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ABSTRACT

It is very well known that Newton's interpolation series

f(x) - f(x 0 ) + (X-x 0 )f(x 0 ,xl) + (x-x 0 )(x-xl)f(x0)xlx 2 ) +

simplifies considerably in the case that the points xn - a + nh form an

arithmetic progression. Indeed, in this case

f(a,a+he..,a+nh) - - A!,f(a)
nih

It seems much less known that a similar simplification occurs in the case when

the points of interpolation form a geometric progression. This paper deals

with this interpolation problem and its main contribution is to call attention

to the references (6], (5], [3] to the work of Stirling (1730), Schellbach

(1864), and Runge (1891), which seems now practically forgotten. This work is

here described and also its close connection with the elegant algorithm of

Romberg (See (1]). We illustrate these connections with numerical examples.
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SIGNIFICAiCE AND ZXPLANATION

it is very well known that Newton's interpolation series with divided

differences simplifies considerably in the case that we interpolate In the

points of an arithmetic progression. It seems much less known that a similar

simplification occurs in the case when the points of interpolation form a

geometric progression. We describe here the practically forgotten work of

Stirling (1730), Schellbach (1864), and Range (1891), and its connection with

the elegant and more recent algorithm of Romberg (1955).
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ON POLYNOMIAL INTERPOLATION IN THE POINTS OF A GEOMETRIC PROGRESSION,
STIRLING, SCHELLBACH, RUNGE AND RO4BERG

I. J. Schoenberg

1. Introduction. It is very well known that Newton's interpolation

series

(1.1) f(x) - f(x 0 ) + (x-x 0 )f(x 0 ,x I ) + (x-x0 )(x-x 1 )f(x 0 1 x1 1 x2 ) +

simplifies considerably in the case that the points xn - a + nh form an

arithmetic progression. Indeed, in this case we have

(1.2) f(a,a+h,**.,a+nh) , n f(a)
nfhn h

It seems much less known that a similar simplification occurs in the case when

the points of interpolation form a geometric progression, at least this is not

mentioned in the standard trestises on this subject.

The main contribution of the present paper is to call attention to the

references (6], (51, (3], to the work of Stirling, Schellbach and Runge, which

seem now to be practically forgotten. These were known to the author since

1943. Stirling expands the function F(z) in the form

F(z) - a0 + al
r z + a2r

2 z + o°° (r > 1)

determining the coefficients a0,alla2, o by the interpolation at z-

0,1,2,ee o and then extrapolates at z ., " Schellbach retains Stirling's

approach casting the method in an elegant algorithmic form. The obvious

change of variable x - rz transforms the problem into our polynomial

interpolation in the points of a geometric progression (Theorem I below).

Quite recently I noticed the close connection with the elegant algorithm

of Romberg (Theorem 2) for which algorithm we refer to the important paper [I]

of Sauer, Rutishauser and Stiefel. Also recently I noticed that Runge 131
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also solves the same interpolation problem without stating this fact

explicitly (Theorem 3). Rather he applies the idea of the 'Richardson

deferred approach to the limit" 20 years before Richardson, working out error

estimates. We illustrate these connections with numerical examples.
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I. stirlinS and Schellbach

2. The Stirliiq-Schellbach algorithm. Let

(2.1) xk - aq k , (k- 0,1,*..), a * 0, 0 < Iql < I

be a geometric progression. Let f(x) be a function which is analytic and

regular at the origin x - 0 , the problem being to describe explicitly

Newton's series (2.1). Particular interest for applications is to obtain

japproximations to the value of f(O) by polynomial extrapolation at x - 0

from the n + 1 data

(2.2) uk = f(aqk) , (k - 0,1,... n).

Following Schollbach (5, 1157, p 2801 we define the q-differences Vu k

recursively by
(293) DmUk - Owpuk+l -iu (m ,,.1

and arrange these in a triangular array

Du0 - u1 - uO

u1  V2uo - Du1 - qu 0

(2.4) Vu1 - u2 - u I  V3u0  2u - q2V2u 0

u2 D2u1 - Du2 - qcu1

PU2 " u3 - u2

u3

In terms of these differences we may state

Lmma I. For the interpolation points (2.1) the divided differences are

n

(2.5) f(a,aq,...,aq) -
an(qn-1)(q n-q "",qn "q I



Proof. Indeed, for n 1

f~~q) Afag) - f(a) ul uO Dua
aq - a a(q-1) a(q--i)

Assuming (2.5) correct for n-1 we have

f(a,aq,**.,aq n-) Dl 0
n-1 n-1 nI n-i n-2a (q -1)(q, -q)***(q n

and therefore also

n1
f(aq,aq 2 ,e,aq n D-U

n-i n-i n-i n1-i n -2a q (q -1)000(q -q

These imply that

f~~q2 *IpqnW f(ag,***,;ig )-f(a,--.ag 1

aq -a

n-i

1 n- nn-ni1-
a(qn-i) q n1 D U1a n1(q n--i).(q n--qn-

a n(q ,-i)(q n-q) ...(qn-qn-1

which proves (2.5) by induction.

Using Newton's expansion (1.1) we imediately obtain

Theorem 1. CStirling-Schellbach). For the interpolation points (2.1)

Newton's series (1.1) becomes

(2.6) f(x) P n P(x) V'1u

where

-4-
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n-i
(x-a)(x-a)• (x-aq )

(2.7) P n (x) ) n n-1

In particular, for x - 0 we obtain the expansion

Vu0  D2_uo0n Vnu0
(2.8) f(O) - u + - + 2 1.*n+ "'"+

0-q (l-q ) (1-q 2 1  (1-q l oooll q n )

We propose to call Stirling-Schellbach,algorithm the sequence to sequence

transformation

(2.9) (u n ) + (V n )

which transforms the sequence (un) into the sequence (vn) of partial sums

of the series (2.8), hence

(2,10) v - u + - + g'* +  0 (n 0,I,...).
n 0 1-q (l-q)• (i-qn)

It is not difficult to show that (2.9) is limit preserving in the sense

that if u + I , then also v + I * However, the converse is also true:
n n

If v + I , then also u + Z. This shows that (2.9) can not be used as a

limiting method that changes some divergent sequences (un) into convergent

ones. Rather the importance of (2.9) lies in another direction: It speeds

up the convergence of some slowly convergent sequences.

A dramatic example of acceleration of convergence was given by Stirling

himself.

3. Stirling's computation of w * We interpolate the entire function

2 1x 3

(3.1) f(x) - - sin - - w - 3 x +

at the points

k 1
(3.2) X- q , (Ic - O,1,*'",n), where q -



Observing that the area A(m) of a regular polygon of m sides inscribed in

the unit circle is given by

A(m) - m sin - cos -
m m

we find that

(3.3) 
2 k+2sn

k 4k) 2k+k+2 cos 2k+2

and therefore

(3.4) uk = f A (2k+2).
4k

Stirling computes the areas

A(4), A(S), A(16), A(32), A(64),

each requiring a square root extraction to derive it from the previous one.

We use the Texas Instruments SR-50 and working with 8 decimal we find that

(2.4) becomes

(3.5)

U0 - A(4) = 2 -

.8284 2712

u* - A(8) - 2.8284 2712 .0259 3356

.2330 4034 .0000 9675

u2 - A(16) - 3.0614 6746 .00171760 .0000 0006

.0599 7769 .0000 0157

U3 - A(32) - 3.1214 4515 .0001 0892

.0151 0334

u 4 - A(64) - 3.1365 4849

We find the relevant q-differences Dku0 , (k - 0,1,2,3,4) in the top

diagonal of this array. Forming the partial sums (2.10) we find the

approximations

-6-



v0

v I - 3.1045 6949

(3.6) V2 - 3.1414 5277

V3 - 3.1415 9256

V4 " 3.1415 9265

Notice the rapid convergence of the vn to w , the value of v4 having all

its decimals correct.

Remarks. 1. Stirling [6, page 133], and also Schellbach who reproduces

Stirling's computations [5, page 286], uses also the next area u5 - A(128).

For some reason they use in their algorithm these values in their reverse

order A(128), A(64), see, A(4). This reversal requires to replace q -1/4

by q - 4 . (Extrapolation at +I) How does Schellbach justify the choice

of q - 4? He argues as follows: "Since each difference is nearly 4 times as

large as the previous difference, the choice of q - 4 will result in small

values of the higher differences and lead to rapid convergence". They compute

with 14 decimals and obtain w with 14 correct decimals. Arranging the

algorithm in the natural order of (3.5), and extending it to include the next

area u5 - A(128), a fairly easy estimate will show the error to be

17 - v5I < 1.068 x 0160

5

Schellbach devotes an entire chapter [5, 275-294] to Stirling's

interpolation series and its applications and concludes the chapter by saying

"... this series, which seems to have escaped so far the attention of

mathematicians, appears to be of exceptionally high practical importance".

-7-



2. We want to estimate the error f(O) - vn  of polynomial interpolation

of f(x) at x 0 . From (1.1) we know the error at x to be

I f(z) dz
f(x 0 '***,Xn'x)(x-x 0)*'*(X-X) (x-x0)0**(X-Xn) a f(z ) z

0 fl11 l~ir (z-x0)...(z-xn)(z-x)

where r is a closed curve containing x and the interpolation points. In

particular, for x = 0 , we obtain an estimate

n(n+1)

(3.7) If(0) - v n I C •K nqI 2

valid for all n • Here C and K depend only on f(x).

-8-



II • Romber2

4. The Romberg algorithm. We use with slight mcdi *.'.cations the

notations of the beautiful paper [I] of Bauer, Rutishauser and Stiefel. Let

r be a constant such that

(4.1) Ir] > 1.
(m)

Starting from the column of values R0  we form the Romberg trianrular array

(4.2)

R(0)R0
-

(1) (0)
(0) rR0  - R 01 r-1

r2 (1)- (0)

R1 R (0= 1 1(R)ll__ _ 101 (0)2R __-_I-(0)

0 0 2 2
R =R

Ir - 1

r2 R (2)_R (1)

R (2) R0 (1) 1=
0 2  r

(3) (2)
R(2) rR0 -R 0

RR3 )

1

the general definition being

rm(k+l) .R ) R(k+1) m -R (k )

(43 (k ) =  m-1 -1 o R(k ) =m-1 m-1
(.) R - or R

m m m -m

-9-



Our main result is

Theorem 2. The Stirling-Schellbach algorithm (2.10) is equivalent with

the Roubprg algorithm (4.2) such that

1
(4.4) r = 1 wq

This means the following: If we identify the first columns of the arrays

(2.4) and (4.2) , so that

(4.5) u= -o I (M

then the elements of the leading diagonal of (4.2) are respectively eqcual to

the partial sums of the series (2.8), i.e.

(4.6) v = R , (m = 001.06).

We give two proofs.

First proof. My colleague C. de Boor pointed out to me the following

remark: If we apply the Neville algorithm for a geometric progression xm

aqm and for interpolation at x = 0 , then Neville's fractions simplify and

become identical with the elements of Romberg's algorithm. This connection

was already mentioned in [4, 301-302].

Second proof. This proof is more direct but longer. The equation (4.6)

is true by definition if m = 0 , because v0 - u0 - (0). To establish the

equation

U + !-+ so*+ R
0 l-q (l-q)...(1_qm) m

for all m , we assume that it holds for m - I , and we are to show that

(4.7)Dmu0 (0 ) - R (0 )
, with R (0 ) - 0

.m m m-1' -1

Let us prove this by induction. For m = 0 this reduces to u0 - R 0 )
0

Assuming (4.7) true for mn - 1 we have

-10'-



(4.8 0  (0) (0)

(4.8) , (i-q)• (q 1- ) *-R 1  R'-2

and we are to derive from it that also (4.7) holds, i.e.,

. . . q 0 V(0) - (0)(4.9) ~ ~ u = R (0  R 1 )

(l-q)..(1-q€m) m &-R1  "

However, the assumption (4.8) also implies that

uk  R(k) R (k)
M-1 m-1 n-2(l-q).** •(1-qm - ) ,

and in particular, for k- 1, that

_ mlu1  (1) (1)
(4.10) -Rm. 2 •

(1-q)..(1-q re l

Using (4.8) and (4.10), (4.9) becomes

R(1) R (1) R(0) R(0)
(4.11) M--1 -2 m-i m-i rn-2 (0) R (0)

m " m -i
1 q 1-q

However, the second equation (4.3), with r" - q , shows that

(1) m (0) m (0)
R -(i-q )R + q Rm-1 -

R(1) m-1. (0) + qm-l_(0)
m-2 (I q )RM-1  R m-2

Substituting into (4.11) we obtain

E-w -



in (0) 1() (0) - (0) (0) (0)
0 -q )R3  +M.(j..q )R- 1 "q R- 2  ( (

a M m-q I qq

R (0 ) R (0)

m M-

which simplifies to

m(0)

cO-q )R + q%(O) .() 0 )_-1_ -1_ I (0) (0)
I -m m M-
1 -q n r-

which is visibly an identity.

Remarks. 1. Even though the two algorithms (2.10) and (4.2), with

u - R(m) and r - q-1 , solve the same interpolation problem, it is clear

that the elegant Romberg algorithm is much to be preferred. We illustrate

this by returning to

2. The computation of v o With r -q 1  4 and for the uk of

(3.5) Rcmberg's triangular array becomes

3.105 6949

Ul 2.8284 2712 3.1 414 5277

3.1391 4757 3,415 9257

(4.12) u2  3.0614 6746 3.1415 9039 3.1415 9265

3.1414 3771 3.1415 9265

u3 - 3.1214 4515 3.1415 9262

3.1415 8294

u4 - 3.1365 4849

We recognize in the top-diagonal of (4.12) the values (3.6), except for some

rounding errors, as guaranteed by Theorem 2.



III. Rungs

5. Rungels first problem. Without knowledge of the work of Stirling and

Schellbach, Rungs considers in (3) the following problems. Let

(5.1) f(x) - a0 + aIX + D*. + a 1 xk + off , (lx < k)

be regular in the circle lxi < r * Let q and a be constants such that

(5.2) 0 < Iql < 1 , 0 < lal < r

Runge's Problem 1 is to approximate to a0 - f(0) in terms of the n+1

values

(5*3) u- f(qk) (k - 0,1,.o.,n)

This problem was solved by Theorem 1 by the Stirling-Schellbach algorithm

(2.10), and also by Theorem 2 by the Romberg algorithm with

1
(5.4) r --

q
However, nowhere does Runqe mention this polynomial extrapolation approach.

Rather he proceeds directly as follows, considering only the case when

q .1/2 . We write the (5.3) as

f(aqn-k) . a + alaqnrk + a2q2nr2k +
0 1 q + 2 q r

(5.5)
2

+ aanqn r nk + a 1
a n+1 (n+l)nr (n+l)k + . , (k -0,1, ,n).

He multiplies this equation with Ck and sums over all k , the objective

being to so choose the Ck as to anihilate the n terms in a5 (s -

1,2, .*.,n). This is seen to be achieved, provided the Ck are the

coefficients of the polynomial

(5.6) (x) - C + C + off+ C n . (r-x)(r 2_x)o (rn-x)

n 0 1 n 2_n(r-1)(r -)ooo(r -)defined by the conditions

(5.7) pon(r) - pn(r 2 ) - ".0 - .pn(rn ) - 0 On( 1 ) = 1

In this way Rungs obtains from (5.5) the equation
(5.8) -, n-k an+1 (n+l)n (n+1

08 Cqf(aq ) .a) + a a q"

-13-



. . . . .... -.

Since #nr n0 1  -- r+ 2 ++ n - (-1)lq(1nq )/2 we see that Runge's

approximation Rn to a0  gives the same order of approximation (3.7) as the

Stirling-Schellbach vn * The following result should therefore 0am as no

great surprise.

Thereom 3. Runge's approximation an of (O) - a , defined by (5.8),

(5.6), (5.7), is identical with the result of polynomial extrapolation, hence

(5.9) an MVn "R(n.

A proof of this is fairly easy if we define the interpolated value vn

by Lagrange's interpolation formula, and also use the Gaussian identity

n V(V2 n-

(xr)x-r 2 ) lx-rnl I (1I)V[ V Ir 2 x-V

0
where

[ n (rn-1)(r'I-1) * (r n1+l-1)
V (r - )(r -)*.*(r-t)

We omit the details.

Remarks. Besides the Stirling computation of V pf 13 , further

attractive examples are provided by the following functions.

1. The function I

(5.10) f(x) ( + x) x - a + aIx + -.-

To determine f(0) - a we can use Romberg's algorithm choosing e.g.

a - 1/8, q - 1/16, hence r - 16. Notice that xk - aq - and
therefore the computation of uk - f(aqk) from (5.10), requires only

succeesive squaring.

2. The entire function

(5.11) f(x) - 1(2x-1) - log2 + alx + see
x1

will give approximations to log 2. With a - I and q -1/2 , the computation

] -14-



of uk - f(aqk) - f( 1 / 2 k) requires only successive square root extractions.

In (5.11) we may replace 2 by any integer •

3. The case when f(x) is an even function of x. If

(5.12) f(x) - a0 + a2x
2 + a4 x

4 +

we define

(5.13) g(x) f(x) a + a x + a x +
0 2 2

and observe that

(5.14) g(a2q2k) - f(aq k ) , (k - 0,1,0.).

Since g(x) is also regular at x - 0 , we obtain

Theorem 4. If the function (501) is even, then we may awly to the

data (5.3) the R0mberg algorithm, vith q replaced by q2 . This means that

In -Mer s aleorit (4.2) we keep the first oolumns

( s) -uf(a )

timid and sass from r- q-1  to r2 -q7 2

Replacing q by q2  viii clearly accelerato the convergence of the

vn  to f(O) - &0 . This important device was already used in 13t Instead of

interpolating the even function
2 sin !x at x-

2 2 2 2

we interpolated the entire function (3.1) at x- 1, 1/4, 1/42 , 00" In

wG we shall again use this device to good advantage.

-15-



6. Rung.'8 second problem: Computing the inverse functiop. Let

(6.1) y = f(x) - so + alx + a2 x2 + *.. ( x c r)

be such that

(6.2) we can compute the value of f(xq) in terms of fAx) ,

and therefore, successively,

(6.3)we can compute f(xqk) (k - 0,1,090) in terms of y - f(x).

Throughout this section we assume that

(6.4) q - 1/2

The formulae

si - 1 coosx I -I-sn
22 2

show that sin x satisfies (6.3) with q 1

Problem 2. To campute x if Y - f{x) is prescribed.

Solution. Runge reduces this problem to Problem 1 of 15 as follows.

Writing

f(xt) - & + alxt + a2 x 2 t 2 + a3x
3 t3 + 00 41 (a 1 * 0)

we define the new function

f(xt)-a 0  a2  2 a3 x3t 2

(6.5) g(t) at -x+-xt+ x +a a-el 1 a1

which depends also on x , and for which

Sk ,0 2 2k +_a3 32k + . . .  (k-,* .U w q(q) - x + xq (k , ,es.~
aq a1 I

By our assumption (6.3) all these values can be computed, and (6.5) shows that

(r 6.7) x - 9(0)

-16-



......... ... .. .. ...-v , - -4 W" , 1

can be obtained as the solution of Problem 1 for the data uk.

Following Runge [3, 222-223] and also Schellbach [5, 88-90] we

illustrate this procedure by

The computation of an incomplete elliptic integral of the first kind.

Let

(6.') x , (0 < c < 1 , 0 < y < w/2)
0 /1 - 2in 28

where y is prescribed and we are to compute x . A result of Legendre (2,

vol. 1, 121, 25-26] is as follows: If we detrmine acute angles 1 and y,

from the equations

(6.9) sinY - c sin y, sin y, - sin Y coo2 2'

then

(6.10) fx , dO
2 0.I01 - c ,in2O

This shows how the value of the integral can be halved. This operation can be

repeated: We determine successively angles Yn-1 and yn from the equations

yn- 1 n-lsin yn- C si e yn-l' sain Yn sin -- /coo 2

(6.11)

(n - 1,2,eok Y M YO Y0 M y ) ,

to obtain Yk such that

x /Yk . .de
(6.12) -f dO

we now invert the relationship (6.8) to obtain

(6.13) y - f(x) = x + a3 x3 + a5 x5 + see

observing that it is an odd function which is usually denoted by f(x) - an x.

Clearly we my rewrite (6.12) as

-17-



(6.14) yk- =f(-)

In terms of (6.13) our function (6.5) becomes

if(3) 32 54
(6.15) g(t) - - x + aXt + + 

t 35

and in particular (6.6) may be written as

Uk 1- 2kf( x 2 k

2k 2 k Y

(6.16)

- x + a 2 + .** , (k- 0,1,o)

This equation shows that Uk+ x as k + , and uk is Legendre's

approximation to x . However, this approximation can be much improved by our

extrapolation procedure.

A numerical example. Let us evaluate the incomplete elliptic integral

.3

(6.17) x = fj where c- 1
2 and y- •

1 - 1/4 sin2 6

From Legendre's Table VIII (2, vol. 3, page 339] we obtain the 12 place value

(6.18) x - .80436 61012 32.

The following computations were made in double precision by Fred W. Sauer, of

the MRC Computing Staff.

We solve the equations (6.11) with k - 4 and find the following angles

in radians

y - .36136 71239 06708 y1  ..39956 34259 31126

1 - .19575 59443 11023 Y2 = .20075 55982 73493

2 .09987 08442 57596 Y3 m .10050 35008 99138

y 3 
= .05018 82616 25625 y4 - .05026 75900 94179

From (6.16) we get the values

~-18-



--7 ..*

U0 M y - .78539 81633 97448

U1 M 2y, - .79912 68518 62251

(6.19) U2 - 4y2 - .80302 23930 93970

U3 - 8y3 - .80402 80071 93103

U4  16y 4 - .80428 14415 06865.

The last value u4  is Legengre's 3-place approximation to x * We can now

improve this approximation in two different ways:

1. The Romberg algorithm applied to the data (6.19) with

(6.20) r - 2 qkves the approximation R4 (0) - .80436 56250

which is seen to be correct to 6 decimal places.

2. Because the g(t) of (6.15) is an even function we may use Theorem 4

and find that the Romberg algorithm with
-(0)

(6.2'1) r - 22 - 4 gives the approximation - .80436 61012 29163

which is seen to be correct to nearly 12 decimals.

To conclude it seems worthwhile to recall that Romberg invented his

algorithm, also with r - 4 , for the evaluation of a definite integral

(6.17) in terms of its binary trapezoidal sums (See [1]). Writing

F(e) - (I -/4 sin20)- 1/2, we consider the sums

2k_ I

T 2-{ 1/2 F(0) + I F(- s o 2- ) + 1F(- , (k = 0, 1,'s)T2k 4"-

Dividing 0, 4X] into 2 - 16 equal parts, we can compute the 5 sums

(6.22) T1 , T2 , T4 , T8 , T16

If we now apply to the column of the sums (6.22) the Romberg algorithm with

r - 4 we find with double precision the approximation

(6.23) Rj .80436 61012 31069.

A comparison with Legendre's value (6.18) shows that (6.23) is even slightly

more accurate than (6.21).
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