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INTRODUCTION 

The practical motivation for the present investigation arose out of a 

study of critical stresses at the core of kinetic energy penetrators.  In a 

kinetic energy penetrator, the core and the sabot are in contact through a 

series of circumferential grooves where the forward thrust is transmitted. 

Recently, the core of a penetrator with British standard buttress grooves 

failed transversely during a test.  The failure was originated at the fillet 

of the first groove indicating the presence of a high tensile boundary stress. 

The objectives of this investigation were to determine the maximum boundary 

stress on the fillet of the groove and the distribution of contact stresses. 

In addition, stress distributions along the narrowest section of the core were 

determined to provide an equilibrium check for the accuracy of the results. 

Two groove profiles were studied; namely, the British standard buttress. Fig- 

ure 1, and a new profile. Figure 2.  All data was obtained photoelastically by 

means of the three-dimensional shear-difference method in combination with 

stress-freezing-and-slicing techniques.  For the first model (British standard 

buttress profile), comparisons were made between experimental results and 

those calculated from Heywood's empirical equation.^  No comparisons were made 

for the second model (new profile). 

In a kinetic energy penetrator, the core and the sabot are usually made 

of different materials and consist of a series of grooves.  However, the pre- 

liminary investigation reported here is confined to single-groove connections 

of same materials.  Further work on multi-groove connections is in progress 

^-Heywood, R. B., "Tensile Fillet Stresses in Loaded Projections," Proceedings 
of the Institute of Mechanical Engineers, Vol. 159, pp. 384-391, 1948. 



and will be reported at a later date. 

EXPERIMENTAL PROCEDURE 

Construction and Loading of Model 

Two models of single-groove connection were constructed of photoelastic 

material PLM4B, supplied by MEASUREMENT GROUP, Raleigh, NC.  Figure 3 shows a 

sketch of the first model with British standard buttress groove profile.  The 

groove in the second model had a new profile as shown in Figure 2.  For the 

convenience of taking data and the conservation of material, the groove in the 

model was scaled up eight times from the prototype while the pitch diameter 

only 2.72 times.  The scaling difference has no effect on the stresses in the 

vicinity of the groove.  The outer piece (sabot) consisted of two semi- 

cylinders.  They were cemented together after assembly.  Dowel pins made of 

the same photoelastic material were used to assure perfect alignment. 

The model was loaded in a stress-frozen furnace by means of dead weights. 

The loaded model and the calibration disks were slowly heated to the critical 

temperature of 250oF, which was held constant for eight hours, and then 

gradually cooled to room temperature at which time the loads were removed. 

The rate of heating was 10oF/hour, and the rate of cooling l0F/hour.  The 

duration of the cycle was about eight-nine days.  The loads were 59.1 pounds 

and 58.8 pounds for the first and second models, respectively, including the 

body weight of the outer piece. 



Slicing Plan 

One meridian slice was removed from the core and outer piece of each 

model for photoelastic observations.  Its thickness was 0.1 inch.  The plane 

of the slice was 90 degrees from the cement joint. 

Scope of Investigation 

The tangential free boundary stresses along the fillet of the groove were 

measured and contact stresses were found.  In addition, stress distributions 

along the narrowest cross section in the core were determined.  These will be 

described later. 

Precision of Measurements 

The photoelastic data, i.e., the fringe orders and isoclinic parameters, 

were measured by means of a photometer (Photovolt Corporation, Model 520M) and 

a precision polariscope specially designed for three-dimensional analysis. 

The photometer detected the minimum light intensity.  The polariscope had a 

super-pressure compact mercury arc (OSRAM) as its light source.  The 

combination of a condensing lens, a pin hole, a collimating lens, and a 

monochromatic filter provided a field of collimated monochromatic light of 

5461 A where the slice was placed.  A pair of Glan-Thompson prisms were used 

as the polarizer and analyzer.  They were mechanically coupled with a 

quarter-wave plate.  Fractional fringe orders were measured by means of 

Senarraont's principle of compensation^*^ with errors not exceeding ± 0.005 

2Jessop, H. T. and Harris, F. C., "Photoelasticity - Principle and Methods,' 
p. 176, Dover Publications, Inc., New York, 1949. 

■^Cheng, Y. F., "Some New Techniques for Scattered Light Photoelasticity," 
Experimental Mechanics, Vol. 3, No. 11, pp. 275-278, Nov. 1963. 



fringes.  The error In isoclinics did not exceed ± 1 degree.  A lens projected 

a 5X image of stress pattern of the slice onto a screen in front of the 

photoraultiplier tube.  The screen had an 0.03 inch pin hole and gave a 

resolution of 0.006 inch in the slice. 

Three-Dimensional Shear-Difference Sub-Slice Method 

The three-dimensional shear-difference sub-slice method was developed by 

Frocht and Guernsey^'5 in 1952.  For the sake of completeness of this report, 

a brief outline is given here.  The necessary and sufficient photoelastic 

data, i.e., the fringe orders and isoclinic parameters, for the complete 

determination of stresses along a given line are obtained from a sub-slice 

having the form of a parallelopiped, the axis of which is the given line of 

interest. Figure 4(a).  The shearing stresses TyX and TZX on the four 

longitudinal sides, Figure 4(b), are determined from four observations at 

normal incidence:  I4, L3, L4, and L5.  For example, 

1 
Tyx = - (p'-q^sin 2<j)' (1) 

^Frocht, M. M. and Guernsey, R. Jr., "Studies in Three-Dimensional 
Photoelasticity - The Application of the Shear-Difference Method to the 
General Space Problem," Proceedings First US National Congress of Applied 
Mechanics, pp. 301-307, December 1952. 

5Frocht, M. M. and Guernsey, R. Jr., "Further Work on the General Three- 
Dimensional Photoelastic Problem," Journal of Applied Mechanics, Trans. ASME, 
Vol. 77, No. 2, pp. 183-189, June 1955. 



where p' and q' are the secondary principal stresses* at a point in the 

xy-plane obtained from normal incidence in the z-direction, and (f)' is the 

corresponding isoclinic parameter.  Similarly 

1 
Tzx = " Cp"-q,,)Bln 2<r (2) 

where p" and q" are the secondary principal stresses at a point in the xz- 

plane obtained from normal incidence in the y-direction, and $" is the 

corresponding isoclinic parameter.  Knowing TyX and TZX, it is possible to 

determine an approximation to the partial derivatives 9TyX/9y and 8TZX/3Z. 

Thus 

(3Tyx/3y)Xiy>z - (ATyx/Ay)Xjy)Z 

= [(Tyx)x,y+(Ay/2)>z " (Tyx)x,y-(Ay/2).zl/Ay (3a) 

OTzx/3z)x>y>z « (ATzx/Az)Xjy)Z 

= [(Tzx)x>y,z+(Az/2) " (Tzx)x,y,z-(Az/2)]/Az (3b) 

where the subscripts denote the coordinates of the points where the shears are 

evaluated. 

*The secondary principal stresses for a given direction are the principal 
stresses resulting from the stress components which lie in a plane normal to 
the direction.  Thus the secondary principal stresses p' and q1 for the z- 
direction are the principal stresses resulting from the stress components ax, 
ay and Txy and p'.q' = (l/2)(ax+ay) ± {[(1/2)(ax-ay)]

2 + Txy
2}l/2.  The other 

stress components which lie in a plane parallel to the given direction have 
no photoelastic effect when observed along the direction. 



Knowing ATXy/Ay and ATZX/AZ, it is possible to determine approximately 

the stress ax at any point on the x-axis, i.e., the line of interest.  From 

the first differential equation of equilibrium without body forces 

3ax/8x + 8-ryx/3y + 3TZX/3Z = 0 (4) 

we obtain, upon integration and substitution of finite differences, the 

expression 
i 1 

(Ox)i = (ax)o " I (Aiyx/AyMx - I  (ATZX/AZ)AX (5) 
o o 

where the subscript o denotes the starting point at the boundary having a 

known initial value of ax and the subscript 1 denotes any interior point on 

the axis. 

Once (ax)i is known, the remaining normal stresses (ay)i and (az)i can be 

computed from the following equations: 

(ay)i = (ax)l " (p'-q^cos 2$' (6a) 

(o^i * (ox)i - (p'^q'^cos 2(j)" (6b) 

The remaining shearing stress TyZ can be determined from an observation 

at oblique incidence:  LQ, Figure 4(a) and is given by the equation 

Tyz = (Fene s:i-n 2(j)Q - TyX cos 9)csc 6 (7) 

where 6 is the angle of incidence of the oblique ray LQ,  FQ   the model fringe 

value in shear, (J>Q the isoclinic parameter, and ng the fringe order for the 

oblique path. 



EXPERIMENTAL RESULTS 

Fillet Boundary Stresses 

Figures 5(a) and 5(b) show the stress patterns of meridian slices from 

the first and second models, respectively.  It can be seen that in both models 

the fringe orders at the free fillet boundary in the outer piece are 

considerably less than those in the core.  On the free boundary one of the 

principal stresses is identically zero, and the remaining principal stress 

tangent to the boundary is given by the fringe order.  Figures 6(a) and 6(b) 

show the free fillet boundary stress. Of, in the core of the first and 

second models, respectively.  In the first model, the boundary stress has a 

maximum value of (af)niax = 61 psi and is located approximately 21 degrees from 

the narrowest section, measured toward the loaded surface.  In the second 

model, (of)max 'ias a value of 98 psi and is located approximately 43 degrees 

from the narrowest section, measured toward the loaded surface.  This value is 

almost 60 percent greater than that of the first model while their loads are 

practically the same. 

Radial Distribution of Stresses qr, az.y   and xvz  on the Narrowest Section of 
the Core 

In a r9z-cylindrical coordinate system, equation (5) takes the following 

form 
i i 

(0^! = (ar)0 - I   (ATzr/AZ)Ar - I  (ATer/Ae)Ar (8) 
o o 

For an axially symmetric problem, TQr = TQZ = 0, equation (8) reduces to 

1 
(OjOi = (or)0 - I   (ATzr/Az)Ar (9) 



where (ar)0 is the value of ar at the starting point, and Tzr Is obtained by 

making photoelastlc observations of the meridian slice at normal incidence to 

the rz-plane.  Once (or)^ is known, (.az)i  can be computed from photoelastlc 

relations similar to equation (6). 

For a complete determination of the state of stress, the remaining normal 

stress OQ   can be obtained by preparing a sub-slice from the meridian slice. 

This sub-slice has the form of a parallelopiped and its axis is the given line 

of interest, the radial line.  An observation at normal incidence to the 

re-plane along the z-direction, together with a photoelastlc relation similar 

to equation (6), yields the normal stress OQ.     However, due to the Interest of 

preserving the meridian slices, the sub-slice has not been prepared and OQ has 

not been determined. 

Figures 7(a) and 7(b) show the radial distribution of stresses ar, az, 

and Trz on the narrowest section of the core of the first and second models, 

respectively.  As would be expected, in both models the maximum of az occurs 

on the root of the groove Indicating the notch effect.  In the first model, 

(0z)max has a value of 54 psl, in the second model, 42 psi.  They are less 

than (af)max in both models. 

Stress Concentration Factors 

We will define stress concentration factors Kz, Kp, and Kg as follows: 

Kz = (of)max/(p/Az) (10a) 

Kp = ((Jf)raax/(P/Ap) (10b) 

Ks = (0f)max/(p/As) (10c) 



where P is the applied load, Az the narrowest cross sectional area, Ap the 

shearing area along the pitch circle, and As the shearing area along the 

circle of the groove root.  The results are shown in Table I. 

TABLE I.  STRESS CONCENTRATION FACTORS 

Model 1 Model 2 

Loads, Pounds 59.1 58.8 

(af)max. Psi 61 98 

! Az, sq. in. (Tr/4)(2.388)2 
U/4)(2.328)2 | 

Kz 4.6 7.1 

'   Ap, sq. in. ir(3)(l/2) - 

1 Kp 4.9 - 

1 As, sq. in. Tf(2.388)(l) n(2.328)(l) 

1 Ks 7.7 12.2     | 

Contact Stresses 

In the determination of contact stresses, a nQt  orthogonal coordinate 

system was used, in which n was the direction perpendicular to the contact, 9 

the circumferential direction, and t the tangential direction.  Equation (5) 

takes the following form 

1 1 
(On)i = (<Jn)o " I   (ATnt/At)An - £ (ATet/Ae)An 

o o 
(11) 



Because of axial symmetry, TQ^  =  TQn  = 0, equation (11) reduces to 

1 
(On)i = (0n)o - I   (ATnt/At)An (12) 

o 

where (on)0 is the value of an at the starting point, and Tnt is obtained by 

making photoelastic observations of the meridian slice at normal incidence to 

the nt-plane.  Once (an)^ is known, (atH 
can be computed from photoelastic 

relation similar to equation (6).  The remaining normal stress OQ can be 

obtained by making photoelastic observations of a sub-slice at normal 

incidence to the n8-plane.  Again, due to the interest of preserving the 

meridian slices, the sub-slice has not been prepared and OQ has not been 

determined. 

In the first model, contact occurred from A to E, as seen in Figure 8. 

Contact stresses were determined along lines BB', CC, DD', and EE'.  They 

were perpendicular to AE and were separated from each other by a distance of 

AE/4.  For lines BB', CC, and DD', the summation was started at B', C, and 

D', respectively, on the free boundary.  Line EE' did not reach the free 

boundary.  An auxiliary line D'E', intersected perpendicularly with EE' at E', 

was employed.  The summation along D'E' provided data at E', the starting 

point for line EE'.  Figure 8 shows the distributions of an, ot, and Tnt  along 

contact surface AE in the first model.  Both an  and Tnt reached their maximum 

value of -60 psi and -28 psi, respectively, at point E. 

Contact stresses were also determined along the line EE' in the second 

model.  Figure 9 shows the distribution of an,   at,  and Tnt along EE'.  The 

maximum compression is given by an at E' (about -180 psi) and is about three 

times the maximum compression in the first model. 

10 



In the first model, the angle between the loaded surface and the 

horizontal was found to be 7.5 degrees instead of 7 degrees.  In the second 

model, contact occurred at a point making an angle of 40.3 degrees with the 

vertical instead of 45 degrees.  These differences are probably due to the 

combined effect of tolerance in model manufacturing and deformation. 

DISCUSSIONS 

Critical Regions 

In both models the largest tensile fillet stresses are located at a point 

away from the narrowest section toward the loaded surface.  Table II shows a 

comparison between (of)max and (oz)max. 

TABLE II.  A COMPARISON BETWEEN (Of)aax AND (az)max 

Model 1 Model 2 

(af)max. Psi 

largest tensile 
fillet stress 

(az)raax. Psl 

maximum value 
of az at the 
narrowest section 

61 psi, 21° away 
from the narrowest 
section. Figure 6(a) 

54 psi. Figure 7(a) 

98 psi, 43° away 
from the narrowest 
section. Figure 6(b) 

42 psi. Figure 7(b) 

11 



It can be seen that (of)Tnax is the critical stress.  Failure will start 

when (af)max reaches the ultimate limit as loads are increased.  The critical 

region is not the narrowest section but rather the region where (of)Inax ^s 

found.  Moreover, the fact that (of)max ^n t^e second model (new profile) is 

60 percent greater than that in the first model (British standard buttress) 

clearly indicates that the new profile is weaker than the British standard 

buttress although (oz)max is slightly reduced in the new profile. 

Checks 

Two independent checks were made. 

1. The stress distribution of az  on the narrowest section was checked by 

determining the resultant of az on this section and comparing it with the 

applied axial load.  Taking az from the meridian slices, the integrated axial 

forces were found to be 55.2 and 57.8 pounds compared to an applied load of 

59.1 and 58.8 pounds in the first and second models, respectively. 

2. The distribution of contact stresses was checked by determining az 

and its effect on the contact surface, and comparing it with the applied 

axial load.  The stress az was calculated from the usual stress transformation 

equation.  The distribution of az along contact surface in the first model is 

shown in Figure 8.  The integrated axial force was found to be 62.4 pounds 

compared to an applied load of 59.1 pounds.  In the second model, the contact 

region extended over an arc of 12.5 degrees.  Assuming a parabolic 

distribution of stresses over the contact region, the stress az was calculated 

and the result was found to be 61.7 pounds compared to an applied load of 

58.8 pounds. 

12 



Heywood's Empirical Equation 

In 1948 Heywood1 suggested an empirical equation of the following form 

(af)max = [l+0.26(e/R)0-7][(1.5a/e2) + (0.36/be)1/2(1+0.25 sin T)](w/t) (13) 

for calculating the maximum fillet stress at point A, 30 degrees from the 

point of tangency on the fillet, Figure 10, where w denotes the load, t the 

thickness, and the dimensions a, b, e, and R, and the angle y are as shown in 

the figure. 

Comparison of Experimental Results With Those From Heywood's Equation 

In the first model, e = 0.326 inch and R = 0.120 inch, the section EA, 

Figure 8, was equally divided into eight segments.  The dimensions a and b, 

and the angle y were determined at midpoint of each segment by considering an 

and TQt at the point and their geometries.  Equation (13) was used to 

calculate (af)max/(w/t) at each point, and (af)max due to individual load at 

each segment was found.  The result gave a (af)max of 57 psi at 30 degrees in 

comparison with the experimental result of 61 psi at 62 degrees. 

Recently, Allison and Hearn6 reported the movement of maximum stress 

position around the fillet as load position varies.  They observed a range of 

angle from 30 degrees to 70 degrees.  Based on Allison's results, the 

summation process is not valid since the stress maxima do not occur at the 

same position.  This has an unfavorable effect of reducing the (cff)max f 

its calculated value of 57 psi.  Therefore, Heywood's equation is not 

rom 

heywood, R. B., "Tensile Stresses in Loaded Projections," Proceedings of the 
Institute of Mechanical Engineers, Vol. 159, pp. 384-391, 1948. 

6Allison, I. M. and Hearn, E. J., "A New Look at the Bending Strength of Gear 
Teeth," Experimental Mechanics, Vol. 20, No. 7, pp. 217-225, July 1980. 

13 



applicable in our problem.  Also, a, b, e, and y in equation (13) are 

unknown quantites. 

In the second model, equation (13) can not be evaluated due to the 40.3 

degree angle of its load position. 

CONCLUSIONS 

Stresses in single-groove connection were investigated photoelastically 

by means of the three-dimensional shear-difference method in combination with 

stress-freezing-and-sllcing techniques.  Two groove profiles were studied; 

namely, the British standard buttress and the new profile.  The results show 

that, in both profiles, the maximum fillet stress (af)max does not occur at 

the groove root.  Therefore, the narrowest section is not the critical region. 

Although the stress at the groove root of the new profile is slightly less 

than that of the British standard buttress, the new profile is weaker than the 

British standard buttress since the critical stress, (of)max, in the new pro- 

file is 1.6 times of that in the British standard buttress.  Stress distribu- 

tions were also determined across the narrowest section and the contact 

region.  Appropriate checks for the accuracy of the results were made. 

Heywood's empirical equation was reviewed.  It is concluded that this 

equation is not applicable in our problem for the following reasons:  (a) 

(af)max does not occur at 30 degrees from the point of tangency on the fillet, 

and (b) the load and its position are unknowns rather than known quantities as 

shown in the equation. 

Further work on multi-groove connections is in progress and will be 

reported at a later date. 

14 
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Figure 2.    /Ve^y profile. 
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Figure 3.   Sketch of the first mode/ 
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(b) 

Figure 4.   Sketch showincj the shear-difference method 
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ca) QriHsh shandard buttress profile 

(b)    New proH/e 

Figure 5.    Phofographs of siress patterns 
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-fhe narroiA/esf secfion 
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(b) Core, of the second modei new prof-ile. 

Figure 7.   Oisirihuhons of o~rt (r^, and TrA on 
-the   narrowest  secfion 
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Figure 3.     Pisfri but ions of   (rn, crti and T„t  on 

the coniacf region in  the  firsi  model 
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Figure 9.   Coniaci stresses   <rnt (rti and Tnf in 

the   second model 
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Figure   10.     Dimensions   used for calculating 

maximum filief- stress  by  Hey wood 
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