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\
Q
This paper generalizes the Leray-Schauder index formula to the case where

the inverse image of a point consists of a smooth manifold, assuming some
nondegeneracy condition is satisfied on the manifold. The result states that
the index is the Euler characteristic of a certain vector bundle over the
manifold. Under slightly stronger nondegeneracy conditions, the index is in
fact the Euler characteristic of the manifold.

The paper also includes a discussion of the Euler characteristic for

vector bundles and a simple proof of the Gauss-Bonnet-Chern theorem.;ﬁ
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SIGNIFICANCE AND EXPLANATION

The Leray-Schauder degree is one of the basic methods of nonlinear
functional analysis. It is useful in proving existence theorems for many
nonlinear differential and irtegral equations. The basic computational tool
in the theory is the Leray-Schauder index formula, which allows one to compute
the degree in a special case. This paper extends the computational formula to k

a more general setting.

The ideas used here are applied in the second part of the paper to prove
in a very elementary way the Gauss-Bonnet~Chern theorem, a classical theorem

in differential geometry.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.




A GENERALIZATION OF THE LERAY-SCHAUDER
INDEX FORMULA

J. Sylvester

Introduction

Let F be a continuously differentiable mapping from an open subset
of a Banach space B into B. We assume that F has the form I + K where
I 4is the identity and K is a compact operator. In particular, this
guarantees that for any y € B, Fli(y) is a compact sete If M < is any
isolated component of F'1(y), we may define an integer, called the index,
iF(H) by the formula:

:LF(M) = deg(F, NG(M), y)
where N_(M) = {x € Q@ | dist(x,M) < €} with € chosen so small that
F-1(y) n E:TET = M, and deg(F, Ne(M)' y) is the Leray~Schauder degree. It

is an immediate consequence of the definition and properties of the degree
(see for example (1) or (5)) that deg(F, NE(M), y) 1is independent of €
under the above hypothesis.

The Leray-Schauder index formula computes the value of iF(M) in the
special cage that M 1is a point and DF(M) is an isomorphism. 1In this case,
according to the formula:

iF(M) = deg(DF(M), Ne(M)' g) = (_1)p(DF(M))

*

The bulk of this paper has appeared in the author's Ph.D. thesis at the
Courant Institute of Mathematics Sciences.

Sponsored by the United States Army under Contract No. DAAG29-80~C-0041. This
material is based upon work supported by the National Science Foundation under
Grant No. MCS-7927062.
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where p(L) = the algebraic number of eigenvalues of the linear operator L
which are real and strictly negative. It follows from the assumption that
F = I + K that this number is finite for L = DF(M).

In this paper, we generalize the index formula to the case where M is a
connected smooth manifold, under the restriction that ker(DF(m)) = T M for
all m in M. We show that

iF(M) = x(&)

where g is the vector bundle with base space M and fibres Em = B/Range

DF(m) and x(&) is its Euler characteristic. We remark that we do not make
any assumptions about the orientability of &. In general, £ will not be
oriented, but the total space E(f) will always be oriented for bundles which
arise from this construction.

We begin the paper by defining the Euler characteristic for vector
bundles with oriented total space and make some remarks as to why this is the
appropriate class of vector bundles for which the Euler characteristic
(although not necessarily the Euler chomology class) is defined.

In the second section we state and prove the generalization of the index
formula.

We conclude with a simple proof of the Gauss-Bonnet-Chern Theorem which
makes use of an abstract version of the Gauss mapping and proceeds along lines
similar to those followed in the proof of the index formula. The proof is
analogous tc that of allendorfer (6) in the embedded case.

The author would like to express his yratitude to his thesis advisor,
Professor Louis Nirenberqg, both for suggesting this problem and for his
constant interest and support throughout the period when this work was being

done.
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§1. The Euler Characteristic

Let zp be a smooth n-dimensional vector bundle with orientable total
space E. We assume M is a compact smooth n-dimensional manifold without
boundary. Suppose s is a section of £. If s(m) = (m, s(m)), then for

all me 2z ={m | s(m) = 0} Ds(m): T M+ § . By Sard's theorem, we may pick

8 such that 2 is discrete and such that Ds(m) is an isomorphism for all
m € Z. For each z € Z, we pick a basis <eqecce > for T,M and define

the function

+1 if <e1,...,en, Ds(z)e1,...,Ds(z)en>

is a positively oriented for T E
K(z) = z

-1 if <e1,...,en, DS(Z)e1,o.o,Ds(2)en>

is a negatively oriented basis for TzE

then

X(E) = 1 K(z) .
zZEZ

Note that Kf{z) is independent of the choice of basis <eqrece,ep>; if

3

bi = Ai ej
is another basis for TzM, we have
ee ee e > =
<b1 bn' Ds(z)b1, Ds(z)bn
A 0 _1) <e1...ep, Ds(z)e1,...Ds(z)en>
0 Ds(z)AD3(z)

and the matrix has positive determinant.

—————
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We sketch the proof that x(f) is independent of the section 8. we
begin with
Lemma 1. Let i be an n-dimensional vector bundle over a compact manifold

M, then there exists an injective bundle mapping j

for some N. Furthermore, if £ has a Riemannian metric g we may choose

j so that g is the pull back of the standard metric on R (this fact will

be of use later).
Proof
Let (Ua ha) a = 1,.00,k be a trivializing cover for £, and let 05
’

be a subordinate partition of unity. Define

N k n ’;
R XM= ® R X M .
a :
o=1

and let ia : Mx R * M x RF be the obvious bundle embedding with range at

each point m e M equal to R:. Now define

¥

In order to obtain the metric g, we merely pick the ha so that g} 1
a n P (Ua)

is the pull back of the standard metric on U X R .

One easily verifies that j has the desired properties.

The complementary bundle n to £ in R' x M is defined to be the quotient Lo

bundle RN/E. n is defined up to isomorphism by the property:
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£ i n=g i M.

The existence of the gquotient bundle, as well as most of lemma 1, is standard I

and may be found in (3) or (2). We remark that if E(f) is orientable,

E(n) is also. ,

Definition of the Gauss Mapping

L o

Consider the following sequence of maps

] $¢ gn-= B xulg (1)
A

M
where 1 is the obvious embedding and 7® projects onto the second factor.
We define
G : E(n) » RN by G=mn « i
If we let E (n) = {(x,v) en | |v « i(x,v)| <1}, we have
Lemma 2. deg(G, E1(n). 0) = x(§) .

We do not include the proof, as it will appear (with a few cosmetic
changes due to the Banach space context) in the proof of the index formula in
the next section. ;

This finishes the proof that X(£) is independent of s as deg(G, 3
Eq(n), 0) is independent of any section.

The Euler characteristic and the Euler class

We remark that our assumption that E(£) be oriented is different from
that usually made in the literature. It is customary to assume that the
vector bundle itself, not the total space, is oriented. ' _l

The two assumptions differ only in case the base manifold is non- ‘
orientable. For example, the tangent bundle of a non-orientable manifold is

not orientable, although the Euler characteristic can be defined as the




alternating sum of the betti numbers or as the Lefschetz number of the
identity map, both of which make sense without assuming orientability. It is
immediate, however, that the total space of any tangent bundle is orientable.
It should be noted that for an oriented vector bundle we may define the
Euler cohomology class, while in general no such integral class on the base

manifold exists if we only assume that the total space is oriented. For our

application in §2, it is the integral invariant which plays the central role

and the existence of the cohomology class is not important.

Finally, we observe that one may construct a cohomology class, not on the
base space, but on its two fold orientable covering space. The pull back
bundle will always be orientable and the "Euler class" for the original bundle

will be exactly half that of the pull back bundle.




i §2. The Index Formula

Let B be Banach space, Il an open subset of B and F a mapping
satisfying
(1) P:QcB+B

(ii) P=I +K ; K compact

3 (1i4) Fe c'@)
(iv) M c F-1(y) c ! 4is a connected smooth manifold and

nullity (DF(m)) = dim M ¥ m e M,

We remark that (ii) implies that M is both compact and finite dimensional.
For F satisfying (i) - (iv) we have

iF(M) = deg(F, Ne(M)' y)
where N_(M) = {x ¢ B | dist(x,M) < €} is a tubular neighborhood of M. We
will show that the right hand side is defined and independent of € for ¢
sufficiently small., We prove:

Theorem. Let F satisfy (i) - (iv), then 3 60 > 0 such that ¥ € < eo

iF(M) = deg(F, Na(M)’ y) = x(&)
i where £ is the vector bundle with base M and fibre Ex = B/Range DF(x)
{the orientation of £ will be described below) and ¥ is its Euler

characteristic.

Corollary. If F satisfies (i) - (iv) and
(v) Range DF(M) n ker DF(M) = {0} ¥ me M I

then

e

(=1)P (DF(m))

ip(M) = X(M) .

Proof of the Corollary

We first note that (iv) and (v) fix the spectral multiplicity of zero - b

for DF(m) independent of m € M; this in turn fixes p(DF(m)) modulo 2, so H i

irias

that the formula is independent of m. As a consequence of (v)

-7=




B = Range DF(m) @ ker DF(m)

which implies £ = B/Range DF(m) = ker DF(m) = TmM where the explicit
isomorphism is given by the projection operator P(m) onto ker DF(m)
along Range DF(m). The necessary smoothness of P(m) is easily verified

from the integral formula
P =/ R_(DF(m))dy
r Y

where T is a contour about zero and Rr denotes the resolvent ((v)
guarantees that P 1is a spectral projection).

The factor of (_1)p(DF(m))

provides for the appropriate orientation as
will be described in the proof of the theorem.

Proof of theorem

I. deg(F, NE(M), y) 1is defined and independent of € for all
0 <€« €5
We observe that it follow from (iv) that for x € Ne(M)
F(x) = F(m) + DF(m)(x-m) + o(|x~m])
=0 + DF(m) (x-m) + of |x-m|)
so that
[F(x)| > % IDF(m)(x-m)| for 0 < € < €, and x € N_(M)

and therefore F(x) is nonzero for x ¢ NS(M)\M. Hence # 0 and

F|
BNC(M)
deg(F, Ne(M), y) 1is well defined; by the excision property of degree, it is

independent of € > 0.
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II. Orientation of E(£)

Ion,

(1) MM

We begin by introducing the complementary vector bundle

where nm<:B and L € Range DF{m) = B (r\m is the fibre over the point

m). There exists a natural bundle isomorphism from n to £, namely the

mapping which takes each vector to its equivalence class. Henceforth we shall

deal with n and describe the orientation of E(n) as follows:

: (1) As T(m,v)E(“) is naturally isomorphic to TmM ® nm af e in

Tmﬂ ® nm of the form <w1...wm, v1...vm>, where <w1,...,wn> spans TmM

and <uyssee,u > spans nm, defines an isomorphism

. >
Om(VIW) : TmM nm

by the formula

Om(v,w)wi =V o

(2) Let i be a complementary bundle(1) to TM and let P, be the

projection onto T M along vm, then the linear isomorphism

+ : >
DF(m) Om(v,w)Pm B+ B

has the form I + K, K compact, and hence has degree plus or minus one. We

v1,...,vn> is positively oriented if the degree of the

say that <w1,...,wn,

map is plus one.

To check that this defines a global orientation we merely note that

SVqreeesVp, w1,...,wm> may be extended to local sections of TE(n) and as

DF(m) + Om(v,w) remains (locally) an isomorphism, its degree remains +1.

(1)

For any subbundle of B with finite dimension or codimension, the
existence of a complementary bundle follows from the Hahn-Banach theorem.,

This bundle is only unique up to isomorphism.




III. Computation of iF(M)

Let s be a mapping from M into B such that s(x) € nx for all
x €M {(i.e. s 1is a smooth section of n). By Sard's theorem, we may
choose s to have isolated and nondegenerate zeroes (i.e. Dg(x} should have
full rank for all x such that s(x) = 0). As above ip is the
complementary bundle to TM and p projects onto the base point. It is the

content of the tubular neighborhood theorem that the mapping (m,v)'i m+ v

is a diffeomorphism from Ve to Ne(m). We denote by ® the mapping

p .].-1 (2)c

Finally, define F(x) = DF(®(x)) (x - m(x)). We now prove:

Lemma deg(F, Ne(M), 0) = deg(E + s, NE(M), 0).

Proof. We expand F as a Taylor polynomial about points in M:

F(m(x)) + DF(m(x)) (x = w(x)) + o(|x = n(x)}|)

F(x)

= 0 + DF(T(x)) (x = ®(x)) + o(|x = w(x)]|)

which implies that for € small the homotopy
G(t,x) = tF(x) + (1=t)DF(m(x)) (x - w(x))
satisfies |G(t,x)| » |DF(7(x)) (x - ®(x))| = o(|x - w(x)|) and by (iv),
IDF(m(x)) (x - m(x))| » C|x - n(x)| where C is independent of x as M
is compacte. This shows that GIBNE(M) # 0 and hence that
deg(F, N_(M), 0) = deg(F, N _(M), 0) .
Similarly, we define the homotopy

H(t,x) = F(x) + ts(m(x)) .

The observation that s(x) € nx where Range F # n = B implies that

(Z)In the case B is a !lilbert space, we may take 7 to be simply the map

which associates to each point in N (M) the closest point in M. This map
is of course smooth if ¢ is sufficiently small.,
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F(x) = 0

H(t,x) = 0 if and only if {.nd s(n(x)) =0 .

In particular, F(x) = 0 only when x € M and therefore not on 3“;‘"" 8o
that H'au (M) # 0 and the lemma is established.

We no: compute deg(; +8° 7, Ne(M)' 0) wusing the Leray-Schauder
formula. By the last remark in the proof of the lemma, we see that
F+ 8+ % vanishes only on M and further, that it vanishes exactly at the
zeroes of 8. At these zerces x = 7(x), so that

D (F + s+ ®) =D [DF(5(x)) (x = w(x)) + s(x(x))]

= D2F(n(x)) (DM(x)w, x = W(x)) +

+ DF(®(x)) (I - Dn(x))w + Ds(w(x))DR(x)w
= DF(x) (I - Px))w + Ds(x)wa
where P, = D¥(x) is the projection onte TM along Ve Finally, as
DE’(x)Px = (0, we have
D(F+s¢ n) = (DF(x) + DS(X)P_)w .
w x

By Leray-Schauder,

deg(F + 8 * 7, N (M), 0) = ) deg(DF(x) + Ds(x)P )

XEV 1(0)
= §1 1(x) = x(m) .
xev (0)
The last step being justified as the deg(DF(x) + Ds(x)P,) is +1 exactly

when <V ..oV, D8V4e..D8V > is positively oriented and -1 when this frame

is negatively oriented.

-11=
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§3. A Proof of the Gauss-Bonnet-Chern Theorem

Theorem. (Gauss-Bonnet-Chern) Let £ be a 2m-dimensional Riemanian vector

bundle with metric g, compatible connection V, and associated curvature

matrix (in some orthonormal frame) Q. The n-form L({) = L(V,f) defined by

1 1
L(E) = PE(R) = =— ] ¢ Q Q cee 9 _
mby o Al iy 2m=1"2m

has the property that

P22

I L&) = (2m) 1

M

x(g) .
( el is the sign of the permutation [1,2,¢¢¢,2m] + [i4,i5,000sdipp])e
Proof

We begin by assuming that M is orientable, if not L({) must be zero
as a nonorientable manifold cannot support a nonzero n-dimensional integral
cohomology class. The orientation of M, along with that of the bundle £,
gives an orientation on E(£) and we may compute X(£) From Lemma 2 of §1.

Specifically, if we let 91,...6N be coordinates on R', we have

/ ¢ (ae'.....a0%)
E1(ﬂ)
x(§) = deg(G, E (n), 0) = 1 ™ (2)
N de .....de

B

where BY is the ball of radius one in R (see (1)), We define a 2m-form

X(E) on M by

2=

- e

bt

™
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[ G (ae'.....a8N)

X(E) =
as'.....a"

B

where f means integration over the positively oriented fibre. It is

n
immediate*from (2) that

| X(E) = xt&) .
M

We shall prove the theorem by explicitly calculating X(§) and showing
that
X(E) =L (V,E) (3)
where V 1is the connection on £ obtained by pulling back the flat
connection on M x IP. V 1is obviously compatible with the pull back metric,
which we can arrange to be any metric we wish by Lemma 1 of §1. To establish
the general theorem, we then quote the following simple lemma.

Lemma 3 f L(V,E) is independent of V, provided V is compatible
M

Proof

Given V1 and Vz, one constructs the family of connections
Vt = tV1 + (l-t)Vz, which are compatible with g, and the n-forms
L(Vt,E), which provide a homotopy from L(V1.€) to L(Vz,é). (See (3) or
{(4) for more details.)

We proceed to calculate X(§); we shall need the following formula, the

proof of which we omit.

Lemma 4. Let £ _«s.f be integers, ? L = n, where n is an even

integer, then




0 if any lp odd
a1
2 n+1
[ %, ' < (n72)1 Fqleeesddol r(—z—)
z xXxx dz vee dz = )
lz]<1 1 q 1 q nl 21 2 »
(Z_)lo.u(ig)l \‘
!
N | L
% . if all "p even . }
i i
% Let ej...ey be an orthonormal basis for Ip ‘
6'...6" the dual basis !
Let by(x)...b,(x) be a local orthonormal basis for £ i 7
81...8n the dual basis 1
Let bnﬂ(x)...bN(x) be a local orthonormal basis for n |
1
Bn+1(x)...8N(x) the dual basis =
» |
§
. é ()
Finally, let ba(x) = ::\m(x)e6 & = 1,404,Ns Note that aa(x) is
unitary, as both bases are orthogonal. We have
- de1.ooo.deN = A d(a:BG) B
i 1
E a=1 .
: N
= A aYd(aYBG) because det(aY(x)) = 1
a 8 a
A a=1
N § 3 i
= Y_Y Y. .Y
3 = A (a“aadﬁ + aadaGB ) 3
' a=1
, = A (a8® + (a%aaVye®) |
‘ -1 a 6 .
‘ N 5 J
Z = A (a8% +w_8°) P
I ad .
=1 .
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where “a6 - a:daz = the connection matrix for the flat connection on IP x M

in the basis ba'

* Nooa P, ) a P ?
G \& .c-o.& ) = A (mi 8*) A (dB + W 8 ) I
i=1 P gen#1 @

where the sums on the index p range from n+1 to N. (We have used the

. 4
fact that G (8%) = 0 tor j = 1,eee,n.) We integrate

o 1 N n P N q
[ G ....a0) =] A (w 8°) A a8
n n, i=1 P gqenet

and expand the product on the right to obtain

i i
. 1 1
[, o'l e [ e e, [8 .8 nag™',....58"
x i€2 1 n
q
where z: is the set of all n-tuples i = (i,,...,i,) with 1< ij < q for

J = 1,e00,ne Por 1€ p< q we define zp - zp(i) = #{k | i, = pl] and let

.zo be the set of 1 € :: such that lp is even for all p. By lemma 4,

I, G (ae'. ... 8™

x
Cwdl
2 n+1 n
-u r(z) o . (3)1 foteeet !
n+qt2 n 14 °°""""ai nt ¢ [} *
M=) ez, 0 A o o
2 2
N
1 N lz
Dividing both sides by f 46 .eeo.d = ol L obtain
B T(==)




n
(-)’ L. lesel !
x(e) .—n—'_. 2 [7] PETY IR 2 ! 9
n n 14 ni nl ) )
I n.n iczqo 1 n ('J')l.oo(ﬁ)l
v 2 (5)! 2 2
n
. nt . 1_ . . (2)1 ll""{g'
n nl n 11 ~***~"ni nt ¢ )
a res” 12 'w(1) x(n) 1 q
x? n(g)l qo (-3)"'°( 2)!

where the previous step is justified by the observation that, for any

L1l...z '

" E sn, the number 1 g is the same for i and

(2—‘)....(;*1).

iex (" is the permutation group).

(’2_)! 21100.1 !

- —nl__ 1 q .
x(8) n n! 1£zn n! 21 fg
'221\(3)' qo (T)loo.(z )!

hd ( Z w aves W ) .
ves® 'iy(1) iy (n)

By a simple counting argument

ni 1
X(E) = - () w aeeeals )
a Yah) "Iy (n)

n
x22"8), 12
2 q

where jZk = jZk-1 - 1k’ Interchanging sums and reordering the permutations,

we have

-16~




nl 1 L
X(§) = ni z nt Z n w'(1,j1.oocaﬂ'(n)jn

nn
x2 (2)1 iez

where ¢ is the sign of the permutation

e )

)

)‘°°"(wW(n-1)pww(n)p

- ni 1 z L
n

X(E) = 2 o € (m:‘"“)pmﬂ(z)p

xzzn(g)n

nES

where we again have an implied sum on p = n+1,...,Ns On recalling that

B3 " “1p”sp
' ni 1 "
X(£) = 5T Lo € R n2) " Rrin=1)n(n)
- xES
wzzn(ﬂ)l
2
ni M
- E L(E) .

y »? "

/
:(n
'
i
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