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ABSTRACT

”AWe show that the inverse image of a point under the sum of two monotone

operators in ﬁ has a special form if a simple condition is imposed on one

of the operators. This result is then applied to characterize the form of the

solution set of a monotone linear generalized equation. Some known results

are recovered as a special case.<—
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. SIGNIFICANCE AND EXPLANATION
Problems of importance in economics, structural engineering, and other

areas can sometimes be expressed as generalized equations involving a special

type of multivalued function called a monotone operator. The solutions of the

problems are then the solutions of the generalized equation. Frequently the

operator appearing in the generalized equation is the sum of two simpler
operators.

In this paper we show that for such a sum, if one of the operators
satisfies a simple condition which often holds in applications, then the
generalized equation can be split into two generalized equations, each
involving one of the simpler monotone operators together with a special
single~valued continuous function. We inventigﬁte some properties of this

function and then show how to use it to find the form of the solution set of a

class of linear generalized equations.
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INVERSE SUMS OF MONOTONE OPERATORS

Stephen M. Robinson

1. INTRODUCTION.

This paper develops a property of sums of monotone operators in R'. Such sums
occur frequently in applications to such areas as linear and nonlinear
programming, complementarity problems, etc. We show here that if the operators
% ' involved obey a rather siyple condition, then the inverse image of a point under
their sum is the intersection of the inverse images, under the individual
operators, of two points related in a simple way to the original point. 1In

Section 2 we investigate the nature of this relationship; then in Section 3 we
] apply it to characterize the structure of the solution sets of certain linear
generalized equations. Some known results about solutions of positive

semidefinite linear complementarity problems then appear as special cases of

this characterization.

All of the results in this paper are stated for monotone operators from R to
itself, primarily because the applications in Section 3 are in R". Some of

-
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this work could probably be extended to infinite-dimensional spaces if it were
worthwhile to do so.

For ease of reference, we recall here that a (possibly multivalued) operator

T 1is said to be monotone if for any pairs (x4,yq) and (x,,y,) in its graph
(xq = %5, ¥4 = y3)2 0, where (+,°) denotes the standard inner product. We
say T is strictly monotone if the inner product above is positive except
vhen x; = x,, and maximal monotone if the graph of T is not properly
contained in the graph of any other monotone operator. The inverse of T is
defined by T"(y) t= {x]y € T(x)}. For more information about such operators,

566 [2] .
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2. AN OBSERVATION ABOUT SUMS OF MONOTONE OPERATORS.

Let F and G be monotone operators from R® to itself. we shall be

interested in the operator (F + G)", which carries points y ¢ R" to points

x € R® such that y € F(x) + G(x) (if any such x exist). Ons reason for

our interxest in such operators is that problems in applications frequently occur
in that form. One example, treated in more detail in Section 3, is the positive
% semidefinite linear complementarity problem: given an n x n positive
semidefinite matrix A (i.e., a matrix A such that {x,Ax) > 0 for each
X € RP) and a point a ¢ RP, this problem asks for x e.R? such that

i
§ x>0, Ax+a0,(x, Ax+a)=0, (2.1)
H
i

where the inequalities in .(2.1) are componentwise. If we define PF(x) := Ax + a

: and G(x) to be the normal cone to the non-negative orthant RE:

% G(x) := 3y n(x) = [ {y| for each z > 0, (z - x,¥) < 0} if x 2 d

R, _ .

¢ ifxio,

= [{y <0 Ky,x)=10} 4if x>0

$ if x}o,

then (2.1) is equivalent to 0 € F(x) + G(x), and therefore the set of x

satisfying (2.1) is (F + G)"1(0). It is easy to verify that both F and G
; are monotone operators; in fact each is maximal, as one may show by using the
é tests described in [2, Ch. 2].

In order to establish various properties of (F + G)", we shall impose upon
F a special requirement that will make possible everything else we do in this
paper. This requirement is that F~' be strictly monotone. As one can see ‘
from the definitions in the introduction, this implies that if (x4,y4) and

(%5,y5) belong to the graph of F, then either (xq = X, ¥y - yz) >0 or
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Yy ™ Yoo Similar but somewhat stronger requirements have been used before by
Gol'shtein and Tret'yakov (3] and by Poljak (7] for different purposes.

It is clear that if F~!

is strictly monotone, then F cannot be multivalued.
However, the converse does not hold, as one can see by considering the skew
linear operator on R? defined by F(E1,52) 3= (52,-51). This P is maximal
monotone (its matrix, being skew, is trivially positive semidefinite), but
F"'(=-F) is not strictly monotone (take X, =0 and x, # 0). However, it is
possible to show that if F is the gradient of any Lipschitz continuously

differentiable convex function on R°, then in fact F!

is strongly monotone;
that is, for some y > 0 and each XyeXy € Rn, (xq = Xy, !‘(i:.') - r(xz))
2 ulr(x1) - F(xz)lz. (See, e.gs, [7))s Thus, there is already a wide class of

possible candidates for F that will satisfy our basic assumption.

If we are looking for a point x € (F + G)"(y), we have to find some w with
the property that (x,w) ¢ F and (x,y - w) € Go Of course, in general we
cannot say anything about w, but if our special requirement on F is
satisfied, then it turns out that there is just one w that satisfies these
requirements. Further, once this w is identified we have a representation
of (F + G)"(y) as an intersection of inverse images of points under F and
G separately. These facts are stated formally in the following proposition.
We use im (F + G) to denote the image of F + G: that is, the set

u{iF + G)(x)|x € R'}.

PROPOSITION 1: Let F and G be monotone operators from RP to itself, with

! strictly monotone. Then the operator ¢ := (I + GeF 1) ig a single-

valued function from im (F + G) to RP, and for each y € im (F + G), the
point w = ¢(y) is the unique w such that for some x € RP, w e F(x) and
Yy -~ v € G(x). Further, ovne has

(P+6) " =« Fleo)n (67 otz - 0] (2.2)

PROOF: We will show first that there is a unique w having the property
stated, then that this w is given by ¢ as defined in the proposition, and
finally that the representation of (F + G)'1 as an intersection is valid.
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Choose any y € im (F + G); then there is some x € R® with

ye€ (P +G)(x) = F(x) + G(x). Thus, there is some w & F(x) with

Yy - w € G{x). Now suppose that for some x' and w' we have w' € F(x') and
y - w' € G{x"). Then by monotonicity of F and G,

os(x-x',w-w'-)s(x-x',w-w')+(x-x',(y-w)-(y-w'))-o,

so that (x - x',w - w')= 0 and hence w = w' by strict monotonicity of
F'1. Therefore w is unique. Now note that w is characterized by the fact
that we P(x) and y - w € G(x) for some x. This is equivalent to saying
that y - w e (G'F")(v), which in turn is equivalent to y e (I + GoF ) (w)
and thus to we (I + G'F")"(y) = $(y). Our unigueness proof shows that ¢

is single-valued.

To establish (2.2), note that for any point y, if for some x and w we have
xe Flw)n G"(y - w), then x € (F + G) '(y). Thus

(F + G)-1 D [F-1°0] 9] [G-1°(I -®)]. To establish the opposite inclusion, let
x € (F + G)"(y). Our previous argument shows that ¢&(y) € F(x) and

y-8(y) €EG(x). Thus x e F [#(y)) NG 'y - &(y)] =

[P-1°0] N [G-1°(I - ®))(y), 80 (2.2) holds. This completes the proof.

Proposition 1 shows that ¢ is a single-valued function from im (F + G) to
RP. In special cases, this function is very familiar: for example, if we take
F = AI for some A > 0, then a routine computation shows that ¢ = A(G-1)A,

where 'rx denotes the Yosida approximation to an operator T [2]. Also, in

this case the operator I - ¢ 1is just the resolvent of G-1. These operators
are known to be (Lipschitz) continuous if G is maximal (and in that case

im (P + G) = RP; see [2]). Thus, we might ask whether in the general case ¢
can be shown to be continuous, provided that we assume some reasonable
conditions on F and G, such as maximality. The answer is yes, as we shall

show next. -

Before stating the continuity result, we observe that if F is maximal monotone J
and P~ s strictly monotone, then the effective domain dom F = {x|F(x) # ¢}

is an open set. This is true since if X is any boundary point of dom F,

then either F(xo) is empty or it contains a half-line. The latter is
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impossible since we have already seen that F must be single-valued (if
nonempty), so it must be the case that dom F contains none of its boundary
points, i.e., that it is open.

THEOREM 2: Suppoge that F and G are maximal monotone operators from RP to

1‘

itself, and that F is strictly monotone. Then ¢ is continuous on

int im (F + G).

PROOF: The conclusion is vacuously true if int im (F + G) = ¢, s0 we may
assume that im (F + G) has a nonempty interior. This shows in particular that
dom F Ndom G # ¢ It can be shown, using the maximal monotonicity of F

and G, that ri dom FPC dom FCcl dom F and ri dom G C dom G C cl dom G,

where the symbol ri denotes the interior of a set relative to its affine hull;
further the outer members of these inclusions are convex. However, this implies

that dom F itself is an open convex set, and it is an easy exercise in convex
analysis to show from this that we actually have (int) dom F Nri dom G # ¢.

By a standard result, we now find that F + G 1is maximal monotone and that

(F + 6&)~! 1is locally bounded at each point of int im (F + G).

The rest of the proof will consist in showing that ¢ is closed at a point of
int im (F + G), then that it is locally bounded there. These two facts,
together with the fact that ¢ is single~valued, immediately imply continuity.

To show that ¢ is closed at a point Yo € int im (F + G), choose a
neighborhocod N of vy, small enough so that N Cim (F + G) and (F + G)"(N)
is bounded. If {yk} is a sequence in N converging to Yor and if

{Q(yk)} converges to some z,;, we want to show that z, = O(YO). Since

N Cim (F + G), for each k there is some x, with Yy € P(xk) + G(xk):
further, {xk} is a bounded sequence, 8o with no loss of generality we can
agsume that {xk} converges to some x,. For each k, we have ¢(yk) € F(xk)
and y, - O(yk) € G(xk); since F and G, being maximal monotone, are closed
operators we find that =z

€ F(xo) and Yo = % € G(xo). Applying Proposition

0

1, we have z, = 0(yo) as desired.

0

For local boundedness, let Yo € int im (F + G) and suppose there is a sequence

(yk} C im (F + G) converging to Yo with IO(yk)l + +#, wWithout loss of

T ST R AT
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generality we can suppose that ¢(yk)/I0(yk)l converges to some h. However,
we noted previously that (F + G)'1 is locally bounded at y,, so we can
suppose that there is a sequence {xk}, converging to some x;, with

x € (F + G)-1(yk) for each k. But then for each pair (x,f} in the graph
of F and each (z,g) in the graph of G, we have by monotonicity that the
inner products (x - X’ f - O(yk)) and (z - Xoe 9= ¥, + O(yk)) are
non~negative. Dividing these expressions by I0(yk)l and taking the limit, we
have for each x € dom F and each z € dom G,

(x - x_,h) $0<(z~ xo,h) .

0
The set dom F, being open, cannot be contained in the hyperplane

H := {w|(w,h) = (xo,h)}. Therefore H properly separates dom F and dom G,
contradicting the fact that int dom FN ri dom G # ¢ [12, Th. 11.3].
Accordingly, our assumption about {yk} was wrong, so that ¢ is locally

bounded at yg. This completes the proof.

In this section we have developed some general properties of ¢, but we have
not shown why it is of any interest. In the next section, we show how the use
of ¢ provides insight into the structure of solution sets of linear
generalized equations (such as the complementarity problem considered earlier).

3. APPLICATION TO LINEAR GENERALIZED EQUATIONS.

In this section we shall apply the mapping ¢ to identify the structure of the

solution set of a linear generalized equation of the form
oeAx+a+H(x), (301)

where A 1is a positive semidefinite linear operator from R to itself,

ae Rp, and M is a monotone operator from Rn to itself. For more

information about genéralized equations and thair applications, see [4, 5, 6, 8,
9, 10, 11}




Our first result is a structure theorem for the solution set of (3.1). We use

the symbol "ker" to denote the kernel of a linear operator.

THEOREM 3: Suppose that in (3.1) A is positive semidefinite and M is

monotone. Assume that x° € Rn is a golution of (3.1) and denote the symmetric

part of A by S and the skew part by K. Then the solution set of (3.1) is

{x0 + ker S} N {x]0 ¢ Rx + (Sx0 + a) + M(x)} . (3.2)

1f C is a closed convex cone in R" and M= 3¢c, then (3.2) becomes the set

of xc¢€ Rn such that
AX + a € C*
X €C

(3.3)

(x,Sx. + a) =0

0

where C* is the dual cone of C : C* = {z ¢ RPI {(x,¢c) 2 0 for each c ¢ C}.
PROOF: We define two monotone operators F and G from R" to itself by
F(x) := Sx, G(x) := Kx + a + M(x) .

Evidently x satisfies (3.1) if and only if x ¢ (F + G)-1(0). Also, it is

well known that (z,Sz)= 0 only if Sz = 0, so the operator F!

is strictly
monotone. As X, satisfies (3.1), we have Sxy = F(xo) and

0 -Sx_ € Kx,_+ a+ M(xo) = G(xo). Applying Proposition 1, we find that

! 0 Q

; %(0) = Sx0 and

’ (F + G)"(O) = {x|Sx = Sxo} N {xfo = Sx, € Kx + a + M(x)}

4

foe = {xb + ker S} N {x]0 & Kx + (Sxo + a) + M(x)} ,

. which proves (3.2). Now suppose that M = awc for some nonempty closed convex

: cone C. In that case, it is well known that




{-yly e c*, (x,y)= 0} if xe C,

awc(x) =
¢ if x¢c,

RN

so that the requirement 0 € Kx + (be + a) + M(x) becomes

1

! Kx + (Sxo + a) e C* , (3.4)
§ xec, (3.5)
(x,Kx + (Sx) + a)) =0, (3.6)

and we also have
S(x - xo) =0 .

However, (3.7) and (3.4) together are equivalent to (3.7) and
Ax + a € C* .

Also, (x,Kx)= 0 because K is skew. Thus (3.6) is equivalent to

(x,Sx0+ a)=0.

The conditions (3.8), (3.5), (3.9) and (3.7) then yield (3.3), and this

completes the proof.

We observe that if C is polyhedral, then (3.3) shows that its solutions form a

polyhedral convex set.

In the particular case C = R:, the conditions (3.3) reduce to those given by
Adler and Gale (1] except that the single equation (3.9) replaces the two
equations numbered (11) and (12) in their paper; in our notation these two

O,Ax + a) =0 and (x,Axo + a) = 0. It can be shown directly

that the two sets of conditions are equivalent, and of course the general

equations are (x

characterizations given here and in (1] also show this equivalence.
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