
A DA099 363 WISCONSIN UNIV-MADISON MATHEMATICS RESEARCH CENTER F/G 12/1

A GENERALIZATION OF THE LERAY-SCHAUOER INDEX FORMULA

JAN 81 J SYLVESTER DAAS2 SOC 0

UNCLASSIFIED MRC-TSR-2175 NL



MRC Technical Summary Report #2175

A GENERALIZATION OF THE
LERAY-SCHAUDER INDEX FORMULA

J. Sylvester

Mathematics Research Center

University of Wisconsin-Madison

610 Walnut Street
Madison, Wisconsin 53706

January 1981 EI

(Received November 25, 1980)

Approved for public role&$*

Oj Distribution unlimited

Sponsored by

U. S. Army Research Office and National Science Foundation

P. 0. Box 12211 Washinqton, D. C. 20550

Research Triangle Park

North carolina 27709 5 2 7  0 1 5

I 81 5 I A I2L



... -1

NT'S GRA&i

UNIVERSITY OF WISCONSIN-MADISON -.,.,,

MATHEMATICS RESEARCH CENTER

A GENERALIZATION OF THE LERAY-SCHAUDER '-/

INDEX FORMULA

J. Sylvester

Technical Summary Report # 2175

January 1981 4
ABSTRACT

This paper generalizes the Leray-Schauder index formula to the case where

the inverse image of a point consists of a smooth manifold, assuming some

nondegeneracy condition is satisfied on the manifold. The result states that

the index is the Euler characteristic of a certain vector bundle over the

manifold. Under slightly stronger nondegeneracy conditions, the index is in

fact the Euler characteristic of the manifold.

The paper also includes a discussion of the Euler characteristic for

vector bundles and a simple proof of the Gauss-Bonnet-Chern theorem.

kAMS(MOS) Subject Classifications: 47G10, 47H15, 53A55.

Key Words: Leray-Schauder degree; Euler characteristic; Gauss-Bonnet-Chern

Theorem.
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SIGNIFICANCE AND EXPLANATION

The Leray-Schauder degree is one of the basic methods of nonlinear

functional analysis. It is useful in proving existence theorems for many

nonlinear differential and irtegral equations. The basic computational tool

in the theory is the Leray-Schauder index formula, which allows one to compute

the degree in a special case. This paper extends the computational formula to

a more general setting.

The ideas used here are applied in the second part of the paper to prove

in a very elementary way the Gauss-Bonnet-Chern theorem, a classical theorem

in differential geometry.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.



A GENERALIZATION OF THE LERAY-SCHAUDER
INDEX FORMULA

J. Sylvester

Introduction

Let F be a continuously differentiable mapping from an open subset

of a Banach space B into B. We assume that F has the form I + K where

I is the identity and K is a compact operator. In particular, this

guarantees that for any y e B, F- (y) is a compact set. If K c 0 is any

isolated component of F-1(y), we may define an integer, called the index,

iF(M) by the formula:

i F(H) - deg(F, N M), y)

where N () - (x e 0 I dist(x,M) < e) with e chosen so small that

F-1 (y) n N e) - , and deg(F, N (M), y) is the Leray-Schauder degree. It

is an immediate consequence of the definition and properties of the degree

(see for example (1) or (5)) that deg(F, N (M), y) is independent of e

under the above hypothesis.

The Leray-Schauder index formula computes the value of iF(M) in the

special case that M is a point and DF(M) is an isomorphism. In this case,

according to the formula:

i (M) = deg(DF(M), N (M), 0) (-1)p(DF(M))

F

The bulk of this paper has appeared in the author's Ph.D. thesis at the
Courant Institute of Mathematics Sciences.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. This
material is based upon work supported by the National Science Foundation under
Grant No. MCS-7927062.
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where p(L) - the algebraic number of eigenvalues of the linear operator L

which are real and strictly negative. It follows from the assumption that

F - I + K that this number is finite for L = DF(M).

In this paper, we generalize the index formula to the case where M is a

connected smooth manifold, under the restriction that ker(DF(m)) = TmM for

all m in M. We show that

i F(M) = X(M)

where is the vector bundle with base space M and fibres m = B/Range
M mI

DF(m) and X(&) is its Euler characteristic. We remark that we do not make

any assumptions about the orientability of &. In general, & will not be

oriented, but the total space E(&) will always be oriented for bundles which

arise from this construction.

We begin the paper by defining the Euler characteristic for vector

bundles with oriented total space and make some remarks as to why this is the

appropriate class of vector bundles for which the Euler characteristic

(although not necessarily the Euler chomology class) is defined.

In the second section we state and prove the generalization of the index

formula.

We conclude with a simple proof of the Gauss-Bonnet-Chern Theorem which

makes use of an abstract version of the Gauss mapping and proceeds along lines

similar to those followed in the proof of the index formula. The proof is

analogous tc that of Allendorfer (6) in the embedded case.

The author would like to express his gratitude to his thesis advisor,

Professor Louis Nirenberg, both for suggesting this problem and for his

constant interest and support throughout the period when this work was being

done.
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1I. The Euler Characteristic

Let P be a smooth n-dimensional vector bundle with orientable total

space B. We assume M is a compact smooth n-dimensional manifold withoutj. boundary. Suppose is a section of F. If a(m) = (in s(m)), then for

all m c z - {m I s(m) - 0) Ds(m): T M + . By Sard's theorem, we may pick
m in

s such that Z is discrete and such that Ds(m) is an isomorphism for all

m C Z. For each z E Z, we pick a basis <e,...en> for TzM and define

the function

+1 if <e 1 ... ,e, Ds(z)e1 ,...,Ds(z)en>

is a positively oriented for T E

-1 if <e1,..,e n , Ds(z)e ,1...,Ds(z)en

is a negatively oriented basis for T Ez

then

X(E) = (z) . [
zEZ

Note that K(Z) is independent of the choice of basis <el,*..,en> if

b i = A i eJ

t is another basis for TzM, we have

(A ) <e...e Ds(z)e....Ds(z)e0 s lDs(z) - 1) 1" n

and the matrix has positive determinant.
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We sketch the proof that X(V) is independent of the section a. we

begin with

Lema 1. Let i be an n-dimensional vector bundle over a compact manifold

M, then there exists an injective bundle mapping j

j + R N+X 
M

for some N. Furthermore, if & has a Riemannian metric g we may choose

j so that g is the pull back of the standard metric on RN (this fact will

be of use later).

Proof2

Let (U,h ) a - 1,...,k be a trivializing cover for , and let 42

be a subordinate partition of unity. Define

RN XM- 0® X M

n I

and let i M x Rn + M x R be the obvious bundle embedding with range at

each point m C M equal to R Now define

k
j 1 aia - h -1

awl

In order to obtain the metric g, we merely pick the h so that g-
a P (Ua )

is the pull back of the standard metric on UX X (U)

One easily verifies that j has the desired properties.

The complementary bundle n to & in RN x M is defined to be the quotient

N
bundle R /~ )is defined up to isomorphism by the property:

-4-



The existence of the quotient bundle, as well as most of lemma I, is standard

and may be found in (3) or (2). We remark that if E(C) is orientable,

EMT) is also.

Definition of the Gauss Mapping

Consider the following sequence of maps

NR~ (1)

M M

where i is the obvious embedding and w projects onto the second factor.

We define

G : E(n) + RN  by G r i

If we let E (n) - (Cx,v) e n I in * i(x,v)l < 1}, we have

Lemma 2. deg(G, E1 (n), 0) = X(E)

We do not include the proof, as it will appear (with a few cosmetic

changes due to the Banach space context) in the proof of the index formula in

the next section.

This finishes the proof that X(M) is independent of s as deg(G,

E (n), 0) is independent of any section.

The Euler characteristic and the Euler class

We remark that our assumption that E(M) be oriented is different from

that usually made in the literature. It is customary to assume that the

vector bundle itself, not the total space, is oriented.

The two assumptions differ only in case the base manifold is non-

orientable. For example, the tangent bundle of a non-orientable manifold is

not orientable, although the Euler characteristic can be defined as the



alternating sum of the betti numbers or as the Lefschetz number of the

identity map, both of which make sense without assuming orientability. It is

immediate, however, that the total space of any tangent bundle is orientable.

It should be noted that for an oriented vector bundle we may define the

Euler cohomology class, while in general no such integral class on the base

manifold exists if we only assume that the total space is oriented. For our

application in §2, it is the integral invariant which plays the central role

and the existence of the cohomology class is not important.

Finally, we observe that one may construct a cohomology class, not on the

base space, but on its two fold orientable covering space. The pull back

bundle will always be orientable and the "Euler class" for the original bundle

will be exactly half that of the pull back bundle.
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12. The Index Formula

Let B be Banach space, U an open subset of B and F a mapping

satisfying

(i) F : CB+B

(ii) F- I + K ; K compact

I
(iii) F E C (a)

-1
(iv) M c F (y) c n is a connected smooth manifold and

nullity (DF(m)) - dim M V m E M.

We remark that (ii) implies that M is both compact and finite dimensional.

For F satisfying i) - (iv) we have

i (4) deg(F, N (M), y)F E

where N (M) = {x e B I dist(x,M) < el is a tubular neighborhood of M. We

will show that the right hand side is defined and independent of E for £

sufficiently small. We prove:

Theorem. Let F satisfy i) - (iv), then a 0 > 0 such that V E < 0

iF( M) = deg(F, N (M), y) = X()

where & is the vector bundle with base M and fibre x = B/Range DF(x)

(the orientation of E will be described below) and X is its Euler

characteristic.

Corollary. If F satisfies (i) - (iv) and

Cv) Range DF(M) n ker DF(M) = (0} V m E M

then

iF(M) = (- )p(DF(m))(M)

Proof of the Corollary

We first note that (iv) and (v) fix the spectral multiplicity of zero

for DF(m) independent of m c M; this in turn fixes p(DF(m)) modulo 2, so

that the formula is independent of m. As a consequence of (v)

-7-
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B Range DF(m) S ker DF(m)

which implies - B/Range DF(m) Z ker DF(m) = T M where the explicit

isomorphism is given by the projection operator P(m) onto ker DF(m)

along Range DF(m). The necessary smoothness of P(m) is easily verified

from the integral formula

P = f R (DF(m))dy

where r is a contour about zero and Rr denotes the resolvent ((v)

guarantees that P is a spectral projection).

The factor of (-1) P (D F (m ) ) provides for the appropriate orientation as

will be described in the proof of the theorem.

Proof of theorem

I. deg(F, N (M), y) is defined and independent of c for all
C

:i0 < C < C

We observe that it follow from (iv) that for x C N (M)

F(x) = F(m) + DF(m)(x-m) + o(Ix-ml)

-0 + DF(m)(x-m) + o(Ix-ml)

so that

IF(x)I )1/2 IDF(m)(x-m)I for 0 < c < c and x e N EM)

and therefore F(x) is nonzero for x C N (M)\M. Hence Fl3N (M)* 0 and

deg(F, N (M), y) is well defined; by the excision property of degree, it is

independent of e > 0.

i -8-



II. Orientation of E(E)

We begin by introducing the complementary vector bundle(1) M1 no

where n CB and n * Range DF(m) = B (ni is the fibre over the point
in i m

m). There exists a natural bundle isomorphism from n to C, namely the

mapping which takes each vector to its equivalence class. Henceforth we shall

deal with n and describe the orientation of E(n) as follows:

(1) As T (mv)E(n) is naturally isomorphic to T mM n m a f- e in

TmM D nm of the form <w1...wm, vl... vm > , where <wl,...,wn> spans TmM

and <u1,...,Un> spans nm, defines an isomorphism

o (vw) : T mM nm

by the formula

Om(v,W)W i = vi.

(2) Let Y be a complementary bundle() to TM and let Pm be them

projection onto TMM along vm, then the linear isomorphism

DF(m) + 0 (v,w)Pm : B + B

has the form I + K, K compact, and hence has degree plus or minus one. We

say that <wl,...,wn, vl,...,Vn> is positively oriented if the degree of the

map is plus one.

To check that this defines a global orientation we merely note that

<v1,...,vm, wl,...,wm> may be extended to local sections of TE(n) and as

DF(m) + 0 m(vw) remains (locally) an isomorphism, its degree remains +1.

(1)
For any subbundle of B with finite dimension or codimension, the

existence of a complementary bundle follows from the Hahn-Banach theorem.

This bundle is only unique up to isomorphism.

-9-
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III. Computation of iF(M)

Let s be a mapping from M into B such that s(x) e n for allx

x E M (i.e. s is a smooth section of n). By Sard's theorem, we may

choose s to have isolated and nondegenerate zeroes (i.e. Ds(x) should have

full rank for all x such that s(x) = 0). As above is the

complementary bundle to TM and p projects onto the base point. It is the

content of the tubular neighborhood theorem that the mapping (m,v) m + v

is a diffeomorphism from V to N (m). We denote by w the mapping

.-1 (2).

Finally, define F(x) = DF(W(x)) (x - W(x)). We now prove:

Lemma deg(F, N C(M), 0) = deg(F + s 9 w, N (M), 0).

Proof. We expand F as a Taylor polynomial about points in M:

F(x) = F(1(x)) + DF(r(x)) (x - W(X)) + o(iX - W(x)I)

= 0 + DF(n(x)) (x - W(x)) + O(ix - W(x)I)

which implies that for e small the homotopy

G(t,x) = tF(x) + (1-t)DF(w(x)) (x - W(x))

satisfies IG(t,x)j > IDF(n(x)) (x - w(x))I - o(ix - n(x)I) and by (iv),

IDF(r(x)) (x - (x))l ) Clx - n(x)l where C is independent of x as M

is compact. This shows that GI N (M) $ 0 and hence that

deg(F, N C(M), 0) = deg(F, N C(M), 0)

Similarly, we define the homotopy

H(t,x) = F(x) + ts(w(x))

The observation that s(x) E n where Range F * f = B implies that
x

(2)In the case B is a Hilbert space, we may take n to be simply the map

which associates to each point in NE(M) the closest point in M. This map
is of course smooth if c is sufficiently small.

-10-
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F(x) ,. 0
H(tx) - 0 if and only if a () - 0

and a(w(x)) -0

In particular, F(x) - 0 only when x 6 M and therefore not on aN (M), so

that HI N (M) 0 and the lemma is established.

We now compute deg(F + a • W, N C(M), 0) using the Leray-Schauder

formula. By the last remark in the proof of the lemma, we see that

F + s * v vanishes only on M and further, that it vanishes exactly at the

zeroes of s. At these zeroes x - i(x), so that

D (F + a * 1) - D[DF(w(x)) (x - w(x)) + 9(w(x))]

- D2F ((x)) (D71(x)w, x - T(x)) +

+ DF(w(x)) (I - Dw(x))w + Ds(w(x))Dw(x)w

SDF(x) (I - Px))w + DS(X)Pxw

where PxM Dw(x) is the projection onto TxM along v . Finally, as

x

DF(x)Px M 0, we have

D (F + s a w) - (DF(x) + Ds(x)Px )w
wx

By Leray-Schauder,

deg(F + a W, N C(M), 0) deg(DF(x) + Ds(x)Px

xCv (0)

v i(x) x(n)
-1

xcv (0)

The last step being justified as the deg(DF(x) + Ds(x)Px) is +1 exactly

when <v1o..v n, Dsv1...Dsvn> is positively oriented and -1 when this frame

is negatively oriented.

-11-
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13. A Proof of the Gauss-8onnet-Cher" Theorem

Theorem. (Gauss-Bonnet-Chern) Let ( be a 2.-dimensional Riemanian vector

bundle with metric g, compatible connection V, and associated curvature

matrix (in some orthonormal frame) Q. The n-form L(C) - L(V,t) defined by

L(E) - Pf('0) - 2 -l 1
2lI I1 2 13 14 2m-1 i2m

has the property that

f %1mm2 2 m XE
M ~ (2mf' L(¢) (2)!X()

SIis the sign of the permutation (1,2,...,2m] + [il1i2,.**,i2m].

Proof

We begin by assuming that K is orientable, if not L( ) must be zero

as a nonorientable manifold cannot support a nonzero n-dimensional integral

cohomology class. The orientation of M, along with that of the bundle ,

gives an orientation on E(4) and we may compute X(E) From Lemma 2 of §.

Specifically, if we let e' ,1e..N be coordinates on R, we have

f G*(d1 N.....dN )

4. El(r,)

X(C) - deg(G, E I (n), 0) = 1 N (2)
fN d1 ..... d

where BN is the ball of radius one in N (see (1)). We define a 2m-form

X(E) on M by

-12-



X(&) - "X

I f G0(.. 1..... dN

where f means integration over the positively oriented fibre. It in

nxn

immediateX from (2) that

f X(&) X(&)

We shall prove the theorem by explicitly calculating X(&) and showing

that

X(E) - L (V,&) (3)

where V is the connection on & obtained by pulling back the flat

connection on M X e. V is obviously compatible with the pull back metric,

which we can arrange to be any metric we wish by Lemma I of J1. To establish

the general theorem, we then quote the following simple lemma.

Lemma 3 f L(V,F&) is independent of V, provided V is compatible
K

with g.

Proof

wh Given V and etone constructs the family of connections

coV nti o (1-t)V 2# which are compatible with g, and the n-forms

twhich 1roe a2 mt rom we ih to Le V 2 U. To (3)bor

j (4) for more details.)

we proceed to calculate X() we shall need the following formula, the

PMProofofwihwomt

Lemm 4. t t (1-t2, w inteers, optil with n, wher e n -isoareve

integer, then

-13-



0 if any I odd

p

1 1#090,1 1nTlr
I 1I ..z q dz I  . dz = (n/2)1 £I * *£ CI 2 j T

Iz<l q 1 q nl £1

if all Z even .
p

Let e1 .. .eN be an orthonormal basis for RN

'1...eN the dual basis

Let bi(x)...bn(x) be a local orthonormal basis for

8...8 n  the dual basis

Let bn+l(x)...bN(x) be a local orthonormal basis for n

n+1 N
8 (x)... a(x) the dual basis

Finally, let b (x) = a 6(x)e a 1,...,N. Note that a (x) is
a a 6

unitary, as both bases are orthogonal. We have

N

1 N a 6
de 1 ..... de = A d(a 6a= 1

N
= A a d(a 6 ) because det(a Cx)) - 1

a=1

N
= A (a a d 3 + aada63
a= I

N

f A (d8a + (a da 6 )8
a= 1

N
= (dBa + wa 6

a1i

i I -14-



vha~a( YY

,n N
* 1 N q

d 1 .... de 1 = A (w 0 A (d,8 W p)Sip qn+ qp

where the sums on the index p range from n+1 to N. (We have used the

fact that G (B ) - 0 for j - 1,...,n.) We integrate

n N

f G (dB ....dO) f A (w OP) A
n. nx iI q- n+1

and expand the product on the right to obtain

± i

f G * ( d B1 € .. .d e N ) I W l .0 .. . f 0 1 .... .... O n +1. d O N

n icZ n1 1 n
q

where e is the set of all n-tuples i (i1,...,in) with 1 4 i1 4 q for
q

j - 1,...,n. For 1 O p 4 q we define t - L (i) - 0{k I ik  p) and let

in  be the set of i n such that I is even for all p. By lemma 4,
qo q p

f G (dO1 ..... dON

x

2 r . .- -") , £ 1(a -'2,,, ..... 2,1,
o (A I ... (2)

1 2

N
21 N 1I

Dividing both sides by fdO1....d0N = . +,we obtain

S , 1"(",

B-1 2



11 I. I
-o I

w i" I2 2o ) (Bl n)

where the previous step is justified by the observation that, for any

W Sn , the numbe 1 q I s the same for i and

2 1 .. (gl

i* (Sn is the permutation group).

X( . nY 1 ... I L

2 _n n- zn
x2()I qo

eS 1) w(n)

By a simple counting argument

X(& nij
2 nf n IS w(1) njw(n)

w 2 2(2 icZ 2
2 q

where J2k J2k-1 'k" Interchanging sums and reordering the permutations,

we have

-16- i



nI j Wn n n %((1)j

.X"' ) - " 0) ..,%(,

v22n(,2) I :CZ 2

where C is the sign of the permutation

X(C) , n I Cn ( )... (W
-W-IWesn T Irp(2)p *W(n-1)p w(n)p

22n)

where we again have an implied sum on p - n+1,...,N. On recalling that

aij OipwjpX(:)) - i nCJrl()09*ll(
Wl 1 Ile n

2nn

2 2 n(-R)I
2

n- L(C)

2 2nn
I -)w 2 T

i

-17-
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