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ABSTRACT

We show that the inverse image of a point under the sum of two monotone

operators in le has a special form if a simple condition is imposed on one

of the operators. This result is then applied to characterize the form of the

solution set of a monotone linear generalized equation. Some known results

are recovered as a special case.4--
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SIGNIFICANCE AND EXPLANATION

Problems of importance in economics, structural engineering, and other

areas can sometimes be expressed as generalized equations involving a special

type of multivalued function called a monotone operator. The solutions of the

problems are then the solutions of the generalized equation. Frequently the

operator appearing in the generalized equation is the sum of two simpler

operators.

In this paper we show that for such a sum, if one of the operators

satisfies a simple condition which often holds in applications, then the

generalized equation can be split into two generalized equations, each

involving one of the simpler monotone operators together with a special

single-valued continuous function. We investigate some properties of this

function and then show how to 'use it to find the form of the solution set of a

class of linear generalized equations.
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INVERSE SUMS OF MONOTONE OPERATORS

Stephen M. Robinson

1. INTRODUCTIONo

This paper develops a property of sums of monotone operators In 3n , Such sums

occur frequently in applications to such areas as linear and nonlinear

programming, complementarity problems, etc. We show here that if the operators

involved obey a rather simple condition, then the inverse image of a point under

their sum is the intersection of the inverse images, under the individual

operators, of two points related in a simple way to the original point. In

Section 2 we investigate the nature of this relationship; then in Section 3 we

apply it to characterize the structure of the solution sets of certain linear

generalized equations. Some known results about solutions of positive

semidefinite linear complementarity problems then appear as special cases of

this characterization.

All of the results in this paper are stated for monotone operators from Rn to

itself, primarily because the applications in Section 3 are in Rno Some of

this work could probably be extended to infinite-dimensional spaves if it were

worthwhile to do so.

For ease of reference, we recall here that a (possibly multivalued) operator

T is said to be monotone if for any pairs (x1,yj) and (x2,y2 ) in its graph

(x, - x2 , y1 - y2
) > 0, where (*) denotes the standard inner product. We

say T is strictly monotone if the inner product above is positive except

when x1 - x2, and maximal monotone if the graph of T is not properly

contained in the graph of any other monotone operator. The inverse of T is

defined by T'1(y) := (xly e T(x)}. For more information about such operators,

see [2].
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2e AN OBSERVATION ABOUT SUMS OF MONOTONE OPERATORS.

Let F and G be monotone operators from Rn to itself. We shall be

interested in the operator (F + G)- 1, which carries points y e Rn to points

x e Rn such that y C F(x) + G(x) (if any such x exist). One reason for

our interest in such operators is that problems in applications frequently occur

in that form. One example, treated in more detail in Section 3, is the positive

semidefinite linear complementarity problem: given an n x n positive

semidefinite matrix A (i.e., a matrix A such that (x,Ax) > 0 for each

x CR n ) and a point a C Rn , this problem asks for x 6*Rn such that

x > 0, Ax + a > 0, (x, Ax + a) 0 0 , (2.1)

where the inequalities in .(2.1) are componentwise. If we define F(x) : Ax + a
nand G(x) to be the normal cone to the non-negative orthant R+:

G(x) := 3 (x) = {yj for each z ) 0, (z - x,y) ( 0) if x > 0
n

R+

= {y < 0 I(y,x) 0) if x > 0

t if x

then (2.1) is equivalent to 0 e F(x) + G(x), and therefore the set of x

satisfying (2.1) is (F + G)-(0). It is easy to verify that both F and G

are monotone operators; in fact each is maximal, as one may show by using the

tests described in [2, Ch. 2].

In order to establish various properties of (F + G) 1 , we shall impose upon

F a special requirement that will make possible everything else we do in this

paper. This requirement is that F-1  be strictly monotone. As one can see

from the definitions in the introduction, this implies that if (xY 1y) and

(x 2 ,y 2 ) belong to the graph of F, then either (xl " 2  yl - Y2 ) > 0 or
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Y- Y2 * Similar but somewhat stronger requirements have been used before by

Gol'shtein and Tret'yakov [31 and by Poljak [71 for different purposes.

It is clear that if F- 1 is strictly monotone, then F cannot be multivalued.

However, the converse does not hold, as one can see by considering the skew

linear operator on R2  defined by F(IY2  '- (Y C1). This F is maximal

monotone (its matrix, being skew, is trivially positive semidefinite), but

F- (--F) is not strictly monotone (take x, - 0 and x2 * 0). However, it is

possible to show that if F is the gradient of any Lipschitz continuously

differentiable convex function on Rn , then in fact F-1  is strongly monotones

that is, for some p > 0 and each xl,x 2 C R, (x I - x 2 , F(cl) - F(x 2 ))
Z PIF(x 1 ) - F(x2 )12 (See, e.g., [7]). Thus, there is already a wide class of

possible candidates for F that will satisfy our basic assumption.

If we are looking for a point x E (F + G)-1 (y), we have to find some w with

the property that (x,w) E F and (x,y - w) e G. Of course, in general we

cannot say anything about w, but if our special requirement on F is

satisfied, then it turns out that there is just one w that satisfies these

requirements. Further, once this w is identified we have a representation

of (F + G)-1(y) as an intersection of inverse images of points under F and

G separately. These facts are stated formally in the following proposition.

We use im (F + G) to denote the image of F + G: that is, the set

U {(F + G)(x)lx Rn).

PROPOSITION 1: Let F and G be monotone operators from Rn to itself, with

F-1 strictly monotone. Then the operator 0 :- (I + GOF "1 )-  is a single-

valued function from im (F + G) to Rn, and for each y C im (F + G), the

oint w - 4(y) is the unique w such that for some x C Rn , w C F(x) and

y - w e G(x). Further, one has

(F + G) "  - [F'1] n [G -1(I - 4)] • (2.2)

PROOF: We will show first that there is a unique w having the property

stated, then that this w is given by 4 as defined in the proposition, and

finally that the representation of (F + G) " 1 as an intersection is valid.
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Choose any y C iA (F + G)v then there is some x e Rn with

y 6 (F + G)(x) - F(x) + G(x). Thus, there is some w v F(x) with

y - w C G(x). Now suppose that for some x' and w' we have W' 6 F(x') and

y - w' C G(x'). Then by monotonicity of F and G,

0 < (x - x',w - w') S (x - x', w - w') + (x - x,(y - w) - (y - w')) - 0

so that (x - x',w - w') - 0 and hence w - w' by strict monotonicity of

F- 1 , Therefore w is unique. Now note that w is characterized by the fact

that w S F(x) and y - w s G(x) for some x. This is equivalent to saying

that y - w S (GF-1 )(w), which in turn is equivalent to y e (I + GOF -1 )(w)

and thus to v £ (I + G'F"1 )_(y) - 0(y). Our uniqueness proof shows that I

is single-valued.

To establish (2.2), note that for any point y, if for some x and w we have

x E F-1(W) l G-1 (y - w), then x e (F + G)-1(y). Thus

(F + G) -I : [F- 10] n IG -(1 - 9)]. To establish the opposite inclusion, let

x e (F + G)-1(y). Our previous argument shows that 9(y) e F(x) and

y - 4(y) e G(x). Thus x e Fl [9(y)] n G-I ty-(y)] -

[F -I'] n [G- I(I - 0)](y), so (2.2) holds. This completes the proof.

Proposition 1 shows that 0 is a single-valued function from im (F + G) to
SP. In special cases, this function is very familiar: for example, if we take

F - AI for some A > 0, then a routine computation shows that I = A(G-I)X,

where T denotes the Yosida approximation to an operator T [2]. Also, in

this case the operator I - 9 is just the resolvent of G-1 . These operators

are known to be (Lipschitz) continuous if G is maximal (and in that case

In (F + G) - Rn; see [2]). Thus, we might ask whether in the general case 0

can be shown to be continuous, provided that we assume some reasonable

conditions on F and G, such as maximality. The answer is yes, as we shall

show next.

Before stating the continuity result, we observe that if F is maximal monotone

and F- I is strictly monotone, then the effective domain dom F - {xIF(x) * )
is an open set. This is true since if x is any boundary point of dom F,

then either F(x0 ) is empty or it contains a half-line. The latter is
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impossible since we have already seen that F must be single-valued (if

nonempty), so it must be the case that dom F contains none of its boundary

points, i.e., that it is open.

THEOREM 2: Suppose that F and G are maximal monotone operators from Rn to

itself, and that F- 1 is strictly monotone. Then 0 is continuous on

int im (F + G).

PROOF: The conclusion is vacuously true if int im (F + G) - *, so we may

assume that im (F + G) has a nonempty interior. This shows in particular that
dam F-0 dom G * *. It can be shown, using the maximal monotonicity of F

and G, that ri dom F C dom F Ccl dom F and ri dom G C dom G Ccl dom G,

where the symbol ri denotes the interior of a set relative to its affine hull;

further the outer members of these inclusions are convex. However, this implies

that dom F itself is an open convex set, and it is an easy exercise in convex

analysis to show from this that we actually have (int) dom F r) ri dom G *

By a standard result, we now find that F + G is maximal monotone and that

(F + G) "I is locally bounded at each point of int im (F + G).

The rest of the proof will consist in showing that 0 is closed at a point of

int im (F + G), then that it is locally bounded there. These two facts,

together with the fact that 0 is single-valued, immediately imply continuity.

To show that 0 is closed at a point Y0 £ int im (F + G), choose a

neighborhood N of y0  small enough so that N C im (F + G) and (F + G)-(N)

is bounded. If {yk) is a sequence in N converging to y0, and if

14(y k) converges to some z0 , we want to show that z0 - fly0). Since

N C im (F + G), for each k there is some xk  with Yk C F(xk) + G(xk);

further, {xk I is a bounded sequence, so with no loss of generality we can
assume that (xk} converges to some x0. For each k, we have 0(y k) C F(x k )

and y - 0 e G(x); since F and G, being maximal monotone, are closed

operators we find that z0 C F(x0 ) and yo z0 c G(x0)" Applying Proposition

1, we have Z0 - f(y0 ) as desired.

For local boundedness, let y0 C int im (F + G) and suppose there is a sequence

(yk ) c in (F + G) converging to y0 with 14(yk~' ) +I . Without loss of
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generality we can suppose that Cyk)/N4(yk)I converges to some h. However,

we noted previously that (F + G)-1 Is locally bounded at Yoe so we can

suppose that there is a sequence {xk}, converging to some xo, with

xk e (F + G)- (yk) for each k. But then for each pair (x,f) in the graph

of F and each (z,g) in the graph of G, we have by monotonicity that the

inner products (x - xk, f - f(yk ) ) and (z - x, g Yk + *(Yk )) are

non-negative. Dividing these expressions by MYk)I and taking the limit, we

have for each x e dom F and each z e dom G,

( x - x ,h> ) 0 < ( z - xo 1h)
0

The set dom F, being open, cannot be contained in the hyperplane

H := {wl(w,h) - (x0 ,h)). Therefore H properly separates dom F and dom G,

contradicting the fact that int dom F 0 ri dom G * f [12, Th. 11.3].

Accordingly, our assumption about {ykI was wrong, so that 0 is locally

bounded at Y0 " This completes the proof.

In this section we have developed some general properties of I, but we have

not shown why it is of any interest. In the next section, we show how the use

of 0 provides insight into the structure of solution sets of linear

generalized equations (such as the complementarity problem considered earlier).

3. APPLICATION TO LINEAR GENERALIZED EQUATIONS.

In this section we shall apply the mapping 0 to identify the structure of the

solution set of a linear generalized equation of the form

o e Ax + a + M(x) , (3.1)

where A is a positive semidefinite linear operator from Rn  to itself,

a c Rn , and M is a monotone operator from Rn to itself. For more

information about generalized equations and thnir applications, see (4, 5, 6, 8,

9, 10, 11]
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Our first result is a structure theorem for the solution set of (3.1). We use

the symbol "ker" to denote the kernel of a linear operator.

THEOREM 3: Suppose that in (3.1) A is positive semidefinite and M is

monotone. Assume that x0 . Rn is a solution of (3.1) and denote the symmetric

part of A PX S and the skew part by K. Then the solution set of (3.1).is

{x0 + ker S) n {x0 e Kx + (Sx0 + a) + M(x)) . (3.2)

If C is a closed convex cone in Rn  and M - B*C, then (3.2) becomes the set

of x C Rn such that
Ax + a c C*

xC C

(x,Sx0 + a) = 0 (3.3)

S(x - xo ) - 0

where C* is the dual cone of C : C* - (z e Re (x,c)> 0 for each c C C).

PROOF: We define two monotone operators F and G from Rn to itself by

F(x) := Sx, G(x) :- Kx + a + M(x)

Evidently x satisfies (3.1) if and only if x e (F + G) 1(0). Also, it is

well known that (zSz )= 0 only if Sz - 0, so the operator F "1  is strictly

monotone. As x0  satisfies (3.1), we have Sx0 = F(x0 ) and

0 - Sx 6 Kx + a + M(x0 ) - G(x ). Applying Proposition 1, we find that
0 Q 0 0

0(0) - Sx and
0

(F + G) 1(0) - {xISx - Sx ) n {x(0 - Sx0 C Kx + a + M(x))00
* {x0 + ker s) n {xI0 E Kx + (Sx0 + a) + M(x))

which proves (3.2). Now suppose that M - 3C for some nonempty closed convex
C

cone C. In that case, it is well known that
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{-yly C C*,( x,y)- 0) if x C C
C (x) if x C

so that the requirement 0 c Kx + (Sx0 + a) + M(x) becomes

Kx + (Sx0 + a) C C* (3*4)

x C , (3.5)

(xKx + (SX + a) ) = 0 , (3.6)
0

and we also have

S(x - x O ) = 0 * (3.7)

However, (3.7) and (3.4) together are equivalent to (3.7) and

Ax + a C C* . (3.8)

Also, (x,Kx)= 0 because K is skew. Thus (3.6) is equivalent to

(x,Sx 0 + a) = 0 * (3.9)

The conditions (3.8), (3.5), (3.9) and (3.7) then yield (3.3), and this

completes the proof.

We observe that if C is polyhedral, then (3.3) shows that its solutions form a

polyhedral convex set.

In the particular case C = R+, the conditions (3.3) reduce to those given by

Adler and Gale [1] except that the single equation (3.9) replaces the two

equations numbered (11) and (12) in their paper; in our notation these two

equations are (x 0 ,Ax + a) - 0 and (x,AxO + a) - 0. It can be shown directly

that the two sets of conditions are equivalent, and of course the general

characterizations given here and in (1] also show this equivalence.
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