shear strain or as the RMS value of the shear strain
time history). Using the computed strain amplitudes, an improved set of
goil moduli and damping ratios are obtained from appropriate soil data
curves of the type shown in Figs. 2.4-2.9, and a new linear analysis is
performed with these properties. The process is repeated until the
properties from two consecutive analyses differ by less than a specified
tolerance, say 5 percent. This will usually require fewer than 5
iterations. The results of the last iteration are taken as the final
solution to approximate a true nonlinear solution. This technigue has
been widely used in practice because it is an efficient method and is
easy to implement in a computer program.

The linear equivalent method can also be used for two-dimensional
analysis by the finite element method, Idriss et al. (1973) and Lysmer
et al. (1975). In such analyses, strain compatible properties are

determined by iteration for each soil element.
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The equivalent linear technique has been shown to give surprisingly
good approximations to motions computed by truly nonlinear techniques,
Martin (1975), although cases have been found where significant
differences occured, Martin (1975) and PFinn et al. (1978). Good
agreement has also been found between observed ground motions and motions
computed by equivalent linear methods, Idriss and Seed (1968), Schnabel
and Seed (1971), and Valera et al. (1977).

2.6 Combined Loading Effect on Strain-Dependent Properties

The above discussion of shear modulus and S-wave damping is
basically for the case of a simplified one-dimensional S-wave analysis.
These strain dependent properties can be easily obtained from available
laboratory tests such as the resonant column test and the strain control
triaxial cyclic test. However, during an earthquake, the soil is excited
simultaneously by all kinds of seismic waves travelling in all
directions. An element of soil will be subjected to combined shear and
compressive strains. How these combined excitations affect the modulus
and damping characteristics is still not clear.

A research program to study these combined effects in different
soils is currently in progress at the University of California at
Berkeley. The research comprises different studies in order that a wide
range of loading oconditions and strain amplitudes might be explored. For
the harmonic simultaneous loading condition, two components of loading
can be either out of phase (Raylejgh wave type excitation) or in phase
excitation (body waves at small angles of incidence). At low strains,
studies involve the cyclic excitation of a triaxial soil specimen in a
special resonant column device capable of simultaneous compression and
torsion excitation. At high strain ranges, studies involve the cyclic

loading of a hollow cylindrical specimen of soil with a special testing

-~
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machine capable of reproducing earthquake level strains. While the study
is still continuing, the effect on both the shear and constrained moduli
and damping appears to be significant in some high strain ranges and some
particular loading conditions, Griffin (1979).

Because of a lack of experimental results on strain dependent
properties for simultaneous loading conditions, the site response
analysis for R-wave excitation is still restricted to linear analysis.
However, the developed computer program SITE can handle the approximate
nonlinear analysis for R-wave excitation whenever the strain dependent
properties are available.

In site response analyses with R-waves or inclined body waves, the
strain-“ependent property curves for both the shear and the constrained
moduli as well as both the S-and P-wave damping ratios will be used
simultaneously for the iteration process. The complex constrained
modulus, M', is defined in a similar way as the complex shear modulus

defined in section 2.4:
M' =M - 282 +2i8V1 -8 % (2.14)
p P P

where M is the real constrained modulus and Bp is the damping ratio

due to P-waves, However, at this stage, because of a lack of data on
strain-dependent P-wave properties, one can assume a constant real
Poisson's ratio and follow the conventional iteration procedures by
iterating on shear modulus and S-wave damping. This approach implies
that the analysis is using the same rate of attenuation on both the shear
modulus and constrained modulus and also using the same value of damping
for S- and P-waves. On the other hand, as an extreme case one can assume
a constant constrained modulus and a constant P-wave damping together

with strain-dependent S-wave properties. Analyses iterating on these
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sets of property curves will result in a complex Poisson's ratio. The

Poisson's ratio will be strain dependent and tend to be larger than that

obtained when both G* and M* are assumed to be shear strain dependent.
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CHAPTER 3

INCLINED BODY WAVES

3.1 Introduction

In this chapter a method is developed for the evaluation of the
seismic response of a horizontally layered site due to a system of plane
incident body waves. These waves arrive at an oblique angle at the base
of the layered soil system from an underlying uniform half space.

The fundamental equations of motion are presented and partially
solved in Section 3.2. The complete solution for the special case of a
half space with a free boundary is presented in Sections 3.3 and 3.4.
Additionally, an exact solution for a single uniform layer over a
viscoelastic half space is developed in Section 3.5. This solution will
be later used to verify the discretized method, as developed in Sections
3.6 and 3.7, for a general multi-layered system.

3.2 Governing Equations

The motions created by incident plane body waves will in general
involve three components of d:splacements, however, these components do
not vary in the horizontal direction, y, perpendicular to the direction
of wave propagation., Hence the problem involves only the space
coordinates x and 2. The coordinates of x and 2z are defined as shown in
Pig. 3.1.

For the special case of larmonic excitation the equations of motion

for an isotropic viscoelastic medium may be written:
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Fig. 3.1 Incidence and Reflection of a SV Wave Arriving at a Frece Surfacse
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2
du
* [ 3 L ]
M -G)-g—x§+cv2ux-o—-’25 (3.1.a)
ot
2
du
» *
(n'-c)-g5+cv2u - p—= (3.1.b)
Z z atz
2
)
¢V = o— (3.1.¢)
y 3
where
du du
€ e =X 4 —2 (Dilation)
ax oz
# ¥
V2 == + - (Laplace Operator)
o oz
and U uy, u, are the displacements in the x, y, 2z directions,

respectively. p is the mass density and u* and G" are the complex
moduli introduced earlier. Equations (3.1l.a) and (3.1l.b) are coupled.
They govern the motion in the vertical x-z plane while Eq. (3.l.c)
governs the motion perpendicular to the x-z plane. The waves described
by Egs. (3.l.a) and (3.1.b) will be discussed first.

General Solutions

Using a method based on the work of Helmholtz, see Ewing et al.
(1957), Egs. (3.l.a) and (3.1.b) can be solved by expressing the

displacements in terms of displacement potentials ¢ and { as follows:

-8 _
ux ax ax (3.2.a)
9 , 3 (3.2.b)

Y "9z T o

where ¢, | satisfy the wave equations:

Py

2
L (3.3.2)

2
v -
¢ a2 !

A
v'2
3
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2 _
3y .1y (3.3.b) |

The potential functions ¢ and ¥ are associated with P and SV wave
motions, respectively. The two types of waves propagate through the

medjium with velocities Vp and vs, respectively.

Since the motions are assumed to be harmonic at the frequency w,
the wave potentials must also be harmonic, and can be written:
3 ¢ =9 ei“’" (3.5.a)

I b=y eVt (3.5.b)

where ¢ and ¥ are complex potential amplitudes. Substitute of BEqs.

(3.5) into Egs., (3.3) yields the time independent equations:

v + n: =0 (3.6.a)
vy .+ x: =0 (3.6.a)

where kp = m/v; and ks - w/v; are complex P-wave and
S-wave numbers, respectively.

Particular solutions to Eqs. (3.6) corresponding to plane waves
propagating in the positive x-direction with the complex wave number
< 0) may be found by separation of

k = kt + ik (kt >0, k

i i
variables:
Let = £(z) e KX (3.7.2)
¥ = g(2) L (3.7.b)

Substitution of these expressions into Eqs. (3.6) leads to the following

ordinary differential) equations:

2
at . (k: -x%) g =0 (3.8.a)
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daz s

The solutions to Egs. (3.8) are:

- ’ 1k°z -1k°z
f(z) = A1 e + A2 e A {3.9.a)

and

isz . e-isz

g(z) = Bl e 2 (3.9.b)

where k¢ and kW are the solutions with positive real parts to the

equations.
k: - k: - k2 (3.10.2)
k‘i - k: - k2 (3.10.b) ‘

Introducing the notation

k = kp sin e = ks sin f (3.11)

where e and f are (not necessarily real) angles which, as will be shown
in connection with Eg. (3.23), are related to the direction of wave
propagation, the wave numbers in Egs. (3.10) may be written

k¢ = kp cos e = k cot e (3.12.a)
kW = ks cos £ = k cot £ (3.12.b)

Substitution of Egqs. (3.9) and (3.10) into Egqs. (3.7) yields the
following solution to the original Helmholtz equations, Eqs. (3.6):

ik, 2z -ik. 2
0= (Al(w) e ¥ A, (w) e ¢ )e'“‘x (3.13.a)

ik, z -ik, z ;
Y (’1‘“” e Venwme ¥ )e"“‘" (3.13.b) 3

A further, complete expression for the displacement amplitudes may be

found below, Bg. (3.31). The surface amplitudes follow from Bg. (3.33).




BEquations (3.13.a) and (3.13.b) are obviously of the same form. Hence,
only solutions corresponding to the first equation will be discussed in

full detail. These solutions correspond to P-waves.

P-Waves

The potential function in Eq. (3.13.a) can be written on the form \

¢ = Ol + 02 (3.14)
where
-i(K_*1) A °r  ~iP °r
@ =A e " =p e ™ e " ;ns=1,2 (3.15)
n n n
In this notation r is the location vector, r = xﬁ + zﬁ, where Q and 2

are unit vectors on the x- and z-axes, respectively, and i; is the

vector

K o= ki + (-l)nk¢z =P -iA,n=1,2 (3.16) .
The real Gectorg En = Re(Kn) and Rn = -In(ih) are called the
propagation vector and the attenuation vector, respectively.

The last form of Eq. (3.15) shows that °n represents a plane
wave with the potential amplitude An (at the origin) which propagates
in the direction P with the attenuation factor exp(-lAnl) per
unit length in the direction of the attenuation vector KA. Both of
these vectors lie in the xz-plane. A wave for which the propagation
vector and the attenuation vector do not coincide is called an
inhomogeneous wave. For such plane waves the amplitude will vary
exponentially along the wavefront, see Borcherdt (1973).

The angle .n from the 2-axis to the propagation vector, Fh may

be dotexnineh by considering the vector product

x y 4 -
2 x o= o 0 1 = Re(k)y (3.17)
Re(k) 0  (-1)" Re(k )
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where § is a unit vector on the y-axis. This vector product also

satisties

A - A - A . A

zZx P = [z |Pn| sine y= |Pn| sin ey (3.18)
thus,

sine = Re (k) >0 (3.19)

Rez(k) + Rez(k¢)

Similarly, by considering the "dot" product Q.Pn

-n" Re (k,)
cos en = {3.20)

\jRez(k) + Rez(k¢)

) > 0 and Re(k) > 0, shows that n = ] corresponds

which, since Re(k¢
to a wave propagating generally upwards while n = 2 corresponds to a
wave propagating generally downwards, see Fig. 3.1,

The same procedure applied to the vector product ?n x A

n
yields the following expression for the angle, an, from the
propagation vector to th~ attenuation vector
Re(k,)Im(k) - Im(k, )Re (k)
sin a_ = -n" ¢ $ (3.21)

Vﬁgez(k) + Rez(k¢ﬂ [Imz(k) + Imz(k¢)]
This expression shows that a homogeneous wave (o,n = 0) occurs if

and only if

mk | MK
Re(k) = Re(k

)
L (3.22)
$
But this implies, by Egs. (3.10) that arg(k) = atg(kp) = arg(ko).
and also that the angle e in Eq. (3.11l) is real for homogeneous waves.

Furthermore, for this case Egs. (3.19) and (3.20) reduce to

sin e, - sin e (3.23.a)

cos e = (-1)n cos e (3.23.b)
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Thus, ¢ is simply the angle, e, which the downgoing wave forms with
the z-axis, and the corresponding angle for the upgoing wave is
e, =m-e.
SV-Waves

A similar vectorial study of the SV-wave solutions expressed by Eq.
(3.13.b) will show that all of the formulas, Bq. (3.14) to Eq. (3.23)
are also valid for this case provided k@' kp, ’n' An and e
are replaced by k'b' k', ‘l’n, Bn and fn' respectively.
SB-Waves

The motions described by Bg. (3.1.c) are called SH-waves. They
involve displacements only in the y-direction. The solution for

harmonic motions propagating with the wave number k in the positive x-

direction is
u =0 e (3026..)

where

tly = (Cl eik“'z + (:2 .-sz) c“a (3.26.b)
The wave number kW is as defined by Bg. (3.10.L), and cl and C2
are to be considered arbitrary complex constants. As for the case of
the P- and SV-waves discussed above, the terms of this solution may be
written in a vector notation similar to Bq. (3.13) and (3.14). However,
homogeneous incident SH-waves do not give rise to inhomogeneous
reflected waves, and the simple notation of Bq. (3.2Ff) will sutfice for
wave fields considered in this dissertation. The wave numbers for
homogeneous SH-waves satisfy the condition stated by Bg. (3.11), {i.e.,
k = k, sin £, where £ is the angle which the propagation vector forms

with the z-axis.
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3.3 The Viscoelastic Half Space
The following study of the solution for the case of a homogeneous

harmonic body wave obliquely incident on the free surface of a uniform,

viscoelastic half space will provide an insight into the nature of the
more complicated solutions for multi-layered systems to be discussed in
later sections. As shown in Pig. 3.1, an obliquely incident homogeneous
SV-wave will in general result in two reflected waves of different types
{(mode conversion). PFurthermore, in certain cases, depending on the
incident angle and the material properties, one of the reflected waves
may be inhomogeneous, Borcherdt (1971) and Cooper (1967).

Incident SV-Waves

Only the specific case of an incident SV-wave will be discussed in
detail. However, the method presented is also applicable to the case
of an incident P-wave. Since no incident P-wave exists for the case
studied, the form of the solution is given by Eq. (3.13) with Al = 0.
The incident SV wave is represented by the term Bl exp(ikz).

The incident angle, f = -fs, shown in Fig. 3.1, is real since
the wave is assumed to be homogeneous. The relations in Eqs. (3.23)
immediately implies that the reflected SV-wave, represented by the term
32 exp(isz) is homogeneous and forms the angle fz = f with the
z-axis. Inversion of Eq. (3.11) and multiplication by w yields the

complex form of Snell's Law
* * i * in £ 7
va = Vp/s nes V‘/s n (3.27)

*
where Va = w/k is the apparent complex phase velocity along the free

surface. Hence,

v

L
*

A
8

sine = sin £ (3.28)

aine s
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which shows that the reflected P-wave, corresponding to the last term .

in Eq. (3.13a), will always be inhomogeneous if 8' ] Bp’ and that
even if Bs = Bp a homogeneous reflected P-wave will only occur when
f is smaller than a certain critical angle, tcr, defined by

sin tc

. »
e " Vs/Vp (3.29)

since sine > 1, for £ > £ .
cr

The amplitudes A_ and Bz of the reflected P- and S-waves,

2
respectively, can be computed from the condition that no stresses occur

at the free boundary. Introducing the notation
a =cot e; b=cot f (3.30)

where b is real while a could be complex, and remembering Eqs. (3.12),

the displacement amplitudes are by Egs. (3.2), (3.5), (3.7), and (3.9)

A
U
x -ikx Bl
=i ke (2] A (3.31)
Uz 2 N
B,
where
_eiakz -p eibkz _e-xakz b e-;bkz
(z] = iakz ibkz -iakz . -ibkz (3.32)
ae ~-e -a e -e
Thus at the surface (x = z = Q)
4] Al
x -1 -b -1 b B,
= ik A (3.33)
4] a -1 -a -1 2
z B
2 -
The strain field can be obtained by differentiation of Eq. (3.31) and ]
the stresses then follows on the basis of Hooke's Law. This leads to
the following expression for the normal stress, 0, and shear stress, 1,

at z = 0,




A
2 2 1
I 22 -a-p’) -2 -a-p)| |s, 3.36)
o (1-b%) 2b  (1=b%) -2b | |2

B

Since these stresses must vanish, A, = 0, and Bl is known, this

1

immediately leads to a system of linear equations from which Az and

B, may be determined.

2
~2a - (l-bz) Az l-b2

(1-b%) ~2a

The solution is:

2
=4b(1-b) (3.36)

2 4ab + 1-bH2 1

2.2
p, - 2R L30J 5 (3.37)
4ab + (1-b")
This solution has the properties:

Ay *+ 0 and By *-1; for £+ 0

A

and
A + 0 and B, + 1; for £ + 45°
Thus, no reflected P-waves occur at these angles of incidence.

Purthermore, by Eq. (3.33), no vertical displacement occurs at the

surface for £ = 0; and no horizontal displacement occurs for £ = 45°.
Surface displacement amplitudes for other angles of incidence can be
computed from Eq. (3.33).

Solutions for the elastic case have been published by Knopoff
et al. (1957) and Meissner (1965) for both incidence SV- and P-waves.

Figs. 3.3 and 3.4 shows ratios between surface amplitudes and the

corresponding particle motions are shown in Pig. 3.2. These figures,
which are actually valid for a damped half space as long as B. - Bp.

indicate several interesting features:

horizontal component of amplitude of a vertical incident SV-waves. The
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1. PFor angles of incidence less than the critical angle, see
Eqg. (3.29), a is real and the horizontal and vertical
components are in phase. The particle motion is linear and
the horizontal component of motion is larger than the vertical
component for usual values of Poisson'’s ratio.

2. Por incident angles larger than the critical ang:e. a is

complex.

The reflected P-wave is inhomogeneous and the reflected
(homogeneous) SV-wave is out of phase with the incident wave. The
horizontal and vertical motions are 90° out of phase. Thus, the
particle motion is elliptical (retrograde for £ < 45° and prograde
for £ > 45°). The vertical component is generally larger than the
horizontal component.

The comparison between the induced vertical and horizontal
amplitudes of surface motion for an incident SV-wave at different
angles of incidence is shown in Fig. 3.7. The dotted lines show the
cases for all incident angles exceeding the critical angle. A
singularity is found at 45 degrees because the horizontal displacement
is 0 for all values of Poisson's ratio.

Incident P-Wave

The case of an incident P-wave can be treated by the technique
used above. Snell's law, Eq. (3.27) is also valid for this case, but
since v; is always larger than V; no critical angle of incidence
exists. Surface amplitudes can aliso be computed from Eq. (3.33) by

setting B, = 0 and assuming that Al is given. Figures 3.5 and 3.6

1
show the normalized vertical and horizontal amplitudes of P-wave at
different angles of incidence for a range of Poisson's ratio. Both

displacement amplitudes are normalized by the amplitude of the
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vertically incident P-wave. The features of the motion are summarized
as follows:
1. PFor a medium with Poisson's ratio greater than 0.2, no
significant difference is seen in the different amplitude
curves and an approximation through a function Uz/vb
= cos e is sufficient for most practical purposes, Meissner
(1965) . VB denotes the vertical amplitude of vertically
incident P-waves.
2. The induced horizontal components start from 0 at vertical
incidence, and increase practically linearly to 35 degrees
incidence. The maximum horizontal amplitude is about 52
percent of V° at 52 degrees incidence for a medium with a
Poisson's ratio of 0.4; and is about 93 percent of Vb at 65
degrees incidence for a medium with Poisson's ratio of 0.2.
The ratio of the horizontal to the vertical amplitude of surface
motion due to incident P-wave is shown in Fig. 3.8. The angle of
incidence has a strong effect on the displacement ratio for materials
with a low Poisson's ratio, while for materials with a high Poisson's
ratio the effect is relatively small.
3.4 Single Layer over Half Space

In order to verify the algorithm of the computer programs SITE and
LOVE which will be described in Section 3.7, the boundary value problem
for a viscoelastic uniform layer overlying a viscoelastic half space is
solved analytically. The amplification of oblique SV- or P-waves
incident to the base with various incident angles were examined. The
effects of S-wave velocity ratios between the layer and the half space

on response were also studied.

- et




3.4.1. Solutions to Boundary Value Problem

The structural model shown in Fig. 3.9 consists of two uniform

isotropic viscoelastic media. A layer with the thickness H, and the

] ®! *! ] [}
A A A B , and overlies a half space

P 5
) . . %k & W
with the properties p, G , M, V_, Vp, Bs' and Bb'

properties p', G", M.

Let &, ¥, and ¢', V' be the displacement potentials of the P-and
SV-waves in the bottom half space and stratified layer. The general
expressions of ¢, ¥, ¢ and Y' are denoted by

iakz -iakz ~-ikx

¢ = (Al e + A2 e ) e {3.38.a)
¥ = (8 1Pk B, e 1bkz, mikx (3.38.b)
where
b2 |12 et ti2 G l1r2
a {(va/vp) 1} , b {(va/vs) 1} (3.39)
and
o' = (C elTKZ 4 p 71FKE) TiKX (3.40.a)
Yt = (E ei5K% 4 p o715KkZ) mikx (3.40.b)
where
* #') 1/2 oLt 2 1/2
r = {(va/vp) - 1} , s {(va/vs) 1} (3.40.c)

in which Al' Az, B 82, C, D, E, F are arbitrary constants to

1 ’
be determined by the boundary condition. On the basis of assumptions
similar to those made in the previous section:

1. Only one incoming wave is incident to the base boundary

2. The incident angle is real

3 vt L] X

. 2 ® vs/sxn f

it can be concluded that if only an SV-wave is incident to the base

boundary, the coefficient "b" will be the only real quantity and a, r,
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and s will be complex. If a P-wave is incident, then b, r, and s will

be complex in general and the coefficient "a® will be real.

The displacement components can be determined from Bq. (3.2) and
stresses can also be obtained from Hooke's Law by the substitution of |

appropriate quantities for the half space and the surfacial layer. The

i
boundary conditions are: i

]
at z = 0: Ux = Ux ’ Uz =0
] [ ]
sz = Tz * 0zz z2
[} [
at z = -H: sz =0, ozz =0

Incident SV-Wave From the Base

By setting A, = 0 and normalizing all coefficients by B

1 1’ @

set of linear equations may be formed in terms of the system geometry,
system properties, and normalized coefficients. The linear equation is:

[FJ{QS} = R, (3.41)
where
{Qs} = <A£, B.; c" Dl' B', F')T

* ]
{r,} =<-b, 1, ~b%-1)6", -206", 0, D7

and (F] =
[ 1 -b -1 -1 -5 s 7
-a -1 -r r 1
-2a¢"  (b3-1)6" -2c6" 26" -s%-16""  -(s?-16"’
-b%-16" -206" (s2-1)6"" (82-1)G*" -286"" 286"
] o 2pe-ikBE _2relPKE (g2 giksh 2, iksh
i 0 0 _('2_1)e-ikht -(sz—l)eikht 2ge"1ksh -z'eiksh
(3.42)

From this equation the normalized coefficients A;, B;, c*', 0',

E', F' can be found in terms of given parameters in (7] ana {R.}.




Incident P-Wave From the Base

Again, a real value of an angle of incidence may be specified,
then, b& setting Bl = 0, and normalizing all coefficients by Al:
(7] o} = {®) (3.43)
in"which
(2] -(A;, 8', c', o', E', E'DT
and
(R} = <1, -a, -2a6", w2-16", 0, 0T
Displacements and Stresses
For any wave field expansion of Eg. (3.2) gives the normalized

displacements for the surface layer:

' - U.ei(wt-kx)

u
(3.44)
W' = w,ei(wt-kx)
where
U' = -ik {(C' e1krz + D e-1krz) + B(E' eiksz -p e-iksz)]
(3.45)
W' o= ik {r(C' elkrz _ o, e-ikrz) - (B eiksz + P eiksz)}
and the stress components
- ei(wt.-kx)
xz -
(3.46)
' =g ez(wt-kx)
xz =
where
[ & - -
1=G k2{2r(C' eirkz - D' e irkz) + (32-1)(3' e1lkz +F e iskz)}
(3.47)
#t - -
g=G k2{_“2_1)“:, e1rkz +K' e 1tkz) - 28(E' eukz - eiskz,}

The displacements and stresses at the base boundary due to a specified

incident wave take the same forms as shown in Egs. (3.33) and (3.34)
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3.4.2 Numerical Examples
A model consisting of a simple uniform layer overlying a half space

was used to investigate the characteristics of displacements at the free
surface and the base boundary for the case of SV- or P-waves incident
at different angles. The study also includea a study of the effects of
the incident angle on amplification of both steady state and transient
motions. The influence of the variation of shear wave velocity,
Poisson's ratio, and damping ratio between surface layer and half space
were also studied.

The basic system is shown in Fig. 3.10. The parameters had the

values

Surface Layer Half Space
Thickness (ft) 128 infinite
Unit weight (pcf) 125 162.5
Shear wave velocity (fps) 1000 1200 - 8000
Poisson's ratio : 0.1 - 0.45 0.1 - 0.45

Damping ratio 0.0 - 0.12 0.02 - 0.05
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The fundamental fixed base undamped frequencies of the layer were
1.95 Hz and 3.38 Hz for S- and P-waves, respectively. Computations
were perfo:ﬁed at a frequency of 1 Hz. Thus, the shear wave length in
the surface layer was 1,000 ft. The ratio of wave length to the
thickness of the layer was about 7.8 and the ratio of densities between

half space and the surface layer was 1.3.

Displacements at Layer Surface and Layer Base

The horizontal displacements and vertical displacements at the free
surface due to a harmonic inclined SV-wave was computed for an elastic
system with Poisson’'s ratio 0.25. The results are shown in Pig. 3.10.
In order to see the influence of the incident angle, both components are
normalized by the displacement at ground surface due to a vertically
propagating shear wave. The results are very similar to those shown in
Section 3.3 for a viscoelastic half space. The horizontal caomponent has
a sharp peak at the critical angle whereas the vertical component at
this point forms a downward sharp cusp. For most realistic choices of
system parameters, the horizontal amplitudes of inclined SV-waves are
smmaller than those of vertically propagating shear waves except at a
very narrow range of angles of incidence around the critical angle.

The vertical amplitudes of SV-waves are zero at normal incidence and
linearly increase to 40 percent of the amplitudes of vertically
propagating shear waves at 30 degrees of incidence. The effects of the

shear wave velocity of the half space on the displacements are

insignificant, as can be seen from Fig. 3.10 which contains results for
four different values of the velocity ratio.

Figure 3.11 shows similar results for the case of incident P-waves.

Both components are normalized to the ground surface amplitude of a
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vertically incident P-wave. All the vertical components of the
inclined P-wave are smaller than those corresponding to vertical
incidence. No difference can be seen in the amplitude curves for the
four values of shear wave velocity ratios. This effect is probably due
to the relatively long wave length as compared to the thickness of the
surfacial layer. The horizontal components of the inclined P-wave are
more sensitive to the shear wave velocity of the half space. The
greater the stiffness of the elastic half space, the larger the
horizonal displacements due to inclined P-waves. The greatest
differences in horizontal amplitudes occur for angles of incidence
between 50 and 70 degrees.

Figure 3.12 illustrates similar studies of normalized
displacements at the top of the half space for the case of a shear wave
velocity ratio equal to 4. Both results indicate that if the angle of
incidence is less than 30 degrees, which should be the practical case;
the vertically propagating body waves produce larger motions than the
inclined body waves.

AMmplification at Ground Surface

A study was made of the variation of amplification of a harmonic
SV-wave arriving at a wide range of incident angles. The frequency for
this harmonic SV-wave was arbitrarily chosen as 1 Hz. Site
amplification >t ground surface versus angles of incidence have been
plotted for four different values of the S-wave velocity ratio as shown
in Pig. 3.13. For angles of incidence less than the critical angle,
the horizontal components at the ground surface are about 1.4 times the
horizontal amplitudes of SV-wave at the base for the cases of an S-wave

velocity ratio greater than 2. The vertical components at the normal
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incidence are zero and increase linearly to about 70 percent of the
horizontal amplitude of the vertical shear wave at 30 degrees of
incidence. At the critical angle, vertical components show a very
sharp trough because an unusual amplitude spike appears at this angle
as seen in Fig. 3.12. The amplification at same particular angle of
incidence, say 43 degrees in this case, can not be defined since the
horizontal amplitude at the base approaches zero. Fortunately, this
case will not appear in practice because the angles of incidence are
normally less than the critical angle, and also this phenomenon does
not occur in damped systems. The amplifications for inclined P-waves
incident to the base are shown in Fig. 3.14. Both components are
normalized by the vertical amplitudes of the base at the corresponding
angles of incidence. For this case the shear wave velocity ratio is
not a significant factor if the angle of incidence is less than the
critical angle.

The variation of amplification with frequency for an undamped
system is shown in Fig. 3.15 and for angles of incidence of 0, 10, 20,
and 30 degrees. The case of normal incidence, shown as a solid curve,
is the well known case of a vertically propagating shear wave. Only
horizontal amplitudes occur in this case. The peak amplifications
occur at 1,95 Hz, 5.86 Hz, 9.77 Hz, 13.67 Hz etc., which are the
natural frequencies of the system. For inclined waves, coupling
effects occur, and vertical components are induced. Three other cases
were shown in the same plot. Some effects of coupled P wave maotion may
be seen at fregquencies near 3.4 Hz and 10.2 Hz, which are the first and

second natural frequency of P-waves of the site.

e
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Computations were performed for the same system assuming a 2
percent damping in the half space, and 5 percent damping in the layer.
The results are shown in Fig. 3.16. The resonant peaks for all modes
are damped out significantly compared to the undamped cases. However,
while the effect of incident angles on the response is not important on
the horizontal component, it is quite significant on vertical component
of SV-waves as was found in the undamped case.

Effect of Damping Contrast

As shown above the effect of uniform damping is vo reduce the
surface response significantly. In order to study the effect of a
contrast in damping ratio between the surface layer and the underlying
half-space surface amplification factors were computed for the special
case of an SV-wave with an incident angle of 10 degrees for the

following three choices of damping ratios.

Surface Layer Half Space
8 B, By B,
System (8) (%) (%) (%)
1 5 5 2 2
2 12 12 5 5
3 12 6 5 2

The result of these computations are shown in Fig. 3.17. As
expected che horizontal amplification functions were found to be
similar to those computed for vertically propagating shear waves,

compare Fig. 3.16. However, some effects were observed in the
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amplifications of vertical motions. 1In particular, it is interesting
to observe that Systems 3 (which 8’ = 12%, BP = 68 in the layer)

produced nearly as big vertical motions as System 1 (with Bll = Bp

= S8 in the layer). Thus, it appears that horizontal amplification is
governed by 8s while vertical amplification is governed by Bp.

This observation is perhaps not too surprising if one observed that for

System 3 the peaks occur at the natural frequencies for vertically
propagating P-waves in the site.

Effect of Poisson's Ratio

Studies were also performed on the above undamped two-layer
systems to determine the influence of Poisson's ratio. Again, a SV
wave with an incident angle of 10 degrees was assumed.

Figure 3.18 shows the effect of varying Poisson's ratio in the
half~space (it was set to 0.25 in the layer) and FPig. 3.19 shows the
effect of varying Poisson's ratio on the surface layer (it was set to
0.25 in the half-space). As expected variations in Poisson's ratio has
only small effects on the horizontal response while it significantly
influenced the vertical response. This of course is due to the strong
effect of Poisson's ratio on the P-wave velocity.

3.5 Multi-lavered Half-space for SV and P Waves

The propagation of body waves in multi-layered systems is of

fundamental interest in seismology and has been studied by Thomson

(1950), Matsumoto (1953), Baskell (1960, 1962), Phinney (1964), Hannon
(1964), Teng (1967), and Bakun (1970). Their methods of analysis were

essentially based on the Thomson-Haskell's matrix formulation. The

formulation uses the idea of displacement potential theory and only

congiders harmonic wave propagation in an undamped elastic media.
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Silva (1976) extended Thomson-Haskell's formulation to include damping
in a layered system overlying an undamped elastic half space.
The above theories lead to a very complicated equation of motion

in which the wave number k, enters through transcendental functions in

a form similar to Eq. 3.41. As shown by Lysmer (1969) and Waas (1972) 1

a much simpler equation of motion, see Eq. (3.50), can be obtained by a
discretized representation of the layered half space. In this method ;
it is assumed that displacements vary linearly between layer

interfaces. As will be discussed this assumption imposes certain

PR

restrictions on how thick individual sublayers can be chosen. A major
advantage of the method is that it leads to a uniform treatment of
inclined body waves and surface waves and it will be used extensively
below. In the original applications of the method, Lysmer (1969) and
waas (1972), the underlying half space was considered to be rigid.

This lead to a method for analyzing surface waves in layered systems as
will be discussed in Chapter 5.

Udaka (1975) used the same method with specified motions at the
half-space surface to simulate the effect of traveling waves. In this
method a control motion at the half-space surface was assumed to
propagate horizontally with a given constant phase velocity. Only one
component of motion was allowed at the control point. The method does
not consider interaction between the layered soil systems and the
underlying half space.

This interaccion is properly congidered in the present work on the
effects of inclined body waves arriving through a viscoelastic
half space. The study will show that except for the case of normal

incidence, there must be two components of motion at each layer

interface. The following cases will be considered:




1. SV-waves at oblique incidence

2. P-waves at oblique incidence

3. Pairs of SV-and P-waves at oblique incidence

3.5.1 Discretized Pormulation for Layered System

The layered system considered is shown in Fig. 3.20. It consists

of n homogenous, isotropic layers over a half space. All material
properties may be undamped elastic or damped viscoelastic.

Assuming linear variation of displacements within each layer the
displacement of any point in the system for a plane harmonic wave

travelling in the horizontal x-direction at a given frequency, w, can be

written:
i (wt-kx)
Gx = aU,(z) e (3.48.2)
8, = tam (z) e WK (3.48.b) .
in which, for zj <z < 25,1
U (z) = (zj+l - z)/hj U2j-1 + (z - zj)/hj UZj+1 (3.49.a)
Uz(z) = (zj+1 - z)/hj Uzj + (z = zj)/hj 02j+2 (3.49.b)

and a is a mode participation factor that can be found from the given
control motion. The displacement functions Ux(z) and Uz(z) are

interconnected and can be normalized in any manner. The wave number K

may be complex expressing both the phase velocity, v. = w/Re(k), and
the attenuation factor, exp (-Im(k)x).
As shown by Udaka (1975) the equations of motion for the

discretized layered system is

(K] - w’[Md) {u} = {g } (3.50.a)
b,
where f
(K) = A k2 + (8] k + (G) (3.50.b) )

In these equations all matrices are of the order (2n + 2) x (2n + 2)

and the last two terms, P, Of the load vector are forces at the 3




interface between the layered system and the half space. The vector U
contains (2n + 2) complex displacement amplitudes, Uj' J ®Ll, 2, ceevey
(2n + 2) for the (n+l) layer interfaces each having two degrees of
freedon Ux and Uz'

The banded, symmetric matrices [A], (B), [G], and (M], are assembled
from sublayer matrices as shown in Fig. 3.21. The submatrices, shown in
Egs. (3.51) to (3.55), are formed using complex shear moduli G;.

w*
complex constrained moduli Mj, and layer thicknesses hj as follows:
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|
The layer mass matrix M j can be chosen as consistent mass, or
lumped mass, or a combination of both. For consistent mass formulation: L
r1/3 0 1/6 0q
0 1/3 0 1/6 (3.54) '
S N o 1/3 0
| o 1/6 0 0] 1
For lumped mass:
/2 0 o0 0]
0 1/2 0 0
[MQ]j - pj hj 0 0 1/2 0 (3.55)
| 0 o 0 1/2

For combination of consistent and lumped mass:

[MJJ. = ac[Mch + -0 [MQJj (3.56)
where Gb is a fraction between 0 and 1. It has been found that with
the finite element method, db = 0.5 gives good results compared with
analytical closed form solutions.

The same investigation also showed that when the average mass
matrix is used the layer thicknesses, hj' can be chosen as large as
hj = As/s = 2ﬂvs/(5m), where Xs is the wavelength of shear
waves, without impairing the accuracy at the discretized method. This
compares with a maximum layer thickness of As/e when either the
lumped or consistent mass formulations is used.

When the wave number k becomes zero, i.e., the apparent wave
velocity approaches infinity, the equation of motion becomes

{[G] - wz[M]} {u} -{gb} (3.57)

which is the case of vertical incidence of body waves. 1In this case

-\
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the shear wave and P-wave are completely uncoupled and Eq. (3.57) can
be separated into two simpler matrix equations; one for each wave type.
For the purpose of developing the base boundary equation, it is

convenient to express Eq. (3.50a) in partitioned form:

Kz Kc , MQ MC UE 0

- ' - (3.58)
T T
K. K M. ¥y Yy Py

in which the suffix "" denotes quantities for the layered system, the
suffix "b” refers to the base boundary, and the suffix "c¢c" to
interaction between the layered system arid the half space. For a given
wave number k and frequency w, this set of linear equations can be

further simplified by the notation [X] =[k] - wz[M] to:

K, K] (o)~ (o (3.59)
—'r -—
K. K] Y% Py

or [Rz] {Uz} + [Kc] {ub} = {0} (3.60)

= 1T

[xc] {Uz} + [Rb] {Ub} = e} (3.61)
Equation (3.60) yields

— 4=l =

{"z} = -[x,J [xc] {ub} £ 21, 2, eeveees 2n (3.62)
and substitution of this equation into Eq. (3.61) gives the relationship
between the displacements, {Ub}' and the forces, {Pb}, at the interface
between the layered system and the half space (the base boundary)

@l {u,} = {o,} (3.63)

B = -] @7 (R * [x] -

It should be noted that for a system with n layers, KL is a 2n by 2a

Ly Lo

L L

21 22

matrix, K is a 2 by 2 matrix, and Kc is a 2n by 2 matrix.

b
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3.5.2 BHalf Space

If cthe displacements and forces at a specified location on the
base boundary induced by the incident wave from a homogeneous
viscoelastic half space can be determined, then the complex
displacement functions {UL} at the interfaces between each layer in
the system can also be easily determined. It is thus necessary now to
find the displacements and forces at the base boundary due to a
specified incident plane wave striking at the base. It may be shown
that the boundary displacements and forces take the same forms as
Eqs. (3.33) and (3.34); after rearrangement, they are:

A A

1 2
fo} = ik [a]d S+ ik(B] (3.64)
By B2
and
* 2 . Al * 2 . Az
fp,} =6 k*[a] +6 kfs] (3.65)
B B,
where
-1 =b -1 b
[5] - MGE '
a -1 -a =1
2a (bz-l) ~-2a (bz-l)
[a'] = ’ [Bﬂ =
-(b%-1)  2b - (63-1) -2b
and Al, Bl’ Az, and Bz are complex coefficients representing

wave amplitudes of displacement potentials.
Elimination of boundary forces and displacements by substitution of

Eqs. (3.64) and (3.65) into BEq. (3.63), produces two linear equations

containing four unknown coefficients. As discussed earlier, some
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i
restrictions and assurotions must be made in order to determine the
coefticients and to obtain normalized boundary displacements and

boundary forces at the base boundary. By specifying only one type of

body wave incident to the base by a given real incident angle and i

normalizing two reflection coefficients by this incident coefficient,

the two unknown normalized reflection coefficients can be determined

from the following equations:

A !
= [p] (3.66)
B, Q,
where
D)y = DBypr (By3 =Dy
D = (3.67)
(BDyy = Dpp) (B3 = Dyy) .
in which Dll' °12' 013, 014, °21' Dzz, D23. and 024 are defined as:

D, =ikLy, .
D * k2

12 = K a le +2aG

D =k L., + (b2 -1) 6" k2

13 12

D, =ikbi,

b ®=-i kL, - (b>-1) G k2

21 21

Dy, =kaly

D3 =k Ly

. 2 " 2
02‘ s =i (k b Lzl + G k)

where parameters a and b are complex parameters as defined earlier and
Lll' le’L21' Lzz, are elements of the layer stiffness matrix
defined in Bq. (3.63).

It should also be noted that the coefficients Azand 52 are

*"Normalized reflection coefficients" which are different from the




coefficients Az and 32 in Bgs. (3.64) and (3.65). They are related

to the reflection coefficients for the case of unit incident
coefficeint. It should also be noted that the quantities Ql and Q,
will be redefined from case to case for different incident waves.
Only SV Wave Incidence

Assuming that the angle of incidence, £, is real and that the

angle, a., between the propagation vector and the attenuation vector

10
is equal to zero, one may obtain k = ks sin £ as shown in Eq. (3.11).
Thus, for a system having a common phase velocity and attenuation

L
factor along the boundary, the complex wave velocity, v. is

« . « -168/2
va = m/(ks gin f) = Vs/sin f= Va e (3.68)

in which
2 2
tan 68 28s 1- Bs/(l 283) 28s for small Bs
This assumption will force the complex parameter "b" to become real as

long as V, > Vg. If Bp = B, the parameter "a" is complex and

i(sp-ss) }1/2

* * 2 . _
as= {(va/vp) e 1

where
2 2

tan tSp = 28p vl - 81/(1 - 289) 2Bp for small Bp .
If 63 = Gp = §, the solution is similar to the elastic case, i.e.,
both "a" and "b" are real but the wave attenuates in the direction of
propagation. For SV wave incidence, Al ia set to 0 and ‘\2' 32
can be determined by defining Ql and Q2 in BEg. (3.66) by

Q = =Dy * DY

Q2 - -(I)23 + DZ" (3.69a)

Once two normalized coefficients 52' Bz are found the normalized

displacements and boundary forces can be determined.
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Only P-Wave Incidence

In this case Bl is set to zero and the reflection coefficients
are normalized by Al. If a real incident angle, e, is specified we
have V: = V;/s:ln e and k = wN:. From the complex Snell's law,
v: - v:/sin f= /V;/sin e, the reflected angle £ can be
determined. Generally, if damping due to the shear and P waves are not
equal, the reflection angle of the SV wave will be complex which is
different from the elastic case. For a viscoelastic half-space, a
phase shift at the boundary base will generally be expected regardless
of the type of wave incidence. The reflection coefficients can be
found by using Eq. (3.66) by replacing Ql and 02 as follows:
)

Q = -, +D),

Qz = '(021 + D22) (3.69.b)

SV-and P-Waves Obliguely Incident

It is assumed that the amplitude of the incident P wave Al is

given and that the ratio, n = Bl/Al, of the displacement

coefficients for the incident SV wave and the incident P wave is also
known. With these assumptions Ql and Q2 in BEq. (3.66) will be

defined as:

12 P13 * Py

Q2 = -(D21 + 022) - l')(D23 + D24) (3.69.c)

Ql--(Dn*'D ) = nf
Thus, the normalized reflection coefficients can be determined. In
this case, the reflection angles can be either real or complex and will
depend on the damping ratio assumed ‘c: the half-space and the

specified angle of incidence.
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3.6 SH-Waves in Multi-layered Half Space

Harmonic motion under plane strain conditions in a semi-infinite
layered system due to an inclined SH-wave incident to the base is here
considered. The model for plane SV-and P-wave is used, and is
replotted for the case of incident SH-waves as shown in Fig. 3.22. All
displacements are perpendicular to the x-z plane and are described by

6y -a Uy(z) ei(um—kx) (3.70)
in which w is the circular frequency, and O is the mode participation
factor.

The equation of motion take the same form as Eq. (3.50a) but the
stiffness matrix (K] is now defined as

K] =~ [A] &% + (6] (3.71)
where [A], and [G] are n by n tridiagonal, symmetric matrices, which
consist of the contributions from individual layers and which can be

conveniently assembled from the layer submatrices as shown in Fig. 3.23.

The submatrices for the layer j are:

« |173 1/6
[A). =h. G (3.72)
P 1/6 1/3
G* 1 -1
(6]. ol {3.73)
N S 1
The mass matrix (see Eq. 3.56) may be a combination of
173 1/6
(consistent) M = p h (3.74)
["]j 33 e a3
and
1/2 1/6
(lumped) M =p. h (3.75)
M =™, L

Following the procedures described in Section 3.5, through Eqs. (3.58)

to (3.63), the relationships between the boundary force and

T B Th T S T A
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displacement may be established. On the other hand, the boundary force
and displacement induced by the incident SE-wave from the underlying
half space can be derived from BEq. (3.26) in the way similar to the
case of SV-waves. The boundary force and the displacement are .
normalized by the amplitude of the incident wave and can be expressed

in terms of wave number, shear modulus and and unknown reflection

coefficient. By elimination of the displacement and the boundary force
between the layered system and the half space, the normalized
reflection coefficient can be found and the boundary force and

displacement can be determined. Accordingly, the amplitudes of each

R R oA .

layer can be easily found from a set of simple linear equations for any
given wave number and frequency.
3.7 The Computer Programs SITE and LOVE

The above discretized procedures were implemented in two computer
codes, SITE and LOVE. The first program handles the cases of inclined
P- and SV-waves. It also handles the case of Rayleigh waves which will
be discussed in Chapter 4. The second program handles the cases of
inclined SH-waves and Love waves (also to be discussed in Chapter 4).

Both computer codes were verified against the exact solutions
provided in Pig. 3.5, 3.6, 3.10 to 3.12 and 3.15 to 3.17 using a model
consisting of 18 sublayers to represent the surface layer. The
computed data points agreed with the exact solutions to within 3
significant digits and have not been plotted in thg above figures.

The two codes can handle not only harmonic motion but also
trangsient motions by the Pourier techniques described in Chapter 5.

3.8 Summary

The fundamental theories of harmonic inclined body waves

propagating in a viscoelastic half space and a layered half space are
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presented in this chapter. Based on analytical solutions developed for
a model of a single layer over a half space, several numerical examples
were given to show the characteristic of amplitudes at the free surface
and the interface boundary for the case of SV- and P-wave incident at
different angle. The study of the effect of incident angle on the
amplication of both steady state and transient motion was also
included. The effect of damping and Poisson's ratio contrast (between
the layer and the half space) on site amplifications was also
investigated. Numerical examples for site response to inclined body
waves for a more complicated layered half-space system will be given in

Chapter 5.

g
1l
{
}
E




83

CHAPTER 4

PLANE SURFACE WAVES

4.1 Introduction

The theory of plane Rayleigh and Love waves propagating in an
undamped elastic or damped viscoelastic half space, a layered rigid
base system, or a layered half space has been well developed.
Basically, the available theories can be classified into continuum
methods or discretized numerical methods. 1In principle, continuum
theories provide analytical solutions which are valid for any choice of
layer thicknesses. However, numerical difficulties are encountered in
the numerical evaluation of complete solutions especially for damped
systems. The discretized methods are based on finite element techniques
and offer easier and more convenient numerical solutions for viscoelastic
layered systems. However the accuracy of the solution is affected by the
choice of discretization scheme, especially in the high frequency range.

In this chapter, the general theory and characteristics of Rayleigh
waves in homogeneous elastic and viscoelastic half spaces are briefly
discussed in Section 4.2. 1In Section 4.3, the discretized method of
treating Rayleigh waves in a layered system with a rigid base is briefly
reviewed, and several methods are proposed to extend this method for the
approximate solution of layered systems resting on a viscoelastic half
space. The selection of the fundamental Rayleigh mode is also explained
in this section. The discretized method for Love waves in a layered
system with a rigid base is briefly presented in Section 4.4.

Several published solutions were used for verification of results

from the computer programs SITE and LOVE which were developed as part

i




of the research described herein for site response analysis by the .
discretized method. The comparative study, presented in Section 4.5,

confirms that the discretized method can be used for analyses of

surface wave propagation in a viscoelastic layered half space.

Additional analyses of the seismic response of multi-~layered sites

excited by Rayleigh waves will be presented in Chapter 5.

4.2 Rayleigh Wave in a Viscoelastic Half Space

It is assumed that a simple harmonic wave train with motions in
the xz-plane only travels in the x-direction such that the motion is
independent of the y-coordinate and that the amplitude of this motion
decreases asymptotically with the distance z form the free surface.
Waves satisfying these conditions are called Rayleigh waves and were
first studied by Rayleigh (1885). A solution corresponding to this
definition may be derived from the geheral equations of motion for
two-dimensional waves presented in Chapter 3. Since the boundary
condition at z=® requires that the wave potentials approach zero as z

approaches infinity, the solutions for Rayleigh waves can be written:

® = A e"9% omikx (4.1a)

Y = B e 5% o ikx (4.1b)
where

q-= (k2 - kzp)l/z : taking the principal value,

s = (k2 - ki)l/z : taking the principal value.

and A and B are unknown complex constants.

Equation (4.1), in connection with Eq. (3.2) defines the form of

the displacement and stress field in the half space. By introducing
the boundary condition that all stresses must vanish on the plane, z=0,

the following relationship between the wave numbers involved can be

obtained:
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cq- k:/kz)l/z A - k:/kzll/z .« (2~ k:/kz)z (4.2)

By squaring each side of BEg. (4.2) and using the relationships
2 . e
X = (ks/k) = (Vt/Vs)

¥ = ki)? = (v
s’ p s

the following equation is obtained:

B -8x2+(20-16Y) X+16 (Y-1) =0 (4.3)
This is of exactly the same form as the equation developed by Rayleigh
for an undamped elastic medium except that real velocities are replaced
by complex velocities for a damped system. This equation is a cubic
polynomial with coefficients in the complex plane. It has three
complex roots, X, which may not be distinct. The root which satisfies
the original unsquared equation, Eq. (4.2), provides the fundamental
solution for the surface wave, Borcherdt (1971).

The solution may be found by Cardan techniques, as shown by Hall

(1964). The solution was also carried out by Borcherdt (1971), who

2 .2
* *
showed that if vr/vs is a root of the complex Rayleigh equation such

.2 *2 tz tz
that 0 <|v_| /]v_ | <1 , then Vv /v  also satisties Bq. (4.2).

This restriction on the roots of Eq. (4.3) is the same for the damped
and the undamped case and is used for the selection of the root
corresponding to the Rayleigh wave. In the undamped case, the solution
will consist of three real roots for Poisson's ratio less than 0.26,

and there will be one real root plus a conjugate pair of complex roots

for Poisson's ratio larger than 0.26.

BIERERr
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Once the ratio, X, between the Rayleigh and shear wave velocities
has been determined, the normalized displacements, mode shape, of the
Rayleigh wave may be obtained by substituting Egs. (4.1) into Eqgs.
(3.2).

The mode shape or normalized amplitude distributions as a function
of dimensionless depth for four different values of Poisson's ratio are
shown in Fig. 4.1 for the case of undamped elastic media. The
dimensionless depth is defined as the actual depth divided by the wave
length which is inversely proportional to frequencies. The particle
motion at different depths is shown in the same plot. Since the
horizontal and vertical components Of Rayleigh waves are out of phase
by the angle 7m/2, the trajectories of the particle motions are
ellipses. The magnitude and direction of the elliptical motion is
dependent on depth. The following characteritic may be summarized from
the plot shown.

1. The horizontal amplitude decays rapidly with depth near the
surface and becomes zero at a depth of approximately one fifth of the
wave length. The maximum negative amplitude occurs at a depth of
approximately two fifths to one half of the wave length and then
gradually decays to zero.

2. The vertical amplitude first increases slightly with depth and
reaches its maximum value at a depth of 0.05 to 0.15 times the wave
length below which it decays rapidly to zero, except for materials with
zero Poisson's ratio for which the maximum vertical displacement occurs
at the surface.

3. The major horizontal and vertical disturbances associated with

Rayleigh waves are concentrated within one wave length from the surface.
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4. The amplitudes at depth decrease as Poisson's ratio decreases.
5. For wave propagation in the positive x-direction, the

elliptical particle motion at the surface proceeds counterclockwise.

At the depth z = 0.2 A where the horizontal amplitude changes sign,
the direction of rotation reverses. The minor axes of the ellipses are
perpendicular to the free surface of the half space; i.e. the vertical
motion is stronger than the horizontal motion at all depths.

The distribution of the stress components with depth is shown in
Fig. 4.2. The curves were calculated for Poisson's ratio equal to 0.25
(dashed line) and for Poisson's ratio equal to 0.34 (solid line). It
is apparent from the plot that oxx changes sign at z-O.ZSXt, whereas
6zz and tzz reach their maxima at approximately z/)«r = 0.3 and then
falls off exponentially with depth.

Rayleigh waves in a viscoelastic half space have been studied by
Borcherdt(1971). Computed mode-shapes for the special case of
Poisson's ratio equal to 0.35 are shown in Fig. 4.3. It may be seen
from this figure that the effect of damping on the distribution of
motions with depth is insignificant for the magnitudes of damping
usually encountered in practice. Another small effect of damping is a
slight tilt of the elliptical orbits of particle motion. The major
effect of damping is that the waves will decay exponentially as they
propagate in the x-directions. The decay factor is approximately

exp (-2m8) per wavelength in the x-direction.

4.3 Rayleigh Waves in a Layered System

Rayleigh wave propagation in layered media is of great interest to

seismologists and has been treated in standard textbooks. A complete

theoretical summary may be found in Ewing et al. (1957) and a brief
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description of geophysics applications has been given by Grant and West
(1964). The equation of motion for a system of elastic layers
overlying an elastic half space was formulated in matrix algebra by
Thomson (1950) and improved by Haskell (1953). An equivalent
formulation which makes calculations possible for higher frequencies
was presented by Knopoff (1964), Dunkin (1965) and Thrower (1965). A
modification of the matrix formulation to give faster machine
computations for modal solutions to a layered half space was provided
by Watson (1970). Formulations which include damping were later
presented by Boncheva (1977) and Silva (1978). The fundamental
approach for all of these methods is based on continuum theory which
eventually leads to a complicated nonlinear eigenvalue problem. .
Solution of this problem involves serious numerical difficulties in
many cases and is complicated by the fact that in layered systems
infinitely many Rayleigh waves (modes) can exist simultaneously.

A lumped mass finite element formulation for a multi-layered
system with rigid base was developed by Lysmer (1969). This method
leads to a simple quadratic eigenvalue problem which can be transformed
to a linear eigenvalue problem of the double dimension. This problem
can be solved completely by standard technigues. Lysmer'‘'s method was
extended by Waas (1972) to include a consistent mass formulation and
Love waves. This method, which will be briefly reviewed below, is the
basic numerical method employed in the research described herein. As
part of this research several methods will be introduced which
facilitate the use of the method for cases involving a layered system

supported on a viscoelastic half space. These methods will be

discussed in Section 4.3.2. Methods for identifying the fundamental
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mode among the many Rayleigh waves which can exist in a layered system
will be presented in Section 4.3.3.

4.3.1 Layered System With Rigid Base

Consider the semi~infinite layered system shown in Fig. 4.4a. All
motions occur in the xz-plane and any point in the system has two
degrees of freedom. The layered system is treated as a continuum in
the horizontal direction but is discretized in the vertical direction
by assuming that the displacement is continuous at each interface and
varies linearly within each layer. As shown by Wass (1972), the
equation of motion for an n~layer system may be written as:

(A %2 + iBk + G - 20 {v} = {o} (4.6)

In this equation, {v} is a vector containing the 2n layer
interface displacements and (A]l, [B], [G], and [M] are the 2n by 2n
matrices, assembled by addition of layer submatrices as shown in Fig.
3.21 for the case of body waves except that the last two rows and
columns of each total matrix are not used because of the assumption of
a rigid base for which the displacements are zero. The submatrices (A]
and [G] for each layer may be expressed in terms of complex shear
moduli, constrained moduli, and the layer thicknesses as shown in Eqs.

(3.51) and (3.53) and the submatrix [B] is redefined as follows:

* [ ] * *
i .- ~(G, - M
0 (36 - ) 0 (] - M)
-(3G; - M) 0 -(G, - M) 0
. 3 3
[BJj =3 . . N . (4.7
0 (G - M) 0 (G5 - 1)
G - M 0 G, - M) o |
(65 7 My (365
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Each submatrix of [H] may be expressed in terms of consistent mass,
lumped mass or a combination of both as shown in Eq. (3.56). PFor a
given frequency W, it is convenient to introduce a matrix [C] such that
[C] = [G] - w? [M]. This reduces Egq. (4.6) to:

([a] &% + i[B]k + [c] (v} = {o} (4.8) 1

This is a quadratic eigenvalue problem which has a solution {v} if, and

only if, the determinant of the coefficient matrix vanishes. Hence,
for any given frequency the secular eguation:

I[aJx? + 1 [8] k + [c]! = o (4.9)
defines the possible wave numbers for Rayleigh waves in the layered
system. A numerical technique for finding the eigenvalues and the
corresponding eigenvectors in Eq. (4.8) has been presented by Waas
(1972). 1t can be shown that this equation gives 4n eigenvalues,
ks' s =1,2,...4n and their corresponding eigenvectors, (v}s,

s =1,2,....4n.

The case, k = 0, can occur only in an undamped system and when the
frequency is equal to one of the natural frequencies of the layered
systems, In this case the motion consists of vertically propagating
P- or S-waves. The particle motion is vertical or horizontal.

The case, k real, can occur only in an undamped system. The

motion is similar to Rayleigh's original surface wave in that it

propagates with constant amplitude in the x-direction with the phase
velocity ¢ = w/k. The particle motion is generally elliptical but
may be linear at certain depths.
The case, k purely imaginary, may occur in both damped and
undamped systems. It corresponds to a motion which does not propagate |

but simply decays in the x-direction. The particle motion is linear é
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for undamped systems and generally elliptical for damped systems.
Motions are in phase at all points.

The case, k'kr + iki' k., = 0, may occur in both damped and

i
undamped systems and is the case of most interest for applications.

The particle motions are generally elliptical and the motions propagate
in the x-direction with the apparent phase velocity Va - uo/kr and

it decays as exp (ki x). Generally, kr and ki will be of

opposite sign, i.e. the motion decays in the direction in which it
propagates. However, the unusual case may occur that kt and ki

have the same sign, i.e. the motion decays in the opposite direction of
the phase velocity. This is not a contradiction since it can be shown
that for these cases the group velocity, see below, is negative, i.e,
energy transmission occurs in the opposite direction of the phase
velocity.

It can be shown, Waas (1972), that if k is a solution to the
eigenvalue problem in Eq. (4.8) and {v} is the corresponding
eigenvector (mode shape) then -k is also a solution and the
corresponding eigenvector [v} is the adjoint of {v}: i.e. the vector
obtained by simply changing the sign of all horizontal components of
{vl. The physical significance of this is that the same motion can
propagate in both the positive and negative x-direction. 1In the
applications only the modes which decay (propagate enerqgy) in the
positive x-direction are of interest. Thus, in a damped system, only
the 2n modes with k { < 0 are of interest and the general solution to

the equation of motion may be expressed in the form:

2n

{s} = Z as(V}s e 1lwtk,X) (4.10)

gs=]
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in which a, is the mode participation factor for mode s. Undamped
systems are most conveniently handled by introducing a very small

damping ratio and selecting the appropriate modes by the condition, k,<0.

i
Stresses and Strains

Once the displacements at the intertace of each layer are determined
the strains at the midpoint of the j-th layer-may be easily obtained. The
following expressions are for the case of a single mode; if several modes

are considered, then the total strain and stress can be found by

PP Xvye g

superposition. The strains are: i

-ikx

€ = "ik {(vyy) + Vyy)/2) e

-ikx
&g - {(v2j+2 - vzj)/hj} e (4.11la)

-ikx
Taz = (V2501 = V23-11/By T 1K(Vyy # Va0 2) e
Stresses may be obtained by the substitution of these strains into

Hooke's law:

r 3 i * T - 1
Ox M 5 M 3 - 2G 3 0 €x
» » *
4 az S = Hj - 2Gj Hj 0 1 €z (4.11b)
*
Txz 0 ° G Yxz
k P e - . P
Group Velocity

Por each mode Bq (4.6) determines k as a complex-valued function
of w. A plot of this function is called a spectral (or dispersion)
curve, see Figs. 4.5 and 4.6. The slope of this curve, U, is called
the group velocity.

dc

U-g‘,-c#k— (4.12)

dk dk
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where ¢ is the complex phase velocity. The group velocity controls the
amount and direction of energy propagation, see Eq. (4.16), and can be
computed from Eq. (4.6) by first differentiating by parts and then
premultiplying by {V}T

F1m &%+ 58 k + [6) - w? (M]) afv) +

{¥}T((2x (] + 1(B]) ak - 2 waw (M]) {v] = 0 (4.13)

The first term must vanish since upon transposition and remembering
that [B:]'r = -[B] and that the other matrices are symmetric, we obtain

{av)T((A1k? - 1Bk + [6) - w? (M]) (¥}

e Sy

which is zero since (-k, {V}) satisfies Eq. (4.6). The remaining term

gives

a {917 2k? () + ik [B)) {v} (4.14)

Us —=

a 2w {770 {v)
This expression can be further reduced i1f the mode shapes are normalized
according to Waas (1972), i.e.
FITw?m) - ) {vi = 2
which by Eq. (4.8), multiplied by {V:T implies that
{?}T(zkzm + ik[B]) {v} = 2k* (4.15)

Thus the group velocity may be computed by

N 7 I
{17 {vj

which was developed by Lysmer and Drake (1972) for real modes but is

(4.16)

actually valid for the general case.

Energy Transmission
Each of the Rayleigh modes in the general motion defined by
Eq. (4.10) can propagate independently: this would simply correspond -

to the case when only one of the mode participation factors, u., is

non-zero. However, if more than one, mode propagating energy is
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transmitted between the modes. Thus, the amount of energy transmitted
through a vertical plane, say of x=0, depends on the composition of the
mode participation factors, us' s=1,..., 2n.
This problem has been solved by Waas (1972) who showed that the
rate of energy transmission per unit width in the y-direction of x=0 is:
E=%m [}’ & {v]] (4.17)
where w is the frequency, Im indicates the imaginary part and {U} is
the complex amplitudes at x=0. Hence, by Eq. (4.10)

2n

{u} = Zas {v}s = V] {a} (4.18)

s=1
where [v] is a matrix which contains the mode shapes in its columns and

{a} is a vector containing the mode participation factors Gs'
s=1,...,2n.

The matrix [(R] is the transmitting boundary matrix developed by
Waas (1972), i.e.

(R] = i (A] (v [x) (7% + (D) (4.19)
where [K] is a diagonal matrix which contains the waves numbers, Kge
s=1,..., 2n, on the diagonal and (D] is a banded matrix assembled from

the layer submatrices

i " * * « ]
0 ] - 2 6)) 0 - - 2 6))
- *

. 6] 0 -, 0
ly =32 0 ™M =26 0 - - 26h .20
b 3 3 h)

L 3 w

< 0 -G 0 4

j «1,..., n. this matrix is related to [B) through (8] = (D) - [D).

For the special case of an undamped layered system, it can be

shown that real modes transmit the following energy per time unit per
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unit width in the y-direction

]2 (4.21)

(S

wk_ |a

E_=3*
- -

s s
where the sign follows the sign of the group velocity, see Eqg. (4.16).
In the undamped case complex and purely imaginary modes transmit no
energy.

Dispersion curves for the first few real modes of Rayleigh waves
in an undamped homogeneous layer over a rigid base are shown in
dimensionless form in Fig. 4.5. Since the group velocity is
proportional to the slope of these curves only points with positive
slope corresponds to waves which propagate energy in the positive
x-direction. A more complete picture of the variation of the wave
numbers with frequency can be obtained by plotting both the real and
imaginary parts of these. This has been done in Fig. 4.6 which
corresponds to the same case. In this graph only the spectral lines
show as full lines correspond to waves which propagate energy in the
positive x-direction. The broken lines correspond to motions which
decay in the positve x~direction but transmit no energy.

4.3.2 Layered System over Half Space

The theory summarized above is applicable only to a layered system
over a fixed rigid base. Actual sites are more similar to a layered
system over a viscoelastic half space. This problem can in principle
be overcome by using a very deep model with many sublayers. However,
such an approach will lead to very large matrices and thus expensive
calculations. Hence, some effective method for better approximating
the half-space condition is currently needed. Three methods have been

investigated in this research:
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Viscous Boundary

The first method investigated involved the use of Lysmer-
Kuhlemeyer (1969) viscous boundary condition (dashpots) at the bottom )
of the layered system. According to this method the existence of the

lower half space can be simulated by adopting the following

relationship between the amplitudes of forces (stresses) and the

horizontal, U, and vertical, V, displacements at the interface with the

half space
T
Ul _ Xz
[t.] {v}-{o } (4.22)
z
where
*
vs 0
= s * » N
[Hc] iop |g v (4.23

p

and o, V; and v; corresponds to the mass density, S-wave and P-wave
velocities of the half space, respectively. The above forces can be
added to the equation of motion for the n-layer systems. This results
in the equation

{[A] k? - ilB) k + ([c] + [#)); {v} = {0} (4.24,
which is similar to Eq. (4.8) except that all matrices now have the
dimension (2n + 2) x (2n + 2). [H] is the expanded matrix

0

(4.29,

- e = - - o -

[
T
(]
"

A S

For any given frequency, w, EqQ. (4.24) has the same form as Eq. (4.8)
and the eigenvalue problem can be solved as for that equation.

The method is hard to justify theoretically since the Lysmer-

Kuhlemeyer boundary condition was originally developed for plane 4

_cii, g
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vertically propagating waves and thus implies energy propagation in the
vertical direction which does not occur within Rayleigh waves in
undamped systems, However, experience with the method has shown a
pronounced improvement in the ability of the discretized method to
simulate a uniform half space. Some results are shown in Fig. 4.5
which shows (in full lines) dispersion curves computed by Lysmer (1969)
for a uniform layer over a rigid base. The dotted line through the
origin is the exact solution for a complete half space and the circles
indicate points computed using the above viscous boundary condition.
The improvement is limited to the lower modes however. Eq. (4.24)
predicts higher modes which do not exist in a perfect half space.

Travelling Wave Boundary

When a plane wave travels in the x-direction through a viscoelastic

half space the boundary condition at the surface can be shown to be

T v
XZ\ o [ue] o ikx (4.30)
o v
z
where
"_ * *_
(M A - {kA ) MB
B = (4.31)
[e] G'e 6" (® - ik)

and sz' oz, U and V are the stress and displacement amplitudes at x=(.

N

The constants

~ kq (q - 8)/(8q - k%)

>l

=5 (k% - g% /(sq - k%)

=q (k% - 8%)/(sq - x?)

Ol

q)/(sq - k?) (4.32)

ol

= gk (s

[N
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22 2,#% 2 2 2, 4% . o
where g =k - w /Vp r $ =k —w /Vp are rather complicated function:s

of k and the above boundary condition cannot be used directly in
connection with the discretized method discussed above. However, by
expanding the constants in Eq. (4.32) into Maclaurin series about k = 0,
the following approximation can be obtained
2 .
[He] = [Ha] K+ i [Hb] k + [ac] (4.33)
where
® * *
(V. + 2v) G
i s P
Pi] = (4.34,
a 2w . . .
0 (V + 2V) M
p s
* * %
0 (i - 1) V. +iv yV
s s p
(4.35;

1]
O

] -

* ® *® ®

(i - 1) Vp + ivsvp - 2vs 0
and [HC] is the matrix given by Eq. (4.23). As tor the case of the
viscous boundary discussed above the expanded forms of the matrices in
Eq. (4.33) can now be added to the expanded forms of the matrices [A],
[B] and [C] for the n~layer system. This results in the following
eguation of motion

() + [1] «* - ace] - [H) k+ el + [n ]} {v} = {o} (a.36)

This eigenvalue problem can, in principle, be solved and should
lead to better solutions for low values of k. However, the matrix
({a] + [Ha]) is not symmetric and the matrix ([B] - [Hb}) is not
skew-symmetric. Hence, the solution of Eq. (4.36) is considerably more
difficult than the eigenvalue problems stated by Eqs. (4.8) or (4.24).
Further research needs to be performed to investigate the performance

of this approach.
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Variable Depth Method
As shown in Pig. 4.1 Rayleigh waves in a uniform half space

attenuate rapidly with depth. The table shown in the same figure
indicates that for most solids only small amplitudes occur at a depth
of 1.5 x the wavelength, Xr, and at a depth of 2 x the wavelength the
amplitudes are insignificant compared to the surface amplitudes. Thus
it is to be expected, that the fundamental Rayleigh mode computed from
a discretized model with a rigid base at a depth of B = 1.5Ar will be
similar to the corresponding wave travelling in a complete half space.
This suspicion is confirmed by Fig. 4.5 which shows that for KH > 27;
i.e. H> Xt the correct wave number is computed from a rigid base
model. Further confirming evidence will be presented in Section 4.6.
In a typical layered soil system over a half space it can be
assumed that the shear wave velocity of the half space will be larger
than the velocity of the fundamental Rayleigh wave. Thus Xr in the
above expression can be safely replaced v As for the half space, and
the half space can be simulated by a uniform layer of the thickness
H = l.sks = 1.5 vs/v where v is the frequency in Hz. Subdividing
this layer into 9 sublayers the element height becomes 1/6 Vs/V which
as described in Chapter 3 is sufficiently small to ensure numerical
accuracy. Thus, no matter what the frequency the underlying half space
can be represented by 9 layers as shown in Fig. 4.4b. As will be
discussed in Section 4.6, when the half space extends all the way to
the surface or if the surface layers are very soft compared to the
half space even better accuracy in the mode shape can be obtained by
subdividing the top layer into two equal sublayers as indicated by the

dotted line marked "optional” in Fig. 4.4b,
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The variable depth method is simple to implement and will be used
in the remaining part of this dissertation and in the associated
computer programs, SITE and LOVE, which at each frequency automatically
adjust the depth of the computational model as indicated in Fig. 4.4b.
The method ensures the computation of good lower modes which, as will
be discussed below, are the modes of primary interest for the research
presented herein.

4.3.3 Mode Selection

Baving adopted the variable depth method the motions of a layered
system over a uniform half space are given by Eg. (4.10) which
unfortunately contains 2n unknown mode participation factors. These
can, in principle, be determined by 2n boundary conditions; say by a
set of forces acting on the plane x = 0. This was the method used by
Waas (1972) to compute the transmitting boundary matrix [R] in
Eg. (4.19). Alternatively, the mode participation factors could be
computed from 2n given displacement amplitudes at x = 0. This would
correspond to solving Eq. (4.18) for {a}. However, in the usuyal site
response problem, only one control motion and thus only one
displacement amplitude is known at each frequency; say the horizontal
surface amplitude at x = 0. It is therefore not possible to determine
the general motion from a single control motion. A particular solution
can be obtained, however, if it is assumed that only the fundamental
mode produces the motion at the control point in which case Eq. (4.10)
reduces to

{6} = a {v}, et Wi KeX) (4.37)

where af, {v}f and k, correspond to the fundamental mode. This

is a reasonable approach since it can be expected that, if Rayleigh
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waves exist at the site, the fundamental mode is the major contributor
to the motion.

Fundamental Mode

Adopting this idea, the remaining problem is to select the
fundamental mode from among the 2n solutions to the eigenvalue problem,
BEg. (4.8). For an undamped system the fundamental mode will be among
the real modes which are the only modes which transmit energy in the
x-direction. Among these modes the fundamental mode will be the one
with the largest wavenumber k (shortest wavelength, lowest phase
velocity). This definition coincides with that used by seismologists.
For a homogeneous half space it corresponds to Rayleigh's original wave
and the straight part of the dispersion curve Pl in Fig. 4.5.

The total number of real modes which can exist in a given system
depends on the frequency of excitations and the natural frequencies of
the system. The latter, which correspond to vertical wave propagation
between the free surface and the rigid base, can be determined by
solving the eigenvalue problem in w which results from setting k = 0 in
Eq. (4.9). For a homogeneous layer over a rigid base these frequencies
can be read off at k = 0 in FPig. 4.5. In general, at any given
frequency, w, the number of real modes which propagate energy in the
positive x-direction will be equal to the number of natural frequencies
below this frequency. Thus, for the special case of a homogeneous
layer over a rigid base with B = l.SX‘ (un/v' = 9.425) five real
modes will exist. This can be seen by counting the number of
dispersion curves which intersect the horizontal line uVBV‘ - 9.475

in Pig. 4.5. This observation implies that real modes will always

exist when the variable depth method is used. Since the same line
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intersects the straight part of curve P1 in Pig. 4.5, a good

fundamental mode will always be computed by this method.

Actual sites cannot be properly modeled by undamped materials.
Thus the cases of major interest involve damped layered systems. For
such systems the definition and selection of the fundamental mode is a
much more complicated matter. As discussed in Section 4.4 all modes
are complex, i.e. they have complex wave numbers with negative
imaginary parts corresponding to decay in the direction of wave
propagation., One can therefore not make a simple statement to the
effect that the fundamental mode is the real mode with the largest wave
number. On the other hand the introduction of damping does have some
simplifying effect on the computations. For example, as discussed in *
Section 4.4, it does simplify the selection of the 2n appropriate wave
numbers (the ones with negative imaginary parts). Also, damping tends

to eliminate singularities in transfer functions and dispersion

curves. For example, all of the nondifferential points on the
dispersion curves shown in Fig. 4.6 will become differentiable points.
With the magnitude of damping which has to be introducsd in
practical problems the changes in numerical values of wave numbers,
mode shapes, etc. from the corresponding values obtained by undamped
analysis are not large. This was already indicated by the results
presented in Fig. 4.3 which show that mode shapes are virtuclly
unchanged by the presence of damping. As a further illustration of
this point a 450 ft homogenous layer over a rigid base was subdivided
into 15 sublayers and analyzed by prcgram SITE at different frequencies

using four different damping values (f = 0%, 0.001%, 3% and 10%).

Computed wave numbers are shown in Table 4.1 which also show the values
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for the corresponding undamped half space. At each freguency the
number of modes included corresponds to the number of real modes for
the undamped systems, as can be seen from the natural undamped
frequencies of the system shown below the table. The number of real
modes is equal to the number of natural frequencies below the frequency
of excitation as discussed above.

The wave numbers shown for the damped cases are those
corresponding to low attenuation. These were selected by first
ordering all of the modes in order of the least magnitude of the
imaginary part of the wave number and then selecting as many as
indicated by the undamped case. The argument for this procedure is
that if it is true that damping has a small effect on the wave modes
then the damped mode corresponding to the fundamental mode in the
undamped case (which does not decay) should be among the low
attenuation modes for the damped case. That this is indeed so can be
seen by comparison of the wave numbers marked by an asterisk in
Table 4.1.

It can also be seen from Table 4.1 that among the modes selected
the fundamental mode is the one with the largestreal part of the wave
number. This of course is not surprising in view of the above
definition of the fundamental mode for the undamped case.

In view of the above considerations the following procedure, which
also serves herein, as the definition of the fundamental mode, has been
adopted for selection of the fundamental mode in a damped (or undamped)
system:

a) Compute the undamped natural frequencies of the system (by

setting k=0 in Bq. 4.6).
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b) Determine m = the number of natural modes below the frequency

of excitation.

c) Solve the eigenvalue problem, Eg. 4.8.

d) Sort the modes in order of magnitude of the imaginary part of

the wave number.

e) Select from among the first m modes the one with the largest

real part. This mode is the fundamental mode.

Experience with the above metho<: ‘vt a large range of site
conditions has shown that the above procedure and definition of the
fundamental mode leads to motions which have all the usual
characteristics of fundamental Rayleigh waves; decay with depth, simple
mode shape and low phase and group velocity. For the undamped case the
definition coincides with that used by seismologists.

Least-~Decay Mode

Several other schemes were investigated for selecting the
fundamental mode of Rayleigh waves. Among these one method, herein
named the least-decay method, deserves some discussion. Consider a
typical Rayleigh wave with the wave number k = kr + iki’ ki <a.
According to the theory presented in Section 4.3 the wave has the
wave length Zﬂ/kt and it attenuates as exp (kix) in the direction
of wave propagation. Hence the decay factor per wavelength is
exp (ani/kr). The ratio (-ki/kr) is thus a measure for how
fast a wave decays.

It is to be expected that the fundamental mode, which does not
decay in the undamped case, will have a very small attenuation for
damped cases. The idea thus arose to define, for damped cases, the

fundamental mode as the mode with the smallest value of the ratio

(-ki/kz)' This is the least-decay method.

ppr-ay

P ee e

pra- ey

A pen ram S

e



e e S S

110

In order to test this method on the case discussed above the modes
were sorted according to increasing values of the above ratio. The
result of this scheme is shown in Table 4.2 which alsc shows values of
the ratio (-ki/(kre))‘ As can be seen from this table the least-
decay method works perfectly for this case.

Table 4.2 also illustrates the interesting fact that for all modes
the ratio (-ki/(krﬁ)) is independent of the damping ratio and for
the fundamental mode this ratio is near unity. The reason for this
follows from the continuum theory for Rayleigh waves in a homogeneous
half space presented in Section 4.4. Suppose Bs = Bp = 8, then
simple substitution of complex wave velocities Vs' = Vs(l-iB) and
Vp* = Vb(l-iB) into Eq. 4.2 will show that kt + iki = k(1-iB),
where k is the wave n'mber for the undamped case. Thus, by separation

of the real and imaginary part and division, it follows that

-ki/(ktB) 1. The deviation of this ratio from unity in Table 4.2
is therefore a measure of the inaccuracy with which the discretized
models represent the half space.

In spite of the good results which the least-decay method achieved
in this case it was not adopted as the method for selecting the
fundamental mode. This is so because in cases involving a soft highly
damped layer over a stiff half space with low damping it does not
select a mode which agrees with the definition of the fundamental mode
used by seismologists. Rather, it tends to select a mode which
corresponds to the classic Rayleigh mode in the half space without the
surface layer. This mode may attenuate slower than the fundamental

mode but will have a longer wavelength. 1In fact, as will be explained

in Chapter 5, this least-decay mode may be of more interest to

engineers than the fundamental mode.

=
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4.4 Love Waves

Love waves which are of the form

uy = U(z) exp i(wt-kx) (4.25)
with Ug =u, =0 can exist only in layered systems. The simplest
case involving a layer of thickness H over an elastic half space has
been studied by Love (1927) and Bullen (1963). Continuum methods for
the evaluation of Love wave mode shapes and wave numbers in undamped
multi-layered systems over a half space have been presented by Haskell
{1953) and Ewing et al (1957).

As was the case for Rayleigh waves infinitely many generalized
(complex) Love modes can exist in a layered system. However, at any
given frequency real modes, which are the only ones usually considered
by seismologists, can exist only when the material properties satisfy
certain relations.

For multi-layered viscoelastic systems the mode shapes and wave
numbers are most conveniently evaluated by discretized methods similar
to that used for Rayleigh waves above., Such a method has been described
by Lysmer and Waas (1970) and Waas (1972). As was the case for Rayleigh
waves this method assumes linear variation of displacements within
layers and the existance of a rigid base at some finite depth which can
be varied with frequency to ensure proper simulation of a half space.

For an n-layer system of the type shown in Fig. 4.7 the method
leads to the equation of motion

(k% + (@] - W) v} = {o} (4.26)
where [A], [G) and [M]) are symmetric n x n matrices which may be

assembled from sublayer matrices as shown in Fig, 3.23 for the case of

SH~waves, except that the last row and column of each total m.:rix are

B o e . VT Rl o
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not used because of the rigid base assumption., The submatrices are
defined by Egs. (3.72) to (3.75).

Equation (4.26) states an eigenvalue problem similar to, but
simpler than, Eq. (4.8) for Rayleigh waves. For any given frequency, w,
this problem can be solved by standard methods for the n eigenvalues
ki, s = ],..., n and corresponding mode shapes, {v}s. Assuming
a small amount of damping each eigenvalue will lead to a pair of complex
wave numbers Iks. Since only waves which decay in the x-direction are
of interest, the wave numbers with negative imaginary parts are retained

and the complete solution can be written as a linear combination of the

remaining modes

{6} = a_{v}_ e WETkgX) (4.27)
s=1

where {6} is a vector containing the displacements at the layer
interfaces and as' s =1,..., n, are unknown mode participation
factors.

As was the case for Rayleigh waves these factors cannot be
determined from a single control motion. However, by assuming that
only the fundamental mode (selected as described above for Rayleigh

waves) exists Eq. (4.27) reduces to
{5} - Q{v} el(wt-kx) (4.28)

and the mode participation factor can be determined.
The non-vanishing strain amplitudes in the jth layer are

1 ikx
ny = ~ zku (vj+1 + vj) e
(4,29)

v, - V.
Y . a j+l b exkx
2y hj




These values, at x=0, may be used to evaluate the maximum shear

strain in each layer when iterating on the soil properties according to
the eguivalent linear method.

The group velocity of Love waves may be computed from Eq. (4.16);
except that {;}T in this formula should be replaced by {v}T.

A computer program, LOVE, has been developed to perform the
required computations not just for a single frequency but for transient
motions as explained in Chapter 5.

4.5 Numerical Examples

In order to verify the Rayleigh wave and Love wave solutions
produced by programs SITE and LOVE, respectively, these programs have
been applied to several problems for which exact solutions have been
published. Numerical examples are also presented which illustrates the
sensitivity of the results to variations in material properties and
geometrical conditions.

4.5.1 Uniform Half Space

The exact solution for Rayleigh waves in an undamped uniform half
space is readily available and was presented in Section 4.2. The exact
mode shapes for Poisson's ratio equal to 0.25 and 0.45 are shown as
solid lines in Fig. 4.8 which also shows several fundamental mode
solutions obtained by program SITE.

The first solution, dashed line, for Poisson's ratio equal to 0.25
was obtained from a model which consisted of nine sublayers of equal
thickness. The depgh to the rigid base was 1.5 times the wavelength of
shear waves. The solution is generally good except near the free

surface where the piecewise linear approximation is too coarse to model

the curvature of the exact mode shape. This problem can be overcome by
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subdividing the top layer (s) as shown by the other two solutions for
the case of Poisson's ratio equal to 0.25.

As Poisson's ratio approaches 1/2 the discretized method tends to
overestimate the vertical displacements. As can be seen from Fig. 4.8
the error is about 15% for Poisson's ratio equal to 0.45. This error
can probably be reduced by further subdivision and the choice of a
deeper rigid base. However, the error appears to be related to the
well-known problems associated with the use of the finite element
method for plane strain problems with high Poisson's ratio. In any
case the error has been judged acceptable for engineering applicatioms.
The phase velocity predicted by program SITE is in excellent agreement
with the exact value for all the models used.

It is clear from the above results that as far as the fundamental
mode is concerned a ten~layer model with the fixed base at a depth of
1.5 x the wavelength of shear waves provides an excellent approximation
to an elastic half space.

4.5.2 Single Layer over Half Space

The characteristics of Rayleigh waves in an undamped system
consisting of a single layer over an elastic half space have been studied
by Mooney and Bolt (1966). The physical model with the notation used
for system properties is shown in Fig. 4.9. The curves shown in
FPigs. 4.10~4.12 are the solutions produced by Mooney and Bolt for the
ratio between horizontal and vertical displacements at the ground
surface, phase velocity and group velocity, respectively. 1In these
graphs, T is the period of the motion and Bz/g1 (= vs/vs" the shear wave
velocity contrast between the half space and the surface layer. The
solutions correspond to the special case: Y= Y' = 0.25, vy = 162.5 pc¢t,

Y = 125 pct (i.e. p/P' = 1.3).
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Discretized models were prepared for these values of the S-wave
velocity ratio, vs/vs' = 2.0, 3.0 and 4.0. 1In each case the surface
layer was modeled by 18 sublayers and the half space was handled by the
variable depth method. These models were then analyzed using program
SITE. The results obtained are indicated by dots in Figs. 4.10-4.12.
They are in excellent agreement with the exact solution and clearly
demonstrate the adequacy of the discrete method and the associated
variable depth method for layered systems over half spaces even for
modes beyond the fundamental mode.

The equivalent problem in terms of Love waves has been studied by
Stoneley (1955). His model is shown in Fig. 4.13 which also shows the
discretization for the surface layer used for the corresponding
discretized model. The half space was modeled by the variable depth
method with 10 sublayers. In Fig. 4.14 Stoneley's exact dispersion
curves for this case are compared with points obtained from the
discretized model using program LOVE. Again, excellent agreement was
obtained.

4.5.3 Two Layers over Half Space

Stoneley (1957) also studied the propagation of Rayleigh waves in
an undamped system consisting of two layers over a half space.

Ris model for Rayleigh waves is shown in Fig. 4.15 which also shows
the discretization used in the corresponding SITE model. The variable
depth method was used to simulate the half space. Figure 4.16 shows
computed amplitude ratios at the ground surface, phase velocities and
group velocities for the fundamental mode. The agreement between the

exact solution and the discretized solution produced by program SITE is

excellent.
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CHAPTER 5
EXAMPLES OF SITE RESPONSE ANALYSIS

5.1 Introduction

In this chapter, the steady state methods presented in Chapters 3
and 4 will be applied to solve a number of transient site response
problems of the general type shown in Fig. 5.0. The results presented
have been selected to illustrate the major effects of horizontal wave
propagation in the form of fundamental mode surface waves or inclined
body waves.

In all cases the site is assumed to be horizontally layered and to
be underlain by a homogeneous half space. For cases involving surface
waves this half space is modeled by the variable depth method, see
Section 4.4.2.

All materials are assumed to be isotropic and viscoelastic.
Nonlinearitics are approximated by the equivalent linear method, see
Section 2.5. This implies that the possibility of complete failure and
large permanent deformations of the site are not considered.

The sites investigated include a typical rock site, a cohesionless
(sand) site and a typical alluvial site with high ground water level and
alternating layers of sands, silts and clays. Some of these sites are
related to the soil-structure interaction problems discussed in
Chapter 6. Although horizontal wave propagation is the main theme of
this chapter, all sites have been analyzed, using standard deconvolution
procedures (Program FLUSH), for the special case of vertically incident
body waves. Since these are well-known procedures, results will be

presented without futher comments in the following section whenever a
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compar ison is warranted. Such results will be identified in graphs by
the notation; "S-wave® or "P-wave" whatever the case may be.
5.2 Transient Motions

All of the methods described in the previous chapters have been
limited to steady state harmonic lottqns. The remaining part of this
dissertation will be dealing with transient motion of finite duration
which better model earthquake motion. This transition is achieved
through the use of Pourier techniques which involve a discrete Pourier
transform, complex transfer function and interpolation on the latter in
the frequency domain. This technique, known as the complex response
method, has been used extensively in recent vears and has previously
been described by Schnabel et al (1973), Lyemer et al (1974, 1975) and
Idriss et al. (1973).

5.2.1 The Fast Pourier Transform

The basic input to any seismic aralycis is a digitized centrol
motion, y(t), which will be assumed to be aiven at N (even) p~ints at
the uniform time interval At. Under these conditions the control

motion can be written

N/2

. .. iwgt
y(t) = Re Yge (5.1)
8=0
where
278 N
w' - N.At '] ..O’l'oou' 2 (5.2)

The differentiable function defined by Eq. (5.1) may be thought of

as a mmooth interpolation function between the given points of the

control motions.
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Bquation (5.1) is a truncated Fourier series which implies that
the function ¥(t) is periodic with the period T = NeAt. Actual
earthquakes are not periodic. However, this problem can be handled by
adding a "guiet zone" consisting of a limited number of zeroes to the
given control motion, Schnabel (1972); thus increasing N (and T). 1If
the quiet zone is sufficiently long the strong motion occuring at the
beginning at each cycle will decay because of material dampihg before
the beginning of the next cycle. Thus the response within each cycle
is virtually identical to that of a single earthquake.

The complex coefficients, ¥s, in Eq. (5.1) can be computed from
the given values, ?k =y (k°At), k = 0,1,..., N-1, of the control
motion. By choosing the length of the gquiet zone such that N is a
power of 2 this can be done extremely efficiently by the Fast Fourier
Transform algorithm developed by Cooley and Tukey (1965). The inverse
version of this algorithm can be used to convert from frequency domain
to time domain, i.e. to compute the yk values from the is values.

In seismic applications it is usual to neglect the first term of
the sum in Eq. (5.1). This is equivalent to assuming that the control
motion has a zero mean value.

5.2.2 The Complex Response Method

According to the complex response method the response of any
linear system to the real excitation defined by Bj. (5.1) can be
determined as the real part of the response of the system to the
complex excitation

N2 iwgt

§(t) = ¥ge (5.3)
=1

R 5 -y,

=
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which simply states that the excitation is a finite sum of harmonic

excitations.

Using the methods developed in the previous chapters the response
of any point to each of these harmonics can be expressed in the form

iis = B ¥_ (5.4)
where ﬁs is a complex amplitude and B(ws) are discrete values of a
smoother transfer function.

Since superposition is valid for linear systems the real response
in the time domain is

N/2

U(t) = Re z 'tise
s=]

s (5.5)
which is similar to Bqg.(5.1) and can be evaluated by the inverse Fast
Fourier Transform algorithm.

Since the number, N, of points in the time domain is typically
1024 or 2048, up to 1024 values are needed for the transfer functions
H(ws). However, since these functions are smooth only 30-40 points
need actually to be determined by the rather complicated methods
described in the previous chapters. The .intermediate points can be
obtained by a special interpolation technique in the complex plane,
Lysmer et al (1975).

5.3 Linear Rock Site

The first site considered consists of a 50 feet layer of
well-cemented sandstone over harder bedrock. Typical properties for
such a site are shown in Table 5.1. These properties were assumed to

be independent of shear strain amplitude. Thus the analysis discussed

in this chapter is linear.
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5.3.1 Camputational Model

In the computational model the upper 370 ft of the site were
represented by 13 sublayers as indicated in Table 5.1. The half space
below this depth was handled by the variable depth method as described
in Chapter 4. This resulted in a computational model with a total of
23 sublayers. Details of the discretization are shown in Fig. 5.3.

This discretization easily satisfies the requirements discussed in

Section 3.4.2 up to a frequency of 20 Hz which was the cut-off frequency

for all analyses discussed in this chapter.

Table 5.1 Properties of Linear Rock Site

Main Thickness No Vg Vv, Damping

Layer (ft) Sublayers (£ps) (fgs) Ratio
1 40 5 3600 2900 0.02
2 10 1 3900 6100 0.02
3 320 7 5600 6600 0.02

half

space varies 10 5600 8700 0.02

All unit weights are 150 pcf.

5.3.2 Control Motion

The control point is at the ground surface at x=0. The horizontal
control motion has a maximum acceleration equal to 0.75g. Its time
history of acceleration is shown in Fig. 5.1. As can be seen from the
upper part of this figure the motion has a broad-band spectrum which
fits approximately an NRC-type design spectrum. In the computations
discussed below a total of 4096 points (At=0.0l) were used in the
Past Fourier computations, and frequencies above 20 Hz were not

considered. As a result of this low-pass filtering, the computational

maximum acceleration was 0.76 g.
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5.3.3 Strain Compatibility

The above control motion is extremely strong. Hence, the
appropriativeness of a linear analysis for this case might be
questioned. Actually, the following comments will confirm that for
practical purposes the linear approach is quite appropriate.

While our current knowledge of the behavior of rock at large
strajin amplitudes is sketchy, approximate relationships between
effective dynamic shear modulus, damping ratio and shear strain
amplitude have been established. Typical relationships of this type
are shown in Fig. 5.2 which also shows the effective shear strain range
computed for the linear rock site. It may be seen from this figure and
also from the strain compatible properties shown in Fig. 5.3 that the
maximum nonlinear effects amount to a 15% reduction in the effective
shear modulus and a 50% reduction in the damping ratio assumed for this
site. These effects are within the range of accuracy with which
engineers can currently determine these properties in the field.

Hence, it may be argued that a nonlinear analysis for this case would
be a purely academic exercise and that the likely changes in the
results fram those obtained by a linear analysis would be small.
Nevertheless, an attempt to evaluate the maximum nonlinear effects for
this site will be made in Section 5.4.

5.3.4 Steady State Results

Before discussing the transient motion results it is interesting
to study the behavior of steady state fundamental Rayleigh waves on the
site.

The dispersion curves shown in Fig. 5.4 are nearly constant in the

frequency range of interest. This indicates that the site behaves
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essentially like a uniform half space with the properties of the
bedrock. This is not surprising since the wavelength of the shortest
Rayleigh wave is about five times the thickness of the weathered crust.

As expected the mode shapes of the Rayleigh waves, shown in
Fig. 5.5, are similar to those observed for a half space. Their depth
of penetration is inversely proportional to frequency and motions below
a depth of one wavelength are insignificant.

5.3.5 Transient Results

The computed variations of maxumum accelerations with depth below
the control point are shown in Fig. 5.3 for both the case of pure
Rayleigh wave excitation and the case of vertically incident shear
waves. The variation is typical for what would be expected for a half
space. The horizontal motions are lower than the vertical motions.
Also, they attenuate faster with depth than those determined from the
S~wave analysis.

The variation of frequency content with depth is illustrated by
the response spectra shown in Fi~., 5.6, Within the upper part of the
gsite the frequency distributions of the Rayleigh wave motion do not
differ greatly from that determined from S-wave analysis. At greater
depth the vertical R-wave components predominate. They are longer than
those determined by S-wave analysis especially in the low freguency
range.

As discussed in Chapter 4 the Rayleigh wave field will attenuate
in the direction of wave propagation. For steady state waves the
approximate decay factor for the linear rock site is exp (-278)= 0.75
per wavelength. The effect over a traveling distance of 1000 ft is

clearly illustrated by the surface motion response spectra shown in
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Fig. 5.7. The rate of attenuation indicated for this site is hardly
important for engineering design. However, it should be observed that
over a distance of several thousands of feet all the high frequency
components of the original control motion will vanish. This is a
strong indication that even on rock sites high frequency surface waves
cannot exist several miles from the epicenter of an earthquake.
5.4 Nonlinear Rock Site

As discussed above linear analysis of competent rock sites is
probably appropriate even for very strong motions. However, in order
to investigate the maximum credible nonlinear effects on the above site
the following modifications were made regarding the properties of the

site. Pirst it was assumed that the upper 15 feet of the site is

- weathered to the point where its low-strain seismic wave velocities are

reduced to vs-lsoo fps and Vp-2900 fps and, second, it was assumed
that the sandstone, down to a depth of 370 ft, disintegrates during the
presumed earthquake to the point where it behaves like sand, i.e. its
modulus and damping ratio depends on strain amplitude as shown by the
curves marked "Sand" in FPig. 5.2. The above considerations lead to the
computational model defined in Table 5,2.

Table 5.2 Low-Strain Properties of Nonlinear Rock Site

Main Thickness Sublayers Vg v, Damping
Layer (ft) (No.) (fps) (fgs) Ratio
1 15 2 1500+ 2900* *
2 25 3 3600* 6100* *
3 10 1 3900+ 6600* *
4 320 7 5600+ 8700 *
half
space varies 10 5600 8700 0.02

All unit weights are 150 pcf.
* Computational values vary according to Fig. S.8.
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The model easily satisfies the discretization criteria described

in Chapter 3 up to the 20 Hz cut-off frequency of the analysis
performed, even when reduced strain-compatible moduli are used.

5.4.1 Strain Compatibility

The above model was analyzed using the equivalent linear method
and the same control motion as for the linear rock site. This lead to
the strain-compatible properties shown in Fig. 5.8. It is evident from
this figure that the nonlinear effects and thus the maximum stresses
produced by a Rayleigh wave field in this site are considerably larger
than those produced by the corresponding S-wave field. Incidentially,
the principal stress directions of the two fields are also completely
different., In an S-wave field maximum shear stresses occur on
horizontal planes while in an R-wave field they tend to occur on the
45° planes, at least within depths of interest to engineers.

It might at this point be argued that the strain-compatible soil
properties determined from the R-wave analysis should be used for all
futher R-wave calculations. However, it might also be argued that from
a practical standpoint it makes more sense to use the S-wave compatible
properties for R-wave calculations. This is so because actual near-
surface ground motions consist mainly of vertically or nearly
vertically propagating body waves and it is these waves, and especially
the shear waves, which produce the major part of the shear strains in
the ground. The additional strains produced by a weak superimposed
Rayleigh wave field are too small to influence the choice of strain-
campatible properties.

The latter approach has been used to produce most of the results

presented below. It has the futher advantage that it facilitates the
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superposition of different types of wive fields, an operation which
would not be valid if the fields were determined from different strain-
compatible models. Thus, in the following, unless otherwise mentioned,
it may be assumed that S-wave strain-compatible properties were used in
all computations involving transient motions.

5.4.2 Steady State Results

Fundamental Rayleigh wave mode shapes at selected frequencies in
the range of interest are shown in Fig. 5.9. The dependency of the mode
shapes on the choice of rock properties indicate two major effects of
increasing nonlinearity:

e A significant decrease in the ratio between the vertical and

horizontal motions.

® A decrease in the motions at depth, especially in the high

frequency range.

The classic half space theory for Rayleigh wvaves would predict the
second observation. It also predicts that vertical surface motions are
always larger than the horizontal wotions; a prediction which does not
agree with field observations. Thus the first of the above
observations about the effect of nonlinearities may be part of the
explanation for this discrepancy. 1In fact, it is only part of the
explanation. The smaller vertical motions observed in the field can
also be explained as an effect of stiffness contrasts between the
surface layers and the bedrock. Nonlinearities tend to increase this
contrast when strong motions occurs. Hence, the two explanations are
closely interconnected.

Another effect of nonlinearities (or layering if one prefers that

explanation) is to increase the dispersiveness of the site. This can
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be seen from the dispersion curves presented in Fig. 5.10. These curves

which were computed using S-wave compatible properties show that the
modes shown in Fig. 5.9 propagate with completely different
velocities. Generally the velocity decreases with frequency from a
high velocity corresponding to the velocity of the -bedzock to a low
velocity corresponding to the velocity of the surface layer.

The rate of attenuation in the direction of wave propagation,
exp (-kzx), increases rapidly with frequency and increasing magnitude
of nonlinearity. This can be seen from the variation of wave numbers
shown in Fig. 5.11. The same graph shows that dispersion, which is
proportional to kl, increases with increasing nonlinearities.

5.4.3 Transient Results

Transient results for the variation of maximum accelerations with
depth are shown in Fig. 5.8. The horizontal motions are similar to
those computed for the linear rock site, see Fig. 5.3, independent of
the choice of strain-compatible rock properties. The vertical motions
are smaller that those computed for the linear rock site and they are
as expected mmallest when R-wave compatible properties are used. Thus,
for this site, it may be considered conservative to use S-wave
compatible properties for engineering computations. For this reason,
and for the reasons given in the previous section, S-wave compatible
properties will be used in all further computations.

The variation of frequency content with depth is illustrated by
the response spectra shown in Figs. 5.12 to 5.14. The spectra are
quite similar to those computed for the linear rock site, Pig. 5.6,
except that for the nonlinear rock site the vertical accelerations

contain fewer high frequency components.
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The attenuation of the Rayleigh wave field in the direction of wave
propagation is illustrated by Pigs. 5.15 and 5.16 which shows computed
response spectra at different distances fram the control point. The
results are similar to those obtained for the linear rock site, Pig. 5.7,
except that the attenuation is considerably stronger.

5.4.4 Conclusions for Rock Sites

A rock site has been analyzed using two extreme models. The first
model assumed linear behavior and the second extreme nonlinear
behavior. Except for some minor differences the two models, when
analyzed for the same control motion at a surface control point, lead to
similar results within depths and distances of interest to foundation
engineers. The major conclusion of the above study must therefore be
that for engineering purposes nonlinear effects need not to be
considered in site response analyses of rock sites.

It was also found that within depths and horizontal distances from
the control point of normal interest to foundation engineers the
horizontal motions computed on the basis of the assumption of a
vertically incident S-wave field are very similar to those computed from
a pure R-wave field. This similarity does not extend to the phase
difference between distant points on a horizontal plane.

As opposed to vertically incident fields, Rayleigh wave fields
attenuate in the direction of wave porpagation. However, for rock sites
this attenuation is too small to be of interest to engineers. It might,
however, explain why high frequency Rayleigh waves are not observed by
seimmologists.

8.5 Cohesionless Site

As an example of a site for which nonlinear effects are important

it was decided to study a hypothetical site consisting of 128 ft of
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uniformly dense dry sand. This site will be analyzed for the effects of
Rayleigh waves, inclined body waves and a combination of such.

The sand was assumed to have the following properties:

Unit weight = 125 pcf

Relative density = 75%

Poisson's ratio = 0.3

Experimental data for the variation of the modulus and damping
ratio with effective dynamic shear strain amplitude and confining
pressure for such a material were presented in Chapter 2, Fig. 2.3.
This data will be used below in connection with the equivalent linear
method. The bedrock is considered as a half space with the strain-
independent properties: Unit weight 145 pcf; Poisson's ratio, 0.2;
vs = 4000 fps, vp = 6532 fps and damping ratio, 2%, for both S- and
P-waves,.
5.5.1 Harmonic Rayleigh Wave

The site, discretized as shown in Pig. 5.21, was first studied for
the effect of a harmonic Rayleigh wave at the frequency 2.5 Hz. This
frequency corresponds to the predominant fregquency of the transient
control motion to be discussed in Section 5.5.1. The wave was
normalized to produce a horizontal acceleration amplitude of 0.25 g at
the ground surface. This corresponds to the acceleration level of the
transient control motion to be used in the next section.

Two solutions are presented. The first solution, shown in Fig. 5.17,
involves what many may consider common engineering approximations for
this type of problem: The sand layer, which actually increases in

stiffness with depth was replaced by a uniform layer with the constant

shear wave velocity, 1148 fps, and the constant damping ratio, 5%. The
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shear wave velocity corresponds to the average value within the profile

at amall strains. The damping ratio, which turns out not to be
unimportant for the conclusions to be drawn later, is an engineering
estimate. Furthermore, in the analysis no attempt was made to adjust
the above values for strain compatibility, i.e. a linear analysis was
performed.

From the solution one may draw the conclusions that:

e Rayleigh waves produce larger vertical than horizontal motions.

e Horizontal Rayleigh wave motions decrease faster with depth than

shear wave motions.

Both of these conclusions are in perfect agreement with classic
half space theories for Rayleigh waves, The first is rarely in
agreement with field observations.

Now compare the above conclusions with the results of the more
complete solution shown in Pig. 5.18. In producing this solution the
sand profile was modeled as a layered system, see Fig. 5.21, which
increased in stiffness according to Bg. (2.1l) and the equivalent linear
method was used with S-wave compatible properties to account for
nonlinearities. This procedure actually underestimates the nonlinear
effects for the R-wave results, since, as will be discussed in
Section 5.5.5, R-waves cause larger shear stresses in the upper part of
the profile than S-waves.

It is clear from the results shown in Fig. 5.18 that both of the
above conclusions made on the basis of the results from the simplified
model are wrong for this case. As they will be for some of the
transient cases to be presented below, details of layering and non-

linearities must be considered in site response analyses of soil

profiles.
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Perhaps the strongest effect is that of nonlinearity which in this

case change the average shear wave velocity of the sand layer from about
1148 fps to about 772 fps, a change which will have a pronounced effect
on the behavior of both R- and S-waves.

5.5.2 Transient Rayleigh Waves

The above study was repeated using a transient Rayleigh wave field
defined by the motion shown in Fig. 5.19. This motion was scaled to
0.25 g and used as the horizontal control motion at the ground surface.
1024 points (At=0.02 sec) were used in the Fast Fourier Transform
computations and frequencies above 20 Hz were neglected. Results
compatible with Figs. 5.17 and 5.18 are shown in Figs. 5.20 and 5.21.
They generally confirm the conclusion made in the previous section.

The response spectra for the motions at the control point,

Fig. 5.22, shows that, although the maximum acceleration of the
horizontal and vertical components are similar, the vertical component
contains higher frequencies. Fig. 5,23 shows the variation of frequency
with depth. As expected the major effect appears to be a reduction in
amplitude approximately proportional to frequency.

The average damping ratio in the sand layer is about 10% and it is
therefore to bn expected that the attenuation of the Rayleigh wave field
on the x-direction is very strong. This is confirmed by the results
presented in Fig. 5.24. Within only 250 feet from the control point all
motions above 5 Hz have attenuated to insignificant values. This
especially influences the vertical componeric which already at a distance
of about 200 ft becomes smaller than the horizontal component at the
ground surface. As discussed at the end of sectinn 5.4 the high

attenuation computec is strong evidence that fundamental mode Rayleigh
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waves are not an important contributor of near-surface motions in
cohesionless sites, at least not at frequencies higher than about 1 Hz.

5.5.3 Rayleigh Wave Stress Field

Another factor which may impede the propagation of strong Rayleigh
waves in cohesionless sites is the characteristics of the near-surface
stress field produced by Rayleigh waves as opposed to that produced by
vertically propagating shear wave fields. These characteristics are:

® Shear wave fields produce no normal stresses on vertical and
horizontal planes while R-wave fields produce very large
stresses; especially on the vertical plane.

e In a shear wave field the maximum shear stresses occur on
horizontal and vertical planes while for R-wave fields these
stresses occur on the 4s° planes near the ground surface and on
the horizontal and vertical planes of depth.

Both of these characteristics are confirmed by the data presented
in Pig. 5.25 which shows details of the stress field corresponding to
the above nonlinear transient solution for cohesionless site. Similar
data are shown in the right hand parts of Figs. 5.17, 5.18, 5.20 and
5.21. It should, however, be observed that the stressea shown in
Pigs. 5.17 and 5.20 are maximum stresses normalized with respect to the
S~-wave stress at the ground surface, while the stresses in Figs. 5.18
and 5.21 are maximum normal stresses on the horizontal plane. The data
is confused by the fact that S-wave strain-compatible properties, see
Pig. 5.21, were used in the R-wave analysis. Hence, the stiffness of
the upper part of the sand layer is not compatible with the high maximum

shear stresses, Ta (R-wave) in Fig. 5.25, developed by the Rayleigh

wave field near the surface. Nevertheless, it is clear that these

R gy
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stresses cannot be sustained by the near surface sand which, due to the
low confining pressure, have very low strength. Thus a near failure
condition, which cannot be handled well by the equivalent linear method,
will develop in the top layers. This will further impede the
propagation of strong Rayleigh waves. Even if the top layer had some
strength due to cohesion, tension cracks would develop due to the high
normal stress on the vertical plane. Any Rayleigh wave motion in a
cohesionless site must therefore be relatively weak.

The high normal stress on vertical planes produced by Rayleigh wave
fields may, even for weak fields, induce high pressures on embedded
structures. The problem will be considered in Chapter 6.

5.5.4 Inclined Body Waves

Since it is unlikely that Rayleigh waves are of importance for
cohesionless sites the above site was analyzed, by the method described
in Section 3.5.1, with the same control point and motion, for the
effects of inclined SV~waves. As will be shown such waves produce
essentially the same motions and stresses on the site as vertically
propagating S-waves. FPor this reason all analysis were performed
linearly using the S-wave compatible model shown in Fig. 5.21.

The fixed base complex natural frequencies of the 18-layer model
are shown in Table 5.3. 1In this table the columns marked "S-waves" and
*pP-waves" corresponds to horizontal and vertical modes, respectively.

The inclined shear waves arrive at the base of the sand profile
through the underlying viscoelastic half space at the incident angles,
0, 5, 10 and 20 degrees from the vertical axis. Site transfer functions

(defined as the absolute ratio between the amplitude in question and the

horizontal amplitude at the top of bedrock) for horizontal and vertical
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Tadble 5.3 Fixed Base Complex Natural Frequencies of Sand Site

Freq. S-waves (Hz) P-waves (Hz)
No. Real Imag, Real Imag.
1 1.4803 0.1597 2.9387 0.3171
2 4.0958 0.4354 8.1312 0.8644
3 6.9444 0.7051 13.7863 1.3999
4 9.7657 0.9834 19.3872 1.9522
5 12.5171 . 1.2536 © 24.8494 2.4886
6 15.3489 1.5282 30.4712 3.0339
7 18.1037 1.7904 35.9402 3.5543
8 20.7286 2.0332 41.1513 4.0365
9 23.4591 2.3297 46.5719 4.6251
10 25.9610 2.4938 51.5388 4.9509
11 28.2083 2.8073 56.0003 5.5732
12 30.8749 3.0326 61.2941 6.0204
13 32,2445 3.1404 64.0131 6.2344
14 34.8634 3.6592 69.2123 7.2644
15 35.9375 3.3149 71.3446 6.5809
16 37.6328 3.9796 74.7102 3.9004
17 39.4701 3.9002 78.3577 7.7427
i8 41.4184 2.5956 82.2255 5.1530

T N e ———
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motions at different depths are shown in Pigs. 5.26 and 5.27,
respectively. The horizontal transfer functions are for practical
purposes independent of angle of incidence within the range investigated.
80 are the shapes of the vertical transfer functions. However, the
vertical components increase with the angle of incidence. The horizontal
transfer functions exhibit peaks at the S-wave natural frequencies of
the sand layer and the vertical transter functions exhibit peaks at the
P-wvave natural frequencies, see Table S.3., Considering that the
approximate velocity ratio between the sand layer and bedrock is equal
to 5.5, these results are in excellent agreement with the transfer
functions presented in Chapter 3, Fig. 3.16, for a similar profile with
the velocity ratio 4.

The fact that the peaks of the vertical transfer functions tend to
occur at higher frequencies than the peaks for the horizontal transfer
functions means that, in nature, there will be a tendency for vertical
surface motions to contain higher frequencies than horizontal surface
motions. This, incidentially, is in general agreement with field
observations.

A trangient analysis, using the same control motion as for the
Rayleigh wave case dis'cussed in Section 5.2.2 but with the control point
at the top at the bedrock, produced the response spectra shown in
Figs. 5.28 and 5.29. As might be expected from the above amplification
study the horizontal motions are virtually independent of the angle of
1nctdgnec, see Fig. 5.28, while the vertical motiones increase with
increasing angles of incidence, see Fig. 5.29.

A second transient analysis in which the control poin: was at the

ground surface gave similar results. Horizontal response spectra from

this analysis are shown in Pig. 5.30.
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At points below the ground water level, whenever the P-wave velocity
coaputed by the above procedure fell below 5000 fps it was increased to
this value. This modification was made to account for the fact that in
& saturated soil mass P-waves cannot propagate slower than the velocity
of P-waves in water. Physically this means that if the soil frame is
not stiff enough to carry the P-wave at this velocity the wave will
travel through the pore water rather than through the soil frame.
Experimentally, this phenaomenon is often observed when seismic
tefraction tests for P-waves are carried out on a soft site with high
ground water level. In fact .t is a commonly used method to establish
the location of the water table. Since the ground water level was
assumed to be located 12 ft below the surface the above procedure lead
to the strain-compatible P-wave velocity profile shown as a full line
in the third column of Fig. 5.34.

$.6.1 Steady State Results

Steady state Rayleigh wave computations were performed using the
discretized model and the strain-compatible soil properties shown in
Pig. 5.34. The dispersion curves for fundamental-mode Rayleigh waves,
Pig. 5.37, show that the site is highly dispersive.

The mode shapes shown in Fig. 5.38 indicates much higher vertical
than horizontal motions. This is probably true for this site in view
of the high Poisson's ratio induced by saturation. However, as
discussed in connection with Fig. 4.8, the procedure used probably
overestinates the vertical motions slightly for high values of Poisson's
catio. Another effect of the high Poisson's ratio, but not an error,

is the unusual difference in smoothness between the horizontal and

vertical mode shapes at higher frequencies. Transfer functions for the
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e
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horizontal and vertical components and different depths and distances
fram the surface control point are shown in Pigs. $.39 and 5.40. They
indicate significant attenuation of all components above 2 BNz within 3
few hundred feet from the control point.

5.6.2 Transient Results

The transient S-wvave anslysis produced the acceleration profile
shown in Fig. $5.34. The steady increase belav a depth of (00 feet is
probably due to the fact that an unlikely control motion wes used for
this analysis. As shown by Hayashi et al. (1971) and Seed ¢t al.
(1976) surface motions observed of deep alluvial sites do rot contain
as many high frequency components as indicated by the contrdl sotion
spectra in Fig. 5.36. 1In fact, due to the lov velocities ‘:zhoct
wavelength) and high attenuation of shear wvaves in such si*»s high
frequency motions at depth are highly attenuated by the ti-e they reach
the ground surface. As a result, if a strong high-frequenc : component
is specified at the ground surface, the deconvolved motion it depth
becames unrealistically strong in the high frequency range.
Consequently the accelerations at depth becomes unrealisti. lly high as
shown in Pig. 5.34.

The acceleration profile for the corresponding Raylei~h wave
analysis is shown in Pig. 5.41. The response spectra of t} horizontal
and vertical component of R-wave motions at three different jround
levels (at ground surface, at 44 ft and 132 ft below g:ound sutface)
are shown in Figs. 5.42 and 5.43. Motions were computed di:ectly

under the control point and at a horizontal distance of 500 “t from

this point.
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tsansfer functions shown in Pigs. 5.48 and 5.49. As described before
it appears unlikely that surface waves of frequencies higher than 2 Bz
can actually exist on the site.
9.7.2 Transient Results

The transient analysis produced the variation with depth of the
Maximum accelerations and the S-wave compatible strains shown in
Fig. 5.45. The results are similar to those found for the deep
elluvial site. The response spectra of the horizontal and vertical
component of Rayleigh wave motions computed at several different
wsaveling distances are shown in Pigs. 5.50 and 5.51. Again, strong
decey characteristics of Rayleigh wave propagating in an alluvial site
clearly shows that the high frequency Rayleigh wave is not likely to
enist in an alluvial site.

$.8 Summary for All Sites

Wnat has been demonstrated in this chapter is that the numerical
fethods developed in Chapters 3 and 4 can indeed be applied to actual
tield prodblems. This demonstration will continue in the next chapter
whete same Of the results obtained will be applied to a number of soil-
sttucture interaction problenms.

Perhaps even more important, some of the results obtained in this
chapter provide important information on the likelihood of certain
types of wave fields actually existing in nature and on the relative
impotteance of horizontal wave propagation to engineering projects.
™is is most strikingly demonstrated by the computed rapid attenuation
of fundmmental mode Rayleigh waves in soil sites which seems to

preclude the existence of high freguency Rayleigh waves on such sites,

T™is observation does not preclude the possibility that higher-mode

e h
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dmensional radiation damping effect. This technique is identical
% Ut uaed in the FLUBH program, Lysmer (1975), and will not be
S80u000d futher. The trigid base at a depth of 370 feet has been shown
oy Samer-Masso (1978), who cooperated in these calculations, to be
swftisronsly deep to simulate a half space for this model. It should
B Aonsioned here that the site response analysis associated with this
salyeis employed the varisble depth method for Rayleigh waves. Thus
“he adowe 1¢id Dase occurs only in the interaction model

¢ > Tae Nesults

™e fesults of the CREAM analyses are presented in terms of 2%
wesletation (esponse spectra for the components of motion at key nodes
»f the otsuctural model. In each case the results of the Rayleigh wave
el e and 1he combined body wave analysis are plotted together for
ey TOMpat SO,

A0 cor de seen from Pig. 6.4 the motions computed for Point G at
~ap o WMie of the base 8lad are nearly identical for the two cases
whcalt ve 0% SuEptiting since this point ig also the control point in
«ng trep Freid. Cenmetally, the $ ¢ P-wvave analysis is conservative for
weeonte. MOLiORS while the R-wave anslysis is conservative for
~apty sl fOtions.

the "prirtontsl sOtions along the length of the base slab were all
“ne ¢gr: am ot Poing C. which is not surprising since the slab is very
vt . Numevet, toering induced some variations in the vertical
etior® am iiluatteted in Fig. §€.5. As expected, the Rayleigh waves
predune siightiy fure tocking then the body wave excitation. The
sortichl detien ot the left end of the slab (Point £) is larger than at
ehe riaht end rPuint 1. This is 90 because the Rayleigh waves travel

Fred iefr tw right and thus sttenvate in that direction.
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Due to the rocking of the base slab, the Rayleigh wave excitation
produces higher horizontal motions at higher points in the structure.
This is illustrated by the response spectra shown in Pig. 6.6. The
vertical motions at the same points are shown in Pig. 6.7. These
motions appear to follow the same trend as the motion of Point G on the
base slab, i.e. the Rayleigh wvave field gives higher response in the
low frequency range (<5 Hz) and lower response in the high frequency
range than the body wave field. However, the differences are not large.

In the entire analysis the largest difference observed between
results obtained from the two seismic enviromments occured at Point C
at the top of the internal structure. The response spectra computed
for the motions at this point are shown in Pig. 6.8. Por this one
point it appears that at frequencies higher than 8 Hz the spectrum for
the horizontal motion produced by the Rayleigh wave field is nearly
double as high as the corresponding spectrum for the body wave field.

In view of the above results it appears that Rayleigh wave motions
may be critical for the design of structures on rock. In making this
statement, it should, however, be remembered that no seismic
environment consists entirely of Rayleigh waves and that such waves may
not even exist in the high frequency range (>4 Hz) where the largest
differences were observed.
6.4 Structure on Sand Site

The analysis discussed above was repeated using the same
structural model but this time embedded into the sand site studied in
8ection 5.5. The computational model used is shown in Pig. 6.9.

6.4.1 Free-Field Motions

Contrary to the analysis of the rock site previously studied, at -

this site the location of the control point was found to be of crucial
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Since the purpose of this investigation was to determine the
behavior of the retaining wall, only results which relates to this
scope will be presented below.

6.5.1 Maximum Accelerations

The maximum accelerations along the retaining wall are shown in
Fig. 6.15 for the S-wave case and in Fig. 6.16 and 6.17 for the R-wave
cases. In each case the motions are compared with the corresponding
free-field motion. Except for the close-in Rayleigh wave case the
interaction effects appear to be insignificant (<108). This was
generally true for all points in the structural system. 1In all cases
all points of the wall had essentially the same vertical acceleration
which is reasonable for such a stiff structure.

The horizontal accelerations induced by shear waves are generally
larger than those induced by Rayleigh waves. This observation does, as
will be shown below, not mean that the shear wave field is the critical

load case.
6.5.2 Shear Porces and Bending Moments

The computed maximum shear forces in the retaining wall are shown
in Pigs. 6.180 and 6.19. As expected, the forces for the case of the
close~in Rayleigh wave field are somewhat larger than for the case when
the control point is located S00 ft from the wall. Much more
significant is the observation that the shear forces induced by the
Rayleigh wvave field are several times larger than those induced by the
S-weve fields. This is 80 because, as discussed in Section 5.5.3, the
normal stresses on vertical planes are much higher in Rayleigh wave
fields than they are in vertically propagating fields (even vertically

propagsting P-wvaves will generate smaller stresses on vertical planes

than R-waves within normal depths of embedment).
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As shown in Figs. 6.20 and 6.21 the situation is similar for
bending mcments in the wall.
6.5.3 Design Considerations

The high bending moments developed in the retaining wall turned
out to be the most critical item in the design of the raft system. The
practical solution to the problem was to design the wsll for a bending
acment which was computed from a field consisting of 1/3 Rayleigh waves
and 2/3 vertically propagating shear waves. This decision was based on
the arguments presented in Section 5.5.3, according to which it is
unlikely that a strong Rayleigh wave field can exist on the site. BEven
then the design moment turned out to be several times larger than the
acment computed by say a FLUSH analysis vhich assumes vertically
propagating waves.

More important than the design decision made, the above analysis
illustrates a case for which even a mmall content of Rayleigh waves (n
a control motion may be critical, even though such waves create smaller

accelerations in the structure than vertically propagating waves.
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