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Double Fourier Series Solution
of Poisson’s Equation on a Sphere

1. INTRODUCTION

Advances in numerical simulation and predictico in dosciplitnes as diverse as
geophvsieal (luid dynamics, heat transfer, and nucloa. aned plasima plavsies have
generated, over the years, considerable interest in the method of solution for
Poisson-type equations, Most research in this avea, however, does not deal with
spherical geometries, In fact, of a list of 150 aricles on " Fuast Elliptic Solvers”
compiled by Schuman, 1 only thZ, 3 deal with the spherical geometry, We present
in this paper a new numerical method for the solution of Poisson's equation on a
sphere, In contrast to previous methods of Swarztrauborz and Yoes which are
based on finite-difference, this method is based on truncated double Fourier series

on spheres (for example, ()rszag4; Boer and Steinbm‘;:b). The use of finite double

(Received for publication 28 October 1980)

1. Schumann, U., (ed.) (1978) I'ast Elliptic Solvers, Proceedings of the GAMM—
workshop on fast solution methods for the discretized Poisson equation,
Karlsruhe, 1977, Advance Publications, London W(2, England, 289 pp.

2. Swarztrauber, P.N, (1974) The direct solution of the discrete Poisson equation
on the surface of a sphere, J, Comput, Phys, 15:46-54,

3. Yee, S.Y.K, (1976) An cfficient method for a finite-difference solution of the
Puisson equation on the surface of a sphere, J, Comput, Phys, 22 :215-228.

4, Orszag, S.A. (1974) Fourier series on spheres, Mon. Wea, Rev, 102:56-75,

5., Boer, G.J., and Steinberg, 1., (1973) Fourier series on spheres, Atmosphere
13:180-191,
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Fourier series on a rectangle is not new, but the formulation on a sphere reported

here is. In particular, Yee's6 interpretation of Fourier series on spheres has
been implemented to narrow what Swarztrauber referred to as ''the theoretical gap
which exists between the states of the art for discrete spectral approximations on

a sphere and on a rectangle, n?

and to obtain a Galerkin approximation to the solu-
tion of Poisson's equation on a sphere.

Let u(A, A) be a scalar function on a sphere where the location of a point is
specified by co-latitude 0 < 6 < 7 and longitude 0 = A < 27, It may then be repre-

sented by double Fourier series of the form8

[+ o] o0
u, A) = Z > u, m[(1 -s)cos 6 + s sin 16] elm)t . (1a)
m==-c0 £=0 ’
where
m 27
-imA

ue,m:%f = f @A) e MM x| [(1-8) cos 10 +ssine6] d8 , (1b)

0 0

1 ift =0
C:

2 otherwise,

and s = 0 if m is even, s = 1 if m is odd. Since the transform pair Egs, (la) and
(1b) is amenable to Fast Fourier Transform (FFT), we have at our disposal an
extremely efficient means of obtaining a numerical solution for Poisson's equation
on the surface of a sphere.

The procedure involves the expansion of the dependent variables in truncated
double Fourier series, the substitution of the truncated series for the dependent
variables in the Poisson equation, the application of the Galerkin appreximation to
obtain in Fourier space a number of linear algebraic systems, the solution of these
systems, and the inverse transform of the solution in Fourier space back to physi-
cal space.

6. Yee, S.Y.K. (1980a) Fourier series on spheres—a geometric perspective,

AFGL-TR-80-0021, Air Force Geophysics Laboratory, Bedford, MA., 16 pp.

7. Swarztrauber, P.N, (1979) On the spectral approximation of discrete scalar
and vector functions on the sphere, SIAM J. Numer. Anal. 16:934-948,

8. Yee, S.Y.K, (1980b) Studies on Fourier series on spheres, Mon. Wea, Rev,
108:676-678.
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2. ORDINARY DIFFERENTIAL EQUATIONS WITH VARIABLE
COEFFICIENTS

Our goal is to seek, using the FFT technique, an accurate numerical solution
to the Poisson equation on the surface of a unit sphere (0= 6 < 7, 0 < A < 27),

(2a)

Here the forcing function (A, X) must satisfy the compatibility condition (for exam-~

ple, Berg and McGregorg)

ff(e,h) sinf ds =0 (2b)
S

over the surface of the sphere S.

The first step in our solution method is the transformation of this partial dif-
ferential equation (PDE) to a number of ordinary differential equations (ODE), a
standard approach in the method of solution for PDE, A brief outline of this proce-
dure is included here for completeness. We decompoese u(f, A) along a given latitude

by a truncated Fourier series of the form

M

wo, N = T u @ ™ (3a)

m=-M
where
s -imA 1 f 0 or M
= ES +

um(e) ='I% Z u(ﬁ,kk)e k c or m. or (3b)

k=1 ¢ =2 otherwise

are complex Fourier coefficients, M = K/2 is the cutoff wavenumber, Ak = 27k /K,
and K is the number of data points along a latitude circle. Since a latitude circle
degenerates into a single point at the poles, for u (9, A) to have a single value u(P)

there, we must have the pole conditions

9. Berg, P.W., and McGregor, J.L. (1966) Elementary Partial Differential
Equations, Holden-Day, San Francisco, CA,




wP) for m=0 (4a)

u_(P) =
m { 0 for m = 0 (4b)

where P = 0 or m, and |m| < M. A Galerkin approximation to Eq. (2a), represen-
ted by a set of ODE with variable coefficients, is obtained if we substitute for u
and f in Eq. (2a) by truncated series of the form of Eq. (3a), multiply the resulting
equations by exp (-imA), and then integrate over A for the interval 0 < A < 2m:

L d sian—u 0) - m2
sin & do dd "m sin20

u_(6) = f_(6) (5)

where 0 < 8 < m, [ml < M, For convenience of discussion, we rewrite Eq, (5)

in the form

2
w (@) +228 8 gy - Ty ()= (B) . (6)
m sin 8 m sin2 g m m

Equation (6) together with Eq, (4) constitutes a set of one-dimensional Dirichlet
boundary-value problems (BVP). Of this set, 2M equations have homogeneous
boundary conditions and one equation has inhomogeneous boundary conditions given
by Eq. (4a). Thus the problem of solving a two-dimensional Poisson equation be-
comes that of solving a set of one-dimensional variable coefficient BVP of the
Helmholtz-type. The pole conditions may now be considered as boundary condi-
tions. For m = 0, however, Eq. (6) has no unique solution because the pole values
u(P) in Eq. (4a) are among the unknowns to be sought in Eqs, (2a) and (2b), This,
of course, indicates nothing more than that solutions to Poisson's equation on a
sphere can only be determined to within an additive constant, We shall return to
this point later,

3. SPECTRAL ALGEBRAIC EQUATIONS
The next key step in our solution method is based on the fact that um(e) is a

27-periodic even (odd) function for even (odd) m, and we may approximate um(G) in

truncated half-range expansions of cosine (sine):

10
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T T

um(9) = (7a)

L
Z u sin 26  for odd m
£, m
where

c . C _ {
0> . uo(ej) cos mj + -:)—J-[u(e 0) + (-1)" w(® - m)

J-1
> u_(P)cos 6. for evenm = 0
m'j i
i-1
u = (7b)
£ J-1
> u_(A)sined, for oddm
m- ] 1
il

eqn

i)

c=1if2 =0or L, ¢ = 2 otherwise, 1. = J is a cutoff, Gj =jim/J, and (J-1) is
the number of data points between poles.

We consider first the constraints on the use of these expansions to solve
Eq. (6)., For m = 0, Eq, (6) requires that ub(())/sin 6 be finite for all 0, including
6 = 0 and 7. The cosine expansions in Eq, (7a) obviously satisfy this requirement.
For m # 0, Eq. (6) requires at least that um(f))/sin 0 be finite for all 0 (()I*S’/:\g4\.
In the case of odd m, this condition is automatically satisfied by the sine expan-
sions in Eq. (7a). Inthe case of even m = 0, however, we must impose on the

cosine expansions the constraints

um(O) =v_+w_ =0 (8a)




LN Yom o (9b)
£ =0dd
Equations (8z) and (8b) will hold only if we make both
Vin = 0 (10a)
and
wo, s 0. (10b)

These are then the '""pole conditions' which the spectral equations must satisfy for
the absence of singularities at the poles in Eq. (6). Note that these conditions are
cor-.istent with Eqgs. (4a) and (4b), the pole conditions for the east-west Fourier
expansions of u(g, A),

Just as Egs. (3a) and (3b) provide the linkage between a two-dimensional PDE
and a set of ODE, Egs. (7a) and (7b) enable us to reduce Eq, (6) to a set of alge-
braic systems in the Fourier space 'm‘ <M 0=t < [.:

. 2 2 .
(-2 - Du, -{21° + 4m )uf,m + {0+ D+ 2)u[+2’ m

, m
-Fl -2, m * 21'1‘ m f1+2, m (11)
Here f[ are complex Fourier coefficients of fm(G). In the derivation of Eq. (11),

we have
1. Made use of the identity 2 Sinz 6 1 -cos 26 to rearite Eq. (53) in the form

9
N - " : - & e 9 3 .
um(‘)) cos 29um(9) + sin 29u1'n(9) 2m um('?) (1 - cos -”)rm(f) . (12)

2. Expanded u'r'n(f?), u;n(ﬁ), um(f)) and (‘m(Q) in Eq. (12) as truncated series
in the form of Egs. (7a) and (7b).
3. Made use of the trigonometric identities
2 cos 20 cos 10 - cos (£ - 2)0 + cos (1 + 2)9
2 sin 20 sin £ : cos (§ - 2)0 - cos (¢ + 2)B
2 cos 20 sin 18 = sin (£ - 2)0 + sin (f + 2)8
2 sin 20 cos £0  -sin (f - 2)8 + sin (¢ + 2)8

12
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4, Invoked the Galerkin approximation in the manner that kEq. (3) was derived
from Eqs. (2a) and (2b) and dropped the (1. + 1)th and (L + 2)th components which
are outside the range of our series expansions defined by Eqs., (7a) and (7b),

We now discuss the pole conditions for Eq. (6) in the context of spectral alge-
braic systems Eq, (11). As mentioned previocusly, Eqgs. (2a) and (2b) prescribe u
on a sphere only to within an additive constant, To determine u uniquely, we need
to have one additional piece of information on u. Without loss of generality, we

shall impose the condition

T 4 u(® = 0) + u(f = 7) = constant = 0 . (13)

In Fourier space this condition becomes, through Eqs. (4a) and (7a).

-

Vo ® 3 U, o " 0 . (14) '
{-even ;

This is consistent with the pole conditions Y for the cases of even m # 0 given in

Eqs, (10a) and (10b). In solving Eq. (11), we shall use Eq. (14) to compute u

0,0’
the constant term in our double Fourier series expansions, For even m # 0,
Uy ., are computed via the pole conditions given in Eq. (10):
Uy m 7T > Yom (15)
f=even
1#0
]
3 For odd m, uo, m’ uL, m are easily found from Eq. (7b) to be
3 uO,m - uL,m =0 . (16)

4. TRIDIAGONAL SYSTEMS

With the problem of pole conditions settled, we are now ready to solve linear
algebraic systems given in Eq. (11). We note first that for a given m, the even ¢
and odd f components are uncoupled. We may therefore break the algebraic svs-

tem for each m into two independent subsystems, [urthermore, written in matrix

form, these subsystems have a very desirable featurc in that their coefficient

13
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matrices are tridiagonal, Very efficient algorithms are uavailable for the solution
of such tridiagonal systems (for example, Vargam). We write g, (11) in matrix
notations:
. Pom 2 uy | hy
' u h
ay 4 4
E ¢ = * (17a)
C . .
- | 1.-2
U2 hi-2
3 a, P m uy, hy.
L M - 4 m .
. ~ - - A .
b1, m C1 Y1 hy 1
a, Uy 113
‘ : (17h)
o )
L=3 vy g Py
-1 Pronm L‘H -1 th -1
- m ~m
where
!ml < N, "
f‘ a, S -2 -,
Y .
b - 207 - 4mz
£, m
! P (AR VT
d - T ] -
;. fom e m 2 T m
: % m
hZ, m h2, m -1 rO, m

In Fgs. (17a) and (17b), we have dropped the (1. ¢ 1, mY and (I. + 2, m) compo-
nents because they are beyond the range of our series expansions, On the other
hand, the components (-2, m) and (-1, m) have been retained because um(())_ rm(())
are 27-periodic in 0. lad we used expansions over 0 < 6 < 27 instead of using half-

range expansions as in kgs. (7a) and (7b), then any component lf]f 1. would have

10. Varga, R.S. (1962) Matrix Iterative Analysis, Prentice-Hall, Englewocd Cliffs,
N.J., p. 195,

14
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been within the spectral range. We retained the (<2, m), (-1, m) components by

H

the use of the identity

m

f (-1 f .
-4, m -1 £, m
For even m, we have L unknowns for each m, For odd m, U, are known before-
‘2
hand to be zero, In this case, we simply set U 0 and discard the last mem-
. . . ” ! . .
ber in Eq. (17a).  Note that the components Uy oy "m§ < M, ure not included in

>

Egs. (172) and (17b). These are to be obtained through the pole conditions dis-

cussed in Section 3: Form - 0, Ug o is given by kq. (14),

Yo,0 T Z Y0 ¢

{ =even
(#0

for even m # 0, u are given by Eq. (13). For odd m, u are of course

0, m

0, m
known from Eq, (16) to be zero,

So far we have demonstrated that the Poisson equation on a sphere can be
approximated by a number of tridiagonal systems in the Fourier space. At this
point, it is appropriate to examine the properties of the tridiagonal svstems., A
little simple arithmetic with ag, bp m and 4 reveals that the coefficient matrices
of these systems are strictly diagnf]ally dominant for the cases 'm! = 2, Unique
solutions therefore exist for these cases, For m 0, tl, the situation is less
clear cut, But it can be shown that the determinants of the coefficient matrices
for these cases are all nonzero; these algebraic svstems therefore also have

unique solutions,

5. TEST COMPUTATIONS

As mentioned earlier, very efficient algorithms are available for solution of
tridiagonal systems such as Egs, (17a) and (17b).  We shall report in this section
some results of our numerical test computations. Before doing so, let us pause
for a moment to recapitulate our numerical procedure, We shall also indicate
{in brackets] the approximate minimum number of arithmetic operations required
for each step:

1. For each j I through J - 1, transform F,', K to obtain complex Fourier
coefficients rmmi); set fo(P)Y f(P), 1P 0or 7. [KW - 1) log, K]

2. For a given even (odd) m, perform cosine (sine) transform on rm(”i) to
. a l()!l2 Ji .

obtain f‘"

m




3. Compute hl m in Eqs. (17a) and (17b). [2J]
4. Solve Egs. (17a) and (17b) for u
systems, 10 [4J]

5. For a given even (odd) m, perform inverse cosine (sine) transform on

¢ m using an algorithm for tridiagonal

u, ., to obtain um(Bj). [J log, J]
6. Repeat steps (2) through (5) for all Im| =M. [Multiply each count in
steps (2) through (5) by K]
7. Inverse transform um(OJ.), j=1,J -1, to obtain uj' K set u(P) = uO(P).
[K@ - 1) log, KI
Thus, for a latitude-longitude grid with 2J X (J - 1) + 2 data points (K = 2J),

the approximate number of arithmetic operations is 12J2 1+ log2 J), or about

6 (1 + log2 J) operations per data point. Here we assume that a, b[ m 1 have
been precomputed and J = 2p, where p is a positive integer, An arithmetic opera-
tion is defined as a multiplication followed by an addition in the real domain. These
counts are comparable to operation counts for the Fourier solution of the Poisson

. 11
equation on a rectangle (for example, Swarztrauber™ "),

The test function used for program checkout is

n12

f(o,A) = - 2 (m + IMm + 2) cos § sin™ 6 cos m(A - dm) -2cos 0

m-=m

»

1

where dm are random numbers within the range (0, 27), For this forcing function

s

Egs. {(2a) and (2b) has the exact solution

My

uA(G, A) = Z cos 0 sin™ 6 cos mix - dm) + cos 0
m=m,

With the exact solutions known, a normalized 1., error norm defined by

2
N a1 a1

may then be considered as a measure of the accuracy of our numerical solution u.

The number of digits of accuracy in u is then given by

11. Swarztrauber, P.N. (1977) The methods of cyclic reduction, Fouricr analysis
and the FACR algorithm for the discrete solution of Poisson's equation on
a rectangle, SIAM Rev, 19:490-501,

16




Z = -logloHEH ]

Several sets of computations have been made using a CDC 6600 computer for
various grid resolutions and various values of m, and m,. Some sample results
are tabulated in Table 1 for cases in which the data contain only long waves
- 2). We see that 11-, 12-digit accuracies are retained in our numer-
2.8” x 2, 8° resolutions tested, Note that

(m; =1, m

1 2
ical solutions for the 10° x 10°, 59 x 5°

excessive resolutions have been used in these computations in the sense that the

tabulated resoclutions are capable of resolving waves having wave numbers up to

18, 36, and 64, respectively, while the data contain only wave components up to
wave number 2, For the smooth function tested, the slow degradation of accuracy
with increasing resolution is due to the increase in the value of the condition num-
ber as the order of the coefficient matrices in Eqgs, (17a) and (17b) increases. The
central processor time required for each solution is given in seconds in the last
column in Table 1. It should be noted here that the FFT routine used is one that
can accommodate data sets not necessarily having 2P pieces of data (p is a positive
integer), This special feature of course requires an operation count higher than
0(log2 J) in the transforms for cases where J = 2P,

Table 2 shows the accuracy of our numerical results for a 63 X 128 grid as a
function of my, which may be taken here as the number of components contained in
our test function. It is apparent that there is also a gradual degradation in accu-
racy as the function becomes less smooth., However, even for a function containing
components up to the Nyquist frequency, the results still possess more than 9-digit
accuracy, Also given in Table 2 is the normalized error for an experiment with
m, = 65. In this case, one of the components has a wavelength of less than 2-grid
length. The less than 3-digit accuracy in the results is actually not as bad as it
may seem, What is demonstrated here is simply that for any forcing function
having components with wavelengths less than 2-grid interval, these components
are simply truncated by the transform process. For components with wavelength
longer than 2-grid interval, the deterioration of accuracy of the solution with de-

creasing wavelength is much more gradual.




Table 1. Accuracy as a Function of N for (m1 1, m,
J N Z T
(digits) (seconds)
18 9 11,07 0. 59
36 18 10,94 2,35
4 32 10. 86 3.98

N: the size of the tridiagonal system

Table 2, Accuracy as a Function
of mg for a (63 x 128)-grid

Z
m, (digits)
8 10. 81
32 10, 52
64 9, 80
655 2,92
_J

m,: the highest wavenumber
component contained in
the forecing function

18
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