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ROBUST SELECTION PROCEDURES BASED ON VECTOR RANKS

Young Jack Lee and Edward J. Dudewicz

National Institutes of Health,
Bethesda, Maryland

and
The Ohio State University,

Columbus, Ohio

0. Summary

Consider n blocks of k observations (XIj,...,Xkj),

j 1,...,n. Suppose Xij are independent and P(Xij< x)

F(x- n,- 6i ) where nj is the nuisance location parameter

of the jth block and e. is the location parameter corre-1

sponding to population ni ( I j <- n, i-< i :k).

We are interested in selecting populations associated with
n

large location parameter 0. To this end compute H I R ij

$ where R. . [# of Xi, .X i. (ji< i t 'k)], and

n- n Xi, and base the terminal statistical decision1j--i '

on: X1 .... ,Xk  (means procedure PMp) or HI,...,H k (vector

A. rank procedure PV Fix t (1i t< k) and consider the prob-

lem of selecting populations associated with the t largest

O's based on: Xl...',Xk or Hl,...,Hk.

This research was supported in part by the U. S. Army
Research Office-Durham, and by Office of Naval Research
Contract No. N00014-78-C-0543.

4 iKey words and phrases. Robust selection procedures,
single-stage rule, block designs, asymptotic relative
efficiency, means procedure, indifference-zone approach,
counterexamples, least favorable configuration, large
sample approximation.
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A. 2U

In this paper we investigate large sample behavior (as

well as some fixed sample behavior) of P The asymptotic

relative efficiency of P V with respect to P is also

studied.

1. Introduction

Let Xij (j =1,2,... ,ni; i :1,2,...,k) be independent

random samples drawn from populations 71,2,.., ' k with ab-

solutely continuous distribution functions (df's) F(x - i).

Let e[l 6 ! elk ] denote the ordered values of the un-

known 0.i and let (i) denote the population associated

with 6[]; these associations are assumed completely unknown.

Often for some fixed t (1 t < k) an experimenter is inter-

ested in the problem of selecting the "so-called" t best

populations, w (k-t+l).' ' (k) For the selection of the

t best populations, Bechhofer (1954) proposed the means pro- L

cedure (denoted by PMP) which selects, as being the t best

populations, the t populations yielding the t highest sample
ni

means Xi( n i X. . Bechhofer requires that the proba-x..):

bility that the so-selected t populations are the t best

[when this occurs, a Correct Selection (CS) is said to occur]

be at least P (a prespecified constant between (k and 1)

whenever 0 [k-t+l] - e[k-t] 6*  (8* is a prespecified

positive constant). A different procedure was proposed by

Gupta (1956, 1965): rather than selecting the t populations

associated with the t highest sample means, he selects a

r [1

.-. - .- ,-. ,. " -.,,.,,.,,.. J . " ...E.
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subset of the k populations (retaining in the selected sub-

set all the populations yielding sample means close to the t

highest sample means) and requires that the probability be

at least P * that the selected subset contains the t best

(when this occurs, a CS is said to occur). Both Bechhofer

and Gupta considered the case of normal distributions with

common known variances; for the case of normal distributions

but with (possibly different) unknown variances the reader

is referred to Dudewicz and Dalal (1976). The robustness of

the means procedure is broached in Lehmann (1963) and is under

investigation, in a more general context, by one of the

authors [YJLJ.

Lehmann (1963) and Bartlett and Govindarajulu (1968)

based selection procedures on the joint ranks of the obser-

vations in the combined sample of N = Y ni  observations.

Specifically, each observation X is assigned a score

aij = E[Z(Rij)IG] where Z(1) < ... < Z(N) denotes an

ordered sample from any continuous df G and R..

denotes the rank of X. in the combined sample. The se-
i]

lection procedures are then based on the quantities

'. n1 a.. ( 1 i k). Lehmann's approach uses a Bechhofer-

type (indifference-zone) approach while Bartlett and

Govindarajulu use a Gupta-type (subset-selection) approach.

Bartlett and Govindarajulu also base some selection pro-

cedures on randomized scores (i.e., quantities n-1 XZ(Rij)

(i i k)); but we have shown (details will not be given

. . . . . . .. -- --• - -._ .' ., .. "u ' ' - " b ' -1 . .. {
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here) that in selection procedures based on randomized scores

the probability of CS (denoted by P[CS]) is bounded away from 1

for any configuration of parameters and two different statis-

ticians reach, with positive probability, two different con-

clusions from the same set of observations. This extends

results of Jogdeo (1966) to ranking and selection problems.

An extensive review of other selection procedures (including

joint rank procedures) is provided in Lee and Dudewicz (1974).

The model usually assumed in the literature is that of

the one-way analysis-of-variance model. The selection pro-

cedure investigated in this paper arises from the two-way

analysis-of-variance type model where block effect enters:

namely P(X ij -x) = F(x- nj- 8i ) where ni is a nuisance lo-

cation parameter of the jth block (1 - j n). In this case

ranks within each block are preferable to joint ranks.

McDonald (1972, 1973) makes subset-selection approaches to a

selection problem by basing terminal decision rules on ranks

within each block, and Dudewicz and Fan (1973) suggested an

indifference-zone approach. In Section 2 we investigate, by

* an indifference-zone approach, selection procedures based on

ranks within each block (we denote this procedure by PV) under

the slipped parameter configuration (SPC) i . [k-t]

S[k-t+l] . 8 [k]; all the results are asymptotic. In

Section 3, we investigate the asymptotic relative efficiency

(ARE) of P with respect to P as 0 [kt+l] - 8[kt] tends

to zero under the SPC assumption. The configuration of 81s

minimizing P[CSI V is investigated in Section 4; in particular
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we show that the SPC is not necessarily least-favorable. In

Section 5 we discuss practicality of the assumption of the

SPC as an underlying configuration. In this article we de-

note by O(a) a positive quantity such that a o(a) converges

to a positive constant in the limit of a.

2. P[CSIPV ] under the SPC: Asymptotic Results

We make the following probability requirement for given

6( and P* (6*> 0, ()-< P* <1):

(2.1) Probability requirement: We select the populations

T ) (i.e., we make a CS) with probabil-

ity P[CS] > P* whenever 6[k-t+l ] - [k-t] *

Consider the following single-stage procedure: Take n
independent vectors X. (Xl.,...,Xkj) (I-< j!En) (X.i de-

n
notes the jth observation from ri); compute Hi  Rij

3. j=l
(l < i -k) where Rij :# of Xi, j :<Xi (li i'<k)); and

select (as being the t best populations) the populations

4., associated with the t highest H.'s (breaking ties, if any,

by randomization).

We first consider t= 1 and then generalize to t> 1.

-?l Let

4

Q A C'6t) :{ ( on: %[k-t+l] - [k-t] ilk
EkSt
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w~~ ~ (6t 6[ 0 k-t] [ 0 k-t+l]

0 >e J
a nd

Ell [k-tJ e (ktl -6, 
0 k-t+ilV .. [kl*

Lemma 2.1: For selection of r' (k) under wa(6*,l), PrCSJP V]

is a nondecreasingc function of 6 [k]* Hence inf P[CSIP I

PECSIw (60 (1))

Proof

See Theorem 3.1 of McDonald (1972).n

Now we wish to determine a sample size n a which will

guarantee P[CSIP V s , CW 6w(6*,l)] to be at least P* for

given 6* >0, but we do not know how to determine the sample

I size for given as-and 6*. Rather, we find 6* for given P* and

sample size n,namnely we put 5* as a* fucto ofnan

and hensole nforgiven 6 * and P (hsmto a n

trouce byLehann(1963).) Totienwe edtonvs -

gate the asymptotic determination of [SVune th

following configuration with t= 1:

(2.2) 06 Ct,n): 0,l -0 [kt'6ktl kt 6(n),
0 [-tl [kt~ 0 C -

0 [k-t+l] [k]'

Let rci be the sum of rank scores yielded by n iTo show

the dependence of H i) on n , we write H (n), and for the [
j notational convenience, without loss of generality, we letH
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6[ie e. it 1(i) I 'i and thus H i ) Hi(n) (1 i k).

* For large samples, since lim P[Hk(n) - Hi(n) = 0, i k-1 oe(n] 0,

* we drop'the randomization part of PCSIPv]. Thus

P[CSIPVo0(I1n)] PHk (n) - Hi(n) > 0, 1 fi 5 k-1 4 0(l,03
i (2.3)

r F jk (n) -HiW) > 00 1 f i k-1 0(1,0)

(A(x) B(x) means A(x) - Bx) - 0 as x approaches a limit).

We will approximate (2.3), and in the sequel we need the

following.

Lemma 2.2: Lec G(x) be an absolutely continuous function

possessing a quadratically integrable derivative G'(x) and let( I'fx) be an absolutely continuous df with a pdf f(x). If

1 W 2 (x)dx <  , then

lim J G(x+h)- G(x) H(x)dF(x) - G '(x)H(x)dF(x) 0
h-0 hf

(For the special case H(x) 1. and F(x) E G(x) a.e., this

is Lemma 3.4 of Mehra and Sarangi (1967).)

<I Proof

A .See Lemma 3.4 of Mehra and Sarangi (1967).8

Let

: lim n 6(n), 6 > 0 fixed

I (the cases n1 6(n) and n1(n) 0, as n - , are

E 6covered after Theorem 2.S), and assume
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(2.4) f f2 (x)dx < - fx) -z pdf of the underlying df F).

(For some pdf's J f2 (x)dx does not exist. Df's satisfying

(2.4) are characterized by Lemma 1.4.i of Kagan, Linnik and

Rao (1973).)

Lemma 2.3: Under the configuration of 0(l,n), defining

V.(n) n- (HkCn) -Hi(n)) (1 < i < k-i),

we find that

(2.5) lim E[Vi(n)] 6k ff2(x)dx ( i f k-1),
n-+oD

(2.6) lim Var[Vi(n)] = k(k+l)/6 (i - i - k-i),
n-D

tand

(2.7) lim Cov[Vi(n),Vi,(n)] k(k+l)/12 (1 is i' k-l).
n

Proof

Defining

p P[ X. has the rt rank among Xl. k (1,n)],

we have

n k k ni)
(2.8) EEVi(n)] n 1  E(Rkj- R..) n I r(k) r

1=1 
r:1 r"

4 Let 1 .-. k_ 1  and 8 +k 8 +6(n).

I

4I
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(k)
k-i) Fr - I

r ~ ~ a[ v- ._-UL.-F(xO)1k-r dF(x-O-6(D))

(k- (X)[l- F(x)] k-rdF(x-6(n)).
r-i

Note that we do not lose any generality by letting 6 = 0.

Now

p(k) k-2) f rr-(x + 6(n))[l- I (x + (n) )]k-rdF(x)

+ (k-2. f Fr-l(x + (n))[l -F(x+6(n))]k- rdF(x),

p M~ (k- 2) f F r - 2 ( x ) F (x - _ (n))[1 - F(x) ]k- rdF(x)
r r-2-rd(

+ (k-2 F Jr-l(x)[i -F(x)]k-r-l[l -F(x- 6(n))]dF(x),
-I

and combining and p(i) and taking the limit yields
r r

(2.9) lim n (Prk -p ) ) = ( )6 J fd { r-I:r r +(- T -  ]-

r+ (k-2) 6 f Fr 2 (x)[1-F(x) 1k f2 (x)dx0 , [ k~-2 Fri]-i

. - k-2 (l )6 (x)[ kr-F(x)k f2(x)dx
.4 '~ I r-il

hence (2.5) is obtained from (2.8). Define

i pij p[X has the tth rank, and X has the

IH

Z.- q -r

., -. ,. - - 4- - 4 ... .- -- -,o-& . ".4 . ' . .: .-<- . .--. .



Note that P 0 (i j, 1 IS t k).

Then

(i) 1 (.i,j) 1
(2.10) lim Pr , and lim Pkn -),nco r k(k-l)

(For details see Lee and Dudewicz (1974).) From (2.10), a

computation shows (2.6) and (2.7). .

Thus we have obtained asymptotic moments of V.(n)
1

(1 - i - k-i). To evaluate P[CSIPv,%0(l,n)], we need to

obtain an asymptotic distribution of V(n) =(Vl(n),...,Vk-l(n)).

We can show that any linear combination of (Vl(n)X...,Vk-l(n))'

has an asymptotic normal distribution by a Lindeberg-Feller

type central limit theorem (: pecifically see §26 of( Gnedenko and Kolmogorov (1949)). Thus V(n) 1 :is an asymp-
~totic (k-l)-variate normal distribution with c ertain known mean

and variance-covariance. The following lemma is proven in

Lee and Dudewicz (1974).

Lemma 2.4: The (k-l)-variate random vector (Vl(n),...,Vkl(n))'

has an asymptotic (k-l)-variate normal distribution with mean-2 f2
.4 6k (x)dx and variance-covariance

o.. = k(k+l)(l + 6..)/12

where if i = jwhere 6ij _

otherwise.

-II

< I



Now we are prepared to approximate PIICSIPVIJ, 0 (1,0n). Let

(U3 ... 5U k-1 be a (k-l)-variate normal random vector satis-

fying E(U i) 0, aii =(l+6..j)12. Then

PECStPV, o00,0)

P f [k(k+l)/6sI[v (n) - 6k f f (x)dx]I

P{U1 > -[k(k+l)/5f 1 6 k f f 2 (x)dx, 1 I k-li.

Letting 1A > 0 satisfy

(2.11) P(U . > -A, 1i k-l) P

we find

Theorem 2.5: For P[CSIPv, 0 (1,n)] to be asymptotically P*

(1/k < P * < 1), 6(n) should satisfy

lim fl 6(fl) = Ek(k+l)/6] (k f f2C(x)dx) -l A.

We make several remarks on implications of Theorem 2.5:

Mi if lim n 6(n) = ,then lim P[CSIP.1 0 (1,n)] =1,

andiflim n06(n) =0, then lim P[CSIP ,(1,n)] =l/k,

thdt is if 6(n) O(n ), then P1CS IPV 1 0 (1,0)] converges

either to 1 or 1/k, in which case we cannot relate n

and 6* (as 6* -'0) for fixed P* (for the cases of
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SMP and joint rank procedures Ci) is implicit in

Lehmann (1963));

(ii) when 6(n) = O(n- ), we can relate n and 6* for

given P' via (n A (Pv  approximated n )

(2.12) nA(PV) (A/6*) 2[k(k+l)/6][k f f 2(x)dx- 2;

(iii) consider the question how good nA(PV) is; namely

letting nTRUE denote the sample size which will

guarantee P[CSIPv,'0(1)] 2! P, does nA(PV)/nTRUE

converge to 1 as " - 0?; the answer is conjectured

to be affirmative (see Lee and Dudewicz (1974)); and

(iv) the conjecture of (iii) justifies, in part, dropping

the randomization part of P[CSIIv, 0(1,n)] as we

did earlier. [Such dropping has been done without

justification in the literature, e.g., p. 270 of Lehmann

(1963), p. 295 of Purl and Puri (1968), p. 623 of Puri

and Puri (1969), p. 377 of Bhapkar and Gore (1971), and

p. 258 of Alam and Thompson (1971) among others.]

The P version of (2.12) is due to Lehmann (13). Namely,
MP

F[CS!PMP(t1,m)] P* ayplA let m be the sample size for MP,0asymp-

22
totically. Then

(2.13) m = 2(Ac/ )
42

where G is the variance of the ui.derlying df, A satisfies

(2.11), and 6 a [k] - O[k-l ] . [(2.13) is the equation (11)

of Lehmann (1963).] Noite that when the underlying] df is normal,

NO-
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(2.13) is the sample size obtained by Bechhofer (1954), and is

thus exact.

The results in this section apply so far only to the se-

lection of the best population under &(1), but can be extended

to the t best selection problem under configuration 4,(t).

The proof is, of course, more complicated so we will state the

results corresponding to Lemma 2.4 and Theorem 2.5 and refer toi

Lee and Dudewicz (1974) for proofs. We have

(2.14) P[CStPV, *o(t,n)]

V.() = n (H . n(n) n) >(,k-t+l 9 Z :S ki1k-t)

Lemma~~ 2.6: (k.tl(n). >Vk.0t, k-t~~l* k k,(n I)' is a tkt)

the configuration ; 0(t ,n), is the distribution of a t(k-t)-

SIvariate normal vector (Uk.; k-t+l :Sk k, 1 :Si :k-t) ' with

E(U~. 6k J f2(x)dx, Var(U9. ) k(k+l)/6, Corr(U .1 ,Utis)

Corr(U ,~U )=1/2, Corr(UL~U , , (-~~t . k
9i, i t i lt 0,(-l 519Z k

1 :5i i' Ifk-t), where 6 =lim n06(n).

* - wc -1
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Let (U I... Uk-tWk-t+l .. . , k-1) be a (k-l)-variate

normal random vector with ECUi) =E(W ) 0, Var(U) I
*Var(W.i) =1, Corr(U.,U.,) =Corr(W.,W.') 1/2,

*Corr(U.W ) =-1/2 (l1iii' 5k-t, k-t+ljS j t k), and

let ALt > 0 satisfy

Theorem 2.7: For (2.1-4) to be P* (1/( k)<P<1)ayp

t

totcaly uder 0(t~),6(n) should satisfy

(2.16) 5 = Ji n46(n) [ k(k+l)16 1 [k fft(x)dxf- A

The implications of Theorem 2.7 are the same as those of

Theorem 2.5. Therefore truhTheorem 2.7, we can relate n

to 6* n *b

(2.17) n PV (A t16)2C(k~k+l)16)[kIff2 (x)dxf-2

(note the difference between A and At in (2.12) and (2.17)).

The P MPequivalent of (2.16) is due to Puri and Puri

(1969) and is

* 2
(2.18) m =2(A Ta/d

where mn is the sample size for P[CSIPMA (t,m)] to be P*,
02 isthe variance of the underlying df, andAt si-

fies (2.15). (2.18) is the equation (4~A.11) of Puri and

Puri (1969).



L In this section we have studied P[CSIPV] under the SPC;

namely how to relate the necessary sample size to the minimum

discrepancy worth detecting and the required PECS] for large

sample size under the assumption that the underlying df is

* known. Similar results for joint rank procedures were ob-

Stained by Lehmann (1963) and Puri and Puri (1969).

3. ARE of PV under the SPC.

Suppose there are two different selection procedures P1

* and P2 with the same probability requirement. We define an

asymptotic relative efficiency (ARE) of P1  with respect to

P2 as

(Sample size for P2
(3.1) ARE(P 2

62'0 Sample size for Pl

To determine the ARE this way, we should be able to determine

a sample size for given 6* and P*. We noted that when we

let 6* 6(n), and lim n'6(n) = c (an appropriate con-

stant), P[CS] converges to P* as n - '. In other words,

by letting n = n(6*) and requiring lim [n(6*)] 6* to
6 **f

converge to some constant, P[CS] converges to PA as

6 L 0. Thus letting np (6*) (i =1,2) (the selection

sample size for P. for a given 6 ) satisfy

lim [n (6)] 26 = c. (i= 1,2), we can determine the
6*'. P 1i6-,.0 i

ARE(PI,P 2 ) (as 6 0). One may suspect that ARE(PI,P2 )

(as 6* 0) and ARE(PI,P 2) (as n.2 2 ) may be differ-

ent. [Note that the latter quantity was used by Lehmann (1963)

--- --4



to compute the ARE of a joint rank procedure with respect to

P .]However we can show their equivalence as follows. If
MP*

for given P * and flP (i:1,2) 6(nP) is determined so

that lirnflp6(nl) =c. Ui=1,2), then P[CSIP] P*.

1 2

But~ ~ sic P2n r

also lim n P 6(n C1 and lrn -P 6(n ) c c2 ' Note

that as nP + S4nP 6(n, ) 0 and thus np +~
2211

Therefore we have

(3.2) ARE(P 1 ,P 2  ARE(P 1 ,P 2 ) ARE(P 1 ,p 2 ).

6 1-0 (n P )=6(n )-10 n P-m
1 2 2

By combining (2.17) and (2.18), we can compute the

ARIE(PV)PP) (as 0) under 4()

(3.3) ARE(PV,PMp) l2ka2I f f(x)dx]2 /(k+l).
fI

This ARE(PVPIP) is tabulated in Table 3.1 for several df's.MPI
Table 3.1A

Rectangular k/(k+l) .66667 .75000 .83333 .90909 .96774

Normal 3k/[(k+l)7n] .63662 .71620 .79578 .86812 .92413

Log-4tic kiT 119Ck+l)] .73108 .82247 .91385 .99693 1.06125

Laplace 3k/C2k+l) 1.20000 1.28591 1.36364 1.42857 1.47549

Lower bound* .864k/(k+l) .57600 .64800 .72000 .78545 .83629 I
'~The lower bound for 12ar2 [ f f2(x)dx j2  was obtained by Hodges

and Lehmann (1956) for the location parameter case.
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Hodges and Lehmann (1962) aligned observations so that they

are free of block effects, and applied joint-rank procedures

to random block designs. Likewise we can align observations,

apply joint-rank selection procedures, and thus obtain better

efficiencies (in the order of (k+l)/k). But there are cases

where alignments of block effects are not applicable, e.g.

p. 485 of Hodges and Lehmann (1962).

In Dassing we can note that Lehmann's lemma (Lemma 1 of

Lehmann (1963)) which leads to (2.13) (and hence to (2.18)

as well), is only justified heuristically. We now give a

proof. We need the following generalized Helly-Bray Lemma:

Lemma 3.1: (Generalized Helly-Bray Lemma). Let Q. + Q, a

continuous df of a random variable, and let {g I, g, h be

continuous functions satisfying

(D) Ign(X)1 h(x) for all x

(ii) gn(x) + g(x) uniformly on finite intervals, and

(iii) f hdQn f fhdQ.

Then gdQ g dQ.

Proof

See Lemma 7.1.1 of Johnson and Roussas (1970).§

'17
IF
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Theorem 3.2: (Lemma 1 of Lehmann (1963).) Let A satisfy

(2.11) and let X be a sample mean (based on the sample

size ) yielded by n(M (the population associated with

ai), and let a2 be a variance of the underlying df F

with a pdf f . Under the configuration 0(l,n), if0

lim n 6(n) = 21Aa, then we have
n

-- PX X , 1 < i k-i I 0 (l,n)
]  Pli [ (k) _ Ci) - -

Proof

Let im n 6(n) = 6 (> 0). Assuming, without loss of gener-

0 -*

ality, that E(X M ) = E) ll

lim P[X _((ik-- > X M 1 _ i <k-i 0 0(l
n ) I

XWm - Ek] X i -_ lk] i E l i:lira P a//- > a/ n- a I<- ik-i

n (i -e )
Let Y.(n) C ( i k-l) ana let Y.(n) be

1 0 1

distributed as F C). Then since the second moment of the [
n

unclerlying df exists, F (y) converges to (y) uniformly Fn y
for all y as n - , where 4Cy) f(2) exp[ /2]dx.

e - /[

Thus for every given c > 0 there exists an integer n (E)

such that, whenever n > nI (c) , -

4 IF(y + 6/o) - (y + 6/o)1 < E/2.
yn

Now by the continuity assumption there exists an integer n2(E)

,J2



1:9

such that, whenever- n n n2(c),

max (dFn(y) dF: (y) ) c/2

Hence, for all n max ( n 1 (),n 2 (c)),

n (y + nl 6(fl)/a) - 4D(y + 61a) I< c.

Therefore we have

k-i F (x+fl06(0)/a) ki( /)

and hence

lim PCX W Xk)) :S li Ski ~0 ,n)]

n -

- lrn PLY kCn) Y Y.(n) - n6 6(n)/a, 1l:i k-l1]
n

= Lj..f111 Fn(y +n 6(nhIO)J dF iy

The last equality is due to the generalized Helly-Bray Lemma.

Thus letting 6 = 2;,A, where A satisfies (2.11), the Theorem

follows.

Note that if 6 0 or w~thenI[ (k > Xi 1 :S i k-i )(10 converges to i/k or I
respectively.

AL a, 'a
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4. LFC and Counterexamples.

The configuration of O.'s which minimizes P[CS] for any

given selection procedure is called the least-favorable

configuration (LFC). The SPC, 0(t), is often least-favorable

for selection Procedures in the indifference-zone approach,

and the equal-parameter configuration (EPC) 6 - ... [

is often least-favorable in subset-selection approaches.

Rizvi and Woodworth (1970) showed that

inf P[CS < P[CS f 40 (t)] (inf P[CS] < P[CSIEPC]) for
S0 (6*t) 0

selection procedures based on joint ranks in the indifference-

zone approach (the subset-selection approach) for some df's.

And McDonald (1972) also showed that inf P[CS] < P[CSIEPC]( for one of his subset-selection procedures based on vector

ranks. In this section the counterexamples of Rizvi and

Woodworth (1970) are modified to show that the SPC, 4 0(t),

is not the LFC for P We consider two counterexamples:

- first, for the case of fixed 6 and finite n; and second,

for the case of 6 0 (and thus n-o).

Counterexample 4.1: Let k= 3, t= 1 and F be a continuous

df which places probabilities of q and p (= 1-q) uniformly

-51 on the intervals (0,c) and (1,l+) respectively, where c

(< 1/3) is a pojitive constant. Let 6* C, 0s 6 2 5 , and

1(62) (01,62,63) = (0,62,62+6*), where 0i is the location

parameter for Ti (i 1,2,3). Then for n 1 PiICSPV'4(6 2 )]

j is a constant for any 62 and for nz 2



21

I5lX PCSIPv5(6 2)ItP[cSIPv,4(0)1 and min P[CSPv,(6 2)]= PCSPv,(6*)3.
62 62

This constitutes a counterexample because 4(0) = (0,0,6*) is

a SPC while 4(6") = (0,6*,26*) is not.

Proof

The supports of the distribution of the populations under the

parameter configuration 4(62 ) can be depicted as in Figure 4.1,

where "heights" show the supports of df's under 4(62).

Figure 4.1 Supports of df's under 4(6

Tr

2i

-IT
, I

I I

62 6' 26* 36* 1 1+6* 1+28* 1+36*

Note that r. (the best population) is separated from Tr and wO2

in its support while fit and 7t2 do not have disjoint supports.

Fix n: 2. Let Bi be 0, 1, or 2 according as 0, 1, or 2 ob-

servations from ri are in the upper interval of the support

of its distribution, let B= (BI,B 2 ,B 3 ), and let b= (bl,b2 ,b 3 )11 1+3 b. 2-b

be a realization of B. Clearly P[B-bl(I,,) e n (2)p q

RR 1 3
Let R ( 1 l2 13 be the matrix of ranks each row of

R 21 R22 R2 3

which is a row vector of ranks Ri 1,20 and let

I[
. an

I - _ " % . " .
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r 1 r1

r 13 be a typical realization of R. Given
(r21 r22 r23

R = r a CS (selection of '3 ) occurs with probability I if

r1 3 + r2 3 > max(r1 2 + r 2 2 • rl + r21) with probability 1/2 if

either r 13 +r23 = r 1 2 +r 2 2 > r1 1 +r 21 or r 1 3 +r 2 3  r 11 +r21 > r12 r22'

with probability 1/3 if r1 3 + r2 3 = r11 + r2 1  r1 2 + r 2 2 , and

with probability 0 otherwise. The conditional probability

that R = r given B = b under (62) involves 27 possible

rank combinations. Many of the possible rank combinations are

not equally likely (hence our situation differs from those of

Rizvi and Woodworth (1970) and McDonald (1972), where the rank

combinations are equally likely). One example of the computa-

tions is that of P[CSIPv, (62),B=b] for b= (0,1,1). b= (0,1,1)

means that for 71 both observations are from the lower sup-

port, and for n2 and it3 one of two observations is from

the upper support; this can be expressed as:

"i (i) ( [0,6*], [1262+6] , [62+6*,62+26*]

2r 0 , 61+6 2+6"], [1+62 +6",1+6+26 ]

and

(it) [0,6*], [1+62,1+62+6], [&2+6,52+26 ]

[0,6], [62,626 +6* 62+6*,1+62+26 *]

express supports from which observations for each population

originate to have b= (0,1,1). Given (i) there are two pos-

ible rank Cu:uintiulis, while given (ii) there are two other

possibilities. We now compute the probability of each rank

combination. Let 61 6*" 6 Then
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[71,2, 3 p[<l6,2<26+= .2+.<3*2+6

1, 2, 3
1, 2 3 1 PE<Xl62'2<X262+*'6+6*<X<62 +26*]

+PE6 2<X<6*,52<X
l<X2<6

* 62 + 6 < X 3< 2+ 26 ]

+P[6 2<Xl<6*,6*<X2 <62+6* ,62+6*<X3 < 2+26]

+66< <16 +26* ]

x P[O<Xl<6*,<16X 2<1+6 2+6
* , 1+62 + *<X3 <1+6 +26

=q4p2(1- 621/25 2 ,
1

Similarly

SP [=,1 ) q4 , 62 126"*2, P =(1 3, 42(1_-62/26"2), n
,,, , 3 p n

p1 3-]] qqPp 62/2266"2.
L~23, 1, 32

Thus

PECSIPvt(6 2 ) , b=(0,,l)] = 3/4 + 62/(86*2)
21

For the other cases the method of computation is similar. In

all but 9 cases, P[CSIPv,8(62),b] equals P[CSIPvSO(6*),b];

those 9 cases are listed in Table 4.1. Now

14P1CSIP V't(6 2)] - P[CSIlPv)t(6t)]

[ l- 61/(26 2)]6/( )[(4/3)q4p2 + (4/3)q 3p3 + (4/3)qp 5 ] > 0,

A and the difference is monotone increasing in 62 for 0 _ 01 6*
4
- (namely monotone decreasing in 62 for 0- 62 !E6 Thus we

conclude that P[CSJPv,3(6 2 )] is maximized at 4C0) (which is

conc -u -- 1

.,;4.; ..
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a SPC) and is minimized at ;(6*). The case of n= 1 is

trivial and the Counterexample follows.

Table 4.1

b P[Bb] PrcsiPV B~b 4( (t2)]

(0,1,0) 2q 5p 1/2 + 6 2/(4 62)

(0,1,1) 4q4p2 3/4 + 6 2 /(86 2)

52 2
(1,0,0) 2q p 1 - 61/(462)

(1,0,1) 4q 4 p 2 - 6 2I(86 2)

(1,1,0) 4q 4p 2 1/6 + 1/3[1- 1~(26 2 )E6 2/(26 2

(111 q3 3 3/ /[ 62 /2 2][2 2 62

(1,2,1) 4q 2p 4 3/4 + l/24(l 2 16 /26 
1

(212,1) i4q 2p 4 /34 - 5/24(6 2/62)

p 2/32 2 5/2(

(2,2,1) 2qp5  2/3(1- 62/1 )[6 1/(262)

Note that 6 6*and 6 1= 6 1. -6 2'

We now show that the SPC is not the LFC for P even

for large samples. One method of showing this is to show that

the ratio of P[CSIPV]I under a configuration different from

the SPC to that under the SPG converges to some number smaller

than 1 for fixed 6 * as n + .Another me~thod of constructing

a counterexample is to show that the ratio of sample size for a

4 configuration different from the SPC to that for the SPC con-

verges to some number smaller than 1 for fixed 6* as P 1.

However we have obtained a counterexample by another method
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originated by Rizvi and Woodworth (1970): we show that when

the relation between n and 6(n) (= [k-t+l] - 8 Ek-t ] ) satis-

fies (2.16), P[CSIPV] converges (as n-+-) to some number

smaller than P * under a certain configuration of e.'s differ-1

ent from the SPC, 0(t), but still in 2 e(6 ,t). This serves

our purpose, because when the relation (2.16) holds between

6(n) and n, P[CSIPV] converges, as n-, to P* under the

SPC. [One may ask how much larger P[CSIPV] is under the SPC

than under the configuration we will consider; this question

is discussed in the next section.]

Consider the selection of the t best populations, when

the underlying df is a logistic distribution with a location

parameter. For simplicity take k> 4 (k even) and t= k/2.

Without loss of generality drop [ ] around the ordered pa-

rameter values for convenience of notation; namely take

8 [i] 8i, 7 (i) =i , and thus H(i) (n)= Hi(n) (f i k).

Lemma 4.2: Let F(x) (1+e-) and let

jit 'n); 01 = " k-t-1 = -' k-t =  0 k-t+l = 6(n),

.~~I j 0 k-t+2

where 6(n) > 0 and is in the order of O(n-), 00 > 0

fixed satisfying 0 > 6(n), and k = 2t. Then

(4.1) lim P[CSIPV , l(t,n)] 4[Atp((k+l)/k) ]

where At satisfies (2.15),

; I
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Lf 2 ( 2(4.2) P: {3"JHO(2F-i)dF/{ JH 0dF~ C JHdF~l

(4.3) Ho0(x) (k-t-l)F(x- O0 ) + 2r(x) + (t-l)F(x+O0),

and

lim 06(n)- [kk+l)/6] At[ fkf2(x)dx]-l"

Proof

For large samples, dropping the randomization part we have

(4.4) P[rIPV, 4(t,n)] P[ max H.(n) < min Hj(n) (t,n) ]
Vil i:Sk-t k-t<j~k

P[V(n) > 0 (t,n)],

I t where V(n) n (H kt+l(n) - k-t (n)).

We will find an upper bound for (4.4) as n by finding

lirn E[V(n)] and lrn Var[V(n)], and applying a Lindeberg-

Feller type central limit theorem. The computations for

4 E[V(n)] and Var[V(n)] are lengthy, and thus are omitted. In

the limiting process using Olshen's lemma (Lemma (12) of

Olshen (1967)), we have

?]lim E[V(n)j-d 1(t,n)] = [6(k+l)/k] A
t f H0(xW[2F(x) -]] dF (x) ,

• n-

4 where H (x) is given by (4.3), and (0 < 00 < C(kt,F))
00

( I ](4.5) liraVar[V(n) I~l(t,n)] > 21 HdF-(HdF)2 ]
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and t 2, where H1 (k-t-l)F(x+o 0 + 2F(x) + Ct-l)F(X-e 0.
Since we assume k =2t, we have H1  H. Thus from (4.4)

lim~~~E[~) 
-[SP 

' f~~ }i [~)>

of {V(n)-lim EEV(n)]}/{lim Var[V~n)lk} due to a Lindeberg-

Feller type central limit theorem and (.)

Lemma 4-.3. For any k and t, 1 5t <k,

where A t satisfies (2.15).

Proof

This follows from Lemma 2 of Rizvj and Woodworth (1970) upon

noting tfhat At, which satisfies (2.15), also satisfies

P[ max Z.< min~ Z +r2A
1:5i5k-t1 kt~j-Sk

Awhere Z. (1 :5 i : k) are independent standard normal ran-1

~1I dam variables. [For the case t =1, Dudewicz (1969) also

obtaincd the result of Lemma 4.3 in a different form.]
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Counterexample 4.4: Under the same setup as in Lemma 4.2,

lim P[CSIPv4 1 (t,n)] < = im P[CSIP.,40 (t,n)].

Proof

Note that 0 p < 1, since p corr(Ho,2F-1) and H0 and

2F-1 are monotone increasing in x for fixed 8 Choose

P * and k large enough such that [At/- (P*)](k+l)/k < i/p.

Substituting this into (4.1), the inequality follows. The

equality is due to Theorem 2.7.0

Through Counterexamples 4.1 and 4.4, we have seen that

the SPC minimizes P[CSIPV] neither when one has a fixed

sample size nor when one lets 6* (= e[k-t+l ] - [kt ]) tend

to zero as n - . Note that the logistic df possesses a mono-

tone likelihood ratio with respect to its location parameter

and has a support independent of its location parameter; thus

imposing additional conditions such as the above two will not

obviate the difficulty in the LFC.

ie It is an open question whether (for selection of the t

best by P

inf PECSIP = P[CSIPv,0(t)].
*.t 0(6*t)

6

5. Remarks on Selection Procedures based on Ranks.

In the literature of selection procedures based on ranks

(either joint ranks or vector ranks) each contribution either

imposes artificial restrictions on the parameter space (Puri

| I
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and Puri (1968), (1969), Gupta and McDonald (1970), and

McDonald (1972), (1973)), or is not able to find the LFC

(Blumental and Patterson (1969)), or was partially invalidated

by Rizvi and Woodworth (1970) (Lehmann (1963), and Bartlett

and Govindarajulu (1968)). A conjecture as to why these pro-

cedures were invalidated is that the LFC's for them were

sought in a parameter space where the P[CS] for certain

parametric procedures is monotone while the P[CL] for rank

procedures is not monotone (as is inJicated by Gupta and

McDonald (1970) and Blumental and Patterson (1969)).

For any procedures based on joint ranks or vector ranks,

PRANK' define

inf P[CSIPRANKI- P[CSIPRANK,0(t)]
R Q O(0 ,t)x10
RID P[CSP RANK,0(t)]

- for the indifference zone approach, and

inf P[CSIPRANK] - P[CSIPRANKEPC]

RSS 8 x 100P[CSIP RANK' EP C ]4,

for the subset-selection approach. Then the quantities RID
and R merit study because small RI and RSS may well

SS D R m

justify the SPC assumption (which will simplify theoretical

development while large RID and RSS imply that the SPC

iassumption may be of only theoretical interest. [This aspect

was called to our attention by Dr. Gary C. McDonald.]4'

'.,
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We have noted in Section 4 that P also suffers in the

LFC unless the SPC is assumed. Hence we wish to compute R ID

in the case of Counterexample 4.1 (where n = 2, k = 3, and

the LFC is relatively simple). Our results on RID for

p= .01(.01).99 (and some typical values of P[CSIPvSPC])

are summarized in Table 5.1. The minimum of P[CSIPvSPC]

is .66146 (occurring at p = .50) and the maximum RID is

3.11234% (occurring at p = .77) out of the cases studied.

These computations indicate that the assumption of the SPC

as an underlying configuration may not be unreasonable. We

propose that further study of RID and RSS be carried out

to see in how far this result generalizes to other cases.

Table 5.1 RID

P PrCSIPvSPC] R (%)

.01 .98991 .00327

.10 .89555 .27168

.20 .79887 .86522

.30 .72492 1.49768

.40 .67910 1.99793

.50 .66146 (minimum) 2.36220

.60 .67014 2.69315

.70 .70420 3.01292

.77 .74403 3.11234 (maximum)

.80 .76559 3.07632

.90 .86051 2.31874

.99 .98363 .32231

41

i
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6. Discussions

-- We have studied mathematical properties of the vector rank

procedure when applied to selecting the largest location parameter

in randomized block models. Even if the data is not quantitative

but ordinal, or is not from a location model but from a stochas-

tically ordered family of distributions, the vector rank procedure

is applicable.

An important competing selection procedure is based on the

robust estimate of location parameters (Sen and Puri (1972)). The

selection procedure based on robust location estimates does not

have the LFC difficulty that the vector rank procedure suffers

from, and its relative efficiency compared to the means procedure

is that of the Mann-Whitney- Wilcoxon test versus the t-test. A

serious disadvantage, however, is that the robust location estimate

method is not applicable if the data is ordinal or from a non-

location family: for example, see Lee and Dudewicz (1980) where

the data is incomplete rank order scores or Lee (1980) where the

distributional origin of the data is not known.

We now discuss how to choose a proper selection procedure to

be applied. If the data is from a location family, then the robust

,1 procedure of choice should be based on robust location estimates.

K If the data originates from a location family but in the ordinal

form, or from a stochastically increasing scale paremeter family, then the

vector rank procedure may be applied to selecting the population

with the largest parameter of interest. In this latter case, it

is possible that the P(CS)>P* requirement is not met. In doubtful

cases, the multinomial category selection procedure (Lee, 1980) is

a possible alternative.

S ----- .?.-~~- ~ ~ --
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As a final remark, note that the procedure considered here

is, like most robust selection procedures, not nonparametric since

the required sample size (say (2.12) or (2.17)) depends on the

underlying distribution, but is less senstitive to departure from

the assumed underlying distribution than the means procedure.

/ -I

I ( L
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