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Double Fourier Series Solution
of Poisson's Equation on a Sphere

I. I'FR()1)1 T10o%

Advances in numerical simulation aind ,t . a in ilil :is dive.rse, as

geph siral fluid dyarics, heat tr'ansr,,r, and nii', j, 1' a a II i 1,.VsIAS have

gen,:.ated, over the years, considerable interest I ! 'l, o!/th 'd ". " ,luti,'n ft"

Poissotn-type equations. Most research in this arc,,, A , 1--,'Ie not dl, l with

sphe~rical gecmetries. In Fact, of;a list of 150 arii,-h,-:e Iln :tst I .liptic Solvers"

,.,,npiled by Schuman, 1 only two 3 deal with the sphcjo.cal gemctr ry. We present

in this paper a new numierial methotd for the soluthn (,r Poisson's equation on a

sphere. In contrast to previous methods of Swarztrauber 2 and Yee 3 which are

based on rinite-difrerence, this Inethod is based on truncated (ouble Fourier series

on spheres (for example, Orszag4; Ho er and Steinberg 5 ). The use of finite double

(Received for publication 28 ()ctober 1980)

1. Schumann, '., (ed.) (1978) Fast Elliptic Solvers, Proceedings of the GAMMO-
worksh)p on rast solution methds for t .iscretized Poisson equation,
Karlsruhe, 1977. Advance Publications, London W(2, England, 289 pp.

2. Swar7trauber, P. N. (1974) The direct solution of the discrete Poisson equation
on the surface of a sphere, J. (omput. Phys. 15:46-54.

3. Yee, S. Y. K. (1976;) An erficient method for a finite-difference solution of the
Poisson equation on the surface or a sphere, J. Comput. Phys. 22 :215-228.

4. O)rszag, S.A. (1974) Fourier series on spheres, Mon. WVea. Rev. 102:56-75.

5. Boer, G.J. , and Steinberg, 1,. (1975) Fourier series on spheres, Atmosphere
13:180-191.
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Fourier series on a rectangle is not new, but the formulation on a sphere reported

here is. In particular, Yee's6 interpretation of Fourier series on spheres has

been implemented to narrow what Swarztrauber referred to as "the theoretical gap

which exists between the states of the art for discrete spectral approximations on
"7a sphere and on a rectangle, " and to obtain a Galerkin approximation to the solu-

tion of Poisson's equation on a sphere.

Let u(, X) be a scalar function on a sphere where the location of a point is

specified by co-latitude 0 :s 0 !5 7r and longitude 0 _ X < 27r. It may then be repre-

sented by double Fourier series of the form
8

00 00imXu(O, X) E u I Utm[(1- s) cos 1O+ ssin PO0 ei , (la) _

m=-C 1=0

where

=c 7r 21i )

Ulm = [ f u(O, X)eim d [(l - s) cos 1 O+s sin£ f] dO (ib)

0 0

{i if F 0
2 otherwise,

and s =0 ifm is even, s = 1 if m is odd. Since the transform pair Eqs. (la) and

(ib) is amenable to Fast Fourier Transform (FFT), we have at our disposal an

extremely efficient means of obtaining a numerical solution for Poisson's equation

on the surface of a sphere.

The procedure involves the expansion of the dependent variables in truncated

double Fourier series, the substitution of the truncated series for the dependent

variables in the Poisson equation, the application of the Galerkin approximation to

obtain in Fourier space a number of linear algebraic systems, the solution of these

systems, and the inverse transform of the solution in Fourier space back to physi-

cal space.

6. Yee, S. Y. K. (1980a) Fourier series on spheres-a geometric perspective.
AFGL-TR-80-0021, Air Force Geophysics Laboratory, Bedford, MA., 16 pp.

7. Swarztrauber, P. N. (1979) On the spectral approximation of discrete scalar

and vector functions on the sphere, SIAM J. Numer. Anal. 16:934-949.

8. Yee, S. Y. K. (1980b) Studies on Fourier series on spheres, Mon. Wea. Rev.
108:676-678.
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2. ORDINARY DIFFERENTIAL EQUATIONS WITH VARIABLE
COEFFICIENTS

Our goal is to seek, using the FFT technique, an accurate numerical solution

to the Poisson equation on the surface of a unit sphere (0 !: 0 : 7r, 0 !s X < 270,

S1 a s Un1 auu 1(2a)
I sin 0 0 O' +  ... a ' u (2a)

sine 0 ( O ao sin2  a aX2

Here the forcing function f(o, X) must satisfy the compatibility condition (for exam-

ple, Berg and McGregor
9

J f(O, X) sin 0 ds = 0 (2b)

S

over the surface of the sphere S.

The first step in our solution method is the transformation of this partial dif-

ferential equation (PDE) to a number of ordinary differential equations (ODE), a

standard approach in the method of solution for PDE. A brief outline of this proce-

dure is included here for completeness. We decompose u(0, X) along a given latitude

by a truncated Fourier series of the form

M

u(0, X) 3 um(0) eimX , (3a)

m=-M

where

cK -imk c= 1 for rn0or±M
u (0) E u(6, Ak ) e (3b)

n- K k=l kc = 2 otherwise

are complex Fourier coefficients, M K/2 is the cutoff wavenumber, Xk 2rk/K,

and K is the number of data points along a latitude circle. Since a latitude circle

degenerates into a single point at the poles, for u (0, X) to have a single value u(P)

there, we must have the pole conditions

9. Berg, P.W., and McGregor, J. L. (1966) Elementary Partial Differential
Equations, Holden-Day, San Francisco, CA.
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Su(P) for m 0 (4a)

mP 0 for m d 0 , (4b)

where P = 0 or 7r, and I ml : M. A Galerkin approximation to Eq. (2a), represen-

ted by a set of ODE with variable coefficients, is obtained if we substitute for u

and f in Eq. (2a) by truncated series of the form of Eq. (3a), multiply the resulting -

equations by exp (-imX), and then integrate over X for the interval 0 5 X < 27r:

1 d sin d - ur(0) m2 (S- .2 Um(0) = m0 (5)
sn- 0_ dO sin2 0

where 0 5 0 5r I ml s M. For convenience of discussion, we rewrite Eq. (5)

in the form

u" (0) + cos 0 U ( ) (6)
m- sin 0 sin2 0 U(0) n

Equation (6) together with Eq. (4) constitutes a set of one-dimensional Dirichlet

boundary-value problems (BVP). Of this set, 2M equations have homogeneous

boundary conditions and one equation has inhomogeneous boundary conditions given

by Eq. (4a). Thus the problem of solving a two-dimensional Poisson equation be-

comes that of solving a set of one-dimensional variable coefficient BVP of the

Helmholtz-type. The pole conditions may now be considered as boundary condi-

tions. For m = 0, however, Eq. (6) has no unique solution because the pole values

u(P) in Eq. (4a) are among the unknowns to be sought in Eqs. (2a) and (2b). This,

of course, indicates nothing more than that solutions to Poisson's equation on a

sphere can only be determined to within an additive constant. We shall return to

this point later.

3. SPECTRAL ALGEBRAIC EQUATIONS

The next key step in our solution method is based on the fact that u n(0) is a

2ff-periodic even (odd) function for even (odd) m, and we may approximate urn (0) in

truncated half-range expansions of cosine (sine):

10
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i u1  cos f 0 i' kUvoIn III

u ( (7a)
L

u, n sin 16 for odd m
I =0

where

J-1

u o y Uo(O) Cos f6. + --2J- [u(O 0)- (-1) u(( )
j=1

J-1

E- u (6) ('os 10 for even m ;e 0.1 1
jl

u, m - (7b)

2. u (6.) sin 1 . for odd fII
J 1 1

c 1 if 1 0 or L, c - 2 otherwise, I = J is a cutoff, 0 = ji ;J, and (J-l) is

the number of data points between poles.

We consider first the constraints on the use of these expansions to solve

Eq. (6). For m = 0, Eq. (6) requir-s that u'(0)/sin 0 be finite for all 0, including

0 : 0 and Ir. The cosine expansions in Eq. (7a) obviously satisfy this requirement.

For m v 0, Eq. (6) requires at least that u m(0)/sin 0 be finite for all 0 (()rsai 4 .

In the case of odd m, this condition is automatically satisfied by the sine expan-

sions in Eq. (7a). In the case of even m 0, however, we must impose on the

cosine expansions the constraints

un(O) = v m + w i 0 (8a)in

and

urm(r) = vm - wm = 0 (8b)

where

vn = u , (9a)

1 even

11



' = ul, m (9b)

I =odd

Equations (8a) and (8b) will hold only if we make both

v =0 (10a)

and

w =0 . (10b)

These are then the "pole conditions" which the spectral equations must satisfy for

the absence of singularities at the poles in Eq. (6). Note that these conditions are

cor istent with Eqs. (4a) and (4b), the pole conditions for the east-west Fourier

expansions oft u(0, X).

Just as Eqs. (3a) and (3b) provide the linkage between a too-dimensional PDE

and a set of ODE, Eqs. (7a) and (7b) enable us to reduce Eq. ((;) to a set of alge-

braic systems in the Fourier space lml -s M, 0 5 f I,:

(f - 2)(M - 1)u 1 _2, - (21 2  +  4m 2 )u_, + ( + )M + 2)u .2

-t 1-2, ni +  21f, - +2, In

Iere flm are complex Fourier coefficients of f r(0). In the derivation of Eq. (11),

we have

1. Made use of the identity 2 sin 2 0 1 - cos 20 to r-o rite Eq. (1) in th, f, ro

u11(0) - cos 2Ou",(0) + sin 20 ' (0) - 2m 2  
ii (,) (1 -0u) 2')f (ti) 12)

2. Expanded un (0), u (0), u0 (0) and r (0) in Eq. (12) as truncated series

in the form of Eqs. (7a) and (7b).

3. Made use of the trigonometric identities

2 cos 20 cos F) - cos (f - 2)0 + cos (f + 2)0

2 sin 20 sin 10 cos (f - 2)0 - cns (t + 2)0

2 cos 20 sin f9 sin (f - 2)0 +- sin (f + 2)0

2 sin 20 cos f 0 -sin (f - 2)0 + sin (f i 2)0

12



-. ..

4. Invoked the Galerkin approximation in the manner that Eq. (5) was derived

from Eqs. (2a) and (2b) and dropped the (1, + 1)th and (L + 2)th components w'Aich

are outside the range of our series expansions defined by Eqs. (7a) and (7b).

We now discuss the pole conditions for Eq. (6) in the context of spectral alge-

braic systems Eq. (11). As mentioned previously, Eqs. (2a) and (2b) prescribe u

on a sphere only to within an additive constant. To determine u uniquely, we need

to have one additional piece of information on u. Without loss of generality, we

shall impose the condition

u(9 = 0) + u(O = 7r) = constant = 0 . (13)

In Fourier space this condition becomes, through Eqs. (4a) and (7a).

v 0 ul,0 = 0 . (14) "

I =even

This is consistent with the pole conditions v for the cases of even m v 0 given in
m

Eqs. (10a) and (10b). In solving Eq. (11), we shall use Eq. (14) to compute u0 ,0,

the constant term in our double Fourier series expansions. For even m 0,

u"0m mare computed via the pole conditions given in Eq. (10):

um - ul, M (15)

1 =even
1#0

For odd m, u0, m, UL, m are easily found from Eq. (7b) to be

u o m =u = 0 (16)

4. TRIDIAGONAL SYSTEMS

With the problem of pole conditions settled, we are now ready to solve linear

algebraic systems given in Eq. (11). We note first that for a given m, the even I

and odd I components are uncoupled. We may therefore break the algebraic sYs-

tem for each m into two independent subsystems. Furthermore, written in matrix

form, these subsystems have a very desirable Feature in that their (,efricient

13



matt-ices are tridiagonal. Very efficient algorithms at-e available fol- thr' soluti'.n

of such tridiagonal systems (for example, Varga io We write Eq. (11) in niatri%

notations:

b 2,m C2u2h,

a 4  u 4h

a 1 . b m uL

b 1, mfC I1

(17h1)

where

U I 2M( 1)

1) 1,i -2 2~ _ .4 11

C f (Pj 4 1)(C 4- 2)

h ,in - fl -2, mo 4 2f Ior - r, 4 2, rn
I,-I

12,m ..,h , )nr0 11
In Eqs. (17a) and (17b), aec have dr-opped the (1, 1, rn) and (1. +~ 2, 111) co'1 p)-

nents because they are, heyond the range of our series expansions. ( )n the oAlthe

hand, the components (-2, 111) and (-I, mi) have been retained because u (0), f Wu

are 27r-periodic in 0. Had we used expansions over 0 - 0 < 27r instead of using half-

range expansions as in JE.qs. (7a) and (7b), then any componentIII-1.wudhv

10. Varga, R. S. (19(;2) Matrix Iterative Analysis, Prentice-Hiall, Englewood Cliffs,
N. J. , p. 19.5.

14



bectn athinl the. specr al r-ange. We retlained the (-2, 111), (-1, m1) c(iomonnts by

the utse of the identitY

-1,L In i

hand to be ze to. InI this ease, we simtnply set u 0 and iseaird the last mnim-

bet- in Eq. (1 7a). Note, that the comnponents 10  111 75 M, are not included in

Eqs. (1 7a) and (1 7b). Thiese eare to be obtained tht-,c)ugh the pol e condit ions di s-

cussed in Section :3 :For, m - 0, u 0 0 is given by E 1q. (14),

f, - even

for, even ni ;1 0, 110 , 11 at-e given by Eq. (1 5). For (odd mI, u 0 ,i are( of cour~se

known From Eq. (1 Id to be zer-o.

so far- we have 'lem olst r'at ed that the Poisson equation o~n a spher-e (can be

appiro-imt rd byv a number- or I t-idiagonal sYstems in the Fourier, space. At this

point, it is a ppi-opi-iate to e'xam~inc the pt( )peties or the t ridiagonal systems. A

little simtple atcit hmetic %%itli a 1 1 fmI and c fteveals that the coefficient mat ticesI-

of these s.,steoos at-e st rirtly diagonally dominant For, the cases I II _ 2. 1 nique

solutions thereto ccv exist for- these cases. ]-or n) 0, ±1, the situation is less

rcar- cut. But it can be shown that the deter~minants of the rtcefficient. mat t'ices

tft c these cases acev all nonze rat; these algebr-aic sy~st emis thereFot-e also have

unique stolut ions.

5. TIFr C:OMPU'TATIONS

As mtentionedo cat-lie r, very e fficietnt algorithtmis aceo available for solution of

ti-idiagonal systems such as Eqs. ( 17a) and ( 17b). We shall report in this section

somle tesul ts (F out' riumetital test coinputat ions. Be Fore doing so, let us pause

fr, a mnifit h t reca pitulate otr numerieal pro('edur('. We shall also indicate

[itt brackets I the ;tpproximate minimunm number of ar-ithmeotic oper-ations r'equir'ed

Ft- each step:

1. l:,rI each 1 thr'tugli1 J - I, tiransrocat F. kto obtain complex Fourier-

cF~Fio'ient s t 01 0 Set WE' ) t(l'), P' 0 or- Ir. NKJ - 1) log 2 K)

2. For a jgiven even (oddl) m, piroron cosine (sitne) transFor-m on F (ot. to

obtain f lit 13 lot!.) J
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3. Compute htm in Eqs. (17a) and (17b). (2J]

4. Solve Eqs. (17a) and (17b) for u, using an algorithm for tridiagonal

systems. 10 [J]

5. For a given even (odd) m, perform inverse cosine (sine) transform on

Ut, m to obtain urm (0j). [J log 2 J]

6. Repeat steps (2) through (5) for all Ina -5 M. [Multiply each count in

steps (2) through (5) by K]

7. Inverse transform um(0j j = 1, J - 1, to obtain u k; set u(P) = u 0 (P).

[K(J - 1) log 2 K]

Thus, for a latitude-longitude grid with 2J X (J - 1) + 2 data points (K = 2J),

the approximate number, of arithmetic operations is 12J 2 (1 + log 2 J)' or about

6 (1 + log 2 J) operations per data point. Here we assume that a, b m, c1 have

been precomputed and J = 2P , where p is a positive integer. An arithmetic opera-

tion is defined as a multiplication followed by an addition in the real domain. These

counts are comparable to operation counts for the Fourier solution of the Poisson
equation on a rectangle (for example, Swarztrauber )

The test function used for program checkout is

f(0,?) n,- + 1)(m + 2) cos 0 sin 0 cos m( - d)- 2 cos 0

where dm are random numbers within the range (0, 27r). For this forcing function,

Eqs. (2a) and (2b) has the exact solution

m 
2

u 0 ) E cos 0 sin m () Cos II(X - d ) + cos 0

m -- in 1

With the exact solutions known, a normalized 1,e rror norm defined by

lE u - u A' ! /!1 uAII

may then be considered as a measure of the arcur'ac. ,, ( or nunerical solution u.

The number of digits of accuracy in u is then given by

11. Swarztrauber, P. N. (1977) The methods of cyclic reduction, Fourier analysis
and the FACR algorithm for the discrete solution or Poisson's equation o'n
a rectangle, SIAM Rev. 19:490-501.
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Several sets of computations have been made using a CDC 6600 computer for

various grid resolutions and various values of m 1 and m 2 . Some sample results

are tabulated in Table 1 for cases in which the data contain only long waves

(in 1 = 1, m 2 - 2). We see that 11-, 12-digit accuracies are retained in our numer-
0 0 0 0ical solutions for the 100 X 100, 5o X 5 , 2. 8' X 2. 8 resolutions tested. Note that

excessive resolutions have been used in these computations in the sense that the

tabulated resolutions are capable of resolving waves having wave numbers up to

18, 3(;, and 64, respectively, while the data contain only wave components up to

wave number 2. For the smooth function tested, the slow degradation of accuracy

with increasing resolution is due to the increase in the value of the condition num-

her as the order of the coefficient matrices in Eqs. (173) and (17b) increases. The

central processor time required for each solution is given in seconds in the last

column in Table 1. It should be noted here that the FFT routine used is one that

can accommodate data sets not necessarily having 2 p pieces of data (p is a positive

integer). This special feature of course requires an operation count higher than

0(log 2 J) in the transforms for cases where J v 2 p .

Table 2 shows the accuracy of our numerical results for a 63 Y 128 grid as a

function of m 2 , which may be taken here as the number of components contained in

our test function. It is apparent that there is also a gradual degradation in accu-

racy as the function becomes less smooth. However, even for a function containing

components up to the Nyquist frequency, the results still possess more than 9-digit

accuracy. Also given in Table 2 is the normalized error for an experiment with

m 2  6 65. In this case, one of the components has a wavelength of less than 2-grid

length. The less than 3-digit accuracy in the results is actually not as bad as it

may seem. What is demonstrated here is simply that for any forcing function

having components with wavelengths less than 2-grid interval, these components

are simply truncated by the transform process. For components with wavelength

longer than 2-grid interval, the deterioration of accuracy of the solution with de-

creasing wavelength is much more gradual.

17



Table 1. Accuracy as a Function of N for (11 1 . 2 r 2)

J N Z T
(digits) (seconds)

18 9 11.07 0.59

3 6 18 10.94 2.35

64 32 10.86 3.98

N: the size of the tridiagonal system

Table 2. Accuracy as a Fun(tion
of m2 for a (63 X 128)-grid

Z

m 2  (digits)

8 10.81

32 10. 52

64 9.80

65 2.92

m 2: the highest wavenumber
component contained in
the forcing function

18
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