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ROBUST SELECTION PROCEDURES BASED ON VECTOR RANKS

Young Jack Lee and Edward J. Dudewicz

National Institutes of Health,
Bethesda, Maryland
and .
The QOhio State University,
Columbus, Ohio

0. Summary

Consider n blocks of k observations (le,...,xkj),

j=1,...,n. Suppose Xij are independent and P(Xijs x)
Fix - nj— ei) where nj is the nuisance location parameter

of the jth block and 0. is the location parameter corre-

.
-~

sponding to population L (l<=j=<n, 1l=i=Xk).
We are interested in selecting populations associated with

large location parameter 8. To this end compute Hl= z Rij
j=1

- < « 1
where Rij = [# of Xi'j“xij (1=1i =%k)], and

— - n
X; = n 1 ¥ Xij and hase the terminal statistical decision
=1 4

(means procedure Pyp) or Hl""’Hk (vector

on: Xl""’xk

rank procedure Py). TFix t (1< t< k) and consider the prob-

lem of selecting populations associated with the t largest

8's based on: Xl""’xk or Hl,...,Hk.

% . .

This research was supported in part by the U. S. Army
Research Qffice-Durham, and by Office of Naval Research
Contract No. NOOO1l4-78-C-05u43.

Key words and phrases. Robust selection procedures,
single-stage rule, block designs, asymptotic relative
efficiency, means procedure, indifference-zone approach,
counterexamples, least favorable configuration, large

sample approximation.
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In this paper we investigate large sample behavior (as
well as some fixed sample behavior) of Pv. The asymptotic
relative efficiency of Py Wwith respect to pMP is also

studied.

1. 1Introduction
Let Xij & =l,2,...,ni; i=1,2,...5,k) be independent

random samples drawn from populations TysTosee-nTy with ab-

soclutely continuous distribution functions (df's) F(x-—ei).

Let e[l} £ ... 8 e[k] denote the ordered values of the un-
known ei, and let T denote the population associated
with e[i]; these associations are assumed completely unknown.
Often for some fixed t (1<t<k) an experimenter is inter-
ested in the problem of selecting the "so-called" t best

* populations, Teket+1)? " 2Tk * For the selection of the
t best populations, Bechhofer (1954) proposed the means pro-

cedure (denoted by PMP) which selects, as being the t best

populations, the t populations yielding the t highest sample

*

4 n
éé means Qi(: ngl Z X. ]): Bechhofer requires that the proba-
w37 J 1
.3 bility that the so-selected t populations are the t best
4
“_ﬁ (when this occurs, a Correct Selection (CS) is said to occur]
: ?7 be at least P* (a prespecified constant between (}‘E)hl and 1)

b

- > &% LA €3
whenever e[k_t+l] e[k_t] 2 ¢ (s is a prespecified
positive constant). A different procedure was proposed by
Gupta (1956, 1965): rather than selecting the t populations

associated with the t highest sample means, he selects a
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subset of the k populations (retaining in the selected sub-
set all the populations yielding sample means close to the t
highest sample means) and requires that the probability be
at least P® that the selected subset contains the t best

(when this occurs, a CS is said to occur). Both Bechhofer

‘and Gupta considered the case of normal distributions with
common known variances; for the case of normal distributions i
but with (possibly different) unknown variances the reader é
is referred to Dudewicz and Dalal (1976). The robustness of {
the means procedure is broached in Lehmann (1963) and is under
investigation, in a more general context, by one of the
authors [YJLI].
Lehmann (1963) and Bartlett and Govindarajulu (1968)

based selection procedures on the joint ranks of the obser-

‘ vations in the combined sample of N = [ n; observations.

Specifically, each observation Xij is assigned a score

ajy = E[Z(Rij)!G} where Z{(1) < ... < Z(N) denotes an
- ordered sample from any continuous df G and Rij
}; i denotes the rank of Xij in the combined sample. The se-
-éig lection procedures are then based on the quantities
;é_ nzl %aij (1£i2kx). Lehmann's approach uses a Bechhofer-
5

type (indifference-zone) approach while Bartlett and

PRI

Govindarajulu use a Gupta-type (subset-selection) approach.

Bartlett and Govindarajulu also base some selection pro-

cedures on randomized scores (i.e., quantities nzl ZZ(Rij)
3

(1 2312K)); but we have shown (details will not be given
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here) that in selection procedures based on randomized scores
the probability of C8 (denoted by P[CS]) is bounded away from 1
for any configuration of parameters and two different statis-
ticians reach, with positive probability, two different con-
clusions from the same set of observations. This extends
results of Jogdeo (1966) to ranking and selection problems.
An extensive review of other selection procedures (including
joint rank procedures) is provided in Lee and Dudewicz (1974).
The model usually assumed in the literature is that of
the one-way analysis-of-variance model. The selection pro-
cedure investigated in this paper arises from the two-way
analysis-of-variance type model where block effect enters:
namely P(Xijf;x) = F(x- nj- Bi) where nj is a nuisance lo-
cation parameter of the jth block (1< j=n). In this case
ranks within each block are preferable to joint ranks.
McDonald (1972, 1973) makes subset-~selection apprcaches to a
selection problem by basing terminal decision rules on ranks
within each block, and Dudewicz and Fan (1873) suggested an
indifference-zone approach. In Section 2 we investigate, by
an indifference-zone approach, selection procedures based on
ranks within each block (we denote this procedure by PV) under

the slipped parameter configuration (SPC) 6[1]= . e[k_t] <

9[k—t+1]= - e{k]; all the results are asymptotic. 1In
Section 3, we investigate the asymptotic relative efficiency
(ARE) of PV with respect to PMP as e[k-t+13_ e[k-t] tends
to zero under the SPC assumption. The configuration of ei's

minimizing P[CS!PV] is investigated in Section u43; in particular

Buiemasio e m— | e s Y m‘;.«&i
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we show that the SPC is not necessarily least-favorable. In
Section 5 we discuss practicality of the assumption of the
SPC as an underlying configuration. In this article we de-
note by 0(a) a positive quantity such that a~to(a) converges

to a positive constant in the limit of a.

2. P[CSIPV] under the SPC: Asymptotic Results

We make the following probability requirement for given

k-1

+ <P*<1):

8% and P* (8%*>0,

(2.1) Probability requirement: We select the populations

Tkat41)"" " " (%) (i.e., we make a CS) with probabil-

. - % - > *
ity PLCS) > P" whenever 6, ., y - Op 472 8 -

Consider the following single-stage procedure: Take n

independent vectors X: = (X..:s...3%.:) (1=3<n) (X,. de-

=3 1j k3 ij
, n
notes the jth observation from ©.); compute H. = R..:
i i 331 1j
- - < < .l< .
(1 1= k) Where Rij - (# Of Xi'j ,Xij ) (l._ 1 = k)}, and

select (as being the t best populations) the populations
associated with the t highest Hi's (breaking ties, if any,
by randomization).

We first consider t =1 and then generalize to t=1.

Let

- e -
SRR (9[1],...,e[k])},

. ]
0 Ofk-t+1] 7 Orxeey 2 87

ST e

RS M




%00 = |8 : = = - &
ma( 1) {:9 €8, 9[1] te e[k-t] Se[k-t+l] 8 }

- - *
Olk-te13 7 -+ " 0xyr &0

and

- - - ® - -
Or11 7 ® Ot T Orkote11 ~ 8 0 Oriea11T 0 Orye

Bo(t):

Lemma 2.1: For selection of k) under me(d*,l), P[CS!PVJ

is a nondecreasing function of G[k]. Hence inf
&

we(G

PlCcS|P,] =
,1)

PLCS]P,,8,(1)].
Proof

See Theorem 3.1 of McDonald (1972). =

Now we wish to determine a sample size ng which will
guarantee PLCS|P, , 8 €w,(8%,1)] to be at least P* for
given 8% > 0, but we do not know how to determine the sample

l size for given P* aad 6%. Rather, we find 6" for given P* and
sample size n, namely we put 6% as a function of n and P* i.
and then solve n for given 6* and P*. (This method was in-

troduced by Lehmann (1963).) To this end we need to investi-

gate the asymptotic determination of P[CS{Pv] under the

following configuration with t=1:

Lo

ha b STl
.
M

(?.?) Go(t,n): 6[1]=...=e[k_t], 8[k"t+l]‘6{k-t]=6(n)’ ‘i

3
vae
P ¥ R

g
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Orp-t+11 7 o0 7 Orieye
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lLet H(i) be the sum of rank scores yielded by n(i). To show
the dependence of H(i) on n, we wWwrite H(i)(n), and for the i

notational convenience, without loss of generality, we let
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- - - < s+ <
e{i] z Bi, Mgy T My and thus H(i)(n) z Hi(n) (1 2 i 2 k).

+
For large samples, since 1lim P[Hk(n)-Hi(n) =06, i Sk-lleo(n)] =0,

T+®

we drop’ the randomization part of P[CS!PV]. Thus

p[cs:vv,§0<1,n)3 : P[H (n) -H,(n) >0, 12ifk-1 1 8,02,m]

(2.3) 1
- : < 3 <y
= PL==(H, (n) - Hi(n)) >0, 12ifk-1 8,1,

(A(x) = B(x) means |A(x)-B(x)| - 0 as x approaches a limit).
We will approximate (2.3), and in the sequel we nreed the

following.

Lemma 2.2: Letr G(x) be an absolutely continuous function
possessing a quadratically integrable derivative G'{x) and let
I'‘x) be an absolutely continuous df with a pdf f(x). 1If

J Hz(x)fQ(x)dx < o, then

1im | JG(x+h)— G{x)

. H(x)dF(x) - j S'(XH(x)AF(x) | = 0 .
h=0 h

(For the special case H(x) = 1 and F(x) = G(x) a.e., this
is Lemma 3.4 of Mehra and Saranpgi (1967).)

Proof

See Lemma 3.4 of Mehra and Sarangi (1967).w=

Let
§ = 1im n2(n), & > 0 fixed
n—bm
L b
(the cases n48(n) » = and n(n) » 06, as n » =, are

covered after Theorem 2.5), and assume

25 e

TR




(2.4) I fz(x)dx < @ (f(x) = pdf of the underlying df F).

(For some pdf's I f2(x)dx does not exist. Df's satisfying
(2.4) are characterized by Lemma 1.4.1 of Kagan, Linnik and

Rao (1973).)
Lemma 2.3: Under the configuration of éo(l,n), defining
_-liu - 1 < 3 < -
Vi(n) = n (“k(n) Hi(n)) (1 21i 25 x=-1),

we find that

(2.5) lim E[Vi(n)] = 8k fo(x)dx (1 £ i 2 x-1),
n+oo

(2.6) lim Var[Vi(n)] = k(k+1)/6 (1 21 2% k-1),
n—)m

and

2.7y lim Cov[V,(n),V.,(n)] = k(k+1)/12 (15i2i' $k-1).

n -+,

Proof
: Defining
(i) th
-:‘2 Pr s P[Xil has the r ' rank among Xll,...,xkllgo(l,n)l,
v, |
,'éﬁ we have
i
oy D K (x) (1)
o (2.8)  E[V.(n)] = n" % § E(R .-R,.) = n®* } p(P. -P
‘ § 1 521 kl i3 rs1 r r
Let 8, = = 8 =8 and 68, = 0+ &(n).




(k) . - }
P = (KT ]r" L(x-9)01 - F(x-0)1%"TaF(x-6-8(n))

) f?"'lcx)[l — F(x) 1" TdF(x-6(n)).

Note that we do not lose any generality by letting 6 = 0.
Now
(k - - -
3 P_ . (i_g)'fFr Lex+ 6(n) L -1 (x + 8(n)) 15 Tar(x)

NG [F‘"‘lm +8(n)) 1 - F(x +6(n)) ¥ Tdr(x),

P(i) . k-2 k-

)JFP_Q(X)F(X-G(n))[l - P 15 TaR(x)

e (00 f FPL ()11 - FGo 1P 1 - Fix - 6(n)) 1dF(x),

(k)

and combining Pr (1)

and Pr and taking the limit yields

(k) (1) k-1 a r-1 k-1
(2.9)  1im 2¥eLO PPy = Ch [ (G Gon-F0 1RG0

n-+>w

» ) ) ;
1 + (s [r‘" 2(x)[1-F(x) 15T £2 () dx
- - K [ PPl o [1-F0 19777 £ (o ax
4 -
4.
E Y
7 ;? hence (2.5) is obtained from (2.8). Define
| { s s X., has the Eth rank, and X., has the
1 pl1:3) | p| i1 o 31 §,(1,m)
4 E .9 qth rank among Xll""’xkl : .
i
ot
S T R oS e R Tt (g b S NS P SO




o 10
-
E (i,3)
; Note that Pee 0 (i #3, 1222 K).
B 3
Then i
i
(2.10)  1im B = a ump . 1
. im = =, an im . = .
ro r k n-o 2,9 k(k-1) l

(Tor details see Lee and Dudewicz (1374).) From (2.10), a

computation shows (2.6) and (2.7). =

Thus we have obtained asymptotic moments of Vi(n)

(1 £ 1 2 k-1). To evaluate P[CSIPV,go(l,n)], we need to
obtain an asymptotic distribution of V(n) =(V1(n)v..,Vk_1(n))'
We can show that any linear combination of (Vl(n)“..,Vk_l(n))'
has an asymptotic normal distribution by a Lindeberg-Feller
type central limit theorem (upecifically see §26 of

Gnedenko and Kolmogorov (1949)). Thus V(n) I is an asymp~-

‘ totic (k-1l)-variate normal distribution with vertain known mean

and variance-covariance. The following lemma is proven in ‘.

Lee and Dudewicz (18974). |

' 1

' :é Lemma 2.4: The (k-l)-variate random vector (vl(n)“"’vk-l(n)) ¥
Zfﬁé has an asymptotic (k-1)-variate normal distribution with mean H
igtg 8k sz(x)dx and variance-covariance -
;Vgﬁ‘

3 Op5 = KGHLI(1+6,.)/12

g i
L

1 if i = j o
where 6.. = ?

R T PN

3 Py ‘:’:)-?v‘w g e . T T W e e — - e =+ g e g
o2 ol T Sl ._,,, el WL _ug_ O P bw—,. Y e
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Now we are prepared to approximate P(CS]PV,§O(l,n)]- Let

(U .U be a (k-1l)-variate normal random vector satisg-

1
12U g)

fying E(Ui) = 0, oij = (1-+6ij)/2. Then

PLCS|Py,8,(1,m)]

p {[k(k+1)/6]_%[vi(n) - ok ffz(x)dx]

> <[k(c+1)/61 5k f £2(x)dx, 151_5k-1|§0(1,n)}

Ie

P{Ui >—[k(k+l)/6]“%6 kJ f2(x)dx, 133 <k-1}.

Letting A > 0 satisfy

(2.11) P(U; > -4, 1%ifx-1) = P¥,
we find
‘q _ Theorem 2.5: For P[CS|PV,§O(l,n)] to be asymptotically p*

(1/k < P* < 1), 4&(n) should satisfy

i
: ) -_
lim n2§(n) = [k(k+l)/6]%(k [fz(x)dx) lA .
“ n+o
"f’
4§tj i We make several remarks on implications of Theorem 2.5:
1M
h f i .
ey 5 (1)  if 1lim n%8(n) = =, then 1lim PLCS|P,,8 (1,m)] = 1,
; ‘(‘ 1% n-+oo
- ;? and if 1lim n%é(n) =0, then 1lim P[CSIPV,go(l,n)] =1/k,
"’- n-+oo I+
E 1
, % that is if 8(n) #0(n~ %), then P[CSIPV,go(l,n)] converges
; either to 1 or 1/k, in which case we cannot relate n
i and &% (as 6% + 0) for fixed P* (for the cases of
¥ .
i
g
L
.
v B

e
el ) —
i - N . - — gt i = ¥ T -
— . : : : R S e g TELT RTINS 3 A VTG W LT VYT =

= : s 2o > 3 o : o g .




17 i
b i
. !
!
Pyp and joint rank procedures (i) is implicit in
Lehmann (1963)); % ¥
(i) when &{n) = O(ng%), we can relate n and &% for %
given P* via (n,(Py) = approximated n) L ;
R R £y 2 2 -2 §
(2.12) nA(PV) = (A/87)Y [k(k+1)/61[k jf (x)dx] “ E
(iii) consider the question how good nA(PV) is; namely %
| letting NrRUE denote the sample size which will g
| t > ¥ ;;
guarantee P[CS}PV,§O(1)] P¥, does nA(Pv)/nTRUE ?
. converge to 1 as 8% & 0?5 the answer 1is conjectured g
¥
1 . - ;
to be affirmative (see Lee and Dudewics (1974)); and i

(iv)y the conjecture of (iii) justifies, in part, dropping
the randemization part of P[CSIPV,§O(l,n)] as we

did earlier. [Such dropping has been done without

justification in the literature, e.g., p. 270 of Lehmann
(1963), p. 295 of Puri and Puri (1968), p. 623 of Puri
and Puri (1969}, p. 377 of Bhapkar and Gore (1971), and

p. 258 of Alam and Thompson (1971) among cthers.]

The PMP version of (2.12) is due to Lehmann (1963). Namely,
let m be the sample size for P[CS[PMP,ﬁo(l,m)] = p*¥ asymp-

totically. Then

(2.13) m = 2(Ac/8%)°2

e e e

where o 1is the variance of the uiderlying df, A satisfies
. o . .
(2.11), and 67 = Ok e[k_lj. [(2.13) is the equation (11)

of Lehmann (1963).] Note that when the underlying df is normal,

? ';,.'PTW '3.2_'1¢—§.wqi312?'*-f:1"1.’ T e T

e R =t
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(2.13) is the sample size obtained by Bechhofer (1954), and is
thus exact.

The results in this section apply so far only to the se-
lection of the best population under 30(1), but can be extended
to the t best selection problem under configuration 30(t).
The proof is, of course, more complicated so we will state the
results corresponding to Lemma 2.4 and theorem 2.5 and refer to

Lee and Dudewicz (1974) for proofs. We have

(2.14)  PLCS|Py,8,(t,n)]

P[Hl(n)—Hi(n) > 0, k-t+1 2225k, 1%£4ifk-t]

P[Vgi(n) > 0, k=t+1 322k, 1Z52i¢fk=t]
where

Vyi(n) = n-%(Hz(n)-Hi(n)) (k=t+1S 2S5k, 15i<k-t).

Lemma 2.6: ( (n),...,V (n),...,V (m)' is a t(k-t)=-

Yet41,1 K-t41, ket K,k-t
variate random vector the limiting distribution of which, under
the configuration go(t,n), is the distribution of a t(k-t)-
variate normal vector (Uﬁi; k-t+1 24 %k, 1€1<k-t) with
E(Uy;) = 8k sz(x)dx, Var(U,;) = k(k+1)/6, Corr(U,;,U,;1)
COPP(Ugi

) = 1/2, Corr(U,.,U,i:1) = 0, (k-t+152#£2 £k,

Vet L'
15£i#i'$k-t), where & = lim n%d(n).

n*e
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| »
Let (UyseoosUp gsWy syyse--oW_ ;) Dbe a (k-1l)-variate
normal random vector with E(Ui) = E(wj) = 0, Var(Ui) =
Var(wj) = 1, Corr(Ui,Uic) = Corr(wj,wju) = 1/2,
Corr(Ug,Ws) = ~1/2 (1Si#i'" Sk-t, k-t+1s3#3'sk), and

let A >0 satisfy

(2.15) P¥* = tPLU; > -4, W, > 0, 1<ifk-t, k-t+15735k].

Theorem 2.7: For (2.14) to be P¥* (l/(t) < P¥ < 1) asymp-

totically under go(t,n), §(n) should satisfy

. L L 2 -1
(2.18) § = 1im n*8(n) = [k(k+1)/61%[k | £ (x)dx] Be-
n-»cn
The implications of Theorem 2.7 are the same as those of

Theorem 2.5. Therefore through Theorem 2.7, we can relate n

to &% and P* by

(2.17) ny(Py) = (At/G*)z(k(k+l)/6)[k‘[fz(x)dx]-z

(note the difference between A and AJc in (2.,12) and (2.17)).

The PMP equivalent of (2.16) is due to Puri and Puri
(1969) and is

(2.18) m = 2(Ato/a"‘)2

where m is the sample size for P[CS]PMP,go(t,m)] to be P¥,

02 is the variance of the underlying df, and At satis-

fies (2.15). (2.18) is the equation (4A.11l) of Puri and
Puri (1969).

e gt r**.hu—-mmijj




In this section we have studied P[CS{PV] under the SPC;

namely how to relate the necessary sample size to the minimum
discrepancy worth detecting and the required P[CS] for large
sample size under the assumption that the underlying d4f is
known. Similar results for joint rank procedures were ob-

tained by Lehmann (1963) and Puri and Puri (1969).

3. ARE of Pv under the SPC.

Suppose there are two different selection procedures P1

. and P2 with the same probability requirement. We define an

asymptotic relative efficiency (ARE) of P1 with respect to

P2 as

Sample size for P2
(3.1) ARE(Pl,PQ) = 1lim ( ).

Sample size for Pj

‘ To determine the ARE this way, we should be able to determine
a sample size for given &% and P*. We noted that when we
let 6% = §(n), and 1linm nkﬁ(n) = ¢ (an appropriate con-

no>«
stant), P[CS] converges to P¥ as n + ». In other words,

*

PRS-~ TN

by letting n = n(é*) and requiring I%m [n(é*)]%é* to
6%+0
converge to some constant, P[CS] converges to P* as

;u a v
- ¥

Py

’n
e ¢

¥ » 0. Thus letting np (8*) (i=1,2) (the selection
i

3" ;
.4 W

sample size for Pi for a given 6%) satisfy

- é S

-
4

o
- e

l%m [np (6*)]%6* = ey (i=1,2), we can determine the
870 i

; § ARE(Pl,Pz) (as 6% + 0). One may suspect that ARE(Pl,Pz)
; (as 6% > 0) and ARE(Pl,Pz) (as np - =) may be differ-
. 3 , ent. Note that the latter quantity was used by Lehmann (1983)
‘ !
oy

P S -
. e

b
.
IS
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to compute the ARE of a joint rank procedure with respect to

PMP'J However we can show their equivalence as follows. If

for given P* and np (i=1,2) G(nP ) is determined so i
i i g
that lim nj 6(np ) = ¢, (i=1,2), then PLCS|P,]1 £ P, _y
np. i i
i

But since P1 and P

probability requirement, we have §&(n, ) = 8(n, ), and
pl P2 £ {
. .
also lim n; é(np ) = c, and lim ip (np ) = c¢,. Note
N +® 1 1 Ng =>®© 2 2
Py P2
that as nP2 + ®, G(npz) = 6(npl) + 0 and thus npl + o,

Therefore we have

LR P
‘

, are required to satisfy the same

8 secyreming

[T

(3.2) ARE(P,,P,) =  ARE(P,,P,) = ARE(P,,P
%0 §(n

)
Y=8(n )0 N, -=o
P1 P2 P2 Py

‘ By combining (2.17) and (2.18), we can compute the

%

ARE(P,,Pyp) (as &% » 0) under §Q(t): I

? (3.3) ARE(PV,PMP) =

12ko [ ffz(x)dx32/(k+1). K
§%->0

This ARE(Py,P,p) is tabulated in Table 3.1 for several df's. '

Table 3.1 i

af ARE k=2 k=3 k=5 x=10 k=30 ) {j
Rectangular  k/(k+1) .66667  .75000  .83333  .90909  .96774 % |
Normal 3k/[(k+1)7) .63662  .71620  .79578  .86812  .92ul3 ? ;
Logistic kn?/[9(k+1)]  .73108  .82247  .91385  .99693 1.06125 o é
Laplace 3K/ (2k+1) 1.20000 1.28591 1.36364 1.42857 1.47549 {i %
Lower bound™ .B6uk/(k+1) .57600  .64800  .72000 .78545  .83629 : »é

* The lower bound fer 1202[ ffz(x)dx]2 was obtained by Hodges

and Lehmann (1956) for the location parameter case.
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Hodges and Lehmann (1962) aligned observations so that they
are free of block effects, and applied joint-rank procedures
to random block designs. Likewise we can align observations,
apply Jjoint-rank selection procedures, and thus obtain better
efficiencies (in the order of (k+1)/k). But there are cases
where alignments of block effects are not applicable, e.g.
p. 485 of Hodges and Lehmann (1962).

In passing we can note that Lehmann's lemma (Lemma 1 of
Lehmann (1962)) which leads to (2.13) (and hence to (2.18)
as well), is only justified heuristically.

We now give a

procf. We need the fcllowing generalized Helly-Bray Lemma:

Lemma 3.1: (Generalized Helly-Bray Lemma). Let Q =+ Q, a

n

cocntinuous df of a random variable, and let {gj}, g, h be
4
continuous functions satisfying
(i) lg, (x)| £ h(x) for all x

(ii) gn(x) + g(x) uniformly on finite intervals, and
(iii) j}den -+ f}1dQ.

Then f gndQn - f g dQ.
Proof

See Lemma 7.1.1 of Johnson and Roussas (1970).s®

R, o
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Theorem 3.2: (Lemma 1 of Lehmann (1963).) Let A satisfy
(2.11) and let i(i) be a sample mean (based on the sample

size 1) yielded by Tei) (the population associated with

G[i]), and let 02 be a variance of the underlying df F

with a pdf f. Under the configuration 8,(1,n), if

: Y _ ok
1im n?*8(n) = 2°%Ao, then we have

-+

>
y = X

b

lim P[X 15i$k-1 | 8,(1,m)] = ¢

n-—ro«

(k (i)

Proof

Let 1lim n*é(n) = § (> 0). Assuming, without loss of gener-

n—l‘CD

ality, that E(X(i))= e[i]’

: by vy <3 <1
1im PIX(yy 2 X5y 153 5k-1| §,(1,n)]

n-+w

X -8 P T ) -8,
A DR o' NN S Rl 5 I 0’3 Bl 6
o/vn c/vn o/vn

i

;s —_
niXeiy " 8y?

o

Let Yi(n) = (12£12k-1) ana let Yi(n) be

distributed as Fn('). Then since the second moment of the
underlying df exists, Fn(y) converges to ¢(y) uniformly

y -
for all y as n »+ «, where &(y) = I (2w) & exp[—x2/2]dx.

Thus for every given € > 0 there exists an integer nl(e)

such that, whenever n 2 nl(E),

|F (y+68/0) - ¥y +8/0)| < e/2.

Now by the continuity assumption there exists an integer ng(e)

N ey T - W

S

i ——

JSS—
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such that, whenever n 2 nz(e),

max ( f an(y) ’ f an(y) ) < g€/2.
y&(8/a , n%6(n)/0)  ye(n 8(n)/o , 8/0)

Hence, for all n 2 max (nl(c),nz(e) ),

|F_(y+n%6(n)/0) - o(y +8/0)] < e.

Therefore we have

F_(x + n¥s(n) /o) -+ o5 l(x+8/0),

1im P[X ) 2 X(5y» 158 5k-1 | 8,(1,m)1]

lim PLY,(n) 2 ¥;(n) - n%6(n)/o, 1<1isSk-1]

T+

k-1
lim I n F (y-*nké(n)/o)] 4ar_(y)
i=1 ™ n

J ¢k'l(x-+6/0)d¢(x)-

The last equality is due to the generalized Helly-Bray Lemma.
Thus letting 6§ = 2%Ao, where A satisfies (2,11), the Theorem

follows. ®

Note that if § = 0 or =, then

P[i(k) > i(i), 121<k-1 | 30(1,n)] converges to 1l/k or 1

respectively.




4, LFC and Counterexamples.
The configuration of ei's which minimizes P[CS1 for any

given selection procedure is called the least-favorable

configuration (LFC). The SPC, go(t), is often least-favorable

for selection procedures in the indifference-zone approach,

and the equal-parameter configuration (EPC) 8[1]= ve. = e[k]

is often least-favorable in subset-selection appreoaches.
Rizvi and Woodworth (1970) showed that

inf PLCS] < PICS 160(t)] (inf P[CS] < P(CS|EPC]) for
Qq(8%,1) I

selection procedures based on joint ranks in the indifference-
zone approach (the subset-selection approach) for some df's.

And McDonald (1972) also showed that inf P[CS] < PICS|EPC]
Q
0

for one of his subset-selection procedures based on vector
ranks. In this section the counterexamples of Rizvi and
Woodworth (13970) are modified to show that the SPC, 60(t)’

is not the LFC for P We consider two counterexamples:

v
first, for the case of fixed 6® and finite n; and second,

i

for the case of 6"+ 0 (and thus n -+ =),

Counterexample 4.1: Let k=3, t=1 and F be a continuous

df which places probabilities of q and p (= 1l-gq) uniformly
on the intervals (0,e) and (l,l+g) respectively, where ¢

(< 1/3) is a positive constant. Let 8% = e, 0= 625 6*, and
8(8,) = (8,,8,,8,) = (0,6,,8,+6%), where 6; is the location

parameter for LA (1=1,2,3). Then for n=1 P[CSva,g(Gz)]

is a censtant for any 62 and for n= 2

i

—

Y 3 ki

o st

[

P,




max PLCS|P,,,B(6,)1= PICS|P,8(0)) and min PLCS|P. ,3(62)]=P[(BIPV,5(5*)].
62 62
! : This constitutes a counterexample because 8co) = (0,0,6*) is

a SPC while &¢8%) = (0,8% 28" is not.

Proof

The supports of the distribution of the populations under the

parameter configuration 3(62) can be depicted as in Figure 4.1,

where "heights" show the supports of df's under 3(62).
. . Figure 4.1 Supports of df's under 3(62)
bo- i ) ' ' !
) o : ' . : )
oo S
! i { : ; i
m —— ] ' § em— 1 t
2 : ' : : H 1 : :
N " : . ; ' l
m, Vo me— : D ——
[} 4 4 t : i t ]
‘ i } e 1 i ! '
§, &% 28% 3% 1 1+6® 1+28% 1+38"
Note that L5 (the best population) is separated from LY and =, H
" g in its support while Lo and T, do not have disjoint supports.
i Fix n=2. Let Bi be ¢, 1, or 2 according as 0, 1, or 2 ob-
!:5
"'3 servations from T, are in the upper interval of the support
P |
oy . . . . . .
F % of its distribution, let B= (31,82,83), and let b~(b1Jb,b3)
e o 3 9 b by
be a realization of B. C(Clearly P(szllel,ez,ea)] =0 (I a .
;J“? i=1 “i
4 R R R
s _ 11 12 13 .
H Let R = ( ) be the matrix of ranks each row of
4 Ra1 Roz Ryz
} which 1s & row vector of ranks Rij = 1,2,3 and let
4
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r r r
11 2 . . .
1 13 be a typical realization of R. Given
Y21 T2 To3
R

r a CS (selection of n3) occurs with probability 1 if

P13+'r23 > max(r124-r22, rll-FPQl), with probability 1/2 if

. + - -
elther r13 1"23 r12 +r22 > P11+P?]. or r‘13 +p23 = +r21 > r12+r'22,

v A . _
with probability 1/3 if r13-+r23 = r

117721 T T1p* Ty, and
with probability 0 otherwise. The conditional probability
) that R = r given B = b under 5(62) involves 27 possible
rank combinations. Many of the possible rank combinations are
not equally likely (hence our situation differs from those of
Rizvi and Woodworth (1970) and McDonald (1972), where the rank
combinations are equally likely). One example of the computa-
tions is that of P[CS|Py,8(6,),B=b] for b= (0,1,1). b=(0,1,1)
‘ means that for m both observations are from the lower sup-
port, and for =

9 and T, one of two observations 1s from

the upper support; this can be expressed as:

P

(i) [0,6%3, [52,52+5*] , [52+5*,52+25*] )’
E-3 * & &
[0,8%], [1+62,1+62+6 1, [1+52+5 ,1+62+?6 ]

and

" T PRI

. ® *
(ii) [0,6%1, [1+52,1+52+5*J, [6,+6%,8,+26"]

el

AT
Mt. Mj

[o0,8%], [52,52+5*] , [1+62+5*,1+52+26*J

express supports from which observations for each population
originate to have b=1(0,1,1). Given (i) there are two pos-
5ible rank combinations, while given (1i1) there are two other

possibilities. We now compute the probability of each rank

0 o e, e o

combination. Let 61 = &%~ 62. Then

B = - e
B . - D "‘ij‘ﬁ"’ﬁv*""-""i'w DAY .
. e ey Y W VT, BB TS ® . . - T ke .‘.q’fwr-,.- S e ML PR . .
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: 1, 2, 3

- * & *

P ( ) = { P[0<xl<62,62<x2<62+5 ,62+6 <X3<62+26 ]
1, 2, 3

% " * %

+p[52<xl<6 ,62<xl<x2<6 ,62+6 <X3<62+26 ]

% o * % *
P8, <X, <87, 87<R <8 +87 ,8,+87<X,<5,+26 1}

i x p[0<x1<5*,1+52<x <1+52+a*,1+62+5*<x3<1+52+26*]

2

= q”p2<1-5i/25*2>.

Similarly
2,1, 3 1, 3, 2
_ y 0 2 52 ’ 3 2
P [( )} =gp 61/26’ s, P ( ) = qupz(l-él/Qé*Q), and
1, 2,3 1, 2,3
1, 3, 2
P ( ) = q'p? §2/26%2,
N2, 1, 3 1
Q : Thus

%2

; PLCS|Py,8(8,) » b=(0,1,107 = 3/u + 82/(86*%).

For the other cases the method of computation is similar. In

*

E all but 9 cases, P[CSIPv,g(SQ),b] equals P[CSIPV,g(G*),b];

PR L

those 9 cases are listed in Table 4.l. Now

,.
-
P,
[

*
PLCS|Py»8(8,)1 - PLCS|Py,B(8%)]

-
.} P

"‘;§~,~

- 11-62/726" 1827 (26* 0w/ 3)q p? + (47310 %p° +(4/3)qp°1 >0,

z

and the difference is monotone increasing in 62 for 0= 0y = s*
{(namely monotone decreasing in 62 for 0= 625 ™). Thus we

conclude that P[CSIPV,a(GQ)] is maximized at 8(0) (which is

ottt L e e ek
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a SPC) and is minimized at 8¢(6*). The case of n=1 is

trivial and the Counterexample follows.

b P[B=b]
(0,1,0) 2q°p
(0,1,1) uqtp?

5
(1,0,0) 2q°p
(1,0,1) l&qup2
(1,1,0) qtp?
(1,1,1) 8q°p°
(1,2,1) 4q’p”
(2,1,1) tg?p?
5
(2,2,1) 2gp
* Note that

We now show that the SPC is not the LFC for P

for large samples.

the ratio of P[CS|PV]

§ = &*

%
Table 4.1

PICS|Py , B=b , §(5,)]

1/2 + 6%/(462)

3/4 + a§/<852)

1 -

1 -

1/8

3/4

/4

2/3

8

8

+

+

+

2 2
1/(HG )

2 2
l/(86 )

1/3[1 - ai/(zéz)l[ai/(252>l
1/6[1-a§/<252)][5i/(252 f
5/2u(5§/52)

5/2u(5§/@2)

2/3(1 - 6%/62)[65/(262)]

and

even
v

One method of showing this is to show that

under a configuration different from

the SPC to that under the SPC converges to some number smaller

than 1 for fixed

6*

n

<>

@, Another method of constructing

a counterexample is to show that the ratio of sample size for a

configuration different from the SPC to that for the SPC con-

verges to some number smaller than 1 for fixed 8% as P¥a1.

However we have obtained a counterexample by another method
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originated by Rizvi and Woodworth (1970): we show that when
the relation between n and é(n) (= Oryk-t+1] - 8-t ]’ satis-
fies (2.16), P[CSIPVJ converges (as n-+«) to some number
smaller than P* under a certain configuration of Bi's differ-
ent from the SPC, go(t), but still in Qe(éﬁ,t). This serves
our purpose, because when the relation (2.16) holds between
§(n) and n, P[CSIPV] converges, as n-+®, to P* under the
SPC. [One may ask how much larger P[CSlPV] is under the SPC
than under the configuration we will consider; this question
is discussed in the next section.]

Consider the selection of the t best populations, when
the underlying df is a logistic distribution with a location
parameter. For simplicity take k=4 (k even) and t=k/2.
Without loss of generality drop [ 1 around the ordered pa-
rameter values for convenience of notation; namely take

e[i]= By Teiy = Mio and thus H(i)(n)= Hi(n) (1=1i=k).

Lemma 4.?9: Let F(x) = (l+enx)—l and let
B Ct,md; 6= .. =0y 1 =-00, 8 =0, 8y .. =80,
Opoten ™ =8, =9

where &(n) > 0 and 1is in the order of O(n-%), 00 > 0

fixed satisfying 60 > 8§(n), and k = 2t. Then

(4.1) Lim PECS|P, , §,(t,n)] S 0[A pC(k+1)/K) 7]

n<+o

where At satisfies (2.15),
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(4.2) p = (3% [y (2r-12ar)/ € [ mlar - ( [ Hgary 1),

(4.3) Ho(x) = (k—t»l)F(x-Bo) + 2F(x) + (t-l)?(x+90),

and
lim n%d(n) = [kfk+l)/6]% At[ kaz(x)dx]—l.
N -*eo
Proof ﬂ

For large samples, dropping the randomization part we have

(4.4) pLCsS|P ,gl(t,n)] 2 Pl max H.(n) < min H.(n) lgl(t,n)] 3‘1
1<isk-t * k-t<jgk |
3
S PV > 08, (t,m], B
where Ven) = nTFCH 4 (n) - H ().

We will find an upper bound for (4.4) as n + = by finding

lim E[V(n)] and 1lim Var{V(n)], and applying a Lindeberg-

n-*co n-+e

Feller type central limit theorem. The computations for
E[V{(n)] and Var[V(n)] are lengthy, and thus are omitted. 1In

the limiting process using Olshen's lemma (Lemma (12) of

Olshen (1967)), we have

lim E[V(n)iél(t,n)] = [6(k+1)/k1% AtJ' Hy(x)[2F(x) - 1]dF(x),

n-+w
where Ho(x) is given by (4.3), and (0 < 80 £ C(k,t,F))

(4.5) Lim VarCy(n 1§ (m] 2 2t [idar - ¢ [mam?)

n-»~o
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and t22?, where Hl = (k-t~l)F(x+60)'+2P(x) +(t-l)F(x-00).

Since we assume k = 2t, we have H, = H

1 ¥ Hy- Thus from (4.4)

lim P[CS|P ,3lct,n)l £ 1lim P[V(n) >0 ;é’l&,n)]
Moo F g natd

V{n)-lim E[V(n)] 1lim E{V(n)]
= limP -2 -
noo 1imlvar[V(n)] limVarlv(n) ]

A

o[ Ap((k+1)/K) ],

where the last inequality is due to the asymptotic normality
i
of {V(n)-1lim E[V(n)1}/{1lim VarlV(n)1?%} due to a Lindeberg-

Feller type central 1limit theorem and (4.5). =

Lemma 4.3: For any k and t, 15tc<k,

l1im o1

(p"‘)/At = 1
P*+1

where At satisfies (2.15),

Proof

This follows from Lemma 2 of Rizvi and Woodworth (13970) upon

noting that At’ which satisfies (2.15), also satisfies

1Si<k-t k-t<jsk 3

where Zi (1 £1i 2 k) are independent standard normal ran-

dom variables. [For the case t =1, Dudewicz (1969) also

obtained the »

esult of Lemma 4.3 in a different form. ]




Counterexample 4.4: Under the same setup as in Lemma 4.2,

1im PLCS|Py,8,(t,n)] < P* = lim P[CS|P,,8,(t,n)].

n-+wo n->o
Proof
Note that 0 £ p < 1, since p = corr(HO,ZF—l) and HO and
2F-1 are monotone increasing in x for fixed 8 Choose é

0°
P* and k large enough such that [At/¢_l(P*)](k+l)/k < 1/p.
Substituting this into (4.1), the inequality follows. The

equality is due to Theorem 2.7.®

Through Counterexamples 4.1 and 4.4, we have seen that
the SPC minimizes PICS[P,;] neither when one has a fixed

sample size nor when one lets &% (= tend

Ork-t+1] = Orr-t1’
tc zero as n + «, Note that the logistic df possesses a mono-

‘ tone likelihood ratio with respect to its location parameter
and has a support independent of its location parameter; thus

imposing additional conditions such as the above two will not

obviate the difficulty in the LFC. |

a

It is an open question whether {(for selection of the t

.y
ot

best by PV)

sl
«
PR R

inf P[CcS|P,] = PICS|P,,8 ()], i
we(é*,t) v viUo |

LE ol
.} Ve

.L::i,:g_,.

3
P T

5. Remarks on Selection Procedures based on Ranks.
In the literature of selection procedures based on ranks 3
(either joint ranks or vector ranks) each contribution either [

imposes artificial restrictions on the parameter space (Puri

b ol R e
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and Puri (1968), (1969}, Gupta and McDonald (1970), and

é_ McDonald (1972), (1973)), or is not able to find the LFC

(Blumental and Patterson (1969)), or was partially invalidated

b e e e e -1
D egie - 3

by Rizvi and Woodworth (1970) (Lehmann (1963), and Bartlett
and Govindarajulu (1968)). A conjecture as to why these pro-
cedures were invalidated is that the LFC's for them were
sought in a parameter space where the P[CS] for certain
- parametric procedures is monotone while the P[CL] for rank
procedures is not monotone (as is indicated by Gupta and
McDonald (1970) and Blumental and Patterson (1963)).

For any procedures based on joint ranks or vector ranks,

PRANK’ define

inf PLCS|Ppaynk] = PLCS|Ppanys8y(t)]

Qq(6%,1)

R = x 100

1D
PLCS|Pranys80(t)]
for the indifference zone approach, and

%?f P[CSIPRANK]-P[CS[PRANK,EPC]

Rgg = — x 100

PLCS|Ppankr EPC]

for the subset-selection approach. Then the quantities RID

and RSS merit study because small RID and RSS may well

justify the SPC assumption (which will simplify theoretical

development) while large Ry and Rgg imply that the SPC
assumption may be of only theoretical interest. [This aspect

was called to our attention by Dr. Gary C. McDonald.]

- - ~ - - i = e e e A O SN "R W??:"‘k"m : T;'_""“"‘-‘—"” "__«."“ T
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We have noted in Section 4 that PV also suffers in the
LFC unless the SPC is assumed. Hence we wish to compute RID
in the case of Counterexample 4.1 (where n =z 2, k = 3, and
Qur results on RID for

(and some typical values of P[CS[PV,SPC])

the LFC is relatively simple).
p = .01(.01).99
are summarized in Table 5.1. The minimum of PICS|P,,SPC]
is .66146 (occurring at p = .50) and the maximum RID is
3.11234% (occurring at p = .77) out of the cases studied.
These computations indicate that the assumption of the SPC
as an underlying configuration may not be unreasonable. We

propose that further study of RID and R be carried out

S5

to see in how far this result generalizes to other cases.

Table 5.1

R

ID

p PICS|P,;,SPC] Rip (%)
.01 .98991 .00327
.10 . 893555 .27168
.20 .79887 .86522
.30 72492 1.49768
.40 .67810 1.99793
.50 .66146 (minimum) 2.36220
.60 .6761u 2.69315
.70 . 70420 3.01292
77 . 74403 3.11234 (maximum)
.80 . 76559 3.07632
.90 . 86051 2.31874
.98 .98363 .32231
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6. Discussions

4> We have studied mathematical properties of the vector rank
procedure when applied to selecting the largest location parameter
in randomized block models. Even if the data is not quantitative
but ordinal, or is not from a location model but from a stochas-
tically ordered family of distributions, the vector rank procedure
is applicable.

An important competing selection procedure is based on the
robust estimate of location parameters (Sen and Puri (1972)). The
selection procedure based on robust location estimates does not
have the LFC difficulty that the vector rank procedure suffers
from, and its relative efficiency compared to the means procedure
is that of the Mann-Whitney- Wilcoxon test versus the t-test. A
serious disadvantage, however, is that the robust location estimate
method is not applicable if the data is ordinal or from a non-
location family: for example, see Lee and Dudewicz (1980) where
the data is incomplete rank order scores or Lee (1980) where the
distributional origin of{ the data is not known. ‘4¥~—~~

We now discuss how to choose a proper selection procedure to
be applied. If the data is from a location family, then the robust
procedure of choice should be based on robust location estimates.
If the data originates from a location family but in the ordinal
form, or from a stochastically increasing scale parameter family, then the
vector rank procedure may be applied to selecting the population
with the largest parameter of interest. In this latter case, it
is possible that the P(CS)>P* requirement is not met. In doubtful

cases, the multinomial category selection procedure (Lee, 1980) is

a possible alternative.

i T A

R e IR iie s S

- - i B




As a final remark, note that the procedure considered here
is, like most robust selecticu procedures, not nonparametric since
the required sample size (say (2.12) or (2.17)) depends on the

underlying distribution, but is less senstitive to departure from

the assumed underlying distribution than the means procedure.
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