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1. Introduction.

Let X and Y be two random variables with cumulative

distribution functions F(x) and G(y) respectively.

Suppose Y is the strength of a component subject to a stress

X . Then the component fails if at any moment the applied

stress (or load) is greater than its strength. The stress is

a function of the environment to which the component is

subjected. Strength depends on material properties, manufacturing

procedures, and so on. The reliability of a component is the

probability that its strength exceeds the stress. From practical

considerations it is desirable to draw inference about the

reliability function.

The above model was first considered by Birnbaum (1956)

and has since found an increasing number of applications in many

different areas, especially in the structural and aircraft indus-

tries. For a bibliography of available results see Basu (1977).

In many situations, the distribution of X (or of both X

and Y ) will be completely known except possibly for a few unknown

parameters and it is desired to obtain parametric solutions. Thus,

in case of missile flights, the stress may be expensive to sample,

but the physical characteristics of the missile system, such as the

propulsive force, angle of elevation, changes in atmospheric condi-

tion, and so on, may all have known distributions; consequently,

the distribution of stresses can be calculated. Church and Harris

(1970), Owen, Craswell and Hanson (1964), and Govindarajulu (1968)
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have considered the above problem under the assumption that X

and Y have normal distributions. Since in many physical

situations, especially in reliability, exponential and other

distributions provide more realistic models, it is desirable to

obtain estimators of R for distributions useful in life test-

ing. In section 2 we consider gamma and exponential distribu-

tions under the assumption that X and Y are independently

distributed. The case of a bivariate exponential distribution

is studied in section 3. Two distribution free procedures are

mentioned in section 4. The effect of misspecifying the model

is considered in section 5 and a numerical example is given in

section 6.

i
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2. Gamma and Exponential Distribution.

Let X and Y be independently distributed with density

functions

(2.1) f(x) - Q , x>0 , p>0

(2.2) g(y) = 8 y- y> , q> 

respectively. Then

+q, I"Y q-1 e-ax -1
=(X<y) r [ T e8 y~d] e x d

q-l p apk

(2.3) -
•

r(p' (k+JL)
k-O (c+B) Pk

Here p and q are assumed to be known integers.

Note R - a/(a+B) , and R RP for all p . Also,

k q-l k Rk--q 1 k+1

l k-11 k0



4

In particular,

R R2 R R3
R2 1 R 1  31 1

R12 R11 + (/a)R1I
2 3

R3 R + (0/)RI2 + (B/)R 3

R = R2 0 - 2R)22 11

If R is close enough to one, as is expected for items with

high reliability,

R-lq - T(1-Rl)

Expressions for R and Rlq indicate that in this case the

expression for the reliability is not strongly dependent on the

choice of the parameter p (especially if p is small) and

the distribution of X can be approximated by the exponential

distribution without much distortion in the value of RP1 *

However, so far as the parameter q is concerned, the situation

is quite reversed. The value of reliability is heavily dependent

on the choice of the underlying distribution of Y and one

has to choose the value of q more carefully. Later in section
5, we shall further study the effect of misspecifying the para-

meters p and q and confirm our conclusions by numerical

studies.

If two independent random samples (XIX 2 , ...,Xm) and

(Y ,Y2,...,Y n ) from the two gamma populations are available
maximum likelihood estimators (MLE)

- : '|" r-' 5".........-."--... . ..... I "i...
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of a and B are given by i= E and -q . Hence MLE of

R ispq
q-1 Ap~k-1 r (p + k) ap 0

(2.4) R = E I__ __

k=O r(p)r(k + 1) (a^ +

As special cases, if q = 1 , that is it X follows the gamma

distribution and Y follows the exponential distribution

A /
(2.5) R P + ^ "

Finally, if both p and q are equal to 1, we have the case of

two independent exponential distributions and we have

AY

+ X +
(2.6)R =

Since R in (2.6) is a function of the exact distribution R

can be obtained in the exponential case. It is well known that

X a follows the F distribution with (2m,2n) degrees of
YB

freedom. Thus the distribution of R follows. The result will

be used later in section 5 to compare the performance of independent

exponentials with those of dependent exponential models. Using a

theorem in Rao (1965, Thm. 6a.2, page 321), the distribution of Rpq in

each of the above cases, for large m and n , can be shown to be

--- -.. . -... .- "i "'- "---
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normal and hence an estimate of the asymptotic confidence interval

for R can be obtained. Thus, in this case with m = n we have
for large n, (R - R p) N( 2 A

pq pq pq). Expressions for Rpq ,Rpq

and 2 for a few selected values of p and q are given below.pq'

a 2 2a 202

R1Rl - 0114

R = 2 4Y2 02 a= 42

R -, _ _ _21 = - ' 21 -+27 ' 21 (a+6

R a + as A 2XY 2 6024

Rc2+= +- 7 2' (a+$)

a2  2a -2 , 2 -2
R2= <+)2~ 2+  ' A

(R+ 22 (c++ 'a+0)2( + (X+Y)

2 4 4
a22 =36(aO)4/(U+1)

I. _ __
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3. Bivariate Exponential Distribution.

Since the exponential distribution is considered a useful model

in life testing problems, it is desirable to consider bivariate

analogues of univariate exponential distributions which will have

properties similar to those of the univariate exponential distribution.

Marshall and 01kin (1967) have proposed a very important bivariate

exponential distribution (BVE), which is given by

F(x,y) = P(X>x,Y>y) - e A 2 X12m(xy)

(3.1)

0 -A1,A2'X 2 <,A+2 >0, A2+A2 > 0(x>0,y>O)

The BVE arises in several natural ways and is considered a

useful model in reliability with appealing properties.

Let (Xi,Yi), i = 1,2,...,n be a random sample from (3.1).

We shall estimate P(X <Y) when (X,Y) follows the BVE. It can be

readily obtained from (3.1) that

(3.2) R - P(XY) +
1 2 12

Hence R is estimated by

(3.3) R
S+ 2 + 12

where Al ,2' and A12 are the maximum likelihood estimators of

AIV A2 and A12 respectively. Various authors have considered



maximum likelihood estimation of the parameters X1  X 2 ' X12

However, no explicit solutions of these parameters are available.

In order to obtain an explicit form for R , we replace the mle

by some special ad hoc estimators called the "INT" estimators of

Prochan and Sullo (1976) which have very high asymptotic relative

efficiency compared with the mle estimators. Let n1 = number of

pairs such that Xi < Yi . n2 = number of pairs with X. > Y.

and n0 = number of pairs with Xi = Yi .

The "INT" estimators are given by

nl n 2 n
(3.4) X = -2 +nn

1 [+~O n7~ n ]
i~l i=l

and X12 = no n1 n0  +il max(XiYi)"

Proschan and Sullo also prove the following theorem.

Theorem (Proschan and Sullo). n (An - 1) is asympototically

trivariate normal with mean 0 and dispersion matrix - (a j)

where, using the suffix n to denote dependence on the sample

size,A = (,X2,XI2), -X =(X2,12)'
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-1

li A AI-I 2 )

A2 A2 -1A '2012 = AiA 2 1 2 iAY1 y2)

013 A (A- 2 +A-1 )(
13 1 2 A12 ( 1 A2Y2 + 1 1)/(

0
0 y),

(3.5)
022= A2 (A- A1 A2y2 1

c23 1 Ai2A 12 (AiA 2Yl 2 +AY 2 1)/(80Y 2 ) ,
02A- - 2

33 = -22[A -- 0202(AIM23 + 2Y13 +2Ai12Y2 2 H

and A= A 1  2+ Al2 Y 1 2= X+I+ AI2 •

Y2 = X2 +A 12
80 = E[max(X,Y)] = 1 +Y 2 1- X-A

I

1 -1 -

A A A A

is then estimated by R = i('I + '2 + '12) rather than

A

by R . Since R is a totally differential function of X, X2

and A12 by Theorem 6a.2(ii) of Rao (page 321), Vn(R-R) is

asympototically normally distributed with mean zero and variance

a2 , where

2 2 2
2 Y2 A 1Y 1(3.6) a a 2 (a12+13) + 2 a23

A A A A

Thus, from (3.3), (3.4) and (3.6), one sided and two sided

confidence limits for R can readily be obtained.
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To check the adequacy of the large sample approximation when

the underlying distribution is BVE, computer simulations were made.

For various values of (A1,X2 ,A1 2) 500 sets of random samples of

size n (n= 10, 15, 20) from bivariate exponential distributions
A

were obtained and the empirical distribution of R was obtained.

Even for sample size as low as 10 the exact distribution is found

to be well approximated by the normal approximation. The situation

iml. eves as the sample size increases.

i"



4. Distribution free procedures.

In all the cases considered in the previous section to

check adequacy of normal approximation, the value of R is rather

small (R 5 .75), whereas applications of interest would be for

systems with high reliability (R > .90). Unfortunately in all

the cases with R > .90 considered, the sample estimate of the

variance of R came out to be negative or very close to zero.

(The situation is similar to the problem of having "negative"

estimator of variances in analysis of variance problems.)

To study the cases for which R> .90, we therefore consider

the following estimators of R :

For bivariate data, a rather natural way to estimate

R =P(X <Y) would be based on the binomial distribution. Let T

be the number of cases for which X < Y . Then T is a binomial

random variable with mean R and variance nR(l-R) . We therefore

can obtain an exact binomial confidence interval or an approximate

two sided 100(1-y)% confidence interval given by

(4.1) R V i+ ZyV -TnT

where R = T/n and Z is such that t(Z ) = (1-Y/2) , where

*(-) is the standard normal distribution.

In case X and Y are assumed independent, a second

estimator is the following nonparametric confidence interval

proposed by Govindarajulu (1968) and is based on the Wilcoxon-

Mann-Whitney statistic.
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Let (XlX 2 ..•, mX) and (YI,¥2.. 0Yn ) be two independent

samples of measurements from populations with distribution functions

F(x) and G(y) respectively. Let

*(xi , Yj .( if-i
0 otherwise

in n
then U I I j I (Xi,Y ) is the well known two sample Mann-Whitney

statistic. That is, U - number of pairs (XiYj) such that Xi <'I.

Govindarajulu (1968) has explicitly derived one-sided and two-sided

distribution free confidence bounds for R (actually Govindarajulu

derived confidence bounds for 1-R ) based on the asymptotic

normality of R - U/mn . In particular, for the two-sided case,

Govindarajulu showed that for all F and G and large m or n ,

the solution £Y of the inequality

(4.2) PjIR-Rj :5c) Y 1-Y , <Y<1

is given by

ey z (4v) -3 01(1-Y/2)

Here v -min(m,n) and 0(.) is the cdf of standard normal distri-

bution. In particular, if m -n , a 100(1-Y)t confidence interval

is given by

ii (4.3) (i-ey, + ) ,

where R and Z are as defined before, and

z
Y 2/ "
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5. Effect of VisspecifYing the model.

In section 2 it was pointed out that for values of

P(X < Y) close to unity, R is less sensitive to the varia-pq

tion of p and varies considerably for varying values of q .

To study the effect of misspecifying the model we carry out the

following Monte Carlo experiment.

Let G(a,p) and G(O,q) be two given gamma populations

with known parameters (c,p) and (O,q) respectively, where

a = 19 and 8 = 1. In this case, if p = q = 1 , Ril = .95

By chosing different pairs (p,q) we get different pairs of

gamma distributions.

Let (XVIX2 ,...,Xn) and (Y1 Y2 F...,Yn) be two random

samples from G(a,pl) and G(O,ql) . Since p1  and ql , the

true values are not known, there is a possibility that we will

choose a different pair of distributions as the true model. Let

us assume that the above samples have come from populations with

distributions G(a,p 2) and G(O,q2) . Thus we would estimate

RP2q2 instead of estimating the true value Rplql , and compute

a confidence interval based on R . We would not commit much

specification error if this confidence interval contains the true

unknown value R . For a given n and two pairs of values
Plql

(pl,ql) and (p2 ,q2 ) the above procedure is repeated 1000 times

and a count is made of how many times the true value Rplql is

contained in the confidence interval based on RP2q2 We repeat

the procedure for different values of n and different combina-

tions of (pl,ql) and (p2 ,q2) . The results are given in
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Table 1. Here n is chosen to be 5, 10 and 25. All Combi-

nations of the following pairs of values are chosen for (pl,ql)

and (p 2 ,q 2 ): (1,1), (1,2), (2,1) and (2,2) .

From Table 1 we can make a number of conclusions. First

note that no parametric method performs well in all situations.

For all the gamma models considered the procedure, as anticipated

in section 2, is robust for small variation in p . However, it

is sensitive to variation in q . The nonparametric confidence

intervals based on the Wilcoxon-Mann-Whitney statistic performs

well in all cases, however, in each case the width of the confi-

dence interval for an assumed model is too large compared with the

corresponding width based on the parametric models. In each case

the parametric method is to be preferred, especially if the para-

meter q is reasonably well specified.

jl'
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TABLE 1

Number of counts for N 5 5

TRUE MODEL

G(1,1) G(2,1) G(1,2) G(2,2)
Exponential

R .95 .9025 .9975 .99275Plq1

G(l,l)
exact 933 967 46 77

G(l,1)
normal
approx 855 934 1000 1000

w G(2,1) 763 819 66 94

G(I,2) 287 487 828 938

G(2,2) 209 371 725 871

*NP pr 998 991 1000 1000

*Nonparanstric Procedure

4
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TABLE 1 (continued)

Number of counts for N -10

TRUE MODEL
G(11l) G(2,1) G(1,2) G(2,2)

Exponential

R ~,.95 .9025 .9975 .99275

exact 947 976 0 2

SG(1,1)
Snormal
o approx 913 952 188 348

CA G(2,1) 775 838 0 1

G(1,2) 133 293 869 968

G(2,2) 58 192 750 906

*NP pr 999 996 1000 1000

*Nonparmetric Procedure
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TABLE 1 (continued)

Number of counts for N =25

TRUE MODEL

G(l,1) G(2,1) G(1,2) G(2,2)
Exponential

R .95 .9025 .9975 .99275
P lq1

G(l,l)
exact 945 964 0 0

.~G(l,l)

Snormal
approx 934 964 0 0

G G(2,1.) 768 812 0 0

G(1,2) 6 82 925 982

G(2,2) 1 27 754 928

*Mp pr 1000 998 1000 999

*Xonparametric Procedure
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6. An Example.

To illustrate the computation of confidence intervals let

us consider the following example. Fifteen items of random

strengths Y1 ...,Y 5  are subject to random stresses X ,X2D...,Xl5

To estimate the reliability function P(X < Y) random samples of

15 pairs of (X,Y) values are drawn and given below.

Pair No.

1 .0352 1.7700
2 .0397 .9457
3 .0677 1.8985
4 .0233 2.6121
5 .0873 1.0929

6 .1156 .0362
7 .0286 1.0615
8 .0200 2.3895
9 .0793 .0982

10 .0072 .7971

11 .0245 .8316
12 .0251 3.2304
13 .0469 .4373
14 .0838 2.5648
15 .0796 .6377

From past record it is known that R = .95 . Estimates of Rplql

and corresponding confidence interval will depend on the model

chosen and the method used to compute the confidence interval.

Thus if X and Y are assumed independent, we have two indepen-

dent samples of size 15 each. Table 2 lists the values of

RP and confidence interval for the cases considered in sectionp2q2
5 . We also use the notation of section 5 for convenience.

Let us illustrate the calculation for a couple of cases.

From the above data we have Y - .0509 and T - 1.3602. If we



19

assume P2 = q2  1 we have, using results in section 2 ,

R 1 -I .9639

and corresponding 95% confidence interval for R , using normal

approximation, is (.9300, .9978)

On the other hand, if we used the exact distribution of R11

we can obtain the required confidence interval from an F-table

since U = Y follows the F-distribution with (2n,2n) degrees
Xc

of freedom we obtain, after some simplification (.9280, .9823)

as the required 95% confidence interval.

From Table 2 it seems any of the first three procedures based

on two independent exponential distributions or G(2,1) (X gamma

with shape parameter p = 2 and Y independent exponential) will be

quite satisfactory.
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TABLE 2

Comparison of Various Confidence Intervals
and Estimates of R

Model Used RConfidence Interval

G(1,1) exact .9639 (.9280,.9823)

G(1,l) normal approximation .9639 (.9300,.9978)

G(2,1) .9639 (.9416,.9856)

G(1,2) .9952 (.9896,1.000*)

G(2,2) .9962 (.9925,.9999)

Binomial Procedure .9333 (.8071,1.000*)

NP Procedure .9600 (.7070,1.000*)

*Computed as being larger than 1.
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