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ABSTRACT

Kernel probability density estimates can be used to construct a test of

the hypothesis that the density underlying a given univariate data set has at

most k modes, for any given k.; 1. The test is based on the critical value

of the smoothing parameter for k modes to occur in the estimate. The

theoretical properties of this test are investigated; the asymptotic

properties of the test statistic show that the test is consistent. Further-

more the rate of convergence of the test statistic to zero gives some

theoretical insight into a bootstrap technique previously suggested by the

author, and also into observed properties of kernel density estimates.
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SIGNIFICANCE AND EXPLANATION

An important question in cluster analysis is the determination of the

number of clusters into which a given population should be divided. This

problem arises in almost every area where data are collected, fo~r example in

physics, geology, medicine and psychology.

Frequently, particularly when certain specific clustering methods are

being used, the number of clusters is taken to be equal to the number of

modes, or local maxima, in the probability density function underlying the

given data set. The author has previously suggested a technique for

t investigating the number of modes underlying a given population. In this

paper, the mathematical properties of this procedure are investigated. The

results obtained confirm various intuitive remarks made in the original

presentation of the method, and also suggest that the technique may cast light

on another important problem, that of determining how much to smooth a sample

in order to estimate its underlying probability density.

The responsibility for the wording and views expressed in this descriptive
aumary lies with NRC. and not with the author of this report.



ON A TEST FOR MULTIMODALITY BASED ON

KERNEL DENSITY ESTIMATES

B. W. Silverman

1. Introduction

Silverman (1981) suggested and illustrated a way that kernel probability

density estimates can be used to investigate the number of modes in the

density underlying a given independent identically distributed real sample.

Given an independent sample XlI,*..,Xn from a univariate probability

density f, define the kernel density estimate fn with Gaussian kernel by

nf n(t'h) = I h-10{(t-X i)/h)

where the parameter h is the smoothing parameter or window width and 0 is

the standard normal density function. Kernel density estimates were

introduced by Rosenblatt (1956) and Parzen (1962); the restriction to Gaussian

kernels in this work is made for reasons given in Silverman (1981). Often the

explicit dependence of f n on h will be suppressed.

Consider the problem of testing the null hypothesis that f has k or

fewer modes against the alternative that f has more than k modes. The

statistic suggested for constructing such a test was the k-critical window

width hcrit(k), defined by

h crit(k = inf{h f n(-,h) has at most k modes)

*Permanent address: School of Mathematics, University of Bath, BATH BA2 7AY,

United Kingdom.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.



In Silverman (1981) it was stated heuri~tically that large values of hcrit

will tend to reject the null hypothesis. The results of this paper show that

this procedure does indeed lead to a consistent test.

Subject to certain regularity conditions, it is shown that, under the

null hypothesis, hcrit converges stochastically to zero, while this is not

the case under the alternative hypothesis. The exact rate of convergence of

hcrit to zero under the null hypothesis is found. It is perhaps interesting

that this rate of convergence has precisely the same order as the rate of

convergence for the optimum choice of window width for the uniform estimation

of the density given, for example, by Silverman (1978b).

In Silverman (1981) a smoothed bootstrap procedure for assessing the

significance of an observed value of hcrit was suggested and illustrated by

an application. The representative of the null hypothesis constructed from

the data is obtained from the density estimate with window width hcritl the

estimate is rescaled, as suggested by Efron (1979), to have variance equal to

the sample variance of the data. The remarks above show that f n(.,hcrit

is, in a certain sense, optimally uniformly consistent as an estimate of the

true density f. It follows that, on the null hypothesis, the bootstrap

procedure is likely, at least for large samples, to provide an estimate of the

true underlying density which is accurate in the uniform norm. A possible

drawback for small samples is the fact that the implied constant in the rate

of convergence does not necessarily take its optimum value.

An interesting open question raised by this discussion is the possibility

of using hcri.(k) for some value of k in developing an automatic method

for choosing the 2moothing parameter in density estimation. Boneva, Kendall

and Stefanov (1971) suggested choosing the window width where 'rabbits' or

rapid fluctuations just started to appear. Such a window width would perhaps
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correspond to hcrit(k) for some k ) ji since hcrit(k) convgel to zero

at the optimum rate for all k ) j, a suitable formalization of the Boneva-

Xendall-Stefanov procedure would give estimates which converged at the optimal

rate, though not necessarily with the optimal constant multiplier. The fact

that hcrit () has the same rate of convergence for all k ; j provides some

explanation for the observation made by Boneva, Kendall and Stefanov that the

estimate seems suddenly to become noisy as the window width is reduced.

The use of kernel density estimates in mode estimation was originated by

Parzen (1962). The 'gradient method' of cluster analysis is based on

clustering towards modes in the estimated densityl see, for example, Andrews

(1972), Fukunaga and Hostetler (1975), and Bock (1977). Papers related to

t :sts of multimodality are Cox (1966) and Good and Gaskins (1980).
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2. The main result

In this section, the main result of this paper is stated and proved. It

is convenient to use the convention throughout that all limits and implied

limits are taken as n tends to infinity. Varying conventions will apply to

unqualified suprema and infima in Propositions I and 2 below, and these will

be introduced where necessary. The notations p lim inf and p lim sup will

be used to signify the corresponding limits in probability as n tends to

infinity, and 0 and o will denote probability orders of magnitude.
-p -

Define, for h > 0,

a(h) - h-5 log(h - ) • (I)

The main results are all contained in the following theorem.

Theorem

Suppose f is a bounded density with bounded support [a,b], and

suppose that the following conditions are satisfied:

(i) f is twice continuously differentiable on fa,b]

(ii) f has exactly j local maxima on (a,b)

(iii) f'(a+) > 0, f'(b-) < 0

(iv) min f"(z)2 - > .
{z:f'(z)-O} f(z) o

Let hcrit(k) be the k-critical window width constructed from an i.i.d.

sample of size n from f. Then, if k ) J, defining a as in (1) above,

p lim inf n"I dh (k) 2 )- ir/V c (2)
crit 3 o

and p lim sup na c{h rt(k)) < - (3)

while if k < j then there exists a constant ho(f,k) such that

P{h crt(k) > ho} + I . (4)

Note that condition (iv) is equivalent, in the presence of the other

conditions, to the condition that f is strictly positive on Ia,b] and

f has no multiple zeroes on (a,b].
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It is convenient to prove the various assertions of the theorem

separately. Except where otherwise stated, the conditions of the theorem on

f will be assumed to be true throughout. The first proposition facilitates

the proof of (2).

Proposition 1. Given any cI with

2c 2
0<c1 < i t o-

suppose the sequence of window widths hn satisfies

-1
n a (h n ) + c 1 (5)

Then the number of maxima of fn tends in probability to J.

It follows from Proposition 1 and Silverman (1981) that, for all k > J,

provided (5) holds,

P(hcritlk) h n  + 1

and hence that (2) is satisfied.

The proof of Proposition 1 makes use of several lemmas, the first of

which shows that, under certain conditions, maxima and minima of fn can,

eventually, only occur arbitrarily close to those of f.

Lemma 1. Let I be any closed interval contained in [a,b], such that I

contains none of the zeroes of f'. Then, provided h + 0 and' • n

n1h a( ) + 0, it will follow that

P(f monotonic on I in the same sense as f) + I .n

Proof. By slight adaptation of the results of Silverman (1978a), it can be

seen that, provided f is bounded, we will have, if hn satisfies the

assumptions of Proposition 1,

1 1

If, If' - Ef' " in 2 h- 1 a(h )2}
-p n n

(6)
o (1)
-p
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In Silverman (1978a) the uniform continuity of f was additionally assumed,

but careful examination of the proofs of that paper shows that the derivation

of the rate of stochastic convergence, though not of the exact constant

implied in the 0 , goes through under the assumption of bounded f.

Supposing without loss of generality that f is increasing on I, it

follows from the continuity of f' on [a,b] that f' is bounded away from

zero on I and is non-negative on a neighborhood of I, and hence by

elementary analysis that

lim inf inf Ef' > 0 • (7)
n

Combining (6) and (7) completes the proof of Lemma 1.

The next lemma shows that, under suitable conditions, fn will

eventually have exactly one maximum and no minima near each maximum of f,

and exactly one minimum and no maxima near each minimum of f.

Lemma 2. Suppose f'(z) = 0 and f has a local maximum (respectively

minimum) at z. Suppose h n 0 and~n
-1 2 , 2

n- I(hn) + c E (0, a v f'(z)2/f(z)) (8)n 2 3

Then, for all sufficiently small E > 0, the probability that f' has
n

exactly one zero in (z-C, z+E), and that this zero is a maximum

(respectively minimum) of fn' tends to one as n tends to infinity.

Proof. Only the case of a local maximum will be considered. The proof for a

minimum proceeds very similarly and is omitted. Throughout this proof

unqualified infima and suprema will be taken to be over x in [z-E, z+c].

By the continuity of f and f", choose e sufficiently small that

inf f"(x)2  3c2
sup f(x) 21rVI
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and also [z-c, z+6] a (a,b). It is then imuediate that f'(z-c) > 0 and

f'(z+c) < 0 since, by (9), f" cannot cross zero in (z-e, z+e). Since

f' is continuous at z i e, by standard results on the consistency of f
n

(a combination of Parzen (1962) and Bhattacharya (1967))

P{f'(z-c) > 0 and f'(z+c) < 0) + 1 . (10)
n n

Very slightly adapting the proofs of Silverman (1976 and 1978a) to cope

with the fact that f" is only uniformly continuous on a neighborhood of

[z-c, z+e] gives

1.2 2

n 2 (h)2 suplf"(x) - Ef"(x)l ? K 1nn 1

where

K = 2 sup f f
1

= 3(2wV2) - I sup f

Since, by elementary analysis, suplEf"(x) - f"(x)l converges to zero, it

n

1

follows from (8) that p lim 2

nspsuln(x fx'4 K~c2

< infif"(x)l

by (9). It is immediate that

P{f"(x) < 0 for all x in [z-c, z+E]} 4 1 o (11)
n

Combining (10) and (11) completes the proof of Lemma 2.

To complete the proof of Proposition 1, note first that no maxima of fn

can occur outside the interval (a,b). Let Zloo.,z2j.1 be the zeroes of

f' in (a,b) and choose e sufficiently small to satisfy the conclusion of

-7-



Lemma 2 for all zi and to ensure that

a < z1-E < z1+C < z2-C <-..< z 2j_1+ < b ° (12)

Applying either Lemma 1 or Lemma 2 as appropriate to each of the intervals in

the partition (12) of the interval (a,b) completes the proof of Proposition

1.

The next proposition leads to the proof of assertion (3), in a similar

way to the derivation of (2) from Proposition 1.

Proposition 2

Defining a as in (1) above, suppose that

n la(h ) + - and nh + 0 • (13)
n n

Then the number of maxima in fn tends in probability to infinity.

Given any k, it follows from this result and the corollary of Silverman

(1981) that, provided (13) holds,

P{h crit(k) > hn + 1

assertion (2) follows at once.

To prove Proposition 2, suppose without loss of generality that f has a

maximum at 0 in (a,b). Choose a sequence X which satisfies
n

£ + 0, h-1£ = o{n-1 a(h) ,n n n - n
(14)

h- I I and flog X I Ilog h 1- 1 + 1
n n n n

The explicit dependence of h and X on n will often be suppressed. Let

Ij,n be the interval [(j-1)1, jX] for integer j > 0.

Following Silverman (1978a) apply Theorem 3 of Komlos, Major and Tusnady

(1975) to obtain

1

f'(x) = Ef'(x) + h-1n 2p (x) + E (x)
n n n
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where p is a Gaussia:. piocess with the same covariance structure as

I
ii

n 2h(f' -Ef') and c' is a secondary random error. The process p1  is
n n n 1

obtained by putting 6(u) equal to p'(u) in Proposition 1 of Silverman

(1978a). By elementary analysis and the arguments of Silverman (1978a) we

have, in a neighborhood of 0,

IEf'(x) - f'(x)I 0(h)

lc' (xl I= 2(n- h -2log n) a.s.n

= o(h2 ) from (13) above

and If'(x)l = 0(x)

since f'(0) = 0 and f" exists. It follows that, a.s.,

suplEf'(x) + Ce(x)l = O(jk) + O(h)n n - -

1 (15)
-1-5 2

= o{n- h-5 log( £/h)}2

by (13) and (14) above, where we adopt the convention, here and subsequently

in this proof, that unqualified suprema are taken to be over the interval

Ij,n, and that a fixed j is being considered.

We slightly adapt the argument of Silverman (1976) pp. 138-140 to

investigate sup p1" Define

22
a (x) = var P1 (x) = h-

1 f(x) f €'2(1 + o(1))
= h-If(0) f 0,2(1 + o(1)) for x in I.

--2 j,n

since the end points of Ij,n both converge to zero. Analogously to (12) of

Silverman (1976), given any A in (0,2),
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11
1~u -a ( - .) {2 lo. (h-1.)} ]

Sp 0 (-2 )log(hclI) (16)

x ff Ixlexp{2 log(h'1 )(1 X)21xl/( + IxI))
Ij,n

where x(x,y) - corr{p(x),p(y)}. Using a similar argument to that following

(12) of Silverman (1976), but allowing the interval I to vary, shows that

the expression in (16) is dominated by

I 2-2 -1 2 -11 - 2 x
0(-2 ) log(h-l£) {o2(0) + 0(1)}-1 {h -1} 2 (1)

(h1 -X + 1 X2

-) 4 log(h- l) + 0

by (14) above. I

It follows that, setting K = (2f(0) f o,2, 2 ,

1

p lim inf sup{h -I log(h-19)}2p1 0 K (17)
t

and that the same result holds if p1  is replaced by -p,, giving a

corresponding result for inf p1 " It follows from (15), (17) and the

corresponding result for inf p1  that

1

P{Pl crosses -n 2h(Ef' + el) in I + 1
n n J,n

and hence that

P{f' crosses zero in I n  + 1 • (18)
n J,n

Since (18) holds for all J, the number of maxima in fn tends in

probability to infinity, completing the proof of Proposition 2.
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The final proposition of this section deals with the case where the

alternative hypothesis is true, and shows that hcrit will remain bounded

away from zero.

Proposition 3

If k < j then there exists a constant ho > 0, depending on f

and k, such that

Phcrit(k) > ho + I

Proof

By arguments analogous to those of the proof of the theorem of Silverman

(1981), making use of the variation diminishing properties of the Gaussian

kernel and the continuity properties of Efn, the number of maxima in

Ef (.,h) is a right continuous decreasing function of h, for h > 0. Byn

choosing h0  sufficiently small, we can ensure that Efn(e,h 0 ) has,

independently of n, exactly j maxima. Because of the conditions imposed

on f in the statement of the Theorem above, we can also ensure that

Ef"(O,h 0) is non-zero at all stationary points of Ef (*,h0).
n n 0

The argument of Lemma 2.2 of Schuster (1969), which does not in fact

require the convergence to zero of the sequence of window widths, then implies

that, with probability one,

f.(x,hO) - Ef'(x,hO ) and f"(x,hO ) - Ef( x,h

nn 0 n 0

both converge to zero uniformly over x. By an argument similar to that used

in Proposition I above, it follows that the number of maxima of fn (,h 0) on

[a,b] tends almost surely to J, the number of maxima of Efn (,h 0).

Applying the corollary of Silverman (1981) completes the proof of Proposition

3.
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Discussion

It is natural to enquire to what extent the conditions of the theorem

above can be relaxed without affecting the conclusions. In particular it

seems intuitively clear that the condition of bounded support for the

density f should be able to be replaced by some condition on the tails of

f, though the present method of proof cannot deal with this case. Condition

(iv) appears to be more fundamental to the resulti if, for example, f'(O) -

f"(O) = 0 1 f"'(0), then an examination of fn and Efn near zero seems to

indicate that, under suitable regularity conditions, there will be no maximum

of fn near zero provided If"' - Ef"'I remains small. A heuristic argumentn n n

suggests that a result corresponding to the theorem of Section 2 can be

proved, but with a(h) replaced by h-7log(h-1), so that hcrit converges

to zero more slowly. Even slower convergence will occur for higher order

zeroes in f'.

The interest in this discussion lies in the fact that the bootstrap

density constructed using the critical window width will not only have

infinite tails of similar weight to those of the corresponding normal kernels

but will also have a stationary point which is a point of inflexion. The

slower convergence to zero of hcrit provides support for the remark of

Silverman (1981) that the bootstrap test may be conservative; it also bears

out the intuition of P. Huber (private communication) that the bootstrap

procedure may be excessively conservative, though the difference between

I I

n and n convergence is very slight in practice.

The methods of this paper can also be used to study the asymptotic

properties of a corresponding test for the number of points of inflexion in

the density. Both Cox (1966) and Good and Gaskins (1980) prefer to use points

of inflexion as an indication that the density is a mixture. The critical

-12-



window width will now be the smallest window width for which the density has

k maxima. Under suitable conditions a result corresponding to the theorem of

Section 2 can be proved, but again, among other changes, a(h) will be

replaced by h-7log(0/h) since f" will be replaced by f"I in much of the
n n

argument of the proofs of Propositions I and 2.
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