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ABSTRACT

Pardoux's results on the Zakai equation for nonlinear filtering are

extended to cover the case of estimating a signal modified by a potential

term. This is applied to state a rigorous Zakai equation for certain

filtering problems involving signals with entrance boundaries.
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SIGNIFICANCE AND EXPLANATION

A ccmmon problem in the analysis of stochastic system i the estimation

of the system's state given only noise-corrupted or incomplete observations.

For instance, examples occur in communications theory when one wants to

estimate a signal sent over a noisy channel. The problem of filtering is to

build an estimate, i.e. filter, that provides the best information about the

state given the observations.

Let x(t) denote the state of the system. In the most common model,

x(t) is a Markov process modelling a differential equation driven by

stochastic inputs, and it is observed via

t
y(t) - h(x(s))ds + W(t)

0

where W(t) is a Brownian motion. Since W(t) has independent increments it

is a good model for noise. The density of x(t) given that y(s),

0 4 s 4 t, is known, contains all information about x(t) that is in y(s),

0 4 s 4 t. Zakai and Pardoux have established partial differential equations

for such conditional densities in the effort to compute them. This paper

extends their results to a class of Markov signals evolving on bounded domains

with entrance boundaries. This mans that the process can enter its domain

from the boundary, but cannot return to the boundary once inside. A typical

exampl is the Dssel process; this is the process rt - ID t, where st  in

a Brownian motion in 3-dimensional Euclidean space, and iB I denotes its
t

distance from the origin.

The responsibility for the wording and views expressed in this descriptive
eumary lies with WC, and not with the author of this repott.



uXTfHsIOe S OF RESULTS OF PARDOUX ON STOCHASTZC PARTZAL

DZVV11511TIAL SQUATIONS OF FILTPIMNG

Daniel Ocone

1 . Introduction

Define a nonlinear filtering problem on the probability space (0,F,P) by the model

dxt - r(tx t )dt + 0(text)dbt x0 a n
(1)

dyt a h(txt)dt + d t  YO W 0

Here, the signal xt  is taken to be 0-valued, and the observation R-valued. As usual,

b(-) and W(-) are independent Brownian motions, and 11 is a r.v. independent of them.

Let P be the measure on 2 defined in 2.1, and let p(x,t) denote the density of xt..

Lf Ft :- 0{y(s) 10 4 a 4 t} then

u(t'x) - ix F x , z p(xot)
d;

is an unnormalized conditional density of xt given y(s)# a e tj that is,

t(f) I- Z{f(xt)IF . fx);(tx)dx (2)
t t t f Z(t,x)dx

for all f s.t. 3f2 (xt) <

One line of investigation in nonlinear filtering theory seeks to characterize ;(t,x)

as the solution to a stochastic partial differential equation, the Zakai equation. Pardoux

(7,8,91 has recently brought this approach to its most complete and rigorous form. After

interpreting the formally derived Zakai equation variationally, he shows under aild

assemption* that it has a unique solution which is indeed an unnormalized conditional

Sponsored by the United States AM under Contrat No. DAA29-80-C-004 . This material is
based upon work supported by the National Science Foundation under Grant No. MCS-7927062.



density. Using the same methods, he also derives Zakai equations for signals difffusions

evolving in bounded domains and having absorbing, elastic, or inelastic behaviors at the

boundaries.

This note concerns itself with some variants of the basic filtering problem from the

perspective of Zakai's equation. For example, rather than study estimates

w tf) - E(f(x t)IF t ) one can consider

(f) - Ezf (xt ) exp[-f V(s,xe)dlls IF,
t t t

that is, estimates 'killed' by some potential V, and then look for corresponding 'killed'

conditional densities u(tx) satisfying

~t

f f(x)u(x,t)dx- ov(f) - [flx t ) exp[-f v(s,x*)dslR IF 1  (3)
t 0 dP

In section 2, it is shown that this is easily accomplished using the techniques of Pardoux,

and Z(t,x) is obtained under mild hypothesis as the solution of a Zakai equation in

which V appears as a potential in the nonrandom operator term. In one direction, this

yields a simple extension of Pardoux's generalized Feynman-Kac formula. A second variant

is the filtering of 1-dmensional diffusions with entrance boundaries. Section 3 applies

the 'killed' conditional density equations to derive Zakai equations for this class of

signals. This work then rigorously justifies Zakai equations studied, but only formally

derived, in Ocone (5,6).
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2. akai emation extensions

2. 1. Preliminaries

Our theory requires the following assumptions on the functions appearing in (1) and

(3)

A1 ) V(t,x), Nm(tx), i a 1.*.*, hk(tex) k a 1,*.*,p are bounded Borel functions

A2 ) a (t,x) are continuous functions satisfying - C N(,T] A
exi

A3 ) A(tx) - 00 (t,x) in uniformly positive definite.

The conditions in A1 ) - A3 ) are assumed to hold in the domain (0,T) x I?. The reasons for

these assumptions will not be totally clear from the sketchy proofs to follow, but they are

needed to make the details work.

Of course, given only these constraints, strong solutions of (1) will not in general

exis,. The martingale problem associated to (1), however, will have a nice solution. Let

U 2

N a a
-t " ) At x) ax + 11 bi(tx) r-

i~ll Ij illI

l' - C([0,TJ, Be) x(t)(w') " w'(t), w, C 2"

- C(0,T i 1?) (t)(w") - w"(t), w" C no

w Viener measure on An .

al the theory of Stroock and Varadhan (10] there exist measuresgo, on A' solving the

martingale problem with respect to Lt. Suppose n has a density po(x) and set

QO(0 ) - dxp0 (xWQ0 x(*). As the solution of (1), we take

x(t)(ww') - x(t)(w') (4)
t

y(t)(ww') - f x(t)(w,W')dt - 4(t)(Vw)
0

defined an (R, P - i i). we will need the following c-algebras associated to (4),

-3-



F t 3- 0(y (0) I 0 4 a t, 1 4 1 4 p)

Gt s-O(x1 (s), wk(s) I 0,; a 4 t, 1 4 1 IC , 1 4 k p )

To set up the unnormalized density, w ne4 a new measure ; defined on 2 by the

Girsanov formula

It Is well known that on (Or P), y(-) in Bratnian and independent of x(e), and

E~(xt) exp(-J V(s,%)d@)Zt I Ft)

t i(zI })

, t t

s w p exyf[- <h(x ),dy* - 1a f Ih(xa)l 2 ds
o 0

Let a (e) denote the ni(osrator of (5). Our goal is to find a representation a Mt t

f dx u(t,X)f(3x) for som function apace valued process u(txtw).

2.2. The Zakai equation

It x(t) has density p(t,x), u(t,x) should have the form

t
u(tx) - i(exp(-f 0 V(x )ds)z Ft. - x]p(tx)

0 2

df foe f 8-aj e au - e biu - V(t,x)u]dt
id -I I i- Ii

+ u(t,x) <h(tx)vdy th> (6)

U(..X) - POWx]

-4-



WW.

To work with (6) effectively, we adopt the variational interpretation of Pardoux [7].

Embed the Sobolev space HI(3") in L2(R), so that HI(0) C L2 (11 ) c H-'(R 3 ), and let

11, j1 be the norms in HI(R), L2 (RN) respectively, <-,*> the pairing between

Hl(J
l
M
) 

and H-(R"). Recall that for i, * C L2(RN), <0,#> equals the usual inner

product. We now interpret the deterministic operator in (6) as the bounded operator

A t  HI(R" -CR) defined by

N O3u a_v
tu, v> " - Aij(t,.x) - dx

i,j-1

N N - h vu

+ f I(b- ax ax N V(t,x)u(x)v(t,x)dx

RNi-I j11 j i R

yu, vE H(W)

The adjoint At : H (?) + Hi-(RN) may also be defined by this formula. Zakai's equation,

in variational form, is then written

du(t) - (A u(t))dt + u(t) <h(t,x),dyt>

u(O) - P0  (7)

ut) e L(Q x [0,T]i H R))

2.3. The main theorems

In this section we discuss (7) and show that its solution in indeed the desired

'killed' conditional density. The proofs require only minor adaptions of techniques of

Pardoux, and so, if discussed at all, will only be sketched. Two approaches to the

theorems are possible and we will state results from both. However we will indicate proofs

only for the analytically simpler method, so that readers, should they wish to verify any

details, might have an easier time of it.
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It is easy to show, using Al) - A3), that At and At are coercive operators,

uniformly in t. That is, there exist a > 0 and A such that

2<Aturu> + XjuI 2 ) alum
2 + f thiuI

2

i-I

Vt e [0,T] Vu C H,(0W)
* a

(and similarly for At since <A tuu) - (1y.a.u)). Coercivity is the basic fact underlying

the theory.

Theorem 1. Suppose p0 (x) e L (R") n L2 (1?) and p0 (x) ) 0 e.e.

Then (7) possesses a unique solution u(t), and moreover

i) u(t) 6 L2 (Q' C(O,T; L2 (RN))) A L'(Q L (0,T; L'(0)))

ii) Almost surely, u(tx) 0 0 a.0. Vt .

Proof. xistence and uniqueness is a direct consequence of a general theorem of Pardoux

[71. That u(t) 6 L1 (01 L(0,Ti L I(R))) and u(t,x) ; 0 are proved by Pardoux (7)

when V = 0, but the proofs depend only on the coercivity of At and extend to the

present case.

Define ~f u(t,x)f~x)dx. By theorem 1, 7 (f) can be thought of as a

measurable process taking values in the space of bounded, positive measures on 3N .

Theorem 2. For pO(x e .2(RU) L'(), ,v(,, - (f, a.*. Vt, V f e .( ,.

Sketch of proof (method of (7 1). Let I t denote the two parameter smigroup

t
j I! f(x) + x f(xt})ep -f V(u,x )du

at ax t k

ws use to characterize 0 as the solution of a certain equation.

i I For every f e L (R )

:i t

0 v(f) EIo f + f <o:(h. tf),dy.> > (8)

t 0

!-.



luthermore if o is another process with values in the space of positive bounded
t

measures and

t
at(f) - ZI 0tf + f <of a(htf),dya>

0

then ot(f) - at C) a.s. Vt , vf z LCR").
t t

Proof The uniqueness part is a simple Gronwall-Bellman inequality argument (see Pardoux

[71). To derive (8), fix t, and note that

a (t) - *re
t t

t EztIFt] - sxp f <1 (h),dye> -1/2 f IT (h)1 2 da

t
et - f (Xt)Gp[-I 0 V(•,X )ds] I f t )

t
Now let to- (f(xt)exp[-f V(u.xu)du I Ga+]. Since x. is a strong Markov process

0

independent of W( ) (Stroock and Varadhan [10])

5 t

t.- exp-f V(uxu )du)ax (f( xt)exp -f V(U,X)du)

- exp(-f Vlu,xu)du)(I fat x a
0 5

We can apply a theorem of Liptser and Shiryayev [11 on equations of optimal extrapolation

to conclude that for u < a 4 t

u
z(t8 I Fu -I , + f [E{Xh(xT)IFI - rT (h)Z{LtTIF)] 'i [dy, - w,(h)dT]

0

By applying Ito's rule, we then discover

I

-- 7-



duuELt I Fu I (uE(Xuh(xu) Fu),dYu>

U

. <#U3[h(xu )(Rf )(x u)exp -f 0V(TXTr)dT IF ],dyu

- <(h-I f)dy •

Since 0oE[ t  O F0  f 'Ot f, integration of the above implies

t
.0v(f) *tE[IL IF t ] 

- lotf + f t (v (a f),dy >
0

as desired.

Clearly then, to prove theorem 2 it suffices to show that (f) satisfies (8)
t

also. This is done by introducing the solution v of a p.d.e. that is adjoint to (7), at

least insofar as concerns the deterministic part. Fix t and consider

3v3+ A v -0
s s.

v(t,x) - f(x) (9)

v E L (0,T; H R ))

We then have for the fixed t, a t(f) - <u(t),v(t)>

Leoma 2. (Feynman-Kac)

2 N L*For f e L (R ) n L(IRN, (9) has the unique solution

t
v(s,x) - Exf( xtlexp(-f V(u,xu)du)

5

- (1 stf)(x)

Proof. This result is well known for sufficiently regular f, V, m, a and h. When f,

V, etc. satisfy only A,) - A3 ) approximate them by regular fnl, Vn, etc. and take

limits. Again, details may be inferred from analogous arguments in Pardoux [9].

We are now ready to complete the proof of theorem 2. For s ( t, f E L (R) n L 2(R )

-8



d<u(s),v(s)> = <A u(s),v(s)>ds + <hku(s),v(s)>dyk(s)
S k-1 ^

+ <u(s), - Asv(s)>ds

< u(s),h k ff t dyk (a)
k-1

. <( (hfl f),dy(s)>
a at

and

<u(0),v(0)> - f P0 (x)R 0tf(x)dx - 30t f

Thus
t

at(f) - <u(t) V(t)> - ellQ f + f <79 f- d (10)
tt 0 a h at adY

Vf C L(Ra) n L2(RN). By taking limits, (10) will hold for all f c L*(RN), and hence,

by 1m 2, we are done.

An alternate approach to theorem 2 exists and involves a generalized Feynman-Kac rule.

Instead of (9), the full adjoint to (7) is considered: for fixed t, consider

dv(s) + A v(s) + hv(s),dy(s) - 0

v(t,x) W f(x) (11)

v(-) E 12(Q x 10,T) HlRI)

(11) must be interpreted as a backwards equation, i.e. v(s,x) is adapted to

8 - o(y I a < t since the initial condition is imposed at t. Again by modifying

Ft T

the techniques of Pardoux [9], we obtain a generalization of his results.

Theorem 3. For f(x) £ L 2(R N ) n L"(RN). (11) has a unique solution, which, moreover may be

expressed as

-9-



v(s,x) {f(X)exp[-f V(XT)dt]ZI F})
a

t t
where Z -exp[f <h(x,).dy,> -1/ 2 f Ih(xr)I1

2
d].

t 5

Theorem 2 then follows from theorem 3, because

d<u(s),v(s)> - 0

implying that

!V

; if) - <ult)v(t)> - <u(O),v(O)>

tt

- i(f(xt)exp[-f V xa)do]zt I tI a.e.
0t

as desired.

For the purposes of application in section 3, we state yet one more variant of the

Zakai equation theorem. Retain the processes xt and yt defined in 2.1. However,

suppose now that an open domain 0 with C
2

-boundary 30 is given, and consider the

problem of finding u(t,x) such that

i{f(xt)e - "o)1(t<exP[-ft V(s'x5 )ds]Zt I Ft}

- f dx u(t,x)f(x) * (12)

0

In (12), M is a function bounded on compacts in 0 and T denotes the exit time from

01 it is assumed that the initial density po(x) satisfies supp p0 (x) c 0. (The term
-14(x0 )

e might appear odd, but this is necessary for an application in the next section.)

The appropriate Zakai equation should then be

du(t) - Atu(t)dt + u(t)<h(tx)dyt>

u(0,x) - P0 (x)e
"
M(x) (13)

u(t,.) C L2 ( x [0,T) H1 (0)) .0

-10-



An usual, Hi (0) denotes the completion in H11(0) of the infinitely differentiable

functions with compact support in 0. The proof of the next theorem is analogous in all

4 respects to that of theorem 2.
-I-.

Theorem 4. Let e-M"'po(x) C 17C0) n L
2(0) and f 6 17(0). (13) has a unique solution

u(t,x) that, in addition, satisfies (12).



" ... - ,

3. An application

3.1. Signal models with entrance boundaries

In a study of Lie algebraic techniques in filtering theory (Ocone [5,6]), we were led

to models with scalar signals for which the local drift mC(x) satisfied

m' (x) + m2 (x) _ V(x) (14)

for certain functions V(x). Such signals evolve only in bounded or sai-infinite

intervals 0, in general, and exhibit entrance boundary behavior at the (finite) endpoints

of 0. To see this, suppose k(x) is a solution of

k"(x) - V(x)k(x)

then m(x) - k'(x)/k(x) certainly solves (14). However, if k(r) - 0, then m(x)
becomes singular at r, and, in fact m(x - as x r. Thus the typical solution

x-r

m(x) of (14) will be defined on an interval 0 - (r01 r1 ) at the (finite) endpoints of

which it has simple poles. From the theory of stochastic differential equations (Gihman-

Skorohod (4]), given a r.v n 6 0 a.s, an O-valued process xt exists such that

dxt . m(xt)dt + dbt, x , (15)

and the endpoints at which m is singular are entrance boundaries of xt. Henceforth we

will assume that V(x) is a continuous, bounded function and that m(x), 0, and xt are

described as above. As usual the observation yt will be

dyt  h(x t)dt + dW (16)

and p0 (x) will denote the density of n. The assumptions on h established in section

2 are maintained here.

-12-



Previously (Ocone (5,61) we stated, but only formally derived, Zakai equations for

problems defined by (14) - (16). In this section, we ai to replace the formal

calculations with a rigorous result. The work here elaborates on the theme of so-called

*gauge transformations' of the Zakai equation as discussed in Hitter (31, Brockett (1),

and, implicitly, in Bene [2]. The gauge transformations relate to a simplification of the

functional integration by a Girsanov transformation to a measure w.r.t which xt is

Brownian. This is the technique that led Benes to his discovery of new finite

dimensionally computable filters, and it is the central feature of the calculation to

follow.

3.2. A Zakai equation for (15) - (16)

Again define the underlying probability space as (Q,P);

a C[Ot] x C[O,t]

P=Qnx ,

where Qn is the measure induced by the solution of (15). Now define p to be the

measure induced on C[O,t] by the process T + Bt  for a Brownian notion St. The first

important remark is that Q ( Pi I indeed

t 
t

_,(x) _ I( d% _ I/ .,.

d~in tl*P f ( if 2sm(tx.t )dm

inf(s : t I x - t) if an 4 t S.t. x - t

otherwise

(Liptser and Shiryayer I11], p. 248). The main idea is to transform measures so as to work

with Pa. Accordingly, on 0 define

t t2
and - ah(x 5 ad - ./2 f h de Zt

d0 0

-13-



?bem and

dl3(f (xt) I v) di. (17)
t t iU I rt]

dd

we Wish to represent B( fC Ut) r I an in section 2.
dip

Clearly, from what has goe obove

-. t  h 2 xx d .(2

-- I(i > 0 8 a - m2 xa)ds K exp f h(x 1dy. -1/2 h2(M )do .0s)

To get to the final result, n at perform the following trick on (18). Let r 9 0

and lot N(x) - f m()dx. As is well-known, the distribution of x on (2,i) in the
r

soma as on (2,P), namely, the distribution of T + a Therefore by Ito's rule

t t
My - N(x 0 ) " f -a%)a + 14f 0'x .)d •

o o

t t
Thus, substituting f m(xedx - n(xt) - 1(xO) -lf U(x)do

o 0

into (18),

,W (xt) "X o
i. exp[-%f1 v1x )d]z •

with this, we may write

t

r . ~ m t  -K(xo 0 1/25 V1x) do
(x t  IP r t ) - ilf(x t )a 1, (.1> t)* 0 z t  7 r t )  • l-)

-14-



i17
Theoms Define N U(0) R U(0)

0 0

p(3 )g*(X) L'(0) n L2(0). xe"ox ' c L"(O), and let u(tx) be the unique

solution of

du - u lt uh(x)dy
d~ t At+It b~)dt

Uo0 W - p 0W)eN(x)

u(t) 9 L(2 c0.1 I a 1 (0))

(f(x ) I - f fx) *()uXt)ft a.*. vt [0,T!)
dl 0

Proof. On (a,;) X. and ye, a 4 t, are indeondmat and xg bas the law of vi +go.

Cleasly we can interpret (19) as if xC o w ofined Ve g (C.-) and T - first exit
2

tim fr m 0. since 
2 - L8 the gaoratOg Of tM

C the theoriem the follos immediately
3x2

from tbeorem 4.

v p(x.t) = on(2)u(x.t) in, in effect, an unnorwalised conditional dnaity, and the

factor •N( 
X )  

o the Ig9au traneformstion' mentioned above.

-15
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