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ABSTRACT

Pardoux's results on the Zakai equation for nonlinear filtering are

extended to cover the case of estimating a signal modified by a potential

term. This is applied to state a rigorous Zakai equation for certain

filtering problems involving signals with entrance boundaries.
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SIGNIFICANCE AND EXPLANATION

A common problem in the analysis of stochastic systems is the estimation
of the system's state given only noise-corrupted or incomplete observatioms.
For instance, examples occur in communications theory when one wants to
estimate a gsignal sent over a noisy channel. The problem of filtering is to
build an estimatg, i.e. filter, that provides the best information about the
state given the observations.

Let x(t) denote the state of the system. In the most common model,
x(t) is a Markov process modelling a differential equation driven by
stochastic inputs, and it is observed via

t

y(t) = [ h(x(s))ds + w(t) ,

0
where W(t) is a Brownian motion. Since W(t) has independent increments it
is a good model for noise. The density of x(t) given that y(s),
0<s<t, is known, contains all information about x(t) that is in y(s),
0 < s €< t. 2akai and Pardoux have established partial differential equations
for such conditional densities in the effort to compute them. This paper
axtends their results to a class of Markov signals evolving on bounded domains
with entrance boundaries. This means that the process can enter its domain
from the boundary, but cannot return to the boundary once inside. A typical
exampla is the Bessel process; this is the process r, = lntl, where B, 1is
a Brownian motion in J-dm”ionfl Euclidean space, and lntl denotes its

distance from the origin.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this repoxt.
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EXTENSIONS OF RESULTS OF PARDOUX ON STOCHASTIC PARTIAL
DIFFERENTIAL EQUATIONS OF FILTERING

Daniel Ocone

1. Introduction
Define a nonlinear filtering problem on the probability space (8,F,P) by the model

¢!xt - u(t,xt)dt + c(t,xt)dbt Xg =N

(1)

dy

. = hlt,x )at + ai, Yo=0

Here, the signal x, is taken to be R“-val\ud, and the obnrvntiqn RP-valued. As usual,
b(*) and W(°) are independent Brownian motions, and n 4is a r.v. independent of them.
Let P be the measure on § defined in 2.1, and let p(x,t) denote the density of x...

if F, 1= o{y(s)|0 < 8 < t} then
u(t,x) = E[Q: l Foox = x]p(x,t) .
ap

is an unnormalized conditional density of Xe given y(s), a € t; that is,

7 (£) 1= l(!(xt)lFt) = Leimutemex

[ ute,x)ax

for all £ s.t. Bfi(x,) < =,

One line of investigation in nonlinear filtering theory seeks to characterize ;(t.x)
as the solution to a stochastic partial differential equation, the Zakai equation. Pardoux
(7,8,9] has recently brought this approach to its most complete and rigorous form. After
interpreting the formally derived Zakai equation variationally, he shows under aild

assumptions that it has a unique solution which is indeed an unnormalized conditional

Spongored by the United States Army under Contract No. DAAG29-80-C-0041. This material is
based upon work supported by the National Science Foundation under Grant No. MC8-7927062,




density. Using the same methods, he also derives Zakai equations for gignals diffusions
evolving in bounded domains and having absorbing, elastic, or inelastic behaviors at the
boundaries.

This note concerns itself with some variants of the basic filtering problem from the
perspective of Zakai's equation. For example, rather than study estimates

n L) - E{t(xt)lFt} one can consider
v t
v (£) = E{£(x,) exp[-fu vis,x )as]IF,} ,

that is, estimates 'killed' by some potential V, and then look for corresponding ‘'killed‘

conditional densities u(t,x) satisfying
v ~ £ dap
| f(x)ulx,t)ax = o (£) = El£(x,) exp[ -/ V(l,x-)ds]-: IF) . (3)
0 dp

Iﬁ section 2, it is shown that this is easily accomplished using the techniques of Pardoux,
and ;(t,x) is obtained under mild hypothesis as the solution of a 2akai equation in
which V appears as a potential in the nonrandom operator term. In one direction, this
yields a simple extension of Pardoux's generalized Feynman-Kac formula. A second variant
is the filtering of 1-dimensional diffusions with entrance boundaries. Section 3 applies
the 'killed’ conditional density equations to derive Zakai equations for this class of
signals. This work then rigorously justifies Zakai equations studied, but only formally

derived, in Ocone [5,6).




2. Zakai equation extensions
2.1 Preliminaries

Our theory requires the following assumptions on the functions appearing in (1) and
(3)s

Aq) V(e,x), my(t,x), 4 = 10eN, he(t,x) k = 1,°°¢,p are bounded Borel functions

Ay) c“(t,x) are continuous functions satisfying -:;i- ] L.( {o,T) x n“)

1€4,jJ¢<N

Ay) A(t,x) = 00 (t,x) is uniformly positive definite.
The conditions in A,) ~ Ay) are assumed to hold in the domain (0,7] x K's The reasons for
these assumptions will not be totally clear from the sketchy proofs to follow, but they are
needed tc make the details work.

Of course, given only thess constraints, strong solutions of (1) will not in general

exis“. The martingale problem associated to (1), however, will have a nice solution. Let

L =% f A, (t,x) -—£—+ ':' b, (t,x) =
t 1,31 1) axiaxj 4=1 i ax
2 = c([0,T]17 R x(t)(w') = w'(t), w* & Q"
a® = (0,717 B)  W(E)(W") = wi(t), w" € 8"

=g x Q"
p = Wiener measure on R" .

Py the theory of Stroock and Varadhan [10] there exist measures Q.. ©On ' solving the
martingale problem with respect to L,. Suppose n has a density poix) and set

Q () = [ dxpy(x)Q, (+)s As the solution of (1), we take

x(t)(w,w') = x(t)(w')

t
vt iww') = [ x(t)(w,w')dat - #(t)(w")
0

(4)

defined on (R, P = QO X u)e We will need the following o-algebras associated to (4),




Ft;-c{y‘(l)ll)‘l‘t,l(i‘p)

Gt x-o{xi(-),wk(l) joCcesc<t, 1<CL<N, 1€k<p} .

To set up the unnormalized density, we need a new measure P defined on by the L

Girsanov formula

A

& t w 2
=" .xp[-fo <h(x),dW > - /zfo Ih(x ) as) .

It is well known that on (8, ), y(*) is Brownian and independent of x(*), and

t
. B[f(xt)oxp[-fo vis,x )as)z, | F ]
'lt(f) - (5)

nr{zt | t}

t t
- -1 2
z, = exp Io <hix,) .y > 4[0 In(x )1%as .

Let a:(t) denote the numerator of (S5). Our goal is to find a representation o:(f) -

f dx u(t,x)f(x) for some function space valued process u(t,x,w).

2.2. The Zakai equation

If x(t) has density p(t,x), u(t,x) should have the form

- x]P( t,x)

- t
u(t,x) = l[oxp(-fo v(-,x.)ds)zt | Foo x,

and a formal analysis suggests that

du = {lAh A, u - 3 b.u - v(t,x)ujdt
1,31 Bxlaxj i) =1 axl i ’

+ u(t,x) <h(t,x) odYt> (6)

u(0,x) = po(x) .

- e T
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To work with (6) effectively, we adopt the variational interpretation of Pardoux ([7].

Embed the Sobolev space H'(RY) in L2(’M), so that H'(R™) c L2(®) c 5™ (®"), and let
I8, |*| be the norms in H‘(RN), LZ(RN) respectively, <¢,*> the pairing between

B () and B '(E¥). Recall that for v, ¥ € L2(RY), </,¥> equals the usual inner
product. We now interpret the deterministic operator in (6) as the bounded operator

A, 2 B (®) » BV (2) defined by

t
! 1 3{ Ju 3v
<A, V> = - é A (t,x) —— — A%
t " 1,3=1 i3 axi axj

N N 3A
+ [ . ) (b, - 1 3—:1]3%(“ v ax - | y ViEmux)vit,x)ax
B i=1 juy 9%y TO%y R

yu, v e u1(aN) .

L ] -
The adjoint At t H‘ (f‘) + H 1(RN) may also be defined by this formula. Zakai's equation,

in variational form, is then written

du(t) = (A: u(t))ae + u(t) <n(t,x),dy,>

u(0) = Py (7)

ut) € 2@ x (0,71 ' .

2.3. The main theorems

In this section we discuss (7) and show that its solution is indeed the desired
'killed' conditional density. The proofs require only minor adaptions of techniques of
pPardoux, and so, if discussed at all, will only be sketched. Two approaches to the
theorems are possible and we will state results from both. However we will indicate proofs
only for the analytically simpler method, so that readers, should they wish to verify any

details, might have an easier time of it.




b ariaaded shas )

g T

*
It is easy to show, using A1) - 53), that A, and At are coercive operators,

uniformly in t. That is, there exist a > 0 and A such that

2¢a v, + Alul® > atut® + f ih,u?
t R

Yt e [0,7) VYue HY(R)
{and aimilarly for A: since <A:__u,u> = <A u,uw>)e Coarcivity is the basic fact underlying
the theory.
Theorem 1. Suppose po(x) € L‘(l“) n Lz(ll“) and po(x) >0 ade.
Then (7) possesses a unique solution u(t), and moreover
0 we e tf@; co,m 2@ o nl@ Lo, @ .
ii) Almost gurely, u(t,x) » 0 &a.e. VYt .
Proof. Existence and uniqueness is a direct consequence of a general theorem of Pardoux
71, mhat u(t) ¢ L@ 70,1 (@) ana u(t,x) > 0 are proved by pardoux (7)
when V = 0, but the proofs depend only on the coercivity of A, and extend to the
present case.

Define ;:(f) = f X u(t,x)f(x)dx. By theorem 1, ;:(f) can be thought of aa a
R

measurable process taking values in the space of bounded, positive measures on R,
Theorem 2. For py(x) € LZ(d) a v, Grit) = o¥(e) ave.  we, V£ TG

Sketch of proof (method of (7]). Let ﬁ't denote the two parameter semigroup

t
ﬁ'tt(x) + B, f(x, )exp -f. Viux )du .

we use I st to characterize o: as the solution of a certain equation.

Lesma 1. For every f € L (RY)

t
v v
o (f) = :li”: + )’o <o'(hﬂ.tt).dy'> . 8)




is another process with values in the space of positive bounded

Furthermore if o

neasures and

t
o (f) = el £+ jo <o (i £),dy >

v o N
then Gt(!) - Gt(!) a.,s. VYt ,¥feL (R).

Proof. The uniqueness part is a simple Gronwall-Bellman inequality argument (see Pardoux

e

[7))s To derive (8), fix ¢, and note that

\ 4
Ct(f) .- wtet x

-

t

t
~E - -1 2
V. = E(Z_IF] = exp Io < (h),dy,> /2[° Iz (h)1%as

t

t
o, = E[f(xt)oxp[-fo vis,x)as) 1 F.] .

t
Now let 2t = l{t(xt)oxp[-[ V(u,x )du | G”]. Since x, is a strong Markov process
0

independent of W(e) (Stroock and Varadhan {10])

e i .

s t
L, - exp(-fo V(u,xu)du)l'x.(f(xt)exp -f' V(u,x )aul}

s
- exp(-fo viux Jan (T fx) .

We can apply a theorem of Liptser and Shiryayev {11] on equations of optimal extrapolation

to conclude that for u < s < t

u
B{t, | F }=xe + IO[E{I.‘h(xT)IFT} - v (et |F 1] x [ay, - v (mar] .

By applying Ito's rule, we then discover



a v BIL, | Fol = <¥,E(2 n(x,) Iru),dy“>

u
= <y B[h(x )(T_ £)(x )exp -,ro vit,x )ar | F ],y

¢ = <o’ (nfl
i <cu(hnutf),dy“> .

Since Y E[L | FO] - Eﬁ0t£, integration of the above implies ‘ f

t
‘v - v.,.5
o (f) = bE(L IF ] =&l £+ Io <o (nll_ £),dy,>

as desired.

Clearly then, to prove theorem 2 it suffices to show that ;:(f) satisfies (8)

also. This is done by introducing the solution v of a p.d.e. that is adjoint to (7), at

Fix t and consider

least insofar as concerns the deterministic part.

v
3;4-1\8‘1‘0

v{t,x) = £(x)

vetdo,m a @ .

We then have for the fixed t, 3:(2) = cult),v(t)> .

Lemma 2. (Feynman-Kac)

——r—

2, N o« N
For £ e L '(R) nL (R'), (9) has the unique solution

t
v(s,x) = n“f(xt)exp(-[s V(u,x )du) ‘

= (H'tf)(x) .

Proof. This result is well known for sufficiently regular f, V, m, ¢ and h. When ¢£,

Vv, etc. satisfy only A,) - A3) approximate them by regular f“, v?, etc. and take

limits. Again, details may be inferred from analogous arguments in Pardoux [9].

We are now ready to complete the proof of theorem 2. For s € t, f ¢ LQ(IF) n Lz(lv)
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d<u(s),v(s)> = Q.u(s),V(sts + f <hku(s).v(s)>dy (8)
8 k=1 k

+ <u(s), - nsv(s)>ds

- f <u(s) ,h T__£>dy (s)
k=1 k st k

~v-
- <°a(h"s:f)'dy(°)>

<u(0),v(0)> = f po(X)ﬁOtf(x)dx =l £ .

t
~v 3 ~V =
o (f) = <ult),v(r)> = EN £ + ]o <o_(hll_ £),dy > (10)

T 2, N ® N
¥f €L (R)nL (R ). By taking limits, (10) will hold for all f € L (R ), and hence,

by lemma 2, we are done.
An alternate approach to theorem 2 exists and involves a generalized Feynman-Kac rule.

Instead of (9}, the full adjoint to (7) is considered: for fixed t, consider

av(s) + Asv(’) + hv(s),dy(s) =0

vit,x) = f(x) (11)

v(s) e 2@ x {0,101 1 (&) .

{(11) must be interpreted as a backwards equation, i.e. v(s,x) is adapted to

r: 1= o{yT | 8 € T <t} since the initial condition is imposed at t. Again by modifying
the techniques of Pardoux (9], we obtain a generalization of his results.
Theorem 3. For £(x) ¢ Lz(ny) n L”(RF). (11) has a unigque solution, which, moreover may be

expressed as

«Qu




t
- t ]
v(s,x) = B.x{t(xt)exp[-!- v(xt)dt]zt | Fy

t t
8 2
where zt = exp[f‘ <h(xT).dy‘> -'b&fs Ih(xT)I dt] .

Theorem 2 then follows fram theorem 3, because

da<u(s) ,v(s)> = 0

implying that

ZZ(f) = cu(t),v(t)> = <u(0),v(0)>

t
- a{f(xt)exp[-fo V(x.)ds]zt ] rt} a.e.

as desired.

For the purposes of application in section 3, we state yet one more variant of the

Zakai equation theorem. Retain the processes x, and. y, defined in 2.1. However,

suppose now that an open domain O with Cz-boundnty 30 is given, and consider the

problem of finding u(t,x) such that

~ -M(xo) €t
E{f(xt)e 1{t<t}exp[-fo V(s,xs)ds]zt | Ft} .

= [ ax u(t,x)f(x) . (12)
[0}

In (12), M 1is a function bounded on compacts in O and T denotes the exit time from

O0; it is assumed that the initial density p,(x) satisfies supp py(x) c O. (The term

-M(x,)
e *o might appear odd, but this is necessary for an application in the next section.)

The appropriate Zakai equation should then be

du(t) = A:u(t)dt + u(t)<h(t,x),dy,>

u(0,x) = po(x)e'"(”) (13)

alt,+) € 2@ x (0,711 H)(O)) .




As usual, u;(O) denotes the completion in H'(0) of the infinitely differentiable

functions with compact support in O. The proof of the next theorem is analogous in all
respects to that of theorem 2.
Theorem 4. Let ¢ MXp (x) ¢ £°(0) 0 22(0) and £ € L'(0). (13) has a unique solution

u(t,x) that, in addition, satisfies (12).




3. An application
3.1, 8ignal models with entrance boundaries
In a study of Lie algebraic techniques in filtering theory (Ocone [5,6]), we were led

to models with scalar signals for which the local drift m(x) satisfied
B (x) + 0P (x) = V(x) (14)

for certain functions V(x). Such signals evolve only in bounded or semi~infinite
intervals O, in general, and exhibit entrance boundary behavior at the (finite) endpoints

of O. To see this, suppose k(x) is a solution of

k"(x) = V(x)k(x) ;
then m(x) = k'(x)/k(x) certainly solves (14). However, if k(r) = 0, then m(x)
becomes singular at r, and, in fact wm(x) ~ ;é; as x + r. Thus the typical solution
m(x) of (14) vill be defined on an interval O = (r,,r;) at the (finite) endpoints of
which it has simple poles. From the theory of stochastic differential equations (Gihman-
Skorohod (4]), given a re.v N € O a.s, an O-valued process Xy exists such that

dxt - n(xt)dt + dbt, xo =n , (15)

and the endpoints at which m 1is singular are entrance boundaries of Xy Henceforth we

will assume that V(x) is a continuous, bounded function and that m(x), O, and X, are

described as above. As usual the observation y, will be

- e e

dyt - h(xt)dt + dwt (16)

| AL

and po(x) will denote the density of n. The assumptions on h established in gection

é é 2 are maintained hers.

i
£
2

-12~=
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Previously (Ocone [5,6]) we stated, but only formally derived, Zakai equations for
prcblems defined by (14) - (16). In this section, we aim to replace the formal
calculations with a rigorous result. The work here slaborates on the theme of so-called
‘gauge transformations' of the Zakai equation as discussed in Mitter (3], Brockett (1},
and, implicitly, in Benes {[2]. The gauge transformations relate to a simplification of the
functional integration by a Girsanov transformation to a measure w.r.t which x. 1is
Brownian. This is the technique that led Benas to his discovery of new finite
dimensionally computable filters, and it is the central feature of the calculation to
follow.

3.2, A Zakai equation for (15) - (16)

Again define the underlying probability space as (§,P);

Q =C[0,t) x C[0,¢t]
P=Q xu

n =

where Q n is the measure induced by the solution of (15). Now define u to be the

measure induced on C(0,t] by the process n + B, for a Brownian motion By« The tirst

important remark is that Qn << un; indeed

t t
®n - -1 2
= (x) = 10 5 po%p [0 m(x )ax, éfo n(x )ds

{inf(|<tlx-t} if g8 € t S.te x_ = t
T = s s

- otherwise

(Liptser and Shiryayer [11], p. 248). The main idea is to transform measures so as to work

with un- Accordingly, on 2 define

and v

B I8,

t t 2
= exp -[o h(x daw -'/210 h(x )as = z_ .

-]3-
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(17)

geix) | 1) o ——0T—
¢ t :[-‘—'lrt]
o

We wish to represent i[t(x‘) % | ’t] as in section 2.
ar

Clearly, from what has gons above

t t 2 t t 2
=1y )P }o mix dax, -'/,!o n’(x )ds x exp Io n(x )y -'/;!o n'(x )as .(18)

85

To get to the final result, we must perform the following trick on (18). Let r ¢ O
x

and let M(x) = [ m(z)dz. As is well-known, the distribution of x, on
r

same as on (Q,P), namely, the distribution of n + l.. Therefore by Ito's rule

(3,7) 1is the

t t
Mix,) - Nix) = !o wix ), +'/,]o mix e .

t t
- - -l
Thus, substituting [ mix )ax_ = Wix ) - W(x)) 4[0 ' (x )ds

into (18).

“( Kt) -M( x, )

t
T sy el vegielz,

8.8

With this, we may write

t
-K(x,) -v,]o vix )as

':‘ 'e) .

- @ ~ M(x )
l(l(xt) -g | ':} - l{!(xt)o (v 0

(19)

-id=




. 1 1
Theorem 3. Define A Io(o) g IID(O)

aluw =l BE &% vounvoe .
0 o

~M(x)

Assume po(x)o Nx)

[ !..(o) n Lz(O). t(x)e [ 4 x.'(o), and let u(t,x) bs the unique

solution of

*
cl\lt = A 9. it + ., h(x)wt

- -M(x)
uo(x) po(x)c

wt) ¢ L@ x (0,1 I;(o)) .

;{t(:t) 9_—_ I r} - tioe Pux,erar as. vee o,r .
@ o

Proof. Om (9,;) xg and Yoo @ € t, are independent and xg has the law of n + l..

Clearly we can interpret (19) as if xg, were defined Vs ¢ (0,2) and Tt = first exit

2
time from O. Sinos ‘él—z is the generator of x,, the theorem thes follows immediately
x

from theorea 4.

Mwark pix,t) = My (x,e) is, in effect, an unnormaliszed conditional density, and the

factor ™ *) 15 the 'gauge transformstion’ mentioned above.
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